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Preface

The Conference on Uncertainty in Artificial Intelligence (UAI) is the premier international conference on research
related to representation, inference, learning and decision making in the presence of uncertainty within the field
of Artificial Intelligence. This volume contains all papers that were accepted for the 34th UAI Conference, held
in Monterey, California, from August 6 to 10, 2018.

Papers appearing in this conference were subjected to a rigorous review process. A total of 337 papers were
reviewed by at least 3 reviewers each. Of these, 104 papers were accepted, for an acceptance rate of close to
31%. We are very grateful to the program committee and senior program committee members for their diligent
efforts. We are confident that the proceedings, like past UAI conference proceedings, will become an important
archival reference for the field.

We are pleased to announce that the Best Paper Award was awarded to Krishnamurthy Dvijotham, Robert
Stanforth, Sven Gowal, Timothy Mann and Pushmeet Kohli for their paper “A Dual Approach to Scalable
Verification of Deep Networks.” The Best Student Paper Award was awarded to Amin Jaber, Jiji Zhang and
Elias Bareinboim for their paper “Causal Identification under Markov Equivalence.” We are grateful to the
members of the best paper committee: Thomas Richardson, Ilya Shpitser and David Sontag.

In addition to the presentation of technical papers, we were very pleased to have four distinguished invited
speakers at UAI 2018: Michael C. Frank (Stanford University), Joelle Pineau (McGill University and Facebook),
Stuart Russell (UC Berkeley) and Raquel Urtasun (University of Toronto and Uber).

The UAI 2018 tutorials program, chaired by Shakir Mohamed, consisted of four invited tutorials: “Tackling
Data Scarcity in Deep Learning” by Anima Anandkumar (Caltech and Amazon AI) and Zachary Lipton (Carnegie
Mellon University), “Recent Progress in the Theory of Deep Learning” by Tengyu Ma (Facebook and Stanford
University), “Bayesian Approaches for Blackbox Optimization” by Matt Hoffman (DeepMind), and “Machine
Reading” by Sebastian Riedel (UCL), Johannes Welbl (UCL) and Dirk Weissenborni (German Research Center
for Artificial Intelligence).

UAI 2018 also hosted three workshops, chaired by Yarin Gal: Safety, Risk and Uncertainty in RL organized by
Emma Brunskill (Stanford), Audrey Durand (McGill), Vincent Franois (McGill), Daniel (Zhaohan) Guo (CMU),
Joelle Pineau (McGill), and Guillaume Rabusseau (McGill); The 7th Causal Inference Workshop organized by
Bryant Chen (IBM), Panos Toulis (University of Chicago) and Alexander Volfovsky (Duke University); and
Uncertainty in Deep Learning organized by Andrew Wilson (Cornell), Balaji Lakshminarayanan (Deepmind),
Dustin Tran (Columbia, Google) and Matt Hoffman (Google).

Following the success of last years event, UAI 2018 continued to hold MLTrain, a hands-on training session on
modern machine learning technologies organized by Nikolaos Vasiloglou. This year we partnered with the Linqs
team from UC Santa Cruz and with the Pyro team from Uber ATG and teach UAI participants probabilistic
programming. We covered the fundamentals of modeling with Probabilistic Soft Logic a new language that
redefines the way we blend human expertise with machine learning.

Amir Globerson and Ricardo Silva (Program Co-Chairs)
Gal Elidan and Kristian Kersting (General Chair)
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Abstract

A crucial problem in statistics is to decide
whether additional variables are needed in a
regression model. We propose a new multi-
variate test to investigate the conditional mean
independence of Y given X conditioning on
some known effect Z, i.e., E(Y |X,Z) =
E(Y |Z). Assuming that E(Y |Z) and Z are
linearly related, we reformulate an equivalen-
t notion of conditional mean independence
through transformation, which is approximat-
ed in practice. We apply the martingale d-
ifference divergence (Shao and Zhang, 2014)
to measure conditional mean dependence, and
show that the estimation error from approxi-
mation is negligible, as it has no impact on the
asymptotic distribution of the test statistic un-
der some regularity assumptions. The imple-
mentation of our test is demonstrated by both
simulations and a financial data example.

1 INTRODUCTION

Testing (conditional) dependence and conditional mean
dependence plays an important role in statistics with var-
ious applications, including variable selection (Székely
and Rizzo, 2014; Park et al., 2015; Zhang et al., 2015;
Yan and Bien, 2018), feature screening (Li et al., 2012;
Shao and Zhang, 2014; Yan et al., 2017), and graphical
models (Gan et al., 2018; Li and McCormick, 2017; Li
et al., 2018). Both areas attracted tremendous attention
in the last two decades, as datasets have increased in size
and dimension. Let X ∈ Rp, Y ∈ Rq , Z ∈ Rr be the

∗Corresponding author. Email address: zj58@cornell.edu.
†Research support from an NSF Award (DMS-1455172), a

Xerox PARC Faculty Research Award, and Cornell University
Atkinson Center for a Sustainable Future (AVF-2017).

three random vectors of interest, and denote pairwise in-
dependence by ⊥⊥.

Measures of (conditional) dependence have been exten-
sively studied. Székely et al. (2007) proposed distance
covariance (dCov) to capture the non-linear and non-
monotone pairwise dependence between X and Y , and
dCov = 0 if and only if pairwise independence (X⊥⊥Y )
holds. Jin and Matteson (2017) extended distance covari-
ance to mutual dependence measures (MDMs), which
have been applied to independent component analysis
in Jin and Matteson (2018). To capture the condition-
al dependence between X and Y given Z, Székely and
Rizzo (2014) generalized distance covariance to partial
distance covariance (pdCov), however, pdCov = 0 is not
equivalent to conditional independence (X⊥⊥Y |Z), and
neither one implies the other. Wang et al. (2015) ex-
tended distance covariance to conditional distance co-
variance (CDCov) using kernel estimators, and CDCov
= 0 if and only if conditional independence holds. Un-
der a linear assumption between X,Y and Z, Fan et al.
(2015) converted testing conditional independence to
testing independence, and applied distance covariance to
measure the dependence of estimated variables. More-
over, inter-temporal conditional dependence is known
as Granger causality in time series analysis. Hiemstra
and Jones (1994), Su and White (2007), and Chen and
Hong (2012) each introduced non-parametric tests for
non-linear Granger causality based on conditional prob-
abilities and characteristic functions.

Likewise, various measures of conditional mean depen-
dence have been broadly developed as well. Testing the
conditional mean independence of Y given X , i.e.,

H0 : E(Y |X) = E(Y ) a.s., HA : o.w. (1)

provides insight on whether X contributes to the condi-
tional mean of Y . Shao and Zhang (2014) generalized
distance covariance to martingale difference divergence
(MDD), and MDD = 0 if and only if (1) holds. Testing
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the conditional mean independence of Y given X condi-
tioning on some known effect Z, i.e.,

H0 : E(Y |X,Z) = E(Y |Z) a.s., HA : o.w. (2)

sheds light on whether X contributes to the condition-
al mean of Y when taking known dependence on Z into
account. Park et al. (2015) generalized martingale dif-
ference divergence to partial martingale difference diver-
gence (pMDD), however, pMDD = 0 is not equivalent to
(2). Fan and Li (1996), Lavergne and Vuong (2000), and
Aı̈t-Sahalia et al. (2001) each introduced non-parametric
tests for (2) using kernel estimators of conditional expec-
tations. Assuming a linear model between Y and (X,Z),
Lan et al. (2014) generalized the classical partial F-test
(Chatterjee and Hadi, 2015) to a partial covariance-based
(pcov) test for (2) in the high-dimensional setting, and
Tang et al. (2017) further proposed a hybrid test for (2)
through finding the most predictive covariate based on
both maximum-type and sum-type statistics. Condition-
al mean independence conditioning on lagged covari-
ates is known as Granger causality in mean in time se-
ries analysis. Raı̈ssi et al. (2011) proposed a parametric
test for linear Granger causality in mean based on vec-
tor autoregressive (VAR) models, and Hong et al. (2009)
introduced a non-parametric test for non-linear Granger
causality in mean based on cross-correlations.

In this paper, we focus on testing conditional mean in-
dependence with covariates and develop a method to test
(2) for two main reasons. As Cook and Li (2002) state,
regression analysis is mostly concerned with the condi-
tional mean of the response given the predictors, which
makes testing conditional mean independence more ap-
pealing than testing conditional independence. Further,
it is very common in practice that some given covari-
ates Z have been known to affect the conditional mean
of Y . In this situation, we aim to determine whether X
has marginal effect on the conditional mean of Y in the
presence of Z, and decide whether X should be includ-
ed to model the conditional mean of Y along with Z. In
general, testing (2) is more useful than testing (1), but
requires more careful handling.

We first simplify testing (2) to testing conditional mean
independence through a transformation. Let V = Y −
E(Y |Z) ∈ Rq , and U = (X,Z) ∈ Rp+r. Then E(V ) =
0, and E(V |U) = E(Y |X,Z)−E(Y |Z). As a result, we
obtain an equivalent hypothesis test to (2) as

H0 : E(V |U) = E(V ) = 0 a.s., HA : o.w. (3)

which is conditional mean independence of V given U .
Thus, we consider the MDD with U and V to investigate
(3). However, there are two problems to solve when we
apply MDD to U and V . First, V needs to be estimated

since it is unobserved. We will replace V by its estimate
V̂ in calculating MDD. Second, we need to confirm that
the estimation error of V̂ is negligible, i.e., MDD with V̂
is close enough to that with V , such that V̂ may be used
for inference instead of V .

The rest of this paper is organized as follows. In Sec-
tion 2, we give a brief overview of martingale difference
divergence. In Section 3, we estimate V based on the
assumption that E(Y |Z) is a linear function of Z, and
prove that the estimation of V does not affect the asymp-
totic distribution of martingale difference divergence un-
der some regularity conditions. We present simulation
results in Section 4, followed by a real data analysis in
Section 51. Finally, we summarize our work in Section
6.

The following notation is used throughout this paper. Let
{(Xi, Yi, Zi) : i = 1, . . . , n} be an i.i.d. sample from the
joint distribution FX,Y,Z . When A is a matrix, the ele-
ment of A at row k and column ` is denoted by A(k, `).
When A is a vector, the element of A at index k is de-
noted byA(k). The Frobenius norm of matrixA ∈ Rp×q
is denoted by ‖A‖F. The Euclidean norm of vector X ∈
Rp is denoted by |X|. The weighted L2 norm ‖ · ‖w of
any complex-valued function η(t), t ∈ Rp is defined by
‖η(t)‖2w =

∫
Rp |η(t)|2w(t) dt where |η(t)|2 = η(t)η(t),

η(t) is the complex conjugate of η(t), and w(t) is any
positive weight function under which the integral exists.
Furthermore, a.s. is an abbreviation of almost surely.

2 MARTINGALE DIFFERENCE
DIVERGENCE

Shao and Zhang (2014) proposed martingale difference
divergence to capture the conditional mean dependence
(in any form) of Y ∈ Rq given X ∈ Rp.

The non-negative martingale difference divergence forX
and Y , MDD(Y |X) is defined by its square

MDD2(Y |X) = ‖E(Y ei〈s,X〉)− E(Y )E(ei〈s,X〉)‖2wp
,
∫

Rp
|E(Y ei〈s,X〉)− E(Y )E(ei〈s,X〉)|2wp(s) ds,

where the weight wp(s) = cp|s|1+p, with cp =
π(1+p)/2

Γ((1+p)/2) , and Γ is the gamma function. If E(|X|2 +

|Y |2) < ∞, then MDD(Y |X) = 0 if and only if
E(Y |X) = E(Y ) holds a.s.

The non-negative empirical martingale difference diver-

1See CRAN for an accompanying R package EDMeasure
(Jin et al., 2018).
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gence MDDn(Y |X) is analogously defined by

MDD2
n(Y |X) =

1

n2

n∑

i,j=1

AijBij ,

where Aij = aij − āi· − ā·j + ā··, āi· = 1
n

∑n
j=1 aij ,

ā·j = 1
n

∑n
i=1 aij , ā·· = 1

n2

∑n
i,j=1 aij , aij = |Xi −

Xj |, and similarly for Bij with bij = 1
2 |Yi − Yj |2.

The consistency and weak convergence of MDDn(Y |X)
are derived as follows. If E(|X| + |Y |2) < ∞, we have
(i) MDDn(Y |X)

a.s.−→
n→∞

MDD(Y |X); (ii) under H0 :

E(Y |X) = E(Y ) a.s., nMDD2
n(Y |X)

D−→
n→∞

‖ζ(s)‖2wp ,

where ζ(·) is a complex-valued zero-mean Gaussian pro-
cess whose covariance function depends on FX,Y ; (iii)
under HA : o.w., nMDD2

n(Y |X)
a.s.−→
n→∞

∞. Utilizing the
nice properties of MDD, we next propose our test for (3).

3 METHODOLOGY

Inspired by the linear assumption to simplify the condi-
tional dependence structure in Fan et al. (2015), we as-
sume that the conditional expectation E(Y |Z) is a linear
function of Z, simplifying the conditional mean depen-
dence structure. As a result, we can decompose Y into
the conditional expectation and reminder as

Y = E(Y |Z) + [Y − E(Y |Z)] , BZ + V,

where B ∈ Rq×r, V ∈ Rq . Then we have E(V |Z) = 0,
and E(V ) = 0. Similarly, the ith sample counterpart is
Yi = E(Yi|Zi) + Vi , BZi + Vi, i = 1, . . . , n.

Suppose B̂ is the ordinary least squares (OLS) estimator
of B when regressing Y on Z. We will then replace B
with B̂ to estimate E(Yi|Zi) as Ê(Yi|Zi) = B̂Zi, and Vi
as V̂i = Yi−B̂Zi = (B−B̂)Zi+Vi. When estimatingB
via the OLS, Z is implicitly assumed to have full column
rank. In case Z is high-dimensional, i.e., r > n, we can
estimate B by the penalized least squares (PLS) similar
to Fan et al. (2015), including ridge (Hoerl and Kennard,
1970) and lasso (Tibshirani, 1996).

We now construct a test for (3) based on MDD2
n(V̂ |U)

and its counterparts using permutation samples, then cal-
culate the empirical p-value following the permutation
in Park et al. (2015). Because the samples are indepen-
dent, but with an unspecified distribution, permutation
tests are a convenient tool for inference. We will lat-
er show in Theorem 2 that the asymptotic distribution
of nMDD2

n(V̂ |U) depends on an unknown underlying
distribution, which justifies the use of permutation tests.
To measure the conditional mean dependence of V giv-
en U , we first compute the test statistic MDD2

n(V̂ |U)

from the sample {(V̂i, Ui) : i = 1, . . . , n}, where
Ui = (Xi, Zi). That is, MDD2

n(V̂ |U) depends on the
i.i.d. sample {(Xi, Yi, Zi) : i = 1, . . . , n}. Next we
draw B permutation samples of size n as {(X∗i , Yi, Zi) :
i = 1, · · · , n}, where only the sample of X is permuted
in order to approximate the sampling distribution. For
each permutation sample, we calculate the test statistic
MDD2

n,b(V̂ |U), b = 1, · · · , B. Then the empirical p-
value is given by

p̂ =

∑B
b=1 1

{
MDD2

n,b(V̂ |U) ≥ MDD2
n(V̂ |U)

}

B
.

When H0 is false, MDD2
n(V̂ |U) tends to be large while

MDD2
n,b(V̂ |U) tends to be small. As a result, the em-

pirical p-value is expected to be very small, leading to a
rejection of H0. We name the proposed test linear mar-
tingale difference divergence (LinMDD). To justify our
LinMDD test, it remains to validate that MDD2

n(V̂ |U)
is close enough to MDD2

n(V |U), i.e., the estimation er-
ror in V̂ is negligible for the sampling distribution of the
test statistic, focusing on the asymptotic case. To begin
with, we introduce some regularity conditions to derive
the asymptotic distribution of MDD2

n(V̂ |U).
Condition 1. There exist constants 0 < c1, c2, c3 < ∞,
such that E(|Ui − Uj |2) = c1, i 6= j; E(|Ui − Uj ||Ui −
Uk|) = c2, i 6= j 6= k; E(|Ui − Uj ||Uk − U`|) = c3,
i 6= j 6= k 6= `.
Condition 2. There exists constant 0 < c4 < ∞, such
that E[(Zi(t) − Zj(t))2(Zi(s) − Zj(s))2] ≤ c4, i 6= j,
∀t, s.
Condition 3. There exists constant 0 < c5 < ∞, such
that E[(Zi(t) − Zj(t))2(Vi(s) − Vj(s))2] ≤ c5, i 6= j,
∀t, s.
Condition 4. ‖B̂ −B‖F = Op(n

−1/2).
Remark. Condition 4 can be derived from the bounded
density of |Vi−Vj | and non-heavy tails ofZi(t) and Vi(t)
according to Fan et al. (2015) and Fan et al. (2011).

Through a similar derivation to Theorem 2 of Fan et al.
(2015), we justify the choice of using MDD2

n(V̂ |U) in
place of MDD2

n(V |U) by the following lemma and the-
orems. Lemma 1 shows that the difference between
MDD2

n(V̂ |U) and MDD2
n(V |U) is negligible as the sam-

ple size increases. The proof of Lemma 1 can be found
in Appendix 6.
Lemma 1. If Y = BZ+V and Conditions 1-4 hold, we
have

MDD2
n(V̂ |U)−MDD2

n(V |U) = Op(n
−3/2).

Consequently, the consistency and weak convergence of
MDDn(V̂ |U) follow from Lemma 1 and are summarized
in Theorem 1 and 2 below.
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Theorem 1 (Consistency). If Y = BZ + V and Condi-
tions 1-4 hold, we have

MDDn(V̂ |U)
P−→

n→∞
MDD(V |U).

Theorem 2 (Weak convergence). If Y = BZ + V and
Conditions 1-4 hold, under H0, we have

nMDD2
n(V̂ |U)

D−→
n→∞

‖ζ(s)‖2wp ,

where ζ(·) denotes the complex-valued Gaussian random
process corresponding to the asymptotic distribution of
nMDD2

n(V |U). Under HA, we have

nMDD2
n(V̂ |U)

P−→
n→∞

∞.

According to Theorem 1, MDDn(V̂ |U) converges to the
same population statistic MDD(V |U) as MDDn(V |U),
and thus it can serve to measure the conditional mean de-
pendence of V given U . In addition, nMDD2

n(V̂ |U) and
nMDD2

n(V |U) have the same asymptotic distribution s-
tated in Theorem 2, which establishes the effectiveness
of LinMDD test, as we approximate the limiting distribu-
tion of nMDD2

n(V |U) using nMDD2
n(V̂ |U) in LinMD-

D test. In Section 4 and Section 5, we will present the
finite-sample performance of our LinMDD test through
simulations and a real data example, respectively.

4 SIMULATION STUDIES

To evaluate the performance of our LinMDD test, we
adopt the simulation setup in Lavergne and Vuong
(2000), and compare our test to the pMDD test (Park
et al., 2015), pdCov test (Székely and Rizzo, 2014), and
pcov test (Lan et al., 2014) as benchmarks. All tests are
implemented as permutation tests with permutation size
B = 500, in which we only permute the sample of X to
approximate the distribution of the test statistic.

We generate data from the underlying model

Y = −Z + b · Z3 + f(X) + ε,

where Z ∼ N(0, 1), X ∼ N (0, 1), ε ∼ N (0, 4), and
Z,X, ε are independent. We test the null hypothesisH0 :
E(Y |X,Z) = E(Y |Z) a.s. with significance level α ∈
{0.05, 0.1}, and examine the empirical size and power
of each test. We run 1000 replications with sample size
n ∈ {20, 30, 50, 70, 100} for each specific model.

Model 1 (Linear Z, linear X). b = 0, f(X) = cX
where c ∈ {0, 2

3 , 1,
3
2}.

Model 2 (Linear Z, non-linear X). b = 0, f(X) =
sin(cπX) where c ∈ { 1

4 ,
1
3 ,

1
2}. We omit c = 0 as it

is exactly the same as c = 0 in Model 1.

From Figure 1, the empirical size of all tests is around
0.05 (0.1). The empirical power of all tests increases as
n increases. For the linear X case, the empirical power
of all tests is higher when c is larger, since the signal-to-
noise ratio increases. Moreover, the empirical power of
the LinMDD and pcov tests is consistently higher than
that of the other tests, because the linear assumption is
valid, and only LinMDD and pcov tests are designed for
linear Z. For the non-linear X case, the LinMDD test
still outperforms the other tests, while the performance
of the pcov test degrades as c increases, because the Lin-
MDD test is designed for non-linearX while pcov test is
suitable only for linear X .
Model 3 (Nonlinear Z, linear X). b = 1, f(X) = cX
where c ∈ {0, 2

3 , 1,
3
2}.

Model 4 (Nonlinear Z, non-linear X). b = 1, f(X) =
sin(cπX) where c ∈ {1

4 ,
1
3 ,

1
2}. We omit c = 0 as it is

exactly the same as c = 0 in Model 3.

From Figure 2, the empirical size of all tests is around
0.05 (0.1). For the linear X case, the empirical power of
the LinMDD and pcov tests is competitive with but not
always higher than that of the other tests. The reason is
that the linear dependence of Y on Z is violated while
the other tests do not rely it. For the non-linear X case,
we similarly find that the performance of the pcov test
degrades as c increases. The simulation results show that
our LinMDD test achieves competitive and often better
performance than the others in these situations. Next, we
apply the proposed LinMDD test on a real dataset.

5 FINANCIAL DATA APPLICATION

In finance, the capital asset pricing model (CAPM) was
proposed by Sharpe (1964), Lintner (1965), and Mossin
(1966) to describe the stock returns through the market
risk as

rt = α+ β1mt,

where rt is the excess stock return (in excess the risk-
free return), and mt is the excess market return at time t.
Fama and French (1993) added size and value factors to
the CAPM, and proposed the Fama−French three-factor
model as

rt = α+ β1mt + β2 SMBt + β3 HMLt,

where SMB (small minus big) and HML (high minus
low) account for stocks with small/big market capital-
ization and high/low book-to-market ratio, respectively.
Fama and French (2015) further added profitability and
investment factors to the three-factor model, and extend-
ed it to the Fama−French five-factor model as

rt = α+ β1mt + β2 SMBt + β3 HMLt
+β4 RMWt + β5 CMAt,

5



where RMW (robust minus weak) and CMA (conserva-
tive minus aggressive) further account for stocks with
robust/weak operating profitability and conservative/ag-
gressive investment, respectively.

We collect the annual risk-free returns and Fama−French
five factors2, and the annual returns of Boeing (BA) s-
tock3 in the past 53 years between 1964 and 2016. The
time series and histograms of excessive BA stock returns
and Fama−French five factors are depicted in Figure 3.

5.1 CAPM VS. FAMA−FRENCH
THREE-FACTOR MODEL

First, we are curious whether the size and value fac-
tors should be added to the CAPM, i.e., whether SMB
and HML in the Fama−French three-factor model con-
tribute to the expectation of excess stock returns giv-
en the market risk. Thus, we test H0 : E(Y |X,Z) =
E(Y |Z) a.s., where Xt = (SMBt,HMLt), Yt = rt, and
Zt = (1,mt).

We apply our LinMDD test to the data with n = 53 and
B = 500. Our p-value is 0.072, while the p-values are
0.012 (pMDD), 0.092 (pdCov) and 0.096 (pcov) using
competing tests. As a result, we reject H0 with signifi-
cance level α = 0.1, and conclude that SMB and HML
help determine the excess returns of BA stock in the p-
resence of the market risk. Our results align with the
research in finance that the Fama−French three-factor
model remarkably outperforms the CAPM in explaining
excess stock returns.

5.2 FAMA−FRENCH THREE-FACTOR MODEL
VS. FIVE-FACTOR MODEL

Similarly, we are interested in whether the profitability
and investment factors should be further added to the
Fama−French three-factor model, i.e., whether RMW
and CMA in the Fama−French five-factor model con-
tribute to the description of excess stock returns given the
other three factors. Hence, we test H0 : E(Y |X,Z) =
E(Y |Z) a.s., in which Xt = (RMWt,CMAt), Yt = rt,
and Zt = (1,mt,SMBt,HMLt).

We apply our LinMDD test to the data with n = 53 and
B = 500, and its p-value is 0.360, while the p-values
are 0.358 (pMDD), 0.878 (pdCov) and 0.768 (pcov) us-
ing competing tests. As a result, we fail to reject H0

with significance level α = 0.1, and conclude that RMW
and CMA are unable to help determine the excess re-

2Download data at http://mba.tuck.dartmouth.edu/pages/fa
culty/ken.french/data library.html.

3Download data using get.hist.quote in the R pack-
age tseries (Trapletti and Hornik, 2017).

turns of BA stock in the presence of the other three fac-
tors. Our results align with the research in finance that
the Fama−French five-factor model has yet to be proven
as a significant improvement over the three-factor model
in describing excess stock returns.

5.3 FAMA−FRENCH FOUR-FACTOR MODEL
VS. FIVE-FACTOR MODEL

Fama and French (2015) showed that the value factor
HML becomes redundant when profitability and invest-
ment factors are added to the Fama−French three-factor
model, because HML is fully captured by its exposures
to the other four factors, especially RMW and CMA.
To validate this argument, we test H0 : E(Y |X,Z) =
E(Y |Z) a.s., where Xt = HMLt, Yt = rt, and Zt =
(1,mt,SMBt,RMWt,CMAt).

We apply our LinMDD test to the data with n = 53 and
B = 500. Our p-value is 0.218, while the p-values are
0.438 (pMDD), 0.540 (pdCov) and 0.858 (pcov) using
competing tests. As a result, we fail to reject H0 with
significance level α = 0.1, and conclude that HML can-
not help explain the excess returns of BA stock in the
presence of the other four factors. Our results demon-
strate that HML is redundant for describing excess stock
returns in the Fama−French five-factor model.

6 CONCLUSION

In this paper, we propose a new test, LinMDD, for the
null hypothesis H0 : E(Y |X,Z) = E(Y |Z) a.s. by in-
vestigating an equivalent one H0 : E(V |U) = E(V ) =
0 a.s., derived from a transformation involving the con-
ditional expectation. When applying martingale differ-
ence divergence (Shao and Zhang, 2014) to test H0 :
E(V |U) = E(V ) = 0 a.s., we make two major con-
tributions.

(1) Since V is unobservable, we estimate V based on
the assumption that E(Y |Z) is a linear function of Z,
simplifying the conditional mean dependence structure.

(2) We prove that the estimation error in V̂ is negligible
for the asymptotic distribution of the test statistic. Thus,
we can replace V with V̂ in the test statistic for inference
in large samples.

We implement the LinMDD test as a permutation test
following Park et al. (2015), and compare it with ex-
isting tests in various simulation studies. The LinMDD
test consistently outperforms existing tests when its lin-
ear assumption is valid, and it achieves competitive re-
sults with existing tests even when its linear assumption
is violated.
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To illustrate the practical value of the LinMDD test, we
compare the CAPM, the Fama−French three-factor and
five-factor models by applying LinMDD test to the fi-
nancial data. We find that the Fama−French three-factor
outperforms the CAPM, while the Fama−French five-
factor is not a significant improvement over the three-
factor model when explaining the excess annual returns
of a major stock. Moreover, we validate the statement
that the value factor is redundant in the Fama−French
five-factor model (Fama and French, 2015) using the
LinMDD test.

The relaxation of the linear assumption is an important
topic for future research. Our method will become more
general if the linear assumption of conditional mean de-
pendence can be generalized to a non-linear one, using
non-parametric regression (local regression, splines) in-
stead of linear regression in the estimation of conditional
mean. In addition, the high-dimensional setting regard-
ing Z where r > n is an interesting direction to consider
as well.

APPENDIX

PROOF OF LEMMA 1

Proof. We define T

= nMDD2
n(V̂ |U)− nMDD2

n(V |U)

=
1

2n

∑

i,j

[(Fij −
1

n

∑

k

Fkj −
1

n

∑

k

Fik +
1

n2

∑

k,`

Fk`)

× (Eij −
1

n

∑

k

Ekj −
1

n

∑

k

Eik +
1

n2

∑

k,`

Ek`)],

where Fij = |V̂i − V̂j |2 − |Vi − Vj |2, Eij = |Ui − Uj |.

We apply Taylor expansion to |V̂t − V̂s|2 at Vt − Vs in
terms of f(x) = xTx, f ′(x) = 2xT , then there exists
λ ∈ (0, 1), such that Fij

= 2[λ(V̂i − V̂j) + (1− λ)(Vi − Vj)]T (V̂i − V̂j − Vi + Vj)

= 2[λ(Zi − Zj)T (B − B̂)T (B − B̂)(Zi − Zj)
+ (Vi − Vj)T (B − B̂)(Zi − Zj)].

Thus, we have T = T1 + T2, where T1

=
λ

n

∑

i,j

[(Gij −
1

n

∑

k

Gkj −
1

n

∑

k

Gik +
1

n2

∑

k,`

Gk`)

× (Eij −
1

n

∑

k

Ekj −
1

n

∑

k

Eik +
1

n2

∑

k,`

Ek`)],

Gij = (Zi − Zj)T (B − B̂)T (B − B̂)(Zi − Zj),

and T2

=
1

n

∑

i,j

[(Hij −
1

n

∑

k

Hkj −
1

n

∑

k

Hik
1

n2

∑

k,`

Hk`)

× (Eij −
1

n

∑

k

Ekj −
1

n

∑

k

Eik +
1

n2

∑

k,`

Ek`)],

Hij = (Vi − Vj)T (B − B̂)(Zi − Zj).

First, we will show (i) T1 = Op(n
−1).

After a simple calculation, we have

1

n

∑

i,j

(Gij −
1

n

∑

k

Gkj −
1

n

∑

k

Gik +
1

n2

∑

k,`

Gk`)Eij

= tr[
1

n

∑

i,j

|Ui − Uj |(Gij −
1

n

∑

k

Gkj −
1

n

∑

k

Gik

+
1

n2

∑

k,`

Gk`)]

= tr[(B − B̂)T (B − B̂)M ],

where M = 1
n

∑
i,j |Ui − Uj |Sij , and

Sij = Rij −
1

n

∑

k

Rkj −
1

n

∑

k

Rik +
1

n2

∑

k,`

Rk`,

Rij = (Zi−Zj)(Zi−Zj)T ,Rij = Rji, Sij = Sji, then

E[(M(t, s))2]

= E[
1

n2
(
∑

i,j

|Ui − Uj |Sij(t, s))2]

= E{E[
1

n2
(
∑

i,j

|Ui − Uj |Sij(t, s))2|Ui,∀i]}

= E[
2c1
n2

∑

i 6=j
(Sij(t, s))

2

+
2c2
n2

∑

i 6=j 6=k
(Sij(t, s)Sik(t, s) + Sij(t, s)Skj(t, s))

+
c3
n2

∑

i 6=j 6=k 6=`
Sij(t, s)Sk`(t, s)],

where c1 = E(|Ui−Uj |2), i 6= j; c2 = E(|Ui−Uj ||Ui−
Uk|), i 6= j 6= k; c3 = E(|Ui − Uj ||Uk − U`|), i 6= j 6=
k 6= `.

Considering that E[(Rij(t, s))
2] = E[(Zi − Zj)2

t (Zi −
Zj)

2
s] ≤ c4, i 6= j, ∀t, s, we have E[(Rij(t, s))

2] =
O(1), which implies E[(Sij(t, s))

2] = O(1), and thus
E[ 1
n2

∑
i 6=j(Sij(t, s))

2] = O(1).
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After a simple calculation, we have
∑
i Sij(t, s) = 0,∑

j Sij(t, s) = 0,
∑
i

∑
j Sij(t, s) = 0, and

∑

i 6=j 6=k
Sij(t, s)Sik(t, s)

=
∑

i

(Sii(t, s))
2 −

∑

i 6=j
(Sij(t, s))

2,

∑

i 6=j 6=k
Sii(t, s)Sjk(t, s)

=
∑

i

(Sii(t, s))
2 −

∑

i 6=j
Sii(t, s)Sjj(t, s),

∑

i 6=j 6=k 6=`
Sij(t, s)Sk`(t, s)

= − 2
∑

i 6=j 6=k
[Sii(t, s)Sjk(t, s) + Sij(t, s)Sik(t, s)

+ Sij(t, s)Skj(t, s)]

−
∑

i 6=j
[4Sii(t, s)Sij(t, s) + Sii(t, s)Sjj(t, s)

+ 2(Sij(t, s))
2]−

∑

i

(Sii(t, s))
2,

we have

E[
1

n2

∑

i 6=j 6=k
Sij(t, s)Sik(t, s)] = O(1),

E[
1

n2

∑

i6=j 6=k
Sij(t, s)Skj(t, s)] = O(1),

E[
1

n2

∑

i 6=j 6=k
Sii(t, s)Sjk(t, s)] = O(1),

E[
1

n2

∑

i6=j 6=k 6=`
Sij(t, s)Sk`(t, s)] = O(1).

Therefore, E[(M(t, s))2] = O(1).

Applying Chebyshev’s inequality to M(t, s), we have

P (|M(t, s)− µ| ≥ kσ) ≤ 1/k2,

where µ = E[M(t, s)], σ2 = Var[M(t, s)]. As a result,
M(t, s) = Op(1).

Given that ‖B̂ −B‖F = Op(n
−1/2), we have

1

n

∑

i,j

(Gij −
1

n

∑

k

Gkj −
1

n

∑

k

Gik +
1

n2

∑

k,`

Gk`)Eij

= tr[(B − B̂)T (B − B̂)M ]

= pq2Op(n
−1)Op(1)

= Op(n
−1).

Similarly, we have

1

n

∑

i,j

(Gij −
1

n

∑

k

Gkj −
1

n

∑

k

Gik +
1

n2

∑

k,`

Gk`)Ekj ,

1

n

∑

i,j

(Gij −
1

n

∑

k

Gkj −
1

n

∑

k

Gik +
1

n2

∑

k,`

Gk`)Eik,

1

n

∑

i,j

(Gij −
1

n

∑

k

Gkj −
1

n

∑

k

Gik +
1

n2

∑

k,`

Gk`)Ek`

are all Op(n−1). Therefore, T1 = Op(n
−1).

Analogous to (i), we can show (ii) T2 = Op(n
−1/2). The

only differences are

1

n

∑

i,j

(Hij −
1

n

∑

k

Hkj −
1

n

∑

k

Hik +
1

n2

∑

k,`

Hk`)Eij

= tr[(B − B̂)M ],

whereM is defined similarly withRij = (Zi−Zj)(Vi−
Vj)

T , and E[(Rij(t, s))
2] = E[(Zi − Zj)2

t (Vi − Vj)2
s] ≤

c5, i 6= j, ∀t, s, and

1

n

∑

i,j

(Hij −
1

n

∑

k

Hkj −
1

n

∑

k

Hik +
1

n2

∑

k,`

Hk`)Eij

= tr[(B − B̂)M ]

= pqOp(n
−1/2)Op(1)

= Op(n
−1/2),

and therefore T2 = Op(n
−1/2).

As a conclusion, T = T1 + T2 = Op(n
−1/2).
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Figure 1: Empirical size and power of 1000 replications
with B = 500 for Model 1 & 2.
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with B = 500 for Model 3 & 4.
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Abstract

We study multi-armed bandit problems with
graph feedback, in which the decision maker
is allowed to observe the neighboring actions
of the chosen action, in a setting where the
graph may vary over time and is never fully
revealed to the decision maker. We show
that when the feedback graphs are undirected,
the original Thompson Sampling achieves the
optimal (within logarithmic factors) regret
Õ
(√

β0(G)T
)

over time horizon T , where
β0(G) is the average independence number of
the latent graphs. To the best of our knowl-
edge, this is the first result showing that the
original Thompson Sampling is optimal for
graphical bandits in the undirected setting. A
slightly weaker regret bound of Thompson
Sampling in the directed setting is also pre-
sented. To fill this gap, we propose a variant
of Thompson Sampling, that attains the opti-
mal regret in the directed setting within a log-
arithmic factor. Both algorithms can be im-
plemented efficiently and do not require the
knowledge of the feedback graphs at any time.

1 INTRODUCTION

Multi-Armed Bandits (MAB) models are quintessential
models for sequential decision making. In the classical
MAB setting, at each time, a policy must choose an ac-
tion from a set of K actions with unknown probability
distributions. Choosing an action i at time t reveals a
random reward Xi(t) drawn from the probability distri-
bution of action i. The goal is to find policies that mini-
mize the expected loss due to uncertainty about actions’
distributions over a given time horizon T .

In this work, we consider an important variant of ban-
dit problems, called graphical bandits, where choosing
an action i not only generates a reward from action i,
but also reveals observations for a subset of the remain-
ing actions. Graphical bandits are also known as ban-
dits with graph-structured feedback or bandits with side-
observations, in which the feedback model is specified
by a sequence {Gt}t≥1 of feedback graphs. Each feed-
back graph Gt is a directed graph whose nodes corre-
spond to the actions. An arc1 (i, j) in the graph indicates
that the agent observes the reward of action j if action i
is chosen in that round.

Motivating examples for situations where side observa-
tions are available include viral marketing and online
pricing. Consider the viral marketing problem, where a
decision maker wants to find the user with the maximum
influence in an online social network (e.g., Facebook) to
offer a promotion (Carpentier and Valko [2016]). Each
time the decision maker offers a promotion to a user, it
also has an opportunity to survey the user’s neighbors in
the network regarding their potential interest in the same
offer. This is possible when the online network has an
additional survey feature that generates “side observa-
tions”. For example, when user i is offered a promo-
tion, her neighbors may be queried as follows: “User i
was recently offered a promotion. Would you also be in-
terested in the offer?”. Here, choosing an action in the
graphical bandit problem corresponds to choosing a user
in the network and side-observations across actions are
captured by the links in the social network.

Consider another example in the online pricing problem,
where a seller is selling goods on the Internet. In each
round, the seller announces a price for the product. Then,
a buyer arrives and decides whether or not to purchase
the product based on its private value. A purchase takes
place if and only if the announced price is no more than

1We also use the notation i → j to represent an arc from
node i to node j for simplicity.
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Table 1: Comparison of the existing algorithms

Algorithm Reference Graph Undirected Directed
Non-stochastic graphical bandits

ExpBan Mannor and Shamir [2011] Informed O
(√

χ(G)T logK
)

ELP Mannor and Shamir [2011] Informed O
(√

β0(G)T logK
)

O
(√

χ(G)T logK
)

Exp3-SET Alon et al. [2013] Uninformed O
(√

β0(G)T logK
)

O
(√

mas(G)T logK
)

Exp3-DOM Alon et al. [2013] Informed O
(√

β0(G)T log(KT ) logK
)

Exp3.G Alon et al. [2015] Uninformed O
(√

β0(G)T log(KT )
)

Exp3-IX Kocák et al. [2014] Uninformed O
(√

β0(G)T logK log(KT )
)

Stochastic graphical bandits

Cohen’s Algo. 1 Cohen et al. [2016] Without O
(√

β0(G)T logK log(KT )
)

IDS-N/IDSN-LP Liu et al. [2018] Informed O
(√

χ(G)T logK
)

TS-N Liu et al. [2018] Without O
(√

χ(G)T logK
)

TS-N this paper Without O
(√

β0(G)T logK
)

O
(√

mas(G)T logK
)

TS-U this paper Without O
(√

β0(G)T logK log(KT )
)

its private value. At the end of the round, the seller ob-
serves whether or not the buyer purchased the product at
the announced price. If the buyer purchases the product,
then the seller knows that the buyer would have bought
the product at any lower price. Otherwise, the seller
knows that the buyer would not have bought the product
at any higher price. Here, actions in the graphical ban-
dit problem corresponds to the prices that the seller can
choose. The feedback graph is a directed graph over the
prices that a price is connected to a lower (higher) price if
and only if they are both below (above) the private value
of the buyer.

Graphical bandits have been studied in both non-
stochastic (adversarial) domain by Mannor and Shamir
[2011]; Alon et al. [2013, 2015]; Kocák et al. [2014],
and stochastic domain by Caron et al. [2012]; Buccap-
atnam et al. [2014, 2017]; Tossou et al. [2017]; Liu et
al. [2018]. Regret bounds as a function of combinato-
rial properties of the feedback graphs are characterized in
different settings: undirected graphs vs directed graphs,
time-invariant graphs vs time-variant graphs.

However, most of the existing works mentioned above
require prior knowledge of the feedback graphs for their
algorithms to run. These algorithms fall into either the
informed setting (where the algorithms have access to
the graph structure before making decisions) or the unin-
formed setting (where the algorithms have access to the
graph for performing their updates after decisions).

The assumption that the feedback graph is disclosed to
the decision maker does not hold in many real-world ap-
plications. For example, in the viral marketing problem,
the third-party decision maker is not allowed to have the
knowledge of the social network in order to protect the
privacy of the users. In the online pricing problem, the
private value of the buyer is never revealed to the seller.
Thus the feedback graph is never disclosed to the seller.
This motivates us to study the graphical bandits in a set-
ting with limited information, where the feedback graphs
are never fully revealed to the decision maker.

In this work, we study the graphical bandits without the
graphs in a general setting, where the graphs are allowed
to be time-variant and directed. Moreover, the only feed-
back available to the decision maker at the end of each
round is the out-neighborhood of the chosen action in
the latent graph, along with the rewards associated with
the observed actions. Generally speaking, our results
show that Thompson Sampling algorithms (introduced
by Thompson [1933]) can achieve a regret bound of the
form Õ

(√
β0(G)T

)
, where β0(G) is the average inde-

pendence number2 of the latent graphs, that is optimal
within logarithmic factors. More specifically, we make
the following contributions to graphical bandits without
knowledge of the feedback graphs. (Table 1 summarizes
the main results.)

2See Section 2.2 for a brief review of the combinatorial
properties of graphs.
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• We develop a problem-independent Bayesian re-
gret bound for the vanilla Thompson Sampling al-
gorithm (TS-N) for graphical bandits without the
graphs. In the undirected setting, where the la-
tent graphs are undirected, we show that TS-N ob-
tains the optimal (within logarithmic factors) re-
gret bound of O

(√
β0(G)T logK

)
, where β0(G)

is the average independence number of the latent
graphs (Corollary 1). Our regret bound is much
sharper than the form of O

(√
χ(G)T logK

)
that

was shown by Liu et al. [2018], where χ(G) is the
average clique cover number of the latent graphs, as
β0(G) ≤ χ(G) in general. As far as we know, this
is the first result showing that Thompson Sampling,
without knowledge of the graph, can attain the opti-
mal regret within logarithmic factors.

• In the directed setting, where the graphs are
allowed to be directed, we show that TS-N
achievesO

(√
mas(G)T logK

)
regret in expecta-

tion, where mas(G) is the average maximal acyclic
subgraph number of the latent graphs (Corollary 2).
As a byproduct, our regret bounds for TS-N pro-
vide improved regret bounds for information di-
rected sampling algorithms (IDS-N and IDSN-LP
algorithms) proposed by Liu et al. [2018].

• We propose a variant of the Thompson Sampling
algorithm, TS-U, that achieves a regret bound of
O
(√

β0(G)T logK log(KT )
)

for both the undi-
rected and directed setting (Corollary 3). The regret
bound of TS-U is optimal within logarithmic fac-
tors, and sharper than the state-of-the-art algorithm
proposed by Cohen et al. [2016]. Our results offer
a recipe for practitioners to choose algorithms for
graphical bandits without the graphs. If the latent
graphs are known to be undirected, one can choose
TS-N for the best regret guarantee. Otherwise, TS-
U is the choice with the best guarantee.

1.1 RELATED WORK

Graphical bandits were introduced in the non-stochastic
domain by Mannor and Shamir [2011]. They propose
the ExpBan algorithm that works in the time-invariant
and informed setting, with the regret bound depending
on the clique cover number. They also propose the ELP
algorithm, that replaces the uniform distribution of Exp3
algorithm (proposed by Auer et al. [2002b]) with a dis-
tribution that maximizes the minimum probability to ob-
serve an action. An optimal (within logarithmic factors)
regret bound of ELP is shown in the undirected setting.

However, the regret bound of the ELP depends on the

clique cover number in the directed setting. These re-
sults are improved by Alon et al. [2013]. They show
that the vanilla Exp3 algorithm without mixing uni-
form distribution (Exp3-SET) achieves the same (but
improved in the directed setting) regret bound as ELP,
even in the uninformed setting. In the informed set-
ting, they propose the Exp3-DOM algorithm, which is
a variant of Exp3 algorithm with mixing uniform distri-
bution over the dominating set of the feedback graph,
achieves Õ

(√
β0(G)T

)
regret. This regret bound is

further attained by Exp3.G (Alon et al. [2015]) and
Exp3-IX (Kocák et al. [2014]) in the uninformed set-
ting. The Exp3.G algorithm is a variant of Exp3-DOM
where it replaces the dominating set with the universal
set. The Exp3-IX algorithm uses a novel implicit ex-
ploration idea. However, these algorithms still require
the knowledge of the feedback graphs for performing up-
dates after the decisions in the uninformed setting.

Graphical bandits have also been considered in the
stochastic domain by Caron et al. [2012], who propose
a natural variant of upper confidence bounds (introduced
by Auer et al. [2002a]) algorithm (UCB-N) and pro-
vide a problem-dependent regret guarantee depending on
the clique cover number. This result is improved by
Buccapatnam et al. [2014] in the informed and time-
invariant setting. Policies proposed by Buccapatnam et
al. [2014], namely εt-greedy-LP and UCB-LP, are shown
to be asymptotically optimal, both in terms of the graph
structure and time.

However, all of the afore-mentioned algorithms do not
apply when the feedback graphs vary over the time and
are never fully disclosed. Recently, researchers have de-
veloped new algorithms for graphical bandits in the set-
ting with limited information, where the feedback graphs
are time-variant, directed and never revealed to the deci-
sion maker. Cohen et al. [2016] propose an elimination-
based algorithm that achieves the Õ

(√
β0(G)T

)
regret

bound. Tossou et al. [2017] analyze the Bayesian re-
gret performance of Thompson Sampling for the graphi-
cal bandits and provide a regret bound depending on the
maximal clique cover number of the latent graphs. This
result is improved to a regret bound depending on the av-
erage clique cover number by Liu et al. [2018]. In this
work, we provide sharper regret bounds for the vanilla
Thompson Sampling (TS-N) and propose a variant of
Thompson Sampling (TS-U) that obtains a better (within
logarithmic factor) regret bound than the algorithm de-
veloped by Cohen et al. [2016].

Other related partial feedback models include label effi-
cient bandit in Audibert and Bubeck [2010] and predic-
tion with limited advice in Seldin et al. [2014], where
side observations are limited by a budget. Graphical
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bandits with Erdős-Rényi random graphs are studied
by Kocák et al. [2016a]; Chen et al. [2016]; Liu et al.
[2018]. Graphical bandits with noisy observations are
studied by Kocák et al. [2016b]; Wu et al. [2015]. A
survey of the graphical bandits refers to Valko [2016].

2 PROBLEM FORMULATION

2.1 STOCHASTIC BANDIT MODEL

We consider a Bayesian formulation of the stochastic K-
armed bandit problem in which uncertainties are mod-
eled as random variables. At each time t ∈ N, a de-
cision maker chooses an action At from a finite action
set K = {1, . . . ,K} and receives the corresponding ran-
dom reward Yt,At . Without loss of generality, we assume
the space of possible rewards Y = [0, 1]. Note that the
results in this work can be extended to the case where re-
ward distributions are sub-Gaussian. There is a random
variable Yt,a ∈ Y associated with each action a ∈ K and
t ∈ N. We assume that {Yt,a,∀a ∈ K} are independent
for each time t. Let Y t , (Yt,a)a∈K be the vector of
random variables at time t ∈ N. The true reward distri-
bution p∗ is a distribution over YK , which is randomly
drawn from the family of distributions P and unknown
to the decision maker. Conditioned on p∗, (Y t)t∈N is
an independent and identically distributed sequence with
each element Y t sampled from the distribution p∗.

Let A∗ ∈ arg maxa∈K E[Yt,a|p∗] be the true optimal ac-
tion conditioned on p∗. Then the T period regret of the
decision maker is the expected difference between the to-
tal rewards obtained by an oracle that always chooses the
optimal action and the accumulated rewards up to time
horizon T . Formally, we study the expected regret

E[R(T )] = E

[
T∑

t=1

Yt,A∗ − Yt,At

]
, (1)

where the expectation is taken over the randomness in
the action sequence (A1, . . . , AT ) and the outcomes
(Y t)t∈N and over the prior distribution over p∗. This
notion of regret is also known as Bayesian regret.

2.2 GRAPH FEEDBACK MODEL

In this problem, we assume the existence of side obser-
vations, which are described by a graph Gt = (K, Et)
over the action set for each time t. The graph Gt may be
directed or undirected and can be dependent on time t.
At each time t, the decision maker observes the reward
Yt,At for playing action At as well as the outcome Yt,a
for each action a ∈ {a ∈ K|(At, a) ∈ Et}. Note that it
becomes the classical bandit feedback setting when the

graph is empty (i.e., no edge exists) and it becomes the
full-information (expert) setting when the graph is com-
plete for all time t. Note that the graph Gt is never fully
revealed to the decision maker.

Let Gt ∈ RK×K be the adjacent matrix that repre-
sents the deterministic graph feedback structure Gt. Let
Gt(i, j) be the element at the i-th row and j-th column
of the matrix. Then Gt(i, j) = 1 if there exists an edge
(i, j) ∈ Et and Gt(i, j) = 0 otherwise. Note that we
assumeGt(i, i) = 1 for any i ∈ K.
Definition 1. (Clique cover number) A clique of a graph
G = (K, E) is a subset S ⊆ K such that the sub-graph
formed by S and E is a complete graph. A clique cover
of a graph G = (K, E) is a partition of K, denoted by
C, such that S is a clique for each S ∈ C. The cardinal-
ity of the smallest clique cover is called the clique cover
number, which is denoted by χ(G).
Definition 2. (Independence number) An independent
set of a graph G = (K, E) is a subset S ⊆ K such that
no two i, j ∈ K are connected by an edge in E . The car-
dinality of a largest independent set is the independence
number of G, denoted by β0(G).

Note that the independence number of a directed graph is
equivalent to that of the undirected graph by ignoring arc
orientation. We can also lift the notion of independence
number of an undirected graph to directed graph through
the notion of maximum acyclic subgraphs.
Definition 3. (Maximum acyclic subgraphs) An acyclic
subgraph of G = (K, E) is any graph G′ = (K′, E ′)
such that K′ ⊆ K, and E ′ = E ∩ (K′ ×K′), with no
directed cycles. The cardinality of the largest such K′
is the maximum acyclic subgraphs number, denoted by
mas(G).

Note that mas(G) ≥ β0(G) in general. The equality
holds when the graph G is undirected. In this work, we
slightly abuse the notation of the above graph numbers
and use χ(Gt) and χ(Gt) interchangeably sinceGt fully
characterizes the graph structure Gt.

2.3 RANDOMIZED POLICIES

We define all random variables with respect to a prob-
ability space (Ω,F ,P). Consider the filtration (Ft)t∈N
such that Ft ⊆ F is the σ-algebra generated by the ob-
servation history Ot−1. The observation history Ot in-
cludes all decisions, rewards and side observations from
time 1 to time t. For each time t, the decision maker
chooses an action based on the history Ot−1 and possi-
bly some randomness. Any policy of the decision maker
can be viewed as a randomized policy π, which is an
Ft-adapted sequence (πt)t∈N. For each time t, the de-
cision maker chooses an action randomly according to
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πt(·) = P(At = ·|Ft), which is a probability distribu-
tion over K. Let E[R(T,π)] be the Bayesian regret de-
fined by (1) when the decisions (A1, . . . , AT ) are chosen
according to π.

Uncertainty about p∗ induces uncertainty about the true
optimal action A∗, which is described by a prior distri-
bution α1 of A∗. Let αt be the posterior distribution
of A∗ given the history Ot−1, i.e., αt(·) = P(A∗ =
·|Ft). Then, αt+1 can be updated by Bayes rule given
αt, decision At, reward Yt,At and side observations.
The Shannon entropy of αt is defined as H(αt) ,
−∑i∈Kαt(i) log(αt(i)). We slightly abuse the notion
of πt and αt such that they represent distributions (or
functions) over the finite setK as well as vectors in a sim-
plex S ⊂ RK . Note that S = {π ∈ RK |∑K

i=1 π(i) =
1,π(i) ≥ 0,∀i ∈ K}.
Let ∆t be the instantaneous regret vector such that the
i-th coordinate, ∆t(i) , E[Yt,A∗ − Yt,i|Ft], is the ex-
pected regret of playing action i at time t. Let gt be
the information gain vector such that the i-th coordinate,
gt(i) = E[H(αt) − H(αt+1)|Ft, At = i], is the ex-
pected information gain of playing action i at time t.
Note that the information gain of playing action i con-
sists of that of observing the reward Yt,i and possibly
some side observations. We define the information gain
of observing action a (i.e., Yt,a) as ht(a) , It(A

∗;Yt,a),
which is the mutual information under the posterior dis-
tribution between random variables A∗ and Yt,a. Let
D(·||·) be the Kullback-Leibler divergence between two
distributions3. By the definition of mutual information,
we have that It(A∗;Yt,a) ,

D(P((A∗, Yt,a) ∈ ·|Ft)||P(A∗ ∈ ·|Ft)P(Yt,a ∈ ·|Ft)).
(2)

At each time t, a randomized policy updates αt, and
makes a decision according to a sampling distribution
πt. For any randomized policy, we define the informa-
tion ratio (Russo and Van Roy [2016]) of sampling dis-
tribution πt at time t as

Ψt(πt) , (πTt ∆t)
2/(πTt gt). (3)

Note that πTt ∆t is the expected instantaneous regret of
the sampling distribution πt, and πTt gt is the expected
information gain of the sampling distribution πt. So
the information ratio Ψt(πt) measures the “energy” cost
(which is the square of the expected instantaneous regret)
per bit of information acquired.

3If P is absolutely continuous with respect to Q, then
D(P ||Q) =

∫
log
(

dP
dQ

)
dP , where dP

dQ is the Radon-Nikodym
derivative of P w.r.t. Q.

Algorithm 1 TS-N algorithm

Input: time horizon T
for t from 1 to T do

Updating statistics: compute αt accordingly.
Generating policy: πt = αt.
Sampling: sample At according to πt, play action
At and receive reward Yt,At .
Observations: observe Yt,a if (At, a) ∈ Et, where
Gt = (K, Et) is the latent graph.

end for

2.4 THOMPSON SAMPLING

Thompson Sampling algorithm simply samples actions
according to the posterior probability that they are op-
timal. In particular, actions are chosen randomly at
time t according to the sampling distribution πt = αt.
This conceptually elegant policy can be efficiently im-
plemented. Consider the case where P = {pθ}θ∈Θ

is some parametric family of distributions. The true
reward distribution p∗ is indexed by θ∗ ∈ Θ in the
sense that p∗ = pθ∗ . Practical implementations of
Thompson Sampling consist of two steps. First, an in-
dex θ̂t ∼ P(θ∗ ∈ ·|Ft) is sampled from the poste-
rior distribution. Then, the algorithm selects the action
At = arg maxa∈K E

[
Yt,a|θ∗ = θ̂t

]
that would be op-

timal if the sampled parameter were the true parameter.
Given the observation of playing At, the posterior distri-
bution is updated by Bayes’ rule.

3 VANILLA THOMPSON SAMPLING

In this section, we show that a vanilla Thompson Sam-
pling algorithm, TS-N as shown in Algorithm 1, obtains
optimal regret (within a logarithmic factor) in the undi-
rected setting. A slightly weaker regret bound in the di-
rected setting is also presented.

TS-N is the Thompson Sampling algorithm for graph-
ical bandits such that πt = αt, where αt is updated
based on all the observations available, without addi-
tional modifications. It naturally keeps the information
ratio Ψt(πt) bounded as well as balances between hav-
ing low expected instantaneous regret (a.k.a. exploita-
tion) and obtaining knowledge about the optimal action
(a.k.a. exploration). If the information ratio is bounded,
then the expected regret is bounded in terms of the maxi-
mum amount of information one could expect to acquire,
which is at most the entropy of the prior distribution of
A∗, i.e., H(α1). First, we bound the information ratio of
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TS-N in terms of the key quantity

Qt(πt) =
∑

i∈K

πt(i)∑
j:j

t→i πt(j)
. (4)

Note that j t→ i represents an arc (j, i) in graph Gt.
Proposition 1. If πt = αt, then the information ratio
satisfies Ψt(πt) ≤ 1

2Qt(πt) almost surely.

Proposition 1 is a tight bound for the information ratio of
the vanilla Thompson Sampling (Thompson [1933]). If
the graph is empty (i.e., there is no edges in the graph),
then the quantity Qt(πt) equals to K. If the graph is
complete, then the quantity Qt(πt) equals to 1. These
recover the information ratio bounds shown by Russo
and Van Roy [2016]. Also, the quantity Qt(πt) is upper
bounded by clique cover number χ(Gt) as one can sep-
arate the sum by cliques and dropping the weights out
of the clique. This recovers the information ratio bound
shown by Liu et al. [2018]. Proposition 1 allows us to
show a tighter regret bound of Thompson Sampling for
graphical bandits. Next, we bound the regret of TS-N in
terms of the quantity Qt(πt).
Theorem 1. The regret of TS-N satisfies

E[R(T,π)] ≤

√√√√1

2

T∑

t=1

E[Qt(αt)]H(α1). (5)

Note that the entropy is bounded, i.e., H(α1) ≤ logK.
It has been shown by Mannor and Shamir [2011]; Alon et
al. [2014] that the quantityQt(πt) is related to the graph
numbers irrespective of the choice of the distribution πt.
The following graph-theoretic result shows that the quan-
tity Qt(πt) is bounded by the independence number of
the latent graph if the graph is undirected.
Lemma 1. (Lemma 3 in Mannor and Shamir [2011]) Let
G = (K, E) be an undirected graph. For any distribution
π over K,

∑

i∈K

π(i)∑
j:j

t→i π(j)
≤ β0(G). (6)

The following regret result of TS-N follows immediately
from Theorem 1 and Lemma 1.
Corollary 1. In the undirected setting, the regret of TS-N
satisfies

E[R(T,π)] ≤

√√√√1

2

T∑

t=1

β0(Gt)H(α1). (7)

As far as we know, this is the best regret bound for graph-
ical bandits without the graphs. First, an information-
theoretic lower bound of graphical bandits has been

shown by Mannor and Shamir [2011]; Alon et al. [2014]
to be Ω

(√
β0(G)T

)
. So Corollary 1 shows that TS-N

obtains the optimal regret (within a logarithmic factor)
in the undirected setting. Moreover, the bound proven
in Corollary 1 is tighter than the O

(√
χ(G)TH(α1)

)

bound of TS-N shown by Liu et al. [2018] as β0(G) ≤
χ(G). At last, Corollary 1 shows that TS-N enjoys better
regret bound than Cohen’s Algorithm 1 developed by Co-
hen et al. [2016] in the undirected setting, both of which
do not require the knowledge of the feedback graphs.

We now turn to the directed setting. The following
graph-theoretic result shows that the quantity Qt(πt) is
upper-bounded by the maximum acyclic subgraph num-
ber if the graph is directed.

Lemma 2. (Lemma 10 in Alon et al. [2014]) Let G =
(K, E) be a directed graph. For any distribution π over
K,

∑

i∈K

π(i)∑
j:j

t→i π(j)
≤ mas(G). (8)

The following regret result of TS-N follows immediately
from Theorem 1 and Lemma 2.

Corollary 2. In the directed setting, the regret of TS-N
satisfies

E[R(T,π)] ≤

√√√√1

2

T∑

t=1

mas(Gt)H(α1). (9)

The bound proven in Corollary 2 is tighter than the
O
(√

χ(G)TH(α1)
)

bound of TS-N shown by Liu et

al. [2018] since mas(G) ≤ χ(G). However, there is a
gap between the lower bound and the upper bound shown
in Corollary 2. Though β0(G) = mas(G) when the
graph is undirected, the gap between them can be large in
general directed graphs. For example, consider a directed
graph G0 = (K, E) such that arc (i, j) ∈ E if and only if
i ≤ j. It is clear that β0(G0) = 1 and mas(G0) = K.
This leads us to consider a more sophisticated random-
ized policy. In the next section, we show that a modi-
fied Thompson Sampling algorithm results in an optimal
(within a logarithmic factor) regret bound in the general
setting.

Remark 1. The bounds proven in Corollary 1 and 2 hold
for IDS-N and IDSN-LP developed by Liu et al. [2018]
since the information ratio of IDS-N and IDSN-LP are
bounded by the information ratio of TS-N almost surely.
So our results also provide tighter bounds for IDS-N
and IDSN-LP algorithms. Note that IDS-N and IDSN-
LP algorithms require prior knowledge of the feedback
graphs.
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Algorithm 2 TS-U algorithm

Input: time horizon T and parameter ε ∈ [0, 1]
for t from 1 to T do

Updating statistics: compute αt accordingly.
Generating policy: πt = (1− ε)αt + ε/K.
Sampling: sample At according to πt, play action
At and receive reward Yt,At .
Observations: observe Yt,a if (At, a) ∈ Et, where
Gt = (K, Et) is the latent graph.

end for

4 THOMPSON SAMPLING WITH
EXPLORATION

In this section, we show that a mixture of Thompson
Sampling and uniform sampling, TS-U as shown in Al-
gorithm 2, obtains the optimal regret within a logarithmic
factor in the directed setting.

TS-U algorithm is a variant of Thompson Sampling with
explicit exploration that allows the algorithm to explore
some suboptimal actions with large out-degrees. The
collected side observations from the uniform sampling
allows us to capture the latent graph information, thus
yielding a regret bound in terms of the independence
number.

As shown in Algorithm 2, TS-U is a randomized policy
such that πt = (1 − ε)αt + ε/K for some parameter
ε ∈ [0, 1]. The implementation and computation of TS-
U is quite efficient. At each time t, TS-U algorithm plays
vanilla Thompson Sampling with probability 1 − ε and
plays uniform sampling with probability ε. While the ex-
pected information gain diminishes, the expected instan-
taneous regret is bounded away from zero due to uniform
sampling. Thus, the classical analysis of bounding the
information ratio Ψt(πt) does not work any more. For-
tunately, the linear form of πt allows us to bound the re-
gret of TS-U by the regret due to uniform sampling plus
the regret from Thompson Sampling, as shown in The-
orem 2. Indeed, our techniques work for any variant of
Thompson Sampling that is a linear combination of αt
and some other distributions.

Theorem 2. The regret of TS-U satisfies

E[R(T,π)] ≤ εT +

√√√√1

2

T∑

t=1

E[Qt(πt)]H(α1). (10)

Theorem 2 shows that the regret of TS-U consists of two
parts, the regret from the uniform sampling and the re-
gret from the Thompson Sampling. Note that the regret
from the Thompson Sampling takes into account the in-
formation gain from the uniform sampling as the term

Qt(πt) depends on πt rather than αt. This allows us
to use the following graph-theoretic result to bound the
term Qt(πt), thus the regret of TS-U, by the indepen-
dence number of the latent graph.

Lemma 3. (Lemma 5 in Alon et al. [2015]) Let G =
(K, E) be a directed graph. For any distribution π over
K such that π(i) ≥ η for all i ∈ K for some constant
0 < η < 0.5. Then

∑

i∈K

π(i)∑
j:j

t→i π(j)
≤ 4β0(G) log

(
4K

β0(G)η

)
. (11)

Lemma 3 shows that the quantityQt(πt) can be bounded
by the independence number of the directed graph ifπt is
bounded away from zero. The uniform sampling part of
TS-U allows the sampling distribution to satisfy this con-
dition. By Theorem 2 and taking η = ε/K in Lemma 3,
we have the following result.

Corollary 3. If ε = 1/
√
T , then the regret of TS-U sat-

isfies

E[R(T,π)] = O



√√√√log(KT )

T∑

t=1

β0(Gt)H(α1)


 .

(12)

Comparing the regret bound in Corollary 3 to the lower
bound, Ω(

√
β0(G)T ), the TS-U algorithm obtains the

optimal regret within a logarithmic factor in the general
setting. Moreover, Corollary 3 shows that TS-U enjoys
a sharper (by a logarithmic factor) regret bound than Co-
hen’s Algorithm 1 developed by Cohen et al. [2016] in
the directed setting, both of which do not require the
knowledge of the feedback graphs. As far as we know,
this is the best-known regret bound for graphical bandits
without the graphs. Finally, note that a comparison be-
tween Corollary 1 and Corollary 3 reveals that a symmet-
ric observation system (i.e., undirected feedback graphs)
enjoys better regret than an asymmetric observation sys-
tem as the regret bound of TS-N is sharper by a logarith-
mic factor than the bound in Corollary 3 in the undirected
setting.

Remark 2. We present TS-U algorithm with fixed explo-
ration rate ε for simplicity. It is easy to verify that the
regret result of TS-U still holds if one uses some appro-
priate decreasing exploration rate sequence {εt}. For
example, when εt = 1/t, Theorem 2 holds by replac-
ing the term εT with log T . Then the regret result of the
corresponding TS-U algorithm follows. In practice, we
recommend practitioners to use decreasing exploration
rates.

Remark 3. In the informed setting (i.e., when the feed-
back graph are revealed to the decision maker before the
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(b) Time-variant graphs

Figure 1: Regret comparison under undirected graph
feedback

decisions), one may propose a variant of TS-U such that
it restricts the exploration set to the dominating set of
the feedback graph. In other words, one may replace
uniform sampling over all the actions with uniform sam-
pling over only the dominating set. The regret bound in
Corollary 3 still holds by a variant of Lemma 3 shown
in Alon et al. [2014].

5 NUMERICAL RESULTS

This section presents numerical results from experiments
that evaluate the effectiveness of Thompson Sampling
based policies in comparison to UCB-N and Cohen’s al-
gorithm. We consider the classical Beta-Bernoulli bandit
problem with independent actions. The reward of each
action i is a Bernoulli(µi) random variable and µi is
independently drawn from Beta(1, 1). The implemen-
tations of TS-N and TS-U are shown in Algorithms 3
and 4. In the experiment, we set K = 5, T = 1000 and
εt = 1/t as suggested by Remark 2. All the regret results

Time
0 200 400 600 800 1000

R
e
g
re

t

0

5

10

15

20

25

30

35

40
Cohen
UCB-N
TS-U
TS-N

(a) Time-invariant graphs

Time
0 200 400 600 800 1000

R
e
g
re

t

0

5

10

15

20

25

30
Cohen
UCB-N
TS-U
TS-N

(b) Time-variant graphs

Figure 2: Regret comparison under directed graph feed-
back

are averaged over 1000 trials.

Figure 1 presents the cumulative regret results under
undirected graph feedback. For the time-invariant case
shown in Figure 1a, we use a graph with 2 cliques, pre-
sented in Figure 3. Figure 2 presents the cumulative
regret results under directed graph feedback. For the
time-invariant case shown in Figure 2a, we use the graph
G = (K, E) such that (i, j) ∈ E if and only i ≤ j,
presented in Figure 4. For the time-variant cases shown
in Figures 1b and 2b, the sequences of graphs are gener-
ated by the Erdős-Rényi model with parameter pt4 drawn
from the uniform distribution over [0, 0.2].

We find that TS-N and TS-U outperform the alternative
algorithms, which is consistent with the empirical ob-
servation in the bandit feedback setting (Chapelle and
Li [2011]). However, TS-N has better empirical per-
formance in the tested settings even though we have

4For each time t and each pair (i, j), (i, j) ∈ Et with prob-
ability pt
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Algorithm 3 TS-N (Bernoulli case)

Input: time horizon T
For each arm i, set Si = 1 and Fi = 1
for t from 1 to T do

For each arm i, sample θi from Beta(Si, Fi).
Play action At = arg maxi∈K θi.
for all a ∈ K such that (At, a) ∈ Et do
Sa = Sa + Yt,a and Fa = Fa + 1− Yt,a.

end for
end for

Algorithm 4 TS-U (Bernoulli case)

Input: time horizon T and {εt}t≥1

For each arm i, set Si = 1 and Fi = 1
for t from 1 to T do

Sample βt from uniform distribution over [0, 1].
if βt < εt then

Play action At drawn uniformly from K.
else

For each arm i, sample θi from Beta(Si, Fi).
Play action At = arg maxi∈K θi.

end if
for all a ∈ K such that (At, a) ∈ Et do
Sa = Sa + Yt,a and Fa = Fa + 1− Yt,a.

end for
end for

proven a better regret bound for TS-U under directed
feedback graphs. The average regrets of Cohen’s al-
gorithm are dramatically larger than that of Thompson
Sampling based policies. For this reason, parts of Co-
hen’s algorithm are omitted from Figures 1 and 2.

