
Appendices

A AUSO instance from Section 4.1
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Figure 5: The only 4-AUSO (up to an isomorphism) on which
HPI performs 8 vertex evaluations. The 8 vertices are num-
bered in sequence. This AUSO does not satisfy the Holt-Klee
conditions. Notice, for example, that the inner 3-AUSO does
not have 3 vertex-disjoint paths from source to sink.

B Proofs from Section 5

We provide a proof of Theorem 9, which uses the MDP

designed by Melekopoglou and Condon [1994], shown

in Figure 3. Recall from Section 5 that we only consider

states s ∈ {1, 2, . . . , n} as a part of our analysis.

For this proof, we find it convenient to consider a slight

modification to RPI. If a policy π has m > 1 improv-

able states, note that RPI obtains π′ ≻ π by picking uni-

formly at random among the 2m−1 improving policies in

I(π). We consider an algorithm RPI1 that instead picks

π′ uniformly at random from I(π)∪{π}. The reason for

so doing is that RPI1 can be implemented by indepen-

dently switching each improvable state with probability

1/2, which simplifies our analysis. The consequence,

though, is that RPI1 is not strictly a PI algorithm, since

with a finite probability, we can get π′ = π. This proba-

bility is at most 1/2, and therefore, the expected number

of policies visited by RPI1 (which might contain repeti-

tions) is at most twice the expected number of policies

visited by RPI. To prove the theorem, we show below

that the former quantity is at least n+ 1.

Building on Melekopoglou and Condon [1994], first we

obtain a simple rule to check if a state s is switchable.

Lemma 10. For a policy π for Mn, a state s is switch-

able if and only if

∑

s′≤s

π(s) ≡ 0 mod 2.

Proof. For states s ∈ {1, 2, . . . , n}, Melekopoglou and

Condon [1994] define

a(1) = −1

2
and a(s+ 1) = a(s)

(

1

2
− π(s)

)

.

It is easy to verify from the definition that a(s + 1)
is negative if and only if

∑

s′≤s π(s) ≡ 0 mod 2
[Melekopoglou and Condon, 1994, see Corollary 2.3].

Since a(s + 1) = a(s)( 12 − π(s)), a(s + 1) is negative

if and only if π(s) = 0 and a(s) < 0, or π(s) = 1 and

a(s) > 0. Based on the structure of Mn, Melekopoglou

and Condon[1994, see Corollary 2.4] show that the latter

condition is equivalent to s being switchable.

The crucial step in our proof is to define a progress func-

tion f on the policy space, which is then shown to be

non-increasing with respect to PI updates.

Definition 11. For a policy π for Mn,

f(π)
def
= min (states(Tπ) ∪ {n+ 1}) .

In other words, f(π) is defined to be the smallest switch-

able state if π is not optimal, and n + 1 if it is π⋆. The

lemma below establishes the monotonicity of f .

Lemma 12. If RPI1 visits the policies π0, π1, . . . , πm in

sequence, then for 1 ≤ i ≤ m, f(πi−1) ≤ f(πi).

Proof. Since we stop when there are no improvable

states, f(πm−1) ≤ f(πm) = n + 1. Otherwise as-

sume that i < m. Let f(πi−1) = s. Since vertex s is

the smallest switchable state in πi−1, any state s′ will

not be switched in πi−1 for 1 ≤ s′ < s, and hence

πi(s′) = πi−1(s′). It follows from Lemma 10 that

states 1, 2, . . . , s − 1 are not switchable in πi. Thus,

f(πi) ≥ s = f(πi−1).

Next we show that as RPI1 proceeds, with sufficiently

high probability f increases quite slowly. It follows

thereafter that at least n + 1 policy evaluations must

be made in expectation if π0 = 0n is the initial policy

(f(π0) and f(π⋆) differ by n).

Lemma 13. If RPI1 visits the policies π0, π1, . . . , πm in

sequence, then for 1 ≤ i ≤ m, t ≥ 0,

P{f(πi)− f(πi−1) ≥ t} ≤ 1

2t
.



