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APPENDIX

A.1 Expressive Power of DeepMoE

To characterize the expressive power of DeepMoE, we
follow the tensor analysis approach of Cohen et al. [1].
We first represent an instance of data as a collection
of vectors (x1, · · · ,xN ), where xi ∈ Rs. For the im-
age data, the collection (x1, · · · ,xN ) corresponds to
vector arrangements of possibly overlapping patches
around pixels. We represent different features in data
using (positive) representation functions:

fd(xi), (1)

so that the convolution operations over data become
multiplications over representation functions. For
the representation functions, index d ∈ {1, · · · ,M},
where M is the number of different features in data
that we wish to distinguish and can be combinatori-
ally large with respect to the number of pixels.

For classification tasks, we view a neural network
as a mapping from a particular instance to a cost
function (e.g., the log probability) over labels y for
that instance. With the new representation of data
instances following Eq. (1), the mapping can be rep-
resented by a tensor Ay operated on the combination
of the representation functions:

hy(x1, · · · ,xN ) =

M∑
d1,··· ,dN=1

Ay
d1,··· ,dN

N∏
i=1

fdi
(xi).

(2)

To be able to distinguish data instances x from x̃, we
need hy(x1, · · · ,xN )−hy(x̃1, · · · , x̃N ) to be nonzero.
For a fixed mapping Ay, this requirement is equiva-
lent to:

M∑
d1,··· ,dN=1

Ay
d1,··· ,dN

(
N∏
i=1

fdi
(xi)−

N∏
i=1

fdi
(x̃i)

)
6= 0,

for x 6= x̃. It can directly be seen that the inequal-
ity is satisfied when the difference

∏N
i=1 fdi(xi) −∏N

i=1 fdi
(x̃i) is not in the null space of Ay

d1,··· ,dN
.

Therefore, the expressive power is equivalent to the
rank of the tensor Ay. This approach, taken by [1],
establishes that for a certain type of networks, the
rank of Ay scales as n2L with measure 1 over the
space of all possible network parameters, where n
is the number of channels between network layers
(width) and L is the network depth.

If we directly apply the theorem to a wider network
(width m satisfying m > n), then the rank of Ay will

scale as m2L , which is
(m
n

)2L
times better. How-

ever, when the channels are gated with static sparse
weights, the set of Ay with this restriction has mea-
sure 0 in the overall space of network parameters.
In fact, if the number of nonzero weights over the
channels is n, then the rank of Ay still scales as n2L .

What makes our DeepMoE prevail is that (the spar-
sity pattern of) our mapping Ay depends on the data.
We hereby compare an L-layer DeepMoE with width
equal to m and number of nonzero weights over the
channels equal to n < m against an L-layer fixed, non-
sparse neural network with width equal to m. For the
latter, we know that it will be able to distinguish be-
tween features in a subspace of dimension m2L . For
the former, if hy(x1, · · · ,xN )− hy(x̃1, · · · , x̃N ) 6= 0

for the same choices of features (in the m2L dimen-
sional subspace), then we know that it will have



expressive power of at least m2L :

hy(x1, · · · ,xN )− hy(x̃1, · · · , x̃N )

=

M∑
d1,··· ,dN=1

Ay
d1,··· ,dN

N∏
i=1

fdi
(xi)− (3)

M∑
d1,··· ,dN=1

Ãy
d1,··· ,dN

N∏
i=1

fdi(x̃i)

=

M∑
d1,··· ,dN=1

Ay
d1,··· ,dN

(
N∏
i=1

fdi
(xi)−

N∏
i=1

fdi
(x̃i)

)
(4)

+

M∑
d1,··· ,dN=1

(
Ay

d1,··· ,dN
− Ãy

d1,··· ,dN

) N∏
i=1

fdi(x̃i).

(5)

Since the gating network is independent from the
convolution neural network, to have Line (4) ex-
actly equal to the negative of Line (5)—when they
are both nonzero—has zero measure over the space
of network parameters (even with the sparsity con-
straint). We simply need to focus on the cases where
Line (4) is zero for the pair of x and x̃, and dis-
cuss whether Line (5) is also zero. In those cases,
we assume that the sparsity pattern of the weights
over the gated channels is i.i.d. with respect to
each channel. With this assumption, probability of
choosing exactly the same channels for different data:
Ay

d1,··· ,dN
= Ãy

d1,··· ,dN
is
(
m
n

)−L. When they are not
equal, the difference Ay

d1,··· ,dN
−Ãy

d1,··· ,dN
can be rep-

resented as combinations of linearly independent ba-
sis in RMN

and positivity of the representation func-
tions ensures that Line (5) is not zero with probability
1. Therefore, hy(x1, · · · ,xN )− hy(x̃1, · · · , x̃N ) 6= 0

holds with probability 1 −
(
m
n

)−L. In other words,
there is a 1−

(
m
n

)−L probability that the expressive
power of our DeepMoE equals to or is bigger than
m2L .

A.2 Network Configurations of Wide VGG

In Sec. 5.3.3 of the main paper, we conduct exper-
iments to investigate different widening strategies.
We used four different strategies to widen the VGG-
16 network which contains 13 convolutional layers in
total: W1-High widens the top layer only, W1-Mid
widens the middle layer only, W4-Low widens the
lower 4 layers, and finally W13-All that widens all
13 convolutional layers in Tab. 1.

Table 1: Channel configurations of different widening
strategies

Layers W1-High W1-Mid W4-Low W13-All

Conv1 64 64 512 128
Conv2 64 64 512 128

Max Pooling - - - -

Conv3 128 128 615 256
Conv4 128 128 615 256

Max Pooling - - - -

Conv5 256 2990 256 405
Conv6 256 256 256 405
Conv7 256 256 256 405

Max Pooling - - - -

Conv8 512 512 512 615
Conv9 512 512 512 615
Conv10 512 512 512 615

Max Pooling - - - -
Conv11 1536 512 512 615
Conv12 512 512 512 615
Conv13 512 512 512 615

Max Pooling - - - -
Soft-max - - - -
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