6 CONCLUSION

We have provided regret analysis of Thompson Sam-
pling for graphical bandits without knowing the feedback
graphs at any time. We show that the regret of TS-N is
bounded by O

(√
mas(G)T logK

)
in the general set-

ting. In the undirected setting, mas(G) = β0(G), and
the resulting regret bound is optimal up to a logarith-
mic factor. As far as we know, this is the first result
that shows that Thompson Sampling, even without the
knowledge of the graph, can attain the optimal regret in
the graphical bandits. As a byproduct, our analysis for
TS-N provide improved regret bounds for information
directed sampling algorithms (IDS-N and IDSN-LP al-
gorithms) proposed by Liu et al. [2018] in the informed
setting.

We have proposed a variant of Thompson Sam-
pling, TS-U, that mixes Thompson Sampling with

Figure 3: Graph structure for the experiment under time-
invariant and undirected graph

Figure 4: Graph structure for the experiment under time-
invariant and directed graph

uniform sampling. This modification allows the al-
gorithm to capture the graph structure and obtain
O
(√

β0(G)T logK log(KT )
)

regret bound in the di-
rected setting, which is optimal within a logarithmic fac-
tor. Our results offer a recipe for practitioners to choose
algorithms for graphical bandits without knowledge of
the graphs. If the latent graphs are known to be undi-
rected, one can choose TS-N for the best regret guaran-
tee. Otherwise, TS-U is the choice with the best guaran-
tee in the general (directed) setting.
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bounds and minimax policies under partial mon-
itoring. Journal of Machine Learning Research,
11(Oct):2785–2836, 2010.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2-3):235–256, 2002.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. The nonstochastic multiarmed
bandit problem. SIAM journal on computing,
32(1):48–77, 2002.

Swapna Buccapatnam, Atilla Eryilmaz, and Ness B.
Shroff. Stochastic bandits with side observations
on networks. SIGMETRICS Perform. Eval. Rev.,
42(1):289–300, June 2014.

Swapna Buccapatnam, Fang Liu, Atilla Eryilmaz, and
Ness B Shroff. Reward maximization under un-
certainty: Leveraging side-observations on networks.
arXiv preprint arXiv:1704.07943, 2017.

S. Caron, B. Kveton, M. Lelarge, and S. Bhagat. Lever-
aging side observations in stochastic bandits. In UAI,
pages 142–151. AUAI Press, 2012.

Alexandra Carpentier and Michal Valko. Revealing
graph bandits for maximizing local influence. In In-
ternational Conference on Artificial Intelligence and
Statistics, pages 10–18, 2016.

Olivier Chapelle and Lihong Li. An empirical evaluation
of thompson sampling. In Advances in neural infor-
mation processing systems, pages 2249–2257, 2011.

Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang.
Combinatorial multi-armed bandit and its extension to
probabilistically triggered arms. Journal of Machine
Learning Research, 17(50):1–33, 2016.

Alon Cohen, Tamir Hazan, and Tomer Koren. On-
line learning with feedback graphs without the graphs.
CoRR, abs/1605.07018, 2016.
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Abstract

We investigate structured sparsity methods
for variable selection in regression problems
where the target depends nonlinearly on the
inputs. We focus on general nonlinear func-
tions not limiting a priori the function space to
additive models. We propose two new regu-
larizers based on partial derivatives as nonlin-
ear equivalents of group lasso and elastic net.
We formulate the problem within the frame-
work of learning in reproducing kernel Hilbert
spaces and show how the variational problem
can be reformulated into a more practical fi-
nite dimensional equivalent. We develop a new
algorithm derived from the ADMM principles
that relies solely on closed forms of the proxi-
mal operators. We explore the empirical prop-
erties of our new algorithm for Nonlinear Vari-
able Selection based on Derivatives (NVSD)
on a set of experiments and confirm favourable
properties of our structured-sparsity models
and the algorithm in terms of both prediction
and variable selection accuracy.

1 INTRODUCTION

We are given a set of n input-output pairs {(xi, yi) ∈
(X × Y) : X ⊆ Rd,Y ⊆ R, i ∈ Nn} sampled i.i.d. ac-
cording to an unknown probability measure ρ. Our task
is to learn a regression function f : X → Y with minimal
expected squared error loss L(f) = E (y − f(x))2 =∫
(y − f(x))2 dρ(x, y).

We follow the standard theory of regularised learning
where f̂ is learned by minimising the regularised empir-
ical squared error loss L̂(f) = 1

n

∑n
i

(
yi − f(xi)

)2

f̂ = argmin
f

L̂(f) + τR(f) . (1)

In the above, R(f) is a suitable penalty typically based
on some prior assumption about the function space (e.g.
smoothness), and τ > 0 is a suitable regularization
hyper-parameter. The principal assumption we consider
in this paper is that the function f is sparse with respect
to the original input space X , that is it depends only on
l� d input variables.

Learning with variable selection is a well-established
and rather well-explored problem in the case of linear
models f(x) =

∑d
a xawa, e.g. Hastie et al. (2015).

The main ideas from linear models have been success-
fully transferred to additive models f(x) =

∑d
a fa(xa),

e.g. Ravikumar et al. (2007), Bach (2009), Koltchin-
skii and Yuan (2010), and Yin et al. (2012), or to ad-
ditive models with interactions f(x) =

∑d
a fa(xa) +∑d

a<b fa,b(xa, xb), e.g Lin and Zhang (2006) and Tyagi
et al. (2016).

However, sparse modelling of general non-linear func-
tions is more intricate. A promising stream of works
focuses on the use of non-linear (conditional) cross-
covariance operators arising from embedding probability
measures into Hilbert function spaces, e.g. Yamada et al.
(2014) and Chen et al. (2017).

In this work, we follow an alternative approach proposed
in Rosasco et al. (2013) based on partial derivatives and
develop new regularizers to promote structured sparsity
with respect to the original input variables. We stress
that our objective here is not to learn new data repre-
sentations nor learn sparse models in some latent feature
space, e.g. Gurram and Kwon (2014). Nor is it to learn
models sparse in the data instances (in the sense of sup-
port vectors, e.g. Chan et al. (2007)). We aim at select-
ing the relevant input variables, the relevant dimensions
of the input vectors x ∈ Rd.

After a brief review of the regularizers used in Rosasco
et al. (2013) for individual variable selection in non-
linear model learning (similar in spirit to lasso Tibshi-
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rani (1996)) we propose two extensions motivated by the
linear structured-sparsity learning literature. Using suit-
able norms of the partial derivatives we propose the non-
linear versions of the group lasso Yuan and Lin (2006)
and the elastic net Zou and Hastie (2005).

We pose our problem into the framework of learning in
the reproducing kernel Hilbert space (RKHS). We extend
the representer theorem to show that the minimiser of
(1) with our new regularizers R(f) can be conveniently
written as a linear combination of kernel functions and
their partial derivatives evaluated over the training set.

We further propose a new reformulation of the equiva-
lent finite dimensional learning problem, which allows us
to develop a new algorithm (NVSD) based on the Alter-
nating Direction Method of Multipliers (ADMM) Boyd
(2010). This is a generic algorithm that can be used (with
small alterations) for all regularizers we discuss here.
At each iteration, the algorithm needs to solve a single
linear problem, perform a proximal step resulting in a
soft-thresholding operation, and do a simple additive up-
date of the dual variables. Unlike Rosasco et al. (2013),
which uses approximations of the proximal operator, our
algorithm is based on proximals admitting closed forms
for all the discussed regularizers, including the one sug-
gested previously in Rosasco et al. (2013). Furthermore,
by avoiding the approximations in the proximal step, the
algorithm directly provides also the learned sparsity pat-
terns over the training set (up to the algorithmic conver-
gence precision).

We explore the effect of the proposed regularizers on
model learning on synthetic and real-data experiments,
and confirm the superior performance of our methods in
comparison to a range of baseline methods when learning
structured-sparse problems. Finally, we conclude by dis-
cussing the advantages and shortcomings of the current
proposal and outline some directions for future work.

2 REGULARIZERS FOR VARIABLE
SELECTION

In Rosasco et al. (2013) the authors propose to use the
partial derivatives of the function with respect to the in-
put vector dimensions {∂af : a ∈ Nd} to construct
a regularizer promoting sparsity. The partial derivative
evaluated at an input point ∂af(x) is the rate of change
of the function at that point with respect to xa holding
the other input dimensions fixed. Intuitively, when the
function does not dependent on an input variable (input
dimension a), its evaluations do not change with changes
in the input variable: ∂af(x) = 0 at all points x ∈ X .
A natural measure of the size of the partial derivatives

across the space X is the L2 norm

||∂af ||L2
=

√∫

X
|∂af(x)|2 dρx(x) (2)

Remark 1. At this point we wish to step back and make
a link to the linear models f(x) =

∑d
a xawa. The par-

tial derivatives with respect to any of the d dimensions
of the input vector x are the individual elements of the
d-dimensional parameter vector w, ∂af(x) = wa, and
this at every point x ∈ X . For the linear model we
thus have ||∂af ||L2

= |wa|. Sparsity inducing norms
or constraints operating over the parameter vectors w
can therefore be seen as special cases of the same norms
and constraints imposed on the partial-derivative norms
(2).

2.1 SPARSITY INDUCING NORMS

The sparsity objective over a vector v ∈ Rd can be cast
as the minimization of the `0 norm ||v||0 = #{a =
1, . . . , d : va 6= 0} which counts the number of non-
zero elements of the vector. Since it is well known from
the linear sparse learning literature that finding the `0 so-
lutions is computationally difficult in higher dimensions
(NP-hard, Weston et al. (2003)), the authors in Rosasco
et al. (2013) suggest to use its tightest convex relaxation,
the `1 norm ||v||1 =

∑d
a |va|. They apply the `1 norm

over the partial-derivative norms (2) so that the lasso-like
sparsity regularizer in (1) is

RL(f) =
d∑

a=1

||∂af ||L2 . (3)

In this paper we explore two extensions inspired by the
linear sparse learning, opening the doors to many of the
other sparsity and structured sparsity inducing norms that
have been proposed in the abundant literature on this
topic. Namely, we focus here on the structured spar-
sity induced by the mixed `1/`2 norm known in the con-
text of linear least squares as the group lasso Yuan and
Lin (2006). For a vector v composed of G groups vg
(non-overlapping but not necessarily consecutive) with
pg number of elements each, the mixed `1/`2 norm is
||v||1,2 =

∑G
g pg ||vg||2. The corresponding group-

lasso-like regularizer to be used in (1) is

RGL(f) =
G∑

g=1

pg

√∑

a∈g
||∂af ||2L2

. (4)

Second, we look at the elastic net penalty proposed ini-
tially in Zou and Hastie (2005). This uses a convex com-
bination of the `1 and square of the `2 norm and has been
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shown to have better selection properties over the vanilla
`1 norm regularization in the presence of highly corre-
lated features. Unlike the `1 penalty, the combined elas-
tic net is also strictly convex. The corresponding elastic-
net-like regularizer to be used in (1) is

REN (f) =µ

d∑

a=1

||∂af ||L2 + (1− µ)
d∑

a=1

||∂af ||2L2
,

µ ∈ [0, 1] . (5)

2.2 EMPIRICAL VERSIONS OF
REGULARIZERS

A common problem of the regularizers introduced above
is that in practice they cannot be evaluated due to the
unknown probability measure ρx on the input space X .
Therefore instead of the partial-derivative norms defined
in expectation in (2)

||∂af ||L2
=
√

E|∂af(x)|2 (6)

we use their sample estimates replacing the expectation
by the training sample average

||∂af ||2n =

√√√√ 1

n

n∑

i

|∂af(xi)|2 . (7)

This corresponds to the move from expected loss to the
empirical loss introduced in section 1 and is enabled by
the i.i.d. sample assumptions.

In result, the regression function is learned from the em-
pirical version of (1)

f̂ = argmin
f∈F

L̂(f) + τR̂(f) , (8)

where R̂(f) are the empirical analogues of the regular-
izers (3), (4) and (5) replacing the population partial-
derivative norms ||∂af ||L2

by their sample estimates
||∂af ||2n . The function space F is discussed next.

3 LEARNING IN RKHS

In this paper, the hypothesis space F within which we
learn the function f is a reproducing kernel Hilbert space
(RKHS). We recall (e.g. Saitoh and Sawano (2016)) that
a RKHS is a function space F of real-valued functions
over X endowed with an inner product 〈., .〉F and the in-
duced norm ||.||F that is uniquely associated with a pos-
itive semidefinite kernel k : X × X → R. The kernel
k has the reproducing property 〈kx, f〉F = f(x) and, in
particular, 〈kx, kx′〉F = k(x,x′), where kx ∈ F is the
kernel section centred at x such that kx(x′) = k(x,x′)

for any two x,x′ ∈ X . Furthermore, the space F is the
completion of the linear span of the functions {kx : x ∈
X}.
In addition to these fairly well known properties of the
RKHS and its kernel, the author in Zhou (2008) has
shown that if k is continuous and sufficiently smooth the
kernel partial-derivative functions belong to the RKHS
and have a partial-derivative reproducing property. More
specifically, we define the kernel partial-derivative func-
tion [∂akx] : X → R as

[∂akx](x
′) =

∂

∂xa
k(x,x′) ∀x,x′ ∈ X . (9)

The function [∂akx] ∈ F has the reproducing property
〈[∂akx], f〉F = ∂af(x). In particular 〈[∂akx], kx′〉F =

∂akx′(x) and 〈[∂akx], [∂bkx′ ]〉F = ∂2

∂xa∂x′
b
k(x,x′).

Remark 2. Since the notation above may seem some-
what knotty at first, we invite the reader to appreciate the
difference between the function [∂akx] and the partial
derivative of the kernel section with respect to the ath di-
mension ∂akx. Clearly, [∂akx](x′) 6= ∂akx(x

′) for any
x 6= x′ ∈ X . However, due to the symmetry of the kernel
we do have [∂akx](x

′) = ∂akx′(x) = ∂
∂xa

k(x,x′).

3.1 SOLUTION REPRESENTATION

The variational (infinite-dimensional) problem (8) is dif-
ficult to handle as is. However, it has been previously
shown for a multitude of RKHS learning problems that
their solutions f̂ can be expressed as finite linear com-
binations of the kernel evaluations over the training data
Argyriou and Dinuzzo (2014). This property, known as
representer theorem, renders the problems amenable to
practical computations.

Proposition 1. The minimising solution f̂ of the varia-
tional problem

f̂ = argmin
f∈F

L̂(f) + τR̂(f) + ν||f ||2F , (10)

where τ, ν ≥ 0 and R̂(f) is any of the empirical versions
of the three formulations (3), (4), (5) can be represented
as

f̂ =
n∑

i

αi kxi +
n∑

i

d∑

a

βai [∂akxi ] . (11)

The proof (available in the appendix) follows the classi-
cal approach (e.g. Schölkopf et al. (2001)) of decompo-
sition of F into the space spanned by the representation
and its orthogonal complement.

The proposition extends the representer theorem of
Rosasco et al. (2013) to the new regularizers (4) and (5).
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Note that we included the induced Hilbert norm ||f ||F
into (10) as a useful generalization that reduces to our
original problem (8) if ν = 0. On the other hand, when
τ = 0 we recover a classical kernel regression problem
which is known to have another simpler representation
consisting just of the first term in (11).

4 ALGORITHM

In this section we describe the new algorithm we devel-
oped to solve problem (10) with the three sparse regular-
izers introduced in section 2. The algorithm is versatile
so that it requires only small alterations in specific steps
to move from one regularizer to the other. Importantly,
unlike the algorithm proposed in Rosasco et al. (2013)
for solving only the lasso-like problem, our algorithm
does not need to rely on proximal approximations since
all the proximal steps can be evaluated in closed forms.
Our algorithm also directly provides values of the partial
derivatives of the learned function indicating the learned
sparsity.

4.1 FINITE DIMENSIONAL FORMULATION

To be able to develop a practical algorithm we first
need to reformulate the variational optimisation prob-
lem (10) into its finite dimensional equivalent. For
this we introduce the following objects: the n-long
vector ααα = [α1, . . . , αn]

T , the dn-long vector βββ =
[β11, . . . , β1n, β21 . . . βdn]

T , the n × n symmetric PSD
kernel matrix K such that Kij = k(xi,xj), the
n × n (non-symmetric) kernel derivative matrices Da

and D̃a, a ∈ Nd such that Da
ij = [∂akxi ](x

j) =

∂akxj (x
i) = D̃a

ji, the n × n (non-symmetric) kernel
2nd derivative matrices Lab, a, b ∈ Nd such that Labij =
∂2

∂xia∂x
j
b

k(xi,xj) = ∂

∂xjb
[∂akxi ](x

j) = Lbaji . Further, we
need the following concatenations:

D =



D1

. . .
Dd


 La = [La1 . . .Lad] L =



L1

. . .
Ld




and specifically for the groups g inRGL the partitions

D̈g =



Dg1

. . .
Dgpg


 L̈g =



Lg1

. . .
Lgpg


 ,

where the subscripts gi are the corresponding indexes of
the input dimensions.
Proposition 2. The variational problem (10) is equiva-
lent to the finite dimensional problem

argmin
ααα,βββ

J 1(ααα,βββ) + τJ 2(ααα,βββ) + νJ 3(ααα,βββ), (12)

where

J 1(ααα,βββ) = 1

n
||y −Kααα−DTβββ||22

RL : J 2(ααα,βββ) = 1√
n

d∑

a

||Daααα+ Laβββ||2

RGL : J 2(ααα,βββ) = 1√
n

G∑

g

pg ||D̈g ααα+ L̈g βββ||2

REN : J 2(ααα,βββ) = µ√
n

d∑

a

||Daααα+ Laβββ||2

+
1− µ
n

d∑

a

||Daααα+ Laβββ||22

J 3(ααα,βββ) = αααTKααα+ 2αααTDTβββ + βββTLβββ

The proof (available in the appendix) is based on the fi-
nite dimensional representation (11) of the minimising
function, and the kernel and derivative reproducing prop-
erties stated in section 3.

The problem reformulation (12) is instructive in terms of
observing the roles of the kernel and the derivative matri-
ces and is reminiscent of the classical finite dimensional
reformulation of Hilbert-norm regularised least squares.
However, for the development of our algorithm we derive
a more convenient equivalent form.
Proposition 3. The variational problem (10) is equiva-
lent to the finite dimensional problem

argmin
ωωω

1

n
||y − Fωωω||22 + τJ (ωωω) + ν ωωωTQωωω, (13)

where

RL : J (ωωω) = 1√
n

d∑

a

||Zaωωω||2

RGL : J (ωωω) = 1√
n

G∑

g

pg ||Z̈g ωωω||2

REN : J (ωωω) = µ√
n

d∑

a

||Zaωωω||2 +
1− µ
n

d∑

a

||Zaωωω||22 ,

with

ωωω =

[
ααα
βββ

] F = [KDT ]
Za = [DaLa]

Z̈g = [D̈gL̈g]
Q =

[
K 0
2D L

]

The proof is trivial using (12) as an intermediate step.

4.2 DEVELOPMENT OF GENERIC
ALGORITHM

Problem (13) is convex though its middle part J (ωωω) is
non-differentiable for all three discussed regularizers. In-
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deed, it is the singularities of the norms at zero points that
yield the sparse solutions. A popular approach for solv-
ing convex non-differentiable problems is the proximal
gradient descent Parikh and Boyd (2013). At every step
it requires evaluating the proximal operator defined for
any function f : Rm → Rm and any vector v ∈ Rm as

proxf (v) = argmin
x

f(x) +
1

2
||x− v||22 . (14)

However, proximal operators for the functions J in (13)
do not have closed forms or fast methods for solving
which makes the proximal gradient descent algorithm
difficult to use.

We therefore propose to introduce a linearizing change
of variables Zaωωω = ϕϕϕa and cast the problem in a form
amenable for the ADMM method Boyd (2010)

min E(ωωω) + τ I(ϕϕϕ), s.t. Zωωω −ϕϕϕ = 0 . (15)

In the above

ϕϕϕ =



ϕϕϕ1

. . .
ϕϕϕd


 Z =



Z1

. . .
Zd


 ,

(or concatenation of the double-dot version for the group
structure), E : Rn+nd → R is the convex differentiable
function

E(ωωω) = 1

n
||y − Fωωω||22 + ν ωωωTQωωω ,

and I : Rnd → R is the convex non-differentiable func-
tion corresponding to each regularizer such that I(ϕϕϕ) =
J (ωωω) for every Zωωω = ϕϕϕ.

At each iteration the ADMM algorithm consists of the
following three update steps (the standard approach of
augmented Lagrangian with λλλ as the scaled dual variable
and κ as the step size):

S1 : ωωω(k+1) = argmin
ωωω

E(ωωω) + κ

2
||Zωωω −ϕϕϕ(k) + λλλ(k)||22

S2 : ϕϕϕ(k+1) = argmin
ϕϕϕ

τI(ϕϕϕ) + κ

2
||Zωωω(k+1) −ϕϕϕ+ λλλ(k)||22

S3 : λλλ(k+1) = λλλ(k) + Zωωω(k+1) −ϕϕϕ(k+1)

The first step S1 is a convex quadratic problem with a
closed form solution

S1 : (νQ+ νQT + 2n−1FTF+ κZTZ)ωωω(k+1) =

2n−1FTy + κZT (ϕϕϕ(k) − λλλ(k))

By comparing with (14) we observe that the second step
S2 is a proximal update. The advantage of our problem
reformulation and our algorithm is that this has a closed
form for all the three discussed regularizers.

Proposition 4. The proximal problem in step S2 is de-
composable by the d partitions of vector ϕϕϕ (or G parti-
tion in case of the group structure) and the minimising
solution is

RL : ϕϕϕ(k+1)
a =

(Zaωωω(k+1)+λλλ(k)a )

(
1− τ

κ
√
n||Zaωωω(k+1) + λλλ

(k)
a ||2

)

+

RGL : ϕϕϕ(k+1)
g =

(Z̈g ωωω(k+1)+λ̈λλ
(k)

g )

(
1− τ pg

κ
√
n||Zg ωωω(k+1) + λλλ

(k)
g ||2

)

+

REN : ϕϕϕ(k+1)
a =

Zaωωω(k+1) + λλλ
(k)
a

2τ(1− µ)/(κn) + 1

(
1− τµ

κ
√
n||Zaωωω(k+1) + λλλ

(k)
a ||2

)

+

Here (v)+ = min(0, v) is the thresholding operator.

The decomposability comes from the additive structure
of I. The derivation follows similar techniques as used
for classical `1 and `2 proximals.1

4.3 PRACTICAL IMPLEMENTATION

In practice, the Q,F and Z matrices are precomputed in
a preprocessing step and passed onto the algorithm as in-
puts. The matrices are directly computable using the ker-
nel function k and its first and second order derivatives
evaluated at the training points (following the matrix def-
initions introduced in section 4.1).

The algorithm converges to a global minimum by
the standard properties of ADMM. In our imple-
mentation (available at https://bitbucket.org/
dmmlgeneva/nvsd_uai2018/) we follow a simple
updating rule Boyd (2010, sec. 3.4.1) for the step size κ.
We use inexact minimization for the most expensive step
S1, gradually increasing the number of steepest descent
steps, each with complexity O

(
(nd)2

)
.

Furthermore, we use S2 to get the values of the training
sample partial-derivative norms defined in equation (7)
as ||∂af (k)||2n = ||ϕϕϕ(k)

a ||2/
√
n. The sparsity pattern is

obtained by examining for which of the dimensions a ∈
Nd the norm is zero ||∂af (k)||2n = 0.

1ForREN it is more practical to add the quadratic term into
E(ωωω) in S1 and use the corresponding scaled version of theRL
proximal in S2.
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5 EMPIRICAL EVALUATION

We conducted a set of synthetic and real-data experi-
ments to document the efficacy of our structured-sparsity
methods and the new algorithm under controlled and
more realistic conditions. We compare our methods
NVSD(L), NVSD(GL) and NVSD(EN) in terms of their
predictive accuracy and their selection ability to the sim-
ple (non-sparse) kernel regularised least squares (Krls),
to the sparse additive model (SpAM) of Ravikumar et al.
(2007), to the non-linear cross-covariance-based method
using the Hilbert Schmidt Independence Criterion in a
lasso-like manner (HSIC) of Yamada et al. (2014), and
to the derivative-based lasso-like method (Denovas) of
Rosasco et al. (2013).2 We compared also to simple
mean and linear sparse and non-sparse models. All of
these performed considerably worse than the non-linear
models and therefore are not listed in the summary re-
sults. For all the sparse kernel methods we consider a
two-step debiasing procedure based on variable selection
via the base algorithm followed by a simple kernel regu-
larised least squares on the selected variables.3

5.1 SYNTHETIC EXPERIMENTS

We motivate each synthetic experiment by a realistic
story-line and explain the data generating process here
below. In all the synthetic experiments we fix the in-
put dimension to d = 18 with only 6 input variables
{1, 2, 3, 7, 8, 9} relevant for the model and the other 12
irrelevant.

E1 In the first experiment we focus on the NVSD(GL)
which assumes the input variables can be grouped a
priori by some domain knowledge (e.g. each group
describes a type of input data such as a different bi-
ological process) and the groups are expected to be
completely in or out of the model. The input vari-
ables are generated independently from a standard
normal distribution and they are grouped by three
into 6 groups. The output is generated from the 1st
and the 3rd group as

y =
3∑

i=1

3∑

j=i

3∑

k=j

xixjxk+
9∑

q=7

9∑

r=q

9∑

s=r

xqxrxs+ε ,

with ε ∼ N(0, 0.01). For learning we fix the kernel
to 3rd order polynomial.

2For HISC and Denovas we used the author’s code, for
SpAM the R implementation of Zhao et al. (2014). For all al-
gorithms we kept the default settings.

3This is native to Denovas and necessary for HSIC which
otherwise does not produce a predictive model.

E2 In the second experiment we do not assume any a
priori grouping of the variables. Instead some of the
variables are strongly correlated (perhaps relating to
a single phenomenon), a case for NVSD(EN). The
input variables are generated similarly as in E1 but
with the pairs {1, 7}, {2, 8} and {3, 9} strongly cor-
related (Pearson’s population correlation coefficient
0.95). The remaining (irrelevant) input variables are
also pair-wise correlated and the output is generated
as

y =
3∑

i,j,k=1

xixjxk +
9∑

q,r,s=7

xqxrxs + ε ,

with ε ∼ N(0, 0.01). For learning we fix the kernel
to 3rd order polynomial.

E3 In the third experiment we assume the inputs are
noisy measurements of some true phenomenon (e.g.
repeated measurements, measurements from multi-
ple laboratories) for which there is no reason to pre-
fer one over the other in the model. We first gener-
ate the true data zi ∼ N(0, 1), i = 1, . . . , 6 and use
these to generate the outputs as

y = 10(z21 + z23)e
−2(z21+z23) + ε ,

with ε ∼ N(0, 0.01). We then generate the noisy
measurements that will be used as inputs for the
learning: for each zi we create three noisy mea-
surements xij = zi + N(0, 0.1), j = 1, 2, 3 (a
group for the NVSD(GL) method); the input vec-
tor is the concatenation of all xij so that from the
18 long concatenated input vector x again only the
set {1, 2, 3, 7, 8, 9} of the dimensions is relevant for
predicting the output y. For learning we fix the ker-
nel to Gaussian with width σ = 4.

Remark 3. In all the synthetic experiments we use the
same experimental protocol. We split the data into
train sets varying the size in n = {30, 50, 70, 90, 110},
a validation set of length 1000, and a test set of
length 1000. We train the models over the train
sets and use the validation set to select the regu-
larization hyper-parameters (and therefore the mod-
els) based on the minimal validation MSE. We use
dense grids of 50 points for the τ search (automati-
cally established by the algorithm) and 5 points grid
for µ ∈ {0.1, . . . , 0.9}. Complete settings (also for the
baseline methods) are detailed in the replication files
publicly available at https://bitbucket.org/
dmmlgeneva/nvsd_uai2018/.

We report the average results across 50 independent
replications of the experiments in table 1. We measure
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Table 1: Results of Synthetic Experiments

Train size 30 50 70 90 110

E1

R
M

SE

Krls 12.79 11.66 10.99 10.43 9.80
SpAM 11.41 9.47 8.66 8.22 7.75
HSIC 11.37 10.00 8.58 7.28 5.68
Denovas 11.66 10.87 12.37 13.28 11.78
NVSD(L) 11.55 10.22 9.36 7.90 7.13
NVSD(GL) 9.92 7.89 6.34 1.94 2.41

Se
le

ct
io

n
er

ro
r Krls 0.67 0.67 0.67 0.67 0.67

SpAM 0.54 0.56 0.59 0.57 0.58
HSIC 0.50 0.48 0.42 0.35 0.32
Denovas 0.49 0.50 0.53 0.67 0.73
NVSD(L) 0.49 0.47 0.48 0.39 0.32
NVSD(GL) 0.28 0.24 0.22 0.05 0.11

E2

R
M

SE

Krls 27.69 24.83 22.53 19.14 18.04
SpAM 31.24 29.21 29.25 27.11 26.03
HSIC 21.74 15.50 12.02 9.42 7.67
Denovas 24.23 34.33 17.51 8.89 11.20
NVSD(L) 21.24 16.59 11.79 8.61 7.35
NVSD(EN) 17.53 10.05 5.67 4.29 3.29

Se
le

ct
io

n
er

ro
r Krls 0.67 0.67 0.67 0.67 0.67

SpAM 0.57 0.55 0.49 0.52 0.46
HSIC 0.52 0.42 0.42 0.35 0.32
Denovas 0.46 0.54 0.40 0.30 0.26
NVSD(L) 0.46 0.43 0.36 0.31 0.29
NVSD(EN) 0.35 0.20 0.14 0.09 0.08

E3

R
M

SE

Krls 0.65 0.55 0.54 0.53 0.50
SpAM 0.51 0.49 0.47 0.47 0.46
HSIC 0.52 0.47 0.45 0.44 0.43
Denovas 0.55 0.51 0.50 0.51 0.50
NVSD(L) 0.51 0.44 0.44 0.41 0.34
NVSD(GL) 0.51 0.41 0.39 0.33 0.31
NVSD(EN) 0.50 0.43 0.42 0.36 0.30

Se
le

ct
io

n
er

ro
r Krls 0.67 0.67 0.67 0.67 0.67

SpAM 0.65 0.61 0.60 0.58 0.59
HSIC 0.59 0.51 0.53 0.47 0.44
Denovas 0.49 0.45 0.47 0.45 0.41
NVSD(L) 0.33 0.30 0.40 0.34 0.23
NVSD(GL) 0.26 0.20 0.24 0.15 0.14
NVSD(EN) 0.30 0.33 0.35 0.25 0.16

Best results in bold; underlined when structured-sparsity meth-
ods significantly better than all other methods using Wilcoxon
signed-rank test at 5% significance level.

the prediction accuracy by the root mean squared error
(RMSE) over the test sets and the selection accuracy by
the Tanimoto distance between the true sparsity and the
learned sparsity patterns (section 4.3).

Our structured-sparsity methods clearly outperform all
the non-structured sparse learning methods achieving
better prediction accuracy based on more precise vari-
able selection, typically with statistically significant dif-
ferences. Also, the prediction and selection accuracy
generally increases (errors decrease) for larger training
sample sizes suggesting our methods are well-behaved in

terms of the standard statistical learning paradigms. In
the E3 experiment, NVSD(GL) performs the best hav-
ing the benefit of the prior knowledge of the variable
groupings. Remarkably, NVSD(EN) follows closely af-
ter even without such prior information, learning about
the groups of correlated variables from the data when
building the model.

Figure 1: Predictions for the E3 experiment over the test
data. We picked an example for the model trained with
110 instances (the 17th replication) which illustrates well
the advantage our NVSD methods have over the base-
lines in capturing the True complex non-linear structure.

Krls can only learn full models and therefore performs
rather poorly on these by-construction sparse problems.
From the other three baselines, HSIC typically achieves
the second best results (after our NVSD methods).
SpAM is not particularly suitable for the non-additive
structures of our experiments. Finally, in all the exper-
iments our NVSD(L) outperforms Denovas though they
share the same lasso-like problem formulation. We at-
tribute this to our new algorithm developed in section 4
which, unlike Denovas, does not rely on approximations
of the proximal operators.
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5.2 REAL-DATA EXPERIMENTS

For the real-data experiments we used a collection of re-
gression datasets from UCI Lichman (2013) and LIACC4

repositories listed in table 2.

Table 2: Real Datasets Desription

Code Name Inputs Test Size Source

AI Airfoil Self Noise 5 700 UCI
BH Boston Housing 10 200 UCI
CC Concrete Compressive 8 450 UCI
EN Energy Efficiency 8 300 UCI
CP Computer Activity 21 1000 LIACC
EL F16 Elevators 17 1000 LIACC
KN Kynematics 8 1000 LIACC

We report the average results across 50 replications of
the experiments in tables 3 and 4. We use RMSE over
the test data for measuring the prediction accuracy. For
the real datasets we do not know the ground-truth spar-
sity patterns. Instead of measuring the selection error we
therefore count the number of input variables selected by
each method. Krls has no selection ability, its support
size is hence equal to the total number of input variables
in each problem.

Remark 4. We followed similar experimental protocol
as for the synthetic experiments. We fixed the training
sample size for all experiments to 100 instances and used
200-1000 instances for the validation and test sets (de-
pending on the total number of available observations).
We pre-processed the data by normalizing the inputs and
centering the outputs. For all the experiments we used
a Gaussian kernel with the width set to the median dis-
tance calculated over the nearest 20 neighbours, and the
3rd order polynomial kernel. With the exception of the
EN dataset, the Gaussian kernel yielded better results
and was therefore kept for the final evaluation. Full de-
tails of the settings can be found in the replication files
publicly available at https://bitbucket.org/
dmmlgeneva/nvsd_uai2018/.

Results in table 3 are for the original data for which we
have no prior knowledge about possible variable group-
ings. Therefore we only use the non-structured methods
and our NVSD(EN) that do not rely on any such prior
information.

Our NVSD methods learned sparse non-linear models
achieving better or comparable results than the baselines
in 4 out of the 5 experiments (BH, CP, EN, EL). For CC
reducing the number of input dimensions does not seem
to bring any advantages and the methods tend to learn full

4http://www.dcc.fc.up.pt/∼ltorgo/Regression/DataSets.html

Table 3: Results of Real-data Experiments

Experiment BH CP CC EN EL

R
M

SE

Krls 4.00 12.27 8.70 1.83 5.10
SpAM 4.33 ∼ 12.70 ∼ ∼
HSIC 4.02 9.39 8.73 1.19 9.07
Denovas 4.02 9.21 12.07 3.02 6.01
NVSD(L) 3.96 8.43 8.67 1.50 4.81
NVSD(EN) 3.93 7.88 8.70 1.20 4.67

Su
pp

or
ts

iz
e Krls 10.00 21.00 8.00 8.00 17.00

SpAM 9.00 ∼ 2.82 ∼ ∼
HSIC 6.12 8.26 5.88 5.08 0.00
Denovas 8.80 4.76 4.38 4.96 10.52
NVSD(L) 8.20 3.78 7.36 7.26 14.06
NVSD(EN) 8.06 4.58 7.98 6.66 13.00

Best results in bold; underlined when NVSD methods signifi-
cantly better than all the baselines using Wilcoxon signed-rank
test at 5% significance level. For several experiments SpAM
finished with errors.

models. For several experiments SpAM finished with er-
rors and therefore the results in the table are missing.

To explore the performance and benefits of NVSD(GL)
method we had to construct variable groups that could
potentially help the model learning. We adopted two
strategies:

1. For CP and EL datasets we constructed the groups
based on the NVSD(EN) results. For CP we
grouped together the 5 most often selected vari-
ables across the 50 replications of the experiment
and created 3 other groups from the remaining vari-
ables. For EL we created five groups by 3-4 el-
ements putting together variables with similar fre-
quencies of occurrence in the support of the learned
NVSD(EN) models over the 50 replications.

2. For AI, CC, and KN datasets we doubled the orig-
inal input data dimensions by complementing the
input data by a copy of each input variable with
permuted instance order. We then constructed two
groups, the first over the original data, the second
over the permuted copy.

Table 4 confirms that our NVSD(GL) is able to use the
grouping information based on prior knowledge to select
better, more relevant subset of variables than the non-
structured baselines. Thanks to this it achieves signifi-
cantly better prediction accuracy in all the experiments.

6 CONCLUSIONS AND FUTURE
WORK

In this work we addressed the problem of variable se-
lection in non-linear regression problems. We followed
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Table 4: Results of Real-data Experiments with Groups

Experiment AI CP CC KN EL
R

M
SE

Krls 5.08 12.27 10.34 2.07 5.10
SpAM ∼ ∼ 13.31 2.20 ∼
HSIC 4.64 9.39 9.29 2.05 9.07
Denovas 5.12 9.21 11.49 2.10 6.01
NVSD(L) 4.45 8.43 9.58 2.03 4.81
NVSD(GL) 4.16 7.43 8.79 1.96 4.76

Su
pp

or
ts

iz
e Krls 10.00 21.00 16.00 16.00 17.00

SpAM ∼ ∼ 2.60 11.32 ∼
HSIC 5.08 8.26 6.16 11.82 0.00
Denovas 5.94 4.76 6.96 9.72 10.52
NVSD(L) 4.76 3.78 8.16 13.58 14.06
NVSD(GL) 5.00 5.84 8.00 11.84 13.82

Best results in bold; underlined when NVSD methods signifi-
cantly better than all the baselines using Wilcoxon signed-rank
test at 5% significance level. For several experiments SpAM
finished with errors.

up from the work of Rosasco et al. (2013) arguing for
the use of partial derivatives as an indication of the per-
tinence of an input variable for the model. Extending
the existing work, we proposed two new derivative-based
regularizers for learning with structured sparsity in non-
linear regression similar in spirit to the linear elastic net
and group lasso.

After posing the problems into the framework of RKHS
learning, we designed a new NVSD algorithm for solv-
ing these. Unlike the previously proposed Denovas our
new algorithm does not rely on proximal approxima-
tions. This is most likely the main reason why our
NVSD(L) method achieved systematically better predic-
tive performance than Denovas on a broad set of exper-
iments. We also empirically demonstrated the advan-
tages our structured sparsity methods NVSD(GL) and
NVSD(EN) bring for learning tasks with a priori known
group structures or correlation in the inputs.

These promising results point to questions requiring fur-
ther attention:

Our NVSD algorithm achieves better results in terms of
prediction accuracy than Denovas, however, at the cost
of longer training times. Its O

(
(nd)2

)
complexity is

not favourable for scaling in neither instances nor dimen-
sions. Exploring avenues for speeding up, possibly along
the lines of random features construction, is certainly an
important next step in making the algorithm operational
for more practical real-life problems.

The method is based on the partial-derivative arguments
and therefore assumes the functions (and therefore the
kernels) are at least 2nd order differentiable (and square-
integrable). We use here the polynomial and Gaussian

kernel as the most commonly used examples. What other
properties of the kernels are necessary to ensure good
performance and how the methods could be extended to
other, more complex kernels are relevant questions.

The full problem formulation (e.g. equation (10) in
proposition 1) combines the sparse regularizers with the
function Hilbert-norm. This combination has been pro-
posed in Rosasco et al. (2013) to ensure that the reg-
ularization part of the problem is strongly convex and
the problem is well-posed in terms of the generalization
properties.

However, interactions of the Hilbert norm with the spar-
sity inducing regularizers of section 2 and the effects on
the learning and selection properties are not yet fully
clear. Empirically (from Rosasco et al. (2013) and our
own experiments) the models are often little sensitive to
variations in ν5.

In addition, theREN regularizer is already strongly con-
vex even without the Hilbert norm. To what degree com-
bining it with the Hilbert norm is necessary to guaran-
tee good generalization for outside the training needs
to be further investigated. So does its behaviour and
the possible improvements it can bring when learning
from inputs with non-linear dependencies. In view of
the above considerations, our paper is posing the moti-
vations, foundations and principles for further studies on
partial derivative-based regularizations.
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Abstract

The essential graph is a distinguished member
of a Markov equivalence class of AMP chain
graphs. However, the directed edges in the es-
sential graph are not necessarily strong or in-
variant, i.e. they may not be shared by every
member of the equivalence class. Likewise for
the undirected edges. In this paper, we develop
a procedure for identifying which edges in an
essential graph are strong. We also show how
this makes it possible to bound some causal ef-
fects when the true chain graph is unknown.

1 INTRODUCTION

In most practical applications, the data available con-
sists of observations. Therefore, it can rarely single out
the true causal model. At best, it identifies the Markov
equivalence class that contains the true causal model. In
this paper, we represent causal models with the help of
AMP chain graphs (Andersson et al., 2001). As argued
by Peña (2016), these graphs are suitable for represent-
ing causal linear models with additive Gaussian noise.
Intuitively, the directed subgraph of a chain graph rep-
resents the causal relations in the domain, and the undi-
rected subgraph represents the dependence structure of
the noise terms. Additive noise is a rather common as-
sumption in causal discovery (Peters et al., 2017), mainly
because it produces tractable models which are useful for
gaining insight into the system under study. Note also
that linear structural equation models, which have exten-
sively been studied for causal effect identification (Pearl,
2009), are additive noise models.

In order to represent the equivalence class of chain
graphs identified from the observations at hand, we typ-
ically use a distinguished member of it. In the litera-
ture, there are two distinguished members: The essential

graph (Andersson and Perlman, 2006), and the largest
deflagged graph (Roverato and Studený, 2006). In gen-
eral, they do not coincide: The essential graph is a de-
flagged graph (Andersson and Perlman, 2006, Lemma
3.2) but not necessarily the largest in the equivalence
class (Andersson et al., 2001, p. 57). Unfortunately, the
directed edges in either of the two representatives are not
necessarily strong,1 i.e. they may not be shared by ev-
ery member of the equivalence class. Likewise for the
undirected edges. In this paper, we use essential graphs
to represent equivalence classes of chain graphs. And
we develop a procedure for identifying which edges in
an essential graph are strong. Note that while we assume
that the true chain graph is unknown, its corresponding
essential graph can be obtained from observational data
as follows. First, learn a chain graph as shown by Peña
(2014, 2016) and Peña and Gómez-Olmedo (2016) and,
then, transform it into an essential graph as shown by
Sonntag and Peña (2015, Section 3).

Identifying the strong edges in an essential graph is im-
portant because it makes it possible to identify causal
paths from data even though the data may not be able
to single out the true chain graph: Simply output every
directed path in the essential graph that consists of only
strong edges. Of course, the true chain graph may have
additional causal paths. Identifying the strong edges
in an essential graph is also important because it al-
lows to efficiently bound some causal effects of the form
p(y∣do(x)) where X and Y are singletons. The simplest
way to bound such a causal effect consists in enumerat-
ing all the chain graphs that are equivalent to the essen-
tial graph and, then, computing the causal effect for each
of them from the observational data by adjusting for the
appropriate variables. Although we know how to enu-
merate the equivalent chain graphs (Sonntag and Peña,
2015, Theorem 3), this method may be inefficient for all
but small domains. Instead, we show in this paper how
the knowledge of the strong edges in an essential graph

1The term invariant or essential is also used in the literature.
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allows to enumerate the adjusting sets without enumerat-
ing the equivalent chain graphs explicitly.

The rest of the paper is organized as follows. Section
2 introduces some preliminaries. Section 3 presents our
algorithm to identify strong edges in an essential graph.
Section 4 presents our procedure to bound causal effects
when the true chain graph is unknown but its correspond-
ing essential graph is known. Section 5 closes the paper
with some discussion and lines of future research.

2 PRELIMINARIES

All the graphs and probability distributions in this paper
are defined over a finite set V unless otherwise stated.
All the graphs contain at most one edge between a pair
of nodes. The elements of V are not distinguished from
singletons.

The parents of a set of nodes X of a graph G is the
set PaG(X) = {A∣A → B is in G with B ∈ X}.
The children of X is the set ChG(X) = {A∣B → A
is in G with B ∈ X}. The neighbors of X is the set
NeG(X) = {A∣A − B is in G with B ∈ X}. The adja-
cents of X is the set AdG(X) = {A∣A → B, B → A or
A−B is in G with B ∈X}. The descendants of X is the
set DeG(X) = {A∣B → ⋯ → A is in G with B ∈ X}.
A route from a node V1 to a node Vn in G is a sequence
of (not necessarily distinct) nodes V1, . . . , Vn such that
Vi ∈ AdG(Vi+1) for all 1 ≤ i < n. A route is called a cycle
if Vn = V1. A cycle has a chord if two non-consecutive
nodes of the cycle are adjacent in G. A cycle is called
semidirected if it is of the form V1 → V2 ⊸ ⋯ ⊸ Vn
where ⊸ is a short for → or −. A chain graph (CG) is a
graph with (possibly) directed and undirected edges, and
without semidirected cycles. A set of nodes of a CG G
is connected if there exists a route in G between every
pair of nodes in the set and such that all the edges in the
route are undirected. A chain component of G is a maxi-
mal connected set. Note that the chain components of G
can be sorted topologically, i.e. for every edge A→ B in
G, the component containing A precedes the component
containing B. A set of nodes of G is complete if there
is an undirected edge between every pair of nodes in the
set. Moreover, a node is called simplicial if its neighbors
are a complete set.

We now recall the interpretation of CGs due to Ander-
sson et al. (2001), also known as AMP CGs.2 A node

2Andersson et al. (2001) interpret CGs via the so-called
augmentation criterion. Levitz et al. (2001, Theorem 4.1) in-
troduce the so-called p-separation criterion and prove its equiv-
alence to the augmentation criterion. Peña (2016, Theorem 2)
introduce the route-based criterion that we use in this paper and
prove its equivalence to the p-separation criterion.

B in a route ρ in a CG G is called a triplex node in ρ if
A→ B ← C, A→ B −C, or A−B ← C is a subroute of
ρ. Moreover, ρ is said to be Z-open with Z ⊆ V when (i)
every triplex node in ρ is in Z, and (ii) every non-triplex
node in ρ is outside Z. Let X , Y and Z denote three
disjoint subsets of V . When there is no Z-open route in
G between a node in X and a node in Y , we say that
X is separated from Y given Z in G and denote it as
X ⊥GY ∣Z. The statistical independences represented by
G are the separations X ⊥ GY ∣Z. A probability distri-
bution p is Markovian with respect to G if the indepen-
dences represented by G are a subset of those in p. If the
two sets of independences coincide, then p is faithful to
G. Two CGs are Markov equivalent if the sets of distri-
butions that are Markovian with respect to each CG are
the same. If a CG has an induced subgraph of the form
A→ B ← C, A→ B−C orA−B ← C, then we say that
the CG has a triplex (A,B,C). Two CGs are Markov
equivalent if and only if they have the same adjacencies
and triplexes (Andersson et al., 2001, Theorem 5).

Lemma 1. Two CGs G and H are Markov equivalent if
and only if they represent the same independences.

Proof. The if part is trivial. To see the only if part, note
that Levitz et al. (2001, Theorem 6.1) prove that there are
Gaussian distributions p and q that are faithful to G and
H , respectively. Moreover, p is Markovian with respect
toH , becauseG andH are Markov equivalent. Likewise
for q andG. Therefore,G andH must represent the same
independences.

2.1 ESSENTIAL GRAPHS

The essential graph (EG) G∗ is a distinguished mem-
ber of a class of equivalent CGs. Specifically, an edge
A→ B is in G∗ if and only if A→ B is in some member
of the class and A← B is in no member of the class. An
algorithm (without proof of correctness) for constructing
the EG from any other member of the equivalence class
has been developed by Andersson and Perlman (2004,
Section 7). An alternative algorithm with proof of cor-
rectness has been developed by Sonntag and Peña (2015,
Section 3). The latter algorithm can be seen in Tables 1
and 2. A perpendicular line at the end of an edge such
as in z or zx represents a block, and it means that the
edge cannot be oriented in that direction. Note that the
ends of some of the edges in the rules in Table 2 are
labeled with a circle such as in z⊸ or ⊸⊸. The circle
represents an unspecified end, i.e. a block or nothing.
The modifications in the consequents of the rules con-
sist in adding some blocks. Note that only the blocks
that appear in the consequents are added, i.e. the cir-
cled ends do not get modified. In line 2 of Table 1, any
such set S will do. For instance, if B ∉ DeG(A), then
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Table 1: Algorithm for constructing the EG.

In: A CG G.
Out: The EG G∗ in the equivalence class of G.

1 For each ordered pair of non-adjacent nodes A
and B in G

2 Set SAB = SBA = S such that A⊥GB∣S
3 Let G∗ denote the undirected graph that has the

same adjacencies as G
4 Apply the rules R1-R4 to G∗ while possible
5 Replace every edge A −B in every cycle in G∗

that is of length greater than three, chordless,
and without blocks with Azx B

6 Apply the rules R2-R4 to G∗ while possible
7 Replace every edge Az B and Azx B in G∗

with A→ B and A −B, respectively

Table 2: Rules in the algorithm in Table 1. The an-
tecedents represent induced subgraphs.

R1: A B C ⇒ A B C

and B ∉ SAC
R2: A B C ⇒ A B C

and B ∈ SAC

R3:
A . . . B

⇒
A . . . B

R4: A B

C

D

⇒ A B

C

D

and A ∈ SCD

let S = NeG(A) ∪ PaG(A ∪ NeG(A)), otherwise let
S = NeG(B) ∪ PaG(B ∪NeG(B)). In line 5, that the
cycle has no blocks means that the ends of the edges in
the cycle have no blocks. Note that the rule R1 is not used
in line 6, because it will never fire after its repeated ap-
plication in line 4. Finally, note that G∗ may have edges
without blocks after line 6.

3 STRONG EDGES

We say that a directed edge in a CG is strong if it ap-
pears in every equivalent CG. Likewise for undirected
edges. Therefore, strong edges are features of a class
of equivalent CGs. Clearly, strong directed edges cor-
respond to directed edges in the EG of the equivalence

class. However, the opposite is not true. Likewise for
strong undirected edges. For an example, consider the
EG A → B ← C − D. The naive way to detect which
edges in an EG are strong consists in generating all the
CGs in the equivalence class and, then, recording the
shared edges. Since there may be many CGs in the equiv-
alence class, enumerating them in an efficient manner is
paramount, but challenging. In truth, it suffices to enu-
merate what we call the minimally oriented CGs in or-
der to identify the strong directed edges and, then, find
one maximally oriented CG to identify the strong undi-
rected edges. We prove these claims in Section 3.1. Al-
though there are typically considerably fewer minimally
oriented CGs, enumerating them in an efficient manner
seems challenging too. That is why we present in Sec-
tion 3.2 an algorithm that does not rely on enumerating
CGs or minimally oriented CGs.

3.1 MINIMALLY AND MAXIMALLY
ORIENTED CGs

Given a CG G, merging two of its chain components U
and L implies replacing the edge A → B with A −B for
all A ∈ U and B ∈ L. We say that a merging is feasible
when

1. L ⊆ ChG(X) for all X ∈ PaG(L) ∩U ,

2. PaG(L) ∩U is a complete set,

3. PaG(PaG(L) ∩U) ⊆ PaG(Y ) for all Y ∈ L, and

4. DeG(U) ∩ PaG(L) = ∅.

A feasible merging of two chain components of a CG
results in an equivalent CG (Sonntag and Peña, 2015,
Lemma 2). If a CG does not admit any feasible merg-
ing, then we call it minimally oriented. Note that sev-
eral equivalent minimally oriented CGs may exist, e.g.
A→ B −C and A −B ← C. Note also that an EG is not
necessarily a minimally oriented CG, e.g. A → B ← C.
If the directed edges of a CG are a subset of the directed
edges of a second CG (with the same orientation), then
we say that the former is larger than the latter.

Lemma 2. The minimally oriented CGs in an equiva-
lence class are the maximally large CGs in the class, and
vice versa.

Proof. Clearly, a maximally large CG must be minimally
oriented because, otherwise, it admits a feasible merging
which results in a larger CG, which is a contradiction.
On the other hand, let G be a minimally oriented CG,
and assume to the contrary that there is a CG H that is
equivalent but larger than G. Specifically, let G have an
edge A → B whereas H has an edge A −B. Consider a
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topological ordering of the chain components of G. We
say that an edgeX → Y precedes an edgeZ →W inG if
the chain component ofX precedes the chain component
of Z in the ordering, or if both chain components coin-
cide and the chain component of Y precedes the chain
component of W in the ordering. Assume without loss
of generality that no other edge that is directed in G but
undirected in H precedes the edge A → B in G. Let
U and L denote the chain components of A and B, re-
spectively. Clearly, all the directed edges from U to L
in G must be undirected in H because, otherwise, H has
a semidirected cycle. However, this implies a contradic-
tion. To see it, recall that G is a minimally oriented CG
and, thus, merging U and L inG is not feasible. If condi-
tion 1 fails, then G has an induced subgraph X → Y −Z
where X ∈ U and Y,Z ∈ L, whereas H has an induced
subgraph X − Y − Z. However, this implies that G and
H are not equivalent, sinceG has a triplex (X,Y,Z) that
H has not.

If condition 2 fails but condition 1 holds, then G has an
induced subgraph X → Y ← Z where X,Z ∈ U and
Y ∈ L, whereas H has an induced subgraph X − Y − Z.
However, this implies that G and H are not equivalent,
since G has a triplex (X,Y,Z) that H has not.

If condition 3 fails but condition 1 holds, then G has an
induced subgraph Z →X → Y where X ∈ U , Y ∈ L and
Z ∈ V ∖ (U ∪ L), whereas H has an induced subgraph
Z →X − Y . However, this implies that G and H are not
equivalent, since H has a triplex (Z,X,Y ) that G has
not. Note that Z → X is in H because Z → X precedes
X → Y and thus A→ B in G.

Finally, if condition 4 fails but condition 1 holds, then G
has a subgraph of the formX → Y ← ⋯← Z ←X ′−⋯−
X whereX,X ′ ∈ U , Y ∈ L andZ ∈ V ∖(U∪L), whereas
H has a subgraph of the form X − Y − ⋯ − Z −X . To
see it, note that any other option results in a semidirected
cycle because, recall, H is larger than G. However, this
is a contradiction because X ′ → Z precedes X → Y and
thus A→ B in G.

The following result follows from the previous lemma.

Theorem 1. A directed edge is strong if and only if it is
in every minimally oriented CG in the equivalence class.

Finally, one may think that an undirected edge that is in
every minimally oriented CG in the equivalence class is
strong. But this is not true. For an example, consider
the equivalence class represented by the EG A −B. In-
stead, an undirected edge is strong if and only if it is
in any maximally oriented CG in the equivalence class
(Sonntag and Peña, 2015, Theorems 4 and 5). Formally,
a maximally oriented CG is a CG that does not admit any

Table 3: Algorithm to label strong edges in an EG. It
replaces line 7 of the algorithm in Table 1.

7 Label every edge X zx Y as strong in G∗
8 For each edge X z Y in G∗
9 Set H = G∗

10 Replace X z Y in H with X zx Y
11 Apply the rules R2-3 to H while possible
12 If G∗ has an induced subgraph Az B z⊸C

whereas H has Azx B zx C then
13 Label X z Y as strong in G∗
14 Replace every edge X z Y and X zx Y in G∗

with X → Y and X − Y , respectively

feasible split, which is the inverse operation of the feasi-
ble merge operation described before. Alternatively, we
can say that if the minimally oriented CGs are the max-
imally large CGs in an equivalence class, then the max-
imally oriented CGs are the minimally large (Sonntag
and Peña, 2015, Lemma 13). Note that several equiva-
lent maximally oriented CGs may exist (e.g., A→ B and
A ← B) but all of them have the same undirected edges
(Sonntag and Peña, 2015, Theorems 4 and 5). Note also
that an EG is not necessarily a maximally oriented CG,
e.g. A −B.

3.2 ENUMERATION-FREE ALGORITHM

Although the minimally and maximally oriented CGs in
an equivalence class can be obtained by repeatedly per-
forming feasible splits and merges (Sonntag and Peña,
2015, Theorem 3), the approach outlined above for iden-
tifying strong edges via enumeration may be inefficient
for all but small domains. Hence, Table 3 presents an
alternative algorithm that does not rely on enumerating
the CGs or the minimally oriented CGs in the equiva-
lence class. The new algorithm replaces line 7 in Table
1. In other words, the new algorithm postpones orienting
edges until line 14, and in lines 7-13 it identifies which of
the future directed and undirected edges are strong. Line
7 identifies the strong undirected edges, whereas lines 8-
13 identify the strong directed edges. To do the latter, the
algorithm tries to build a CG H that is equivalent to G∗
and contains an edge X − Y . If this fails, then X → Y
is strong. Specifically, line 10 forces the edge between
X and Y to be undirected in H by blocking the end at
Y . Line 11 computes other blocks that follow from the
new block at Y . After line 11, H can be oriented as indi-
cated in line 14 without creating a semidirected cycle or
a triplex that is not inG∗. Finally, line 12 checks if every
triplex in G∗ is in H . If not, X − Y is incompatible with
some triplex in G∗, which implies that X → Y is strong
in G∗. We prove the correctness of the algorithm below.
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Lemma 3. After line 11, H does not have any induced
subgraph of the form A B C .

Proof. The proof is an adaptation of the proof of Lemma
5 by Peña (2014). Assume to the contrary that the lemma
does not hold. We interpret the execution of lines 10-11
as a sequence of block additions and, for the rest of the
proof, one particular sequence of these block additions is
fixed. Fixing this sequence is a crucial point upon which
some important later steps of the proof are based. Since
there may be several induced subgraphs ofH of the form
under study after lines 10-11, let us consider any of the
induced subgraphs A B C that appear first dur-
ing the execution of lines 10-11 and fix it for the rest of
the proof. Note that H has no such induced subgraph
after line 9 (Sonntag and Peña, 2015, Lemma 9). Now,
consider the following cases.

Case 1 Assume that A z⊸ B is in H due line 10.
However, this implies that H had an induced
subgraph A B C before line 10, which is
a contradiction (Sonntag and Peña, 2015, Lemma
9).

Case 2 Assume that A z⊸ B is in H due to R2 in line
11. Then, after line 11, H has an induced subgraph
of one of the following forms:

A B C

D

A B C

D

case 2.1 case 2.2

A B C

D

A B C

D

case 2.3 case 2.4

Case 2.1 If A ∉ SCD then A x C is in H by R1 in
line 4 of Table 1, else A z C is in H by R2.
Either case is a contradiction.

Case 2.2 Note that D A C cannot be an
induced subgraph of H after line 11 because,
otherwise, it would contradict the assumption
that A B C is one of the first induced
subgraph of that form that appeared during the
execution of lines 10-11. So, this case is im-
possible.

Case 2.3 Note that A x C is in H by R3, which is
a contradiction.

Case 2.4 If C ∉ SBD then B z C is in H by R1 in
line 4 of Table 1, else B x C is in H by R2.
Either case is a contradiction.

Case 3 Assume that A z⊸ B is in H due to R3 in line
11. Then, after line 11, H had a subgraph of one
of the following forms, where possible additional
edges between C and internal nodes of the route
Az⊸ ⋯z⊸D are not shown:

A B C

D. . .

A B C

D. . .

case 3.1 case 3.2

A B C

D. . .

A B C

D. . .

case 3.3 case 3.4

Note thatC cannot belong to the routeAz⊸ ⋯z⊸D
because, otherwise, R3 could not have been applied
since the cycle Az⊸ ⋯z⊸D z⊸ B ⊸ A would not
have been chordless.

Case 3.1 If B ∉ SCD then B x C is in H by R1 in
line 4 of Table 1, else B z C is in H by R2.
Either case is a contradiction.

Case 3.2 Note that D B C cannot be an
induced subgraph of H after line 11 because,
otherwise, it would contradict the assumption
that A B C is one of the first induced
subgraph of that form that appeared during the
execution of lines 10-11. So, this case is im-
possible.

Case 3.3 Note that B x C is in H by R3, which is
a contradiction.

Case 3.4 Note that C cannot be adjacent to any
node of the route A z⊸ ⋯ z⊸ D besides A
and D and, thus, A z C is in H by R3. To
see it, assume to the contrary that C is adja-
cent to some nodes E1, . . . ,En ≠ A,D of the
route A z⊸ ⋯ z⊸ D. Assume without loss of
generality that Ei is closer to A in the route
than Ei+1 for all 1 ≤ i < n. Now, note that
En z⊸ C must be in H by R3. This implies
that En−1 z⊸ C must be in H by R3. By
repeated application of this argument, we can
conclude thatE1 z⊸ C must be inH and, thus,
Az C must be in H by R3, which is a contra-
diction.

Lemma 4. After line 11, every chordless cycle ρ ∶
V1, . . . , Vn = V1 in H that has an edge Vi z Vi+1 also
has an edge Vj x Vj+1.

37



Proof. The proof is an adaptation of the proof of Lemma
6 by Peña (2014). Assume for a contradiction that ρ is
of the length three such that V1 z V2 occur and neither
V2 x V3 nor V1 z V3 occur. Note that V2 zx V3 cannot
occur either because, otherwise, V1 z V3 or V1 zx V3
must occur by R3. Since the former contradicts the as-
sumption, then the latter must occur. However, this im-
plies that V1 zx V2 must occur by R3, which contradicts
the assumption. Similarly, V1 zx V3 cannot occur either.
Then, ρ is of one of the following forms:

V1 V2 V3 V1 V2 V3 V1 V2 V3

The first form is impossible by Lemma 3. The second
form is impossible because, otherwise, V2 z⊸V3 would
occur by R3. The third form is impossible because, oth-
erwise, V1 z V3 would be occur by R3. Thus, the lemma
holds for cycles of length three.

Assume for a contradiction that ρ is of length greater than
three and has an edge Vi z Vi+1 but no edge Vj x Vj+1.
Note that if Vl z⊸ Vl+1 ⊸⊸ Vl+2 is a subroute of ρ, then
either Vl+1 z⊸ Vl+2 or Vl+1 x Vl+2 is in ρ by R1 and R2.
Since ρ has no edge Vj x Vj+1, Vl+1 z⊸ Vl+2 is in ρ.
By repeated application of this reasoning together with
the fact that ρ has an edge Vi z Vi+1, we can conclude
that every edge in ρ is Vk z⊸ Vk+1. Then, by repeated
application of R3, observe that every edge in ρ is Vk zx
Vk+1, which contradicts the assumption.

Lemma 5. After line 11, H can be oriented as indicated
in line 14 without creating a semidirected cycle.

Proof. Assume to the contrary that the orientation pro-
duces a semidirected cycle ρ ∶ V1, . . . , Vn. Note that
ρ must have a chord because, otherwise, ρ is impossi-
ble by Lemma 4. Specifically, let the chord be between
Vi and Vj with i < j. Then, divide ρ into the cycles
ρL ∶ V1, . . . , Vi, Vj , . . . , Vn = V1 and ρR ∶ Vi, . . . , Vj , Vi.
Note that ρL or ρR is a semidirected cycle but shorter
than ρ. By repeated application of this reasoning, we
can conclude that the orientation produces a chordless
semidirected cycle, which contradicts Lemma 4.

Lemma 6. After line 11, H can be oriented as indicated
in line 14 without creating a triplex that is not in G∗.

Proof. We call pretriplex to an induced subgraph of G∗
or H that results in a triplex when G∗ or H are oriented
as indicated in line 14. Note that G∗ and H have the
same pretriplexes after line 9. Assume to the contrary
that after line 11 H has a pretriplex that is not in G∗.
Assume that the spurious pretriplex is created in line 10
when A z B becomes A zx B. Then, after line 11 H

has a pretriplex (1) A zx B x C or (2) C z A zx B.
Case (1) implies thatH has actually an induced subgraph
Azx B zx C by R2, which is a contradiction. To see that
R2 is applicable, note that B ∈ SAC because G∗ does
not have a triplex (A,B,C). Case (2) implies that H
has actually an induced subgraph C zx A zx B by R2,
which again is a contradiction. As before, R2 is clearly
applicable. Finally, assume that the spurious pretriplex is
created in line 11. Then, after line 11 H has an induced
subgraph (1) A z B x C, (2) A z B − C or (3) A z
B zx C. However, this implies that H has actually an
induced subgraph A zx B zx C or A z B z C by R2,
which again is a contradiction. As before, R2 is clearly
applicable.

Lemma 7. After line 14, the undirected edges inG∗ that
had no blocks after line 7 are not strong.

Proof. The proof is an adaptation of the proof of Theo-
rem 11 by Sonntag and Peña (2015). Let F denote the
graph that contains all and only the edges of G∗ result-
ing from the replacements in line 14, and letU denote the
graph that contains the rest of the edges of G∗ after line
14. Note that all the edges in U are undirected and they
had no blocks when line 14 was to be executed. There-
fore, U has no cycle of length greater than three that is
chordless by line 5. In other words, U is chordal. Then,
we can orient all the edges inU without creating triplexes
nor directed cycles by using, for instance, the maximum
cardinality search (MCS) algorithm (Koller and Fried-
man, 2009, p. 312). Consider any such orientation of the
edges in U and denote it D. Now, add all the edges in
D to F . As we show below, this last step does not create
any triplex or semidirected cycle in F :

• It does not create a triplex (A,B,C) in F because,
otherwise, A −B z⊸C must exist in G∗ when line
14 was to be executed, which implies that A z⊸ B
orA z⊸B was inG∗ by R1 or R2 when line 14 was
to be executed, which contradicts that A − B is in
U .

• Assume to the contrary that it does create a semidi-
rected cycle ρ in F . We can assume without loss
of generality that ρ is chordless because if it has a
chord between Vi and Vj with i < j. Then, divide
ρ into the cycles ρL ∶ V1, . . . , Vi, Vj , . . . , Vn = V1
and ρR ∶ Vi, . . . , Vj , Vi. Note that ρL or ρR is a
semidirected cycle but shorter than ρ. By repeated
application of this reasoning, we can conclude that
F has a chordless semidirected cycle.

Since D has no directed cycles, ρ must have a z
or zx edge when line 14 was to be executed. The
former case is impossible (Sonntag and Peña, 2015,
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Lemma 10). The latter case implies thatA−B zx C
must exist in G∗ when line 14 was to be executed,
which implies that A and C are adjacent in G∗ be-
cause, otherwise, A z⊸ B or A z⊸B was in G∗ by
R1 or R2 when line 14 was to be executed, which
contradicts that A − B is in U . Then, A z⊸ C or
A z⊸C exists in G∗ when line 14 was to be exe-
cuted (Sonntag and Peña, 2015, Lemma 9), which
implies that A z⊸ B or A z⊸B was in G∗ by R3
when line 14 was to be executed, which contradicts
that A −B is in U .

Consequently, F is a CG that is Markov equivalent to
G. Finally, let us recall how the MCS algorithm works.
It first unmarks all the nodes in U and, then, iterates
through the following step until all the nodes are marked:
Select any of the unmarked nodes with the largest num-
ber of marked neighbors and mark it. Finally, the algo-
rithm orients every edge in U away from the node that
was marked earlier. Clearly, any node may get marked
first by the algorithm because there is a tie among all the
nodes in the first iteration, which implies that every edge
may get oriented in any of the two directions in D and
thus in F . Therefore, either orientation of every edge of
U occurs in some CG F that is Markov equivalent to G.
Then, every edge of U must be a strong undirected edge
in G∗.

Theorem 2. Table 3 identifies all and only the strong
edges in G∗.

Proof. By definition of EG, the edges in G∗ with blocks
on both ends in line 7 correspond to strong undirected
edges inG∗ after line 14. Moreover, the edges inG∗ with
no blocks in line 7 correspond to non-strong undirected
edges in G∗ after line 14, by Lemma 7.

After line 11, H can be oriented as indicated in line 14
without creating semidirected cycles by Lemma 5, and
without creating a triplex that is not in G∗ by Lemma 6.
Therefore, if H can be oriented as indicated in line 14
without destroying any of the triplexes in G∗, then the
algorithm has found a CG that is Markov equivalent to
G∗ and such that X → Y is inG∗ but X −Y is in the CG
found and, thus, X → Y is non-strong in G∗. Otherwise,
X → Y is strong in G∗. This is checked in line 12.

The algorithm in Table 3 may be sped up with the help
of the rules in Table 4. S1-3 should be run while possible
before line 8, and S4-6 should be run while possible after
line 8 to propagate the labellings due to line 13 in the
previous iteration.

Corollary 1. Applying the rules in Table 4 to an EG G∗
correctly identifies strong directed edges in G∗.

Table 4: Rules for accelerating the search for strong
directed edges in an EG. The antecedents represent in-
duced subgraphs.

S1:

A

B

C D ⇒ C zD is strong

S2: A B C ⇒ Az B is strong

S3:
A B

C D. . .

⇒ Az B is strong

S4:
Az B z C

and Az B is strong ⇒ B z C is strong

S5:
A B

C

and C z B is strong

⇒ Az B is strong

S6:
A B

C

and Az C is strong

⇒ Az B is strong

Proof. Consider any member G of the equivalence class
of G∗. Consider the rule S1. Since G∗ has a triplex(A,C,B) after line 14, G must have an edge A → C or
B → C. In either case G must also have an edge C →D,
since G∗ has not a triplex (A,C,D) or (B,C,D).
Consider the rule S2. Since G∗ has a triplex (A,B,C)
after line 14 and G has an edge B −C due to the blocks
at B and C, then G must also have an edge A→ B.

