Appendices

A AUSO instance from Section 4.1
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Figure 5: The only 4-AUSO (up to an isomorphism) on which
HPI performs 8 vertex evaluations. The 8 vertices are num-
bered in sequence. This AUSO does not satisfy the Holt-Klee
conditions. Notice, for example, that the inner 3-AUSO does
not have 3 vertex-disjoint paths from source to sink.

B Proofs from Section 5

We provide a proof of Theorem 9, which uses the MDP
designed by Melekopoglou and Condon [1994], shown
in Figure 3. Recall from Section 5 that we only consider
states s € {1,2,...,n} as a part of our analysis.

For this proof, we find it convenient to consider a slight
modification to RPL. If a policy m has m > 1 improv-
able states, note that RPI obtains 7’ > 7 by picking uni-
formly at random among the 2™ —1 improving policies in
I(m). We consider an algorithm RPII that instead picks
7" uniformly at random from I(7) U {n}. The reason for
so doing is that RPI1 can be implemented by indepen-
dently switching each improvable state with probability
1/2, which simplifies our analysis. The consequence,
though, is that RPI1 is not strictly a PI algorithm, since
with a finite probability, we can get 7' = 7. This proba-
bility is at most 1/2, and therefore, the expected number
of policies visited by RPI1 (which might contain repeti-
tions) is at most twice the expected number of policies
visited by RPI. To prove the theorem, we show below
that the former quantity is at least n + 1.

Building on Melekopoglou and Condon [1994], first we
obtain a simple rule to check if a state s is switchable.

Lemma 10. For a policy © for M, a state s is switch-
able if and only if

Z m(s) =0 mod 2.

s'<s

Proof. For states s € {1,2,...,n}, Melekopoglou and
Condon [1994] define

a(1) = _% and a(s + 1) = a(s) (; - ﬂ(s)) .

It is easy to verify from the definition that a(s + 1)
is negative if and only if >, 7(s) = 0 mod 2
[Melekopoglou and Condon, 1994, see Corollary 2.3].
Since a(s + 1) = a(s)(3 — 7(s)), a(s + 1) is negative
if and only if w(s) = 0 and a(s) < 0, or m(s) = 1 and
a(s) > 0. Based on the structure of M,,, Melekopoglou
and Condon[1994, see Corollary 2.4] show that the latter
condition is equivalent to s being switchable. O

The crucial step in our proof is to define a progress func-
tion f on the policy space, which is then shown to be
non-increasing with respect to PI updates.

Definition 11. For a policy 7 for M,,
f(r) & min (states(T™) U {n + 1}).

In other words, f () is defined to be the smallest switch-
able state if 7 is not optimal, and n + 1 if it is 7*. The
lemma below establishes the monotonicity of f.

Lemma 12. If RPII visits the policies 7%, 7', ..., 7™ in
sequence, then for 1 < i <m, f(x'~1) < f(=%).

Proof. Since we stop when there are no improvable
states, f(7™~ 1) < f(m™) = n + 1. Otherwise as-
sume that i < m. Let f(7'~!) = s. Since vertex s is
the smallest switchable state in 7'~ !, any state s’ will
not be switched in 771 for 1 < § < s, and hence

7i(s’) = 7wi71(s’). It follows from Lemma 10 that
states 1,2,...,s — 1 are not switchable in 7¢. Thus,
f) > s = f(i). 0

Next we show that as RPI1 proceeds, with sufficiently
high probability f increases quite slowly. It follows
thereafter that at least n + 1 policy evaluations must
be made in expectation if 7° = 0" is the initial policy
(f(7") and f(7*) differ by n).

Lemma 13. If RPII visits the policies 7%, 7', ..., ™ in
sequence, then for1 <i<m,t >0,

P(f(r) ~ f(x ™) 2 1) < o



Proof. If t = 0, the RHS is 1 and the result trivial.
Henceforth we assume ¢ > 0. The proof splits into cases
f(m=1Y) = 1 and f(x*~') > 1, which we consider in
turn. Let [x] denote the set {1,2,...,z}.

If f(7'~1) = 1, s = 1 is switchable in 7¢~!. From
Lemma 10, 7°~1(1) = 0. Thus, let 7'~! = 0%z for
some 1 < s < n,z € {0, 1}”_3,, and z starts with 1 or
x is empty. Applying Lemma 10 for states 1,2,...,s +
1, we get that states 1,2,...,s’ are switchable in 7*~!
and s’ + 1 is not switchable in =1, if s’ + 1 € [n]. If
f(7%) >t + 1, the states 1,2, ...,t are not switchable
in 7°. Applying Lemma 10 for states 1,2,. .., we get
that ¢ = 10~ 'y where y € {0,1}"t. If &' = n,
t < mn = s'. t cannot be greater than s’ if s’ +1 €
[n] as that will imply 7(s’ + 1) = 0 # 7'~ 1(s' + 1),
despite s’ 4 1 not being switchable in 7¢~1. Hence, if
t>s,P{f(r )>t+1}_0< Otherw1set<s
Therefore, states 1,2,...,t are sw1tchable in 7=+, To
get to 7' from 7¢ 7L, the state 1 must be switched and the
states 2,3, ...,t must not be switched. As each state is
switched with probability % by RPI1, the probability of
this event happening is exactly 2—1,

If f(m?