Proof. If t = 0, the RHS is 1 and the result trivial.

Henceforth we assume t > 0. The proof splits into cases

f(πi−1) = 1 and f(πi−1) > 1, which we consider in

turn. Let [x] denote the set {1, 2, . . . , x}.
If f(πi−1) = 1, s = 1 is switchable in πi−1. From

Lemma 10, πi−1(1) = 0. Thus, let πi−1 = 0s
′

x for

some 1 ≤ s′ ≤ n, x ∈ {0, 1}n−s′ , and x starts with 1 or

x is empty. Applying Lemma 10 for states 1, 2, . . . , s′ +
1, we get that states 1, 2, . . . , s′ are switchable in πi−1

and s′ + 1 is not switchable in πi−1, if s′ + 1 ∈ [n]. If

f(πi) ≥ t + 1, the states 1, 2, . . . , t are not switchable

in πi. Applying Lemma 10 for states 1, 2, . . . , t, we get

that πi = 10t−1y where y ∈ {0, 1}n−t. If s′ = n,

t ≤ n = s′. t cannot be greater than s′ if s′ + 1 ∈
[n] as that will imply πi(s′ + 1) = 0 6= πi−1(s′ + 1),
despite s′ + 1 not being switchable in πi−1. Hence, if

t > s′, P{f(πi) ≥ t + 1} = 0 ≤ 1
2t . Otherwise t ≤ s′.

Therefore, states 1, 2, . . . , t are switchable in πi−1. To

get to πi from πi−1, the state 1 must be switched and the

states 2, 3, . . . , t must not be switched. As each state is

switched with probability 1
2 by RPI1, the probability of

this event happening is exactly 1
2t .

If f(πi−1) = s > 1, s is switchable in πi−1 and

1, 2, . . . , s − 1 are not switchable in πi−1. Apply-

ing Lemma 10 for states 1, 2, . . . , s, we get πi−1 =
10s−210s

′

x for some 0 ≤ s′ ≤ n− s, x ∈ {0, 1}n−s−s′ ,

and x starts with 1 or x is empty. Applying Lemma 10

for states s + 1, s + 2, . . . , s + s′, we get that states

s + 1, s + 2, . . . , s + s′ are also switchable in πi−1 and

s+ s′ + 1 is not switchable in πi−1, if s+ s′ + 1 ∈ [n].
Note that since i − 1 < m, πi−1 6= π∗ and hence

s ≤ n. If f(πi) ≥ s + t, the states 1, 2, . . . , s + t − 1
are not switchable in πi. Applying Lemma 10 for states

1, 2, . . . , s + t − 1, we get that πi = 10s+t−2y where

y ∈ {0, 1}n−s−t+1. If s+s′ = n, s+t−1 ≤ n = s+s′.
s+ t− 1 cannot be greater than s+ s′ if s+ s′ +1 ∈ [n]
as that will imply πi(s+s′+1) = 0 6= πi−1(s+s′+1),
despite s+s′+1 not being switchable in πi−1. Hence, if

s+t−1 > s+s′, P{f(πi) ≥ s+t} = 0 ≤ 1
2t . Otherwise

s+t−1 ≤ s+s′. Therefore, states s, s+1, . . . , s+t−1
are switchable in πi−1. To get to πi from πi−1, the state s
must be switched and the states s+1, s+2, . . . , s+ t−1
must not be switched. As each state is switched with

probability 1
2 by RPI1, the probability of this event hap-

pening is exactly 1
2t .

Definition 14. We define L : Π → R≥0, where L(π) is

the expected number of policies evaluated by RPI1 start-

ing from π.

Note that even if we start from π0 = π∗, we need to

evaluate π0 to know that it is optimal. Hence L(π∗) = 1.

Definition 15. We define N : [n+ 1] → R≥0, where

N(s) = min
π∈Π,f(π)=s

L(π).

It directly follows from the definition that N(f(π)) ≤
L(π) for any π ∈ Π.