Consider the rule S3. Assume to the contrary that G has
an edge A−B. Then, G must have an edge D → B since
G∗ has a triplex (A,B,D) after line 14. However, this
implies that G has a semidirected cycle due to the blocks
in the antecedent of the rule, which is a contradiction.

Consider the rule S4. Since G∗ has not a triplex(A,B,C) after line 14 and G has an edge A → B be-
cause it is strong, thenGmust also have an edgeB → C.

Consider the rule S5. Since G has an edge C → B
because it is strong, then G must also have an edge
A → B to avoid having a semidirected cycle, because
either A → C or A − C is in G due to the blocks in the
antecedent of the rule. The rule S6 can be proven simi-
larly.
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The rules in Table 4 are by no means complete, i.e. there
may be strong edges that the rules alone do not detect.
Thus, additional rules can be created. We doubt though
that a complete set of concise rules can be produced. The
difficulty lies in the disjunctive nature of some labellings.
For instance, let an EG G∗ have induced subgraphs A→
C ← B, A → C → ⋯ → D → E and B → C → ⋯ →
D → E. Since G∗ has no triplex in A → C → ⋯ → D →
E, if a member G of the equivalence class of G∗ has an
edge A → C then it has an edge D → E. Similarly,
if G has an edge B → C then it has an edge D → E.
Then, G has an edge D → E because it has an edge
A → C or B → C, since G∗ and thus G has a triplex(A,C,B). Therefore, D → E is strong. Although it is
easy to produce a rule for this example, many more such
disjunctive examples exist and we do not see any way to
produce concise rules for all of them.

4 CAUSAL EFFECT BOUNDS

When the true CG is unknown, a causal effect of the form
p(y∣do(x)) with X,Y ∈ V cannot be computed, but it
can be bounded as follows:

1. Obtain all the CGs that are Markov equivalent to
the true one by running the learning algorithm de-
veloped by Peña (2014, 2016) or Peña and Gómez-
Olmedo (2016).

2. Compute the causal effect for each CG obtained as
follows. Like in a Bayesian network, any causal ef-
fect in a CG G is computable uniquely from ob-
served quantities (i.e. it is identifiable) by adjusting
for the appropriate variables. Specifically,

p(y∣do(x)) = ∫ p(y∣x, z)p(z)dz
whereZ = NeG(X)∪PaG(X∪NeG(X)) and Y ∉
Z. The role of Z is to block every non-causal path
in G between X and Y . We call Z the adjusting set
in G.

Unfortunately, the learning algorithm in step 1 may be
too time consuming for all but small domains. At least,
this is the conclusion that follows from the experimen-
tal results reported by Sonntag et al. (2015) for a similar
algorithm for learning Lauritzen-Wermuth-Frydenberg
CGs. Instead, we propose the following alternative ap-
proach:

1’. Learn the EGG∗ corresponding to the true CG from
data as follows. First, learn a CG from data as
shown by Peña (2014, 2016) and Peña and Gómez-
Olmedo (2016) and, then, transform it into an EG
as shown by Sonntag and Peña (2015, Section 3).

2’. Enumerate all the CGs that are Markov equivalent
to G∗ as shown by Sonntag and Peña (2015, Theo-
rem 3).

3’. Compute the causal effect for each CG enumerated
as shown above.

This approach has successfully been applied when the
causal models are represented by other graphical models
than CGs (Hyttinen et al., 2015; Malinsky and Spirtes,
2016; Maathuis et al., 2009). The experimental results
reported by Peña and Gómez-Olmedo (2016) indicate
that the learning algorithm in step 1’ scales to medium
sized domains. However, the enumeration in step 2’
may be too time consuming for all but small domains.
Alternatively, we may try to enumerate the adjusting
sets in the equivalent CGs without enumerating these
explicitly. Specifically, we know that all the adjusting
sets are subsets of AdG∗(X) ∪ AdG∗(AdG∗(X)), be-
cause all the equivalent CGs have the same adjacencies
as G∗. Therefore, we can adjust for every subset of
AdG∗(X) ∪ AdG∗(AdG∗(X)) to obtain bounds for the
causal effect of interest. True that some of these subsets
are not valid adjusting sets in the sense that they do not
correspond to any of the equivalent CGs. However, this
does not make the bounds invalid, just more loose. The
rest of the section studies a case where all and only the
valid adjusting sets can be enumerated efficiently.

Assume that we believe a priori that the dependencies
in the domain at hand are due to causal rather than non-
causal relationships. Then, we believe a posteriori that
the true CG is a maximally oriented CG, because such
CGs have the fewest undirected edges in the equivalence
class of the EG G∗ learned from the data in step 1’.
Moreover, recall from Section 3.1 that all of them have
the same undirected edges. Therefore, we can bound the
causal effect p(y∣do(x)) by modifying the latter frame-
work above so that only maximally oriented CGs are
enumerated in step 2’. A maximally oriented CG that is
equivalent to G∗ can be obtained from G∗ by repeatedly
performing feasible splits (Sonntag and Peña, 2015, The-
orem 3). Unfortunately, this enumeration method may be
inefficient for all but small domains. Instead, we show
below how to enumerate the adjusting sets in the max-
imally oriented CGs that are equivalent to G∗ without
enumerating these explicitly.

Given a node X ∈ V , we define StG∗(X) = {A∣A −X
is a strong edge in G∗} and NstG∗(X) = {A∣A −X is
a non-strong edge in G∗}. Given a set S ⊆ NstG∗(X),
we let G∗

S→X denote the graph that is obtained from G∗
by replacing the edge A −X with A → X for all A ∈ S,
and replacing the edge A −X with A ← X for all A ∈
NstG∗(X) ∖ S. Moreover, we say that G∗

S→X is locally
valid if G∗

S→X does not have any triplex (A,X,B) that
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is not in G∗. The next theorem proves that producing the
adjusting sets in the equivalent maximally oriented CGs
simplifies to produce locally valid sets.

Theorem 3. G∗
S→X is locally valid if and only if there

is a maximally oriented CG G that is equivalent to G∗
and such that NeG(X) = StG∗(X) and PaG(X) =
PaG∗(X) ∪ S, which implies that the adjusting set in
G is StG∗(X) ∪ PaG∗(X ∪ StG∗(X)) ∪ S.

Proof. The proof is an adaptation of the proof of Lemma
3.1 by Maathuis et al. (2009). The if part is trivial. To
prove the only if part, note first that S ∪ X is a com-
plete set because, otherwise, G∗

S→X would not be locally
valid.

LetG denote the graph that contains all and only the non-
strong undirected edges in G∗. Recall from Lemma 7
that these edges had no blocks when line 14 in Table 3
was to be executed. Therefore, G is chordal by line 5 in
Table 1. We now show that we can orient the edges of G
without creating triplexes or directed cycles and such that
PaG(X) = S. Specifically, we show that there is a per-
fect elimination sequence that ends with X followed by
the nodes in S. Orienting the edges ofG according to this
sequence produces the desired graph. If G is complete,
then the sequence clearly exists. If G is not complete,
then note that G has at least two non-adjacent simplicial
nodes (Jensen and Nielsen, 2007, Theorem 4.1). Note
that one of them is outside of S ∪X because, as shown
above, the latter is a complete set. Take that node as the
first node in the sequence. Note moreover that the sub-
graph of G induced by the rest of the nodes is chordal.
Therefore, we can repeat the previous step to select the
next node in the sequence until we obtain the desired per-
fect elimination sequence.

Finally, consider the oriented G obtained in the previous
paragraph, and add to it all the directed edges and strong
undirected edges in G∗. We now prove that G is the de-
sired CG in the theorem. First, note that G is maximally
oriented because all the undirected edges in it are strong
in G∗. Second, note that if G∗ has a triplex (A,B,C)
then Az B z⊸C must be in G∗ when line 14 was to be
executed, which implies that neither of the edges in the
triplex is non-strong undirected inG∗, which implies that
G has a triplex (A,B,C). Third, note that G does not
have a triplex (A,B,C) that is not in G∗ because, other-
wise, the triplex should have been created as a product of
the perfect elimination sequence above. This is possible
only if A −B −C or A −B z⊸C exists in G∗ when line
14 was to be executed. The former case is impossible
by definition of perfect elimination sequence. The latter
case implies that A z⊸ B or A z⊸B was in G∗ by R1
or R2 when line 14 was to be executed, which contra-
dicts that A−B was a non-strong undirected edge in G∗.

Fourth, assume to the contrary that G has a semidirected
cycle ρ ∶ V1, . . . , Vn. We can assume without loss of
generality that ρ is chordless because if it has a chord be-
tween Vi and Vj with i < j. Then, divide ρ into the cycles
ρL ∶ V1, . . . , Vi, Vj , . . . , Vn = V1 and ρR ∶ Vi, . . . , Vj , Vi.
Note that ρL or ρR is a semidirected cycle but shorter
than ρ. By repeated application of this reasoning, we
can conclude that G has a chordless semidirected cycle.
Note that it follows from the paragraph above that ρ can-
not consists of just non-strong undirected edges in G∗.
Then, it includes some edge that was A z B or A zx B
when line 14 was to be executed. The former alternative
is impossible (Sonntag and Peña, 2015, Lemma 10). The
latter alternative implies that A zx B − C must exist in
G∗ when line 14 was to be executed, which implies that
A and C are adjacent in G∗ because, otherwise, B z⊸ C
or B z⊸C was in G∗ by R1 or R2 when line 14 was
to be executed, which contradicts that B − C is a non-
strong undirected edge in G∗. Then, A z⊸ C or A z⊸C
exists in G∗ when line 14 was to be executed (Sonntag
and Peña, 2015, Lemma 9), which implies that B z⊸ C
or B z⊸C was in G∗ by R3 when line 14 was to be
executed, which contradicts that B − C is a non-strong
undirected edge in G∗.

The procedure outlined above can be simplified as fol-
lows.

Corollary 2. StG∗(X) = ∅ or NstG∗(X) = ∅.

Proof. Assume the contrary. Then, G∗ has a subgraph
A zx X − B when line 14 in Table 3 is to be executed.
Then, A and B are adjacent in G∗ because, otherwise,
the edge X − B would have some block by R1 or R2.
However, this implies that the edgeA−B has some block
by Lemma 3, which implies that X −B has some block
by R3. This is a contradiction.

5 DISCUSSION

In this paper, we have presented an algorithm to identify
the strong edges in an EG. We have also shown how this
makes it possible to compute bounds of causal effects
under the assumption that the true CG is unknown but
maximally oriented. In the future, we would like to de-
rive a similar result for minimally oriented CGs. More-
over, as mentioned in the introduction, an EG is a de-
flagged graph but not necessarily the largest in the equiv-
alence class. Therefore, an EG may contain a directed
edge where the largest deflagged graph has an undirected
edge. Then, the algorithm in Table 3 may be improved
by consulting the largest deflagged graph before trying
labeling a directed edge as strong. An algorithm for con-
structing this graph exists (Roverato and Studený, 2006).
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Abstract

Area under ROC (AUC) is an important met-
ric for binary classification and bipartite rank-
ing problems. However, it is difficult to di-
rectly optimize AUC as a learning objective, so
most existing algorithms are based on optimiz-
ing a surrogate loss to AUC. One significant
drawback of these surrogate losses is that they
require pairwise comparisons among training
data, which leads to slow running time and in-
creasing local storage for online learning. In
this work, we describe a new surrogate loss
based on a reformulation of AUC risk, which
does not require pairwise comparison but rank-
ings of the predictions. We further show that
the ranking operation can be avoided, and the
learning objective obtained based on this sur-
rogate enjoys linear complexity in time and
storage. We perform experiments to demon-
strate the effectiveness of the online and batch
algorithms for AUC optimization based on the
proposed surrogate loss.

1 INTRODUCTION

The area under receiver operating characteristics curves
(AUC) is a useful quantitative metric for assessing the
performance of binary classification and bipartite rank-
ing algorithms [1, 2]. However, there are two factors
make AUC difficult to be used directly as a learning ob-
jective to train classification or ranking algorithms. The
foremost is due to the discontinuous indicator function
in the definition of the AUC (c.f. Eq.(1)), which makes
direct minimization of the AUC in general an NP-hard
problem [4]. As such, most existing AUC learning algo-
rithm replace the indicator function with surrogates that
are continuous and convex upper-bounds of the AUC.

The second issue with the AUC is the requirement of
pairwise comparison between all positive and negative
examples in training data. This leads to algorithms with
a running time complexity that is quadratic in the num-
ber of training data, and a space complexity that is linear
of the training data. For batch algorithms, this means
slow running time as we need to compare all pairs of
positive/negative examples, and for online learning, this
means ever increasing local storage as we need to store
all previously seen data for the pairwise comparisons.
Both are undesirable when applying these algorithms to
large-scale datasets.

In this work, we describe a new surrogate loss to AUC
that has a linear time complexity and constant space com-
plexity. This new loss is based on an equivalent formu-
lation of AUC based on ranking the prediction scores,
which obviates pairwise comparisons. We further show
that the ranking operation can be replaced with an equiv-
alent optimization problem, and the learning objective
affords a simple form that has a bounding relation with
AUC. Furthermore, we show that the new loss has a
close relation with the SVM learning objective, which
sheds light on the previous observations of the effec-
tiveness of the SVM on optimizing AUC [5, 6, 7, 8].
The new surrogate loss leads naturally to an online AUC
optimization method with simple (projected) stochastic
sub-gradient steps. Experimental evaluations on several
standard benchmark datasets show that learning objec-
tive formed from this new loss achieves performance in
par with other widely used AUC surrogates, with a sig-
nificant reduction in running time and storage require-
ment.

2 DEFINITIONS

To facilitate subsequent description, we first review the
definition of AUC in the context of binary classification.
Assume we are given a set of data {(xi, yi)}Ni=1, with
yi ∈ {−1,+1} and xi ∈ Rd. We denote I+ = {i|yi =
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+1} and I− = {i|yi = −1} as the sets of indices of
positive and negative examples, respectively, withN+ =
|I+| and N− = |I−|, and N+ + N− = N . Define
I as the indicator function: Ia = 1 if a is true and 0
otherwise. A parametric binary classifier cw,θ : Rd 7→
{−1,+1}, constructed as

cw,θ(x) = 2Ifw(x)≥θ − 1 = sign(fw(x)− θ),

maps an example to the class label, where fw : Rd 7→ R
(with w ∈ Rm being the parameter) is the prediction
function and θ ∈ R is the classification threshold. We
denote ci = fw(xi) as the prediction score of the ith ex-
ample (i = 1, · · · , N ). For simplicity, we assume there
are no ties in the prediction scores, i.e., ci 6= cj for i 6= j,
though this condition will be relaxed later.

Given a threshold θ, negative examples with prediction
scores greater than θ are false positives, and the false
positive rate is given by τFP = |Ici>θ∧i∈I− |/N−. Cor-
respondingly, positive examples with prediction scores
greater or equal to θ are true positives, and the true posi-
tive rate is given by τTP = |Ici≥θ∧i∈I+ |/N+. Then the
receiver operation curve (ROC) is defined as the curve
formed by the pair (τFP , τTP ) with θ ∈ (−∞,∞). With
this definition, ROC is a curve confined to [0, 1] × [0, 1]
and connecting (0, 0) to (1, 1). AUC then corresponds to
the area enclosed by the ROC curve of the classifier.

It is more conveniently computed in closed form using
the Wilcoxon-Mann-Whitney (WMW) statistic [3], as
A = 1

N+N−
∑
i∈I+

∑
j∈I− Ici>cj . In this work, we use

the AUC risk, which is defined as

LAUC = 1−A =
1

N+N−
∑

i∈I+

∑

j∈I−
Ici<cj . (1)

Note that LAUC takes values in [0, 1] and corresponds
to the fraction of pairs of positive and negative predic-
tions that are ranked incorrectly, i.e., a positive example
with lower prediction score than a negative example, so
LAUC = 0 indicates perfect classification/ranking. In ad-
dition, LAUC is independent of threshold θ, and only con-
cerns with the overall performance of the predictor fw.
Hence, we aim to learn a prediction function fw that min-
imizes LAUC, from which we can choose θ to construct
classifier cw,θ(x).

3 RELATED WORKS

Most existing works for either batch or online algorithms
for AUC optimization (e.g., [9, 10]) minimize surrogates
to the true AUC risk, which are usually in the form of
convex upper-bounds to the indicator function in Eq.(1).
Specifically, denoting the prediction scores for xi and
xj as ci and cj , respectively, the surrogate loss function

takes the form as 1
N+N−

∑
i∈I+

∑
j∈I− `(ci − cj), and

common choices for ` include

1. the hinge loss [10], `h(ci, cj) = [1 − (ci − cj)]+,
where [a]+ = max{0, a} is the hinge function,

2. the squared hinge loss [11, 9], `sh(ci, cj) = [1 −
(ci − cj)]2+,

3. the logistic loss, `lg = log2(1 + eci−cj ),

4. and the rank-boost loss [12], `e(ci, cj) = eci−cj .

All these surrogates are nonnegative, monotonic decreas-
ing and satisfy `(ci, cj) = 1 when ci = cj . One sig-
nificant problem with these surrogates is that they all
rely on pairwise comparisons between positive and neg-
ative training examples, which lead to algorithms with
quadratic running time complexity. For large datasets,
such quadratic running time will significantly slow down
the training process, and the pairwise comparisons pro-
hibit efficient online learning algorithms for AUC opti-
mization.

One exception is the work of [11], which shows that
the squared hinge surrogate of AUC risk, `sh(ci, cj), af-
fords an equivalent saddle point reformulation. An on-
line stochastic gradient descent method is then developed
based on this reformulation that has complexities O(N)
in time and O(1) in space. However, there are two is-
sues of this method that this work aims to improve on.
First, the original surrogate loss still requires pairwise
comparison, and to decouple them, one needs to intro-
duce auxiliary variables for a saddle point reformulation.
In contrast, our surrogate loss obviates pairwise compar-
ison all together. Second, our surrogate loss reduces to
a minimization problem, which is easier to analyze and
implement than the saddle point reformulation of [11].

In parallel with methods directly optimizing AUC, em-
pirical observations suggest that learning objectives not
designed for AUC optimization (e.g., SVM or boosting)
can achieve low AUC risk [5, 6, 7, 8]. For instance,
in [6], a generalized SVM approach was developed that
is able to optimize multivariate non-linear performance
measures in polynomial time, including AUC. However,
when assessed with respect to the AUC, the superiority
of the direct AUC optimization approach over standard
SVMs seemed less convincing. The work of [7] many
performance measures for binary classification are com-
pared experimentally, and it was found that maximum
margin methods such as boosting and SVMs yield ex-
cellent performance when measured with AUC. In [5] it
was shown that optimizing standard SVMs leads to max-
imizing the AUC in the special (trivial) case when the
given data is separable. As a perfect separation implies a
zero AUC risk. The work [13] uses the rank-equivalent
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definition of AUC to derive a hinge rank loss and shows
that it is analogous to the SVM objective. However, no
explicit relation between the SVM objective and AUC or
AUC surrogates are established in previous works.

Further along this line, several studies have provided re-
sults on the consistency of the univariate losses to AUC
risk, i.e., in the asymptotic sense, minimizing the univari-
ate losses under certain conditions may also lead to the
minimization of AUC risk [14, 15], and a similar analy-
sis is conducted for binary surrogate losses to AUC risk
in [16]. These analyses show that univariate losses such
as the `2, squared hinge and exponential losses are con-
sistent with AUC risk, yet the widely used hinge loss
in SVM are inconsistent. This seems to put in ques-
tion whether minimizing AUC risk based on pairwise
comparisons is really warranted. However, these stud-
ies are still of limited in practice due to several reasons.
First, they can not explain the observation that the SVM
algorithm which is based on the hinge loss, oftentimes
leads to good performance when evaluated with AUC
risk, though it is not theoretically consistent with AUC
risk. In addition, these analysis does not reveal a direct
relation between the univariate losses and AUC risk, and
it is more illustrative if some bounding relation between
them can be revealed. Furthermore, these analyses may
not be as relevant in practice, as the learning objective in
actual algorithms is usually combined with extra terms
such as the regularizers.

4 METHOD

In this section, we start with an equivalent definition of
AUC risk, which does not require pairwise comparisons
of positive and negative examples. From this equivalent
definition, we establish our AUC surrogate loss and its
equivalent form for efficient optimization.

4.1 AUC Risk Without Pairwise Comparison

Besides the WMW statistics, Eq.(1), there exists another
equivalent formulation of AUC risk (and AUC itself),
which depends on the ranking of the prediction scores in-
stead of all pairwise comparisons of the prediction scores
of the positive and negative examples [4, 13]. To explain
this equivalent form of AUC risk, we first introduce sev-
eral additional notations. For simplicity, we assume there
are no ties in the prediction scores, i.e., ci 6= cj for i 6= j,
though this condition will be relaxed later.

We denote (c↑1, · · · , c↑N ) as the result of sorting
(c1, · · · , cN ) in ascending order, i.e., c↑1 < c↑2 < · · · <
c↑N . Moreover, let r+

i ∈ {1, · · · , N} (i = 1, · · · , N+) be
the rank of the ith positive example encountered in the or-

Figure 1: An illustration of the ranking definition of the AUC.
Note that in this case, we have N+ = 7, N− = 6, and
(r+1 , r

+
2 , r

+
3 , r

+
4 , r

+
5 , r

+
6 , r

+
7 ) = (4, 6, 7, 8, 9, 11, 13). For the

positive example highlighted with circle, it is the second posi-
tive example in the ordered list, and it is outranked by two neg-
ative examples (shown by arrows). So its contribution to AUC
risk isN−+i−r+i = 6+2−6 = 2. Repeating for all 7 positive
examples the total wrong pairs is 3+2+2+2+2+1+0 = 12
and AUC risk is 12

6×7
= 2

7
, which is the same as computed with

Eq.(1).

dered list (c↑1, · · · , c↑N ) starting from the beginning. With
a slight abuse of notation, let c↑+i be the correspond-
ing value of the ith positive example in the ordered list
(c↑1, · · · , c↑N ), i.e., c↑+i = c↑

r+i
. An example illustrating

these definitions is given in Fig.1. These definitions im-
mediately lead to the following simple result that will be
important subsequently.

Lemma 1. For i = 1, · · · , N+, we have

r+
i ≤ N− + i, c↑N−+i ≥ c

↑+
i .

Proof of Lemma 1 is provided in the Appendix A.

With these definitions, AUC risk can be defined using
the rankings of the predictions [4], which is equivalent to
the definition based on the WMW statistics as given in
Eq.(1). The intuition behind this equivalent form is a dif-
ferent way to count the number of reverse ordered pairs
of positive and negative examples, which is illustrated
with the numerical example in Figure 1.

Lemma 2 ([4]). When there is no ties in training data,
i.e., ci 6= cj for i 6= j, we have

LAUC = 1
N+N−

∑N+

i=1(N− + i− r+
i )

= 1 + N++1
2N− − 1

N+N−
∑N+

i=1 r
+
i .

(2)

Proof of Lemma 2 is provided in the Appendix A. Note
that

∑N+

i=1(N− + i) corresponds to (trivially) the sum of
the indices of the largest N+ (top-N+) elements in the
ranked list of prediction scores, and

∑N+

i=1 r
+
i is the sum

of the indices of positive examples in the ranked list of
predictions. As such, AUC risk as defined in Eq.(2) is
proportional to the difference between the two sums.

This gives another intuitive explanation of AUC risk: in
a perfect separable case, when the prediction scores of
all the positive examples rank higher than those of the
negative examples, i.e., all prediction scores of positive
examples have ranks N− + 1, · · · , N in the ordered list,
AUC risk is zero. In the more general cases, AUC risk
measures how the rankings of the prediction scores devi-
ate from this ideal case.
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4.2 Univariate Bound on AUC risk

The equivalent form of AUC risk of Eq.(2) inspires a new
surrogate loss based on the values of the sorted prediction
scores (c↑1, · · · , c↑N ). To be specific, let us define a new
quantity

L̃ =
1

N+N−

N∑

i=N−+1

c↑i −
1

N+N−
∑

i∈I+
ci. (3)

Like AUC risk, L̃ is always nonnegative, as the sec-
ond term, which is the sum of the prediction scores of
all the positive examples, is less than or equal to the
first term, which is the sum of the top-N+ elements of
(c1, · · · , cN ). Equality holds only when the predictions
of all positive examples rank higher than any of the neg-
ative examples. Our next result shows that we can bound
AUC risk using L̃.

Theorem 1. When there is no ties in training data, i.e.,
ci 6= cj for i 6= j, we have L̃ ≥ 0. Furthermore, there
exist constants ᾱ ≥ α > 0, such that ᾱL̃ ≥ LAUC ≥ αL̃.

Proof. Using Lemma 1, we have∑N+

i=1

(
c↑N−+i − c

↑+
i

)
≥ 0, therefore L̃ ≥ 0, and

it is zero when c↑N−+i = c↑+i for all i = 1, · · · , N+, i.e.,
all positive examples outrank all negative examples.

We set ᾱ−1 = mini(c
↑
i+1 − c↑i ) > 0, and for i > j, we

have c↑i − c↑j = (c↑i − c↑i−1) + (c↑i−1 − c↑i−2) + · · · +
(c↑j+1 − c↑j ) ≥ i−j

ᾱ . Then we have

ᾱL̃ = ᾱ
N+N−

∑N
i=N−+1 c

↑
i − ᾱ

N+N−
∑
i∈I+ ci

= ᾱ
N+N−

∑N+

i=1

(
c↑N−+i − c

↑+
i

)

= ᾱ
N+N−

∑N+

i=1

(
c↑N−+i − c

↑
r+i

)

≥ 1
N+N−

∑N+

i=1

(
N− + i− r+

i

)
= LAUC.

Next, setting α−1 = maxi(c
↑
i+1 − c↑i ), and follow a

similar derivation, we can obtain the other bound, i.e.,
LAUC ≥ αL̃. The equalities in the bounds hold when
c↑i+1 − c↑i is a constant for i = 1, · · · , N , i.e., they are
equally spaced.

4.3 Computing L̃ without Explicit Ranking

However, the ranking operation in L̃ is the main obstacle
of using Eq.(3) as a learning objective. However, this
can be solved based on the following result on the sum
of the top k elements in a set [17, 18], from which we
can derive an equivalent form of Eq.(3) that does not rely
on ranking elements explicitly.

Lemma 3 ([17, 18]). For N real numbers z1 < . . . <
zN , we have the equivalence of the sum-of-top-k ele-
ments with an optimization problem as

N∑

i=N−k+1

zi = min
λ

{
kλ+

N∑

i=1

[zi − λ]+

}
, (4)

with the optimal λ? satisfying zN−k ≤ λ? < zN−k+1.
Proof of Lemma 3 is provided in the Appendix A. Using
Lemma 3, we can rewrite L̃ by as a minimization prob-
lem over the auxiliary variable λ, as

N+N−L̃ = min
λ

{
N+λ+

N∑

i=1

[ci − λ]+

}
−
∑

i∈I+
ci,

which can be further converted to

min
λ




∑

i∈I+

(
[ci − λ]+ − (ci − λ)

)
+
∑

j∈I−
[cj − λ]+



 .

Using the property of the hinge function that [a]+ − a =
[−a]+, we can further simplify L̃, as

L̃ = 1
N+N− minλ

{∑
i∈I+ [λ− ci]+ +

∑
j∈I− [cj − λ]+

}

= 1
N+N− minλ

∑N
i=1 [yi(λ− ci))]+ .

Bringing back the parametric model to form a learning
objective based on L̃ as

L̃(w) =
1

N+N−
min
λ

N∑

i=1

[yi(λ− fw(xi))]+ . (5)

This reformulation of L̃ is still a bound for AUC risk, but
it does not require pairwise comparisons between pre-
dictions of positive and negative examples, and there is
no need to explicitly ranking the predictions. Further-
more, in Eq.(5), the auxiliary variable λ can be under-
stood as a threshold that separates the two classes, and
L̃(w) becomes independent of the choice of threshold
by taking the overall minimum over all possible values
for the threshold, as in the case of the original definition
of AUC risk.

The learning objective L̃(w) affords an intuitive interpre-
tation in the context of binary classification. It only pe-
nalizes those positive examples with predictions less than
the threshold, i.e., [λ− fw(xi)]+ for i ∈ I+, and nega-
tive examples with predictions greater than the threshold,
i.e., [fw(xi)− λ]+ for i ∈ I−. All examples that are
on the “correct” side of the threshold receive no penalty.
According to Lemma 3, the optimal λ takes value in the
range of [c↑N+ , c

↑
N++1).
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4.4 Relation with SVM Objective

There are some strong similarities between L̃(w) and the
SVM objective, which is particularly striking in the case
of linear prediction function fw(x) = w>x. This be-
comes clearer if we reformulate the SVM objective: if
we regard the threshold λ as the bias term in the linear
prediction function for SVM1, w>x− λ, we can formu-
late the linear SVM objective [19] as

L̃SVM(w, λ) =
N∑

i=1

[1 + yi(λ−w>xi)]+.

Now comparing with Eq.(5), the two objectives has sim-
ilar forms involving the hinge function. We can further
show that L̃SVM(w, λ) is an upper-bound of L̃(w). This
is because we have [1 + yi(λ − w>xi)]+ ≥ [yi(λ −
w>xi)]+, so

L̃SVM(w, λ) =
∑N
i=1[1 + yi(λ−w>xi)]+

≥∑N
i=1[yi(λ−w>xi)]+

≥ minλ
∑N
i=1[yi(λ−w>xi)]+

= L̃(w).

As we have shown in Theorem 1, an upper-bound of
AUC risk can be established with L̃(w), and this rela-
tion suggests the SVM objective L̃SVM(w, λ) is also an
upper-bound (albeit looser than L̃) of AUC risk.

This helps to explain some long standing experimental
observations (e.g., [5, 6, 7, 8]) that when assessed with
AUC, standard SVMs could not be consistently outper-
formed by other approaches tailored to directly maxi-
mize AUC, such as RankBoost [20], AUCsplit (local op-
timization of AUC) [21], or ROC-SVM [8].

The two learning objectives also differ in two important
aspects. The first is the constant 1 in the SVM objec-
tive, which corresponds to the margin in constructing the
binary classifier. The second difference is that the bias
λ in L̃ is eliminated through minimization, but it is still
present in the SVM objective.

5 OPTIMIZATION

In this section, we discuss batch and online learning algo-
rithms based on learning objectives formed from Eq.(5).

5.1 Resolving Ties in Prediction Scores

However, Eq.(5) cannot be used as a learning objective
due to one important issue. Note that in Eq.(5), the scale

1Typically in SVM we define the linear prediction function
as w>x + b, but here we flip the sign of the bias so to better
compare with L̃(w).

of the parameter w is not fixed, so the learning objective
can be reduced by shrinking the scale of w, which leads
to a trivial solution with w = 0. The underlying reason
is that the formulation of L̃ is based on the assumption of
no ties in the prediction scores, while the trivial solution
corresponds to the extreme contrary, i.e., the prediction
function always produce the same output (zero) regard-
less of the data.

To resolve this problem, we augment the objective func-
tion with two other terms

min
w

L̃(w) +
β

2

N∑

i=1

(1− yifw(xi))
2 + γΩ(w), (6)

where the second term corresponds to a least squares
term to counteract the effect of concentrating w to zero,
the third term Ω(w) is a regularizer on parameter w, and
(β, γ) are weights to the two extra terms.

5.2 Linear Predictor

In general, the learning objective of Eq.(6) is not a con-
vex function of w, but if we choose fw(x) = w>x
and Ω(w) is convex with respect to w (i.e., Ω(w) =
1
2‖w‖2), then we can show it is a convex function of w.
We first show that [x>w−λ]+ is a convex function. For
α ∈ [0, 1], w, w′, λ, and λ′, we have

[x>(αw + (1− α)w′)− (αλ+ (1− α)λ′)]+ =
[α(x>w − λ) + (1− α)(x>w′ − λ′)]+ ≤
α[x>w − λ]+ + (1− α)[x>w′ − λ′]+.

(7)
Therefore,

∑N
i=1

[
x>w − λ

]
+

+N+λ is a convex func-
tion jointly for (w, λ). As the minimization of one vari-
able in a joint convex function, minλ

∑N
i=1 [ci − λ]+ +

N+λ is also a convex function of w.

In summary, for the linear case, we can obtain the fol-
lowing convex learning objective with regards to w and
λ jointly,

(w?, λ?)← argminw,λ
γ
2 ‖w‖2+

∑N
i=1

{[
yi(λ− x>i w)

]
+

+ β
2 (1− yix>i w)2

}

(8)
In the following, we discuss the batch and online opti-
mization of Eq.(8), for which the convergence to global
minimum is guaranteed.

5.2.1 Batch Learning

In the batch setting, where we have access to all training
examples, we can use block coordinate descent algorithm
to optimize Eq.(8). We initialize w and λ, then iterate
between
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w(t+1) ← argminw

∑N
i=1

[
yi(λ

(t) −w>xi)
]
+

+
β
2

∑N
i=1(1− yix>i w)2 + γ

2 ‖w‖2;

λ(t+1) ← 1
2 (c↑N+ + c↑N++1),

where c↑i is the rerank of {x>i w(t+1)}Ni=1 in the ascend-
ing order. The w sub-problem can be converted to a con-
strained optimization problem as

minw,t

∑N
i=1 ti + β

2

∑N
i=1(1− yix>i w)2 + γ

2 ‖w‖2;
s.t. yi(λ

(t) −w>xi) ≥ ti, ti ≥ 0.

This is a quadratic convex optimization problem and can
be solved with interior point method when the dimen-
sionality of w is low to medium. For high dimensional
w, the online learning algorithm is more effective as it
avoids building the Hessian matrix.

5.2.2 Online Learning

Because Eq.(8) does not involve pairwise comparison,
we can also derive an online learning algorithm based
on stochastic gradient descent [22, 23]. The runtime of
the online algorithm does not depend on the number of
training examples and thus this algorithm is especially
suited for large datasets. Specifically, with initial choice
for the value of w(0), at the tth iteration, a single training
example (xit , yit) is chosen at random from the training
set and used to estimate a sub-gradient of the objective,
and a step with pre-determined step-size is taken in the
opposite direction, as

w(t+1) ← w(t) − ηt
(
(γI + βx>itxit)w

(t)−
(β + Iyi(λ(t)−w>xi)>0)yitxit

)

λ(t+1) ← λ(t) − ηtyitIyi(λ(t)−w>xi)>0,
(9)

where we can choose the step-size ηt ∼ 1√
t
, then the

SGD algorithm will converge in O(1/ε) steps to the ε-
accuracy of the global optimal value of Eq.(5) [22, 23].
Note that each step of our online iterative algorithm has
space and time complexity of O(d) and O(1), and ob-
viates the need to store or buffer data in previous online
AUC optimization methods [10, 9].

6 EXPERIMENTS

We perform several experiments of learning binary clas-
sifiers to evaluate the batch and online algorithms opti-
mizing learning objectives given in Eq.(8) (subsequently
denoted as ba-UBAUC and ol-UBAUC, respectively),
and compare their performance with existing learning al-
gorithms for AUC optimization.

As in previous works [10, 11], we perform experiments
on 12 benchmark datasets that have been used in pre-
vious studies. A summary of the data in these datasets

train test data dim.
diabetes 389 389 8
fourclass 431 431 2
german 500 500 24
splice 1,000 2,175 60
usps 7,291 2,007 256
a9a 32,561 16,281 123
w8a 49,749 14,951 300
mnist 60,000 10,000 780
acoustic 78,823 19,705 50
ijcnn1 49,990 91,701 22
sector 6,412 3,207 55,197
news20 15,935 3,993 62,061

Table 1: Summary of the 12 benchmark datasets used in our
experiments. The training/testing splitting is from the original
datasets.

is given in Table 1, with the training/testing split ob-
tained from the original dataset. For datasets that are
for data with more than 2 class labels (i.e., news20 and
sector), following the convention of previous work
[10, 11], we convert them to binary classification prob-
lems by randomly partitioning the data into two groups,
each with equal number of classes. Then the binary class
labels are determined from the group to which the orig-
inal class label belongs. Following the evaluation proto-
col of [10, 11], the performance of reported is obtained
by averaging the AUC scores on the test set for 25 mod-
els learned from subsets of the same training set, each is
chosen as a random 80% of the original training data.

On these datasets, we evaluate and compare UBAUC-
based algorithms with four state-of-the-art online and
two batch learning algorithms for learning linear binary
classifiers that minimizes various pairwise surrogates to
the original AUC riskLAUC. The hyper parameters (β, γ)
for UBAUC are determined by a grid search on the vali-
dation set. The initial learning rate for the online learning
algorithm is also set for different dataset by a grid search.
We compare the following algorithms with UBAUC-
based algorithms.

• SOLAM [11], an online AUC optimization algo-
rithm based on a saddle point reformulation of the
pairwise `2 surrogate loss of AUC risk;

• OPAUC [9], an online AUC optimization algorithm
that uses the pairwise `2 loss surrogate of the AUC
objective function;

• OAM [10], an online AUC optimization algorithm
that uses the pairwise hinge loss surrogate of the
AUC objective function with two variants, one with
sequential update (OAMseq) and the other using
gradient update (OAMgra);

• B-SVM-OR [6], a batch learning algorithm using
the pairwise hinge loss surrogate of the AUC objec-
tive function;
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ol-UBAUC ba-UBAUC SOLAM OPAUC OAMseq OAMgra B-SVM-OR SVM
diabetes .8326±.0299 .8328±.0352 .8253±.0314 .8309±.0350 .8264±.0367 .8262±.0338 .8326±.0328 .7821±.0145
fourclass .8301±.0318 .8310±.0296 .8226±.0240 .8310±.0251 .8306±.0247 .8295±.0251 .8305±.0311 .7717±.0294
german .7928±.0371 .7933±.0324 .7882±.0243 .7978±.0347 .7747±.0411 .7723±.0358 .7935±.0348 .7641±.0283
splice .9231±.0224 .9269±.0094 .9253±.0097 .9232±.0099 .8594±.0194 .8864±.0166 .9239±.0089 .8439±.0096
usps .9728±.0051 .9730±.0066 .9766±.0032 .9620±.0040 .9310±.0159 .9348±.0122 .9630±.0047 .8930±.0075
a9a .9005±.0019 .9009±.0041 .9001±.0042 .9002±.0047 .8420±.0174 .8571±.0173 .9009±.0036 .8213±.0064
w8a .9673±.0993 .9695±.0079 .9114±.0075 .9633±.0035 .9304±.0074 .9418±.0070 .9495±.0082 .8964±.0029

mnist .9327±.0239 .9340±.0024 .9324±.0020 .9242±.0021 .8615±.0087 .8643±.0112 .9340±.0020 .8406±.0072
acoustic .8871±.0035 .8962±.0046 .8898±.0026 .8192±.0032 .7113±.0590 .7711±.0217 .8262±.0032 .7629±.0045
ijcnn1 .9264±.0039 .9337±.0038 .9215±.0045 .9269±.0021 .9209±.0079 .9100±.0092 .9337±.0024 .8793±.0094
sector .9845±.0033 - .9834±.0023 .9292±.0081 .9163±.0087 .9043±.0100 - .8815±.0062

news20 .9468±.0045 - .9467±.0039 .8871±.0083 .8543±.0099 .8346±.0094 - .8431±.0127

Table 2: Comparison of the AUC scores (mean±std.) on test sets of the evaluated datasets.

• UNI-SVM, a linear SVM algorithm implemented
using LIBSVM with SMO minimization [24].

Classification performances measured by the AUC score
on the testing dataset of all compared methods for all
12 benchmark datasets are given in Table 2. For fair
comparison, we implement all algorithms using MAT-
LAB, and following the default parameter settings in the
original papers. Note that the simple implementation
of the two batch algorithms cannot handle datasets with
high dimensional datasets, i.e., sector and news20,
due to the memory requirement. However, for those
datasets that it is feasible to run, ba-UBAUC, the batch
version optimizing the proposed learning objective, per-
forms best. On the other hand, the results of uUNI-SVM,
though optimizing a different objective, still achieves
reasonable performance when evaluated with AUC. The
online algorithm based on the proposed learning objec-
tive, ol-UBAUC, achieves comparable performance as
other state-of-the-art online algorithms based on pairwise
surrogate losses to AUC risk, although the improvements
of performance on some of the datasets are not conspic-
uous due to the nature of the data.

On the other hand, the main advantage of ol-UBAUC
in comparison with other online algorithms is the run-
ning efficiency – its per-iteration running time and space
complexity is linear in data dimension and do not depend
on the iteration number. Furthermore, each iteration of
ol-UBAUC Eq. (9) corresponds to a simpler update step
than the saddle point solve in SOLAM [11]. In Table
3, we show the per-iteration running time and the total
running time for the learning objective function to con-
verge to have smaller than 10−7 relative changes2 of the
five online algorithms we compared. Note that the on-
line version of the UBAUC-based algorithms has more
efficient running time with comparable performances in

2Experiments were performed with running time reported
based on a cluster with 12 nodes, each with an Intel Xeon E5-
2620 2.0GHz CPU and 64GB RAM. All algorithms are imple-
mented using MATLAB, with available code obtained from the
authors of the corresponding publications.

a9a usps sector

ol-UBAUC 0.48 0.15 11.24

SOLAM 0.50 0.19 19.90

OPAUC 6.24 4.62 120.30

OAMseq 34.31 13.98 1350.41

OAMgra 34.35 12.54 1350.50

a9a usps sector

ol-UBAUC 0.83 0.15/0.58 276.41

SOLAM 0.99 0.19/0.81 721.52

OPAUC 14.21 4.62/11.23 5540.24

OAMseq 78.42 13.98/32.71 6730.75

OAMgra 69.23 12.54/39.54 6324.64

Table 3: (top)The average running time (in seconds) per pass
over training data for each online algorithm, and (bottom)
the average running time (in seconds) for the learning objec-
tive function to converge to have smaller than 10−7 relative
changes for each online algorithm.
comparison to existing AUC optimization methods.

7 POPULATION FORM

So far, we have described the proposed learning objec-
tive over a set of finite training data. In this section, we
discuss the population form of the surrogate loss using
probability distributions of data. This analysis will shed
light on the formal connection of the new surrogate loss
with existing methods and can lead to deeper theoretical
studies.

We start with the population form of the equivalent def-
inition of AUC risk in Eq.(2). We assume that the input
data and label are from a joint model p(x, y), which in-
duces density models for the predictions c = f(x). As
such, we denote ρ+(c) = p(c|y = 1) and ρ−(c) =
p(c|y = −1) as the (conditional) probability density
functions (PDFs) for positive and negative class, respec-
tively. For simplicity, we assume both PDFs have infinite
support, i.e., is non-zero for the whole R. Also, we de-
note p = Pr(y = 1) as the class prior probability.

The joint probability density function of the classifica-
tion output c is then given by ρ(c) = pρ+(c) + (1 −
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p)ρ−(c). We also denote F+(c) =
∫ c
−∞ ρ+(c′)dc′,

F−(c) =
∫ c
−∞ ρ−(c′)dc′, and F (c) =

∫ c
−∞ ρ(c′)dc′ as

the cumulative distribution functions (CDFs) for ρ+, ρ−

and ρ, respectively, with F (c) = pF+(c)+(1−p)F−(c).
F+(c) is the false negative rate (FNR) and 1− F−(c) is
the false positive rate (FPR).

AUC risk is defined as the area under the whole curve of
FNR vs. FPR, as LAUC =

∫∞
−∞(1− F−(c))dF+(c) [4].

Using relation F−(c) = 1
1−p (F (c)− pF+(c)) yields

LAUC =
1

1− p

∫ ∞

−∞
(1− p+ pF+(c)− F (c))dF+(c).

Because F is a CDF is a continuous monotonic function
and F (c) ≤ 1− p+ pF+(c) ≤ 1, using the mean value
theorem, there exists c′ ≥ c0 = max{c|F (c) = 1 − p},
such that 1−p = F (c0) ≤ F (c′) = 1−p+pF+(c) ≤ 1,
and

LAUC =
1

1− p

∫ ∞

−∞
(F (c′)− F (c))dF+(c).

Next, note that F (c) is Lipschitz with constant α′ ≥
maxc |ρ(c)|, i.e., |F (c′)− F (c)| ≤ α′|c′ − c|, we have

LAUC ≤
α′

1− p

∫ ∞

−∞
(c′ − c)dF+(c). (10)

Next, we use the following result

Lemma 4. For F (c′) = 1− p+ pF+(c), we have
∫ ∞

−∞
c′dF+(c) = min

λ

∫ ∞

−∞

(c− λ)+

p
dF (c) + λ.

Proof of Lemma 4 is provided in the Appendix A. Using
Lemma 4, we can rewrite the integral of the right hand
side of Eq.(10) as

min
λ

∫ ∞

−∞

(c− λ)+

p
dF (c) + λ−

∫ ∞

−∞
cdF+(c),

where the terms being minimized can be further simpli-
fied as ∫ ∞

−∞

(c− λ)+

p
dF (c) + (λ− c)dF+(c).

This can be further expanded using the relation dF (c) =
(1− p)dF−(c) + pdF+(c) to have

∫∞
−∞(c− λ)+(1− p)dF−(c)+∫∞
−∞ [(λ− c) + (c− λ)+] pdF+(c).

Putting all terms together and using the relation (c −
λ)+ + (λ− c) = (λ− c)+ we have

LAUC ≤
α′

p(1− p) min
λ
Ec,y[y(c− λ)]+, (11)

where Ec,y represents the expectation over c and y.

8 CONCLUSION

In this work, we describe a new surrogate loss to the
AUC metric based on a formulation of AUC, which does
not require pairwise comparison but rankings of the pre-
diction scores. We further show that the ranking opera-
tion can be avoided and the learning objective obtained
based on this surrogate affords complexity in time and
storage that is linear in the number of training data. We
perform experiments to demonstrate the effectiveness of
the online and batch algorithms for AUC optimization
based on the proposed surrogate.

There are several directions we would like to further ex-
plore for this work. First, form the theoretical point of
view, we would like to establish the consistency of the
proposed learning objective with regards to AUC risk,
i.e., the question if the surrogate loss will also lead to
the convergence to the optimal AUC risk. The form of
our surrogate loss (Eq.(5)) as an optimization problems
makes it difficult to apply the techniques used in previous
works [14, 15] to this case. We would also like to estab-
lish the generalization error between the data form of the
loss Eq.(5) and its population form counterpart Eq.(11).
From the algorithm perspective, we would like to extend
this learning objective to substitute multi-class AUC [4],
where multi-class AUC risk is computed as the average
of binary class AUC between each pairs of classes. Last,
we are interested in applying the online algorithm based
on the proposed surrogate loss to non-convex learning
objectives such as those used for training deep neural net-
works.
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A Appendix: Proofs

Proof of Lemma 1. Being the ith positive example en-
countered in the ordered list (c↑1, · · · , c↑N ), c↑+i can out-
rank no more than N− + i elements in the list, i.e., i
positive examples and at most N− negative examples.
Therefore, we have r+

i ≤ N− + i. By the ranking order
we also have c↑N−+i ≥ c

↑
r+i

= c↑+i .

Proof of Lemma 2. Consider the ith positive example en-
countered in (c↑1, · · · , c↑N ) starting from the beginning,
which has rank r+

i . The number of negative examples
that rank lower than it is r+

i − i, i.e., there will be
N− − (r+

i − i) = N− + i− r+
i negative examples with
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ranks higher than this positive example, i.e., forming a
reversed ordered pair with it. This corresponds to the
sum over reversed ordered pairs in the definition of AUC
risks of Eq.(1). Summing over all such reverse ordered
pairs divided by the number of all such positive-negative
pairs (N+N−) proves the result.

Proof of Lemma 3. First, we note that
∑N
i=N−k+1 zi is

the solution of the following linear programming prob-
lem

max
p∈Rn×1

p>z, s.t. p>1 = k, pi ∈ [0, 1], (12)

We form its Lagrangian as

L = −p>z− a>p + b>(p− 1) + λ(p>1− k), (13)

where a ≥ 0, b ≥ 0 and λ are Lagrangian multipliers.
Setting the derivative of L with respect to p to be 0, we
obtain a = b − z + λ1. Substituting this into Eq (13) ,
we get the dual problem of (12) as

min
b,λ

b>1 + kλ, s.t. b ≥ 0,b + λ1− z ≥ 0, (14)

The constraints of Eq. (14) suggest that we should have
b>1 ≥ ∑n

i=1 [zi − λ]+. As such, the objective func-
tion achieves its minimum when the equality holds. Re-
organizing terms leads to Eq.(4). Further, when we
choose λ? satisfying zN−k ≤ λ? < zN−k+1, we have
kλ?+

∑N
i=1 [zi − λ?]+ = kλ?+

∑N
i=N−k+1(zi−λ?) =∑N

i=N−k+1 zi. Thus proves the lemma.

Proof of Lemma 4. First, we have dF (c′) = pdF+(c),
then

∫∞
−∞ c′dF+(c) = 1

p

∫∞
c0
c′dF (c′), where the lower

limit of the integral, c0 = max{c|F (c) = 1 − p}, orig-
inates from the range of value c′. Next, we compute
minλ

∫∞
−∞(c − λ)+dF (c) + pλ = minλ

∫∞
λ
cdF (c) −

λ
∫∞
λ
dF (c) + pλ. Differentiating the inner terms with

regards to λ, we obtain
∫∞
λ
dF (c) = p, or

∫ λ
−∞ dF (c) =

1−p, so we have at optimum, λ = c0. Therefore we have
minλ

∫∞
−∞(c−λ)+dF (c) + pλ =

∫∞
c0
c′dF (c′). Further

rearranging terms proves the result.
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Abstract

We reconsider a nonparametric density model
based on Gaussian processes. By augmenting
the model with latent Pólya–Gamma random
variables and a latent marked Poisson process
we obtain a new likelihood which is conjugate
to the model’s Gaussian process prior. The
augmented posterior allows for efficient infer-
ence by Gibbs sampling and an approximate
variational mean field approach. For the latter
we utilise sparse GP approximations to tackle
the infinite dimensionality of the problem. The
performance of both algorithms and compar-
isons with other density estimators are demon-
strated on artificial and real datasets with up to
several thousand data points.

1 INTRODUCTION

Gaussian processes (GP) provide highly flexible non-
parametric prior distributions over functions [1]. They
have been successfully applied to various statistical prob-
lems such as e.g. regression [2], classification [3],
point processes [4] or the modelling of dynamical sys-
tems [5, 6]. Hence, it would seem natural to apply Gaus-
sian processes also to density estimation which is one of
the most basic statistical problems. GP density estima-
tion, however, is a nontrivial task: Typical realisations
of a GP do not respect non–negativity and normalisa-
tion of a probability density. Hence, functions drawn
from a GP prior have to be passed through a nonlinear
squashing function and the results have to be normalised
subsequently to model a density. These operations make
the corresponding posterior distributions non–Gaussian.
Moreover, likelihoods depend on all the infinitely many

∗Also affiliated with Bernstein Center for Computational
Neuroscience.

GP function values in the domain rather than on the finite
number of function values at observed data points. Since
analytical inference is impossible, [7] introduced an in-
teresting Markov chain Monte–Carlo sampler which al-
lows for (asymptotically) exact inference for a Gaussian
process density model, where the GP is passed through
a sigmoid link function.1 The approach is able to deal
with the infinite dimensionality of the model, because
the sampling of the GP variables is reduced to a finite
dimensional problem by a point process representation.
However, since the likelihood of the GP variables is not
conjugate to the prior, the method has to resort to a time–
consuming Metropolis–Hastings approach. In this paper
we will use recent results on representing the sigmoidal
squashing function as an infinite mixture of Gaussians in-
volving Pólya–Gamma random variables [9] to augment
the model in such a way that the model becomes tractable
by a simpler Gibbs sampler. The new model structure al-
lows also for a much faster variational Bayesian approx-
imation.

The paper is organised as follows: Sec. 2 introduces
the GP density model, followed by an augmentation
scheme that makes its likelihood conjugate to the GP
prior. With this model representation we derive two effi-
cient Bayesian inference algorithms in Sec. 3, namely an
exact Gibbs sampler and an approximate, fast variational
Bayes algorithm. The performance of both algorithms is
demonstrated in Sec. 4 on artificial and real data. Finally,
Sec. 5 discusses potential extensions of the model.

2 GAUSSIAN PROCESS DENSITY
MODEL

The generative model proposed by [7] constructs densi-
ties over some d-dimensional data space X to be of the

1See [8] for an alternative model allowing, however, only
for approximate inference schemes.
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form

ρ(x|g) =
σ(g(x))π(x)∫

X σ(g(x))π(x)dx
. (1)

π(x) defines a (bounded) base probability measure
over X , which is usually taken from a fixed para-
metric family. The denominator ensures normalisation∫
X ρ(x|g)dx = 1. The choice of π(x) is important as

will be discussed Sec. 5. A prior distribution over densi-
ties is introduced by assuming a Gaussian process prior
[1] over the function g(x) : X → R. The GP is defined
by a mean function µ(x) (in this paper, we consider only
constant mean functions µ(x) = µ0) and covariance ker-
nel k(x,x′). Finally, σ(z) = 1

1+e−z is the sigmoid func-
tion, which guarantees that the density is non–negative
and bounded.

In Bayesian inference, the posterior distribution of g
given observed data D = {xn}Nn=1 with x ∈ X is com-
puted from the GP prior p(g) and the likelihood as

p(g|D) ∝ p(D|g)p(g).

The likelihood is given by

p(D|g) =

∏N
n=1 σ(g(xn))π(xn)

(∫
X σ(g(x))π(x)dx

)N . (2)

Practical inference for this problem, however, is non-
trivial, because (i) the posterior is non–Gaussian and (ii)
the likelihood involves an integral of g over the whole
space. Thus, in contrast to simpler problems such as GP
regression or classification, it is impossible to reduce in-
ference to finite dimensional integrals. To circumvent the
problem that the likelihood is not conjugate to the GP
prior, [7] proposed a Metropolis-Hastings MCMC algo-
rithm for this model. We will show in the next sections
that one can augment the model with auxiliary latent ran-
dom variables in such a way that the resulting likelihood
is of a conjugate form allowing for a more efficient Gibbs
sampler with explicit conditional probabilities.

2.1 LIKELIHOOD AUGMENTATION

To obtain a likelihood which is conjugate to the GP p(g)
we require that it assumes a Gaussian form in g.

Representing the denominator As a starting point,
we follow [10] and use the representation

1

zN
=

∫∞
0
λN−1e−λzdλ

Γ(N)
,

where Γ(·) is the gamma function. Identifying
z =

∫
X σ(g(x))π(x)dx in Eq. (2) we can rewrite the

likelihood as p(D|g) =
∫∞

0
p(D, λ|g)dλ where

p(D, λ|g) ∝ exp

(
−
∫

X
λσ(g(x))π(x)dx

)

× p(λ)
N∏

n=1

λσ(g(xn))π(xn),

(3)

with the improper prior p(λ) = λ−1 over the auxiliary
latent variable λ. To transform the likelihood further into
a form which is Gaussian in g, we utilise a representation
of the sigmoid function as a scale mixture of Gaussians.

Pólya–Gamma representation of sigmoid function
As discovered by [9], the inverse hyperbolic cosine can
be represented as an infinite mixture of scaled Gaussians

cosh−b(z/2) =

∫ ∞

0

e−
z2

2 ωpPG(ω|b, 0)dω,

where pPG(ω|b, 0) is the Pólya–Gamma density of ran-
dom variable ω ∈ R+. Moments of those densities can
be easily computed [9]. Later, we will also use the tilted
Pólya-Gamma densities defined as

pPG(ω|b, c) ∝ exp

(
−c

2

2
ω

)
pPG(ω|b, 0). (4)

These definitions allows for a Gaussian representation of
the sigmoid function as

σ(z) =
ez/2

2 cosh(z/2)
=

∫ ∞

0

ef(ω,z)pPG(ω|1, 0)dω (5)

with f(ω, z) = z
2 − z2

2 ω − ln 2. This result will be used
to transform the products over observations σ(g(xn)) in
the likelihood (3) into a Gaussian form.

We will next deal with the first term in the likelihood
(3) which contains the integral over x. For this part of
the model we will derive a point process representation
which can be understood as a generalisation of the ap-
proach of [7].

Marked–Poisson representation Utilising the sig-
moid property σ(z) = 1−σ(−z) and the Pólya-Gamma
representation (5) the integral in the exponent of Eq. (3)
can be written as a double integral

−
∫

X
λσ(g(x))π(x)dx =

∫

X
(σ(−g(x))− 1)λπ(x)dx =

∫

X

∫

R+

(
ef(ω,−g(x)) − 1

)
λπ(x)pPG(ω|1, 0)dωdx
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Next we will use a result for the characteristic function
of a Poisson process. Following [11, chap. 3] one has

Eφ

[∏

z∈Π

h(z)

]
= exp

(∫

Z
(h(z)− 1)φ(z)dz

)
. (6)

h(·) is a function on a space Z and the expecta-
tion is over a Poisson process Π with rate func-
tion φ(z). Π = {zm}Mm=1 denotes a random
set of points on the space Z . To apply this re-
sult to our problem, we identify Z = X × R+,
z = (x, ω) and φλ(x, ω) = λπ(x)pPG(ω|1, 0) and fi-
nally h(z) = ef(ω,−g(x)) to rewrite the exponential in
Eq. (3) as

e−
∫
X λσ(g(x))π(x)dx = Eφλ


 ∏

(ω,x)∈Π

ef(ω,−g(x))


 . (7)

By substituting Eq. (5) and (7) into Eq.(3) we obtain the
final augmented form of the likelihood of Eq. (2) which
is one of the main results of our paper.

p(D, λ,Π,ωN |g) ∝
N∏

n=1

φλ(xn, ωn)ef(ωn,g(xn))

× pφλ(Π|λ)p(λ)
∏

(ω,x)∈Π

ef(ω,−g(x)),

(8)

with pφ(Π|λ) being the density over a Poisson process
Π = {(xm, ωm)}Mm=1 in the augmented space X × R+

with intensity φλ(x, ω). 2 This new process can be iden-
tified as a marked Poisson process [11, chap. 5], where
the events {xm}Mm=1 in the original data space X fol-
low a Poisson process with rate λπ(x). Then, on each
event xm an independent mark ωm ∼ pPG(ωm|b, 0) is
drawn at random from the Pólya–Gamma density. Fi-
nally, ωN = {ωn}Nn=1 is the set of latent Pólya–Gamma
variables which result from the sigmoid augmentation at
the observations xn.

Augmented posterior over GP density With Eq. (8)
we obtain the joint posterior over the GP g, the rate scal-
ing λ, the marked Poisson process Π, and the Pólya–
Gamma variables at the observations ωN as

p(ωN ,Π, λ, g|D) ∝ p(D,ωN ,Π, λ|g)p(g). (9)

In the following, this new representation will be used to
derive two inference algorithms.

2Densities such as pφλ(Π|λ) could be understood as the
Radon–Nykodym derivative [12] of the corresponding proba-
bility measure with respect to some fixed dominating measure.
However, we will not need an explicit form here.

3 INFERENCE

We will first derive an efficient Gibbs sampler which
(asymptotically) solves the inference problem exactly,
and then a variational mean-field algorithm, which only
finds an approximate solution, but in a much faster time.

3.1 GIBBS SAMPLER

Gibbs sampling [13] generates samples from the poste-
rior by creating a Markov chain, where at each time, a
block of variables is drawn from the conditional posterior
given all the other variables. Hence, to perform Gibbs
sampling, we have to derive these conditional distribu-
tions for each set of variables from Eq. (9). Most of the
following results are easily obtained by direct inspection.
The only non–trivial case is the conditional distribution
over the latent point process Π.

Pólya-Gamma variables at observations The condi-
tional posterior over the set of Pólya–Gamma variables
ωN depends only on the function g at the observations
{g(xn)}Nn=1 and turns out to be

p(ωN |g) =

N∏

n=1

pPG(ωn|1, g(xn)), (10)

where we have used the definition of a tilted Pólya-
Gamma density in Eq. (4). This density can be efficiently
sampled by methods developed by [9]3.

Rate scaling The rate scaling λ has a conditional
Gamma density given by

Gamma(λ|α, 1) =
(λ)α−1e−λ

Γ(α)
. (11)

with α = |Π| + N = M + N . Hence, the posterior is
dependent on the number of observations and the number
on events of the marked Poisson process Π.

Posterior Gaussian process Due to the form of the
augmented likelihood the conditional posterior for the
GP gN+M at the observations {xn}Nn=1 and the latent
events {xm}Mm=1 is a multivariate Gaussian density

p(gN+M |Π,ωN ) = N (µN+M ,ΣN+M ), (12)

with covariance matrix ΣN+M = [D + K−1
N+M ]−1.

The diagonal matrix D has its first N entries given by
ωN followed by M entries being {ωm}Mm=1. The mean

is µN+M = ΣN+M

[
u+K−1

N+Mµ
(N+M)
0

]
, where the

3The sampler implemented by [14] is used for this work.
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first N entries of N + M dimensional vector u are 1/2
and the rest are −1/2. KN+M is the prior covariance
kernel matrix of the GP evaluated at the observed points
xn and the latent events xm, and µ(N+M)

0 is an N +M
dimensional vector with all entries being µ0.

The predictive conditional posterior for the GP for any
set of points inX is simply given via the conditional prior
p(g|gN+M ), which has a well known form and can be
found in [1].

Sampling the latent marked point process We easily
find that the conditional posterior of the marked point
process is given by

p(Π|g,λ)=

∏
ω,x∈Π ef(ω,−g(x))pφλ

(Π|λ)

exp(
∫
X×R+(ef(ω,−g(x))−1)φλ(x,ω)dωdx)

, (13)

where the form of the normalising denominator is ob-
tained using Eq. (6). By computing the characteristic
function of this conditional point process (see App. A)
we can show that it is again a marked Poisson process
with intensity

Λ(x, ω) = λπ(x)σ(−g(x))pPG(ω|1, g(x)). (14)

To sample from this process we first draw Poisson
events xm in the original data space X using the rate∫
R+ Λ(x, ω)dω = λπ(x)σ(−g(x)) [11, chap. 5]. Sub-

sequently for each event xm a mark ωm is generated
from the conditional density ωm ∼ pPG(ω|1, g(xm)).

To sample the events {xm}Mm=1, we use the well known
approach of thinning [4]. We note, that the rate is up-
per bounded by the base measure λπ(x). Hence, we first
generate points x̃m from a Poisson process with inten-
sity λπ(x). This is easily achieved by noting that the
required number Mmax of such events is Poisson dis-
tributed with mean parameter

∫
X λπ(x)dx = λ. The

position of the events can then be obtained by sampling
{x̃m}Mmax

m=1 independent points from the base density
x̃m ∼ π(x). These events are thinned by keeping each
point x̃m with probability σ(−g(x̃m)). The kept events
constitute the final set {xm}Mm=1.

Sampling hyperparameters In this work we will con-
sider specific functional forms for the kernel k(x,x′)
and the base measure π(x) which are parametrised by
hyperparameters θk and θπ . These will be sampled by
a Metropolis-Hastings method [15]. The GP prior mean
µ0 can be directly sampled from the conditional poste-
rior given gM+N . In this work, the hyperparameters are
sampled every v = 10 step. Different choices of v might
yield faster convergence of the Markov Chain. Pseudo
code for the Gibbs sampler is provided in Alg. 1.

Algorithm 1: Gibbs sampler for GP density model.

Init: {xm}Mm=1, gN+M , λ, and θk, θπ , µ0

1 for Length of Markov chain do
2 Sample PG variables at {xm}: ωN ∼ Eq. (10)
3 Sample latent Poisson process: Π ∼ Eq. (13)
4 Sample rate scaling: λ ∼ Eq. (11)
5 Sample GP: gN+M ∼ Eq. (12)
6 Sample hyperparameters: Every vth sample with

Metropolis–Hastings
7 end

3.2 VARIATIONAL BAYES

While expected to be more efficient than a Metropolis-
Hastings sampler based on the unaugmented likeli-
hood [7], the Gibbs sampler is practically still limited.
The main computational bottleneck comes from the sam-
pling of the conditional Gaussian over function values of
g. The computation of the covariances requires the in-
version of matrices of dimensions N + M , with a com-
plexity O((N + M)3). Hence the algorithm does not
only become infeasible, when we have many observa-
tions, i.e when N is large, but also if the sampler re-
quires many thinned events, i.e. if M is large. This can
happen in particular for bad choices of the base measure
π(x). In the following, we introduce a variational Bayes
algorithm [16], which solves the inference problem ap-
proximately, but with a complexity which scales linearly
in the data size and is independent of structure.

Structured mean–field approach The idea of vari-
ational inference [16] is to approximate an intractable
posterior p(Z|D) by a simpler distribution q(Z) from a
tractable family. q(Z) is optimised by minimising the
Kullback-Leibler divergence between q(Z) and p(Z|D)
which is equivalent to maximising the so called varia-
tional lower bound (sometimes also called ELBO for ev-
idence lower bound) given by

L(q(Z)) = EQ
[
ln
p(Z,D)

q(Z)

]
≤ ln p(D), (15)

where Q denotes the probability measure with density
q(Z). A common approach for variational inference is
a structured mean–field method, where dependencies be-
tween sets of variables are neglected. For the problem at
hand we assume that

q(ωN ,Π, g, λ) = q1(ωN ,Π)q2(g, λ). (16)

A standard result for the variational mean–field approach
shows that the optimal independent factors, which max-
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imise the lower bound in Eq. (15) are given by

ln q1(ωN ,Π) = EQ2
[ln p(D,ωN ,Π, λ, g)] + const.,

(17)
ln q2(g, λ) = EQ1

[ln p(D,ωN ,Π, λ, g)] + const. (18)

By inspecting Eq. (9), (17), and (18) it turns out that the
densities of all four sets of variables factorise as

q1(ωN ,Π) = q1(ωN )q1(Π),

q2(g, λ) = q2(g)q2(λ).

We will optimise the factors by a straightforward itera-
tive algorithm, where each factor is updated given ex-
pectations over the others based on the previous step.
Hence, the lower bound in Eq. (15) is increased in each
step. Again we will see that the augmented likelihood in
Eq. (8) allows for analytic solutions of all required fac-
tors.

Pólya–Gamma variables at the observations Simi-
lar to the Gibbs sampler, the variational posterior of the
Pólya-Gamma variables at the observations is a product
of tilted Pólya–Gamma densities given by

q1(ωN ) =
N∏

n=1

pPG(ωn|1, cn), (19)

with cn =
√
EQ2 [g(xn)2]. The only difference is, that

the second argument of pPG depends on the expectation
of the square of g(xn).

Posterior marked Poisson process Similar to the cor-
responding result for the Gibbs sampler we can show4

that the optimal latent point process Π is a Poisson pro-
cess with rate given by

Λ1(x, ω) =λ1π(x)σ(−c(x))pPG(ω|1, c(x))

× e(c(x)−g1(x))/2
(20)

with λ1 = eEQ2
[lnλ], c(x) =

√
EQ2

[f(x)2], and
g1(x) = EQ2

[g(x)]. Note also the similarity to the
Gibbs sampler in Eq. (14).

Optimal posterior for rate scaling The posterior for
the rate scaling λ is a Gamma distribution given by

q2(λ) = Gamma(λ|α2, 1) =
λα2−1e−λ

Γ(α2)
, (21)

where α2 = N + EQ1

[∑
x′∈Π δ(x− x′)

]
, and

EQ1

[∑
x′∈Π δ(x− x′)

]
=
∫
X
∫
R+ Λ1(x, ω)dωdx, and

δ(·) is the Dirac delta function. The integral is solved by
importance sampling as will be explained (see Eq. (25)).

4The proof is similar to the one from App. A.

Approximation of GP via sparse GP The optimal
variational form for the posterior g is a GP given by

q2(g) ∝ eU(g)p(g),

where U(g) = EQ1 [ln p(D,ωN ,Π, λ|g)] results in the
Gaussian log–likelihood

U(g) = −1

2

∫

X
A(x)g(x)2dx+

∫

X
B(x)g(x)dx+const.

with

A(x) =
N∑

n=1

EQ1
[ωn] δ(x−xn)+

∫

R+

ωΛ1(x, ω)dω,

B(x) =
1

2

N∑

n=1

δ(x− xn)− 1

2

∫

R+

Λ1(x, ω)dω.