1

Y = s > 1, s is switchable in 7¢~! and

1,2,...,8 — 1 are not switchable in 7*~1. Apply-
ing Lemma 10 for states 1,2,...,s, we get w1
1052105z forsome 0 < 8’ < n—s,x € {0, 1}”’5*5/,
and x starts with 1 or z is empty. Applying Lemma 10
for states s + 1,s + 2,...,s + s’, we get that states
s+1,5+2,...,5+ s are also switchable in 7'~ and
s+ s + 1is not switchable in 771, if s + s’ + 1 € [n].
Note that since i — 1 < m, 71 # 7* and hence
s <. If f(7') > s+ ¢, the states 1,2,...,5 +t — 1
are not switchable in 7. Applying Lemma 10 for states
1,2,...,8 +t— 1, we get that 7* = 10°Tt~2y where
yE {0,1}” 5= ”1. Ifs+s =n,s+t—1<n=s+s".
s+t — 1 cannot be greater than s + 5" if s+ s’ + 1 € [n]
as that will imply 7¢(s+s'+1) = 0 # 71 (s+ 5" +1),
despite s+ s’ + 1 not being switchable in 7*~!. Hence, if
s+t—1> s+, P{f(r") > s+t} = 0 < ;. Otherwise
s+t—1 < s+s'. Therefore, states s,s+1,...,s+t—1
are switchable in 7'~ 1. To get to 7’ from 71, the state s
must be switched and the states s+1,s+2,...,s+t—1
must not be switched. As each state is switched with
probability 3 by RPII, the probability of this event hap-
pening is exactly o;. O

Definition 14. We define L : IT — Rx(, where L() is
the expected number of policies evaluated by RPII start-
ing from .

0

= 7, we need to
) =1

Note that even if we start from 7
evaluate 7° to know that it is optimal. Hence L (7

Definition 15. We define N : [n + 1] — R, where

N(s)= min

L(r).
well, f(m)=s ( )

It directly follows from the definition that N(f (7)) <
L(m) for any 7 € II.

Theorem 16. Fors € [n+1], N(s) >n+2—s.

Proof. If s = n+1, f(7) = n+1is true only for 7 = 7*.
Hence N(n+1)=L(r*)=1>n+2— (n+1).

Now, let s € [n]. Let 7w be a policy such that N(s) =
L(r). Hence f(m) = s. Since f(n*) = n + 1, 7 is not
optimal. Let 7’ be obtained from 7 by an RPI1 update.

First we upper-bound the expectation of f(x’). Since

f(7") is a non-negatively valued random variable, we can
use the following expression for its expectation.

E[f(«) = Y P{f(x)=s}
n+1>s'>1
Y 1 Y B =)
s>s'>1 n+1>s'>s
1
< -
Ss+ Z 25’—5
n+1>s'>s
= 1
<s+) o
k=1
=s+ 1.
Now, assuming inductively that N(s") > n+ 2 — &' for
s < s <n+ 1, wecan lower-bound N(s) = L(x) as
N(s)= 1+ Y L(x")P{x’' ="}
7.‘.//el_‘[
> 1+ ) N(f(x")P{x' ="}
n/ell
-1 ¥ [ S wrw =)
n+1>s'>1 La/ell, f(n!)=s'
= 1+ > N(s’)[ > P{W':w”]
n+1>s'>1 w €Il f(n'")=s’
— 1+ Y NEP() =)
n+1>s'>1
= 1+ Y NEP{() =5},
n+1>s'>s

since P{f(n’) < s = f(m)} = 0. We rearrange terms in



a convenient form, and apply E[f(7')] < s + 1, to get

N = 1+ S (V) —n—2+)P{f(r'} = &'}

n+1>s'>s
+ Y (2= SP{f() =5
n+1>s'>s
— 1+ Y (N —n—2+ )P{f(x} = &'}
n+1>s'>s
+n+2-— Z sSP{f(r'} ="}
n+1>s'>s
= Y (NE)-n-2+8P{f(n) =5}
n+1>s'>s

+n+3—E[f(n)]

> Y (NG —n—248P{f(r) = 5}
n+1>s'>s
+n+2—s.

By the induction hypothesis, N(s’) —n — 2 + s’ is non-
negative for s’ > s. Therefore, after removing terms
corresponding to s’ > s, we get

N(s)>n+2—s+(N(s) —n—2+s)P{f(r') = s},
which rearranges into

(N(s) —n—2+s)(1 —P{f(x') =s}) > 0.
Now, P{f(n") = s} cannot be 1 because there is a policy
7" = modify(m, {(s,a)}) € II, where a € {0,1} and
a # m(s), such that P{n’ = #”’} > O and f(7") > s
(since s is not switchable in 7’"). Hence, we must have
N(s)>n+2-—s. O

At this point, Theorem 9 follows as a corollary; the state-
ment of the theorem is reproduced below.

Corollary 17. Starting from 7° = 0", the expected num-
ber of policies RPI evaluates on M,, before terminating
is at least ”T“
Proof. For % = 0", f(7°) = 1. Thus

L) >N1)>n+2-1=n+1.

In other words, RPI1 evaluates at least n + 1 policies
in expectation, which implies RPI evaluates at least half
that number of policies in expectation. O