Theorem 16. For s ∈ [n+ 1], N(s) ≥ n+ 2− s.

Proof. If s = n+1, f(π) = n+1 is true only for π = π∗.

Hence N(n+ 1) = L(π∗) = 1 ≥ n+ 2− (n+ 1).

Now, let s ∈ [n]. Let π be a policy such that N(s) =
L(π). Hence f(π) = s. Since f(π∗) = n + 1, π is not

optimal. Let π′ be obtained from π by an RPI1 update.

First we upper-bound the expectation of f(π′). Since

f(π′) is a non-negatively valued random variable, we can

use the following expression for its expectation.

E[f(π′)] =
∑

n+1≥s′≥1

P{f(π′) ≥ s′}

=
∑

s≥s′≥1

1 +
∑

n+1≥s′>s

P{f(π′) ≥ s′}

≤ s+
∑

n+1≥s′>s

1

2s′−s

≤ s+
∞
∑

k=1

1

2k

= s+ 1.

Now, assuming inductively that N(s′) ≥ n + 2 − s′ for

s < s′ ≤ n+ 1, we can lower-bound N(s) = L(π) as

N(s) = 1 +
∑

π′′∈Π

L(π′′)P{π′ = π′′}

≥ 1 +
∑

π′′∈Π

N(f(π′′))P{π′ = π′′}

= 1 +
∑

n+1≥s′≥1

[

∑

π′′∈Π,f(π′′)=s′

N(s′)P{π′ = π′′}
]

= 1 +
∑

n+1≥s′≥1

N(s′)

[

∑

π′′∈Π,f(π′′)=s′

P{π′ = π′′}
]

= 1 +
∑

n+1≥s′≥1

N(s′)P{f(π′) = s′}

= 1 +
∑

n+1≥s′≥s

N(s′)P{f(π′) = s′},

since P{f(π′) < s = f(π)} = 0. We rearrange terms in



a convenient form, and apply E[f(π′)] ≤ s+ 1, to get

N(s) ≥ 1 +
∑

n+1≥s′≥s

(N(s′)− n− 2 + s′)P{f(π′} = s′}

+
∑

n+1≥s′≥s

(n+ 2− s′)P{f(π′) = s′}

= 1 +
∑

n+1≥s′≥s

(N(s′)− n− 2 + s′)P{f(π′} = s′}

+ n+ 2−
∑

n+1≥s′≥s

s′P{f(π′} = s′}

=
∑

n+1≥s′≥s

(N(s′)− n− 2 + s′)P{f(π′) = s′}

+ n+ 3− E[f(π′)]

≥
∑

n+1≥s′≥s

(N(s′)− n− 2 + s′)P{f(π′) = s′}

+ n+ 2− s.

By the induction hypothesis, N(s′)− n− 2 + s′ is non-

negative for s′ > s. Therefore, after removing terms

corresponding to s′ > s, we get

N(s) ≥ n+ 2− s+ (N(s)− n− 2 + s)P{f(π′) = s},

which rearranges into

(N(s)− n− 2 + s)(1− P{f(π′) = s}) ≥ 0.

Now, P{f(π′) = s} cannot be 1 because there is a policy

π′′ = modify(π, {(s, a)}) ∈ Π, where a ∈ {0, 1} and

a 6= π(s), such that P{π′ = π′′} > 0 and f(π′′) > s
(since s is not switchable in π′′). Hence, we must have

N(s) ≥ n+ 2− s.

At this point, Theorem 9 follows as a corollary; the state-

ment of the theorem is reproduced below.

Corollary 17. Starting from π0 = 0n, the expected num-

ber of policies RPI evaluates on Mn before terminating

is at least n+1
2 .

Proof. For π0 = 0n, f(π0) = 1. Thus

L(π0) ≥ N(1) ≥ n+ 2− 1 = n+ 1.

In other words, RPI1 evaluates at least n + 1 policies

in expectation, which implies RPI evaluates at least half

that number of policies in expectation.