For general GP priors, this free form optimum is in-
tractable by the fact that the likelihood depends on g
at infinitely many points. Hence, we resort to an ad-
ditional approximation which makes the dimensionality
of the problem again finite. The well known framework
of sparse GPs [17, 18, 19] turns out to be useful in this
case. This has been introduced for likelihoods with large,
but finite dimensional likelihoods [19, 20] and later gen-
eralised to infinite dimensional problems [21, 22]. The
sparse approximation assumes a variational posterior of
the form

q2(g) = p(g|gs)q2(gs),

where gs is the GP evaluated at a finite set of inducing
points {xl}Ll=1 and p(g|gs) is the conditional prior. A
variational optimisation yields

q2(gs) ∝ eU
s(gs)p(gs), (22)

where the first term can be seen as a new ‘effective’ like-
lihood only depending on the inducing points. This new
(log) likelihood is given by

Us(gs) = EP [U(g)|gs] =

− 1

2

∫

X
A(x)g̃s(x)2dx+

∫

X
B(x)g̃s(x)dx+ const.,

with g̃s(x) = µ0 + ks(x)> K−1
s (gs − µ(L)

0 ), ks(x)
being an L dimensional vector, where the lth entry is
k(x,xl) and Ks being the prior covariance matrix for
all inducing points. The expectation is computed with
respect to the GP prior conditioned on the sparse GP gs.
We identify Eq. (22) being a multivariate normal distri-
bution with covariance matrix

Σs2 =

[
K−1
s

∫

X
A(x)ks(x)>ks(x)dx K−1

s +K−1
s

]−1

,

(23)

57



Algorithm 2: Variational Bayes algorithm for GP den-
sity model
Init: Inducing points, q2(gs), q2(λ), and θk,θπ, µ0

1 while L not converged do
2 Update q1

3 PG distributions at observations: q∗1(ωN )
with Eq. (19)

4 Rate of latent process: Λ1(x, ω) with Eq. (20)
5 Update q2

6 Rate scaling: α2 with Eq. (21)
7 Sparse GP: Σs2, µ

s
2 with Eq. (23), (24)

8 Update θk,θπ, µ0 with gradient update
9 end

and mean

µs2 = Σs2

(
K−1
s

∫

X
ks(x)B̃(x)dx+K−1

s µ
(L)
0

)
,

(24)
with B̃(x) = B(x)−A(x)(µ0 − ks(x)>K−1

s µ
(L)
0 ).

Integrals over x The sparse GP approximation and the
posterior over λ in Eq. (21) requires the computation of
integrals of the form

I
.
=

∫

X

∫

R+

y(x, ω)Λ1(x, ω)dωdx,

with specific functions y(x, ω). For these functions, the
inner integral over ω can be computed analytically, but
the outer one over the space X has to be treated numeri-
cally. We approximate it via importance sampling

I ≈ 1

R

R∑

r=1

∫

R+

y(xr, ωr)
Λ1(xr, ωr)

π(xr)
dωr, (25)

where every sample point xr is independently drawn
from the base measure π(x).

Updating hyperparameters Having an analytic so-
lution for every factor of the variational posterior in
Eq. (16) we further require the optimisation of hyper-
parameters. θk, θπ and µ0 are optimised by maximis-
ing the lower bound in Eq. (15) (see App. B for explicit
form) with a gradient ascent algorithm having an adap-
tive learning rate (Adam) [23]. Additional hyperparam-
eters are the locations of inducing points {xl}Ll=1. Half
of them are drawn randomly from the initial base mea-
sure, while half of them are positioned on regions with
a high density of observations found by a k–means al-
gorithm. Pseudo code for the complete variational algo-
rithm is provided in Alg. 2.

Python code for Alg. 1 and 2 is provided at [24].

4 RESULTS

To test our two inference algorithms, the Gibbs sampler
and the variational Bayes algorithm (VB), we will first
evaluate them on data drawn from the generative model.
Then we compare both on an artificial dataset and several
real datasets. We will only consider cases with X = Rd.
To evaluate the quality of inference we consider always
the logarithm of the expected test likelihood

`test(D̃)
.
= ln


E


∏

x∈D̃
ρ(x)




 ,

where D̃ is test data unknown to the inference algorithm
and the expectation is over the inferred posterior mea-
sure. In practice we sample this expectation from the
inferred posterior over g. Since this quantity involves
an integral, that is again approximated by Eq. (25), we
check that the standard deviation std(I) is less than 1%
of the value of the estimated value I .

Data from generative model. We generate datasets
according to Eq. (1), where g is drawn from the GP prior
with µ0 = 0. As covariance kernel we assume a squared
exponential throughout this work

k(x,x′) = θ
(0)
k

d∏

i=1

exp

(
− (xi − x′i)2

2(θ
(i)
k )2

)
.

The base measure π(x) is a standard normal density. We
use the algorithm described in [7] to generate exact sam-
ples. In this section, the hyperparameters θk,θπ and µ0

are fixed to the true values for inference. Unless stated
otherwise for the VB the number of inducing points is
fixed to 200 and the number of integration points for im-
portance sampling to 5 × 103. For the Gibbs sampler,
we sample a Markov chain of 5 × 103 samples after a
burn–in period of 2× 103 samples.

In Fig. 1 we see a 1 dimensional example dataset, where
both inference algorithms recover well the structure of
the underlying density. The inferred posterior means are
barely distinguishable. However, evaluating the inferred
densities on an unseen test set, we note that the Gibbs
sampler performs slightly better. Of course, this is ex-
pected since the sampler provides exact inference for the
generative model and should (on average) not be outper-
formed by the approximate VB as long as the sampled
Markov chain is long enough. In Fig. 1 (bottom left) we
see that only 13 iterations of the VB are required to meet
the convergence criterion. For Markov chain samplers to
be efficient, correlations between samples should decay
quickly. Fig. 1 (bottom middle) shows the autocorrela-
tion of `test, which was evaluated at each sample of the
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Figure 1: 1D data from the generative model. Data
consist of 100 samples from the underlying density sam-
pled from the GP density model. Upper left: True den-
sity (black line), data (black vertical bars), mean poste-
rior density inferred by Gibbs sampler (red dashed line)
and VB algorithm (blue line). Upper right: Negative log
expected test likelihood of Gibbs and VB inferred poste-
rior. Lower left: Variational lower bound as function of
iterations of the VB algorithm. Lower middle: Autocor-
relation of test likelihood as function of Markov chain
samples obtained from Gibbs sampler. Lower right:
Runtime of the two algorithms (VB took 0.3 s).

Dim # points Gibbs VB
`test T [s] `test T [s]

1 50 -146.9 30.1 -149.2 1.13
2 100 -257.0 649.9 -260.2 2.03
2 200 -285.3 546.1 -289.6 1.41
6 400 -823.9 4667 -822.2 0.89

Table 1: Performance of Gibbs sampler and VB on dif-
ferent datasets sampled from generative model. `test was
evaluated on a unknown test set including 50 samples. In
addition, runtime T is reported in seconds.

Markov chain. After about 10 samples the correlations
reach a plateau close to 0, demonstrating excellent mix-
ing properties of the sampler. Comparing the run time
of both algorithms, VB (0.3 s) outperforms the sampler
∼ 1 min by more than 2 orders of magnitude.

To demonstrate the inference for more complicated prob-
lems, 2 dimensional data are generated with 200 samples
(Fig. 2). The posterior mean densities inferred by both
algorithms capture the structure well. As before, the log
expected test likelihood is larger for the Gibbs sampler
(`test = −296.2) compared to VB (`test = −306.0).
However, the Gibbs sampler took > 20 min while the
VB required only 1.8 s to obtain the result.

In Tab. 1 we show results for datasets with different size
and different dimensionality. The results confirm that the

True VBGibbs

Figure 2: 2D data from generative model. Right: 200
samples from the underlying two dimensional density.
Middle: Posterior mean of Gibbs sampler inferred den-
sity. Right: Posterior mean of VB inferred density.

Gibbs VB KDE GMM

Figure 3: Comparison to other density estimation
methods on artificial 2D data. Training data consist of
100 data points uniformly distributed on a circle (1.5 ra-
dius) and additional Gaussian noise (0.2 std.). From left
to right: The posterior mean inferred by Gibbs sampler
and VB algorithm, followed by density estimation using
KDE and GMM.

run time for the Gibbs sampler scales strongly with size
and dimensionality of a problem, while the VB algorithm
seems relatively unaffected in this regard. However, the
VB is in general outperformed by the sampler in terms of
expected test likelihood or in the same range. Note, that
the runtime of the Gibbs sampler does not solely depend
on the number of observed data points N (compare data
set 2 and 3 in Tab. 1). As discussed earlier this can hap-
pen, when the base measure π(x) is very different from
the target density ρ(x) resulting in many latent Poisson
events (i.e. M is large).

Circle data In the following, we compare the GP den-
sity model and its two inference algorithms with two al-
ternative density estimation methods. These are given by
a kernel density estimator (KDE) with a Gaussian kernel
and a Gaussian mixture model (GMM) [25]. The free pa-
rameters of these models (kernel bandwidth for KDE and
number of components for GMM) are optimised by 10-
fold cross–validation. Furthermore, GMM is initialised
10 times and the best result is reported. For the GP
density model a Gaussian density is assumed as base
measure π(x), and hyperparameters θπ, θk, and µ0 are
now optimised. Similar to [7] we consider 100 samples
uniformly drawn from a circle with additional Gaussian
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Gibbs VB KDE GMM
`test -220.31 -230.53 -228.43 -237.34

Table 2: Log expected test likelihood for circle data.
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Figure 4: Performance on ‘Egyptian Skulls’
dataset [26]. 100 training points and 4 dimensions.
Bar height shows average negative log test likelihood
obtained by five random permutations of training and
test set and points mark single permutation results.

noise. The inferred densities (only the mean of the pos-
terior for Gibbs and VB) are shown in Fig. 3. Both GP
density methods recover well the structure of the data,
but the VB seems to overestimate the width of the Gaus-
sian noise compared to the Gibbs sampler. While the
KDE also recovers relatively well the data structure the
GMM fails in this case. This is also reflected on the log
expected test likelihoods (Tab. 2).

Real data sets The ‘Egyptian Skulls’ dataset [26] con-
tains 150 data points in 4 dimensions. 100 training points
are randomly selected and performance is evaluated on
the remaining ones. Before fitting data is whitened. Base
measure and fitting procedure for all algorithms are the
same as for the circular data. Furthermore, fitting is
done for 5 random permutations of training and test set.
The results in Fig. 4 show that both algorithms for the
GP density model outperform the two other ones on this
dataset.

Often practical problems may consist of many more data
points and dimensions. As discussed, the Gibbs sampler
is not practical for such kind of problems, while the VB
could handle larger amounts of data. Unfortunately, the
sparsity assumption and the integration via importance
sampling is expected to become poorer with increasing
number of dimensions. Noting, however, that the ‘effec-
tive’ dimensionality in our model is determined by the
base measure π(x), one can circumvent this problem by
an educated choice of π(x) if dataD lie in a submanifold
of the high dimensional space X .

We employ this strategy by first fitting a GMM to the
problem and then utilising the fit as base measure. In
Fig. 5 we consider 3 different datasets5 to test this pro-

5Only real valued dimensions are considered and for the
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Figure 5: Application on higher dimensional data
with many data points. The improvement on log ex-
pected test likelihood `test per test point compared to
GMM, when using same as base measure π(x) for the
VB inference. From top to bottom: ‘Forest Fire’
dataset [27, 28] (400 training points, 117 test points, 5
dim.), ‘Thyroid’ dataset [29] (3 × 103, 772, 6), ‘Wine’
dataset [27] (6 × 103, 498, 9). Bars mark improvement
on average of random permutations of training and test
set while points mark single runs.

cedure. As in Fig. 4, fitting is repeated 5 times for
random permutations if training and test set. For the
‘Thyroid’ dataset, one of the 5 fits is excluded, be-
cause the importance sampling yielded poor approxima-
tion std(I) > I × 10−2. The training sets contain 400 to
6000 data points with 5 to 9 dimensions. The results for
KDE are not reported, since it is always outperformed by
the GMM. Fig. 5 demonstrates combining the GMM and
VB algorithm results in an improvement of the log test
likelihood `test compared to using only GMM. Average
relative improvements of `test are 8.9 % for ‘Forest Fire’,
4.1 % for ‘Thyroid’, and 1.1 % for ‘Wine’ dataset.

5 DISCUSSION

We have shown how inference for a nonparametric, GP
based, density model can be made efficient. In the fol-
lowing we would like to discuss various possible exten-
sions but also limitations of our approach.

Choice of base measure As we have shown for ap-
plications to real data, the choice of the base measure
is quite important, especially for the sampler and for
high dimensional problems. While many datasets might
favour a normal distribution as base measure, problems
with outliers might favour fat tailed densities. In general,
any density which can be evaluated on the data space
X and which allows for efficient sampling, is a valid
choice as base measure π(x) in our inference approach
for the GP density model. Any powerful density estima-

‘forest fire’ dataset dimensions are excluded, where data have
more than half 0 entries.
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tor which fulfils this condition could provide a base mea-
sure which could then potentially be improved by the GP
model. It would e.g. be interesting to apply this idea to
neural networks [30, 31] based estimators. Other gen-
eralisations of our model could consider alternative data
spaces X . One might e.g. think of specific discrete and
structured sets X for which appropriate Gaussian pro-
cesses could be defined by suitable Mercer kernels.

Big data & high dimensionality Our proposed Gibbs
sampler suffers from cubic scaling in the number of data
points and is found to be already impractical for prob-
lems with hundreds of observations. This could poten-
tially be tackled by using sparse (approximate) GP meth-
ods for the sampler (see [32] for a potential approach).
On the other hand, the proposed VB algorithm scales
only linearly with the training set size and can be ap-
plied to problems with several thousands of observations.
The integration of stochastic variational inference into
our method could potentially increase this limit [33].

Potential limitations of the GP density model are given
by high dimensional problems. If approached naively,
the combination of the sparse GP approximation and the
numerical integration using importance sampling is ex-
pected to yield bad approximations in such cases.6 If the
data is concentrated on a low dimensional submanifold
of the high–dimensional space, one could still try to com-
bine our method with other density estimators providing
a base measure π(x) that is adapted to this submanifold,
to allow for tractable GP inference.
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Abstract

Temporal-difference (TD) learning methods
are widely used in reinforcement learning to
estimate the expected return for each state,
without a model, because of their significant
advantages in computational and data effi-
ciency. For many applications involving risk
mitigation, it would also be useful to estimate
the variance of the return by TD methods. In
this paper, we describe a way of doing this that
is substantially simpler than those proposed
by Tamar, Di Castro, and Mannor in 2012, or
those proposed by White and White in 2016.
We show that two TD learners operating in
series can learn expectation and variance esti-
mates. The trick is to use the square of the TD
error of the expectation learner as the reward of
the variance learner, and the square of the ex-
pectation learner’s discount rate as the discount
rate of the variance learner. With these two
modifications, the variance learning problem
becomes a conventional TD learning problem
to which standard theoretical results can be ap-
plied. Our formal results are limited to the ta-
ble lookup case, for which our method is still
novel, but the extension to function approxi-
mation is immediate, and we provide some em-
pirical results for the linear function approx-
imation case. Our experimental results show
that our direct method behaves just as well as
a comparable indirect method, but is generally
more robust.

1 INTRODUCTION

Conventionally, in reinforcement learning (RL) the agent
estimates the expected value of the return—the dis-
counted sum of future rewards—as an intermediate step

to finding an optimal policy. The agent estimates the
value function by averaging the returns observed from
each state in a trajectory of experiences. To estimate
this value function online—while the trajectory is still
unfolding—we update the agent’s value estimates to-
wards the expected return. Algorithms that estimate
the expected value of the return in this way are called
temporal-difference (TD) learning methods. However, it
is reasonable to consider estimating other functions of
the return beyond the first moment. For example, Belle-
mare et al. (2017) estimated the distribution of returns
explicitly. In this paper, we focus on estimating the vari-
ance of the return using TD methods.

The variance of the return can be used to design algo-
rithms which account for risk in decision making. The
main approach is to formulate the agent’s objective as
maximizing reward, while minimizing the variance of the
return (Sato et al., 2001; Prashanth and Ghavamzadeh,
2013; Tamar et al., 2012).

An estimate of the variance of the return can also be use-
ful for adapting the parameters of a learning system auto-
matically, thus avoiding time-consuming, human-driven
meta parameter tuning. Sakaguchi and Takano (2004)
used the variance estimate explicitly in the decision mak-
ing policy to set the temperature variable in the Boltz-
mann action selection rule. Using variance in this way
can automatically adjust the amount of exploration, al-
lowing the learning system to adapt to new circumstances
online. Conventionally, this temperature would either be
set to a constant or decayed according to a fixed sched-
ule. In either circumstance, the performance can be quiet
poor in non-stationary domains, and a human expert is
required to select the constant value or fixed schedule.
Similarly, White and White (2016) estimated the vari-
ance of the return to automatically adapt the trace-decay
parameter, λ, used in learning updates of TD algorithms
(see Section 2 for an explanation of the role of λ). Not
only does this approach avoid the need to tune λ by hand,
but it can result in faster learning.

63



TD

TD

R

x

γ

Rt + 1

γt + 1

ϕJ(St + 1 )

R

x

γ
γt + 1

2

ϕM(St + 1 )

Jt + 1

Vt + 1

Rt + 1
2 + 2 Rt + 1 γt + 1 Jt + 1(St + 1 ) (Jt + 1 )

2

+

Mt + 1

-

+

δt
2

TD

TD

R

x

γ

Rt + 1

γt + 1

ϕJ(St + 1 )
R

x

γ
γt + 1

2

ϕV(St + 1 )

δt

Jt + 1

Vt + 1

Direct Method

VTD

Figure 1: Each TD node takes as input a re-
ward R, a discounting function γ, and fea-
tures φ. For the direct method (top) the
squared TD error of the first-stage value
estimator is used as the meta-reward for
the second-stage V estimator. For VTD
(bottom), a more complex computation is
used for the meta-reward and an extra stage
of computation is required.

The variance V of the return can be estimated either di-
rectly or indirectly. Indirect estimation involves comput-
ing an estimate of variance from estimates of the first and
second moments. Sobel (1982) was the first to formulate
Bellman operators for the second moment and showed
how this could be used to compute variance indirectly.
This is the approach used by Tamar et al. (2016), Tamar
and Mannor (2013), and Prashanth and Ghavamzadeh
(2013). White and White (2016) introduced several ex-
tensions to this indirect method including estimation of
the λ-return (Sutton and Barto, 1998), support for off-
policy learning (Sutton, Maei, et al., 2009; Maei, 2011),
and state-dependent discounting (Sutton, Modayil, et al.,
2011; White, 2017). Their method, which they refer to as
VTD, serves as the indirect estimation algorithm used in
this paper. We note that an alternative method, which we
do not investigate here, could be to estimate the distri-
bution of returns as done by Bellemare et al. (2017) and
compute the variance from this estimated distribution.

Variance may also be estimated directly. Tamar et al.
(2012) gave a direct algorithm but restricted it to esti-
mating cost-to-go returns in a strictly episodic manner,
i.e., estimates are only updated after an entire trajectory
has been captured. We introduce a new algorithm for di-
rectly estimating the variance of the return incrementally
using TD methods. Our algorithm uses two TD learners,
one for estimating value and the other for estimating the
variance of the return. These estimators operate in se-
ries with the squared TD error of the value learner serv-
ing as the reward of the variance learner and the squared
discount rate of the value learner serving as the discount
rate of the variance learner. Like VTD (White and White,
2016), our algorithm supports estimating the variance of
the λ-return, state-dependent discounting, estimating the
variance of the on-policy return from off-policy samples,
and estimating the variance of the off-policy return from
on-policy samples (Section 3.2 motivates these exten-
sions). We call our new algorithm Direct Variance TD

(DVTD). We recognize that the algorithm of Sato et al.
(2001) can be seen as the simplest instance of our algo-
rithm, using the on-policy setting with fixed discounting
and no traces1. Sakaguchi and Takano (2004) also used
this simplified algorithm, but treated the discount of the
variance estimator as a free parameter.

We introduce a Bellman operator for the variance of the
return, and further prove that, even for a value function
that does not satisfy the Bellman operator for the ex-
pected return, the error in this recursive formulation is
proportional to the error in the value function estimate.
Interestingly, the Bellman operator for the second mo-
ment requires an unbiased estimate of the return (White
and White, 2016). Since our Bellman operator for the
variance avoids this term, it has a simpler update. As
shown in Figure 1, Both DVTD and VTD can be seen
as a network of two TD estimators running sequentially.
Note, that we restrict our formal derivations and subse-
quent analysis to the table lookup setting.

Our primary goal is to understand the empirical proper-
ties of the direct and indirect approaches. In general, we
found that DVTD is just as good as VTD and in many
cases better. We observe that DVTD behaves better in
the early stages of learning before the value function
has converged. Furthermore, we observe that the vari-
ance of the estimates of V can be higher for VTD under
several circumstances: (1) when there is a mismatch in
step-sizes between the value estimator and the V estima-
tor, (2) when traces are used with the value estimator,
(3) when estimating V of the off-policy return, and (4)
when there is error in the value estimate. Finally, we
observe significantly better performance of DVTD in a
linear function approximation setting. Overall, we con-
clude that the direct approach to estimating V , DVTD, is
both simpler and better behaved than VTD.

1Dimitrakakis (2006) used a related TD method, which es-
timates the squared TD error
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2 THE MDP SETTING

We model the agent’s interaction with the environment
as a finite Markov decision process (MDP) consisting of
a finite set of states S, a finite set of actions, A, and a
transition model p : S × S × A → [0, 1] defining the
probability p(s′|s, a) of transitioning from state s to s′

when taking action a. In the policy evaluation setting
considered in this paper, the agent follows a fixed policy
π(a|s) ∈ [0, 1] that provides the probability of taking
action a in state s. At each timestep the agent receives
a random reward Rt+1, dependent only on St, At, St+1.
The return is the discounted sum of future rewards

Gt = Rt+1 + γt+1Rt+2 + γt+1γt+2Rt+3 + . . .

= Rt+1 + γt+1Gt+1.
(1)

where γ ∈ [0, 1] specifies the degree to which future re-
wards are discounted. Note that we define discounting
as state-dependent such that γt+1 ≡ γ(St+1). This al-
lows us to combine the specification of continuing and
episodic tasks. Further implications of this are discussed
in Section 3.2.

The value of a state, j(s), is defined as the expected re-
turn from state s under a particular policy π:

j(s) =Eπ[Gt|St = s]. (2)

We use j to indicate the true value function and J the es-
timate. The TD-error is the difference between the one-
step approximation and the current estimate:

δt = Rt+1 + γt+1Jt(St+1)− Jt(St). (3)

This can then be used to update the value estimator using
a TD method, such as TD(0) as follows:

J(s)t+1 = J(s)t + αδt (4)

3 ESTIMATING THE VARIANCE OF
THE RETURN

For clarity of presentation, we first discuss the sim-
plest version of both the direct and indirect methods and
present the full algorithms in Section 3.2.

The direct TD method uses both a value estimator and a
variance estimator. The value estimator provides an es-
timate of the expected return. The variance estimator,
on the other hand, uses the value estimator to provide an
estimate of the variance of the return. Since we use TD
methods for both the value and variance estimators we
need to adopt additional notation; variables with a bar
are used by either the second moment or variance esti-
mator. Otherwise, they are used by the value estimator.

The key to using both the indirect and direct methods as
TD methods is to provide a discounting function, γ̄, and
a meta-reward, R̄. In the following, we present a simpli-
fied TD(0) version of both algorithms.

Simplified Direct Variance Algorithm

γ̄t+1 ← γ2t+1

R̄t+1 ← δ2t

δ̄t ← R̄t+1 + γ̄t+1Vt(s
′)− Vt(s)

Vt+1(s)← Vt(s) + ᾱδ̄t (5)

Simplified Second Moment Algorithm

γ̄t+1 ← γ2t+1

R̄t+1 ← R2
t+1 + 2γt+1Rt+1Jt+1(s′)

δ̄t ← R̄t+1 + γ̄t+1Mt(s
′)−Mt(s) (6)

Mt+1(s)←Mt(s) + ᾱδ̄t

Vt+1(s)←Mt+1(s)− Jt+1(s)2

3.1 DERIVATION OF THE DIRECT METHOD

We now derive the direct method for estimating the vari-
ance of the return. Again, for clarity, we only consider
the simple case described in Section 3 (See Appendix B
for a derivation of the more general extended algorithm).

The derivation of the direct method follows from char-
acterizing the Bellman operator for the variance of the
return: Theorem 1 gives a Bellman equation for the vari-
ance v. It has the form of a TD target with meta-reward
R̄t = δ2t and discounting function γ̄t+1 = γ2t+1. There-
fore, we can estimate V using TD methods. The Bellman
operators for the variance are general, in that they al-
low for either the episodic or continuing setting, by using
variable γ. By directly estimating variance, we avoid a
second term in the cumulant that is present in approaches
that estimate the second moment (Tamar and Mannor,
2013; Tamar et al., 2016; White and White, 2016).

To have a well-defined solution to the fixed point, we
need the discount to be less than one for some transition
(White, 2017; Yu, 2015). This corresponds to assuming
that the policy is proper, for the cost-to-go setting (Tamar
et al., 2016).

Assumption 1. The policy reaches a state s where
γ(s) < 1 in a finite number of steps.

Theorem 1. For any s ∈ S,

j(s) = E [Rt+1 + γt+1j(St+1) | St = s]

v(s) = E
[
δ2t + γ2t+1v(St+1) | St = s

]
(7)

Proof. First we expand Gt − j(St), from which we re-
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cover a series with the form of a return.

Gt − j(St) = Rt+1 + γt+1Gt+1 − j(St)
= Rt+1+γt+1j(St+1)−j(St)+γt+1(Gt+1−j(St+1))

= δt + γt+1(Gt+1 − j(St+1)) (8)

The variance of Gt is therefore

v(s) = E
[
(Gt − E [Gt | St = s])

2 |St = s
]

= E
[
(Gt − j(s))2 | St = s

]
(9)

= E
[
(δt + γt+1(Gt+1 − j(St+1)))2 | St = s

]

= E
[
δ2t | St = s

]

+ E
[
γ2t+1(Gt+1 − j(St+1))2 | St = s

]

+ 2E [γt+1δt(Gt+1 − j(St+1)) | St = s]

Equation (7) follows from Lemma 1 in Appendix B
which shows E [γt+1δt(Gt+1−j(St+1)) | St = s] =
0. Similar to Lemma 1, using the law of to-
tal expectation, E

[
γ2t+1(Gt+1 − j(St+1))2 | St = s

]
=

E
[
γ2t+1v(St+1) | St = s

]
.

We provide an initial characterization of error in the vari-
ance estimate obtained under this recursion, when an
approximate value function rather than the true value
function is used. As we show in the below theorem,
the resulting error in the variance estimator is propor-
tional to the squared error in the value estimate, and dis-
counted accumulated errors into the future. If the ap-
proximation error is small, we expect this accumulated
error to be small, particularly as the accumulation errors
are signed and so can cancel, and because they are dis-
counted. However, more needs to be done to understand
the impact of this accumulated error.
Theorem 2. For approximate value function J with vari-
ance estimate V (s) = E

[
δ2t + γ2t+1V (St+1) |St = s

]
,

if there exists ε : S → [0,∞) bounding squared
value estimation error (J(s) − j(s))2 ≤ ε(s) and
accumulation error |E[γt+1δt(j(St+1) − J(St+1)) +
γ2t+1γt+2δt+1(j(St+2)−J(St+2))+... |St = s]| ≤ ε(s),
then
∣∣v(s)− E

[
δ2t + γ2t+1V (St+1) | St = s

]∣∣ ≤ 3ε(s)

Proof. We can re-express the true variance in terms of
the approximation J , as

v(s) = E
[
(Gt − j(s) + J(s)− J(s))2 | St = s

]

= E
[
(Gt − J(s))2 | St = s

]
+ (J(s)− j(s))2

+ 2E [Gt − J(s) | St = s] (J(s)− j(s)) (10)

This last term simplifies to

E [Gt−J(s) | St=s] = E [Gt−j(s) | St=s]+j(s)−J(s)

= j(s)− J(s) (11)

giving (J(s)− j(s))2 + 2(j(s)− J(s))(J(s)− j(s)) =
−(J(s)− j(s))2. We can use the same recursive form as
(9), but with J , giving

E
[
(Gt−J(s))2 | St=s

]
=E

[
δ2t + γ2t+1V (St+1) | St=s

]

+2E [γt+1δt(Gt+1 − J(St+1)) | St = s]

+2E
[
γ2t+1γt+2δt+1(Gt+2−J(St+2))|St=s

]
+ ... (12)

where the terms involving δt(Gt+1 − J(St+1)) accumu-
late. Notice that

∣∣E [γt+1δt(Gt+1 − J(St+1)) | St = s]
∣∣

=
∣∣E [γt+1δt(Gt+1 − j(St+1)) | St = s]

+ E [γt+1δt(j(St+1)− J(St+1)) | St = s]
∣∣

=
∣∣E [γt+1δt(j(St+1)− J(St+1)) | St = s]

∣∣

where the second equality follows from Lemma 1. By
the same argument as in Lemma 1, this will also hold
true for all the other terms in (12). By assumption, the
sum of all these covariance terms between j and J are
bounded by ε(s). Putting this together, we get

|v(s)− V (s)| =
∣∣v(s)−E

[
δ2t +γ2t+1V (St+1) | St=s

] ∣∣
≤ 2ε(s) + (J(s)− j(s))2 ≤ 3ε(s)

3.2 THE EXTENDED DIRECT METHOD

Here, we extend the direct method to support estimat-
ing the λ-return, state-dependent γ, eligibility traces and
off-policy estimation, just as White and White, 2016 did
with VTD (derivation provided in Appendix B). We first
explain each of these extensions before providing our full
direct algorithm and VTD.

The λ-return is defined as

Gλt = Rt+1 +γt+1(1−λt+1)Jt(St+1)+γt+1λt+1G
λ
t+1

and provides a bias-variance trade-off by incorporating
J , which is a potentially lower-variance but biased es-
timate of the return. This trade-off is determined by a
state-dependent trace-decay parameter, λt ≡ λ(St) ∈
[0, 1]. When Jt(St+1) is equal to the expected re-
turn from St+1 = s, then Eπ[(1 − λt+1)Jt(St+1) +
γt+1λt+1G

λ
t+1|St+1 = s] = Eπ[Gλt+1|St+1 = s], and

so the λ-return is unbiased. Beneficially the expected
value Jt(St+1) is lower-variance than the sample Gλt+1.
If Jt is inaccurate, however, some bias is introduced.
Therefore, when λ = 0, the λ-return is lower-variance
but can be biased. When λ = 1, the λ-return equals the
Monte Carlo return (Equation (1)); in this case, the up-
date target exhibits more variance, but no bias. In the
tabular setting evaluated in this paper, λ does not affect
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Table 1: Algorithm Notation
J estimated value function of the target policy π.
M estimate of the second moment.
V estimate of the variance.
R, R̄ meta-reward used by the J and (M,V ) estimators.
λ bias-variance parameter of the target λ-return.
κ, κ̄ trace-decay parameter of the J and (M,V ) estimators.
γ, γ̄ discounting function used by J and (M,V ) estimators.
δt, δ̄t TD error of the J and (M,V ) estimators at time t.
ρ̄ importance sampling ratio for estimating the variance of the target return from off-policy samples.
η importance sampling ratio used to estimate the variance of the off-policy return.

the fixed point solution of the value estimate, only the
rate at which learning occurs. It does, however, affect the
observed variance of the return, which we estimate. The
λ-return is implemented using traces as in the following
TD(λ) algorithm, shown with accumulating traces:

et(s)←
{
γtλtet−1(s) + 1 s = St

γtλtet−1(s) ∀s ∈ S, s 6= St

Jt+1(St)← Jt(St) + αδtet(St)
(13)

For notational purposes, we define the trace parameter
for the value and secondary estimators as κ and κ̄ respec-
tively. Both of these parameters are independent of the
λ-return for which we estimate the variance. That is, we
are entirely free to estimate the variance of the λ-return
for any value of λ independently of the use of any traces
in either the value or secondary estimator.

State-Dependent γ. While most RL methods focus
on fixed discounting values, it is straightforward to use
state-based discounting (Sutton, Modayil, et al., 2011),
where γt ≡ γ(St) (White (2017) go further by defin-
ing transition based discounting). This generalization en-
ables a wider variety of returns to be considered. First,
it allows a convenient means of describing both episodic
and continuing tasks and provides an algorithmic mech-
anism for terminating an episode without defining a re-
current terminal state explicitly. Further, it allows for
event-based terminations (Sutton, Modayil, et al., 2011).
It also enables soft terminations which may prove use-
ful when training an agent with sub-goals (White, 2017).
The use of state-dependent discounting functions is rela-
tively new and remains to be extensively explored.

Off-policy learning. Value estimates are made with re-
spect to a target policy, π. If the behavior policy, µ = π
then we say that samples are collected on-policy, other-
wise, the samples are collected off-policy. An off-policy
learning approach is to weight each update by the im-
portance sampling ratio: ρt = π(St,At)

µ(St,At)
. There are two

different scenarios to be considered when estimating the

variance of the return in the off-policy setting. The first
is estimating the variance of the on-policy return of the
target policy while following a different behavior policy.
The second has the goal of estimating the variance of the
off-policy return itself. The off-policy λ-return is:

Gλ:ρt =ρt(Rt+1 + γt+1(1−λt+1)jt(St+1) +

γt+1λt+1G
λ:ρ
t+1). (14)

where the multiplication by the potentially large impor-
tance sampling ratios can significantly increase variance.

It is important to note you would only ever estimate one
or the other of these settings with a given estimator. Let
η be the weighting for the value estimator, and ρ̄ the
weighting for the variance estimator. If estimating the
variance of the target return from off-policy samples, the
first scenario, ηt = 1 ∀t and ρ̄t = ρt. If estimating the
variance of the off-policy return ρ̄t = 1 ∀t and ηt = ρt.

3.2.1 The Extended Algorithms

To estimate V , our method uses both value and variance
estimators. The value estimator provides an estimate of
the expected return. The variance estimator, on the other
hand, uses the value estimator to provide an estimate of
the variance of the return. Our method, DVTD, and the
indirect method, VTD, can be seen as simply defining
a meta-reward and a discounting function and can thus
be learned with any known TD method, such as TD with
accumulating traces as shown in Equation 13. Table 1
summarizes our notation.

Direct Variance Algorithm - DVTD

R̄t+1 ← (ηtδt + (ηt − 1)Jt+1(s))2

γ̄t+1 ← γ2t+1λ
2
t+1η

2
t

δ̄t ← R̄t+1 + γ̄t+1Vt(s
′)− Vt(s)

ēt(s)←
{
ρ̄t(γ̄tκ̄tēt−1(s) + 1) s = St

ρ̄t(γ̄tκ̄tēt−1(s)) ∀s ∈ S, s 6= St

Vt+1(s)← Vt(s) + ᾱδ̄tēt(s)
(15)
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We also present the full VTD algorithm below (again,
shown with accumulating traces). Note that this algo-
rithm does not impose that the variance be non-negative.

Second Moment Algorithm - VTD

Ḡt ← Rt+1 + γt+1(1− λt+1)Jt+1(s′)

R̄t+1 ← η2t Ḡ
2
t + 2η2t γt+1λt+1ḠtJt+1(s′)

γ̄t+1 ← η2t γ
2
t+1λ

2
t+1

δ̄t ← R̄t+1 + γ̄t+1Mt(s
′)−Mt(s)

ēt(s)←
{
ρ̄t(γ̄tκ̄tēt−1(s) + 1) s = St

ρ̄t(γ̄tκ̄tēt−1(s)) ∀s ∈ S, s 6= St

Mt+1(s)←Mt(s) + ᾱδ̄tēt(s)

Vt+1(s)←Mt+1(s)− Jt+1(s)2

(16)

4 EXPERIMENTS

The primary purpose of these experiments is to demon-
strate that both algorithms can approximate the true ex-
pected V under various conditions in the tabular setting.
We consider two domains. The first is a deterministic
chain, which is useful for basic evaluation and gives re-
sults which are easy to interpret (Figure 2). The second is
a randomly generated MDP, with different discount and
trace-decay parameters in each state (Figure 3). For all
experiments Algorithm 13 is used as the value estimator.
Unless otherwise stated, traces are not used (κ = κ̄ = 0)
and estimates were initialized to zero. For each experi-
mental setting the average of 30 separate experiments is
presented with standard deviation shown as shaded re-
gions. True values were determined by Monte Carlo es-
timation and are shown as dashed lines in the figures.

We look at the effects of relative step-size between
the value estimator and the variance estimators in Sec-
tion 4.1. Then, in Section 4.2 we use the random MDP to
show that both algorithms can estimate the variance with
state-dependent γ and λ. In Section 4.3 we evaluate the
two algorithms’ responses to errors in the value estimate.
Section 4.4 looks at the effect of using traces in the esti-
mation method. We then examine the off-policy setting
in Section 4.5. Finally, Section 4.6 provides experimen-
tal results in a linear function approximation setting.

4.1 THE EFFECT OF STEP-SIZE

We use the chain MDP to investigate the impact of step-
size choice. In Figure 4(a) all step-sizes are the same
(α = ᾱ = 0.001) and here both algorithms behave simi-
larly. For Figure 4(b) the step-size of the value estimate,
(α = 0.01), is greater than that of the secondary estima-
tors, (ᾱ = 0.001). Now DVTD smoothly approaches the

s0start s1 s2 s3
N (1, 1) N (1, 1) N (1, 1) N (1, 1)

Figure 2: Chain MDP with 4 non-terminal states and 1
terminal state. From non-terminal states there is a sin-
gle action with a deterministic transition to the right. On
each transition, rewards are drawn from a normal distri-
bution with mean and variance of 1.0. Evaluation was
performed for λ = 0.9, which was chosen because it is
not at either extreme and because 0.9 is a commonly used
value for many RL experimental domains.
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Figure 3: Random MDP, with a stochastic policy and
state-based γ and λ. The state-dependent values of γ
and λ are chosen to provide a range of values, with at
least one state acting as a terminal state where γ = 0.
On-policy action probabilities are indicated by µ and off-
policy ones by π.

correct value, while VTD first dips well below zero. This
is expected as the estimates are initialized to zero and the
variance is calculated as V (s) = M(s) − J(s)2. If the
second moment lags behind the value estimate, then the
variance will be negative. In Figure 4(c) the step-size for
the secondary estimators is larger than for the value es-
timator (0.001 = α < ᾱ = 0.01). While both methods
overshoot the target in this example, VTD has greater
overshoot. For both cases of unequal step-size, we see
higher variance in the estimates for VTD.

Figure 5 explores this further. Here the value estimator
is initialized to the true values and updates are turned
off (α = 0). The secondary estimators are initialized to
zero and learn with ᾱ = 0.001, chosen simply to match
the step-sizes used in the previous experiments. Despite
being given the true values the VTD algorithm produces
higher variance in its estimates, suggesting that VTD is
dependent on the value estimator tracking.

This sensitivity to step-size is shown in Figure 6. All es-
timates are initialized to their true values. For each ratio,
we computed the average variance of the 30 runs of 2000
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(a)

(b)

(c)

Figure 4: Chain MDP (λ = 0.9). Varying the ratio
of step-size between value and variance estimators. a)
Step-sizes equal. α = ᾱ = 0.001. b) Variance step-size
smaller. α = 0.01, ᾱ = 0.001. c) Variance step-size
larger. α = 0.001, ᾱ = 0.01. We see greater variance in
the estimates and greater over/undershoot for VTD when
step-sizes are not equal.

episodes. We can see that DVTD is largely insensitive
to step-size ratio, but that VTD has higher mean squared
error (MSE) except when the step-sizes are equal. This
result holds for the other experimental settings of this pa-
per, including the random MDP, but further results are
omitted for brevity.

Would there ever be a situation where different step-sizes
between value and secondary estimators is justified? The
automatic tuning of parameters, such as step-size, is an
important area of research, seeking to make learning
algorithms more efficient, robust and easier to deploy.
Methods which automatically set the step-sizes may pro-
duce different values specific to the performance of each
estimator. One such algorithm is ADADELTA, which
adapts the step-size based on the TD error of the estima-
tor (Zeiler, 2012). Figure 7 shows that using a separate
ADADELTA (ρ = 0.99, ε = 1e−6) step-size calculation
for each estimator results in higher variance for VTD as
expected, given that the value estimator and VTD pro-
duce different TD errors.

Figure 5: Chain MDP (λ = 0.9). Value estimate held
fixed at the true values (α = 0, ᾱ = 0.001). Notice the
increased estimate variance for VTD, especially State 0.

Figure 6: Chain MDP (λ = 0.9). The MSE summed
over all states as a function of ratios between the value
step-size α (shown along the x-axis) and the variance
step-size ᾱ (shown in the 5 series). The direct algorithm
is indicated by the solid lines, and VTD is indicated by
the dashed. The MSE of the VTD algorithm is higher
than the direct algorithm, except when the step-size is
the same for all estimators, α = ᾱ or for very small ᾱ.

4.2 STATE-DEPENDENT γ AND λ.

One of the contributions of VTD was the generalization
to support state-based γ and λ. Here we evaluate the ran-
dom MDP from Figure 3 (in the on-policy setting, using
µ), which was designed for this scenario and which has
a stochastic policy, is continuing, and has multiple pos-
sible actions from each state. Both algorithms achieved
similar results (see Appendix A).

4.3 VARIABLE ERROR IN THE VALUE
ESTIMATES

The derivation of our DVTD assumes access to the true
value function. The experiments of the previous sections
demonstrate that both methods are robust under this as-
sumption, in the sense that the value function was es-
timated from data and used to estimate V . It remains
unclear, however, how well these methods perform when
the value estimates converge to biased solutions.

To examine this, we again use the random MDP shown
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Figure 7: Chain MDP (λ = 0.9). Results using
ADADELTA algorithm to automatically and indepen-
dently set the step-sizes α and ᾱ. The step-sizes pro-
duced are given in Appendix D.

Figure 8: Random MDP. For each run, the value es-
timate of each state is offset by a random noise drawn
from a uniform distribution whose size is a function of
an error ratio and the maximum true value in the MDP.
Standard deviation of the estimates is shown by shading.

by Figure 3. True values for the value functions and
variance estimates are calculated from Monte Carlo
simulation of 10,000,000 timesteps. For each run of the
experiment each state of the value estimator was initial-
ized to the true value plus an error (J(s)0 = j(s) + ε(s))
drawn from a uniform distribution: ε(s) ∈ [−ζ, ζ], where
ζ = maxs(|v(s)|) ∗ err ratio (the maximum value in this
domain is 1.55082409). The value estimate was held
constant throughout the run (α = 0.0). The experiment
consisted of 120 runs of 80,000 timesteps. To look at the
steady-state response of the algorithms we use only the
last 10,000 timesteps in our calculations. Figure 8 plots
the average variance estimate for each state with the
average standard deviation of the estimates as the shaded
regions. Sweeps over step-size were conducted, ᾱ ∈
[0.05, 0.04, 0.03, 0.02, 0.01, 0.007, 0.005, 0.003, 0.001],
and the MSE evaluated for each state. Each data point
is for the step-size with the lowest MSE for that error
ratio and state. While the average estimate is closer to
the true values for VTD, the variance of the estimates is
much larger. Further, the average estimates for VTD are
either unchanged or move negative, while those of the
direct algorithm tend toward positive bias.

For Figure 9 the MSE is summed over all states. Again,
for each error ratio the MSE was compared over the same

Figure 9: Random MDP. The MSE computed for the
last 10,000 timesteps of 120 runs summed over all states
using the step-size with the lowest overall MSE at each
error ratio. For each point the step-size used (α = ᾱ) is
displayed.

Figure 10: Random MDP. Using traces (TD(λ), α =
ᾱ = 0.01). Traces only used in value estimator (κ =
1.0, κ̄ = 0.0). Notice the slight increase in the variance
of the VTD estimates for State 0 and 3.

step-sizes as before and, for each point, the smallest MSE
is plotted. These results suggest the direct algorithm is
less affected by error in J .

4.4 USING TRACES

We briefly look at the behavior of the random MDP
when traces are used. We found no difference when
traces are only used in the secondary estimator and not
in the value estimator (κ = 0.0, κ̄ = 1.0. See Ap-
pendix A, Figure 14). Figure 10 considers the opposite
scenario, where traces are only used in the value estima-
tor (κ = 1.0, κ̄ = 0.0). Here we do see a difference.
Particularly the VTD method shows more variance in its
estimates for State 0 and 3.

4.5 OFF-POLICY LEARNING

We evaluate two different off-policy scenarios on the ran-
dom MDP. First, we estimate V under the target policy
from off-policy samples. That is, we estimate the V that
would be observed if we followed the target policy, i.e.,
η = 1, ρ̄ = ρ. Both methods achieved similar results in
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Figure 11: Random MDP estimating the variance of the
off-policy return (α = ᾱ = 0.01, ρ̄ = 1, η = ρ).

this setting (Figure 15). In the second off-policy setting,
we estimate the variance of the off-policy return (Equa-
tion 14). Here ρ̄ = 1 and η = ρ. Figure 11 shows that
both algorithms successfully estimate the return in this
setting. However, despite having the same step-size as
the value estimator, VTD produces higher variance in its
estimates, as is most clearly seen in State 3.

4.6 FUNCTION APPROXIMATION

While this paper has focused on the tabular case, where
each state is represented uniquely, here we include a first
empirical result in the function approximation setting.
We evaluate both methods on the random walk shown in
Figure 12(a). This domain was previously used by Tamar
et al. (2016) for indirectly estimating the variance of the
return with LSTD(λ). We use transition based γ (White,
2017) to remove the terminal state and translate the task
into a continuing task. Further, we alter the state repre-
sentation to make it more amenable to TD(λ). For a state
si we used φJ(i) = [1, (i + 1)/30]T as features for the
value learner and φM (i) = φV (i) = [1, (i+ 1)/30, (i+
1)2/302]T as features for the secondary learner. We set
κ = κ̄ = 0.95 and performed sweeps over step-sizes
of {2i, i ∈ {−15,−12, . . . ,−1, 0}}. We first found
the best step-size for the value learner and then found
the best step-size for VTD. Using the same step-size for
VTD and DVTD, we obtain the results shown in Fig-
ure 12(b). Here we see DVTD drastically outperforms
VTD. Further details are available in Appendix C.

5 DISCUSSION

Both DVTD and VTD effectively estimate the variance
across a range of settings, but DVTD is simpler and more
robust. This simplicity alone makes DVTD preferable.
The higher variance in estimates produced by VTD is
likely due to the larger target which VTD uses in its
learning updates: E[X2] ≥ E[(X − E[X])2]; we show
more explicitly how this affects the updates of VTD
in Appendix E. We expect the differences between the
two approaches to be most pronounced for domains with
larger returns than those demonstrated here. Consider

s0 s1 s2 s27 s28 s290.3

0.7 0.7

. . .

0.7 0.7
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Figure 12: Random Walk. a) Random walk with re-
wards of −1 for every transition to a non-terminal state.
Note that there is no discounting in this domain. b) Re-
sults under linear function approximation averaged over
100 runs. Shading indicates standard error (negligible).

the task of a helicopter hovering formalized as a rein-
forcement learning task (Kim et al., 2004). In the most
well-known variants of this problem the agent receives a
massive negative reward for crashing the helicopter (e.g.,
minus one million). In such problems the magnitude and
variance of the return is large. Here, estimating the sec-
ond moment may not be feasible from a statistical point
of view, whereas the target of our direct variance estimate
should be better behaved. By focusing on simple MDPs
we were able to carefully evaluate the properties of these
algorithms while keeping them isolated from additional
effects like state-aliasing due to function approximation.
Further studies in more complex settings, such as func-
tion approximation, are left to future work.
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Abstract

We present a data-driven benchmark system
to evaluate the performance of new MCMC
samplers. Taking inspiration from the COCO
benchmark in optimization, we view this
benchmark as having critical importance to
machine learning and statistics given the rate
at which new samplers are proposed. The
common hand-crafted examples to test new
samplers are unsatisfactory; we take a meta-
learning-like approach to generate realistic
benchmark examples from a large corpus of
data sets and models. Surrogates of posteriors
found in real problems are created using highly
flexible density models including modern neu-
ral network models. We provide new insights
into the real effective sample size of various
samplers per unit time and the estimation effi-
ciency of the samplers per sample. Addition-
ally, we provide a meta-analysis to assess the
predictive utility of various MCMC diagnos-
tics and perform a nonparametric regression to
combine them.

1 INTRODUCTION

Markov chain Monte Carlo (MCMC) methods have seen
a huge increase in use over the last few decades. The
goal in MCMC methods is to take samples from a
complex probability distribution p? given access only
to its unnormalized density p̃. The primary use case
for MCMC methods is sampling from Bayesian poste-
riors for the purpose of Monte Carlo integration, which
includes building posterior predictive distributions and
posterior summaries. These posteriors are generally in-
tractable to normalize and sample from in modern mod-
els, including models as simple as logistic regression.

Approaches such as rejection sampling provide exact in-
dependent samples, and importance sampling provides
exact independent (but weighted) samples. These ap-
proaches are generally computationally inefficient (re-
jection sampling) or are statistically unsound (impor-
tance sampling) except in very low dimensional prob-
lems [MacKay, 2003, Ch. 29]. MCMC methods pro-
duce a Markov chain that marginally samples from the
target distribution p? exactly and have a low per sample
computation cost. The downside is that they provide a
sequence of correlated samples, albeit marginally from
the target distribution. Therefore, any estimates derived
from an MCMC chain of length N will have far less
accuracy than N iid samples. Despite there being nu-
merous MCMC diagnostics, there is no practical way to
guarantee the accuracy of derived estimates in practice.

Each machine learning conference contains a publica-
tion proposing a new variation on MCMC methods. The
community lacks a method to determine if these new
methods actually sample from posteriors found in real
problems with improved accuracy over existing sam-
plers. New methods are benchmarked via either 1) hand-
crafted toy problems (where a ground-truth is known) or
2) test set performance on real problems. The issue with
hand-crafted examples is obvious: Performance on these
problems may have little relation to performance on real
problems and it is at odds with accepted practice in mod-
ern machine learning.

Benchmarking via test set performance on real problems
is laudable. However, it confounds the specification of
the model and priors with the performance of the sam-
pler. In a misspecified model it is possible that a sampler
stuck in an unrepresentative part of the posterior could
actually have higher test set performance [Sharp and Rat-
tray, 2010]. Conversely, a better sampler may improve
test set performance by having good local mixing; how-
ever, it is still nowhere near exact iid samples. There is
no way to quantify the distance to exact iid samples from
test set performance alone.
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Whether current samplers are providing samples from
anything close to the true posterior on difficult problems
is of critical importance for determining future research
directions. Are samplers with higher test set performance
actually sampling from real posteriors more faithfully?
Can we sample with any fidelity from complex high di-
mensional distributions? Is that merely a “fool’s errand”?
The answers to these questions will determine if it is a
worthwhile endeavor to continue to hone MCMC meth-
ods for application in successful modern models such as
deep neural networks.

Practitioners in Bayesian statistics have long faced the
dilemma of whether they can trust the output of their
sampler, in particular, because statisticians are not tra-
ditionally concerned only with test set error rates. As a
result, there is decades of work in developing MCMC di-
agnostics that aim to alert a practitioner to a poorly mix-
ing chain [Cowles and Carlin, 1996]. That is, if a chain
has a long autocorrelation time, the entire chain may be
of equivalent accuracy to just a few iid samples. The di-
agnostics, by construction, have a low type I error: If a
chain closely resembles iid samples, they will not alert
that it is mixing poorly. However, there are no guaran-
tees on type II error: If a chain is mixing poorly, the
diagnostic might not alert. Indeed, there are many ways
to construct examples where an MCMC procedure unde-
tectably fails: distant modes, Neal’s funnel [Thompson,
2011], extreme ill-conditioning, etc. However, are these
realistic stress tests for MCMC methods or merely patho-
logical cases? We do not know.

We propose a new data-driven approach to create a
benchmark that estimates how well various MCMC pro-
cedures work on real problems. Arguably, algorithms in
machine learning and statistics rely on the “workhorses”
of either optimization or sampling methods. The world
of (non-convex) optimization has already tackled this
challenge with the COCO benchmark [Hansen et al.,
2016], which contains a test battery of difficult optimiza-
tion problems. Various approaches are tested to validate
if they can optimize the objective function to a target
level within a fixed number of function evaluations. Our
approach is an analogous system for sampling methods.
However, we further improve upon this using flexible (in-
cluding neural net based) benchmark examples that have
been trained to match posteriors found in practice.

In our approach we use a large “data set of data sets”
and a diverse “model zoo” to create a representative set
of examples. Long MCMC chains are drawn (using
NUTS [Hoffman and Gelman, 2014]) from each of these
posteriors. Flexible unsupervised models that serve as
a ground-truth in the benchmarking phase are fit to the
chains to construct the benchmark examples.

More concretely, each combination of real data set (e.g.,
MNIST) and real model (e.g., logistic regression) results
in a Markov chain from NUTS. We then fit an unsuper-
vised model (e.g., mixture of Gaussians) to this chain to
serve as a benchmark example distribution. Once trained,
these benchmark example distributions are functionally
equivalent to hand-crafted examples such as the toy pos-
terior distributions usually used to benchmark samplers
(or such as those in COCO). However, these examples
are not hand-crafted but rather are much more represen-
tative of real problems. Because it is possible to draw
exact (iid) samples from the benchmark example distri-
butions, we now have a ground-truth set of samples to
validate the accuracy of the sampling methods.

We derive a variety of metrics that summarize the perfor-
mance of a sampler for comparing its output to ground-
truth iid samples. The ground-truth samples also allow
us to assess how well the MCMC diagnostics actually
predict estimation performance. In particular, we look
at the effective sample size (ESS) because it provides a
concrete statement on sample quality [Kass et al., 1998].

The outline of this paper is as follows: In Section 2 we
provide some background on MCMC and its diagnos-
tics/performance measures. In Sections 3 and 4 we ex-
plain the methodology of the benchmark and its pipeline
of five sequential phases. Finally, in Section 5, we
present results illustrating the advantages of various sam-
plers and the utility of various MCMC diagnostics.

Contributions We summarize the contributions of this
work as follows: 1) We provide a new and novel bench-
mark to describe how well various samplers work on re-
alistic problems. This involves design of fair and sen-
sible metrics to score samplers across problems. This
work creates a software system that will serve as a prac-
tical tool in algorithm development analogous to ML-
comp/CodaLab or COCO. 2) We shed light on how
well the common MCMC diagnostics predict the real
estimation performance of MCMC methods. We fur-
ther create a data-driven meta-diagnostic by combining
MCMC diagnostics to predict real sampler performance.
The code for the system is available at github.com/
bradyneal/sampling-benchmark.

Related work The closest existing system is Sampler-
Compare of Thompson [2011], which tests samplers on
a handful of hand-crafted stress-test cases such as Neal’s
funnel. However, SamplerCompare is more an R pack-
age to aid evaluation than a complete benchmark. A re-
cent piece of work from systems biology [Ballnus et al.,
2017] compares various samplers for dynamical systems
(i.e., filtering) on a set of hand-crafted ODE systems in-
spired by biological models.

74



Figure 1: Flowchart illustrating the six phases in our methodology. Phases 0–2 are for creating benchmark examples and are not
re-run when new samplers are tested. Phase 2 includes mixture models and modern neural net methods.

2 BACKGROUND

The notion of a black box is highly relevant to conceptual
understanding of this work. Fundamentally, an MCMC
sampler is a system that inputs a black box that computes
an unnormalized density p̃ ∝ p? (and possibly its gradi-
ent ∇ log p̃) and a previous sample xt−1 ∈ RD in the
Markov chain; and outputs another sample xt ∈ RD.
Once the Markov chain has converged, these samples
are theoretically guaranteed to marginally come from the
density p?, albeit with temporal correlation. If the previ-
ous sample was drawn exactly, xt−1 ∼ p?, then xt ∼ p?
exactly as well. This is a result of detailed balance.

By analogy, optimization algorithms take an objective
function f ∈ RD → R (and possibly its gradient ∇f )
as a black box and produce points xt ∈ RD that succes-
sively minimize f as much as possible. Just as COCO
provides its benchmark objective functions f as a black
box to the optimizers and keeps hidden the true optimum,
our benchmark provides the unnormalized density p̃ as a
black box to the samplers. Our benchmark keeps hidden
the parameterization of p̃ needed to efficiently take iid
samples from p?.

2.1 TRADITIONAL MCMC DIAGNOSTICS

Given that we have a ground-truth to evaluate the per-
formance of the various samplers, we can also bench-
mark the diagnostics by seeing how predictive they are
of actual performance. In particular, we consider three
diagnostics in this paper: ESS, Gelman-Rubin (GR),
and Geweke. ESS aims to estimate how many iid sam-
ples have the same estimation performance as the cor-
related samples found in the MCMC chain. Gelman-
Rubin [Gelman and Rubin, 1992] and Geweke [Geweke,
1992] more closely follow a test statistic paradigm than
an estimation one. Gelman-Rubin compares the variance
within a single chain to variance between chains (inde-
pendent restarts). This quantity should be close to one

for well-mixing chains and can be very large for poorly
performing chains. The Geweke diagnostic uses a single
chain and compares the variance between chunks.

The ESS diagnostic is basically a rescaling of the ex-
pected square error (i.e., MSE) on estimating the mean
in a single dimension (marginal) of x. ESS is based on
the notion that for the marginal xd:

Ep? [(µ̂d − µd)2] = Varp? [µ̂d − µd] + Ep? [µ̂d − µd]2
= Varp? [xd]/N , d ∈ 1:D , (1)

µ̂ := 1
N

∑N
i=1 xi , µ := Ep? [x] , (2)

which utilizes that µ̂d is an unbiased estimate of µd. We
are careful to distinguish expectations and variances with
respect to p?, where x is iid, from q, where the samples
are correlated and drawn from an MCMC method. Nat-
urally, by re-arranging (1), the effective sample size for
non-iid samples is:

ESS :=
Varq[xd]

Eq[(µ̂d − µd)2]
∈ R+ . (3)

Unlike (1), this can be estimated without ground-truth
samples from p?. However, the difficult denominator
term is typically estimated using the empirical linear
auto-correlation of the Markov chain. This linearity as-
sumption is obviously a potential source of error in the
ESS. The fixation in estimating the accuracy of the mean
µ̂ is also a weakness. In Section 4.6, we look at the
real effective sample size by comparing estimates with
the ground-truth samples. It also allows us to look at
measures other than simply the fidelity in matching the
means (µ̂−µ), such as variance or shape of the marginals.

3 METHODOLOGY

Our benchmark system follows a six phase approach,
which we explain at a high level in this section. In Sec-
tion 4, we provide low-level specifics. A graphical sum-
mary of this section is provided in Figure 1.
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Figure 2: Graphical depiction of Figure 1 on a particular example. We begin with a real posterior from a real problem on the left,
which is sampled via a Markov Chain to get samples in phase 1. These are fit to get a similar surrogate posterior in phase 2. MCMC
samplers are run on this phase 2 density, but exact samples can also be taken for comparison. Note that the exact posterior, and the
real data that produced it, are not used for comparing the exact samples and the MCMC samples in phase 4. The phase 2 models
are used where toy examples are often used; although it is not the original posterior, it is a far-reaching improvement.

In phase 0, we create a “corpus” of data sets that we refer
to as a “data set of data sets.” This is meant to create a
realistic sample of problems that a practitioner may en-
counter “in the wild.” Such an approach was also taken
in the AutoML competition [Guyon et al., 2015] and the
automated statistician project [Lloyd et al., 2014]. Our
approach can be thought of as a form of meta-learning.

In phase 1, we use a model zoo to simulate a variety of
(Bayesian) models that a practitioner might attempt to
apply to a real problem. There are models for regres-
sion and classification. Each model/data set pair results
in a posterior over a parameter space, which varies in di-
mensionality depending on the problem. Except in very
simple cases (e.g., linear regression), we are not able to
obtain samples from these posteriors exactly. We use
NUTS, the default sampler in probabilistic programming
languages (PyMC3 [Salvatier et al., 2016] and Stan [Car-
penter et al., 2016]), because it is generally considered to
be a good off-the-shelf sampler—especially when paired
with the intelligent initialization and automatic tuning
found in these systems. Therefore, by running multiple
long chains of NUTS (3–5 chains for 30 minutes each)
on the posteriors, we obtain a sufficient approximation
and representation for phase 2.

In phase 2, we run various density estimation mod-
els to generate benchmark example distributions on the
Markov chains from phase 1. We run a separate training
procedure on each model/data set pair. These benchmark
example distributions serve as surrogates for the real pos-
teriors found in phase 1. Note that the goal is not to repli-
cate the posteriors from phase 1 exactly, but to generate
example distributions that are qualitatively similar to the
real posteriors in phase 1.

This gives us example distributions that are more realistic
than the usual hand-crafted toy problems. Nonetheless,
we train multiple models and take the one with the high-
est held-out likelihood on the last 20% of the Markov
chain found in phase 1. We use held-out likelihood be-
cause it is the most widely accepted generic method of
verifying model fidelity. Model checking diagnostics are
also run to verify the similarity between the benchmark
example distributions (surrogates) and their correspond-
ing Markov chains from the real posteriors (originals).

When selecting models for benchmark example distri-
butions in phase 2, we have the following requirements:
1) The models are flexible enough to closely fit the pos-
teriors found in phase 1, 2) They can serve as a black
box, providing an unnormalized density p̃ (and its gradi-
ent) when queried at an arbitrary point x, and 3) We can
efficiently sample (ground-truth) from them given their
parameters (which are hidden from the samplers).

In phase 3, we benchmark a collection of samplers. If
someone invents and provides a new sampling algorithm,
it is added in phase 3. Phases 0–2 remain fixed as new
samplers are submitted to be benchmarked. Each sam-
pler to be benchmarked is run on each of the benchmark
example distributions for multiple chains. Each chain is
allowed to run for a fixed period of time. The samples
from the Markov chains are saved as the phase 3 output.

In phase 4, we take a large number (e.g., ∼105) of exact
iid samples from the benchmark example distributions
as a ground-truth. The square loss between point esti-
mates (e.g., µ̂d or σ̂2

d) taken from the Markov chains from
phase 3 and the point estimates from the exact chains are
aggregated. We also compute and store the MCMC di-
agnostics for each chain.
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In phase 5, we aggregate the performance results by
looking at the real effective sample size as derived from
the square errors in point estimation. We also define
transformations of the real effective sample size, which
we will refer to as efficiency, normalized effective sam-
ple size, and effective sample size deviation. In addi-
tion, we perform a meta-analysis using Gaussian process
(GP) [Rasmussen and Williams, 2006] regression to pre-
dict the real effective sample size given the MCMC di-
agnostics. This will be useful to practitioners aiming to
quantify their confidence in an MCMC-based estimate
using the diagnostics available.

We present an example posterior following this pipeline
in Figure 2. Note that after the explicit model is fit in
phase 2, the data that produced the original posterior is
completely irrelevant for the rest of the process. Only
the surrogate model is used for benchmarking.

4 ADDITIONAL DETAILS

In this section we present additional details for the con-
struction of each phase.

4.1 PHASE 0: COLLECT DATA SETS

Phase 0 involved downloading 2,200 data sets from
openml.org to form our data set of data sets. We con-
sidered other sources, such as the classic UCI repository,
mldata.org, and Kaggle, but settled on OpenML be-
cause it had the most standardized format and meta-data.
Such systems are necessary for automated processing.

The data sets were diverse in that they varied in dimen-
sion from 1 to 61,359, sample size from 5 to 7,619,400,
and the number of output classes (for classification) from
binary to 100.

After downloading, we subjected each data set to some
preprocessing to simulate the diverse set of practices a
practitioner might follow. Each data set was randomly
preprocessed in one of three ways: standardization, ro-
bust standardization (using medians and interquartile
ranges), or whitening. Categorical variables were rep-
resented with one-hot encodings.

4.2 PHASE 1: SAMPLE THE MODEL ZOO

For the model zoo, we used all of the standard mod-
els (regression and classification) typically used with
PyMC3. This includes generalized linear models
(GLMs) such as logistic regression, but also atypical
GLMs such as robust linear regression (linear regres-
sion with Student’s-t noise). In addition to models that
are linear in the feature space, we included models that

are linear in a second order transformation of the feature
space. We included Gaussian processes with unknown
hyper-parameters (e.g., MCMC sampling was done on
the unknown hyper-parameters). Bayesian neural net-
works were also included.

To keep computation time reasonable, we limited the
sample size for expensive models (e.g., GPs), and placed
some limits on input dimensionality. Where dimension-
ality needed to be reduced we used PCA [Jolliffe, 1986],
as that is the most frequently used method in practice to
reduce dimensionality.

4.3 PHASE 2: FIT FLEXIBLE SURROGATES

There are three varieties of models that satisfy the three
requirements (flexibility, tractable density, and fast ex-
act sampling) for benchmark example densities: mixture
models, RNADE [Uria et al., 2013], and Real NVP [Dinh
et al., 2016]. In each example, we pick the model with
the best held-out likelihood on the last 20% of the chain.

For mixture models, we considered mixture of Gaussians
(MoG) with expectation-maximization (EM) [Dempster
et al., 1977] and variational MoG. Note that, for simplic-
ity, these models are not themselves fit using MCMC.
The Bayesian Occam’s razor effect [Jefferys and Berger,
1992] allowed us to simply fix the number of mixture
components to 25 in variational MoG. We used five-fold
cross-validation to select the number of components in
EM MoG. There is no consistent winner between these
models; the chosen model is example dependent.

We also tuned the RNADE learning rate and hyper-
parameters based on pilot runs. Surprisingly, the mixture
models often, but not always, outperformed RNADE on
the held-out likelihood. Real NVP based models strug-
gled to achieve competitive test set scores.

These models behave better numerically when trained on
standardized data. Care is taken to reverse this standard-
ization in phase 3, so the samplers are forced to attempt
to sample from the posterior in its original scale.

4.4 PHASE 3: RUN THE SAMPLERS

Phase 3 forms the real “meat” of the benchmark. This is
where candidate sampling algorithms are actually run on
the benchmark example densities. The list of sampling
algorithms is not intended to be exhaustive but rather
demonstrate the utility of the benchmark system.

Whether originally designed this way or not, nearly all
respected MCMC procedures proceed by proposing a
new point using a proposal distribution. The new point
is then accepted or rejected using a Metropolis-Hastings
step. Therefore, the difference between samplers is based
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upon their proposal distributions. We provide a preview
of the proposals used in Section 5.

Until recently, the most widely used MCMC procedure
was random walk Metropolis, which uses a Gaussian
random walk proposal p(xt|xt−1) = N (xt|xt−1,Σ),
where Σ is typically diagonal. Modern packages such as
PyMC3 allow for automatic tuning of the proposal width
Σ, which is critical to achieve good performance. We
also consider Cauchy and Laplace distributed proposals.

We include Hamiltonian Monte Carlo (HMC) [Duane
et al., 1987] methods, which also utilize gradient infor-
mation to more efficiently “explore” the space. Recently,
the No-U-Turn-Sampler (NUTS) [Hoffman and Gelman,
2014] was introduced as an extension of HMC that au-
tomatically adapts some of its tuning parameters in or-
der to attempt high off-the-shelf performance. We in-
clude an alternate auxiliary variable method known as
slice sampling [Neal, 2003], which we apply in a coordi-
nate Gibbs-like fashion.

We also alternate different proposals to form compound
proposals. For instance, we consider mixing expensive
efficient proposals like NUTS with cheap inefficient pro-
posals like random walk Metropolis.

Finally, we consider an unconventional sampler known
as emcee [Foreman-Mackey et al., 2013], which is pop-
ular in fields such as astrophysics. However, it has not
gained much use in machine learning. It works by run-
ning multiple “walkers” to explore the space in parallel.
Emcee is very fast and can be parallelized, but its efficacy
in higher dimensions is somewhat controversial.

Initialization The accuracy of MCMC based estimates
are a function of two factors: the burn-in time and the
mixing time. Burn-in time, or time until convergence,
is how many steps k are required before p(xk) ≈ p?

if x0 ∼ p0, where p0 is some distribution to initialize
the chain. The mixing time, or memory length, is how
long it takes to get an independent sample once a chain
has converged: how many steps k are required before
MI(xk;x0) ≈ 0 if x0 ∼ p?. The burn-in time is crucially
dependent on the initialization while the mixing time is
purely a function of the proposal.

In order to evaluate these two effects separately, we of-
fer two options for initialization: 1) initialize the chain
from an exact sample (because we can do that with the
benchmark density examples), or 2) initialize from an
ADVI [Kucukelbir et al., 2017] fit to the example density.
Additionally, most methods benefit from a prior guess at
the relative scale of the variables before tuning. We can
use the resulting scales from ADVI for this purpose as
well. This allows us to separate the effects of initializa-

tion and mixing. We use the PyMC3 defaults for these
tuning parameters as that is what a practitioner is most
likely to use in practice. However, alternate schemes can
certainly be used within the benchmark.

4.5 PHASE 4: LOG PERFORMANCE

Each sampler is run for a fixed time limit of 15 minutes
of CPU time. We log the performance of the chain along
a uniform grid of 100 points in time (i.e., every 9s) to
monitor real convergence over time. Fair evaluation re-
quires evaluating each sampler with a fixed time budget
rather than a fixed number of samples. We expect sam-
plers such as NUTS to be very efficient and high per-
forming on a per-sample basis. However, they require
significantly more computation (including gradients) per
sample than simpler methods. Therefore, their compari-
son is not as obvious a-priori. We also log the traditional
MCMC diagnostics of each chain.

4.6 PHASE 5: ANALYZE

To summarize the performance of a Markov chain in
comparison with ground-truth samples we need to define
some evaluation quantities. First, recall that we have K
Markov chains {x1:Nk}Kk=1 for each example p? ∈ M
and sampler S ∈ S.

Each sampler is evaluated on each example separately
and can be scored relative to a variety of estimators
θ̂(x1:N ). Analogous to (3), we can score the samples
of a Markov chain by the closeness of its mean on a
dimension d to the ground-truth samples: θ = E[xd]
and θ̂(x1:N ) = 1

N

∑N
i=1[xi]d. We can also consider how

close the variance of the Markov chain samples match
the ground-truth samples: θ = Var[xd]. This flexibility
is a generalization of ESS. As in (3), we assume the esti-
mators θ̂ are unbiased, and just as with the sample mean
µ̂: Varp? [θ̂] ∝ N−1. Furthermore, we assume here that
each dimension of the samples x has been standardized
using the variance of the ground-truth samples, which
makes the estimation errors on each dimension d compa-
rable even when their units differ.

Real ESS In analogy to the ESS diagnostic we define
the real ESS (RESS) based on the estimation error rela-
tive to the ground-truth:

RESS :=
R

mean sq. error
=

RK
∑K
k=1(θ̂k − θ)2

∈ R+ ,

R := Ep? [(θ̂ − θ)2] = NVarp? [θ̂] ∈ R+ , (4)

where K is the number of independent MCMC chains
and R is a constant to make RESS comparable across
different types of estimators θ̂. It also ensures that RESS
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Figure 3: Performance summaries: The box plots demonstrate the distribution on NESS (left) and efficiency (center) conditional
on the sampler achieving an RESS of at least 12 to only show the mode where the samplers don’t completely fail. We also show a
calibration plot to assess if ESS is a good predictor of efficiency with the diagonal in dashed black. Cauchy and Laplace refer to
random walk Metropolis with these corresponding proposals.

tends towards N when the samples are iid. We do not
need the Var[x] term from (3) because the samples have
been standardized using the ground-truth samples’ scale.
If the estimator θ in (4) is the mean µd, then R = 1.
In this case, the RESS measures the exact same expecta-
tion (expected square loss) as ESS attempts to estimate.
Therefore, if the chain is sufficiently long for accurate
estimation of ESS, the two metrics should converge. For
variance σ2

d estimation, R = 2 in large N .

We also consider the Kolmogorov-Smirnov (KS) dis-
tance between the samples and the ground-truth samples
as a metric.1 This also results in a separate metric on
each marginal. To match the N−1 convergence assump-
tion of (4) we use

∑K
k=1 KSd(xk1:N , p

?)2 as the denom-
inator in (4), where KSd signifies the KS distance on
the marginal xd. By numerically integrating (4) with the
Kolmogorov distribution, one finds that R = 0.822.

RESS is also general in that we can sensibly combine
the errors across dimensions by evaluating multivariate
estimators θ̂ ∈ RD:

RESS =
RKD

∑K
k=1 ||θ̂k − θ||22

∈ R+ . (5)

This assumes that θ̂ is an unbiased estimator of θ. This,
like (4), tends towards N for iid samples.

Because p? may be complex, yet cheap to take many
(e.g., 104) iid samples from, we use the ground-truth
samples from p? to estimate θ for use in (4). The error
in estimating θ is negligible compared to θ̂k − θ. Like-
wise, for the KS metric we use a two-sample KS distance
between the MCMC samples and ground-truth from p?.

1Recall that the KS distance between samples x1:N and a
CDF F is given by maxa |F̂ (a) − F (a)| where F̂ is the em-
pirical CDF on x.

Efficiency Likewise, it is useful for practitioners to get
a ballpark estimate of the efficiency of a sampler:

EFF :=
RESS
N

∈ R+ . (6)

If the number of samples per chain N differs across
chains, it is more appropriate to use the harmonic mean
of N than the mean; this ensures that EFF tends towards
unity when samples are drawn iid from p?. Although
EFF is useful, RESS is more appropriate for comparisons
between samplers. Thinning can increase EFF without
increasing estimation accuracy.

Normalization When looking at the distribution of
sampler performance across examples it is more appro-
priate to look at normalized ESS (NESS):

NESS :=
RESS

medianS∈S NS
∈ R+ , (7)

where the median is taken across different samplers on
the same example. The RESS, when evaluating with
a fixed time limit, varies widely across examples. The
computational cost of each sample varies greatly be-
tween benchmark examples.

ESS Deviation In order to evaluate the diagnostics in a
meta-analysis, we define the ESS deviation (ESSD) met-
ric, which gives a sense on whether the ESS is biased or
a generally poor predictor of estimation accuracy. The
ESSD is defined as:

ESSD := Φ−1
(
χ2
KCDF

(
ESS

RESS
K

))
∈ R , (8)

where Φ−1(·) is the inverse CDF of the standard normal.
ESSD has a standard normal distribution (under CLT as-
sumptions) if the estimates are derived ESS iid samples;
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Table 1: Quantitative summary on sampler performance. We
show the NESS on various estimation tasks (e.g., µ vs σ2) av-
eraged over all examples on the left. The right shows the prob-
ability of success, i.e., how often RESS ≥ 12. The first three
rows are different proposals for random walk Metropolis. Mix
is a compound proposal of NUTS and Gauss. For both NESS
and prob. success, higher is better.

NESS prob. success

sampler KS µ σ2 KS µ σ2

Cauchy .004 .004 .003 .604 .582 .441
Laplace .007 .004 .006 .566 .547 .439
Gauss .007 .005 .007 .585 .565 .436

HMC .061 .151 .106 .580 .604 .531
NUTS .068 .375 .115 .875 .783 .711
emcee .016 .038 .025 .389 .489 .379
mix .067 .164 .113 .911 .825 .715
slice .044 .078 .070 .745 .703 .643

ESSD > 0 indicates the estimation is higher error than
expected from ESS. More precisely, if θ̂ is derived from
m iid samples then,

θ̂
d→ N (θ,

√
R/m) =⇒

√
m/R(θ̂ − θ) ∼ N (0, 1)

=⇒
K∑

k=1

m

R
(θ̂ − θ)2 =

m

RESS
K ∼ χ2

K , (9)

which implies that ESSD ∼ N (0, 1). Note that (8) is
merely a transformation to put the RESS-vs-ESS per-
formance ratio on a standardized scale, which does not
cause issues if the central limit theorem (CLT) assump-
tion in (9) does not hold exactly.

Meta-analysis In our meta-analysis, we perform a
Gaussian process regression to predict ESSD from
ESS ∈ R+, Gelman-Rubin GR ∈ [1,∞), and Geweke
G ∈ R. We also include the dimension D of the sam-
ple space x. Recall that if ESS is a perfect predictor of
MCMC performance, then ESSD will resemble white-
noise (i.e., iid standard normal). Given that the scales of
diagnostics vary widely, we use log ESS, log |GR − 1|,
and log |G| to put them all on a sensible scale.

To assess the regression, we test on a held-out 20% test
set of unseen examples (i.e., we do random split on a
per example basis) to see if we can predict the ESSD on
new unseen benchmark examples from the MCMC di-
agnostics. We compare performance of the regression
to linear regression and an iid normal to see if the fea-
tures provide any predictive gain. Furthermore, we as-
sess the predictive value of each feature by performing
the regression after removing each feature and studying
the performance delta.

Table 2: Results of meta-analysis. We show the MSE and
log-loss of different models attempting to predict the ESSD
for mean estimation on a held-out 20% of unseen examples.
The log-loss has the advantage that it is parameterization in-
variant and provides the same results in ESSD or ESS space.
The GP- rows show the results of GP regression without the
feature named. GP shows the performance of the GP using all
features. We assess the statistical significance of the delta to
GP using a pairwise t-test in p.

method MSE p NLL (nats) p

GP 2.8588 – 0 –
GP-D 2.779(70) 0.0252 -0.0096(97) 0.0504
GP-ESS 3.16(23) 0.0097 0.045(31) 0.0034
GP-G 2.858(1) 0.0198 -0.0001(1) 0.0016
GP-GR 3.17(20) 0.0017 0.045(25) 0.0005
iid 3.30(28) 0.0016 0.067(36) 0.0003
linear 3.03(19) 0.0726 0.027(25) 0.0350

5 RESULTS

We first show an overall summary of final performance
using NESS at the end of 15 minutes per chain, with
K = 8 chains in Table 1. The box plots in Figure 3
provide a sense of the variation. We found the NESS of
the samplers to generally be bimodal: either the samples
achieve an efficiency above 1%, or they completely fail
with an RESS < 1. Therefore, in Figure 3 we show the
box plots after excluding the complete failures. Inspired
by the rule of N = 12 from MacKay [2003], we use an
RESS of 12 to threshold failure-vs-success.

Table 1 also provides an overall success probability for
each method. Emcee shows the most bimodal perfor-
mance: while sometimes achieving a high NESS com-
petitive with other advanced methods, it has the lowest
success probability. Emcee also has the lowest efficiency
of any methods except random walk Metropolis, but em-
cee makes up for its lack of efficiency with higher per
sample speed.

Other results from Figure 3 are unsurprising: NUTS and
HMC are the highest performers, despite their higher
per sample cost. Slice sampling also makes a “strong
showing” with its performance more competitive in the
lower dimensional examples. Random walk Metropo-
lis methods generally have an efficiency in the 0.1% to
1% range, while slice sampling and HMC based meth-
ods have efficiencies in the ballpark of 2% to 40%, with
NUTS showing the highest performance. Emcee seems
to vary widely. Note that although the compound pro-
posal (mix) does not substantially increase NESS (over
NUTS), when the methods succeed Figure 3, mix in-
creases the chance of success (Table 1).
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Figure 4: Calibration plots of the ESS diagnostic against real ESS with θ̂ being the mean (left), variance (center), or KS (right).
We show the diagonal for a perfect match in dashed black. In dotted black we show the 95% region for what the observed real ESS
would be if the estimates θ̂ were derived from ESS iid samples. The RESS is below the lower error bar 55% of the time for mean
estimation, 68% for variance, and 83% for KS; these would be 2.5% if a chain with ESS = m were functionally equivalent to m
iid samples.

We show calibration plots of ESS in Figure 4 and effi-
ciency in Figure 3. The ESS diagnostic is clearly best
calibrated for mean estimation, which is not surprising
given it was derived for that purpose. However, the ESS
diagnostic clearly has an optimistic bias. These results
provide caution of ESS.

Finally, we present the results of the meta-analysis to
predict ESS deviation. We report the predictive value
provided by various features in Table 2 by showing how
much performance changes when they are removed. ESS
appears very predictive in Figure 4, but the relationship
has already largely been accounted for with ESSD (8). In
log-loss, the remaining predictive utility of ESS equals
that of Gelman-Rubin. Geweke and the dimension D
show no predictive utility. Predictive performance of
ESSD goes up when they are removed, which indicates
they are of little utility when assessing the validity of a
Markov chain. One expects sampling to be more diffi-
cult in higher dimensionsD, however this slower mixing
may already be evident from ESS and Gelman-Rubin.

6 CONCLUSIONS

We have presented a general system to benchmark the
real performance of MCMC samplers on realistic prob-
lems. The data-driven nature of the benchmark makes
it a highly novel development. This benchmark is in-
tended to become a general service that will become as
widespread as COCO or MLcomp. Careful attention has
been paid to fairly and sensibly derive metrics that com-
pare samplers. This benchmark will evolve with time
by including ever more models in phase 1 and more ad-
vanced example densities in phase 2. New and more so-
phisticated samplers can easily be added in phase 3.
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Abstract

Learning nonlinear dynamics from diffusion
data is a challenging problem since the individ-
uals observed may be different at different time
points, generally following an aggregate be-
haviour. Existing work cannot handle the tasks
well since they model such dynamics either di-
rectly on observations or enforce the availabil-
ity of complete longitudinal individual-level
trajectories. However, in most of the practical
applications, these requirements are unrealis-
tic: the evolving dynamics may be too complex
to be modeled directly on observations, and
individual-level trajectories may not be avail-
able due to technical limitations, experimental
costs and/or privacy issues. To address these
challenges, we formulate a model of diffusion
dynamics as the hidden stochastic process via
the introduction of hidden variables for flexi-
bility, and learn the hidden dynamics directly
on aggregate observations without any require-
ment for individual-level trajectories. We pro-
pose a dynamic generative model with Wasser-
stein distance for LEarninG dEep hidden Non-
linear Dynamics (LEGEND) and prove its the-
oretical guarantees as well. Experiments on a
range of synthetic and real-world datasets il-
lustrate that LEGEND has very strong perfor-
mance compared to state-of-the-art baselines.

1 INTRODUCTION

Diffusion data is a widespread form of data that involves
spatial or status transitions over time, e.g., Brownian
movement in physics, cell differentiation or gene expres-
sion in biology, molecular motion in chemistry, bird mi-
gration in ecology, traffic flows in transportation, pop-
ulation trends in social sciences and so on. Learning

Figure 1: An illustration of the framework which builds
dynamics on an auxiliary hidden variable Xt with a obser-
vation function. Observation Yt is the aggregate formated
data.

the underlying dynamics which governs the evolution of
such data is a fundamental problem. It reveals the nature
of the dynamical phenomenon, based on which we can
make better future predictions. However, in these areas,
complete longitudinal individual-level trajectories (i.e.,
the tracking of one individual over the entire diffusion
process) may often not be available due to technical limi-
tations, experimental costs and/or privacy issues. Rather,
one often instead observes a random group of indepen-
dently sampled individuals from the population, and the
observations can contain different individuals at different
time points. This is common for catch and release experi-
ments in ecology (e.g., bird migration) where it is difficult
to observe a single bird twice (Bartholomew & Bohnsack,
2005), and in biological research where a cell may need to
be sacrificed in order for an observation on it to be made
(Banks & Potter, 2004). We refer to observations made in
these scenarios as aggregate observations to differentiate
them from the case of individual-level trajectories which
provide full information.

Modeling the dynamics on aggregate observations have
been investigated recently in (Hashimoto et al., 2016),
where a stochastic differential equation (SDE) has been
used to capture the transition directly on observations Yt.
However, its performance degrades when the dynamics
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become complex due to their limited expressive ability, as
illustrated later in our experiments. Instead of modeling
dynamics directly on observations, a hidden variable Xt

can be introduced for modeling complicated dynamics,
which can be decomposed into a relatively simple hidden
dynamic on Xt with a complicated observation function.
As illustrated in Figure 1, Yt(t ∈ [0, T ]) is a series of
aggregated observations of a diffusion process. We for-
mulate that Yt is determined by the hidden dynamic onXt

and the observation function f(Xt). Existing models such
as Hidden Markov Model (HMM) (Eddy, 1996), Kalman
Filter (KF) (Harvey, 1990) and Particle Filter (PF) (Djuric
et al., 2003) are popular methods with hidden variables.
However, these models and their variants (Langford et al.,
2009; Hefny et al., 2015) require individual-level trajec-
tories, which may not be available, as was mentioned
earlier. It consequently still remains an open issue as to
how one can learn the underlying dynamics directly from
aggregate observations with a hidden stochastic process,
for complicated real-world scenarios.

To address these challenges, we propose a novel frame-
work to incorporate the use of hidden variables into the
modeling of diffusion dynamics from evolving distribu-
tions (as those approximated from aggregate observa-
tions). We bypass the need for likelihood-based esti-
mation of model parameters and posterior estimation of
hidden variables by using Wasserstein distance learning.
The model we propose is named LEGEND (LEarninG
dEep hidden Nonlinear Dynamics) and the main contribu-
tions are:

• We propose a framework for learning complicated
nonlinear dynamics from aggregate data via a hidden
continuous stochastic process.

• We extend Wasserstein learning to likelihood-free
and posterior-free estimations of dynamic parameter
learning and hidden state inference.

• We theoretically provide a generalization bound and
convergence analysis of our framework, which is the
first theoretical result as far as we know.

• We empirically demonstrate the effectiveness of our
framework for learning nonlinear dynamics from
aggregate observations on both synthetic and real-
world datasets.

2 PROBLEM DEFINITION

We first introduce a continuous model of diffusion dynam-
ics using a stochastic differential equation (SDE), then
formally define the tasks of filtering and smoothing based
inference, then review the Wasserstein distance objective
as one of the distribution metric.

Hidden Continuous Nonlinear Dynamics. To charac-
terize the dynamics of observations, we introduce a hid-
den continuous nonlinear dynamical system as shown in
Figure 1, together with a measurement of hidden states.
In particular, the hidden state Xt ∈ Rn is the underlying
auxiliary variable that cannot be accessed directly, and it
follows a SDE:

dXt = g(Xt)dt+ Σ1/2dωt, (1)

where g : Rn → Rn is a nonlinear deterministic drift
function, and ωt ∈ Rn is a Brownian motion process with
noise covariance Σ ∈ Rn × Rn. At each time point, the
observation Yt is written as a measurement of the hidden
state Xt:

Yt = f(Xt), (2)

where f : Rn → Rm is a nonlinear observation function.
Together, Eqs. (1) and (2) define the nonlinear dynamics
with continuous hidden states.

Aggregate Observations. We obtain a collection of inde-
pendent and identically distributed (i.i.d) samples {yit}Ni=1

of Yt at some time point t, that we term aggregate or distri-
butional observations. The observed individuals in previ-
ous time observations {yit−1}Ni=1 are often not identical to
those for the current time observations {yit}Ni=1, implying
it is not possible to construct the full trajectory of a single
individual. However, we can approximate the probability
distribution in terms of a finite number of samples as

p(Yt) ≈
1

N

N∑

i=1

δ(Yt − yit). (3)

Thus, we can treat these aggregate samples from the same
time point together as a distribution which evolves in the
dynamic system.

Problems. Under this aggregate setting for observations,
it is difficult to obtain individual-level trajectories due to
technical limitations, experimental costs and/or privacy
issues. Therefore, we propose a new framework to learn
the nonlinear dynamics for the distributions (as approxi-
mated from aggregate observations) without the need for
individual-level trajectories. That is, we treat {yit}Ni=1 as
an empirical approximation to the distribution at time t
and its dynamics is learned via an auxiliary hidden vari-
able Xt. Once the dynamics are learned, we are faced
with two inference tasks:

1) Filtering based inference: the task is to infer the
next future observation YT+1, given observations
{Y0, Y1, · · · , YT }.

2) Smoothing based inference: the task is to infer a
missing intermediate observation Yk(0 < k < T ),
given {Y0, · · · , Yk−1, Yk+1, · · · , YT }.
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Wasserstein Distance Objective. Following our
distribution-based problem definition, the metric on dis-
tributions is a key criterion for our objection function,
just like the mean squared error (MSE) criterion for re-
gression problems. Among the well-known distribution-
based measures, such as Total Variation (TV) distance,
Kullback-Leibler (KL) divergence, Jensen-Shannon (JS)
divergence, Wasserstein distance has recently been shown
to possess more appealing properties for distance mea-
surement of distributions (Arjovsky et al., 2017). We
therefore choose to adopt the Wasserstein distance for
measuring the discrepancy between the learned distribu-
tions and their ground truth.

The definition of Wasserstein-1 distance (also named the
Earth-Mover distance (EM)) is:

W (Pr,Pg) = inf
γ∈∏(Pr,Pg)

E(x,y)∼γ [‖ x− y ‖], (4)

where
∏

(Pr,Pg) denotes the set of all joint distribu-
tions γ(x, y) whose marginals are Pr and Pg respec-
tively. The infimum in (4) is highly intractable. However,
Kantorovich-Rubinstein duality (Villani, 2008) shows that

W (Pr,Pg) = sup
‖D‖L≤1

Ex∼Pr [D(x)]− Ex∼Pg [D(x)],

(5)
where the supremum is over all 1-Lipschitz functions
D. We can assume a parameterized family of functions
{Dw}w∈W lying in the 1-Lipschitz function space. There-
fore, Eq. (5) could be solved by

max
w∈W

Ex∼Pr [Dw(x)]− Ex∼Pg [Dw(x)]. (6)

With Wasserstein distance, our objectives for dynamic
learning and inference tasks can be unified to minimize
the Wasserstein distance between the generated distribu-
tion and the target distribution, which will be instantiated
in the following Section 3.

3 PROPOSED FRAMEWORK

In this section, we first discuss our methodology for pa-
rameter learning of dynamics within the LEGEND frame-
work, and then introduce in detail how the framework
addresses the filtering and smoothing based inference
problems.

3.1 Parameter Learning of Dynamics

In order to efficiently solve the SDE of hidden state Xt,
we adopt an approximate numerical solution called the
Euler-Maruyama method (Talay, 1994). Suppose the SDE
is defined on [0, T ], then the Euler-Maruyama approxima-
tion to the true solution of SDE is a Markov chain defined

as follows:

Xt+∆t = Xt + g(Xt)∆t+ Σ1/2∆ωt, (7)

where the interval [0, T ] is partitioned into M equal sub-
intervals of width ∆t = T/M > 0 and ∆ωt are indepen-
dent and identically distributed normal random variables
with expected value zero and variance ∆t. Correspond-
ingly, observations Yt are functions of Xt:

Yt = f(Xt). (8)

Given a sequence of distributional observations, we need
to minimize the Wasserstein distance between the gener-
ated distribution and the observed distribution at each time
point to learn functions f and g. The objective function
for parameter learning of dynamics is

min
f ,g

∑

t

W (P(Yt),P(f(Xt)), (9)

where Xt ∼ P(Xt|Xt−1). The evolving process1 from
Xt−1 to Xt is controlled by function g following the
SDE in Eq. (7). One common approach for learning f
and g is to calculate the likelihood of Yt under distribu-
tions, however in many cases, this is intractable. Here,
we propose to use generative models to directly generate
samples which satisfy the target distribution Yt. Follow-
ing the minimization of the Wasserstein distance between
generations and observations, the generative model can
eventually learn the dynamics of Yt. The specific form of
parameterization will be described in Section 4.

3.2 Filtering based Inference

The inference of YT+1 given observations YT =
{Y0, Y1, · · · , YT } can be solved by:

YT+1 = (f ◦ g)(XT ). (10)

To achieve this, we need to obtain the hidden state XT

first, that is, find the posterior probability p(XT |YT ) of
the hidden state conditioned on the entire sequence of
observations YT , which is a filtering problem.

To obtain the posterior of the hidden state, the classi-
cal forward algorithm needs to solve one dynamic pro-
gramming problem per sample, which requires individual-
level trajectory for posterior inference. However, for our
aggregate observation setting, we alternatively treat the
Bayesian inference problem from an optimization per-
spective following (Dai et al., 2016).

We first briefly introduce the idea of the optimization
method, then generalize it to solve our problem. Dai

1There may be several ∆t intervals between time t−1 and t
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et al. (2016) use a probability q(U) to approximate the
posterior probability p(U |V ) by minimizing

min
q(U)∈P

−〈q(U), log p(V |U)〉+KL(q(U) ‖ p(U))

(11)
over the space of all valid densities P . 〈·〉 is the inner
product, KL is the Kullback-Leibler divergence, U is
the hidden variable and V is the observation variable.
Thus, p(V |U) is the likelihood of observation and p(U)
is the prior of the hidden variable. Assuming we have the
trajectory for a single individual (xt ∼ Xt, yt ∼ Yt), then
the posterior probability of filtering is

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

, (12)

where p(xt|y1:t−1) is the propagation probability and
p(xt|y1:t) is the updated probability. Generally,
p(xt|y1:t−1) could be regarded as the prior of xt for the
updated probability p(xt|y1:t). Following the idea of Eq.
(11), we can use a probability π(xt) to approximate the
posterior probability p(xt|y1:t) by recursively optimizing

min
π(xt)∈P

−〈π(xt), log p(yt|xt)〉+KL(π(xt) ‖ p(xt|y1:t−1)),

(13)
where

p(xt|y1:t−1) =

∫
p(xt, xt−1|y1:t−1)dxt−1

=

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

=

∫
p(xt|xt−1)π(xt−1)dxt−1.

(14)

In the following, we generalize Eqs. (13) and (14) which
were defined on an individual trajectory, to the case for
aggregate/distributional data. In Eq. (13), to obtain the
optimal solution, we need to maximize the inner prod-
uct (the first term) and minimize the KL divergence (the
second term). We redefine the two terms using Wasser-
stein distance. For the first term, since maximizing the
inner product is equivalent to minimizing the distance be-
tween distributions, we replace the inner product with the
Wasserstein distance between the distributions of f(πt)
(generated) and Yt (ground truth). For the second term, we
replace KL divergence with Wasserstein distance which
is a better measurement for distributions and is thus more
suitable for aggregate data (Arjovsky et al., 2017). In Eq.
(14), the relationship between two consecutive time of
hidden variables is replaced by function g. We then can
generalize Eqs. (13) and (14) to our filtering objective
function under aggregate observations:

min
∑

t

W (P(f(πt)),P(Yt)) +W (P(πt),P(g(πt−1)),

(15)

where πt ∼ P(Xt|Yt) is our target filtering distribution.

3.3 Smoothing based Inference

Smoothing based inference is for predicting the missing
intermediate observation Yk(0 < k < T ) given obser-
vations YT\k = {Y0, · · · , Yk−1, Yk+1, · · · , YT }. One
method (Desbouvries et al., 2011) to solve this is

Yk = (f ◦ g)(Xk−1). (16)

To achieve this, we need to obtain the hidden state Xk−1

first. This is a smoothing problem which focuses on
a hidden state somewhere in the middle of a sequence
conditioned on the whole sequence of observations.

Different from the filtering task where the current state is
estimated recursively from all past observations, smooth-
ing computes the best state estimates given all available
observations from both the past and the future. One well-
known and simple approach for smoothing is the forward-
backward smoother. During a forward pass the standard
filtering algorithm is applied to the observations. After-
wards, on the backward pass, inverse filtering is applied
to the same time series of observations. Finally the fil-
tering estimates of both the forward and backward pass
are combined into the smoothed estimates (Briers et al.,
2010). Since the information from the observation should
be incorporated only once into the smoothed estimate,
we need to combine the posterior estimate of the forward
pass with the prior estimate of the backward pass and vice
versa.

Thus, following the idea in the above filtering problem
(treating the posterior estimation from a optimization per-
spective), we first learn a forward estimate of the hid-
den state πft and also a backward estimate πbt using Eq.
(15). These then form a weighted Wasserstein barycenter
problem (Agueh & Carlier, 2011) whose solution is the
posterior of smoothing (Kitagawa, 1994). That is, we can
obtain the optimal smoothing result πst by optimizing the
Wasserstein distance to the observations and the weighted
Wasserstein barycenter:

min
∑

t

W (P(f(πst )),P(Yt))

+ λ1W (P(πst ),P(πft ))

+ λ2W (P(πst ),P(πbt )),

(17)

where πst ∼ P(Xt|YT ) is our target smoothing distri-
bution. And the weights λ1 and λ2 are hyperparam-
eters, which are given intuitively with λ1 = t/T and
λ2 = 1− λ1 such that smoothing problem becomes filter-
ing problem when t = T → λ1 = 1. Actually, there are
other alternatives one could use for the weights, but these
basic settings already work well in our experiments.
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4 MODEL PARAMETERIZATION

As stated above, we adopt Wasserstein distance to mea-
sure the difference between distributions, and have de-
fined our objectives accordingly. In this section, we es-
tablish a dynamic generative model via neural network
parameterization based on Wasserstein distance.

According to the dual formulation of Wasserstein distance
Eq. (6), our distribution-based objective of parameter
learning of dynamics in Eq. (9) becomes

min
f ,g

∑

t

(
max
Dt

(
Eyt∼P(Yt)[Dt(yt)]

− Ext∼P(xt|g(xt−1))[Dt(f(xt)]
))
.

(18)

For the filtering and smoothing tasks, we introduce a new
function h to characterize the target filtering or smoothing
distributions. The filtering objective in Eq. (15) becomes

min
h

∑

t

(
max
D1
t

(Eyt∼P(Yt)[D
1
t (yt)]

− Eπt∼P(h(Yt))[D
1
t (f(πt))])

+ max
D2
t

(Eπt∼P(h(Yt))[D
2
t (πt)]

− Eπt−1∼P(h(Yt−1))[D
2
t (g(πt−1))])

)
.

(19)

And the smoothing objective in Eq. (17) becomes

min
hs

∑

t

(
max
D1
t

(Eyt∼P(Yt)[D
1
t (yt)]

− Eπst∼P(hs(Yt))[D
1
t (f(π

s
t ))])

+ λ1 max
D2
t

(Eπst∼P(hs(Yt))[D
2
t (π

s
t )]

− Eπft ∼P(hf (Yt))
[D2

t (π
f
t )])

+ λ2 max
D3
t

(Eπst∼P(hs(Yt))[D
3
t (π

s
t )]

− Eπbt∼P(hb(Yt)),[D
3
t (π

b
t )])
)
.

(20)

In traditional implicit generative models, given a random
variable z with a fixed distribution p(z), we can pass it
through a parametric generator Gθ (typically a neural
network) which directly generates samples following a
certain distribution Pθ. Such design is of high flexibility,
as by varying the parameters θ of the neural networks, we
can change this distribution to any distribution of interest.
While in our framework, we need a dynamic generative
model to match distributions at each time step which
can be regarded as a combination of several Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014).
Specifically, functions f ,g,h are all generators (sharing
parameters over time) and Dt is a discriminator at time

t. We formulate functions f ,g and Dt as normal feed-
forward neural networks2:

f l =
∑

k

σ(wfkf
l−1 + bfk), (21)

gl =
∑

k

σ(wgkg
l−1 + bgk), (22)

Dl
t =

∑

k

σ(wDtk Dl−1
t + bDtk ), (23)

where f l, gl, Dl
t are the l-th layers of the neural networks,

σ is the activation function, and wk, bk are the neural
network parameters. Note the output layer of the discrim-
inator Dt only has one single neuron to output a scalar
value.

As for the function h (in both filtering and smoothing), we
use a recurrent neural network (RNN) to model it, similar
to (Mogren, 2016). For the purposes of simplicity and clar-
ity of exposition, we illustrate the computational process
here using a vanilla RNN, whereas the actual recursive
unit used in our experiments is LSTM unit (Hochreiter
& Schmidhuber, 1997). Given inputs as sequences of ob-
servations {Y0, Y1, · · · , Yt, · · · , YT } and outputs as filter-
ing or smoothing hidden states {π0, π1, · · · , πt, · · · , πT },
the parameterization function h works as follows:

st = σ(AYt +Bst−1 + b), (24)
πt = σ(Cst + b), (25)

where st is the memorized history information and
A,B,C are parameter matrices of RNN.

Note that we need to enforce the Lipschitz constraints
when solving Wasserstein distance from duality in Eq. (5).
To achieve this, we adopt the strategy of gradient penalty
in (Gulrajani et al., 2017) to regularize the Wasserstein
distance3.

For parameter learning of dynamics in Eq. (18), we can
obtain the optimal discriminator and gradients by

D∗t = arg max
Dt

(Eyit [Dt(y
i
t)]− Exit−1

[Dt((f ◦ g)(xit−1))])

(26)

gf ,g = −
∑

t

∇f ,gExit−1
[D∗t ((f ◦ g)(xit−1))], (27)

where the gradient of g needs to back propagate through
the entire chain. In practice, we use gradient decent to up-
date the discriminator. The parameter learning procedure
of our model is presented in Algorithm 1. Similarly, we
can derive the results for filtering and smoothing from Eq.
(19) and (20), respectively.

2g could be several nested g due to the ∆t in SDE.
3We omit this term in our equations for simplicity.
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Algorithm 1 Parameter learning of dynamics
for # training iterations do

for k steps do
Sample {εi}Ni=1 ∼ P(ε)
for time t in [0:T] do

Sample {yit}Ni=1 ∼ P(Yt)
for i= 1 to N do
xi0 = εi,
xit+∆t = xit + g(xit)∆t+ Σ1/2N (0,∆t)

end for
end for
Update the discriminator Dt by
∇Dt 1

N

∑N
i=1Dt(y

i
t) − ∇Dt 1

N

∑N
i=1Dt((f ◦

g)(xit−1))
end for
Update f ,g by ascending its stochastic gradient
−∑t∇f ,g

1
N

∑N
i=1Dt((f ◦ g)(xit−1))

end for

5 THEORETICAL ANALYSIS

In this section, we provide a generalization error analysis
and a convergence guarantee for our learning framework.
Our analysis mainly focuses on the parameter learning
component of our method, however, similar results can
also be derived for filtering and smoothing based infer-
ence. For the purpose of simplicity, we briefly present our
main results here and leave detailed theorems and proofs
to Appendix A.

Generalization Error. We denote F and G as the
function spaces of f and g, respectively, and the D as
the function space of the {Dt}Tt=0, and g◦t(x, ξt) =
((I + g) ◦ (I + g) ◦ . . . ◦ (I + g))︸ ︷︷ ︸

t

(x) + ξt with ξt ∼

N (0,∆t). We define

`(f ,g) = Ey0:T ,x0∼p(x),ξ0:T

[ T∑

t=0

max
Dt∈D

[
Dt(yt)

−Dt((f ◦ g◦t(x0, ξt)))
]]
.

(28)

Theorem 1. Without loss of generality, we assume in each
timestamp the number of the observations is N . Given
the samples Y = {(yit)Tt=0}Ni=1(|Y|∞ = CY) where
y0:T = (yit)

T
t=0 are sampled i.i.d. from the underline

stochastic processes, and X = {xi0}Ni=1, Ξ = {ξi0:T }Ni=1

are also i.i.d. sampled. Assume D is a subset of k-
Lipschitz functions and denote the R(F ◦ G◦t) as the
Rademacher complexity of the function space F ◦G◦t. We

have

1

T
`(f ,g) ≤ 1

T
ˆ̀(f ,g) +

4kC√
N

+ 4k

∑T
i=1 R(F ◦ G◦t)

T
.

(29)

For the different parametrizations, i.e., different func-
tion spaces F and G, the Rademacher complexity of
R(F ◦ G◦t) will be different. For example, if we
parametrize the f(z) = σ(Wfz) and g(z, ξ) = I>[z, ξ]+
σ(Wgz) as single layer neural networks, where σ satis-
fies some mild condition (Bartlett et al., 2017), follow-
ing (Bartlett et al., 2017), we have the R(F ◦ G◦t) =

Õ
(√

C1(Wf )Ct2(I,Wg)(
∑t
i=1 C3(I,Wg))

N

)
, where C1, C2

and C3 are some constants related to the parameters. For
the details of the conditions on σ and the exact formula-
tion of the constants, please refer to (Bartlett et al., 2017).

Convergence Analysis. Convexity-concavity no longer
holds for the objectives in the learning and inference
parts, therefore, convergence analysis for convex-concave
saddle point problem in (Nemirovski et al., 2009) cannot
be directly applied. Inspired by (Dai et al., 2017), we
can see that once we obtain D∗t , Algorithm 1 can be
understood as a special case of stochastic gradient descent
for a non-convex problem. Thus, we have the following
finite-step convergence guarantee for our framework.

Theorem 2. Assume that the parametrized empirical
loss function ˆ̀(f ,g) is K-Lipschitz and variance of its
stochastic gradient is bounded by ς2. Let the algorithm
run M iterations with stepsize ζ = min{ 1

K ,
C′

ς
√
M
} for

some C ′ > 0 and output (w1
f , w

1
g), . . . , (w

M
f , w

M
g ). Set-

ting the candidate solution to be w = (ŵMf , ŵ
M
g ) ran-

domly chosen from (w1
f , w

1
g), . . . , (w

M
f , w

M
g ) such that

P (w = wj) = 2ζ−Kζ2∑N
j=1(2ζ−Kζ2)

, then it holds that

E
[∥∥∥∇ˆ̀(f̂Mw , ĝMw )

∥∥∥
]
≤ KC2

M
+ (C ′ +

C

C ′
)
ς√
M
, (30)

where C :=
√

2(ˆ̀(w1
f , w

1
g)−min ˆ̀(wf , wg))/K repre-

sents the distance of the initial solution to the optimal
solution.

6 EXPERIMENTS

In this section, we evaluate our LEGEND framework on
various types of synthetic and real-world datasets.

Baselines: We compare our model with two recently
proposed methods that learn dynamics directly from ag-
gregate observations — modeling directly on Yt using a
SDE. The baselines differ from one other in their char-
acterization of the drift term g(Xt) of the SDE. The two
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baselines considered in our experiments are two represen-
tatives from parametric and non-parametric categories: 1)
OU (Orstein-Uhlenbeck (Huang et al., 2016)): modeling
the drift term using an Orstein-Uhlenbeck process (Gille-
spie, 1996), which is a stationary Gauss-Markov process
with the drift term θ(µ − xt) (θ, µ are parameters); and
2) NN (Hashimoto et al., 2016): modeling the drift term
using a neural network (NN) which is a sum of ramps.

6.1 Synthetic Data

We first assess our model on three synthetic datasets gen-
erated using the following three diffusion dynamics:

Synthetic-1:

x0 ∼ N (0,Σ1),

xt+∆t = xt +
1

4
xt∆t+N (0,Σ0),

yt = 2xt.

(31)

Synthetic-2:

x0 ∼ N (0,Σ2),

xt+∆t = xt + (0.1x2
t + 0.5xt)∆t+N (0,Σ0),

yt = exp(xt).

(32)

Synthetic-3:

x0 ∼ U([−2, 2]),

xt+∆t = xt + (0.5xt + |xt|)∆t+N (0,Σ0),

yt = log |xt|.
(33)

Synthetic-1 is a linear dynamic on xt with linear mea-
surement yt where x0 are sampled from multivariate nor-
mal distributions with covariance matrix Σ1 (diagonal
elements are 0.04 and others are 0.032). A nonlinear de-
pendency between xt and yt is formulated in Synthetic-2:
a quadratic dynamic on xt and an exponential dependency
of yt on xt where x0 are sampled from multivariate nor-
mal distributions with covariance matrix Σ2 (diagonal el-
ements are 0.01 and others are 0.008). In Synthetic-3, we
test a more complex scenario: highly nonlinear dynamics
on xt with highly nonlinear measurement yt where x0 are
sampled from a uniform distribution U([−2, 2]). For each
synthesized dynamic, we obtain xt like {x0, x1, x2, x3}
every 5∆t time following a discretized SDE in Eq. (7),
and generate 1000 samples at each time step from xt out
of which only 500 samples are chosen as observations
yt like {y0, y1, y2, y3}. We consider population evolu-
tion Rd with three different dimensions: d = 2, d = 5
and d = 10. Note that ∆t is set to 0.2 for all datasets.
The stochastic terms are all sampled from multivariate

Figure 2: The true and predicted distributions for different
models in filtering (top row) and smoothing (bottom row)
based inference tasks on 2-dimensional synthetic-1 (left
column), synthetic-2 (middle column) and synthetic-3
(right column) datasets.

normal distributions with covariance matrix Σ0 (diagonal
elements are 0.0025 and others are 0.002).

Our proposed model along with the baselines are eval-
uated on two tasks: 1) filtering based inference: given
observations y0 and y1, the task is to predict y2; and 2)
smoothing based inference: given observations y0, y1 and
y3, the task is to predict y2.

Experimental Setup: For our LEGEND model, we set
D, f , g as a four-layer, two-layer and four-layer feed-
forward neural network respectively with ReLU (Glorot
et al., 2011) activation function, and set h as a one-layer
RNN with LSTM unit. In terms of training, we use the
Adam optimizer (Kingma & Ba, 2014) with learning rate
10−4, β1 = 0.5 and β2 = 0.9. The baselines OU and
NN are configured with respect to their settings in the
original papers without using pre-training (Hashimoto
et al., 2016).

Results: We first show the capability of our model for
learning low-dimensional (d = 2) diffusion dynamics. As
visualized in Figure 2, given {y0} and {y1}, our model
can precisely learn the dynamics and correctly predict y2

(top row) where a better match was observed between
the predictions (blue points) and the ground truth (red
points). Note that the dynamics on yt become more and
more complicated from synthetic-1 to synthetic-3. It can
be seen from Figure 2 that our model works well on both
simple and complex dynamics, while baselines OU and
NN only work well on simple dynamics. Similar results
are also observed in the smoothing based inference task,
as shown in the bottom row of Figure 2.

We then evaluate our model using Wasserstein error for
both low-dimensional (d = 2) and high-dimensional (d =
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Table 1: The Wasserstein error of different models on
synthetic-1/2/3 (Syn-1/2/3), RNA-seq (RNA) and bird
migration (Bird) datasets. The best results are highlighted
in bold.

Data Target Task NN OU LEG-
END

Syn-1

filtering d = 2 0.30 0.29 0.06
y2 d = 5 3.09 2.52 0.06

d = 10 11.19 9.61 0.18
smoothing d = 2 0.70 0.80 0.04

y2 d = 5 3.40 2.92 0.08
d = 10 9.58 8.96 0.12

Syn-2

filtering d = 2 0.87 1.36 0.17
y2 d = 5 3.49 4.38 0.47

d = 10 8.55 10.42 1.37
smoothing d = 2 1.62 1.75 0.22

y2 d = 5 5.28 4.17 0.57
d = 10 11.14 9.91 2.84

Syn-3

filtering d = 2 8.55 10.79 3.79
y2 d = 5 31.95 35.17 13.21

d = 10 113.21 116.42 42.52
smoothing d = 2 8.43 9.08 2.22

y2 d = 5 28.37 31.26 11.26
d = 10 102.65 109.80 38.73

RNA
Krt8 D7 6.16 9.82 2.31

D4 27.98 24.54 4.89

Krt18 D7 6.86 9.80 3.16
D4 24.75 25.88 4.21

Bird GrayJay June 1.9e3 2.5e3 1.2e3
April 1.5e3 1.1e3 0.3e3

5, 10) diffusion dynamics. Wasserstein error measures
the difference between predicted distribution and the true
distribution. As reported in Table 1, our model achieves
much lower Wasserstein error than the two baselines on
all the 3 datasets for 2/5/10-dimensional dynamics. The
poor performance of OU and NN may due to the fact that
yt becomes more and more complicated as dimension
increases on all three datasets. The superior performance
of our model verifies the importance of hidden variables —
they are necessary for the modeling of complex nonlinear
dynamics and complex measurements of hidden states.

6.2 Real Data: Single-cell RNA-seq

In this section, we evaluate our model on a typical applica-
tion of distribution based continuous diffusion dynamics
in biology: learning the diffusion process where embry-
onic stem cells differentiate into mature cells (Klein et al.,
2015). The cell population begins to differentiate from
embryonic stem cells after the removal of LIF (leukemia
inhibitory factor) at day 0 (D0). Single-cell RNA-seq mea-
surements (or observations) are sampled at day 0 (D0),
day 2 (D2), day 4 (D4), and day 7 (D7). At each time

Figure 3: The true and predicted marginal distributions
of the differentiating genes at D7 (filtering based infer-
ence task) and D4 (smoothing based inference task) for
different models.

Figure 4: The true (left column) and predicted (right
3 columns) correlations between Krt8 and Krt18 at D7
(top row) and D4 (bottom row). The closer to the true
correlation the better the performance.

point, the expression of 24,175 genes for several hundreds
cells are measured (933, 303, 683 and 798 cells at D0,
D2, D4, and D7 respectively). We focus on the dynamics
of cell differentiation for the two main epithelial makers
studied in (Klein et al., 2015), i.e., Keratin 8 (Krt8) and
Keratin 18 (Krt18). We evaluate two tasks on this data: 1)
filtering based inference: predicting the gene expression
level at D7 given only the observations at D0 and D4;
and 2) smoothing based inference: predicting the gene
expression level at D4 given D0, D2 and D7.

Experimental Setup: We set f as a one-layer feed-
forward neural network, g as a three-layer feed-forward
neural network and h as a one-layer RNN with LSTM neu-
rons. For preprocessing, we apply standard normalization
procedures (Hicks et al., 2015) to correct for batch effects,
and impute missing expression levels using non-negative
matrix factorization, similarly as it did in (Hashimoto
et al., 2016). The stochastic term Σ in SDE are sam-
pled from multivariate normal distributions with diagonal
covariance matrix (diagonal elements are 1). Other con-
figurations and baselines are the same as those in Section
6.1.
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Results: We first show in Table 1 that compared to other
baselines our model achieves the lowest Wasserstein error
in both filtering (D7) and smoothing (D4) tasks on both
Krt8 and Krt18. This proves that our model is capable
of learning the precise differentiation dynamics and the
distributions of the two studied gene expressions. We
further provide a closer look into the learned distributions
of the two genes in Figure 3. As can be seen, the distribu-
tions of Krt8 and Krt18 predicted by our model (curves
in blue) are much closer to their true distributions (curves
in red) at both D4 and D7, as compared to the baseline
models. Moreover, our model can effectively identify the
correlations between Krt8 and Krt18, as shown in Figure
4. This implies that our model can accurately learn the
dynamics even considering the correlational structure of
the true dynamics.

6.3 Real Data: Bird Migration

We also evaluate our model on another typical applica-
tion of distribution based diffusion dynamics: bird migra-
tion research in ecology. We use the eBird basic dataset
(EBD), which gathers large volumes of information on
where and when birds occur in the world (Sullivan et al.,
2009). We down-sampled EBD to only include the track-
ing records for the species GrayJay between January, 2017
and June, 2017 (monthly data) at United States where 400
samples are randomly selected as observations for each
month. There are again two tasks evaluated here: 1) filter-
ing based inference: we apply our model on the months
February and April so as to predict the population at June;
2) smoothing based inference: we apply our model on
months February, March and June so as to predict the
population at April. The experimental setups are the same
as those in Section 6.2.

Results: We plot the true and predicted locations (lon-
gitude and latitude) of the species GrayJay in Figure 5,
and report the Wasserstein error4 in Table 1. Again, our
model achieves the lowest Wasserstein error in both filter-
ing (June) and smoothing (April) based inference tasks.
The evolving dynamics of bird migration can be very
complicated and extremely difficult to learn, mostly be-
cause bird migration could be affected by many irregular
factors related to the specific time. Even so, with the
introduction of the hidden state variable, our model can
predict locations which are close to the ground truth, and
with better performance than OU and NN which directly
build models on observations. This result demonstrates
the advantages of our framework in solving real-world
problems involving complicated diffusion dynamics.

4Our model could be further improved if considering more
complex hidden diffusion process, e.g., jump diffusion process,
but the framework is the same to this paper.

Figure 5: The true (left column) and predicted (right
3 columns) distributions of GrayJay species at month
June (filtering based inference task) and April (smoothing
based inference task) for different models.

7 CONCLUSIONS

In this paper, we formulated a novel technique to learn
nonlinear continuous diffusion dynamics from aggre-
gate observations. In particular, we showed how one
can model dynamics as a hidden continuous stochas-
tic process, and proposed a framework that employs a
dynamic generative model with Wasserstein distance to
learn the evolving dynamics. In addition to deriving so-
lutions for both filtering and smoothing based inference
tasks, we also established theoretical guarantees on the
generalization and convergence properties of our frame-
work. Through comprehensive experimental evaluation
on synthetic and real-world datasets, we demonstrated
that our approach has very strong performance compared
to state-of-the-art techniques on both filtering and smooth-
ing based inference tasks.
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Abstract

We revisit the problem of linear regression un-
der a differential privacy constraint. By con-
solidating existing pieces in the literature, we
clarify the correct dependence of the feature, la-
bel and coefficient domains in the optimization
error and estimation error, hence revealing the
delicate price of differential privacy in statis-
tical estimation and statistical learning. More-
over, we propose simple modifications of two
existing DP algorithms: (a) posterior sampling,
(b) sufficient statistics perturbation, and show
that they can be upgraded into adaptive algo-
rithms that are able to exploit data-dependent
quantities and behave nearly optimally for every
instance. Extensive experiments are conducted
on both simulated data and real data, which
conclude that both ADAOPS and ADASSP out-
perform the existing techniques on nearly all
36 data sets that we test on.

1 INTRODUCTION

Linear regression is one of the oldest tools for data
analysis (Galton, 1886) and it remains one of the most
commonly-used as of today (Draper & Smith, 2014),
especially in social sciences (Agresti & Finlay, 1997),
econometics (Greene, 2003) and medical research (Ar-
mitage et al., 2008). Moreover, many nonlinear models
are either intrinsically linear in certain function spaces,
e.g., kernels methods, dynamical systems, or can be re-
duced to solving a sequence of linear regressions, e.g.,
iterative reweighted least square for generalized Linear
models, gradient boosting for additive models and so on
(see Friedman et al., 2001, for a detailed review).

In order to apply linear regression to sensitive data such
as those in social sciences and medical studies, it is of-

⇤Corresponding email: yuxiangw@cs.ucsb.edu

ten needed to do so such that the privacy of individuals
in the data set is protected. Differential privacy (Dwork
et al., 2006b) is a commonly-accepted criterion that pro-
vides provable protection against identification and is
resilient to arbitrary auxiliary information that might be
available to attackers. In this paper, we focus on linear
regression with (✏, �)-differentially privacy (Dwork et al.,
2006a).

Isn’t it a solved problem? It might be a bit surprising
why this is still a problem, since several general frame-
works of differential privacy have been proposed that
cover linear regression. Specifically, in the agnostic set-
ting (without a data model), linear regression is a special
case of differentially private empirical risk minimization
(ERM), and its theoretical properties have been quite well-
understood in a sense that the minimax lower bounds
are known (Bassily et al., 2014) and a number of algo-
rithms (Chaudhuri et al., 2011; Kifer et al., 2012) have
been shown to match the lower bounds under various
assumptions. In the statistical estimation setting where
we assume the data is generated from a linear Gaussian
model, linear regression is covered by the sufficient statis-
tics perturbation approach for exponential family models
(Dwork & Smith, 2010; Foulds et al., 2016), propose-test-
release framework (Dwork & Lei, 2009) as well as the
the subsample-and-aggregate framework (Smith, 2008),
with all three approaches achieving the asymptotic effi-
ciency in the fixed dimension (d = O(1)), large sample
(n!1) regime.

Despite these theoretical advances, very few empirical
evaluations of these algorithms were conducted and we
are not aware of a commonly-accepted best practice. Prac-
titioners are often left puzzled about which algorithm to
use for the specific data set they have. The nature of differ-
ential privacy often requires them to set parameters of the
algorithm (e.g., how much noise to add) according to the
diameter of the parameter domain, as well as properties
of a hypothetical worst-case data set, which often leads to
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an inefficient use of their valuable data.

The main contribution of this paper is threefold:

1. We consolidated many bits and pieces from the liter-
ature and clarified the price of differentially privacy
in statistical estimation and statistical learning.

2. We carefully analyzed One Posterior Sample (OPS)
and Sufficient Statistics Perturbation (SSP) for lin-
ear regression and proposed simple modifications
of them into adaptive versions: ADAOPS and
ADASSP. Both work near optimally for every prob-
lem instance without any hyperparameter tuning.

3. We conducted extensive real data experiments to
benchmark existing techniques and concluded that
the proposed techniques give rise to the more fa-
vorable privacy-utility tradeoff relative to existing
methods.

Outline of this paper. In Section 2 we will describe
the problem setup and explain differential privacy. In
Section 3, we will survey the literature and discuss exist-
ing algorithms. Then we will propose and analyze our
new method ADASSP and ADAOPS in Section 4 and
conclude the paper with experiments in Section 5.

2 NOTATIONS AND SETUP

Throughout the paper we will use X 2 Rn⇥d and y 2 Rn

to denote the design matrix and response vector. These are
collections of data points (x1, y1), ..., (xn, yn) 2 X ⇥ Y .
We use k·k to denote Euclidean norm for vector inputs, `2-
operator norm for matrix inputs. In addition, for set inputs,
k · k denotes the radius of the smallest Euclidean ball that
contains the set. For example, kYk = supy2Y |y| and
kXk = supx2X kxk. Let ⇥ be the domain of coefficients.
Our results do not require ⇥ to be compact but existing
approaches often depend on k⇥k. . and & denote greater
than or smaller to up to a universal multiplicative constant,
which is the same as the big O(·) and the big ⌦(·). Õ(·)
hides at most a logarithmic term. � and � denote the
standard semidefinite ordering of positive semi-definite
(psd) matrices. · _ · and · ^ · denote the bigger or smaller
of the two inputs.

We now define a few data dependent quantities. We
use �min(XT X) (abbv. �min) to denote the smallest
eigenvalue of XT X , and to make the implicit depen-
dence in d and n clear from this quantity, we define
↵ := �min

d
nkXk2 . One can think of ↵ as a normalized

smallest eigenvalue of XT X such that 0  ↵  1.
Also, 1/↵ is closely related to the condition number of
XT X .

Define the least square solution ✓⇤ = (XT X)†XT y. It
is the optimal solution to min✓

1
2ky � X✓k2 =: F (✓).

Similarly, we use ✓⇤� = (XT X +�I)�1XT y denotes the
optimal solution to the ridge regression objective F�(✓) =
F (✓) + �k✓k2.

In addition, we denote the global Lipschitz constant of F
as L⇤ := kXk2k⇥k+ kXkkYk and data-dependent local
Lipschitz constant at ✓⇤ as L := kXk2k✓⇤k+ kXkkYk.
Note that when ⇥ = Rd, L⇤ = 1, but L will remain
finite for every given data set.

Metric of success. We measure the performance of an
estimator ✓̂ in two ways.

First, we consider the optimization error F (✓̂) � F (✓⇤)
in expectation or with probability 1� %. This is related to
the prediction accuracy in the distribution-free statistical
learning setting.

Second, we consider how well the coefficients can be
estimated under the linear Gaussian model:

y = X✓0 + N (0,�2In)

in terms of E[k✓̂�✓0k2] or in some cases E[k✓̂�✓0k2|E]
where E is a high probability event.

The optimal error in either case will depend on the specific
design matrix X , optimal solution ✓⇤, the data domain
X , Y , the parameter domain ⇥ as well as ✓0,�2 in the
statistical estimation setting.

Differential privacy. We will focus on estimators that
are differential private, as defined below.
Definition 1 (Differential privacy (Dwork et al., 2006b)).
We say a randomized algorithm A satisfies (✏, �)-DP if for
all fixed data set (X, y) and data set (X 0, y0) that can be
constructed by adding or removing one row (x, y) from
(X, y), and for any measurable set S over the probability
of the algorithm

P(A((X, y)) 2 S)  e✏P(A((X 0, y0)) 2 S) + �,

Parameter ✏ represents the amount of privacy loss from
running the algorithm and � denotes a small probability of
failure. These are user-specified targets to achieve and the
differential privacy guarantee is considered meaningful
if ✏  1 and � ⌧ 1/n (see, e.g., Section 2.3.3 of Dwork
et al., 2014a, for a comprehensive review).

The pursuit for adaptive estimators. Another impor-
tant design feature that we will mention repeatedly in this
paper is adaptivity. We call an estimator ✓̂ adaptive if
it behaves optimally simultaneously for a wide range of
parameter choices. Being adaptive is of great practical
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relevance because we do not need to specify the class
of problems or worry about whether our specification
is wrong (see examples of adaptive estimators in e.g.,
Donoho, 1995; Birgé & Massart, 2001). Adaptivity is par-
ticularly important for differentially private data analysis
because often we need to decide the amount of noise to
add by the size of the domain. For example, an adaptive al-
gorithm will not rely on conservative upper bounds of ✓0,
or a worst case �min (which would be 0 on any X ), and
it can take advantage of favorable properties when they
exist in the data set. We want to design an estimator that
does not take these parameters as inputs and behave nearly
optimally for every fixed data set X 2 X n, y 2 Y under
a variety of configuration of kXk, kYk, k⇥k.

3 A SURVEY OF PRIOR WORK

In this section, we summarize existing theoretical results
in linear regression with and without differential privacy
constraints. We will start with lower bounds.

3.1 Information-theoretic lower bounds

Lower bounds under linear Gaussian model. Under
the statistical assumption of linear Gaussian model y =
X✓0 + N (0,�2), the minimax risk for both estimation
and prediction are crisply characterized for each fixed
design matrix X:

inf
✓̂

sup
✓02Rd

E[F (✓̂)� F (✓0)|X] =
d�2

2
, (1)

and if we further assume that n � d and XT X is invert-
ible (for identifiability), then

inf
✓̂

sup
✓02Rd

E[k✓̂ � ✓0k22|X] = �2tr[(XT X)�1]. (2)

In the above setup, ✓̂ is any measurable function of ŷ
(note that X is fixed). These are classic results that can
be found in standard statistical decision theory textbooks
(See, e.g., Wasserman, 2013, Chapter 13).

Under the same assumptions, the Cramer-Rao lower
bound mandates that the covariance matrix of any un-
biased estimator ✓̂ of ✓0 to obey that

Cov(✓̂) � �2(XT X)�1. (3)

This bound applies to every problem instance separately
and also implies a sharp lower bound on the predic-
tion variance on every data point x. More precisely,
Var(✓̂T x) � �2xT (XT X)�1x for any x.

Minimax risk (1), (2) and the Cramer-Rao lower bound
(3) are simultaneously attained by ✓⇤.

Statistical learning lower bounds. Perhaps much less
well-known, linear regression is also thoroughly studied in
the distribution-free statistical learning setting, where the
only assumption is that the data are drawn iid from some
unknown distribution P defined on some compact domain
X ⇥ Y . Specifically, let the risk (E[loss]) be

R(✓) = E(x,y)⇠P [ 12 (xT ✓ � y)2] = 1
nE(X,y)⇠Pn [F (✓)].

Shamir (2015) showed that when ⇥, X are Y are Eu-
clidean balls,

inf
✓̂

sup
P


E[n · R(✓̂)]� inf

✓2⇥
[n · R(✓)]

�

&min{nkYk2, k⇥k2kXk2 + dkYk2,pnk⇥kkXkkYk}.
(4)

where ✓̂ be any measurable function of the data set X, y
to ⇥ and the expectation is taken over the data generating
distribution X, y ⇠ Pn. Note that to be compatible to
other bounds that appear in this paper, we multiplied the
R(·) by a factor of n. Informally, one can think of kYk as
� in (1) so both terms depend on d�2 (or dkYk2), but the
dependence on k⇥kkXk is new for the distribution-free
setting.

Koren & Levy (2015) later showed that this lower bound
is matched up to a constant by Ridge Regression with
� = 1 and both Koren & Levy (2015) and Shamir (2015)
conjecture that ERM without additional regularization
should attain the lower bound (4). If the conjecture is true,
then the unconstrained OLS is simultaneously optimal
for all distributions supported on the smallest ball that
contains all data points in X, y for any ⇥ being an `2 ball
with radius larger than k✓⇤k.

Lower bounds with (✏, �)-privacy constraints. Sup-
pose that we further require ✓̂ to be (✏, �)-differentially
private, then there is an additional price to pay in terms
of how accurately we can approximate the ERM solution.
Specifically, the lower bounds for the empirical excess
risk for differentially private ERM problem in (Bassily
et al., 2014) implies that for � < 1/n and sufficiently
large n:

1. There exists a triplet of (X , Y,⇥) ⇢ Rd ⇥ R⇥ Rd,
such that

inf
✓̂ is (✏,�)-DP

sup
X2X n,y2Yn


F (✓̂)� inf

✓2⇥
F (✓)

�

&min{nkYk2,
p

d(kXk2k⇥k2 + kXkk⇥kkYk)
✏

}.

(5)

2. Consider the class of data set S where all data sets
X 2 S ⇢ X n obeys that the inverse condition num-
ber ↵ � ↵⇤ � d1.5(kXkk⇥k+kYk)

nkXkk⇥k✏
1. There exists a

1This requires �min �
p

dL/✏ for all data sets X .
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triplet of (X , Y,⇥) ⇢ Rd ⇥ R⇥ Rd such that

inf
✓̂ is (✏,�)-DP

sup
X2S,y2Yn


F (✓̂)� inf

✓2⇥
F (✓)

�

&min{nkYk2, d2(kXkk⇥k+ kYk)2
n↵⇤✏2

}.

(6)

These bounds are attained by a number of algorithms,
which we will go over in Section 3.2.

Comparing to the non-private minimax rates on prediction
accuracy, the bounds look different in several aspects.
First, neither rate for prediction error in (1) or (4) depends
on whether the design matrix X is well-conditioned or
not, while ↵⇤ appears explicitly in (6). Secondly, the
dependence on k⇥kkXk, kYk, d, n are different, which
makes it hard to tell whether the optimization error lower
bound due to privacy requirement is limiting. One may
ask the following question:

When is privacy for free in statistical learning?

Specifically, what is the smallest ✏ such that an
(✏, �)-DP algorithm matches the minimax rate in
(4)? The answer really depends on the relative
scale of kXkk⇥k and kYk and that of n, d. When
kXkk⇥k ⇣ kYk, (5) says that (✏, �)-DP algorithms
can achieve the nonconvex minimax rate provided that

✏ & min

⇢
1p
d
_
q

d
n ,
q

d2

n1.5↵⇤ _
q

d
n↵⇤

�
. On the other

hand, if kXkk⇥k ⇣
p

dkYk 2 and n > d, then we need
✏ & min

np
d _ d3/2

n , dp
n↵⇤ _ d3/2

n
p
↵⇤

o
.

The regions are illustrated graphically in Figure 1. In
the first case, there is a large region upon n & d, where
meaningful differential privacy (with ✏  1 and � =
o(1/n)) can be achieved without incurring a significant
toll relative to (4). In the second case, we need at least
n & d2 to achieve “privacy-for-free” in the most favorable
case where ↵⇤ = 1. In the case when X could be rank-
deficient, then it is infeasible to achieve “privacy for free”
no matter how large n is.

It might be tempting to conclude that one should always
prefer Case 1 over Case 2. This is unfortunately not true
because the artificial restriction of the model class via a
bounded k⇥k also weakens our non-private baseline. In
other word, the best solution within a small ⇥ might be
significantly worse than the best solution in Rd.

In practice, it is hard to find a ⇥ with a small radius that
fits all purposes3 and it is unreasonable to assume ↵⇤ > 0.

2This is arguably the more relevant setting. Note that if
x ⇠ N (0, Id) and ✓ is fixed, then xT ✓ = OP (d�1/2kxkk✓k).

3If k⇥k � k✓⇤k then the constraint becomes limiting. If
k✓⇤k ⌧ k⇥k instead, then calibrating the noise according to
k⇥k will inject more noise than necessary.

n

DP-for-free region, * = 1
DP-for-free region, * = 0.1
DP-for-free region, * = 0
Largest acceptable 

n

DP-for-free region, * = 1
DP-for-free region, * = 0.1
DP-for-free region, * = 0
Trivial solution is optimal
Largest acceptable 

Figure 1: Illustration of the region of ✏ where DP can be
obtained without losing minimax rate (4).[Zoom to see!]

This motivates us to go beyond the worst-case and come
up with adaptive algorithms that work without knowing
k✓⇤k and ↵ while achieving the minimax rate for the class
with k⇥k = k✓⇤k and ↵⇤ = ↵ (in hindsight).

In Appendix B, we provide an alternative illustration of
the lower bounds and highlight the price of differential
privacy for different configuration of n, d,↵, ✏.

3.2 Existing algorithms and our
contribution

We now survey the following list of five popular algo-
rithms in differentially private learning and highlight the
novelty in our proposals 4.

1. Sufficient statistics perturbation (SSP) (Vu &
Slavkovic, 2009; Foulds et al., 2016): Release XT X
and Xy differential privately and then output ✓̂ =

(\XT X)�1dXy.

2. Objective perturbation (OBJPERT) (Kifer et al.,

4While we try to be as comprehensive as possible, the litera-
ture has grown massively and the choice of this list is limited by
our knowledge and opinions.
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2012): ✓̂ = argmin F (✓) + 0.5�k✓k2 + ZT ✓ with
an appropriate � and Z is an appropriately chosen
iid Gaussian random vector.

3. Subsample and Aggregate (Sub-Agg) (Smith, 2008;
Dwork & Smith, 2010): Subsample many times, ap-
ply debiased MLE to each subset and then randomize
the way we aggregate the results.

4. Posterior sampling (OPS) (Mir, 2013; Dimitrakakis
et al., 2014; Wang et al., 2015; Minami et al., 2016):
Output ✓̂ ⇠ P (✓) / e��(F (✓)+0.5�k✓k2) with param-
eters �,�.

5. NOISYSGD (Bassily et al., 2014): Run SGD for a
fixed number of iterations with additional Gaussian
noise added to the stochastic gradient evaluated on
one randomly-chosen data point.

We omit detailed operational aspects of these algorithms
and focus our discussion on their theoretical guarantees.
Interested readers are encouraged to check out each paper
separately. These algorithms are proven under different
scalings and assumptions. To ensure fair comparison,
we make sure that all results are converted to our setting
under a subset of the following assumptions.

A.1 kXk is bounded, kYk is bounded.

A.2 k⇥k is bounded.

A.3 All possible data sets X obey that the smallest eigen-
value �min(XT X) is greater than nkXk2

d ↵⇤.

Note that A.3 is a restriction on the domain of the data set,
rather than the domain of individual data points in the data
set of size n. While it is a little unconventional, it is valid
to define differential privacy within such a restricted space
of data sets. It is the same assumption that we needed to
assume for the lower bound in (6) to be meaningful. As
in Koren & Levy (2015), we simplify the expressions of
the bound by assuming kYk  kXkk⇥k, and in addition,
we assume that kYk . kXkk✓⇤k.
Table 1 summarizes the upper bounds of optimization
error the aforementioned algorithms in comparison to
our two proposals: ADAOPS and ADASSP. Comparing
the rates to the lower bounds in the previous section, it is
clear that NoisySGD, OBJPERT both achieve the minimax
rate in optimization error but their hyperparameter choice
depends on the unknown k⇥k and ↵⇤. SSP is adaptive
to ↵ and k✓⇤k but has a completely different type of
issue — it can fail arbitrarily badly for regime covered
under (5), and even for well-conditioned problems, its
theoretical guarantees only kick in as n gets very large.
Our proposed algorithms ADAOPS and ADASSP are able
to simultaneously switch between the two regimes and
get the best of both worlds.

Table 2 summarizes the upper bounds for estimation. The
second row compares the approximation of ✓⇤ in MSE
and the third column summarizes the statistical efficiency
of the DP estimators relative to the MLE: ✓⇤ under the
linear Gaussian model. All algorithms except OPS are
asymptotically efficient. For the interest of (✏, �)-DP, SSP
has the fastest convergence rate and does not explicitly
depend on the smallest eigenvalue, but again it behaves
differently when n is small, while ADAOPS and ADASSP
work optimally (up to a constant) for all n.

3.3 Other related work

The problem of adaptive estimation is closely related to
model selection (see, e.g., Birgé & Massart, 2001) and an
approach using Bayesian Information Criteria was care-
fully studied in the differential private setting for the prob-
lem of `1 constrained ridge regression by Lei et al. (2017).
Their focus is different to ours in that they care about infer-
ring the correct model, while we take the distribution-free
view. Linear regression is also studied in many more spe-
cialized setups, e.g., high dimensional linear regression
(Kifer et al., 2012; Talwar et al., 2014, 2015), statisti-
cal inference (Sheffet, 2017) and so on. For the interest
of this paper, we focus on the standard regime of linear
regression where d < n and do not use sparsity or `1 con-
straint set to achieve the log(d) dependence. That said,
we acknowledge that Sheffet (2017) analyzed SSP under
the linear Gaussian model (the third row in Table 2and
their techniques of adaptively adding regularization have
inspired ADASSP.

4 MAIN RESULTS

In this section, we present and analyze ADAOPS and
ADASSP that achieve the aforementioned adaptive rate.
The pseudo-code of these two algorithms are given in
Algorithm 1 and Algorithm 2.

The idea of both algorithms is to release key data-
dependent quantities differentially privately and then use
a high probability confidence interval of these quanti-
ties to calibrate the noise to privacy budget as well as
to choose the ridge regression’s hyperparameter � for
achieving the smallest prediction error. Specifically,
ADAOPS requires us to release both the smallest eigen-
value �min of XT X and the local Lipschitz constant
L := kXk(kXkk✓⇤�k+kYk), while ADASSP only needs
the smallest eigenvalue �min.

In both ADASSP and ADAOPS, we choose � by mini-
mizing an upper bound of F (✓̃) � F (✓⇤) in the form of
“variance” and “bias”

Õ(
dkXk4k✓⇤k2
�+ �min

) + �k✓⇤k2.
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Table 1: Summary of optimization error bounds. This table compares the (expected or high probability ) additive
suboptimality of different differentially private linear regression procedures relative to the (non-private) empirical risk
minimizer ✓⇤. In particular, the results for NoisySGD holds in expectation and everything else with probability 1� %
(hiding at most a logarithmic factor in

p
1/%). Constant factors are dropped for readability.

F (✓̂)� F (✓⇤) Assumptions Remarks

NoisySGD

p
d log( n

� )kXk2k⇥k2
✏ A.1, A.2 Theorem 2.4 (Part 1) of (Bassily

et al., 2014).
d2 log( n

� )k⇥k2
↵⇤n✏2 A.1, A.2, A.3 Theorem 2.4 (Part 2) of (Bassily

et al., 2014)

OBJPERT

p
d log( 1

� )kXk2k⇥kk✓⇤k
✏ A.1, A.2 Theorem 4 (Part 2) of (Kifer et al.,

2012).
d2 log( 1

� )k⇥k2
↵⇤n✏2 A.1, A.2, A.3 Theorem 5 & Appendix E.2 of

(Kifer et al., 2012).

OPS dkXk2k⇥k2
✏ A.1, A.2 Results for ✏-DP (Wang et al., 2015)

SSP d2 log( 1
� )kXk2k✓⇤k2
↵n✏2 A.1 Adaptive to k✓⇤k, X,↵, but requires

n = ⌦(d1.5 log(4/�)
↵✏ ) 5.

ADAOPS & ADASSP
p

d log( 1
� )kXk2k✓⇤k2
✏ ^ d2 log( 1

� )k✓⇤k2
↵n✏2 A.1 Adaptive in k✓⇤k, X,↵.

Table 2: Summary or estimation error bounds under the linear Gaussian model. On the second column we compare
the approximation of MLE ✓⇤ in mean square error up to a universal constant. On the third column, we compare the
relative efficiency. The relative efficiency bounds are simplified with the assumption of ↵ = ⌦(1), which implies that
tr[(XT X)�1] = O(d2n�1kXk�2) and tr[(XT X)�2] = O(dn�1kXk�2tr[(XT X)�1]). Õ(·) hides polylog(1/�)
terms.

Approxi. MLE: Ek✓̂ � ✓⇤k2 Rel. efficiency: Ek✓̂�✓0k2
Ek✓⇤�✓0k2 Remarks

Sub-Agg O
⇣

poly(d,k⇥k,kXk,↵�1)
✏6/5n6/5

⌘
1 + Õ( poly(d,k⇥k,kXk)

n1/5✏6/5 ) ✏-DP, suboptimal in n,
possibly also in d(Dwork
& Smith, 2010).

OPS O(kXk
2k⇥k2
✏ )tr[(XT X)�1] Õ(kXk

2k⇥k2
✏�2 ) ✏-DP, adaptive in X , but

not asymptotically effi-
cient (Wang et al., 2015).

SSP O
⇣

log( 1
� )kXk4k✓⇤k2

✏2 tr[(XT X)�2]
⌘

1 + Õ(dkXk2k✓0k2
n✏2�2 + d3

n2✏2 ) Adaptive in k✓⇤k, X , no
explicit dependence on
↵, but requires large n.
(Sheffet, 2017, Theorem
5.1)

ADAOPS & ADASSP O
⇣

d log( 1
� )kXk2k✓⇤k2
↵n✏2 tr[(XT X)�1]

⌘
1 + Õ(dkXk2k✓0k2

n✏2�2 + d3

n2✏2 ) Adaptive in k✓⇤k, X,↵.
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Algorithm 1 ADAOPS: One-Posterior Sample estimator
with adaptive regularization

input Data X , y. Privacy budget: ✏, �, Bounds:
kXk, kYk.
1. Calculate the minimum eigenvalue �min(X

T X).
2. Sample Z ⇠ N (0, 1) and privately release

�̃min = max

⇢
�min +

p
log(6/�)

✏/4 Z � log(6/�)
✏/4 , 0

�
.

3. Set ✏̄ as the positive solution of the quadratic equa-
tion

✏̄2/(2 log(6/�)) + ✏̄� ✏/4 = 0.

4. Set % = 0.05, C1 =
�
d/2 +

p
d log(1/%) +

log(1/%)
�
log(6/�)/✏̄2, C2 = log(6/�)/(✏/4), tmin =

max{kXk
2(1+log(6/�))

2✏ � �̃min, 0} and solve

� = argmin
t�tmin

kXk4C1[1 + kXk2/(t + �̃min)]2C2

t + �̃min

+ t.

(7)
which has a unique solution.
5. Calculate ✓̂ = (XT X + �I)�1XT y.
6. Sample Z ⇠ N (0, 1) and privately release
� = log(kYk+ kXkk✓̂k) + log(1+kXk2/(�+�̃min))

✏/(4
p

log(6/�))
Z +

log(1+kXk2/(�+�̃min))
✏/(4 log(6/�)) . Set L̃ := kXke�.

7. Calibrate noise by choosing ✏̃ as the positive solution
of the quadratic equation

✏̃2

2


1

log(6/�)

1 + log(6/�)

log(6/�)

�
+ ✏̃� ✏/2 = 0. (8)

and then set � = (�̃min+�)✏̃2

log(6/�)L̃2
.

output ✓̃ ⇠ p(✓|X, y) / e�
�
2 (ky�X✓k2+�k✓k2).

Note that while k✓⇤k2 cannot be privately released in
general due to unbounded sensitivity, it appears in both
terms and do not enter the decision process of finding the
optimal � that minimizes the bound. This convenient fea-
ture follows from our assumption that kYk . kXkk✓⇤k.
Dealing with the general case involving an arbitrary kYk
is an intriguing open problem.

A tricky situation for ADAOPS is that the choice of �
depends on � through L̃, which is the local Lipschitz
constant at the ridge regression solution ✓⇤�. But the choice
of � also depends on � since the “variance” term above
is inversely proportional to �. Our solution is to express
L̃ (hence �) as a function of � and solve the nonlinear
univariate optimization problem (7).

We are now ready to state the main results.
Theorem 2. Algorithm 1 outputs ✓̃ which obeys that

(i) It satisfies (✏, �)-DP.

Algorithm 2 ADASSP: Sufficient statistics perturbation
with adaptive damping

input Data X , y. Privacy budget: ✏, �, Bounds:
kXk, kYk.
1. Calculate the minimum eigenvalue �min(X

T X).
2. Privately release �̃min =

max

⇢
�min +

p
log(6/�)

✏/3 kXk2Z � log(6/�)
✏/3 kXk2, 0

�
,

where Z ⇠ N (0, 1).

3. Set � = max{0,

p
d log(6/�) log(2d2/⇢)kXk2

✏/3 � �̃min}

4. Privately release \XT X = XT X +

p
log(6/�)kXk2

✏/3 Z

for Z 2 Rd⇥d is a symmetric matrix and every ele-
ment from the upper triangular matrix is sampled from
N (0, 1).

5. Privately release dXy = Xy +

p
log(6/�)kXkkYk

✏/3 Z

for Z ⇠ N (0, Id).
output ✓̃ = (\XT X + �I)�1dXy

(ii) Assume kYk . kXkk✓⇤k. With probability 1 � %,
F (✓̃)� F (✓⇤) 

O

 q
d+log( 1

% )kXk2k✓⇤k2

✏/
p

log( 1
� )

^ d[d+log( 1
% )]k✓⇤k2

↵n✏2/ log( 1
� )

!
.

(iii) Assume that y|X obeys a linear Gaussian model
and X is full-rank. Then there is an event E
satisfying P(E) � 1 � �/3 and E ?? y|X , such
that E[✓̃|X, E] = ✓0 and

Cov[✓̃|X, E] �
⇣
1 + O

⇣
C̃d log(6/�)
�2↵n✏2

⌘⌘
�2(XT X)�1

where constant
C̃ := kYk2 + kXk2(k✓0k2 + �2tr[(XT X)�1]).

The proof, deferred to Appendix D, makes use of a fine-
grained DP-analysis through the recent per instance DP
techniques (Wang, 2017) and then convert the results to
DP by releasing data dependent bounds of ↵ and the mag-
nitude of a ridge-regression output ✓⇤� with an adaptively
chosen �. Note that k✓⇤�k does not have a bounded global
sensitivity. The method to release it differentially pri-
vately (described in Lemma 12) is part of our technical
contribution.

The ADASSP algorithm is simpler and enjoys slightly
stronger theoretical guarantees.
Theorem 3. Algorithm 2 outputs ✓̃ which obeys that

(i) It satisfies (✏, �)-DP.

(ii) Assume kYk . kXkk✓⇤k. With probability 1 � %,
F (✓̃)� F (✓⇤) 

O

 q
d log( d2

% )kXk2k✓⇤k2

✏/
p

log( 6
� )

^ kXk
4k✓⇤k2tr[(XT X)�1]

✏2/[log( 6
� ) log( d2

% )]

!
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(iii) Assume that y|X obeys a linear Gaussian model
and X has a sufficiently large ↵. Then there is an
event E satisfying P(E) � 1� �/3 and E ?? y|X ,
such that E[✓̃|X, E] = ✓0 and

E[k✓̃ � ✓0k2|X, E]

=�2tr[(XT X)�1] + O

 
C̃kXk2tr[(XT X)�2]

✏2/ log( 6
� )

!
,

with the same constant C̃ in Theorem 2 (iii).

The proof of Statement (1) is straightforward. Note that
we release the eigenvalue �min(X

T X), Xy and XT X dif-
ferentially privately each with parameter (✏/3, �/3). For
the first two, we use Gaussian mechanism and for XT X ,
we use the Analyze-Gauss algorithm (Dwork et al., 2014b)
with a symmetric Gaussian random matrix. The result
then follows from the composition theorem of differential
privacy. The proof of the second and third statements is
provided in Appendix C. The main technical challenge
is to prove the concentration on the spectrum and the
Johnson-Lindenstrauss-like distance preserving proper-
ties for symmetric Gaussian random matrices (Lemma 6).
We note that while SSP is an old algorithm the analysis
of its theoretical properties is new to this paper.

Remarks. Both ADAOPS and ADASSP match the
smaller of the two lower bounds (5) and (6) for each
problem instance. They are slightly different in that
ADAOPS preserves the shape of the intrinsic geometry
while ADASSP’s bounds are slightly stronger as they do
not explicitly depend on the smallest eigenvalue.

5 EXPERIMENTS

In this section, we conduct synthetic and real data exper-
iments to benchmark the performance of ADAOPS and
ADASSP relative to existing algorithms we discussed in
Section 3. NOISYSGD and Sub-Agg are excluded be-
cause they are dominated by OBJPERT and an (✏, �)-DP
version of OPS (see Appendix F for details)6.

Prediction accuracy in UCI data sets experiments.
The first set of experiments is on training linear regression
on a number of UCI regression data sets. Standard z-
scoring are performed and all data points are normalized
to having an Euclidean norm of 1 as a preprocessing
step. The results on four of the data sets are presented
in Figure 2. As we can see, SSP is unstable for small
data. OBJPERT suffers from a pre-defined bound k⇥k and

6The code to reproduce all experimental results are avail-
able at https://github.com/yuxiangw/optimal_
dp_linear_regression.
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Figure 2: Example of results of differentially private linear
regression algorithms on UCI data sets for a sequence of ✏.
Reported on the y-axis is the cross-validation prediction error in
MSE and their confidence intervals.
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(a) Estimation MSE at ✏ = 0.1
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(b) Estimation MSE at ✏ = 1
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(c) Rel. efficiency at ✏ = 0.1
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(d) Rel. efficiency at ✏ = 1

Figure 3: Example of differentially private linear regression
under linear Gaussian model with an increasing data size n. We
simulate the data from d = 10, ✓0 drawn from a uniform distri-
bution defined on [0, 1]d. We generate X 2 Rn⇥d as a Gaussian
random matrix and then generate y ⇠ N (X✓0, Id). We used
✏ = 1 and ✏ = 0.1, both with � = 1/n2. The results clearly
illustrate the asymptotic efficiency of the proposed approaches.

does not converge to nonprivate solution even with a large
✏. OPS performs well but still does not take advantage
of the strong convexity that is intrinsic to the data set.
ADAOPS and ADASSP on the other hand are able to
nicely interpolate between the trivial solution and the non-
private baseline and performed as well as or better than
baselines for all ✏. More detailed quantitative results on
all the 36 UCI data sets are presented in Table 3.
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Table 3: Summary of UCI data experiments at ✏ = 0.1, � = min{1e�6, 1/n2}. The boldface denotes the DP algorithm
where the standard deviation is smaller than the error (a positive quantity), and the 95% confidence interval covers the
observed best performance among benchmarked DP algorithms.

Trivial non-private OBJPERT OPS SSP ADAOPS ADASSP
3droad 0.0275±0.00014 0.0265±0.00012 0.0267±0.00013 0.027±0.00026 0.0265±0.00019 0.0265±0.00019 0.0265±0.00019
airfoil 0.103±0.0069 0.0533±0.0074 0.356±0.064 0.138±0.086 0.232±0.28 0.0914±0.015 0.0878±0.014
autompg 0.113±0.011 0.0221±0.0032 0.143±0.096 0.242±0.11 5.44±6.1 0.098±0.03 0.115±0.047
autos 0.13±0.042 0.0274±0.011 0.17±0.13 0.308±0.13 1.7e+03±2.5e+03 0.136±0.066 0.132±0.064
bike 0.107±0.0028 0.0279±0.00078 0.113±0.018 0.0484±0.005 0.0869±0.067 0.0471±0.004 0.0471±0.0026
breastcancer 0.194±0.027 0.139±0.025 0.212±0.078 0.269±0.13 9.54e+03±1.9e+04 0.204±0.037 0.196±0.051
buzz 0.0658±0.00015 0.0127±4.6e-05 0.0285±0.00071 0.0156±0.001 0.0272±0.0097 0.0151±0.00095 0.013±9.7e-05
challenger 0.141±0.084 0.138±0.088 0.323±0.28 0.338±0.13 3.07±3.9 0.159±0.13 0.146±0.093
concrete 0.127±0.0043 0.0445±0.0033 0.237±0.076 0.181±0.042 1.94±1.8 0.12±0.011 0.119±0.016
concreteslump 0.149±0.039 0.0245±0.0071 0.349±0.094 0.549±0.24 3.14±2.5 0.151±0.064 0.165±0.065
elevators 0.0367±0.0014 0.00861±0.00031 0.0647±0.015 0.0327±0.0042 0.645±0.98 0.0252±0.0026 0.0237±0.0022
energy 0.235±0.012 0.0232±0.0023 0.332±0.09 0.161±0.083 1.7e+03±3.4e+03 0.167±0.034 0.15±0.032
fertility 0.0977±0.024 0.0863±0.024 0.203±0.04 0.639±0.16 439±8.6e+02 0.108±0.048 0.115±0.032
forest 0.0564±0.0081 0.0571±0.0086 0.12±0.022 0.177±0.036 41.9±77 0.0622±0.017 0.0675±0.013
gas 0.112±0.0062 0.0214±0.0028 0.109±0.015 0.0546±0.012 0.923±0.63 0.0801±0.0078 0.0875±0.0073
houseelectric 0.122±0.00017 0.0136±1.4e-05 0.0409±0.00027 0.0144±0.00017 0.0136±2.2e-05 0.0136±2.2e-05 0.0136±2.2e-05
housing 0.112±0.019 0.0394±0.01 0.253±0.063 0.225±0.065 2.24±2.3 0.108±0.023 0.0997±0.035
keggdirected 0.117±0.00095 0.0188±0.0011 0.0637±0.0042 0.0266±0.0019 0.23±0.33 0.0227±0.0015 0.0212±0.0011
keggundirected 0.0694±0.00074 0.00475±8.9e-05 0.0365±0.0028 0.0166±0.0033 0.353±0.4 0.0107±0.0012 0.00912±0.00046
kin40k 0.0634±0.0012 0.0632±0.0013 0.0871±0.0092 0.0717±0.0026 0.0633±0.002 0.0639±0.0021 0.064±0.0021
machine 0.121±0.013 0.0395±0.0051 0.282±0.14 0.347±0.14 2.27e+03±4.5e+03 0.105±0.025 0.141±0.068
parkinsons 0.17±0.0026 0.128±0.0024 0.211±0.014 0.157±0.011 132±2.6e+02 0.159±0.0065 0.156±0.0064
pendulum 0.0226±0.0061 0.0181±0.0049 0.118±0.027 0.122±0.041 24.8±45 0.0276±0.011 0.0346±0.0069
pol 0.345±0.0028 0.135±0.0023 0.302±0.032 0.196±0.02 281±5.3e+02 0.214±0.0056 0.214±0.0061
protein 0.167±0.0011 0.119±0.0014 0.158±0.01 0.137±0.0044 0.149±0.06 0.129±0.0015 0.125±0.0026
pumadyn32nm 0.0935±0.0039 0.0941±0.0039 0.124±0.0046 0.111±0.005 8.92e+03±1.8e+04 0.0968±0.0065 0.0966±0.0063
servo 0.184±0.039 0.0752±0.022 0.366±0.077 0.574±0.26 2.03±1.5 0.195±0.065 0.198±0.081
skillcraft 0.0439±0.0021 0.0203±0.0017 0.0817±0.013 0.0519±0.0099 4.72±4.3 0.037±0.008 0.039±0.0056
slice 0.196±0.0021 0.0283±0.00051 0.174±0.0053 0.0924±0.0035 11.2±9.4 0.0992±0.0021 0.132±0.0015
sml 0.211±0.0089 0.0143±0.00066 0.23±0.03 0.0955±0.029 59.9±80 0.134±0.0075 0.147±0.013
solar 0.0118±0.0042 0.0106±0.0038 0.0994±0.023 0.0667±0.017 5.95±9.6 0.0165±0.0062 0.0204±0.0073
song 0.0917±0.0003 0.0636±0.00033 0.0838±0.0014 0.072±0.00035 0.0644±0.0005 0.0685±0.00045 0.0697±0.00029
stock 0.0583±0.0095 0.013±0.0023 0.122±0.026 0.157±0.055 46.8±66 0.0582±0.023 0.0651±0.024
tamielectric 0.334±0.002 0.334±0.0021 0.341±0.0021 0.343±0.0065 0.335±0.0033 0.337±0.0047 0.335±0.0033
wine 0.0566±0.0028 0.0202±0.00099 0.153±0.028 0.0911±0.016 11.7±17 0.058±0.011 0.0599±0.01
yacht 0.105±0.017 0.0176±0.0055 0.273±0.076 0.371±0.14 4.92±6.8 0.0967±0.035 0.109±0.03

Parameter estimation under linear Gaussian model.
To illustrate the performance of the algorithms under

standard statistical assumptions, we also benchmarked
the algorithms on synthetic data generated by a linear
Gaussian model. The results, shown in Figure 3 illustrates
that as n gets large, ADAOPS and ADASSP with ✏ = 0.1
and ✏ = 1 converge to the maximum likelihood estimator
at a rate faster than the optimal statistical rate that MLE
estimates ✓⇤, therefore at least for large n, differential
privacy comes for free. Note that there is a gap in SSP
and ADASSP for large n, this can be thought of as a cost
of adaptivity as ADASSP needs to spend some portion of
its privacy budget to release �min, which SSP does not,
this can be fixed by using more careful splitting of the
privacy budget.

6 CONCLUSION

In this paper, we presented a detailed case-study of the
problem of differentially private linear regression. We
clarified the relationships between various quantities of
the problems as they appear in the private and non-private

information-theoretic lower bounds. We also surveyed the
existing algorithms and highlighted that the main draw-
back using these algorithms relative to their non-private
counterpart is that they cannot adapt to data-dependent
quantities. This is particularly true for linear regression
where the ordinary least square algorithm is able to work
optimally for a large class of different settings.

We proposed ADAOPS and ADASSP to address the issue
and showed that they both work in unbounded domain.
Moreover, they smoothly interpolate the two regimes stud-
ied in Bassily et al. (2014) and behave nearly optimally
for every instance. We tested the two algorithms on 36
real-life data sets from the UCI machine learning repos-
itory and we see significant improvement over popular
algorithms for almost all configurations of ✏.
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Abstract

We introduce a novel class of adjustment rules
for a collection of beliefs. This is an exten-
sion of Lewis’ imaging to absorb probabilistic
evidence in generalized settings. Unlike stan-
dard tools for belief revision, our proposal may
be used when information is inconsistent with
an agent’s belief base. We show that the func-
tionals we introduce are based on the imagi-
nary counterpart of probability kinematics for
standard belief revision, and prove that, under
certain conditions, all standard postulates for
belief revision are satisfied.

1 INTRODUCTION

The theory of belief revision, originated in the
work of Alchourrón, Gärdenfors and Makinson
[Alchourrón et al., 1985], is aimed to maintain consis-
tency of a knowledge base when updated information is
gathered to a rational agent, or You. In the present work
we will focus on the probabilistic framework, where
Your knowledge base is represented by a (closed and
convex) collection of probability mass functions, and
some observational process is expected to induce an ad-
justment in the model.1 With probabilities, evidence on
some variables is called inconsistent when it contradicts
certainty (or impossibility) in Your knowledge base. We
provide an example to motivate our contribution.

Example 1. While swimming in a lake, Celeste sees
some black birds from the distance. She knows black
birds living around that lake are rather tame, while
swans might be very aggressive. She is also sure that only

1Here we intend an adjustment as a generalized updating.
We avoid this latter term as in the literature it is often intended
as equivalent to conditioning.

white or grey swans exist, although the birds she sees ac-
tually look like swans. While reasoning about that, a
sailor informs her that a small group of black swans has
been spotted around the area. Should Celeste be worried
about the birds she sees?

Classic belief revision operators, introduced in Section 2,
fail to absorb information from an observational process
when inconsistencies arise such as in Example 1. This
feature was motivated in the literature by a partiality
principle [Cozic, 2011], discussed below. Still, a rule for
the adjustment of a model to any piece of evidence ought
to be required by a rational agent, to avoid building a
new model from scratch when unexpected information
shows up. Such an operator ought to update the knowl-
edge base to be consistent with new evidence, while leav-
ing previous beliefs on related events as unchanged as
possible. We will characterize optimality requirements
for such adjustment operators as an imaginary kinemat-
ics in Section 3, and extend them to deal with generalized
forms of evidence. Particularly, we consider probabilis-
tic evidence, and extend it to i) conditional assessments,
and ii) imprecise assessments, that may be intended as
originating from a qualitative judgment. Section 4 will
introduce adjustment functionals based on Lewis’ imag-
ing, and study their features and properties. We will re-
fer throughout to partial operators as revision rules, as
opposed to general adjustment ones.

2 BACKGROUND

Let Ω be any space of atoms - atomic (Boolean) proposi-
tional variables - and let a world ω be any assignment of
truth to each element from Ω, such that there exist up to
2|Ω| conceivable worlds.
Any propositional formula φ ∈ L, countable set of all
formulae on Ω, is satisfied by worlds in [φ] ⊆ Ω. For-
mally, when ω satisfies φ we write ω |= φ; that is,
ω ∈ [φ] if and only if ω |= φ. Logical connectives
{∧,∨,¬} - conjunction, disjunction and negation, re-
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spectively - may be used to concatenate several formu-
lae. Also, > and ⊥ denote, respectively, tautology and
contradiction.
A rational agent (or You) is equipped with a collection
of belief states over some A ⊆ Ω, whose elements may
be equivalently defined by closed sets of formulas in a
propositional logic language. Formally, a belief state
over the set of all conceivable worlds A ⊆ Ω, is repre-
sented by a probability mass function (PMF) PA, defined
as follows:

PA(A) =

{
(ω, P (ω)) :

P (ω) ≥ 0, ω ∈ A,∑
ω∈A P (ω) = 1

}
.

Granular belief PΩ is similarly defined with respect to
every ω ∈ Ω. We just write P , when the domain is clear
from the context.
Let X be a collection of n discrete variables, n ≥ 1, ω
corresponds to x, configuration of X in its joint possibil-
ity space, and Ω ≡ ΩX, while L reduces to a collection
of statements {φ ./ c : φ ∈ L, ./∈ {=,≥,≤}, c ∈
[0, 1]}. Also, A represents any arbitrary tautology, such
that any PA is strictly positive on A (and contains zero
elements only otherwise). For a given formula φ,

P (φ) =
∑

x∈Ω:x∼A
P (X = x)Ix|=φ ,

with ∼ denoting consistency among events. E.g., let
n = 3, φ = {x ∧ ¬y}, (x,¬y, z) ∼ [φ], whatever z in
ΩZ , coarse partition of Ω induced by variable Z. For the
sake of brevity, in the following, we write P (x), rather
than P (X = x).
In the general case, a collection of deductively closed set
of propositions, i.e., belief states, may be used to specify
a credal set (CS)K(X). Any CSK is defined by a set of
linear constraints, and may be equivalently characterized
as the convexification of its extreme points, denoted as
ext[K]. Let K1 and K2 be any two CSs over X, they are
equivalent, K1 ≡ K2, if and only if ext[K1] = ext[K2].
For each x ∈ ΩX , P (x) = minP (x)∈ext[K(X)] P (x)

(and P (x) = maxP (x)∈ext[K(X)] P (x)) corresponds to
the lower (and upper) envelope of CS K(X), for any
X ∈ X. See [Walley, 1991] for details on CSs. We refer
to sharp or imprecise probabilities to distinguish between
|ext[K]| = 1 and |ext[K]| > 1, respectively.
KΦ denotes the subset of belief states in K that sat-
isfy a collection of formulae Φ. Any belief state sat-
isfies Φ, i.e., P |= Φ, whenever it holds P |= φ, for
each φ ∈ Φ. Any set Φ is accepted whenever it is con-
sistent with each P ∈ K, it is rejected if its negation
only, ¬Φ, is, or it is neutral if both are consistent. Let
c ∈ [0, 1], for a given formula φ, P |= (φ ./ x) when-
ever P (φ)

(
=
∑

x∼[φ] PA(x)
)
./ c, ./∈ {=,≤,≥}.

For a given belief set, three main operations are rel-
evant to adjust it to satisfy any given φ. These are

contraction, expansion and revision from AGM the-
ory [Alchourrón et al., 1985], whose consistency pos-
tulates are mostly known from the KM reformulation
in [Katzuno and Mendelzon, 1992]. Suppose an agent’s
knowledge base is represented by a CS K over X, and
let φ be any upcoming formula, such that adjustment of
K by φ is operated by ◦. Katzuno and Mendelzon’s pos-
tulates translate as follows:

KM1 (K ◦ φ) |= φ,

KM2 Let K |= φ, (K ◦ φ) ≡ (K ∪ φ),

KM3 If φ 6=⊥, then (K ◦ φ) 6=⊥,

KM4 If K1 ≡ K2 and φ1 ≡ φ2, then (K1 ◦ φ1) ≡
(K2 ◦ φ2),

KM5 If (K ◦ φ) |= ψ, then (K ◦ (φ ∧ ψ)), for any fur-
ther formula ψ,

KM6 If (K ◦ φ) |= ψ, then (K ◦ (φ ∧ ψ)) implies
((K ◦ φ) |= ψ).

Any operator ◦ that satisfies all KM postulates is equiv-
alent to a revision process based on total pre-orders
[Katzuno and Mendelzon, 1992].

AGM postulates, and their KM formulation, have
been followed by a massive literature on their lim-
itations and possible extensions. Two major short-
comings of AGM theory arise when revision involves
conditional formulae [Douven and Romeijn, 2011], and
in the iterated setting [Goldszmidt, 1992]. See also
[Darwiche and Pearl, 1997] on additional postulates for
iterated belief revision.

In the classical probabilistic framework, K(X) is made
by a single PMF, that is ext[K(X)] = {P (X)}. When
one or more elements from X are observed, P is ad-
justed, i.e., updated, accordingly by standard condition-
ing. Let α be any event from Σ, the σ-algebra induced
by Ω, and suppose (X = x) with x ∈ ΩX and X ∈ X,
is observed and such that P (x) > 0, it holds:

P (α|x) = P (α, x)/P (x) . (1)

A (marginal) probabilistic observation corresponds to a
PMF over the countable possibility space of variable
X ∈ X. Such evidence bears an impression of the degree
of reliability that is associated to each (forecasted) event,
i.e., on the evidence of uncertainty [Peng et al., 2010].
We define probabilistic evidence as some PMF P ′X over
ΩX , such that P (x) 6= P ′X(x) for some x ∈ ΩX . It
corresponds to the collection of formulae ΦX , whose
generic element is φx = ({x} = cx), cx ∈ [0, 1],
x ∈ ΩX , with

∑
x∈ΩX

cx = 1. P ′X may be intended
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as a set of probabilistic constraints on the system mod-
eled by P [da Rocha et al., 2008]. A general adjust-
ment operator is the functional ◦, mapping any P to P ◦,
such that P ◦ |= P ′X . By the partiality principle men-
tioned above, standard revision of P by P ′X requires
preservation of zero-probability events. Rationality of
partiality has been advocated by several authors (e.g.,
[Dietrich, 2016]). The intuition is the following: Your
beliefs ought to be calibrated with available evidence,
if any. This way, certainty on the occurrence of event
(X = x′) requires P (x) = 0, for each x 6= x′ in
ΩX . If You accepted to change Your mind on (X = x),
then You would rather be reasonably sure about its non-
occurrence, rather than certain; but then P (x) 6= 0. As
a consequence, certainty on the occurrence of an event,
say x, implies certainty to P ′X , since P ′X(x′) is floored
to zero by every x′ 6= x in ΩX .

Kinematical mechanics for the adjustment of a be-
lief set are intended as consistency principles, that we
are willing to choose over a purely minimal distance
based approach [Boutilier, 1996]. We introduce prob-
ability kinematics following Wagner’s characterization
[Wagner, 2002].

Definition 1 (Probability kinematics [Jeffrey, 1965,
Wagner, 2002]). Let P and P ◦ be any two PMFs over
(Ω,Σ), and let ΩX be a countable collection of pairwise
disjoint events in Σ, i.e., a coarse partition of Ω(≡ ΩX).
P ◦ comes from P on ΩX based on probability kinemat-
ics (PK) if there exists a sequence P ′X(X) = {P ′X(x) :
x ∈ ΩX ,

∑
x∈ΩX

P ′X(x) = 1} such that it holds:

PK1 P ◦(α|x) = P (α|x), for each x ∈ ΩX ,

PK2 P ◦(X) = P ′X(X),

for any event α ∈ Σ.

In words, P is changed to agree with P ′X (PK2), while
preserving relevance of each x ∈ ΩX to any event α ∈ Σ
(PK1).
An equivalent characterization of PK yields the well-
known Jeffrey’s rule:

Definition 2 (Jeffrey’s Rule [Jeffrey, 1965]). Let P , P ◦

and P ′X as above. Jeffrey’s rule (◦J ) adjusts P to satisfy
P ′X :

(P ◦J P ′X) (α) =
∑

x∈ΩX

P (α, x)
P ′X(x)

P (x)

We denote the Jeffrey’s revision of P on ΩX as P ◦JX .

Deterministic knowledge on event (X = x) may be
specified by P ′X(X) such that P ′X(x) = 1 at x and zero

otherwise.2 It holds:

(P ◦J P ′X) (α) ≡ P (α|x) , (2)

where the righ hand-side is just conditioning from
Eq. (1). Such hard evidence [Valtorta et al., 2002] triv-
ially corresponds to φ = {x}, x ∈ ΩX .

Suppose evidence is gathered conditional on some vari-
able Y taking value y ∈ ΩY . We define conditional
(probabilistic) evidence as the collection of probabilis-
tic statements P ′X|y(X|y), such that P ′X|y(x|y) ≥ 0, for
each x ∈ ΩX , and

∑
x∈ΩX

P ′X|y(x|y) = 1, provided
P (y) > 0. Equivalently, ΦX|y , with generic element
φx|y = ({y → x} = cx), with

∑
x∈ΩX

cx = 1. A kine-
matical revision rule would require the following condi-
tions to hold:

Definition 3 (Conditional PK [Bradley, 2005]). Let P
and P ◦ be any two PMFs on (Ω,Σ). Let P (y) > 0, P ◦

comes from P on ΩX × {Y = y} based on conditional
probability kinematics (CPK) if there exists a sequence
P ′X|y(X|y) as above such that it holds:

CPK1 P ◦(α|x, y) = P (α|x, y), for each x ∈ ΩX ,

CPK2 P ◦(α|y′) = P (α|y′), for each y′ ∈ ΩY \{y},

CPK3 P ◦(Y ) = P (Y ),

CPK4 P ◦(X|y) = P ′X|y(X|y).

The following operator may be used to revise P , extend-
ing Jeffrey’s rule to the conditional setting:

Definition 4 (Adams’ Conditioning [Bradley, 2005,
Douven and Romeijn, 2011]). Let P , P ◦ and P ′X|y as
above, with P (y) > 0. Operator ◦A yields the Adams’
revision (P ◦AX|y) of P that is consistent with P ′X|y if it is
obtained as:

(
P ◦A P ′X|y

)
(α) =

P (α,¬y) +
∑

x∈ΩX

P (α, x, y)
P ′X|y(x|y)

P (x|y)
.

By [Bradley, 2005, Th.5], Adams’ conditioning yields
the unique PMF that satisfies CPK1-CPK4. Let us con-
sider that in the running example.

2While probabilistic findings extend standard evidence,
they do not necessarily result from an observation process.
E.g., they may be gathered as forecasts produced by external
sourced whose system of knowledge is not disclosed (e.g., bet-
ting odds), or qualitative evaluations from experts. Thorough
characterization of uncertain evidence has been provided in the
survey of [Mrad et al., 2015], and related works. There, prob-
abilistic evidence is further distinguished into fixed and not-
fixed. Such distinction is critical to iterated belief revision.
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Example 2 (Ex. 1 continued). Celeste’s beliefs are for-
malized as follows: let ΩY = {y ≡ Swan,¬y ≡
¬Swan}, ΩX = {xW ≡ White, xG ≡ Grey, xB ≡
Black} and ΩZ = {z ≡ Aggressive,¬z ≡ Tame}.
It holds:

P (Y ) = {(y, 0.7), (¬y, 0.3)} ,

P (X|Y ) =





(xW |y, 0.8), (xG|y, 0.2),
(xB |y, 0), (xW |¬y, 0.5),
(xG|¬y, 0.3), (xB |¬y, 0.2)



 ,

P (Z|Y ) =

{
(z|y, 0.95), (¬z|y, 0.05),
(z|¬y, 0.2), (¬z|¬y, 0.8)

}
.

According to Celeste’s beliefs, P (z|xB) = 0.2.
Based on the sailor’s words, Celeste is willing to ad-
just her beliefs to be consistent with P ′X|y(X|y) =

{(xW , 0.8), (xG, 0.1), (xB , 0.1)}. Straightforward ap-
plication of Adams’ conditioning is undefined, since
P (xB |y) = 0, while P ′X|y(xB |y) 6= 0. The same would
occur with simple Jeffrey’s rule, if any P ′X(x) 6= 0 was
provided, given P (x) = 0, for some x ∈ ΩX . How could
Celeste incorporate such reliable knowledge in her be-
liefs?

Imaging was introduced by [Lewis, 1976] as a non-
trivial alternative to conditioning on inconsistent events.
Roughly, it represents the “thought experiment by a min-
imal action” [Fusaoka and Hiratsuka, 2003] that makes a
formula consistent.
Going back to the propositional language, if some world
ω is inconsistent with formula φ, according to a knowl-
edge base, imaging shifts beliefs towards those that are
closest to φ, called φ-worlds. γ(ω, φ) is called a clos-
est world function, mapping ω to its closest φ-world; see
[Lewis, 1986] for a detailed discussion. In our formal-
ism, (φ = {x}) requires γ(x, φ) = (x\{X}, x) ∈ Ω,
for any x ∈ Ω.

Definition 5 (Imaging [Lewis, 1976]). Let P be any
PMF over (Ω,Σ). For a given φ and closest world func-
tion γ(·, φ). P ◦Iφ is the image of P on φ if it is obtained
by ◦I as:

(P ◦I {φ}) (α) =
∑

ω′∈α

∑

ω∈Ω

P (ω)Iγ(ω,φ)=ω′ .

In Lewis’ words, by imaging on event φ, “probability
is moved around, but not created or destroyed”, while
“every share stays as close to it as it can to the world it
was originally created” [Lewis, 1976, p. 310-311]. To
summarize: i) inconsistent evidence is accounted for in
the image of P , whereas conditioning is left undefined;

ii) imaging changes the whole belief set to comply with
reliable knowledge φ, while conditioning redefines the
domain of P , focusing on worlds in Ω consistent with φ.

Example 3. Let X = {X,Y }, with P (x, y) =
P (x,¬y) = 0, P (¬x, y) = 0.6 and P (¬x,¬y) =
0.4. Given (φ = {x}), imaging on it yields
(P ◦I {X = x}) (y) = 0.6, which corresponds to P (y).
If conditioning was applied, P (Y |x) would not be de-
fined.
Consider α = {x}, (P ◦I {X = x}) (x) = 1: ◦I ad-
justs P to always be consistent with φ = {x}.

Generalized forms of imaging were introduced in the lit-
erature, see, e.g., [Gärdenfors, 1988, Rens et al., 2016].
See also [Zhuang et al., 2017] on a unifying approach to
belief adjustment.

Günther [Günther, 2017] introduced Jeffrey’s imaging,
that we denote as ◦jI , for the generalized case of
probabilistic formula (φ = c), with c ∈ [0, 1].3 Ad-
justment operator ◦jI trivially extends partial imaging
[Ramachandran et al., 2010].

Definition 6 (Jeffrey’s Imaging [Günther, 2017,
Ramachandran et al., 2010]). Let P be any PMF over
(Ω,Σ). For a given formula {φ = c}, with c ∈ [0, 1],
P
◦jI
X comes from P by Jeffrey’s imaging ◦jI on {φ = c}

if it holds:

(P ◦jI {φ = c}) (α) = P ◦Iφ (α)c+ P ◦I¬φ(α)(1− c)

We denote the Jeffrey’s image of P on {φ = c} as P ◦jIφ .

Both standard and Jeffrey’s imaging are homomor-
phic change functions (see [Gärdenfors, 1988] and
[Ramachandran et al., 2010, Obs.1], respectively), i.e.,
they define a structure-preserving map. A generalized
characterization of Jeffrey’s imaging will be provided
below, within the multi-valued imprecise-probabilistic
framework (see Definition 9).

Just like Your beliefs may be encoded by a CS K on
Ω, probabilistic evidence may come as a (closed and
convex) collection of PMFs K ′X on ΩX , i.e., a CS
that we call credal (or imprecise) evidence. This lat-
ter generalizes sharp probabilistic evidence to the case
|ext[K ′X(X)]| ≥ 1:

K ′X(X) = {P (x) : P (x) ≤ P (x) ≤ P (x), x ∈ ΩX} .

K ′X may be equivalently specified by the collection of
formulae φx = ({x} ./ cx), cx ∈ [0, 1], for each x ∈
ΩX , provided

∑
x∈ΩX

cx ./ 1, ./∈ {=,≤,≥}. 4

3Günther’s definition assumes c ∈ (0, 1).
4To guarantee P ′X(x) ∈ [0, 1], we also require P ′X(x) ≤ 0

and P ′X(x) ≥ 1 always reduce to equalities.
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Our contributions will tackle probabilistic belief adjust-
ment by (possibly inconsistent) sharp or imprecise prob-
abilities, following an approach based on the imaginary
counterparts of PK. This is analogous to what has been
done in [Ma et al., 2011, Zhou et al., 2014] within the
framework of evidence theory.

Following [Zhou et al., 2014], we are willing to check
a further consistency requirement, that would reproduce
Eq. (2). In this way, any adjustment kinematical operator
reduces to some form of conditioning when probabilistic
evidence strengthens to full observation.

3 IMAGINARY KINEMATICS

We lay bare the kinematical conditions that ought to be
satisfied by any belief adjustment operator, when (possi-
bly) inconsistent probabilistic evidence is gathered.5

Let us start with simple probabilistic evidence: P ′X on
ΩX , such that |ΩX | ≥ 2. Imaginary kinematics can be
introduced as a counterpart of PK for imaging.

Definition 7 (Imaginary Kinematics). Any joint CS K◦

on X comes from K by imaginary kinematics (IK) on a
(possibly inconsistent) credal evidence K ′X on variable
X whenever it holds:

IK1 K◦(α|x) ⊇ K◦Ix (α), for any α ∈ Σ and each x ∈
ΩX ,

IK2 K◦(X) |= ΦX ,

IK3 K◦(X) ≡ K◦Ix (X) whenever cx = 1 for some x ∈
ΩX .

Analogously, based on Definition 3, we provide an imag-
inary characterization of CPK defined as follows.

Definition 8 (Imaginary Conditional Kinematics). Let
K, K◦ as above, such that P (y) > 0 for each y ∈ ΩY .
K◦ comes from K on ΩX × {Y = y} based on imagi-
nary conditional kinematics (ICK) if there exists a (pos-
sibly inconsistent) sequence P ′X|y such that it holds:

ICK1 K◦(α|x, y) ⊇ K◦Ix (α|y), for each x ∈ ΩX ,

ICK2 K◦(α|y′) ≡ K(α|y′), for each y′ ∈ ΩY \{y},

ICK3 K◦(Y ) ≡ K(Y ),

ICK4 K◦(x|y) |= ΦX|y ,

ICK5 K◦(X|y) ≡ K◦Ix (X), whenever cx = 1, for
some x ∈ ΩX .

5With imprecise probabilities, inconsistency occurs when
P (x) = 0 and positive evidence is provided for some x ∈ ΩX .

4 KINEMATICAL IMAGINARY
ADJUSTMENT RULES

For any α ∈ Σ, if a CS K over X is used to represent
Your beliefs, imaging on (φ = {x}) extends to:

(K ◦I {x}) (α) = {P ◦Ix (α) = (P ◦I {x}) (α), P ∈ K} ,
so that the lower envelope of K’s image on {x}, denoted
as K◦Ix , at α, writes:

P ◦Ix (α) = min
P (x)∈K(X)

∑

x′∼α

∑

x∈ΩX

P (x)Iγ(x,x)=x′ .

By [Rens et al., 2016, Th.1], K◦Ix may be efficiently ob-
tained by taking the convex hull (CH) of the images
on {x} of each P ∈ ext[K]. Since the image of
each P ∈ ext[K] at α = {x′} trivially corresponds to
P ◦Ix (x′) = 0,6 whenever x′ 6= x, refinement of K◦Ix (X)
degenerates to a single PMF such that P ′X(x) = 1, and
zero otherwise. With a small abuse of notation, this
yields the following:

K◦Ix (X) ≡
{

1 ·K(X\{X}) x ∼ x ,
0 otherwise.

Example 4. Let K be a CS over X = {X,Y } specified
by probability intervals as follows:

K




x1, y1

x1, y2

x2, y1

x2, y2

x3, y1

x3, y2




=




0
0

0.15− 0.35
0.25− 0.49

0− 0.45
0.03− 0.5



.

It is easy to see P ◦Ix1
(yj) = P (yj), j = 1, 2, while

P
◦I
x1

(xk) = 0, k = 2, 3.

4.1 STANDARD PROBABILISTIC EVIDENCE

We start from the case of sharp probabilistic evidence on
ΩX , i.e., K ′X(X) = {P ′X(X)}. The following adjust-
ment operator extends Definition 6. As we did before for
imaging, notation that is used with sharp beliefs applies
to the generalized case of belief sets, when |ext[K]| ≥ 1.
Definition 9 ((Probabilistic) Jeffrey’s Imaging). Let K
be any joint CS over X as above. Suppose probabilistic
evidence P ′X is provided over a (possibly) inconsistent
collection of events, i.e., P (x) = 0, whereas P ′X(x) > 0,
for some x ∈ ΩX , X ∈ X. For any event α, K◦jIX is the
probabilistic Jeffrey’s image of K if it holds:

K
◦jI
X (α) = {P ◦jIX (α) =

∑

x∈ΩX

P ◦Ix (α)P ′X(x),

P ◦Ix ∈ K◦Ix , x ∈ ΩX} .
6By definition, P ◦Ix (x) =

∑
x∈Ω P (x) = 1.
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That is, K◦jIX (α) = (K ◦jI P ′X) (α), for any α ∈ Σ.

The following result holds (the proofs of all the theorems
are in the appendix).

Theorem 1. Jeffrey’s imaging is based on IK, and IK1 is
strongly satisfied, i.e., |= may be replaced by ≡.

Corollary 1. Given sharp probabilistic knowledge on
ΩX , the Jeffrey’s image of any CS may be equivalently
specified by the convexification of all PMFs P ◦, each de-
fined as follows:

P ◦(α) =
∑

x∼α
P ′X(x)Pi(α) ∀P ∈ ext[K] .

It is easy to see that standard imaging is also trivially
based on IK.

Example 5. Consider the same setup as in Example 4,
and suppose P ′X(X) = {(x1, 0.3), (x2, 0), (x3, 0.7)}.
By Jeffrey’s imaging on P ′X , we obtain K

◦jI
X (Y ) ≡

K(Y ), while P
◦jI
X (yj |xi) ≡ K◦Ixi (yj), i = 1, 2, 3,

j = 1, 2. Also, K◦jIX (X) |= P ′X(X), and K◦jIX is equiv-
alent to the convex hull of PMFs P ◦, defined as:

P ◦(x, y) = P ′X(x)P (y) ,

for each x ∈ ΩX , y ∈ ΩY and P ∈ ext[K].

4.2 SHARP CONDITIONAL EVIDENCE

We now introduce Adams’ imaging as an adjustment op-
erator ◦aI , that extends ◦jI to the conditional case, just
like revision rule ◦A extends ◦J .

Definition 10 (Adams’ Imaging). Let K be any joint CS
on (Ω,Σ) such that P (y) > 0, Y ∈ X, and let condi-
tional probabilistic knowledge P ′X|y on ΩX × {Y = y}.
K◦aIX|y , the Adams’ image of K on P ′X|y , comes from K

by Adams’ imaging ◦aI , if it holds:

K◦aIX|y(α) =

{P ◦aIX|y(α) = P (α,¬y) +
∑

x∈ΩX

P ◦Ix (α, y)P ′X|y(x|y),

P ∈ K,P ◦Ix ∈ K◦Ix , x ∈ ΩX} .

I.e., K◦aIX|y(α) =
(
K ◦aI P ′X|y

)
(α), for any α ∈ Σ.

When |ext[K]| = 1, from previous considerations,
Adams’ imaging reduces to the following:

P ◦aIX|y(α) = P (α,¬y) +
∑

x∈ΩX

P ◦Ix (α, y)P ′X|y(x|y) .

(3)

Example 6 (Ex. 1 continued). The Adams’ image on
P ′X|y of Celeste’s beliefs on ΩX × ΩZ is the following:

P ◦aIX|y




xW z
xW¬z
xGz
xG¬z
xBz
xB¬z




=




0.5620
0.1480
0.0845
0.0755
0.0785
0.0515



.

It holds P ◦aIX|y(X|y) = P ′X|y(X|y) and P ◦aIX|y(Y,Z) =

P (Y,Z). Adjustment of her beliefs by P ′X|y yields
P ◦aIX|y(z|xB) ≈ 0.6, whereas P (z|xB) = 0.2. Thus, Ce-
leste rapidly swims back to shore.

As a remark, inconsistency of P ′X|y(x|y), for some x ∈
ΩX , with respect to any PMF P , may refer to either i)
P (x|y) = 0, while P (y) > 0, (this is just the case of
Adams’ imaging above), or ii) P (y) = 0 in the first
place, and possibly P (x|y) = 0. We argue case ii) de-
serves some caution, since full inconsistency of event
(Y = y) is likely not to yield any further conjecturing on
related events, from a modeler’s perspective. E.g., You
are certain that no alien lives on Mars. Is it worth include
Your belief on the alien having long hair in Your belief
base, provided that You are not admitting the alien’s ex-
istence upstream? On the other hand, we reckon argu-
ments may be easily raised against our position, starting
from our proposed running example. Still, if no evidence
is provided on ΩY , a cautious approach would require
application of an iterated procedure. We leave this point
for future work.

It is now straightforward to note that Adams’ imaging
generalizes Jeffrey’s imaging to the conditional setting.

Theorem 2. Adams’ imaging is based on ICK, and ICK1
is strongly satisfied. Eq. (3) strongly satisfies all condi-
tions.

Analogously to Corollary 1, it might be easily shown
that K◦aIX|y at any x ∼ y is equivalent to the CS ob-
tained taking the product of sharp assessment P ′X|y and
the marginalization over variable X of the original belief
set K. We also provide the following additional result,
which extends [Rens et al., 2016].

Theorem 3. Both Jeffrey’s and Adams’ imaging satisfy
consistency axioms KM1, KM3 and KM4. KM2, KM5
and KM6 are satisfied only is K is degenerate at (X|y),
i.e., |K(X|y)| = 1 (and at (Z|w), for KM5 and KM6).

4.3 CREDAL JEFFREY’S IMAGING

When beliefs are expressed as a joint CS over X, ad-
justment by a single reliable PMF requires simultaneous
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computation of all bounds spanned by the updating of
each P ∈ K. Also in this case, adjustment may be re-
stricted to the PMFs in ext[K] only, and their convex hull
consequently considered.

Definition 11 (Credal Jeffrey’s Imaging). Given CS K
over X and credal probabilistic evidence K ′X(X), we
define credal Jeffrey’s imaging ◦cjI as the functional
mapping K to CS K◦cjIX , consistent with K ′X(X) as fol-
lows:

K
◦cjI
X (α)

=

{
P ◦(α) = (P ◦jI P ′X) (α),

P (X) ∈ K(X),
P ′X ∈ K ′X(X)

}

The following result generalizes Theorem 1.

Theorem 4. Given (possibly) inconsistent credal prob-
abilistic evidence, credal Jeffrey’s imaging yields the
unique joint CS based on IK.

Table 1: Summary of belief adjustment rules/properties.

RULE Φ∗ KINEMATICS
◦J φx = cx,∀x PK
◦A {y → x} = cx,∀x CPK
◦jI {x} = cx,∀x IK (Th. 1)
◦aI {y → x} = cx,∀x ICK (Th. 2)
◦cjI {x} ./ cx,∀x IK (Th. 4)

5 CONCLUSIONS AND FUTURE
WORK

We introduced adjustment operators based on Lewis’
imaging functional, to deal with probabilistic inconsis-
tent evidence, in a generalized setting of imprecise prob-
abilities, specified by credal sets. These are summarized
in Table 1. We point out that the revision rules (con-
ditioning, Jeffrey’s rule and Adams’ conditioning) are
not fully general due to partiality, whereas the remaining
succeed in adjusting a given belief set following incon-
sistent observations.

Further generalization to the case of credal conditional
probabilistic evidence is not straightforward as the ad-
justment process would likely incur in dilating mechan-
ics, resulting in detrimental loose inclusion relation-
ships. This reasoning also applies to the iterated frame-
work, where additional considerations must be formu-
lated on the role evidence plays on the adjustment pro-
cess. As a future work we will tackle this sort of sce-
narios. Besides that, we also intend to compare our ap-
proach against methods based on lexicographic proba-
bilities (e.g., [Benavoli et al., 2017]) as well as applying

these ideas to probabilistic graphical models by extend-
ing what have been already done for Jeffrey’s rule in
[Marchetti and Antonucci, 2018].

A PROOFS

This appendix provides proofs to the results stated in the
paper.

Proof of Th. 1. To prove ◦jI is based on IK, we must
check it produces a CS that satisfies IK1-IK3. Motivated
by [Rens et al., 2016, Th.1], we restrict our attention to-
ward the extreme points of K. Without loss of general-
ity, let X = {X,Y }. Each extreme point of K(X), say
Pj,k ∈ ext[K], may be equivalently specified as:

Pj,k(x, y) = P (x|x′j)P (y|x, y′k) , (4)

with P (y|x, y′k) is set equal to zero whenever it is unde-
fined and P (x|x′k) = 0.7 X ′ and Y ′ are uniformly dis-
tributed auxiliary random variables, used to index K’s
extreme points at X and at Y |X , respectively. This way,
for a given ordering,

P (x|x′1) =
∑

y′k,y

P (x|x′1)P (y|x, y′k)P (y′k)

= P (x) ,

and P (x, y) = P (x|x′1)P (y|x, y′1).
It holds:

P ◦Ix (x) = P ◦Ix (x|x′1)

=
∑

y′k,y,x

P (x|x′1)P (y|x, y′k)P (y′k)

≤ 1 .

Since P ◦Ix (x′|x′1) = 0, for any x′ 6= x in ΩX , refinement
of K◦Ix (x) degenerates at 1. If P ′X |= (φ = {x}), IK3 is
satisfied.
When a non-trivial PMF is provided, i.e., P (x) > 0 for
at least two elements in ΩX , it holds:

P
◦jI
X (x|x′1) =


 ∑

y′k,y,x

P (x|x′1)P (y|x, y′k)P (y′k)


P ′X(x)

≤ P ′X(x) ,

and similarly P ◦jIX (x|x′|ext[K]|) ≥ P ′X(x). This proves
IK2 since K◦jIX (X) 3 P ′X(X).

7As a remark, P (x) = 0 does not necessarily imply
P (y|x) = 0, in De Finetti’s view.
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Proof of IK1 is also straightforward:

P
◦jI
X (y|x, y′1) =

[∑
x,x′j

P (x|x′j)P (y|x, y′1)
]
P ′X(x)

P ′X(x)

=
∑

x,x′j

P (x|x′j)P (y|x, y′1)

= P ◦Ix (y|y′1)

Analogous reasoning applies to the upper envelope, and
thus K◦jIX (Y |x) ≡ K◦Ix (Y ). This ends the proof.

�
Proof of Th. 2. To prove ◦aI is based on ICK we need to
check ICK1-ICK5 are satisfied by K◦ =

(
K ◦aI P ′X|y

)
.

When |ext[K]| = 1, ICK1-ICK5 reduce to the following:

ICK1’ P ◦(α|x, y) = P ◦Ix (α|y), for each x ∈ ΩX ,

ICK2’ P ◦(α|y′) = P (α|y′),

ICK3’ P ◦(Y ) = P (Y ),

ICK4’ P ◦(X|y) = P ′X|y(X|y),

ICK5’ P ◦(X|y) = P ◦Ix (X|y), whenever P ′X|y(x|y) =
1 for some x ∈ ΩX .

We first prove consistency points ICK4’ and ICK5’. Let
P ′X|y be any PMF on ΩX × {Y = y}, it holds:

P ◦aIX|y(x|y) =
P ◦Ix (y)P ′X|y(x|y)

∑
x P
◦I
x (y)P ′X|y(x|y)

= P ′X|y(x|y)

since P ◦Ix (x, y) = P ◦Ix (y) = P (y), whatever x ∈ ΩX .
Also,

∑
x P
′
X|y(x|y) = 1 by definition. If P ′X|y(x|y) = 1

for some x, P ◦aIX|y(x|y) = 1, 0 otherwise. The following
holds:

P ◦(x|y) = min
P◦∈ext[K◦]

P ◦(x|y)

= P ′X|y(x|y)
P
◦I
x (y)

P ◦Ix (y)

≤ P ′X|y(x|y) .

Similarly, P
◦
(X|y) ≥ P ′X|y(X|y), for each P ◦ ∈

ext[K◦].
We now prove condition ICK1 (and thus ICK1’) is sat-
isfied by ◦aI . Without loss of generality, let X =
{X,Y, Z}. It holds:

P ◦(z|x, y) =
P ′X|y(x|y)P ◦Ix (z, y)

P ′X|y(x|y)P
◦I
x (y)

= P ◦Ix (z|y) .

As for point ICK2 (and ICK2’), it trivially holds by Defi-
nition 10:

P ◦(z|y′) = P (z|y′) .

for any y′ 6= y. ICK3’ is proved analogously, since
P ◦aIX|y(y) = 1 − P (¬y) = 1 −∑y′ 6=y P

◦aI
X|y(y′). Sim-

ilarly, fulfillment of ICK3 may be derived by the conju-
gacy relation [Walley, 1991].

�
Proof of Th. 3. Consider CS K and conditional proba-
bilistic evidence P ′X|y(X|y). To avoid cumbersome no-
tation, we write ◦ to denote ◦aI throughout the proof.
Also, we refer to general formula φ = c to denote both
φx and φx|y .
KM1 and KM3 follow from IK2 and ICK4 (cfr Th.1 and
Th.2, respectively).
We prove KM2 is not satisfied under general condi-
tions. Consider the lower envelope of K at (x|y). If
K |= P ′X|y , it holds:

P (x|y) ≤ P ′X|y(x|y)

by definition, and
(
K ∪ P ′X|y

)
= K. From previous

discussion, we expect (K ◦P ′X|y) ⊇ K, equality holding
if and only if K(X) may be equivalently specified as the
product of sharp conditional assessment on ΩX × {Y =
y} and CS over (X\{Y }, y). Same reasoning applies
to KM5 and KM6. These three postulates are satisfied
if and only if K is already degenerate at the domain of
probabilistic evidence, and consistent with it already.
Postulate KM4 holds by [Rens et al., 2016, Th.1].

�

The following preliminary result holds:

Lemma 1. Let K be a joint CS over X, and let K ′X
denote a credal probabilistic finding, gathered on ΩX .
For any event α, the Jeffrey’s image K◦cjIX (α) of K(α)
on K ′X(X) satisfies the following:

K
◦cjI
X (α) ⊇ K◦cjIX (α|x) ⊇ K◦Ix (α)

for any α ∈ Σ. Equality holds when |K ′(X)| = 1.

Proof of Lemma 1. Let X = {X,Y } and K be any CS
over Ω. K ′X is gathered on ΩX , to adjustK accordingly.
By definition of credal Jeffrey’s imaging, it holds:

min
P
◦cjI
X ∈K◦jIX

P
◦cjI
X (y|x) = min

P (y)∈K(Y )
P (y)

P ′X(x)

P
′
X(x)

≤ min
P (y)∈K(Y )

P (y) ,
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and analogously for the upper envelope, with ≥.
This proves the rightest inclusion relationship:
K
◦cjI
X (Y |x) ⊇ K◦Ix (Y )(≡ K(Y )).

We now prove inclusion of K◦cjIX (y|x) by K◦cjIX (y):

P
◦cjI
X (y)

P
◦cjI
X (y|x)

=
P (y)

∑
x P
′
X(x)

P (y)
P ′X(x)

P
′
X(x)

= P
′
X(x)

∑

x′ 6=x
P ′X(x′)

≤ 1 .

Hence P ◦cjIX (y) ≤ P
◦cjI
X (y|x), for any x ∈ ΩX , y ∈

ΩY . P
◦cjI
X (y) ≥ P ◦cjIX (y|x) is derived analogously.

Equality holds when K ′X(X) = {P ′X(X)} as P ′X(x) =

P
′
X(x), for each x ∈ ΩX , summing to one.

�
Proof of Th. 4. Given a joint CS K over X and K ′X , let
◦ denote credal Jeffrey’s imaging.
IK1 is satisfied by Lemma 1. IK2 is also satisfied as it
holds:

P
◦cjI
X (x) = 1 · P ′X(x) ,

for each x ∈ ΩX . And analogously for P
◦cjI
X (X). When

K ′X(X) = {P ′X(X)} such that P ′X(x) = 1, IK3 is sat-
isfied since ◦cjI reduces to ◦jI .

�
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Abstract

Structural Causal Models are widely used in
causal modelling, but how they relate to other
modelling tools is poorly understood. In this
paper we provide a novel perspective on the re-
lationship between Ordinary Differential Equa-
tions and Structural Causal Models. We show
how, under certain conditions, the asymptotic
behaviour of an Ordinary Differential Equation
under non-constant interventions can be mod-
elled using Dynamic Structural Causal Models.
In contrast to earlier work, we study not only
the effect of interventions on equilibrium states;
rather, we model asymptotic behaviour that is
dynamic under interventions that vary in time,
and include as a special case the study of static
equilibria.

1 INTRODUCTION

Ordinary Differential Equations (ODEs) provide a univer-
sal language to describe deterministic systems via equa-
tions that determine how variables change in time as a
function of other variables. They provide an immensely
popular and highly successful modelling framework, with
applications in many diverse disciplines, such as physics,
chemistry, biology, and economy. They are causal in
the sense that at least in principle they allow us to rea-
son about interventions: any external intervention in a
system—e.g., moving an object by applying a force—can
be modelled using modified differential equations by, for
instance, including suitable forcing terms. In practice, of
course, this may be arbitrarily difficult.

Structural Causal Models (SCMs, also known as Struc-
tural Equation Models) are another language capable of

⇤Also affiliated with Max Planck Institute for Intelligent
Systems, Tübingen.

describing causal relations and interventions and have
been widely applied in the social sciences, economics,
genetics and neuroscience (Pearl, 2009; Bollen, 2014).
One of the successes of SCMs over other causal frame-
works such as causal Bayesian networks, for instance, has
been their ability to express cyclic causal models (Spirtes,
1995; Mooij et al., 2011; Hyttinen et al., 2012; Voortman
et al., 2010; Lacerda et al., 2008; Bongers et al., 2018).

We view SCMs as an intermediate level of description be-
tween the highly expressive differential equation models
and the probabilistic, non-causal models typically used in
machine learning and statistics. This intermediate level
of description ideally retains the benefits of a data-driven
statistical approach while still allowing a limited set of
causal statements about the effect of interventions. While
it is well understood how an SCM induces a statistical
model (Bongers et al., 2018), much less is known about
how a differential equation model—our most fundamen-
tal level of modelling—can imply an SCM in the first
place. This is an important question because if we are to
have models of a system on different levels of complexity,
we should understand how they relate and the conditions
under which they are consistent with one another.

Indeed, recent work has begun to address the question of
how SCMs arise naturally from more fundamental models
by showing how, under strong assumptions, SCMs can
be derived from an underlying discrete time difference
equation or continuous time ODE (Iwasaki and Simon,
1994; Dash, 2005; Lacerda et al., 2008; Voortman et al.,
2010; Mooij et al., 2013; Sokol and Hansen, 2014). With
the exception of (Voortman et al., 2010) and (Sokol and
Hansen, 2014), each of these methods assume that the
dynamical system comes to a static equilibrium that is
independent of initial conditions, with the derived SCM
describing how this equilibrium changes under interven-
tion. More recently, the more general case in which the
equilibrium state may depend on the initial conditions
has been addressed (Bongers and Mooij, 2018; Blom and
Mooij, 2018).
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If the assumption that the system reaches a static equi-
librium is reasonable for a particular system under study,
the SCM framework can be useful. Although the derived
SCM then lacks information about the (possibly rich) tran-
sient dynamics of the system, if the system equilibrates
quickly then the description of the system as an SCM may
be a more convenient and compact representation of the
causal structure of interest. By making assumptions on
the dynamical system and the interventions being made,
the SCM effectively allows us to reason about a ‘higher
level’ qualitative description of the dynamics—in this
case, the equilibrium states.

There are, however, two major limitations that stem from
the equilibrium assumption. First, for many dynamical
systems the assumption that the system settles to a unique
equilibrium, either in its observational state or under inter-
vention, may be a bad approximation of the actual system
dynamics. Second, this framework is only capable of
modelling interventions in which a subset of variables are
clamped to fixed values (constant interventions). Even for
rather simple physical systems such as a forced damped
simple harmonic oscillator, these assumptions are vio-
lated.

Motivated by these observations, the work presented in
this paper tries to answer the following questions: (i) Can
the SCM framework be extended to model systems that
do not converge to an equilibrium? (ii) If so, what assump-
tions need to be made on the ODE and interventions so
that this is possible? Since SCMs are used in a variety of
situations in which the equilibrium assumption does not
necessarily hold, we view these questions as important
in order to understand when they are indeed theoretically
grounded as modelling tools. The main contribution of
this paper is to show that the answer to the first question
is ‘Yes’ and to provide sufficient conditions for the sec-
ond. We do this by extending the SCM framework to
encompass time-dependent dynamics and interventions
and studying how such objects can arise from ODEs. We
refer to this as a Dynamic SCM (DSCM) to distinguish
it from the static equilibrium case for the purpose of ex-
position, but note that this is conceptually the same as
an SCM on a fundamental level. Our construction draws
inspiration from the approach of Mooij et al. (2013), that
was recently generalized to also incorporate the stochas-
tic setting (Bongers and Mooij, 2018). Here, we adapt
the approach by replacing the static equilibrium states by
continuous-time trajectories, considering two trajectories
as equivalent if they do not differ asymptotically.

Note that whilst this paper applies a causal perspective to
the study of dynamical systems, the goal of this paper is
not to derive a learning algorithm which can be applied
to time series data. In this sense, we view our main re-

sults as ‘orthogonal’ to methods such as Granger causality
(Granger, 1969) and difference-in-differences (Card and
Krueger, 1993) which aim to infer causal effects given
time-series observations of a system. We envision that
DSCMs may be used for causal analysis of dynamical
systems that undergo periodic motion. Although these
systems have been mostly ignored so far in the field of
causal discovery, they have been studied extensively in
the field of control theory. Some examples of systems that
naturally exhibit oscillatory stationary states and where
our framework may be applicable are EEG signals, circa-
dian signals, seasonal influences, chemical oscillations,
electric circuits, aerospace vehicles, and satellite control.
We refer the reader to (Bittanti and Colaneri, 2009) for
more details on these application areas from the perspec-
tive of periodic control theory.

Since the DSCM derived for a simple harmonic oscilla-
tor (see Example 4) is already quite complex, we leave
the task of deriving methods that estimate the parame-
ters from data for future work. Rather, our current work
presents a first necessary theoretical step that needs to be
done before applications of this theory can be developed,
enabling the development of data-driven causal discov-
ery and prediction methods for oscillatory systems, and
possibly even more general systems, down the road.

The remainder of this paper is organised as follows. In
Section 2, we introduce notation to describe ODEs. In
Section 3, we describe how to apply the notion of an inter-
vention on an ODE to the dynamic case. In Section 4, we
define regularity conditions on the asymptotic behaviour
of an ODE under a set of interventions. In Section 5,
we present our main result: subject to conditions on the
dynamical system and interventions being modelled, a Dy-
namic SCM can be derived that allows one to reason about
how the asymptotic dynamics change under interventions
on variables in the system. We conclude in Section 6.

2 ORDINARY DIFFERENTIAL
EQUATIONS

Let I = {1, . . . , D} be a set of variable labels. Con-
sider time-indexed variables Xi(t) 2 Ri for i 2 I , where
Ri ✓ R and t 2 R�0 = [0,1). For I ✓ I, we write
XI(t) 2

Q
i2I Ri for the tuple of variables (Xi(t))i2I .

By an ODE D, we mean a collection of D coupled ordi-
nary differential equations with initial conditions X

(k)
0 :

D :

⇢
fi(Xi,Xpa(i))(t) = 0, X

(k)
i (0) = (X

(k)
0 )i,

0  k  ni � 1, i 2 I,

where the ith differential equation determines the evo-
lution of the variable Xi in terms of Xpa(i), where
pa(i) ✓ I are the parents of i, and Xi itself, and where
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ni is the order of the highest derivative X
(k)
i of Xi that

appears in equation i. Here, fi is a functional that can
include time-derivatives of its arguments. We think of the
ith differential equation as modelling the causal mech-
anism that determines the dynamics of the effect Xi in
terms of its direct causes Xpa(i).

One possible way to write down an ODE is to canonically
decompose it into a collection of first order differential
equations, such as is done in Mooij et al. (2013). We
choose to present our ODEs as “one equation per vari-
able” rather than splitting up the equations due to com-
plications that would otherwise occur when considering
time-dependent interventions (cf. Section 3.3).

Example 1. Consider a one-dimensional system of D
particles of mass mi (i = 1, . . . , D) with positions Xi

coupled by springs with natural lengths li and spring
constants ki, where the ith spring connects the ith and
(i + 1)th masses and the outermost springs have fixed
ends (see Figure 1a). Assume further that the ith mass
undergoes linear damping with coefficient bi.

Denoting by Ẋi and Ẍi the first and second time deriva-
tives of Xi respectively, the equation of motion for the ith
variable is given by

miẌi(t) =ki[Xi+1(t)�Xi(t)� li]

� ki�1[Xi(t)�Xi�1(t)� li�1]� biẊi(t)

where we take X0 = 0 and XD = L to be the fixed posi-
tions of the end springs. For the case that D = 2, we can
write the system of equations as:

D :

8
>>>>>>>><
>>>>>>>>:

0 = m1Ẍ1(t) + b1Ẋ1(t) + (k1 + k0)X1(t)
�k1X2(t)� k0l0 + k1l1 ,

0 = m2Ẍ2(t) + b2Ẋ2(t) + (k2 + k1)X2(t)
�k2L� k1X1(t)� k2l1 + k2l2 ,

X
(k)
i (0) = (X

(k)
0 )i k 2 {0, 1}, i 2 {1, 2} .

We can represent the functional dependence structure be-
tween variables implied by the functions fi with a graph,
in which variables are nodes and arrows point Xj �! Xi

if j 2 pa(i). Self loops Xi �! Xi exist if X
(k)
i appears

in the expression of fi for more than one value of k. This
is illustrated for the system described in Example 1 in
Figure 1b.

3 INTERVENTIONS ON ODES

We interpret ODEs as causal models. In particular, we
consider the graph expressing the functional dependence
structure to be the causal graph of the system, with an

edge between Xi and Xj iff Xi is a direct cause of Xj

(in the context of all variables XI). In this section, we
will formalize this causal interpretation by studying inter-
ventions on the system.

3.1 TIME-DEPENDENT PERFECT
INTERVENTIONS

Usually in the causality literature, by a perfect interven-
tion it is meant that a variable is clamped to take a spe-
cific given value. The natural analogue of this in the
time-dependent case is a perfect intervention that forces
a variable to take a particular trajectory. That is, given a
subset I ✓ I and a function ⇣I : R�0 �!

Q
i2I Ri, we

can intervene on the subset of variables XI by forcing
XI(t) = ⇣I(t) 8t 2 R�0. Using Pearl’s do-calculus nota-
tion (Pearl, 2009) and for brevity omitting the t, we write
do(XI = ⇣I) for this intervention. Such interventions
are more general objects than those of the equilibrium or
time-independent case, but in the specific case that we
restrict ourselves to constant trajectories the two notions
coincide.

3.2 SETS OF INTERVENTIONS

Recall that when modelling equilibrating dynamical sys-
tems under constant interventions, the set of interven-
tions modelled coincides with the asymptotic behaviour
of the system. We will generalise this relation to non-
equilibrating behaviour.

The Dynamic SCMs that we will derive will describe the
asymptotic dynamics of the ODE and how they change
under different interventions. If we want to model ‘all
possible interventions’, then the resulting asymptotic dy-
namics that can occur are arbitrarily complicated. The
idea is to fix a simpler set of interventions and derive an
SCM that models only these interventions, resulting in
a model that is simpler than the original ODE but still
allows us to reason about interventions we are interested
in. In the examples in this paper, we restrict ourselves to
periodic or quasi-periodic interventions, but the results
hold for more general sets of interventions that satisfy the
stability definitions presented later.

We need to define some notation to express the sets of
interventions and the set of system responses to these
interventions that we will model. Since interventions
correspond to forcing variables to take some trajectory,
we describe notation for defining sets of trajectories: For
I ✓ I, let DynI be a set of trajectories in

Q
i2I Ri. Let

Dyn = [I2P(I)DynI (where P(I) is the power set of
I i.e., the set of all subsets of I). Thus, an element
⇣I 2 DynI is a function R�0 �!

Q
i2I Ri, and Dyn con-

sists of such functions for different I ✓ I. The main
idea is that we want both the interventions and the system
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X0 = 0

X1 X2

k0 k1

X3 = L

k2

(a) Mass-spring system

X1 X2

(b) D

X1 X2

(c) Ddo(X1=⇣1)

Figure 1: (a) The mass-spring system of Example 1 with D = 2; (b–c) graphs representing the causal structure of the
mass-spring system for (b) the observational system, (c) after the intervention on variable X1 described in Example
2. As a result of the intervention, X1 is not causally influenced by any variable, while the causal mechanism of X2

remains unchanged.

responses to be elements of Dyn; in other words, the set
of possible system responses should be large enough to
contain all interventions that we would like to model, and
in addition, all responses of the system to those interven-
tions. The reader might wonder why we do not simply
take the set of all possible trajectories, but that set would
be so large that it would not be practical for modeling
purposes.1

Since our goal will be to derive a causal model that de-
scribes the relations between components (variables) of
the system, we will need the following definition in Sec-
tion 5.

Definition 1. A set of trajectories Dyn is modular if, for
any {i1, . . . , in} = I ✓ I,

⇣I 2 Dyn () ⇣ik
2 Dyn 8k 2 {1, . . . , n}.

This should be interpreted as saying that admitted tra-
jectories of single variables can be combined arbitrarily
into admitted trajectories of the whole system (and vice
versa, admitted system trajectories can be decomposed
into trajectores of individual variables), and in addition,
that interventions on each variable can be made indepen-
dently and combined in any way.2 This is not to say
that all such interventions must be physically possible to
implement in practice. Rather, this means that the mathe-
matical model we derive should allow one to reason about
all such interventions. Not all sets of trajectories Dyn are
modular; in the following sections we will assume that the

1For example, one might want to parameterize the set of
trajectories in order to learn the model from data. Without any
restriction on the smoothness of the trajectories, the problem of
estimating a trajectory from data becomes ill-posed. Secondly,
since we would like to identify trajectories that are asymptot-
ically identical in order to focus the modeling efforts on the
asymptotic behaviour of the system, we will only put a single
trajectory into Dyn to represent all trajectories that are asymptot-
ically identical to that trajectory, but whose transient dynamics
may differ.

2This is related to notions that have been discussed in the
literature under various headings, for instance autonomy and
invariance (Pearl, 2009).

sets of trajectories we are considering are for the purposes
of constructing the Dynamic SCMs. Some examples of
trivially modular sets of trajectories are: (i) all static (i.e.,
time-independent) trajectories, corresponding to (Mooij
et al., 2013); (ii) all continuously-differentiable trajecto-
ries that differ asymptotically; (iii) all periodic motions.
The latter is the running example in this paper.

3.3 DESCRIBING INTERVENTIONS ON ODEs

We can realise a perfect intervention by replacing the
equations of the intervened variables with new equations
that fix them to take the specified trajectories:3

Ddo(XI=⇣I) :
8
>><
>>:

fi(Xi,Xpa(i))(t) = 0 , X
(k)
i (0) = (X

(k)
0 )i ,

0  k  ni � 1 , i 2 I \ I ,

Xi(t)� ⇣i(t) = 0 , i 2 I .

This procedure is analogous to the notion of intervention
in an SCM. In reality, this corresponds to decoupling the
intervened variables from their usual causal mechanism
by forcing them to take a particular value, while leaving
the non-intervened variables’ causal mechanisms unaf-
fected.

Perfect interventions will not generally be realisable in
the real world. In practice, an intervention on a variable
would correspond to altering the differential equation
governing its evolution by adding extra forcing terms;
perfect interventions could be realised by adding forcing
terms that push the variable towards its target value at
each instant in time, and considering the limit as these
forcing terms become infinitely strong so as to dominate
the usual causal mechanism determining the evolution of
the variable.
Example 2 (continued). Consider the mass-spring sys-
tem described in Example 1. If we were to intervene on

3Note that in the intervened ODE, the initial conditions of
the intervened variables do not need to be specified explicitly
as for the other variables, since they are implied by considering
t = 0.
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the system to force the mass X1 to undergo simple har-
monic motion, we could express this as a change to the
system of differential equations as:

Ddo(X1(t)=l1+A cos(!t)) :
8
>>>>>><
>>>>>>:

0 = X1(t)� l1 �A cos(!t) ,

0 = m2Ẍ2(t) + b2Ẋ2(t) + (k2 + k1)X2(t)
�k2L� k1X1(t)� k2l1 + k2l2 ,

X
(k)
2 (0) = (X

(k)
0 )2 k 2 {0, 1}.

This induces a change to the graphical description of the
causal relationships between the variables. We break any
incoming arrows to any intervened variable, including self
loops, as the intervened variables are no longer causally
influenced by any other variable in the system. See Figure
1c for the graph corresponding to the intervened ODE in
Example 2.

4 DYNAMIC STABILITY

A crucial assumption of Mooij et al. (2013) was that the
systems considered were stable in the sense that they
would converge to unique stable equilibria (if necessary,
also after performing a constant intervention). This made
them amenable to study by considering the t �!1 limit
in which any complex but transient dynamical behaviour
would have decayed. The SCMs derived would allow one
to reason about the asymptotic equilibrium states of the
systems after interventions. Since we want to consider
non-constant asymptotic dynamics, this is not a notion of
stability that is fit for our purposes.

Instead, we define our stability with reference to a set of
trajectories. We will use DynI for this purpose. Recall
that elements of DynI are trajectories for all variables
in the system. To be totally explicit, we can think of an
element ⌘ 2 DynI as a function

⌘ : R�0 �! RI
t 7! (⌘1(t), ⌘2(t), . . . , ⌘D(t))

where ⌘i(t) 2 Ri is the state of the ith variable Xi at time
t. Note that DynI is not a single fixed set, independent
of the situation we are considering. We can choose DynI
depending on the ODE D under consideration, and the
interventions that we may wish to make on it.

Informally, stability in this paper means that the asymp-
totic dynamics of the dynamical system converge to a
unique element of DynI , independent of initial condition.
If DynI is in some sense simple, we can simply char-
acterise the asymptotic dynamics of the system under
study. The following definitions of stability extend those

of Mooij et al. (2013) to allow for non-constant trajec-
tories in DynI , and coincide with them in the case that
DynI consists of all constant trajectories in RI .

Definition 2. The ODE D is dynamically stable with
reference to DynI if there exists a unique ⌘; 2 DynI
such that XI(t) = ⌘;(t) 8t is a solution to D and that
for any initial condition, the solution XI(t)! ⌘;(t) as
t!1.4

We use a subscript ; to emphasise that ⌘; describes the
asymptotic dynamics of D without any intervention. Ob-
serve that DynI could consist of the single element ⌘;
in this case. The requirement that this hold for all initial
conditions can be relaxed to hold for all initial conditions
except on a set of measure zero, but that would mean that
the proofs later on require some more technical details.
For the purpose of exposition, we stick to this simpler
case.

Example 3. Consider a single mass on a spring that is
undergoing simple periodic forcing and is underdamped.
Such a system could be expressed as a single (parent-less)
variable with ODE description:

D :

8
>><
>>:

mẌ1(t) + bẊ1(t) + k(X1(t)� l)
= F cos(!t + �) ,

X
(k)
1 (0) = (X

(k)
0 ) k 2 {0, 1} .

The solution to this differential equation is

X1(t) = r(t) + l + A cos(!t + �0) (1)

where r(t) decays exponentially quickly (and is dependent
on the initial conditions) and A and �0 depend on the
parameters of the equation of motion (but not on the
initial conditions).

Therefore such a system would be dynamically stable with
reference to (for example)

DynI = {l + A cos(!t + �0) : A 2 R, �0 2 [0, 2⇡)}.

Remark 1. We use a subscript ⇣I to emphasise that ⌘⇣I

describes the asymptotic dynamics of D after performing
the intervention do(XI = ⇣I). Observe that DynI could
consist only of the single element ⌘⇣I

and the above
definition would be satisfied. But then the original ODE
wouldn’t be dynamically stable with reference to DynI ,
nor would other intervened versions of D. This motivates
the following definition, extending dynamic stability to
sets of intervened systems.

4The convergence we refer to here is the usual asymptotic
convergence of real-valued functions, i.e., for f : [0,1)! Rd,
g : [0,1)! Rd we have that f ! g iff for every ✏ > 0 there
is a T 2 [0,1) such that |f(t)� g(t)| < ✏ for all t 2 [T,1).
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Definition 3. Let Traj be a set of trajectories. We say
that the pair (D, Traj) is dynamically stable with ref-
erence to DynI if, for any ⇣I 2 Traj , Ddo(XI=⇣I) is
dynamically stable with reference to DynI .

Example 3 (continued). Suppose we are interested in
modelling the effect of changing the forcing term, either
in amplitude, phase or frequency. We introduce a second
variable X2 to model the forcing term:

D :

8
>>>>>>>><
>>>>>>>>:

0 = f1(X1, X2)(t)

= mẌ1(t) + bẊ1(t) + k(X1(t)� l)�X2(t) ,

0 = f2(X2)(t)
= X2(t)� F0 cos(!0t + �0) ,

X
(k)
1 (0) = (X

(k)
0 )1 , k 2 {0, 1} .

If we want to change the forcing term that we apply to the
mass, we can interpret this as performing an intervention
on X2. We could represent this using the notation we
have developed as

Dyn{2} = {⇣2(t) = F2 cos(!t + �2) :

F2,! 2 R, �2 2 [0, 2⇡)}.

For any intervention ⇣2 2 Dyn{2}, the dynamics of X1 in
Ddo(X2=⇣2) will be of the form (1). Therefore (D, Dyn{2})
will be dynamically stable with reference to

DynI =
n
⇣(t) = (l + F1 cos(!t + �1), F2 cos(!t + �2))

: F1, F2,! 2 R, �1,�2 2 [0, 2⇡)
o

.

The independence of initial conditions for Example 3 is
illustrated in Figure 2.

Note that if (D, Traj) is dynamically stable with refer-
ence to DynI , and Dyn0I ◆ DynI is a larger set of trajec-
tories that still satisfies the uniqueness condition in the
definition of dynamic stability,5 then (D, Traj) is dynam-
ically stable with reference to Dyn0I .

5 DYNAMIC STRUCTURAL CAUSAL
MODELS

A deterministic SCM M is a collection of structural equa-
tions, the ith of which defines the value of variable Xi

5Namely: 8⇣I 2 Traj, 9!⌘⇣I 2 Dyn0I such that under
Ddo(XI=⇣I ) and for any initial condition, XI(t) ! ⌘⇣I (t) as
t ! 1. Assuming that (D, Traj) is dynamically stable with
reference to DynI , a sufficient condition for this is that none of
the elements in Dyn0I \ DynI are asymptotically equal to any of
the elements of DynI . That is: 8⇣ 2 DynI , 8⇣0 2 Dyn0I \DynI ,
⇣(t) 9 ⇣0(t) as t!1 .

in terms of its parents. We extend this to the case that
our variables do not take fixed values but rather represent
entire trajectories.

Definition 4. Let Dyn =
S

I✓I DynI be a modular set

of trajectories, where DynI ✓ RR�0

I . A deterministic
Dynamic Structural Causal Model (DSCM) on the time-
indexed variables XI taking values in Dyn is a collection
of structural equations

M :
�

Xi = Fi(Xpa(i)) i 2 I ,

where pa(i) ✓ I \ {i} and each Fi is a map
Dynpa(i) �! Dyni that gives the trajectory of an
effect variable in terms of the trajectories of its direct
causes.

The point of this paper is to show that, subject to restric-
tions on D and Dyn, we can derive a DSCM that allows
us to reason about the effect on the asymptotic dynamics
of interventions using trajectories in Dyn. ‘Traditional’
deterministic SCMs arise as a special case, where all
trajectories are constant over time.

In an ODE, the equations fi determine the causal relation-
ship between the variable Xi(t) and its parents Xpa(i)(t)
at each instant in time. In contrast, we think of the
function Fi of the DSCM as a causal mechanism that
determines the entire trajectory of Xi in terms of the
trajectories of the variables Xpa(i), integrating over the
instantaneous causal effects over all time. In the case that
Dyn consists of constant trajectories (and thus the instan-
taneous causal effects are constant over time), a DSCM
reduces to a traditional deterministic SCM.

The rest of this section is laid out as follows. In Section 5.1
we define what it means to make an intervention in a
DSCM. In Section 5.2 we show how, subject to certain
conditions, a DSCM can be derived from a pair (D, Dyn).
The procedure for doing this relies on intervening on all
but one variable at a time. In Section 5.3, Theorem 2
states that the DSCM thus derived is capable of modelling
the effect of intervening on arbitrary subsets of variables,
even though it was constructed by considering the case
that we consider interventions on exactly D � 1 variables.
Theorem 3 and Corollary 1 in Section 5.4 prove that the
notions of intervention in ODE and the derived DSCM
coincide. Collectively, these theorems tell us that we can
derive a DSCM that allows us to reason about the effects
of interventions on the asymptotic dynamics of the ODE.
Proofs of these theorems are provided in Section A of the
Supplementary Material.

5.1 INTERVENTIONS IN A DSCM

Interventions in (D)SCMs are realized by replacing the
structural equations of the intervened variables. Given
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Figure 2: Simulations from the forced simple harmonic oscillator in Example 3 showing the evolution of X1 with
different initial conditions for different forcing terms (interventions on X2). The parameters used were m = 1, k =
1, l = 2, F = 2, b = 0.1, with (a) ! = 3 and (b) ! = 2. Dynamic stability means that asymptotic dynamics are
independent of initial conditions, and the purpose of the DSCM is to quantify how the asymptotic dynamics change
under intervention.

⇣I 2 DynI for some I ✓ I, the intervened DSCM
Mdo(XI=⇣I) can be written:

Mdo(XI=⇣I) :

⇢
Xi = Fi(Xpa(i)) i 2 I \ I ,
Xi = ⇣i i 2 I .

The causal mechanisms determining the non-intervened
variables are unaffected, so their structural equations re-
main the same. The intervened variables are decoupled
from their usual causal mechanisms and are forced to take
the specified trajectory.

5.2 DERIVING DSCMs FROM ODEs

In order to derive a DSCM from an ODE, we require the
following consistency property between the asymptotic
dynamics of the ODE and the set of interventions.

Definition 5 (Structural dynamic stability). Let Dyn be
modular. The pair (D, Dyn) is structurally dynamically
stable if (D, DynI\{i}) is dynamically stable with refer-
ence to DynI for all i.

This means that for any intervention trajectory
⇣I\{i} 2 DynI\{i}, the asymptotic dynamics of the inter-
vened ODE Ddo(XI\{i}=⇣I\{i}) are expressible uniquely
as an element of DynI . Since Dyn is modular, the asymp-
totic dynamics of the non-intervened variable can be re-
alised as the trajectory ⇣i 2 Dyni, and thus Dyn is rich
enough to allow us to make an intervention which forces
the non-intervened variable to take this trajectory. This is
a crucial property that allows the construction of the struc-
tural equations. In the particular case that Dyn consists
of all constant trajectories, structural dynamic stability
means that after any intervention on all-but-one-variable,
the non-intervened variable settles to a unique equilib-
rium. In the language of Mooij et al. (2013), this would
imply that the ODE is structurally stable.

It should be noted that (D, Dyn) being structurally dy-
namically stable is a strong assumption in general. If
Dyn is too small,6 then it may be possible to find a larger
set Dyn0 � Dyn such that (D, Dyn0) is structurally dy-
namically stable. The procedure described in this section
describes how to derive a DSCM capable of modelling all
interventions in Dyn0, which can thus be used to model
interventions in Dyn.

Henceforth, we use the notation Ii = I \ {i} for
brevity. Suppose that (D, Dyn) is structurally dynam-
ically stable. We can derive structural equations
Fi : Dynpa(i) �! Dyni to describe the asymptotic dynam-
ics of children variables as functions of their parents as
follows. Pick i 2 I. The variable Xi has parents Xpa(i).
Since Dyn is modular, for any configuration of parent dy-
namics ⌘pa(i) 2 Dynpa(i) there exists ⇣Ii

2 DynIi
such

that (⇣Ii
)pa(i) = ⌘pa(i).

By structural dynamic stability, the system Ddo(XIi
=⇣Ii

)

has asymptotic dynamics specified by a unique element
⌘ 2 DynI , which in turn defines a unique element ⌘i 2
Dyni specifying the asymptotic dynamics of variable Xi

since Dyn is modular.

Theorem 1. Suppose that (D, Dyn) is structurally dynam-
ically stable. Then the functions

Fi : Dynpa(i) ! Dyni : ⌘pa(i) 7! ⌘i

constructed as above are well-defined.

Given the structurally dynamically stable pair (D, Dyn)
we define the derived DSCM

MD :
�

Xi = Fi(Xpa(i)) i 2 I ,

6For example, if Dyn is not modular or represents interven-
tions on only a subset of the variables.
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where the Fi : Dynpa(i) ! Dyni are defined as above.
Note that structural dynamic stability was a crucial prop-
erty that ensured Fi(Dynpa(i)) ✓ Dyni. If (D, Dyn) is not
structurally dynamically stable, we cannot build structural
equations in this way.

We provide next an example of a DSCM for the mass-
spring system of Example 1 with D = 2. The derivation
of this for the general case of arbitrarily many masses is
included in the Supplementary Material.

Example 4. Consider the system D governed by the dif-
ferential equation of Example 1 with D = 2. Let Dyn{1,2}
be the modular set of trajectories with

Dyn{i} =

( 1X

j=1

Aj
i cos(!j

i t + �j
i ) :

wj
i ,�

j
i , A

j
i 2 R,

1X

j=1

|Aj
i | <1

)

for i = 1, 2, where for each i it holds that
P1

j=1 |Aj
i | <

1 (so that the series is absolutely convergent). Then
(D, Dyn{1,2}) is structurally dynamically stable and ad-
mits the following DSCM.

M :

⇢
X1 = F1(X2)
X2 = F2(X1)

where, writing Cj
1 = [k1 + k2 �m1(!

j
2)

2]2 and Cj
2 =

[k1 + k2 � m2(!
j
1)

2]2, the functionals F1 and F2 are
given by Equations 2 and 3 overleaf.

5.3 SOLUTIONS OF A DSCM

Theorem 1 states that we can construct a DSCM by the
described procedure. We constructed each equation by
intervening on D � 1 variables at a time. The result of
this section states that the DSCM can be used to cor-
rectly model interventions on arbitrary subsets of vari-
ables. We say that ⌘I 2 DynI is a solution of M if
⌘i = Fi(⌘pa(i)) 8i 2 I.

Theorem 2. Suppose that (D, Dyn) is structurally dy-
namically stable. Let I ✓ I, and let ⇣I 2 DynI . Then
Ddo(XI=⇣I) is dynamically stable if and only if the inter-
vened SCM M(Ddo(XI=⇣I )) has a unique solution. If there
is a unique solution, it coincides with the element of DynI
describing the asymptotic dynamics of Ddo(XI=⇣I).

Remark 2. We could also take I = ;, in which case the
above theorem applies to just D.

5.4 CAUSAL REASONING IS PRESERVED

We have defined ways to model interventions in both
ODEs and DSCMs. The following theorem and its imme-
diate corollary proves that these notions of intervention

coincide, and hence that DSCMs provide a representation
to reason about the asymptotic behaviour of the ODE un-
der interventions in Dyn. A consequence of these results
is that the diagram in Figure 3 commutes.

Theorem 3. Suppose that (D, Dyn) is structurally dy-
namically stable. Let I ✓ I and let ⇣I 2 DynI . Then
M(Ddo(XI=⇣I )) = (MD)do(XI=⇣I).

Corollary 1. Suppose additionally that J ✓ I \ I and
let ⇣J 2 DynJ . Then
⇣
M(Ddo(XI=⇣I ))

⌘
do(XJ=⇣J )

= (MD)do(XI=⇣I ,XJ=⇣J ) .

To summarise, Theorems 1–3 and Corollary 1 collectively
state that if (D, Dyn) is dynamically structurally stable
then it is possible to derive a DSCM that allows us to
reason about the asymptotic dynamics of the ODE under
any possible intervention in Dyn.

5.5 RELATION TO ODEs AND DYNAMIC
BAYESIAN NETWORKS

An ODE is capable of modelling arbitrary interventions
on the system it describes. At the cost of only modelling
a restricted set of interventions, a DSCM can be derived
which describes the asymptotic behaviour of the system
under these interventions. This may be desirable in cases
for which transient behaviour is not important.

We now compare DSCMs to Dynamic Bayesian Net-
works (DBNs), an existing popular method for causal
modelling of dynamical systems (Koller and Friedman,
2009). DBNs are essentially Markov chains, and thus are
appropriate for discrete-time systems. When the discrete-
time Markov assumption holds, DBNs are a powerful tool
capable of modelling arbitrary interventions. However,
approximations must be made whenever these assump-
tions do not hold. In particular, a continuous system must
be approximately discretised in order to be modelled by a
DBN (Sokol and Hansen, 2014).

By using the Euler method for numerically solving ODEs,
we can make such an approximation to derive a DBN de-
scribing the system in Example 1, leading to the discrete
time equation given in (8) the Supplementary Material.
For DBNs, the main choice to be made is how fine the
temporal discretisation should be. The smaller the value
of �, the better the discrete approximation will be. Even
if there is a natural time-scale on which measurements
can be made, choosing a finer discretisation than this will
provide a better approximation to the behaviour of the
true system. The choice of � should reflect the natural
timescales of the interventions to be considered too; for
example, it is not clear how one would model the interven-
tion do

�
X1(t) = cos

�
2⇡t
�

��
with a discretisation length

�. Another notable disadvantage of DBNs is that the
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ODE
D

Intervened ODE
Ddo(XI=⇣I)

DSCM
MD

Intervened DSCM
MDdo(XI=⇣I )

Intervened ODE
Ddo(XI=⇣I ,XJ=⇣J )

Intervened DSCM
MDdo(XI=⇣I ,XJ=⇣J )

Sec. 3.3

Sec. 5.1

Sec. 5.2 Sec. 5.2

Sec. 3.3

Sec. 5.1

Sec. 5.2

Figure 3: Top-to-bottom arrows: Theorems 1 and 2 together state that if (D, Dyn) is structurally dynamically stable
then we can construct a DSCM to describe the asymptotic behaviour of D under different interventions in the set Dyn.
Left-to-right arrows: Both ODEs and DSCMs are equipped with notions of intervention. Theorem 3 and Corollary 1
say that these two notions of intervention coincide, and thus the diagram commutes.
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Figure 4: Equations giving the structural equations for the DSCM describing the mass-spring system of Example 4

computational cost of learning and inference increases for
smaller �, where computational cost becomes infinitely
large in the limit �! 0.

In contrast, the starting point for DSCMs is to fix a conve-
nient set of interventions we are interested in modelling.
If a DSCM containing these interventions exists, it will
model the asymptotic behaviour of the system under each
of these interventions exactly, rather than approximately
modelling the transient and asymptotic behaviour as in
the case of a DBN. Computational cost does not relate
inversely to accuracy as for DBNs, but depends on the
chosen representation of the set of admitted interventions.

6 DISCUSSION AND FUTURE WORK

The main contribution of this paper is to show that the
SCM framework can be applied to reason about time-
dependent interventions on an ODE in a dynamic setting.
In particular, we showed that if an ODE is sufficiently
well-behaved under a set of interventions, a DSCM can
be derived that captures how the asymptotic dynamics
change under these interventions. This is in contrast to
previous approaches to connecting the language of ODEs
with the SCM framework, which used SCMs to describe
the stable (constant-in-time) equilibria of the ODE and

how they change under intervention.

We identify three possible directions in which to extend
this work in the future. The first is to properly understand
how learning DSCMs from data could be performed. This
is important if DSCMs are to be used in practical applica-
tions. Challenges to be addressed include finding practical
parameterizations of DSCMs, the presence of measure-
ment noise in the data and the fact that time-series data are
usually sampled at a finite number of points in time. The
second is to relax the assumption that the asymptotic dy-
namics are independent of initial conditions, as was done
recently for the static equilibrium scenario by Blom and
Mooij (2018). The third extension is to move away from
deterministic systems and consider Random Differential
Equations (Bongers and Mooij, 2018), thereby allowing
to take into account model uncertainty, but also to include
systems that may be inherently stochastic.
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Abstract

Symmetric nonnegative matrix factorization
has found abundant applications in various do-
mains by providing a symmetric low-rank de-
composition of nonnegative matrices. In this
paper we propose a Frank-Wolfe (FW) solver
to optimize the symmetric nonnegative matrix
factorization problem under a simplicial con-
straint, which has recently been proposed for
probabilistic clustering. Compared with exist-
ing solutions, this algorithm is simple to imple-
ment, and has no hyperparameters to be tuned.
Building on the recent advances of FW algo-
rithms in nonconvex optimization, we prove
an O(1/ε2) convergence rate to ε-approximate
KKT points, via a tight bound Θ(n2) on the cur-
vature constant, which matches the best known
result in unconstrained nonconvex setting using
gradient methods. Numerical results demon-
strate the effectiveness of our algorithm. As a
side contribution, we construct a simple nons-
mooth convex problem where the FW algorithm
fails to converge to the optimum. This result
raises an interesting question about necessary
conditions of the success of the FW algorithm
on convex problems.

1 INTRODUCTION

Nonnegative matrix factorization (NMF) has found vari-
ous applications in data mining, natural language process-
ing, and computer vision [Xu et al., 2003, Liu et al., 2003,
Kuang et al., 2012], due to its ability to provide low rank
approximations and interpretable decompositions. The
decision version of NMF is known to be NP-hard [Vavasis,
2009], which also implies that its optimization problem
is NP-hard. Recently, a variant of NMF where the input

matrix is constrained to be symmetric has become popular
for clustering [He et al., 2011, Kuang et al., 2012, 2015].
The problem is known as symmetric NMF (SymNMF),
and its goal is to minimize ||A − WWT ||2F under the
constraint that W ≥ 0 elementwise, where A is a sym-
metric matrix of cluster affinities. Compared with NMF,
SymNMF is applicable even when the algorithm does not
have direct access to the data instances, but only their
pairwise similarity scores. Note that in general the input
matrix A does not need to be nonnegative [Kuang et al.,
2012]. SymNMF has been successfully applied in many
different settings and was shown to be competitive with
standard clustering algorithms; see [Kuang et al., 2012,
2015] and the references therein for more details.

In this paper we investigate a constrained version of Sym-
NMF where the input matrix is required to be both nonneg-
ative and positive semidefinite. Furthermore, we require
that W is normalized such that each row of W sums to
1. This problem has an interesting application in proba-
bilistic clustering [Zhao et al., 2015] where the ith row of
W can be interpreted as the probability that the ith data
point lies in each clusters. Formally, we are interested in
the following optimization problem, which we name as
simplicial SymNMF (SSymNMF):

minimize
W

1

4
||P −WWT ||2F

subject to W ∈ Rn×k+ , W1k = 1n

(1)

where P ≥ 0 and P ∈ Sn+ is positive semidefinite. (1)
was proposed as a formulation for probabilistic cluster-
ing [Zhao et al., 2015]. The input matrix P is interpreted
as the co-cluster affinity matrix, i.e., entryPij corresponds
to the degree to which we encourage data instances xi
and xj to be in the same cluster. Each row of W then
corresponds to the probability distribution of instance
xi being in different clusters. A similar simplicial con-
straint has been considered in NMF as well [Nguyen et al.,
2013], where the goal is to seek a probabilistic part-based
decomposition for clustering.
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Previous approaches to solve SymNMF or SSymNMF
use the penalty method to convert it into an unconstrained
optimization problem and then solve it iteratively, us-
ing either first-order or second-order methods [Kuang
et al., 2012, Zhao et al., 2015, Kuang et al., 2015]. Such
methods usually include two loops where the outer loop
gradually increases the penalty coefficients and the inner
loop finds a stationary point of each fixed penalized objec-
tive, hence they are often computationally expensive and
slow to converge. In this paper we first give an equivalent
geometric description of (1) and then propose a variant
of the classic Frank-Wolfe (FW) algorithm [Frank and
Wolfe, 1956], a.k.a. the conditional gradient method [Lev-
itin and Polyak, 1966], to solve it. We also provide a
non-asymptotic convergence guarantee of our algorithm
under an affine invariant stationarity measure (defined
in Sec. 2). More specifically, for a given approximation
parameter ε > 0, we show that the algorithm converges to
an ε-approximate KKT point of (1) in O(1/ε2) iterations.
This rate is analogous to the one derived by Nesterov
[2013] for general unconstrained problems (potentially
nonconvex) using the gradient descent method, where
the measure of stationarity is given by the norm of the
gradient. The O(1/ε2) rate has recently been shown to be
optimal [Cartis et al., 2010] in the unconstrained setting
for gradient methods, and it also matches the best known
rate to a stationary point with (accelerated) projected gra-
dient descent [Ghadimi and Lan, 2016, Ghadimi et al.,
2016] in the constrained smooth nonconvex setting.

Contributions. We first give a generalized definition of
the curvature constant [Jaggi, 2013, Lacoste-Julien et al.,
2013, Lacoste-Julien, 2016] that works for both convex
and nonconvex functions, and we prove a tight bound of it
in (1). We then propose a convergence measure in terms
of the duality gap and show that the gap is 0 iff KKT con-
ditions are satisfied. Using these two tools, we propose
a FW algorithm to solve (1) and show that it has a non-
asymptotic convergence rate O(1/ε2) to KKT points. On
the algorithmic side, we give a procedure that has the opti-
mal linear time complexity and constant space complexity
to implement the linear minimization oracle (LMO) in
the FW algorithm. As a side contribution, we construct a
piecewise linear example where the FW algorithm fails
to converge to the optimum. Surprisingly, we can also
show that the FW algorithm works if we slightly change
the objective function, despite that the new function re-
mains piecewise linear and has an unbounded curvature
constant. These two examples then raise an interesting
question w.r.t. the necessary condition of the success
of the FW algorithm. At the end, we conduct several
numerical experiments to demonstrate the efficiency of
the proposed algorithm by comparing it with the penalty
method and projected gradient descent.

2 PRELIMINARY

2.1 SymNMF UNDER SIMPLICIAL
CONSTRAINT

One way to understand (1) is through its clustering based
explanation: the goal is to find a probabilistic clustering
of all the instances such that the given co-cluster affinity
Pij for a pair of instances (xi,xj) is close to the true
probability that xi and xj reside in the same cluster:

Pr(xi ∼ xj) =
k∑

h=1

Pr(ci = cj = h)

=
k∑

h=1

Pr(ci = h) Pr(cj = h) = wT
i wj

where we use the notation xi ∼ xj to mean “xi and xj
reside in the same cluster”; ci is the cluster assignment
of xi and wi denotes the ith row vector of W . Note that
the second equation holds because of the assumption of
i.i.d. generation process of instances and their cluster
assignments.

As a first note, the optimal solution W ∗ to (1) is not
unique: for any permutation πn over [n], an equivalent so-
lution can be constructed byW ∗πn = W ∗Ππn , where Ππn

is a permutation matrix specified by πn. This corresponds
to an equivalence class of W by label switching. Hence
for any fixed k, there are at least k! optimal solutions to
(1). The uniqueness of the solution to (1) up to permuta-
tion is still an open problem. Huang et al. [2014] studied
sufficient and necessary conditions for the uniqueness of
SymNMF, but they are NP-hard to check in general.

Zhao et al. [2015] proposed a penalty method to transform
(1) into an unconstrained problem and solve it via sequen-
tial minimization. Roughly speaking, the penalty method
repeatedly solves an unconstrained problem, and enforces
the constraints in (1) by gradually increasing the coeffi-
cients of the penalty terms. This process iterates until a
solution is both feasible and a stopping criterion w.r.t. the
objective function is met; see [Zhao et al., 2015, Algo. 1].
The penalty method contains 6 different hyperparameters
to be tuned, and it is not even clear whether it will con-
verge to a KKT point of (1). To the best of our knowledge,
no other methods has been proposed to solve (1). To solve
SymNMF, Kuang et al. [2012] proposed a projected New-
ton method and Vandaele et al. [2016] developed a block
coordinate descent method. However, due to the coupling
of columns of W introduced by the simplicial constraint,
it is not clear how to extend these two algorithms to solve
(1). On the other hand, the simplicial constraint in (1)
restricts the feasible set to be compact, which makes it
possible for us to apply the FW algorithm to solve it.
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2.2 Frank-Wolfe ALGORITHM

The FW algorithm [Frank and Wolfe, 1956, Levitin and
Polyak, 1966] is a popular first-order method to solve con-
strained convex optimization problems of the following
form:

minimizex∈D f(x) (2)

where f : Rd → R is a convex and continuously dif-
ferentiable function over the convex and compact do-
main D. The FW method has recently attracted a surge
of interest in machine learning due to the fact that it
never requires us to project onto the constraint set D
and its ability to cheaply exploit structure in D [Clark-
son, 2010, Jaggi, 2011, 2013, Lacoste-Julien et al., 2013,
Lan, 2013]. Compared with projected gradient descent,
it provides arguably wider applicability since projection
can often be computationally expensive (e.g., for the gen-
eral `p ball), and in some case even computationally in-
tractable [Collins et al., 2008]. At each iteration, the FW
algorithm finds a feasible search corner s by minimizing
a linear approximation at the current iterate x over D:

w(x) := min
ŝ∈D

f(x) +∇f(x)T (ŝ− x) (3)

The linear minimization oracle (LMO) at x is defined as:

s = LMO(x) := arg min
ŝ∈D

f(x) +∇f(x)T (ŝ− x) (4)

Given s = LMO(x), the next iterate is then updated as a
convex combination of s and the current iterate x. If the
FW algorithm starts with a corner as the initial point, then
this property implies that at the t-th iteration, the current
iterate is a convex combination of at most t+ 1 corners.
The difference between f(x) and w(x) is known as the
Frank-Wolfe gap (FW-gap):

g(x) := f(x)− w(x) = max
ŝ∈D
∇f(x)T (x− ŝ) (5)

which turns out to be a special case of the general Fenchel
duality gap when we transform (2) into an unconstrained
problem by adding an indicator function over D into the
objective function [Lacoste-Julien et al., 2013, Appendix
D]. Due to the convexity of f , we have the following
inequality: ∀x,y ∈ D, w(y) ≤ f∗ ≤ f(x), where f∗

is the globally optimal value of f . Specifically, ∀x ∈ D,
w(x) ≤ f(x) and as a result g(x) can be used as an upper
bound for the optimality gap: ∀x ∈ D, f(x) − f∗ ≤
g(x), so that g(x) is a certificate for the approximation
quality of the current solution. Furthermore, the duality
gap g(x) can be computed essentially for free in each
iteration: g(x) = ∇f(x)T (x− s).

It is well known that for smooth convex optimization prob-
lems the FW algorithm converges to an ε-approximate
solution in O(1/ε) iterations [Frank and Wolfe, 1956,

Dunn and Harshbarger, 1978]. This result has recently
been generalized to the setting where the LMO is solved
only approximately [Clarkson, 2010, Jaggi, 2013]. The
analysis of convergence depends on a crucial concept
known as the curvature constant Cf defined for a convex
function f :

Cf := sup
x,s∈D,
γ∈(0,1],

y=x+γ(s−x)

2

γ2
(
f(y)− f(x)−∇f(x)T (y − x)

)

(6)
The curvature constant measures the relative deviation of
a convex function f from its linear approximation. It is
clear that Cf ≥ 0. Furthermore, the definition of Cf only
depends on the inner product of the underlying space,
which makes it affine invariant. In fact, the curvature
constant, the FW algorithm, and its convergence analysis
are all affine invariant [Lacoste-Julien et al., 2013]. Later
we shall generalize the curvature constant to a function f
that is not necessarily convex and state our result in terms
of the generalized definition. The above definition of the
curvature constant still works for nonconvex functions,
but for a concave function f , Cf = 0, which loses its
geometric interpretation as measuring the curvature of f .

To proceed our discussion, we first establish some stan-
dard terminologies used in this paper. A continuously
differentiable function f is called L-smooth w.r.t. the
norm || · || if∇f is L-Lipschitz continuous w.r.t. the norm
|| · ||: ∀x,y ∈ D, ||∇f(x) − ∇f(y)|| ≤ L||x − y||.
Throughout this paper, we will use || · || to mean the
Euclidean norm, i.e., the `2 norm for vectors and the
Frobenius norm for matrices if not explicitly specified.
It is standard to assume f to be L-smooth in the con-
vergence analysis of the FW algorithm [Clarkson, 2010,
Jaggi, 2013]. As we will see below, the smoothness of f
also implies the boundedness of Cf on a compact set.

3 Frank-Wolfe FOR SymNMF UNDER
SIMPLICIAL CONSTRAINT

3.1 A GEOMETRIC PERSPECTIVE

In this section we complement our discussion of (1) in
Sec. 2 with a geometric interpretation, which allows us
to make a connection between the decision version of (1)
to the well known problem of completely positive matrix
factorization [Berman and Shaked-Monderer, 2003, Dick-
inson, 2013, Dickinson and Gijben, 2014]. The decision
version of the optimization problem in (1) is formulated
as follows:

Definition 1 (SSymNMF). Given a matrix P ∈ Rn×n+ ∩
Sn+, can it be factorized as P = WWT for some integer
k such that W ∈ Rn×k+ and W1k = 1n?
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Clearly, for P ∈ Sn+, we can decompose it as P = UUT ,
where U ∈ Rn×r, r = rank(P ). Let ui be the ith row
vector of U ; then P is the Gram matrix of a set of r
dimensional vectors U = {u1, . . . ,un} ⊆ Rr. Similarly,
WWT can be understood as the Gram matrix of a set of
k dimensional vectorsW = {w1, . . . ,wn} ⊆ Rk, where
wi is the ith row vector of W . The simplex constraint
in (1) further restricts each wi ∈ ∆k−1, i.e., wi resides
in the k − 1 dimensional probability simplex. Hence
equivalently, SSymNMF asks the following question:
Definition 2. Given a set of n instances U = {ui}ni=1 ⊆
Rr, does there exist an integer k and an embedding T :
Rr → ∆k−1, such that inner product is preserved under
T , i.e., ∀i, j ∈ [n], 〈ui,uj〉 = 〈T (ui), T (uj)〉 ?

An affirmative answer to SSymNMF will give a certifi-
cate of the existence of such embedding T : T (ui) =
wi,∀i ∈ [n]. The goal of (1) can thus be understood as
follows: find an embedding into the probability simplex
such that the discrepancy of inner products between the
image space and the original space is minimized. The
fact that inner product is preserved immediately implies
that distances between every pair of instances are also
preserved. If k = r, such an embedding is also known as
an isometry. In this case T is unitary. Note in the above
definition of SSymNMF we do not restrict that k = r,
and T does not have to be linear.

SSymNMF is closely connected to the strong member-
ship problem for completely positive matrices [Berman
and Plemmons, 1994, Berman and Shaked-Monderer,
2003]. A completely positive matrix is a matrix P that
can be factorized as P = WWT where W ∈ Rn×k+ for
some k. The set of completely positive matrices forms
a convex cone, and is known as the completely positive
cone (CP cone). From this definition we can see that the
decision version of SymNMF corresponds to the strong
membership problem of the CP cone, which has recently
been shown by Dickinson and Gijben [2014] to be NP-
hard. Geometrically, the strong membership problem for
CP matrices asks the following question:
Definition 3 (SMEMCP). Given a set of n instances
U = {ui}ni=1 ⊆ Rr, does there exist an integer k and
an embedding T : Rr → Rk+, such that inner prod-
uct is preserved under T , i.e., ∀i, j ∈ [n], 〈ui,uj〉 =
〈T (ui), T (uj)〉 ?

Note that the only difference between SSymNMF and
SMEMCP lies in the range of the image space: the former
asks for an embedding in ∆k−1 while the latter only asks
for embedding to reside in Rk+. SSymNMF is therefore
conjectured to be NP-hard as well, but this assertion has
not been formally proved yet. A simple reduction from
SMEMCP to SSymNMF does not work: a “yes” answer
to the former does not imply a “yes” answer to the latter.

3.2 ALGORITHM

We list the pseudocode of the FW method in Alg. 1 and
discuss how Alg. 1 can be efficiently applied and im-
plemented to solve SSymNMF. We start by deriving the
gradient of f(W ) = 1

4 ||P −WWT ||2F :

∇f(W ) = (WWT − P )W ∈ Rn×k (7)

The normalization constraint keeps the feasible set de-
composable (even though the objective function f is not
decomposable): it can be equivalently represented as the
product of n probability simplices ∆k−1×· · ·×∆k−1 =:
Πn∆k−1. Hence at the t-th iteration of the algorithm
we solve the following linear optimization problem over
Πn∆k−1:

minimize
S

tr
(
ST∇f(W (t))

)

subject to S ∈ Πn∆k−1
(8)

Because of the special structure of the constraint set in
(8), given ∇f(W ), we can efficiently compute the two
key quantities x(t+1) and gt in Alg. 1 in O(nk) time and
O(1) space. The pseudocode is listed in Alg. 2. The key
observation that allows us to achieve this efficient imple-
mentation is that at each iteration t ∈ [T ], LMO(x(t))
is guaranteed to be a sparse matrix that contains exactly
one 1 in each row. The time complexity of Alg. 2 is 3nk,
which can be further reduced to 2nk by additional O(n)
space to store the index of the nonzero element at each
row of LMO(x(t)). Alg. 1, together with Alg. 2 as a sub-
procedure, is very efficient while at the same time being
simple to implement. Furthermore, it does not have any
hyperparameter to be tuned: this is in sharp contrast with
the penalty method.

Algorithm 1 Frank-Wolfe algorithm (non-convex variant)

Input: Initial point x(0) ∈ D, approximation parameter
ε > 0

1: for t = 0 to T do
2: Compute s(t) = LMO(x(t)) :=

arg mins∈D sT∇f(x(t))
3: Compute update direction dt := s(t) − x(t)

4: Compute FW-gap gt := −∇f(x(t))Tdt
5: if gt ≤ ε then return x(t)

6: Compute γt := min{gt/C, 1} for any C ≥ C̄f
(defined in (10))

7: Update x(t+1) := x(t) + γtdt
8: end for
9: return x(T )
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Algorithm 2 Compute next iterate and the gap function

Input: ∇f(x(t)), x(t)

1: gt := 〈∇f(x(t)),x(t)〉
2: for i = 1 to n do
3: gt ← gt −minj∈[k]∇f(x(t))ij
4: end for
5: Compute γt := min{gt/C, 1}
6: x(t+1) := (1− γt)x(t)

7: for i = 1 to n do
8: ji := arg minj∈[k]∇f(x(t))ij

9: x
(t+1)
iji

← x
(t+1)
iji

+ γt
10: end for
11: return x(t+1), gt

3.3 CONVERGENCE ANALYSIS

In this section we provide a non-asymptotic convergence
rate for the FW algorithm for solving (1) and derive a tight
bound for its curvature constant. Our analysis is based on
the recent work [Lacoste-Julien, 2016], where we redefine
the curvature constant so that the new definition works in
both convex and nonconvex settings. Due to space limit,
we only provide partial proofs for theorems and lemmas
derived in this paper, and refer readers to supplementary
material for all detailed proofs.

When applied to smooth convex constrained optimization
problems, the FW algorithm is known to converge to an
ε-approximate solution in O(1/ε) iterations. However
the convergence of global optimality is usually unrealis-
tic to hope for in nonconvex optimization, where even
checking local optimality itself can be computationally in-
tractable [Murty and Kabadi, 1987]. Clearly, to talk about
convergence, we need to first establish a convergence cri-
terion. For unconstrained nonconvex problems, the norm
of the gradient ||∇f || has been used to measure conver-
gence [Ghadimi et al., 2016, Ghadimi and Lan, 2016],
since limt→∞ ||∇f(x(t))|| = 0 means every limit point
of the sequence {x(t)} is a stationary point. But such a
convergence criterion is not appropriate for constrained
problems because a stationary point can lie on the bound-
ary of the feasible region while not having a zero gradient.
To address this issue, we will use the FW-gap g(x) as a
measure of convergence. Note that the gap g(x) works as
an optimality gap only if the original problem is convex.
To see why this is also a good measure of convergence
for constrained nonconvex problems, we first prove the
following theorem:

Theorem 1. Let f be a differentiable function and
D be a convex compact domain. Define g(x) :=
maxŝ∈D∇f(x)T (x − ŝ). Then ∀x ∈ D, g(x) ≥ 0 and
g(x) = 0 iff x is a Karush–Kuhn–Tucker (KKT) point.

Proof. To see g(x) ≥ 0, we have:

g(x) := max
ŝ∈D
∇f(x)T (x− ŝ) ≥ ∇f(x)T (x− x) = 0

Reformulate the original constrained problem in the fol-
lowing way:

minimize
x

f(x)

subject to ID(x) ≤ 0 (9)

where ID(x) is the indicator function of D which takes
value 0 iff x ∈ D otherwise ∞. Define ND(x) as the
normal cone at x in a convex set D:

ND(x) := {z | zTx ≥ zTy,∀y ∈ D}

and realize the fact that the subdifferential of the indicator
function when x ∈ D is precisely the normal cone at x,
i.e., ∂ ID(x) = ND(x), we have:

g(x) = 0 ⇔ max
y∈D
∇f(x)T (x− y) = 0

⇔ ∀y ∈ D,∇f(x)T (y − x) ≥ 0 ⇔ −∇f(x) ∈ ND(x)

Note that the normal cone for a convex set is a convex
cone, which implies that ∃λ ≥ 0, s.t.,

∇f(x) + λ∂ ID(x) = 0 ⇔ ∇xL(x, λ) = 0

where L(x, λ) := f(x) + λ ID(x) is the Lagrangian of
(9). By construction, λ ≥ 0 satisfies the dual feasibility
condition and x ∈ D satisfies the primal feasibility condi-
tion, which also means the complementary slackness is
satisfied, i.e., λ ID(x) = 0. It follows that g(x) = 0 iff x
is a KKT point of (9). �

Remark. Note that in Thm. 1 we do not assume f to be
convex. In fact we can also relax the differentiability of f ,
as long as the subgradient exists at every point of f . The
proof relies on the fact that g(x) = 0 implies −∇f(x) is
in the normal cone at x. Thm. 1 justifies the use of g(x)
as a convergence measure: if limt→∞ g(x(t)) = 0, then
by the continuity of g, every limit point of {x(k)} is a
KKT point of f . Since being a KKT point is also a suffi-
cient condition for optimality when f is convex, Thm. 1
also recovers the case where g(x) is used as convergence
measure for convex problems.

For a continuously differentiable function f , we now ex-
tend the definition of curvature constant as follows:

C̄f := sup
x,s∈D,
γ∈(0,1],

y=x+γ(s−x)

2

γ2

∣∣∣f(y)− f(x)−∇f(x)T (y− x)
∣∣∣

(10)
Clearly C̄f ≥ 0 and the new definition reduces to Cf
when f is a convex function. In general we have C̄f ≥

128



Cf for any function f . Again, C̄f measures the relative
deviation of f from its linear approximation, and is still
affine invariant. The difference of C̄f from the original
Cf becomes clear when f is concave: in this caseCf = 0,
but C̄f > 0 and C̄f = C−f . On the downside, the fact
that C̄f ≥ Cf means our asymptotic bound is of constant
times larger than the original one proved by Lacoste-
Julien [2016], but they share the same asymptotic rate in
terms of the given precision parameter ε. Finally, C̄f = 0
iff f is affine. As in [Jaggi, 2013, Lacoste-Julien et al.,
2013], for a smooth function f with Lipschitz constant L
over compact set D, we can bound C̄f in terms of L:

Lemma 1. Let f be a L-smooth function over a
convex compact domain D, and define diam(D) :=
supx,y∈D ||x− y||. Then C̄f ≤ diam2(D)L.

The proof of Lemma 1 does not require f to be convex.
Furthermore, f does not need to be second-order differen-
tiable — being smooth is sufficient. We proceed to derive
a convergence bound for Alg. 1 using our new C̄f , which
better reflects the geometric nonlinearity of nonconvex
functions. The main idea of the proof is to bound the
decrease of the gap function by minimizing a quadratic
function iteratively.

Theorem 2. Consider the problem (2) where f is a con-
tinuously differentiable function that is potentially non-
convex, but has a finite curvature constant C̄f as defined
by (10) over the compact convex domain D. Consider
running Frank-Wolfe (Algo. 1), then the minimal FW gap
g̃T := min0≤t≤T gt encountered by the iterates during
the algorithm after T iterations satisfies:

g̃T ≤
max{2h0C̄f ,

√
2h0C̄f}√

T + 1
, ∀T ≥ 0 (11)

where h0 := f(x(0))−minx∈D f(x) is the initial global
suboptimality. It thus takes at most O(1/ε2) iterations to
find an approximate KKT point with gap smaller than ε.

We comment that the O(1/ε2) convergence rate is the
same as the one provided by Lacoste-Julien [2016] using
the original curvature constant Cf for smooth nonconvex
functions, and it is also analogous to the ones derived for
gradient descent for unconstrained smooth problems and
(accelerated) projected gradient descent for constrained
smooth problems. The convergence rate of Alg. 1 depends
on the curvature constant of f over D. We now bound the
smoothness constant L and the diameter of the feasible
set in (1).

Bound on smoothness constant. The objective function
in (1) is second-order differentiable, hence we can bound
the smoothness constant by bounding the spectral norm
of the Hessian instead:

Lemma 2 (Nesterov [2013]). Let f be twice differen-
tiable. If ||∇2f(x)||2 ≤ L for all x in the domain, then f
is L-smooth.

Note that (7) is a matrix function of a matrix variable,
whose Hessian is a matrix of order nk×nk. Although one
can compute all the elements of the Hessian by computing
all the partial derivatives ∂∇f(W )ij/∂Wst separately,
this approach is tedious and may hide the structure of
the Hessian matrix. Instead we apply matrix differential
calculus [Magnus and Neudecker, 1985, Magnus, 2010]
to derive the Hessian:

Lemma 3. Let f(W ) = 1
4 ||P −WWT ||2F and define

∇2f(W ) := ∂ vec∇f(W )/∂ vecW . Then:

∇2f(W ) = WTW ⊗ In + Ik ⊗ (WWT − P )

+ (WT ⊗W )Knk (12)

where Knk is a commutation matrix such that
Knk vecW = vecWT .

The derivation of the above lemma uses the matrix differ-
ential calculus with basic properties of tensors and com-
mutation matrices. Before we proceed, we first present a
lemma that will be useful to bound the spectral norm of
the above Hessian matrix:

Lemma 4. sup W≥0,
W1k=1n

||WTW ||2 = n.

We are now ready to bound the spectral norm of the Hes-
sian∇2f(W ) and use it to bound the smoothness constant
of f .

Lemma 5. Let c := ||P ||2. f = 1
4 ||P −WWT ||2F is

(3n+ c)-smooth on D = {W ∈ Rn×k+ |W1k = 1n}.

The above lemma follows from Lemma 2 where we use
Lemma 4 to help bound the spectral norm of the Hessian
matrix in (12).

Bound on diameter of D. The following lemma can be
easily shown:

Lemma 6. Let D = {W ∈ Rn×k+ | W1k = 1n}. Then
diam2(D) = 2n with respect to the Frobenius norm.

Combining Lemma 6 with Lemma 5 and assuming c is
a constant that does not depend on n, we immediately
have C̄f ≤ 2n(3n+ c) = O(n2) by Lemma 1. A natural
question to ask is: can we get better dependency on n in
the upper bound for C̄f given the special structure that
D = Πn∆k−1? The answer is negative, as we can prove
the following lower bound on the Hessian:

Lemma 7. inf W≥0,
W1k=1n

||∇2f(W )||2 ≥ n/k2 − c.

Using Lemma 7, we can prove a tight bound on our cur-
vature constant C̄f :
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Theorem 3. The curvature constant C̄f for f = 1
4 ||P −

WWT ||2F on D = {W ∈ Rn×k+ |W1k = 1n} satisfies:

2n(n/k2 − c) ≤ C̄f ≤ 2n(3n+ c)

where c := ||P ||2. Specifically, we have C̄f = Θ(n2).

Proof. The upper bound part is clear by combining
Lemma 1 and Lemma 5. We only need to show the lower
bound. Since f is twice-differentiable, we have:

C̄f := sup
x,s∈D,
γ∈(0,1],

y=x+γ(s−x)

2

γ2

∣∣∣f(y)− f(x)−∇f(x)T (y − x)
∣∣∣

= sup
x,s∈D,
γ∈(0,1],

y=x+γ(s−x)

2

γ2
1

2
|(y − x)T∇2f(ξ)(y − x)|

≥ sup
x,s∈D,
γ∈(0,1],

y=x+γ(s−x)

1

γ2
||y − x||22 · inf

ξ∈D
||∇2f(ξ)||2

≥ 1

γ2
γ2diam2(D)

( n
k2
− c
)

= 2n(
n

k2
− c)

The second equality is due to the mean-value theorem,
and the third inequality holds by the definition of inf . The
last inequality follows from Lemma 6 and 7. �

Combining all the analysis above and using Alg. 2 to
implement the linear minimization oracle in Alg. 1, we
can bound the time complexity of the FW algorithm to
solve (1):

Corollary 1. The FW algorithm (Alg. 1) achieves an
ε-approximate KKT point of (1) in O(n3k/ε2) time.

Proof. In each iteration Alg. 1 takes O(nk) time to com-
pute the gap function as well as the next iterate. Based
on Thm. 2, the iteration complexity to achieve an ε-
approximate KKT point is O(C̄f/ε

2). The result follows
from Thm. 3 showing that C̄f = Θ(n2). �

4 A FAILURE CASE OF Frank-Wolfe
ON A NONSMOOTH CONVEX
PROBLEM

For convex problems, the theoretical convergence guar-
antee of Frank-Wolfe algorithm and its variants depends
crucially on the smoothness of the objective function:
[Freund and Grigas, 2016, Garber and Hazan, 2015, Har-
chaoui et al., 2015, Nesterov et al., 2015] require the
gradient of the objective function to be Lipschitz contin-
uous or Hölder continuous; the analysis in [Jaggi, 2013]
requires a finite curvature constant Cf . The Lipschitz

continuous gradient condition is sufficient for the con-
vergence analysis, but not necessary: Odor et al. [2016]
shows that Frank-Wolfe works for a Poisson phase re-
trieval problem, where the gradient of the objective is not
Lipschitz continuous. As we discuss in the last section,
Lipschitz continuous gradient implies a finite curvature
constant. Hence an interesting question to ask is: does
there exist a constrained convex problem with unbounded
curvature constant such that the Frank-Wolfe algorithm
can find its optimal solution? Surprisingly, the answer
to the above question is affirmative. But before we give
the example, we first construct an example where the FW
algorithm fails when the objective function is convex but
nonsmooth.

We first construct a very simple example where the objec-
tive function is a piecewise linear and the constraint set is
a polytope. We will show that when applied to this simple
problem, the FW algorithm, along with its line search vari-
ant and its fully corrective variant, do not even converge
to the optimal solution. In fact, as we will see shortly,
the limit point of the sequence can be arbitrarily far away
from the global optimum. Consider the following convex,
constrained optimization problem:

minimize
x1,x2

max{5x1 + x2,−5x1 + x2} (13)

subject to x2 ≤ 3, 3x1 + x2 ≥ 0,−3x1 + x2 ≥ 0

We plot the objective function of this example in the left
figure of Fig. 1. The unique global optimum for this
problem is given by x∗ = (0, 0) with f(x∗) = 0. The
feasible set D contains three vertices: (−1, 3), (1, 3) and
(0, 0). If we apply the FW algorithm to this problem, it is
straightforward to verify that the LMO(x) is given by:

LMO(x) =





(−1, 3) x1 > 0

(1, 3) x1 < 0

{(−1, 3), (1, 3), (0, 0)} x1 = 0

Note that when x1 = 0, the function is not differentiable,
and the subdifferential is given by conv{(5, 1), (−5, 1)}.
In this case the FW algorithm chooses arbitrary subgra-
dient from the subdifferential and computes the corre-
sponding LMO. From the fundamental theorem of linear
programming, it is easy to see that when x1 = 0, LMO(x)
can be any of the three corners depending on the choice
of subgradient at x. Now suppose the FW algorithm stops
in T iterations. For any initial point x(0) = (x

(0)
1 , x

(0)
2 )

where x(0)1 6= 0, the final point output by the FW algo-
rithm will be a convex combination of (−1, 3), (1, 3),
(0, 0) and x(0). Let {γt}Tt=1 be the sequence of step sizes
chosen by the FW algorithm. Then we can easily check
that x(T )

2 ≥ 3 − ∏T
t=1(1 − γt)(1 − x

(0)
2 /3) → 3 as
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Figure 1: Two convex examples of piecewise linear objec-
tive functions on a convex polytope. The FW algorithm
fails on the left example but works on the right one. The
objective functions of both examples have unbounded
curvature constants.

T → ∞. Note that we can readily change this example
by extending D so that the distance between x(T ) and
the optimum x∗ becomes arbitrarily large. Furthermore,
both the line search and the fully-corrective variants fail
since the vertices picked by the algorithm remains the
same: {(−1, 3), (1, 3)}. Finally, for any regular proba-
bility distribution that is absolutely continuous w.r.t. the
Lebesgue measure, with probability 1 the initial points
sampled from the distribution will converge to suboptimal
solutions. As a comparison, it can be shown that the sub-
gradient method works for this problem since the function
f itself is Lipschitz continuous [Nesterov, 2013].

Pick x = (−ε, δ), s−x = (1, 0) and y = x+γ(s−x) =
(γ − ε, δ), where γ > ε, and plug them in the definition
of the curvature constant Cf . We have:

Cf ≥ lim
ε→0,γ>ε

2

γ2
(f(y)− f(x)−∇f(x)T (y − x))

= lim
γ→0+

20

γ
=∞

i.e., the curvature constant of this piecewise linear func-
tion is unbounded. The problem for this failure case of
FW lies in the fact that the curvature constant is infinity.

On the other hand, we can also show that FW works even
whenCf =∞ by slightly changing the objective function
while keeping the constraint set:

minimize
x1,x2

max{1

2
x1 + x2,−

1

2
x1 + x2} (14)

subject to x2 ≤ 3, 3x1 + x2 ≥ 0,−3x1 + x2 ≥ 0

The objective function of the second example is shown in
the right figure of Fig. 1. Still, the unique global optimum
for the new problem is given by x∗ = (0, 0) with f(x∗) =
0, but now the LMO(x) is:

LMO(x) = (0, 0), ∀x ∈ D

It is not hard to see that FW converges to the global opti-
mum, and the curvature constant Cf =∞ as well for this
new problem. Combining with example (14), we can see
that Cf <∞ is not a necessary condition for the success
of FW algorithm on convex problems, either. Piecewise
linear functions form a rich class of objectives that are
frequently encountered in practice, while depending on
the structure of the problem, the FW algorithm may or
may not work for them. This thus raises an interesting
problem: can we develop a necessary condition for the
success of the FW algorithm on convex problems? An-
other interesting question is, can we develop sufficient
conditions for piecewise linear functions under which the
FW algorithm converges to global optimum?

5 NUMERICAL RESULTS

We evaluate the effectiveness of the FW algorithm
(Alg. 1) in solving (1) by comparing it with the penalty
method [Zhao et al., 2015] and the projected gradient
descent method (PGD) on 4 datasets (Table 1). These
datasets are standard for clustering analysis: two of them
are used in [Zhao et al., 2015], and we add two more
datasets with various sizes to make a more comprehen-
sive evaluation. The instances in each dataset are associ-
ated with true class labels. For each data set, we use the
number of classes as the true number of clusters.

Table 1: Statistics about datasets.

Dataset # inst. (n) # feats. (p) # clusters (k)
blood 748 4 10
yeast 1,484 8 10
satimage 4,435 36 6
pendigits 10,992 16 100

Given a data matrixX ∈ Rn×p, we use a Gaussian kernel
with fixed bandwidth 1.0 to construct the co-cluster matrix
P as Pij = exp(−||xi − xj ||22). For each dataset, we use
its number of clusters as the rank of the decomposition,
i.e., W ∈ Rn×k. We implement the penalty method
based on [Zhao et al., 2015], where we set the maximum
number of inner loops to be 50, and choose the step factor
for the coefficients of the two penalty terms to be 2. In
each iteration of PGD, we use backtracking line search
to choose the step size. For all three algorithms, the stop
conditions are specified as follows: if the difference of
function values in two consecutive iterations is smaller
than the fixed gap ε = 10−3, or the number of (outer)
iterations exceed 50, then the algorithms will stop. Also,
for each dataset, all three algorithms share the same initial
point.

We plot the convergence speed to local optimum of these
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Figure 2: Convergence speed of three algorithms. The x-axis measures log-seconds and the y-axis measures log of
objective function value. Note that the intermediate iterates of the penalty method are not feasible solutions, so we
should only compare the convergent point of the penalty method with the other two.
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Figure 3: Convergence speed comparison between the projected gradient descent method and the FW algorithm. The
x-axis measures log-seconds and the y-axis measures log(f − f∗), where f is the objective function value and f∗ is the
local optimum achieved by the algorithm. Note that the local optimum f∗ achieved by PGD and FW can be different.

three algorithms in Fig. 2. Clearly, the penalty method is
orders of magnitude slower than both PGD and the FW
algorithm, and it usually converges to a worse solution.
On the other hand, although the FW algorithm tends to
have more iterations before it converges, due to its cheap
computation in each iteration, it consistently takes less
time than PGD. Another distinction between PGD and
FW is that PGD, when implemented with backtracking
line search, is a monotone descent method, while FW
is not. For a better visualization to compare between
the PGD and the FW algorithms, we omit the penalty
method in Fig. 3, and draw the log-gap plot of the four
datasets. We can confirm from Fig. 3 that both PGD
and the FW algorithm have roughly the same order of
convergence speed for solving (1), which is consistent
with the theoretical result proved in the previous section
(Thm. 2). However, the FW algorithm often converges
faster than the PGD method, in terms of the gap between
the objective function value and local optimum.

6 CONCLUSION

We propose a FW algorithm to solve the SymNMF prob-
lem under a simplicial constraint. Compared with ex-
isting solutions, the proposed algorithm enjoys a non-

asymptotic convergence guarantee to KKT points, is sim-
ple to implement, contains no hyperparameter to be tuned,
and is also demonstrated to be much more efficient in
practice. Theoretically, we establish a close connection
of this problem to the famous completely positive ma-
trix factorization by providing an equivalent geometric
description. We also derive a tight bound on the curvature
constant of this problem. As a side contribution, we give
a pair of nonsmooth convex examples where the FW algo-
rithm converges or fails to converge to its optimum. This
result raises an interesting question w.r.t. the necessary
condition of the success of the FW algorithm.
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Learning Time Series Segmentation Models
from Temporally Imprecise Labels

Roy J. Adams and Benjamin M. Marlin
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Abstract

This paper considers the problem of learning
time series segmentation models when the la-
beled data are subject to temporal uncertainty
or noise. Our approach augments the semi-
Markov conditional random field (semi-CRF)
model with a probabilistic model of the label
observation process. This augmentation allows
us to estimate the parameters of the semi-CRF
from timestamps corresponding roughly to the
occurrence of transitions between segments.
We show how exact marginal inference can be
performed in the augmented model in polyno-
mial time, enabling learning based on marginal
likelihood maximization. Our experiments on
two activity detection problems show that the
proposed approach can learn models from tem-
porally imprecise labels, and can successfully
refine imprecise segmentations through poste-
rior inference. Finally, we show how inference
complexity can be reduced by a factor of 40
using static and model-based pruning of the
inference dynamic program.

1 INDRODUCTION

Structured prediction frameworks (e.g. conditional ran-
dom fields [7]) are well-established approaches that often
improve on independent prediction models when applied
to problems with structured output spaces. In this pa-
per, we consider the problem of learning and inference in
structured prediction models for time series segmentation
when the labels are subject to temporal imprecision. In
this setting, supervision is provided in the form of times-
tamps that roughly correspond to segment boundaries.

This problem is an instance of weakly supervised learning
[5] motivated by real-world data analytic challenges that

arise in the area of mobile health (mHealth) research. A
central problem in mHealth research is learning accurate
models for detecting health behaviors like eating, smok-
ing, and sleeping from mobile sensor data [14, 18]. A
key challenge in such problems is the high cost of ob-
taining accurately annotated data. mHealth researchers
often must estimate the parameters of detection models
from limited amounts of data collected in a lab setting
where subjects perform scripted activities. This collection
process allows researchers to observe subject behavior
in detail, but severely limits the amount of data that can
be gathered. Further, such data can differ systematically
from data collected under real-world scenarios, leading
to a lab-to-field generalization gap [10].

An alternative to gathering data in the lab is having sub-
jects self-report their activities in the field, but this suffers
from a variety of problems from a modeling perspective
including limited frequency of the reports and recall bias.
In both lab and field settings, annotations are generally
provided in continuous time and may be subject to tempo-
ral imprecision. If ignored, such temporal imprecision in
the labels may lead to the degraded performance of mod-
els trained on these labels. This is the primary problem
we address in this paper.

This work makes three main contributions. First, we
propose a framework for estimating the parameters of
discrete time series segmentation models from tempo-
rally imprecise, continuous-time labels. Our approach
augments a conditional random field (CRF) model with a
probabilistic model of the label observation process. We
focus on two classes of CRF models: the semi-Markov
CRF (semi-CRF) [15], which models sequence segmen-
tations, and the hierarchical nested segmentation (HNS)
model [2], an extension of the semi-CRF that models ac-
tivities composed of repeated short duration events such
as eating. Our proposed observation model can account
for both temporal imprecision and missingness in the
labels. We evaluate this framework on sleep and smok-
ing detection problems using data gathered in both lab
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and field settings, demonstrating improved performance
compared with ignoring label imprecision.

Second, we enable the synthesis of self-report and wear-
able sensor data. To the best of our knowledge, current
methods for synthesizing these two types of observations
are ad hoc and domain specific (e.g. [11]). In this work,
we combine sensor data with imprecise continuous-time
observations of activity segment boundaries by perform-
ing posterior inference in the proposed observation model.
This leads to improved predictive performance over treat-
ing test-time observations as ground truth.

Finally, we enable the practical application of the pro-
posed framework to long sequences. The model that we
present supports exact inference via dynamic program-
ming, but the complexity scales quadratically in the length
of the input sequence. We achieve a 40 times speedup by
applying a combination of static and model-based pruning
techniques, while matching the performance of a model
trained on hand-aligned labels.

2 RELATED WORK

In this section, we briefly describe related work on weakly
supervised learning in the independent classification and
structured prediction settings.

Weakly supervised classification: Reducing the cost
of acquiring labeled data is a fundamental problem in su-
pervised learning. This can often be achieved by lowering
the quality of labels in some way. For example, multi-
ple instance learning generalizes supervised learning by
allowing for sets (or “bags”) of instances to be labeled
instead of single instances. It is assumed that a positive
bag contains at least one positive instance [9]. Similarly,
the label proportions framework provides the proportion
of each type of label for a group of instances [13]. These
approaches avoid the need to label individual instances.

More closely related problems include learning indepen-
dent classifiers in the presence of label noise [6], and
learning independent sequence labeling models from tem-
porally imprecise labels [1]. In both of these frameworks,
the true instance labels are assumed to be unobserved. In
the label noise framework, noisy instances of the labels
are observed, while in the temporally imprecise labels
framework, timestamps roughly corresponding to positive
instances are observed. Approaches to both problems ex-
ist that are based on models of the noisy labeling process
that marginalize over the unobserved instance labels dur-
ing learning. The main difference between these models
and the model presented in this work is that these models
assume the true labels are independent given the features.
In this paper, we consider a more complex structured

prediction setting, which in turn requires more complex
observation models and inference algorithms.

Weakly supervised structured prediction: There has
also been significant research in the area of weakly su-
pervised structured prediction, particularly for computer
vision applications. Various standard weak supervision
frameworks, such as multiple instance learning, have been
extended to structured prediction. [16] extend the mul-
tiple instance SVM framework to structured SVMs by
considering an image to be a bag of pixels or overlapping
sub-windows. [4] extend multiple instance learning to an
auto-regressive HMM. While applicable to the problem
considered in this paper, these methods would require
discarding temporal information that was shown to be
valuable in [1].

Another common approach is to assume that only a subset
of the label variables in the model are exactly observed.
This can be handled by marginalizing out the unobserved
variables [17]; however, this framework cannot incorpo-
rate auxiliary observations such as continuous observa-
tion timestamps. [8] incorporate domain knowledge in
the form of constraints on the marginal label distributions.
These constraints can be enforced on unlabeled data, al-
lowing for weak supervision. [12] use a similar constraint
based approach where image tags are used to form con-
straints on the set of possible image segmentations. The
approach in this work can be interpreted as using obser-
vation timestamps to place soft constraints on the set of
segmentations; however, by using soft constraints, we can
explicitly model the notion of temporal proximity.

3 NOTATION AND BACKGROUND

Many mHealth detection problems involve inferring ac-
tivity segments from sensor data. Past work has shown
improved performance when using conditional random
field-based structured models to infer such segmentations
[2]. We begin by the defining notation used for the input
sequences and output structures in this type of problem.
We then briefly review the Semi-Markov CRF model that
this work extends.

3.1 Notation

We assume that the input data consists of N multivari-
ate time series that we will call sessions. Each session
contains a set of time-aligned signals gathered from one
or more sensors. Seperate sessions may correspond to
data from different subjects data or to data from the same
subject collected at different times. We assume that each
session n has been discretized into a sequence of Ln
potentially overlapping sub-windows and that a feature
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vector xni ∈ RD has been extracted for each sub-window
i. We refer to each sub-window i as an instance. Further,
each instance i in session n is associated with a timestamp
tni which may correspond to the start, end, or other point
of interest associated with instance i. We refer to the com-
plete sequence of feature vectors xn = {xni}i=1,...,Ln as
the input sequence and the complete sequence of times-
tamps tn = {tni}i=1,...,Ln as the timestamp sequence.
Where it does not cause ambiguity, we will drop the ses-
sion index n. We use the notation xj:k = {xi}i=j,...,k to
refer to the subsequence of x beginning at j and ending
at k (this applies to any sequence).

In this work, our goal is to learn a model that produces a
labeled segmentation of the input sequence x. We repre-
sent such a segmentation as a sequence y = {ys}s=1,...,S

of segments where a segment ys = (cs, js, ks) is a tuple
containing a label cs ∈ C, a start position js ∈ {1, ..., L},
and an end position ks ∈ {1, ..., L}. To ensure only
valid segmentations, we assume j1 = 1, kS = L, and
ks = js+1 for all 1 ≤ s ≤ S − 1. Our goal, then, is to
learn the distribution p(y|x, t). We will parameterize this
distribution as a semi-Markov CRF.

3.2 Semi-Markov Conditional Random Fields

The semi-CRF [15] associates each segment ys with a
feature function f(ys, cs−1,x, t) which may depend on
the segment ys, the label of the previous segment cs−1,
and the complete feature and timestamp sequences x and
t. The function f maps these inputs to a length F feature
vector. Given a parameter vector θ ∈ RF , the distribution
over segmentations is given by

pθ(y|x, t) =
∏
s exp (〈θ, f(ys, cs−1,x, t)〉)

Zθ(x, t)
(1)

Both maximum a posteriori (MAP) and marginal infer-
ence can be performed in this model by dynamic programs
with complexity O(|C|2L2) [15]. The parameters θ are
typically estimated using maximum likelihood estimation,
however, this requires observing the ground truth segmen-
tations. In settings such as mHealth, acquiring the exact
segmentation boundaries may be costly or even impossi-
ble. We next present our proposed method for estimating
the parameters of the semi-CRF model from timestamps
corresponding roughly to segment boundaries.

4 LEARNING SEMI-CRF MODELS
FROM TEMPORALLY IMPRECISE
LABELS

Let z = {zm}m=1,...,M be a sequence of observations
where each observation zm is a timestamp corresponding
to a particular kind of transition. For example, each zm

may be the time a subject reported going to sleep marking
the start of a sleep segment. For ease of exposition, we
will assume that there is only one type of observation
and will later generalize to multiple observation types.
To map between our labels y and our observations z, let
o = {oi}i=1,...,L be a sequence of latent binary variables
where oi = 1 if and only if instance i is associated with an
observation. Under the assumption that observations are
recorded in the order they actually occurred and

∑
i oi =

M , o defines a matching between instances in the input
sequence and observations in the observation sequence.

We model the observation sequence using a generative
model with three components. The base segmentation
model pθ(y|x, t) is the semi-CRF model whose param-
eters we are interested in estimating. The observation
indicator distribution pπ(o|ys, cs−1, i) models the prob-
ability that instance i is associated with an observation
given the segment it is contained in and the label of the
previous segment. Finally, the observation timestamp
density pφ(z|t) models the timestamp of an observation
z given the timestamps t with which it is associated. For
example, we may use a simple Bernoulli distribution for
pπ(o|ys, cs−1, i) and a normal distribution centered at t
for pφ(z|t). The specific choices for these distributions
are domain specific and we demonstrate a couple different
choices in section 5. With these distributions, we can now
write the observation generation process as shown below:

1: M ← 0
2: y ∼ pθ(y|x)
3: for s = 1, ..., S do
4: for i = js, ..., ks do
5: oi ∼ pπ(o|ys, cs−1, i)
6: if oi = 1 then
7: M ←M + 1
8: zM ∼ pφ(z|ti)

This generative process asserts that a complete segmen-
tation is first sampled according to the semi-CRF model.
Next, each instance either generates an observation or not
according to pπ(o|ys, cs−1, i). Finally, if instance i does
generate an observation, an observation timestamp is sam-
pled from pφ(z|ti). The variable M counts the number of
generated observations. We note that additional structure
could be encoded into the label observation process at the
cost of a potentially more complex inference algorithm.

pω(z,y,o|x, t) = pθ(y|x)pπ(o|y)pφ(z|o, t) (2)

pπ(o|y) =
∏

s

ks∏

i=js

pπ(oi|ys, cs−1, i) (3)

pφ(z|o, t) =
M∏

m=1

pφ(zm|ti(m)) (4)

The joint model implied by this generative process is
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given in Equation 2 where the set of all parameters in
the model is ω = {θ, π, φ}. The distributions pπ(o|y)
and pφ(z|o, t) are defined in Equations 3 and 4. We
define i(m) as the function mapping observation m to the
instance that generated it.

4.1 Inference and Learning

To learn the parameters of this model, we maximize the
log marginal likelihood L(ω|D):

L(ω|D) =
N∑

n=1

log pω(zn|xn, tn) (5)

pω(z|x, t) =
∑

y∈Y

∑

o∈O
pω(z,y,o|x, t) (6)

where D = {(xn, tn, zn)}n=1,...,N consists of the ob-
served data for all sessions. We perform this optimization
using standard gradient methods. Here, we consider the
gradient equation for each of the three parameter groups:
θ, π, and φ. These equations are presented primarily to
give intuition for what maximum likelihood estimation is
doing in this model. The gradient equations for π and φ
are shown below.

∇φ log pω(z|x, t)

=
M∑

m=1

Epω(i(m)|z,x,t)
[
∇φ log pφ(zm|ti(m))

]
(7)

∇π log pω(z|x, t)

=
L∑

i=1

Epω(oi,y|z,x,t) [∇π log pπ(oi|y)] (8)

Both gradient equations take the form of a posterior ex-
pectation of the log gradient of the relevant distribution.
The gradient with respect to the base classifier parame-
ters also takes the form of an expected gradient of a log
density and is shown below.

∇θ log pω(z|x, t) = Epω(y|z,x,t) [∇θ log pθ(y|x)]
= Epω(y|z,x,t) [∇θ〈θ, f(x, t,y)〉]−∇θZθ(x) (9)
= Epω(y|z,x,t) [f(x, t,y)]− Epθ(y|x) [f(x, t,y)]

where f(x, t,y) denotes the sufficient statistics function
for the semi-CRF model. In this case, the log-linear form
of the semi-CRF model gives us the further interpretation
that the learning algorithm is trying to match the expected
sufficient statistics under the base semi-CRF model to
the posterior expected sufficient statistics given by the
observation model. This is in contrast to typical maximum
likelihood estimation for a log-linear model which would
match the expected sufficient statistics under the model
to the observed sufficient statistics.

The primary computational challenge of this learning pro-

cedure is calculating the log marginal likelihood. This
can be done exactly using a dynamic program for calcu-
lating pω(z|x, t). An entry in the dynamic programming
table α has the following interpretation: α(k, c,m) is the
unnormalized probability that the input subsequence x1:k

generated the observation subsequence z1:m given that the
last segment in y has label c. Or, written mathematically:

α(k, c,m) ∝ pω(z1:m|x1:k, t1:k, c|y| = c) (10)

Filling in this table has complexityO(|C|2L2M) where L
is the length of the input sequence, C is the set of possible
segment labels, and M is the length of the observation
sequence. A full description of this dynamic program can
be found in section 2 of the supplementary materials. We
use reverse-mode automatic differentiation [3] to derive a
dynamic program with the same complexity to calculate
the necessary gradients for learning.

4.2 MAP Inference

Our second goal is to combine temporal observations,
such as self-reported activities, and wearable sensor input
to infer behaviors. That is, we would like to infer the
most likely segmentation of the input sequence given x, t,
and z. To do this, we perform full maximum a posteriori
(MAP) inference over both y and o

y∗,o∗ = argmax
y,o

pω(y,o|z,x, t) (11)

The same dynamic program used to calculate the marginal
likelihood can be used to perform MAP inference by
swapping summation over y and o for maximization with
no change in the computational complexity.

4.3 Multiple Observation Types

In some settings, it may be desirable to allow for mul-
tiple types of observations. For example, we may want
to include observations of both the beginning and end
of sleep. This can be handled by including multiple ob-
servation sequences z(l) each with length M (l) and ob-
servation indicator sequences o(l) where l indicates the
observation type. Observation sequences of each type
are assumed to be independent conditioned on the seg-
mentation y and the ordering assumption need not hold
between types. The complexity of inference in this setup
is O(|C|2L2

∏
lM

(l)).

5 EXPERIMENTS AND RESULTS

We evaluated the proposed framework’s ability to accom-
modate the temporal label imprecision that arises in both
the lab and field settings on two mHealth detection prob-
lems: sleep detection and cigarette smoking detection. In
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this section we describe the datasets and models used as
well as the results of these evaluations.

5.1 Sleep detection

We evaluated our framework’s performance on data from
the field using the Extrasensory1 dataset [18]. This dataset
contains signals from a variety of sensors including the
accelerometer, gyroscope, GPS, and microphone on a
mobile device as well as a wrist-worn accelerometer. Sub-
jects carried these sensors during daily activities and self-
reported a range of activities such as sleeping, eating, and
exercising. We focus on the sleep detection problem, as
this was one of the more abundantly reported activities.
Signals from all sensors were recorded for 20 seconds
every minute leading to a natural one minute discretiza-
tion, which we downsampled to one instance every two
minutes in order to run a large number of experiments (a
2x downsample results in a 4x inference speedup). We
partitioned the data into 24 hour sessions beginning and
ending at 2:00pm and dropped any session with less than
four hours of recorded data or less than one hour of re-
ported sleep. This resulted in 80 sessions from 28 subjects.
While the researchers corrected obvious conflicts in the
self-reported activities, there is no ground truth for this
data, so we evaluated against the cleaned self-reported
sleep. To simulate extra noise in the observation process,
we added further synthetic noise (described below) to the
observation timestamps.

Instance Features: We used the full set of instance fea-
tures reported in [18] which include a number of statistical
features calculated on the various accelerometer and gy-
roscope sensors, relative features calculated on the GPS
positions, and discrete time-of-day features.

Model: Our goal in the sleep detection problem is to
segment the input sequence into periods of sleep and
non-sleep. We use a binary semi-CRF with a constraint
that consecutive segments may not have the same label.
We included as features the sum of all instance level fea-
tures within segment xjk =

∑k
i=j xi and duration based

features I[cm = 1](tk − tj) and I[cm = 1](tk − tj)
2,

which are similar to putting a normal distribution on the
duration of sleeping activities2. We placed a zero-mean
gaussian prior with tuned variance on the parameters of
the semi-CRF model (i.e. `2 regularization).

We included two types of observations: the beginning of
sleep z(1) and the end of sleep z(2). Because sleep was
observed in all sessions, we used a deterministic observa-
tion indicator distribution. If instance i is the beginning

1http://extrasensory.ucsd.edu/
2I[·] is the indicator function

of a sleep segment, it must generate an observation z(1)m

and likewise for the end of a sleep segment. No other
instances may generate observations in this model.

To model the procedure of self-reporting when you go
to sleep and when you wake up, we used a one-sided
distribution to model the observation timestamp noise.
We used the following exponential distributions to model
observation timestamp noise:

pφ(z
(1)
m |ti(m)) = Exp(ti(m) − z(1)m ;λ)

pφ(z
(2)
m |ti(m)) = Exp(z(2)m − ti(m);λ)

We placed an inverse-Gamma prior with shape α = 1 and
scale β = 1 on λ. We found parameter estimation to be
fairly insensitive to changes in the settings of this prior
distribution and used informative values for α and β.

Train and Test Procedures: We evaluated perfor-
mance using a 10-fold cross-validation procedure, where
folds were calculated at the session level. The strength of
the `2 regularizer was tuned to maximize instance-level F1

over a logarithmic grid using a further 9-fold evaluation.
This procedure is equivalent to assuming that some of the
data has been labeled for tuning purposes. Predictions
were evaluated against the self-reported labels.

Experiments: We compared semi-CRF models trained
in two ways. First, we trained a semi-CRF model based on
a naive alignment defined by mapping each augmented ob-
servation to the nearest instance (semi-NV). Second, we
trained a semi-CRF model using the proposed weak super-
vision framework applied to the augmented observations
(semi-WS). To test these models under a variety of noise
conditions, we augmented the observation timestamps
by adding different amounts of exponentially distributed
noise and trained both models using these augmented ob-
servations. Finally, we tested each model when provided
with different amounts of information. At test time, each
model was given either all segment start observations
(Start), all segment end observations (End), neither obser-
vations (None), or both observations (Start+End). Obser-
vations were incorporated into semi-WS as described in
section 4.2, and were incorporated into semi-NV by map-
ping the provided observations to the nearest instance and
performing MAP inference over the label set constrained
to agree with the mapped observations.

The results from these experiments are shown in figure 1.
The three plots correspond to models trained and tested
on observations augmented with standard deviation λ =
0, 30, 60 minutes of temporal noise. Within each plot,
the performance for each model when conditioned on
different amounts of information is shown. In all cases,
semi-WS outperforms semi-NV. The performance gap
grows both as the standard deviation of the observation
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Figure 1: Performance for the semi-WS and semi-NV models on the sleep detection problem when trained on data with
Exp(λ) distributed noise (measured in minutes) added to the observation timestamps. Each plot shows the performance
of both models when conditioned on all segment start observations (Start), all segment end observations (End), neither
(None), or both (Start+End) at test time.

noise increases and as the amount of information available
at test time increases. This indicates that semi-WS is
better able to learn from temporally imprecise labels, and
that using an explicit observation model is useful when
incorporating imprecise observations.

5.2 Smoking detection

We evaluated the proposed framework’s ability to handle
the types of imprecision that arise in a laboratory setting
using the puffMarker smoking dataset [14]. This data was
collected in a lab setting where subjects were fitted with
chest-worn respiration monitors and wrist-worn actig-
raphy sensors and asked to smoke a cigarette while an
observer marked the occurrence of smoking puffs using a
mobile phone app. The respiration signal was discretized
into a sequence of non-overlapping respiration cycles (a
single inhalation and exhalation) and the goal is to label
each respiration cycle as a smoking puff or not and seg-
ment the respiration cycles into periods of smoking and
non-smoking activities. We created sessions by including
random amounts of non-smoking on either side of each
recorded smoking activity resulting in 23 sessions from
five subjects. In addition to the raw observation times-
tamps, researchers visualized the respiration signal and
hand-aligned the observation timestamps to respiration
signal. We treat these hand aligned labels as ground truth
for the purposes of evaluation, though we acknowledge
that there may be errors in the alignment process. While
most experiments on this data were conducted using the
true observation timestamps, we also tested the robustness
of our framework to extra noise which was generated syn-
thetically and added to the raw observation timestamps.

Instance Features: Features were extracted from the
respiration monitor data for each respiration cycle ac-
cording to [14]. Further, we extracted features from the
actigraphy data using the following procedure: Let ti be
the timestamp of the maximum peak in respiration cycle i.

For each actigraphy channel, extract a window beginning
8 seconds before ti and ending 1 second after ti and cal-
culate as features the mean, max, min, standard deviation,
median, and five bin histogram of the channel’s signal
within this window. The actigraphy channels included
were accelerometer x, y, and z, accelerometer magnitude,
gyroscope x, y, and z, gyroscope magnitude, and pitch
and roll angles for a total of 100 actigraphy based features.
Pitch and roll calculations using accelerometer data are
only valid when the hand is stationary, so these signals
were filtered using the procedure described in [14].

Respiration and actigraphy-based features have different
properties as a function of time. Due to the method we
used to extract actigraphy-based features, these features
tend to be smooth through time, particularly as compared
to the respiration features extracted from non-overlapping
windows. The smooth noise model we propose tends to
over-emphasize temporally smooth features at the expense
of less smooth features To combat this effect, we use the
actigraphy features to augment the respiration features in
a manner similar to the filtering approach used in [14].

We trained a logistic regression model on a small set
of instances with hand-aligned labels using only the
actigraphy features, then took the predictions from this
model and augmented the respiration features as xaug =
[ĉactxresp (1− ĉact)xresp] where ĉact ∈ {0, 1} is a pre-
diction from the filter model and xresp is the vector con-
taining only respiration features. A similar effect might
be achieved by including interaction effects between the
actigraphy and respiration features; however, this would
result in more than 10,000 features. The filtering approach
can therefore also be thought of as first doing a supervised
compression of the actigraphy features and then doing a
polynomial basis expansion. For more details, see section
3 in the supplemental materials.

Model: Our goal in the smoking detection problem is to
label each respiration cycle as smoking or non-smoking
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and to segment the input sequence into periods of smok-
ing and non-smoking; however, smoking detection differs
from typical segmentation problems in that a complete
smoking activity contains a mix of smoking puffs and
non-smoking respiration cycles. In terms of the model,
this means that the instances contained in a positive seg-
ment may be both positive or negative (an example of this
structure with example observations is shown below). To
address this we used an extension of the standard semi-
CRF called the hierarchical nested segmentation (HNS)
model [2]. Rather than segment a sequence into positive
and negative activities, the HNS model segments the se-
quence into periods between positive instances, termed
inter-event spans. Further, the HNS model includes a
cardinality potential that models the number of positive
instances that make up a positive activity (or the number
of consecutive positive inter-event spans). In addition
to the instance level features, we included the segment
duration, tk− tj and segment duration squared (tk− tj)2
to model the time between positive instances (i.e. the
time between puffs on a cigarette). For full details of the
HNS model for smoking detection, see [2], and for details
on how the HNS model can be written as a semi-CRF,
see section 4 of the supplementary materials. We placed
a zero-mean gaussian prior with tuned variance on the
parameters of the HNS model (i.e. `2 regularization).semi-CRF

HNS

HNS as semi-CRF

smoking
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As seen in the figure above, we included three types of ob-
servations: positive instance observations associated with
any inter-event span z(1), activity start observations asso-
ciated only with the first inter-event span in a complete
activity z(2), and activity end observations associated
only with the last inter-event span in a complete activity
z(3). We used the following Bernoulli distributions for
our observation indicator model pπ(o

(l)
i |y):

pπ(o
(1)
i = 1| i is the start of an inter-event span ) = π

(1)
1

pπ(o
(2)
i = 1| i is the start of a smoking activity) = π

(2)
1

pπ(o
(3)
i = 1| i is the end of a smoking activity) = π

(2)
1

where π(1)
1 , π

(2)
1 ∈ [0, 1]. For the observation timestamp

density, we used the following normal distribution:

pφ(z
(l)
m |ti(m)) = N (z(l)m ; ti(m) + µl, σ

2
l )

for l ∈ {1, 2, 3} where φ = {µ, σ}. This density was
chosen to match the empirical noise distribution [1]. We
placed a Uniform(0, 1) prior on each π(l), a standard
normal prior on each µl, and an inverse-Gamma prior

with shape α = 1 and scale β = 1 on each σ2
l .

Train and Test Procedures: We evaluated perfor-
mance using a leave-one-session-out cross-validation pro-
cedure. All tuned hyperparameters were tuned to max-
imize instance level F1 over a logarithmic grid using a
further nested leave-one-session-out evaluation. Predic-
tions were evaluated against the hand-aligned labels.

Experiment 1 - Pruning Strategies: While the in-
ference algorithm described in section 4.1 is at most
quadratic in the size of each input, the overall run time
can be quite high, particularly for long sequences or mod-
els with a large label set C such as the HNS model. In
order to improve inference run times, we consider three
strategies to prune the inference dynamic program.

Maximum segment length: One straightforward way
to constrain the label space is to place a bound on seg-
ment lengths. For example, in the case of smoking
detection, we might say that two smoking puffs sepa-
rated by five minutes (or approximately 50 respiration cy-
cles) constitute two separate smoking activities. Adding
this constraint reduces the complexity of inference to
O(|C|2LBM) where B is the maximum segment length.

Maximum observation distance: Depending on the
observation process, we might also place a constraint on
the maximum time between a true event and an associated
timestamp. This corresponds to using a truncated distribu-
tion for pφ(z|t). Given a maximum observation distance
of r, we can upper bound the inference complexity by
O(|C|2LBM̃) where M̃ is the maximum number of ob-
servations that could be associated with a single instance
or M̃ = maxi

∑
m I [ti − r ≤ zm ≤ ti + r]. In practice,

the average improvement in runtime is better than this.

Negative instance filtering: In cascaded classification,
a simple classifier is used to filter the label set for a more
complex classifier [19]. This technique has been success-
fully applied to structured prediction problems (e.g. [20])
and we apply it here to filter the space of possible segmen-
tations. Due to the heavy instance level class imbalance
in many mHealth problems, it is often easy to learn a high
recall instance-level classifier, which can then be used
to clamp instance labels to the negative class. Given an
instance level classifier, let c̃i be the filter model’s predic-
tion for instance i. Then, during inference, we constrain
the set of possible segmentations to agree with the neg-
ative predictions of the filter model. Using this filtering
procedure, the worst case complexity remains unchanged
(it is possible that the filter model filters nothing), but the
average case complexity becomes O(γ|C|2LBM̃) where
γ is the proportion of instances that pass the filter.
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Figure 2: This figure shows the effect of changing the maximum segment length with no observation depth pruning
or filtering (left), the effect of changing the maximum observation distance with no filtering (center), and the further
marginal effect of filtering approximately 85% of instances (right). The maximum pruning configuration results in a
40x speedup.

To test the effect of the proposed pruning strategies, we
ran an ablation experiment to assess the time required
to run marginal inference in the HNS model augment
with an observation model using different combinations
of pruning techniques. First, we varied the maximum
segment length from 350 to 50. Next, with the maxi-
mum segment length fixed at 50, we varied the maximum
observation distance from 350 to 50. Finally with the max-
imum segment length and maximum observation distance
fixed at 50, we ran inference with and without negative
instance filtering. For the filtering model, we used the
same actigraphy-based logistic regression model used to
perform feature augmentation (Section 5.2, Instance Fea-
tures). Figure 2 shows the run time in seconds for each of
these settings3. Using all pruning strategies, the runtime
of marginal inference is decreased from approximately
600 seconds to approximately 15 seconds, a 40 times
speedup. We use the most aggressive pruning settings in
all subsequent experiments.

Experiment 2 - Prior predictive performance: We
next evaluated the ability of the proposed framework to
learn the parameters of the base classifier from imprecise
lab data by comparing the HNS model trained in three
different ways. First, we trained the HNS model directly
on the hand-aligned labels (HNS-HA). This represents the
gold standard performance that we would like to achieve.
Second, we trained the HNS model on labels generated by
associating each observation timestamp with the closest
respiration cycle (HNS-NV). This represents the naive
baseline and we would expect our procedure to fall some-
where between HNS-HA and HNS-NV. Third, we trained
the HNS model using the weak supervision framework
proposed above (HNS-WS). Figure 3 shows the perfor-
mance of all three models on the instance labeling and

3Runtime experiments were performed on a 2.8 GHz Intel
Core i7 processor with 8GB of RAM and the inference algorithm
was coded in Cython.

segmentation tasks. The HNS-WS model performs ap-
proximately as well as the HNS-HA model at both the
instance labeling and segmentation tasks while the HNS-
NV model performs worse than either. A paired t-test in-
dicates that the improvement in the HNS-WS results over
the HNS-NV results is statistically significant in terms
of both instance labeling and segmentation (p ≤ 0.05).
These results indicate that we have achieved our primary
aim of enabling learning of the HNS model from data
with noisy observation timestamps.

Experiment 3 - Posterior predictive performance:
We evaluated the ability of the HNS-WS model to com-
bine sensor data with timsestamp observations at test time.
As in the sleep detection experiments, we evaluated of all
three models when given either all activity start observa-
tions (Start), all activity end observations (End), neither
(None), or both (Start+End) at test time. The results are
shown in Figure 4 (left). Unlike in our sleep detection
experiments, all noise present in these observations was
real and all evaluations were made against carefully hand
aligned labels. While conditioning on segment observa-
tions results in improvements for all three models, these
gains are much larger for the HNS-WS model. In par-
ticular, conditioning on both the segment start and end
timestamps results in a 6% error reduction for the HNS-
HA model and a 16% error reduction for the HNS-NV
model whereas conditioning on the same information re-
sults in an 89% error reduction for the HNS-WS model.

In general, we cannot expect the noise we observe in the
field to look like the noise we observe in the lab, therefore
it is valuable to know how sensitive the HNS-WS model is
to the correctness of the observation timestamp model. To
test this, we generated synthetic observation timestamps
from a normal distribution centered at the true activity
start or end and varied the standard deviation of the distri-
bution. The segmentation accuracy of the HNS-WS model
when conditioning on these synthetic observations at test
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Figure 3: The left plot shows instance level F1 score for all three models. The right plot shows the segmentation
accuracy for all three models. The proposed HNS-WS model significantly outperforms the HNS-NV model. Error bars
show one standard error.
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Figure 4: The left plot shows the segmentation accuracy when each HNS model is conditioned on different combinations
of observations (segment start, segment end or both). The right plot shows the HNS-WS model when conditioned
on segment observations with different amounts of synthetic noise added. The dashed line shows the segmentation
accuracy of the HNS-WS model when conditioned on no observations (None) and the solid line shows the empirical
standard deviation of the timestamp noise in the data, which reflects what HNS-WS was trained on.

time is shown in Figure 4 (right). The results show that
the HNS-WS model can successfully incorporate obser-
vations with up to an order of magnitude more noise than
was observed at train time. As expected, adding sufficient
noise to the observations eventually causes performance
to degrade; However, even with large amounts of noise,
posterior segmentation accuracy plateaus between 0.6 and
0.7 compared to an accuracy of approximately 0.8 when
not conditioning on any observations.

6 CONCLUSIONS

In this work, we have addressed the problem of learning
time series segmentation models from noisy observation
timestamps. We extended the weakly supervised learn-
ing framework of [1] to the semi-Markov CRF and HNS
models and derived exact and approximate inference algo-
rithms based on dynamic programming. We showed using
real sleeping and smoking data that learning the segmen-
tation models in this way can recover the performance of
models trained on more expensive hand-aligned labels,
while significantly out-performing the naive alignment
strategy. Further, we showed that this framework can be

used to combine noisy observations with sensor input at
test time in a principled way.

This work suggests a several of interesting research di-
rections for future research. First, in many cases it is
much cheaper to gather large amounts self-report data
than it is to gather lab data. The proposed framework
is capable of incorporating both lab data and self-report
data gathered in the field to train or fine-tune a model in a
noisy semi-supervised-like learning framework. Second,
personalizing detection models is an important goal in
mHealth research, but is typically not practical due to the
cost of obtaining labels. Our approach opens the possi-
bility of personalizing models using less costly (but more
noisy) self-report data from the field.
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Abstract

In Bayesian Multi-Objective optimisation, ex-
pected hypervolume improvement is often
used to measure the goodness of candidate
solutions. However when there are many ob-
jectives the calculation of expected hyper-
volume improvement can become computa-
tionally prohibitive. An alternative approach
measures the goodness of a candidate based
on the distance of that candidate from the
Pareto front in objective space. In this paper
we present a novel distance-based Bayesian
Many-Objective optimisation algorithm. We
demonstrate the efficacy of our algorithm on
three problems, namely the DTLZ2 bench-
mark problem, a hyper-parameter selection
problem, and high-temperature creep-resistant
alloy design.

1 INTRODUCTION

Bayesian optimisation (Brochu et al., 2010) is a method
for maximising black-box functions that are expensive
to evaluate either in terms of time or cost. Bayesian
optimisation works by modelling the objective function
(typically) using a Gaussian process (GP) (Rasmussen
and Williams, 2006). At each iteration a point (called a
recommendation) is selected to maximise an acquisition
function, where the acquisition function is a measure of
the goodness of a proposed point. Unlike the black-box
function, the acquisition function is cheap to evaluate and
therefore amenable to global optimisation.

In the context of multi-objective optimisation, Bayesian
optimisation is typically applied using an acquisition
function based on expected hypervolume improvement
(EHI) (Ponweiser et al., 2008; Emmerich and Klinken-
berg, 2008; Shir et al., 2007; Zaefferer et al., 2013; Shi-
moyama et al., 2013), which is the expected change in

the hypervolume dominated by the estimated Pareto front
(the set of dominant evaluations of prior recommenda-
tions in objective space - see figure 1). However this
can be expensive to evaluate, particularly in the many-
objective case where the number of objectives is large
(Wagner et al., 2010; Zaefferer et al., 2013). While op-
timised algorithms have been developed for calculating
EHI for up to 3 dimensions (Hupkens et al., 2015) the
general (many-objective (Ishibuchi et al., 2008)) case re-
mains computationally challenging.

An alternative approach is to use a distance-based ac-
quisition function (or score function) (Miranda and
Von Zuben, 2015; Yun et al., 2004). Distance-based ac-
quisition functions seek to maximise the signed distance
of a point from the estimated Pareto front, as shown in
figure 1. Unlike EHI this acquisition function is cheap
to evaluate, making its global optimisation (and hence
Bayesian optimisation) practical in the many-objective
case. While the underlying concept is old (e.g. (Yun
et al., 2004)) it has only recently been formalised in a
rigorous manner (Miranda and Von Zuben, 2015) in the
form of conditions that must be met by a distance (score)
function measuring the signed distance in advance of
(dominating) the Pareto front; whereas (Yun et al., 2004)
for example defines the signed distance from the esti-
mated feasible region in any direction, dominating or
otherwise. However, while (Miranda and Von Zuben,
2015) defines the conditions that must be met by such a
score function, the method implemented therein - namely
a GP model with a probability distribution over the gra-
dient - only approximately meets these requirements.

In the present paper we introduce an alternative model
based on a modified 1-norm support vector machine
(SVM) that is able to exactly satisfy the conditions laid
down in (Miranda and Von Zuben, 2015). To be pre-
cise, we use a restricted 1-norm, 1-class SVM to define
a signed distance function which is strictly positive for
points that dominate the estimated Pareto front, strictly
negative for points dominated by the estimated Pareto
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front, and for which signed distance and the dominance
relation are congruent.1. This distance function forms
the basis for an acquisition function that is computation-
ally cheap to evaluate and scales well with the number
of objectives, thereby making feasible Bayesian many-
objective optimisation.

To test our proposed algorithm we have applied it to
one benchmark problem and two practical problems.
The benchmark problem used is taken from the DTLZ
suite of benchmarks (Deb et al., 2005). For practical
problems we have chosen a hyper-parameter selection
problem and an experimental problem involving high-
temperature, creep resistant alloy design.

The first practical problem considered is hyperparame-
ter selection for a multi-class classifier where the relative
weights (importance) of the various classes is unknown.
While the default assumption often made for such prob-
lems is that all classes should have equal weight (or alter-
natively that their weight should be proportional to their
class density) this will not be valid in general. Instead
the accuracy of the classifier with respect to each class
of training data forms an independent objective, and the
problem of hyper-parameter selection in the absence of
additional information regarding relative weight is one
of multi-objective optimisation.

The second practical problem considered is the de-
sign of high-temperature, creep-resistant alloys. High-
temperature creep resistant Ni-superalloy is used for
making boilers of super-critical thermal power plants. In
a joint project with metallurgists we were asked to op-
timize the current alloy recipe to obtain superior creep
resistance than the industry standard. This involves us-
ing phase simulation (via ThermoCalc) to design an alloy
with maximum good phases (those that improved creep-
resistance) and minimum bad phases (those that made
the alloy less creep-resistant) over a range of tempera-
tures. The total number of objectives for this experiment
is 12, each corresponding to a particular phase and tem-
perature, which leads to recommendation times of up to
1 day/recommendation if EHI is used. We demonstrate
that our approach is able to provide a range of potential
alloys, each Pareto-optimal in terms of phase contents,
for further assessment by the metallurgist.

We note that there exists an abundance of such many-
objective optimisation problems in physical systems - for
example advanced fibre production (Li et al., 2017). By
making many-objective Bayesian optimisation feasible
we envisage that such problems will be able to be for-
mulated and solved.

1That is, if y dominates y′ then the distance of y from the
estimated Pareto front, as measured by the score function, is
greater than the distance of y′ from the estimated Pareto front.

2 NOTATION

Column vectors are written a,b, . . . with elements
ai, bi, . . .. Matrices are written A,B, . . ., with elements
Ai,j , Bi,j , . . .. If f : X ⊂ Rm → Rn is a map from de-
sign to objective space then ∀x,x′ ∈ X we say x dom-
inates x′, written x �f x′, if fi(x) ≥ fi(x

′) ∀i; and x
strongly dominates x′, written x �f x′, if x �f x′ ∧
f(x) 6= f(x′). Analogously, ∀y,y′ ∈ Rn we say y dom-
inates y′, written y � y′, if yi ≥ y′i ∀i; and y strongly
dominates y′, written y � y′, if y � y′ ∧ y 6= y′.

3 BACKGROUND

Multi-objective optimisation (Deb, 2001; Coello et al.,
2002; Miettinen, 1999) extends standard single-objective
optimisation to the case where there are multiple, poten-
tially conflicting objectives. The multi-objective optimi-
sation problem is:

argmax
x∈X

f (x) (1)

where f : X → Rn maps from design space to objec-
tive space; X ⊂ [0, r]m ⊂ Rm is the feasible region; and
argmax is defined in the Pareto sense described below.
This is known as a many-objective optimisation prob-
lem (Ishibuchi et al., 2008) if the number of objectives
is sufficiently large to cause difficulties with standard
multi-objective optimisation algorithms (as shown in our
experiments, as few as 6 objectives can cause difficul-
ties).

Our aim is to find a representation of the Pareto set:

X? = {x? ∈ X|@x ∈ X : x �f x
?}

where �f is the dominance relation as defined in section
2 (x strongly dominates x′, written x �f x′, if fi(x) ≥
fi(x

′) ∀i and f(x) 6= f(x′)). This is the set of all Pareto-
optimal x ∈ X, where a vector is Pareto-optimal if it
cannot be changed without causing a decrease in at least
one objective fi : X → R. The Pareto front is the image
of the Pareto set in objective space:

Y? = {y? ∈ Y|@y ∈ Y : y � y?}

where Y = f (X) and � is the dominance relation in
objective space (y strongly dominates y′, written y �
y′, if yi ≥ y′i ∀i and y 6= y′). The solution to (1) is a
finite set of Pareto-optimal solutions X ? ⊂ X?.

3.1 GAUSSIAN PROCESSES

We assume the many-objective case where, for all i,
fi(x) ∼ GP(0, k(x,x′)) is a sample from a zero-
mean Gaussian process (Rasmussen and Williams, 2006;
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Figure 1: Pareto front (left), expected hypervolume improvement (EHI, middle) and boundary distance (right) for a
simple two-objective problem.

MacKay, 1998) (we assume the objectives are non-
correlated) that is costly to evaluate. Evaluations of f are
presumed noisy, so yi = fi(x) + ε, where ε ∈ N (0, σ2).
Given observationsDt = {(x,y)|y = f(x)+ε}we have
f(x)|Dt ∼ N (µt(x), Iσt(x)), where:

µt (x) = YT
t

(
Kt + σ2I

)−1
kt (x)

σ2
t (x) = k (x,x)− kT

t (x)
(
Kt + σ2I

)−1
kt (x)

(2)

where Yt = [yT](−,y)∈Dt , kt(x) = [k(x,x′)](x′,−)∈Dt
and Kt = [k(x,x′)](x,−),(x′,−)∈Dt .

2 Given Dt the esti-
mated Pareto set X ?t and Pareto front Y?t at iteration t are
the dominant subsets of Dt:

X ?t = {x? ∈ Xt|@x ∈ Xt : x �f x
?}

Y?t = {y? ∈ Yt|@y ∈ Yt : y � y?}
where: Xt = {x ∈ X| (x,−) ∈ Dt}

Yt = {y ∈ Y| (−,y) ∈ Dt}
(3)

3.2 BAYESIAN OPTIMISATION

Bayesian optimisation (Brochu et al., 2010) is an optimi-
sation method designed for problems where the function
being optimised is expensive to evaluate in terms of time
or monetary cost. A typical Bayesian optimisation algo-
rithm is presented in algorithm 1. For each iteration t we
maximise a (cheap) acquisition function at : X → R
based on µt−1 and σt−1, and the resulting recommenda-
tion is evaluated to obtain yt = f(xt) + ε. GP models
are updated, and the algorithm continues. Standard ac-
quisition functions include expected improvement (EI)
(Mockus et al., 1978), probability of improvement (PI)
(Kushner, 1964), and GP upper confidence bound (GP-
UCB) (Jones et al., 1998; Srinivas et al., 2012; Brochu
et al., 2010).

2We write (x,−) ∈ Dt if ∃y ∈ Y : (x,y) ∈ Dt; and
likewise (−,y) ∈ Dt if ∃x ∈ X : (x,y) ∈ Dt.

Algorithm 1 Generic Bayesian Optimisation

input D0 := {(xi, yi)|yi = f(xi) + ε, i = 1, 2, . . .}.
for t = 1, 2, . . . , T do

Select test point xt = argmaxx at(x).
Perform Experiment yt = f(xt) + ε.
Update Dt := Dt−1 ∪ {(xt, yt)}.

end for

3.3 MULTI-OBJECTIVE BAYESIAN
OPTIMISATION

Adding an observation yt to Yt−1 will either cause no
change to the estimated Pareto front Y?t−1 (if ∃y ∈
Y?t−1 : y � yt) or push it closer to the actual Pareto
front Y? (if @y ∈ Y?t−1 : y � yt). The acquisition func-
tion at(x) is designed to measure this expected change.
Two popular measures used, as shown in figure 1, are:

• Expected hypervolume improvement (EHI):

at (x) = E
[
S
(
Y?t−1 ∪ {f (x)}

)
− S

(
Y?t−1

)]

(Shir et al., 2007; Zaefferer et al., 2013; Shimoyama
et al., 2013). This is the expected change in hyper-
volume dominated by Y?t−1, where S(Y) is the hy-
pervolume dominated by Y (Zitzler, 1999; Huband
et al., 2003; Purshouse, 2003; Laumanns et al.,
2000; Fleischer, 2000).

• Boundary distance:

at (x) = E
(
d
(
Y?t−1, f (x)

))

(Yun et al., 2004; Keane, 2006). This is the expected
(signed) distance between the the estimated Pareto
front and f(x).

It has been noted that calculating the EHI is non-trivial
(Wagner et al., 2010; Zaefferer et al., 2013) and, while
heavily optimised algorithms are available for up to 3
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Figure 2: Distance maximisation of 1-class SVM (Yun
et al., 2004). The set of observations (blue) are used to
train a 1-class SVM, giving the boundary of the green
region. Points A-E all give a positive boundary distance,
but only points C and D dominate the observations as the
boundary does not satisfy consistancy requirements.

objectives (Hupkens et al., 2015), the computational cost
in the many-objective case remains prohibitive, making
EHI unsuitable in a many-objectives context. Similarly,
calculating the precise distance to the Pareto front is of-
ten computationally intractable, particularly in the many-
objective case. Hence when calculating the boundary dis-
tance the estimated Pareto front is usually approximated
(smoothed) using a score function such as the 1-class
SVM (Yun et al., 2004), and the signed distance to this
front used. We note that the Pareto front approximation
used by (Yun et al., 2004) is in fact a hypersurface sur-
rounding the set of observations and may contain pairs of
points where one dominates the other (i.e. it does not sat-
isfy the consistency requirements discussed in section 4).
Thus, as shown in figure 2, maximising this measure will
not necessarily maximise change to the Pareto front as
points may be selected that are not in advance of (domi-
nating) the set of observations.

4 PROPOSED METHOD

In the present paper we will be using an acquisition func-
tion based on GP-UCB (Srinivas et al., 2012) that we call
AD-GP-UCB (approximated distance GP-UCB):

at(x)=gt
(
µt−1(x)

)
+
√
βtηt

(
µt−1(x) , σt−1(x)

)
(4)

In this expression gt(µt−1(x)) is the approximate mean
distance of f(x) from the estimated Pareto set and
ηt(µt−1(x), σt−1(x)) the approximate variance. The
constants βt control the trade-off between exploitation
(selecting recommendations with high predicted distance
from the estimated Pareto set) and exploration (exploring
unexplored regions of the feasible set X) as per the GP-

UCB method (Srinivas et al., 2012):

βt=





2log
(
π2t2

6δ |X|
)

if |X|<∞

2log

(
2π2t2

3δ

(
t2mbr

(
log
(
2ma
δ

))1
2

)2m)
otherwise

(5)

where 0 < δ � 1 and in the infinite case we assume f
satisfies Pr{supx∈X |∂fi/∂xj | > L} ≤ ae−(L/b)2 ∀i, L.
We have chosen GP-UCB here as it is explicitly designed
to balance exploration and exploitation; and because, in
the single objective case, there exist convergence bounds
to show that, with probability 1−δ, the optimisation pro-
cedure is guaranteed to converge (as measured by cumu-
lative risk) sub-linearly as T → ∞. While our method
is not a “true” GP-UCB method (gt and ηt are only ap-
proximations of the mean and variance of the predicted
distance from the estimated Pareto front; and moreover
the function approximated by gt changes over time) our
experimental results demonstrate its efficacy.

4.1 APPROXIMATING THE MEAN DISTANCE

The score function gt(µt−1(x)) is used to approximate
the signed distance between the estimated Pareto set
Y?t−1 and the sample evaluation f(x) for a given x ∈ X.
We use the GP posterior mean µt−1(x) to estimate the
mean of f(x) and gt to approximate the distance of this
from the Pareto front Y?t−1. Motivated by the “standard
form” of the trained SVM in dual form, the score func-
tion gt is defined as:

gt (y) = 1− 2
Nt∑
i=1

αtiL (yi,y) (6)

where the indices i applied to all yi ∈ Yt−1 correspond
to the indices i on αti, Nt = |Yt−1|, αt ≥ 0, and L is
defined to ensure that gt satisfies consistency conditions:

1. Observational Consistency:

gt (y) ≤ 0 ∀y ∈ Y?t−1

2. Dominance Consistency:

gt (y) > gt (y
′) ∀y,y′ ∈ Y : y � y′

Observational consistency is required to ensure that the
reported distance is never positive for existing observa-
tions that are by definition dominated by the current es-
timated Pareto set Y?t−1. Dominance consistency ensures
that, ∀y,y′ ∈ Y, the dominant vector will receive the
higher “score”. Thus gt is a score function in the sense
of (Miranda and Von Zuben, 2015) and may be said to
define an estimated Pareto set:

Ygt? = {y ∈ Rm| g (y) = 0} (7)
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that dominates all points in Yt−1 (that is, ∀y ∈
Yt−1 ∃y′ ∈ Ygt? : y′ � y). The distance reported
by gt is the signed distance from Ygt? as measured
by some metric. Motivated by this we let L(y,y′) =
κ(minq(yq − y′q)), where:

κ (0) = 1
2 (centred)

κ (y + δ) > κ (y) ∀y ∈ R, δ ∈ R+ (increasing)
(8)

Many standard neural activation functions are suitable
choices (e.g. the logistic function κ (y) = 1/(1 +
exp(−υy))). It is straightforward to see that gt defined
by (6) satisfies dominance consistency if αt 6= 0. To sat-
isfy observational consistency αt is selected to solve the
linear programming problem:

min
α
‖αt‖1 = 1Tαt

such that:
Nt∑
i=1

αtiL (yi,yj) ≥ 1
2 ∀1 ≤ j ≤ Nt

αt ≥ 0

(9)

which will be referred to this as the score-function opti-
misation problem. It may be noted that the score-function
optimisation problem, and the form of the score function
gt, are closely related to the 1-norm SVM (Bradley and
Mangasarian, 1998; Zhu et al., 2004), which is a vari-
ant of the standard SVM that retains the standard (dual)
form of the trained machine but minimises ‖α‖1 rather
than ‖α‖HL . This form has two distinct advantages: the
kernel3 L may be any function (not just positive defi-
nite) and the solution tends to be more sparse than the
standard form. Our approach also borrows from the 1-
class SVM (Schölkopf et al., 1999), but rather than us-
ing a bias-forcing term to achieve margin minimalisation
(rather than maximising the margin of separation, the 1-
class SVM seeks to minimise the margin) we instead use
a fixed bias (b = −1) and restrict L using (8) so that
the margin minimalisation occurs as a direct result from
minimising the regularisation term ‖α‖1.

4.2 APPROXIMATING THE DISTANCE
VARIANCE

The function ηt(µt−1(x), σt−1(x)) in the acquisition
function (4) approximates the variance in the estimate
gt(µt−1(x)) of the distance between f(x) and the es-
timated Pareto front Y?t−1. We approximate this using
a simple first-order Taylor approximation of the second
moment about µt−1(x) - that is:

ηt
(
µt−1(x) , σt−1(x)

)
=
∥∥∇xgt

(
µt−1(x)

)∥∥σt−1(x)
3In general we have tried to avoid using the word kernel

to refer to L to avoid potential confusion with the covariance
function (kernel) k used for Gaussian Processes.

where, defining qi = argminq(yi,q − µt−1,q(x)) ∀i:
∂
∂xl

gt
(
µt−1 (x)

)
= . . .

−2∑i α
t
iκ
′ (yi,qi − µt−1,ki (x)) ∂

∂xl
µt−1,qi (x)

where κ′(y) = ∂κ(y)/∂y and:

∂
∂xl
µt (x) = YT

t

(
Kt + σ2I

)−1 ∂
∂xl

kt (x)

We note that the accuracy of this approximation degrades
as the non-linearity of gt(µt−1(•)) increases. This is
a necessary trade-off as calculating the actual variance
is not feasible. Assuming an squared-exponential ker-
nel k(x,x′) = exp(−‖x − x′‖22/l) for the GP model
and a sigmoid function for the score function kernel
κ(y) = 1/(1 + exp(−υy)) we see that the variance ap-
proximation is best when the length scale l of k is large
and the constant υ of κ is small.

5 THEORETICAL ANALYSIS

It is useful at this point to analyse the theoretical prop-
erties of our proposed algorithm. We have already noted
that the score function gt satisfies both observational and
dominance consistency and so provides a sensible ap-
proximation of distance from the estimated Pareto front.
Applying SVM techniques we find the following proper-
ties (all proofs presented in the supplementary material):

Theorem 1 (Non-triviality) Let αt be the solution to
the score-function optimisation problem (9). Then αt 6=
0.

Theorem 2 (Margin Minimisation) Let αt be the so-
lution to the score-function optimisation problem (9). Let
Ygt? be the estimated Pareto front defined by gt. The min-
imum distance between Yt−1 and the estimated Pareto
front Ygt? is zero:

min
y∈Yt−1,y′∈Ygt?

‖y − y′‖ = 0

Theorem 3 (Sparsity) Let αt be the solution to the
score-function optimisation problem (9). Then αti = 0
∀i : yi /∈ Y?t−1 (ie. points not in the estimated Pareto
front cannot be support vectors).

Theorem 4 (Heaviside Limit) Let κ = κ⊥, where

κ⊥ (y) = lim
υ→∞

1
1+exp(−υy) =

1
2 (1 + sgn (y)) ,

and @i 6= j : yi = yj . Then αti = 1 ∀i : yi ∈ Y?t−1,
αti = 0 otherwise (ie. in the limiting case the support
vectors are precisely the estimated Pareto set).
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Figure 3: Estimated front Ygt? (objective space) given
y1 = [ −1; 1 ], y2 = [ 1;−1 ], where κ(y) =

1
1+exp(−υy) and υ = 0.5, 1, 2, 4, respectively.

It follows that solving (9) will define a score function,
and hence an estimated Pareto front Ygt?, that is as tight
as possible (insofar as it lies as close to Yt as pos-
sible while maintaining observational consistency) and
sparsely represented. As shown in figure 3 the param-
eter υ in the κ function acts as a smoothing parameter
on the estimated Pareto front, where smaller υ will tend
to favour smoother fronts while larger υ will attempt to
achieve a tighter “fit” to the observations Yt. In the lim-
iting case υ → ∞ the Pareto front becomes stepwise, as
shown by theorem 4.

6 EXPERIMENTS

We consider three experiments in the this section: stan-
dard test function optimisation, hyper-parameter selec-
tion in multi-class SVM classification in the absence of
relative class weighting, and high-temperature alloy de-
sign. All SVM and related code was written in C++ with
linking to ThermoCalc via a Matlab interface. Where rel-
evant EHI estimation was performed using the IRS algo-
rithm (Hupkens et al., 2015). Global optimisation on our
acquisition function was carried out using the DIRECT
algorithm (Jones et al., 1993). The objective function f
was modelled using a GP with a squared-exponential ker-
nel. For the score function we use κ (y) = 1

1+exp(−υy) .

6.1 STANDARD TEST FUNCTION

In our first experiment we have evaluated the perfor-
mance of AD-GP-UCB on the standard DTLZ2 multi-
objective test function (Deb et al., 2005). We have run
simulations for Bayesian optimisation using both EHI
and AD-GP-UCB acquisition functions over a budget of
T = 200 iterations for n = 2, 3, . . . , 10 objectives.

We have evaluated performance on four criteria:

1. How close the elements of the estimated Pareto
front Y?t are to the actual Pareto front Y? (how op-
timal the elements of the Y?t are):

dY? = sup
y∈Y?T

d (y,Y?) = sup
y∈Y?T

(
inf

y′∈Y?
‖y − y′‖

)

2. The maximum distance between any point on the
actual Pareto front Y? and the closest point to it in
the estimated Pareto front (how well Y?t approxi-
mates Y?):

dY?T = sup
y′∈Y?

d (Y?t ,y′) = sup
y′∈Y?

(
inf

y∈Y?t
‖y − y′‖

)

3. The Hausdorff distance between the estimated
Pareto front Y?t and the actual Pareto front Y?:

dH = d (Y?T ,Y?) = max
(
dY? , dY?T

)

4. Simulation time per recommendation produced.

Results are summarised in table 1. It may be seen from
this that in terms of the Hausdorff distance between es-
timated and actual Pareto fronts AD-GP-UCB consis-
tently outperformed EHI in this experiment. Moreover
although the EHI estimated Pareto front was closer to
the actual Pareto front (measure 1) the AD-GP-UCB esti-
mated Pareto front better approximated the actual Pareto
front in terms of coverage (measure 2). We note that the
hypervolume dominated by the AD-GP-UCB estimated
Pareto front was consistently higher than the hypervol-
ume dominated by the EHI estimated Pareto front. Figure
5 shows the average time required per recommendation
for each of the algorithms. We have chosen this measure
to factor out extraneous fluctuations observed in the esti-
mated Pareto set size generated by the EHI method as n
varied.

To aid visualisation the estimated Pareto fronts for AD-
GP-UCB and EHI in the case n = 3 are shown in figure
4, where the Pareto front for DTLZ2 consists of a first-
quadrant unit sphere in objective space (Deb et al., 2005).
From this figure it may be seen that EHI constructs a
cluster of recommendations that are close to a fragment
of the actual Pareto front; whereas AD-GP-UCB creates
a more diverse coverage of the Pareto front. We postulate
that this results from the fact that AD-GP-UCB explicitly
incorporates an exploration term

√
βtηt in the acquisi-

tion function, encouraging greater exploration and hence
more diversity in Y?T .

As noted previously, and as may be seen from table 1, the
size of the estimated Pareto front found by EHI was sur-
prisingly small for larger n. It is unclear why this occurs;
however it appears to contribute to the significant fluc-
tuation in the total time τ for required EHI to complete
T = 200 iterations.
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EHI-based Bayesian Optimisation AD-GP-UCB
n N? dY? ↓ dY?T ↓ dH ↓ HV ↑ τ ↓ τ

N? ↓ N? dY? ↓ dY?T ↓ dH ↓ HV ↑ τ ↓ τ
N? ↓

2 124 0.007 0.48 0.48 2.52 162 1.31 66 0.25 0.13 0.25 3.18 815 12.35
3 185 0.027 0.66 0.66 5.67 174 0.94 107 0.25 0.25 0.25 7.33 824 7.70
4 198 0.25 0.90 0.90 11.1 358 1.81 117 0.25 0.35 0.35 15.5 986 8.43
5 14 0.25 1.26 1.26 25.2 243 17.4 121 0.25 0.49 0.49 31.5 1012 8.36
6 187 0.25 1.16 1.16 51.5 3950 21.1 126 0.25 0.71 0.71 63.3 992 7.87
7 167 0.25 1.32 1.32 90.3 27546 165 141 0.25 0.92 0.92 127 1024 7.26
8 60 0.24 1.39 1.39 207 1483 24.7 180 0.25 0.99 0.99 253 1227 6.82
9 46 0.20 1.38 1.38 378 2025 44.0 174 0.24 1.15 1.15 499 1444 8.30
10 32 0.20 1.41 1.41 818 973 30.4 200 0.23 1.13 1.13 978 2795 13.98

Table 1: Results summary for DTLZ2 optimisation over range of n. In this table dY? measures how close the estimated
Pareto front is to the actual Pareto front (optimality); dY?T measures the maximum distance from any point on the actual
Pareto front to any point in the estimated Pareto front (coverage) (for calculation Y? is approximated as a projected
grid); dH is the Hausdorff distance between the estimated and actual Pareto fronts; and HV is the dominated hypervol-
ume. T = 200 iterations were used, producing an estimated Pareto front Y?T containing N? = |Y?T | recommendations
in τ seconds - ie. τ/N? recommendations per second. ↑ indicates that larger values are preferable and ↓ that smaller
values are preferable.
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Figure 4: Estimated Pareto fronts for EHI (left) and AD-GP-UCB (right) for n = 3 objectives. Note that DTLZ2 is a
minimisation problem, so the BO maximises its negative.

6.2 HYPERPARAMETER SELECTION

In this experiment we have compared our algorithm
to Bayesian multi-objective optimisation with an ex-
pected hypervolume improvement (EHI) based acqui-
sition function. We consider hyper-parameter selection
for multi-class classifiers in the absence of information
about the relative importance of classes. As there is
no objective way to compare (weight) the cost of mis-
classification for the different classes this is an example
of a multi-objective optimisation, where the classifica-
tion accuracy with respect to each class is a single objec-
tive.

For multi-class classification we used the CS-SVM algo-
rithm (Shilton et al., 2012) in SVMHeavy (Shilton, 2001)

with an RBF kernel with length-scale g. Performance on
each class was measured using 10-fold cross-validation.
The hyper-parameters being tuned were the CS-SVM
trade-off parameter C ∈ [0.1, 10] and the kernel param-
eter g ∈ [0.1, 10]. Three datsets from the UCI collection
(Dheeru and Karra Taniskidou, 2017) were used: SAT (6
classes,N = 4435 vectors), SEG (7 classes,N = 2310),
and WAV (3 classes, N = 5000).

Results of simulations are shown in figure 6. These fig-
ures show both hypervolume as a function of iteration
number (the hypervolume is used as a measure of the
optimality of the Pareto set) and also the time required
to recommend the next sample at each iteration. As may
be seen from the graphs our proposed method is signifi-
cantly faster than EHI. In fact, in the higher-dimensional
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Figure 5: Average time taken to produce Pareto front in
seconds/recommendation (τ/N?).

cases - namely SAT (6 classes/objectives) and SEG (7
classes/objectives) - the EHI simulations had to be ter-
minated early due to excessive computation time when
computing the next recommendation (up to 1 day to pro-
duce a single recommendation). With regard to optimal-
ity (as measured by dominated hypervolume) it is some-
what difficult to say with certainty, but based on the WAV
dataset at least our algorithm is certainly competitive
(particularly given that the EHI alternative was unable
to finish for either the SAT or SEG datasets due to exces-
sive computational load resulting from EHI calculations
made inside the global optimisation DIRECT call).

6.3 ALLOY DESIGN

High-temperature creep resistant Ni-superalloy is used
for making boilers of super-critical thermal power plants.
In a joint project with metallurgist we were asked to op-
timize the current alloy recipe to obtain superior creep
resistance to the industry standard. The alloy consist of
Ni, Cr, Co, Al, Ti, Mo, Ta, W and V. We use Thermo-
Calc software for phase simulation i.e. to predict what
compounds (phases) get formed at a given temperature.
Based on the existing knowledge, phases were clubbed
into either good or bad for creep resistance. The phase
simulation is performed at 6 different temperatures and a
total of 12 objectives are created. Recommendation times
for EHI were found to be excessive (∼ 1 day), whereas
our method was able to complete the task without diffi-
culty.

Results for our simulation are shown in figure 7. In
these figures dominated hypervolume has been used as
a measure of convergence (Zitzler, 1999; Huband et al.,
2003; Purshouse, 2003; Laumanns et al., 2000; Fleischer,
2000). The GP length scale in these results is 20 and was
selected experimentally to optimise the rate of conver-

gence; and the time budget T = 100 was chosen for prac-
tical reasons. A total of 21 Pareto-optimal alloys were
found by our simulation. As may be seen our algorithm
was able to calculate a set of Pareto-optimal recommen-
dations within a reasonable time-frame despite the high
number of objectives to provide the experimentalist with
a good selection of options for further investigation.
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Figure 7: Simulation results for alloy design. Top:
dominated hypervolume. Bottom: recommendation time
(solid red), ThermoCalc simulation time (dashed blue).

7 CONCLUSIONS

In this paper we have proposed a method for Bayesian
multi-objective optimisation based on score functions.
Our proposed method is particularly well suited to the
many-objective case where the number of objectives is
significant and renders alternative methods such as EHI
unsuitable due to reasons of computational infeasibility
(for example, on 2 of our datasets we found that the EHI
method failed early as the time required for a single rec-
ommendation grew to over 1 day). We have analysed the
theoretical properties of our method and shown that it
possesses properties such as sparseness, inherited from
the 1-norm SVM, that make it well suited to the task. For
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SEG dataset

0 20 40 60 80 100
Iteration

10-1

100

101

102

H
yp

er
-p

ar
am

et
er

 S
el

ec
tio

n 
T

im
e 

(s
ec

)

WAV dataset

0 20 40 60 80 100
Iteration

0.51

0.52

0.53

0.54

0.55

0.56

0.57

H
yp

er
vo

lu
m

e

SAT dataset

0 20 40 60 80 100
Iteration

0.8

0.81

0.82

0.83

0.84

H
yp

er
vo

lu
m

e

SEG dataset

0 20 40 60 80 100
Iteration

0.66

0.68

0.7

0.72

0.74

0.76

0.78

H
yp

er
vo

lu
m

e

WAV dataset

Figure 6: Hyper-parameter tuning results. Top row: recommendation times per iteration. Bottom row: enclosed hyper-
volume. EHI shown as black (dashed) line, our method as red (solid) line. EHI Simulations for SAT/SEG datasets had
to be terminated early due to excessive recommendation times (we estimate for example that running the SAT dataset
simulation to completion using the EHI method would have taken at least 3 months, which is clearly impractical).

experimental validation we have applied our proposed
method to high-temperature alloy design and hyperpa-
rameter selection in the multi-class case where no infor-
mation is provided with regard to the relative weight (or
importance) of the classes. Our results clearly showed
that our method is able to continue in cases where EHI
breaks down due to computational complexity, and more-
over that the results achieved by our method are compet-
itive with those achieved by EHI.
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Wolfgang Ponweiser. On expected-improvement cri-
teria for model-based multi-objective optimization. In
Proceedings of the 2010 International Conference on
Parallel Problem Solving from Nature, pages 718–727,
2010.

Yeboon Yun, Hirotaka Nakayama, and Masao Arakava.
Generation of pareto frontiers using support vector
machines. In International Converence on Multiple
Criteria Decision Making, 2004.

Martin Zaefferer, Thomax Bartz-Beielstein, Boris Nau-
joks, Tobias Wagner, and Michael Emmerich. A case
study on multi-criteria optimization of an event de-
tection software under limited budgets. In Proceed-
ings of the 2013 International Conference on Evolu-
tionary Multi-Criterion Optimization, pages 756–770.
Springer, 2013.

Ji Zhu, Saharon Rosset, Trevor Hastie, and Rob Tibshi-
rani. 1-norm support vector machines. In The An-
nual Conference on Neural Information Processing
Systems 16, 2004.

Eckart Zitzler. Evolutionary Algorithms for Multiobjec-
tive Optimization: Methods and Applications. PhD
thesis, Swiss Federal Institute of Technology Zurich,
1999.

155



Stochastic Learning for Sparse Discrete Markov Random Fields with
Controlled Gradient Approximation Error

Sinong Geng ∗

UW-Madison
Zhaobin Kuang ∗

UW-Madison
Jie Liu

University of Washington
Stephen Wright

UW-Madison
David Page

UW-Madison

Abstract

We study the L1-regularized maximum
likelihood estimator/estimation (MLE)
problem for discrete Markov random fields
(MRFs), where efficient and scalable learning
requires both sparse regularization and
approximate inference. To address these
challenges, we consider a stochastic learning
framework called stochastic proximal gradient
(SPG; Honorio 2012a, Atchade et al. 2014,
Miasojedow and Rejchel 2016). SPG is an
inexact proximal gradient algorithm [Schmidt
et al., 2011], whose inexactness stems from
the stochastic oracle (Gibbs sampling) for
gradient approximation – exact gradient
evaluation is infeasible in general due to the
NP-hard inference problem for discrete MRFs
[Koller and Friedman, 2009]. Theoretically,
we provide novel verifiable bounds to
inspect and control the quality of gradient
approximation. Empirically, we propose the
tighten asymptotically (TAY) learning strategy
based on the verifiable bounds to boost the
performance of SPG.

1 INTRODUCTION

Markov random fields (MRFs, a.k.a. Markov
networks, undirected graphical models) are a compact
representation of the joint distribution among multiple
variables, with each variable being a node and an edge
between two nodes indicating conditional dependence
between the two corresponding variables. Sparse
discrete MRF learning is proposed in the seminal work of

∗ Sinong Geng and Zhaobin Kuang contribute equally.
Their names are listed in alphabetical order. Corresponds to:
sgeng2@wisc.edu.

Lee et al. [2006]. By considering anL1-regularized MLE
problem, many components of the parameterization are
driven to zero, yielding a sparse solution to structure
learning. However, in general, solving an L1-regularized
MLE problem exactly for a discrete MRF is infamously
difficult due to the NP-hard inference problem posed by
exact gradient evaluation [Koller and Friedman, 2009].
We hence inevitably have to compromise accuracy for
the gain of efficiency and scalability via inexact learning
techniques [Liu and Page, 2013, Liu et al., 2014b, 2016,
Geng et al., 2018].

In this paper, we consider stochastic proximal gradient
(SPG; Honorio 2012a, Atchade et al. 2014, Miasojedow
and Rejchel 2016), a stochastic learning framework
for L1-regularized discrete MRFs. SPG hinges on
a stochastic oracle for gradient approximation of the
log-likelihood function (inexact inference). However,
both the theoretical guarantees and the practical
performances of existing algorithms are unsatisfactory.

The stochastic oracle behind SPG is Gibbs sampling
[Levin et al., 2009], which is an effective approach
to draw samples from an intractable probability
distribution. With enough samples, the intractable
distribution can be approximated effectively by the
empirical distribution, and hence many quantities
(e.g., the gradient of the log-likelihood function)
related to the intractable distribution can be estimated
efficiently. Since SPG uses Gibbs sampling for gradient
approximation, it can be viewed as an inexact proximal
gradient method [Schmidt et al., 2011], whose success
depends on whether the gradient approximation error
can be effectively controlled. While previous works
[Honorio, 2012a, Atchade et al., 2014, Miasojedow
and Rejchel, 2016] have shown that the quality of
the gradient approximation can be improved in the
long run with increasingly demanding computational
resources, such long term guarantees might not translate
to satisfactory performance in practice (see Section 7).
Therefore, it is desirable to estimate and control the
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gradient approximation error of SPG meticulously in
each iteration so that a more refined approximation to
the exact gradient will be rewarded with a higher gain of
efficiency and accuracy in practice.

Careful analysis and control of the quality of the gradient
approximation of SPG call for the cross-fertilization
of theoretical and empirical insights from stochastic
approximate inference [Bengio and Delalleau, 2009,
Fischer and Igel, 2011], inexact proximal methods
[Schmidt et al., 2011], and statistical sampling
[Mitliagkas and Mackey, 2017]. Our contributions are
hence both theoretical and empirical. Theoretically,
we provide novel verifiable bounds (Section 4) to
inspect and control the gradient approximation error
induced by Gibbs sampling. Also, we provide a proof
sketch for the main results in Section 5. Empirically,
we propose the tighten asymptotically (TAY) learning
strategy (Section 6) based on the verifiable bounds to
boost the performance of SPG.

2 BACKGROUND

We first introduce L1-regularized discrete MRFs in
Section 2.1. We then briefly review SPG as a
combination of proximal gradient for sparse statistical
learning and Gibbs sampling for addressing the
intractable exact gradient evaluation problem.

2.1 L1-Regularized Discrete MRF

For the derivation, we focus on the binary pairwise
case and we illustrate that our framework can be
generalized to other models in Section 6. Let

X =
[
X1, X2, · · · , Xp

]>
∈ {0, 1}p be a p × 1 binary

random vector. We use an uppercase letter such as
X to denote a random variable and the corresponding
lowercase letter to denote a particular assignment of the
random variable, i.e., X = x. We also use boldface
letters to represent vectors and matrices and regular
letters to represent scalars. We define the function
ψ : {0, 1}p → {0, 1}m , x → ψ(x) to represent the
sufficient statistics (a.k.a. features) whose values depend
on the assignment x and compose anm×1 vectorψ(x),
with its jth component denoted as ψj(x). We use X to
represent a dataset with n independent and identically
distributed (i.i.d.) samples.

With the notation introduced above, the L1-regularized
discrete MRF problem can be formulated as the
following convex optimization problem:

θ̂ = argmin
θ∈Θ
− 1

n

∑

x∈X
θ>ψ(x) +A(θ) + λ‖θ‖1, (1)

Algorithm 1 Gibbs Sampling (Gibbs-1)

Require: initial samples S0 and θ.
Ensure: S.

1: function GIBBS-1(S0, θ)
2: S← S0, and decide p from S0.
3: for i ∈ {1, · · · , p} do
4: for x ∈ S do
5: Compute Pθ(Xi | x−i) according to (5).
6: Update xi by Pθ(Xi | x−i).
7: end for
8: end for
9: return S.

10: end function

Algorithm 2 Gradient Approximation (GRAD)

Require: θ, EXψ(x), and q.
Ensure: ∆f(θ).

1: function GRAD(θ, EXψ(x), q)
2: Initialize S with q samples.
3: while true do
4: S← GIBBS-1( S, θ).
5: if stopping criteria met then
6: Compute ESψ(x) according to (6).
7: ∆f(θ)← ESψ(x)− EXψ(x).
8: break.
9: end if

10: end while
11: return ∆f(θ).
12: end function

Algorithm 3 Stochastic Proximal Gradient (SPG)

Require: X, λ, and q.
Ensure: θ̃.

1: function SPG(X, λ, q)
2: Compute EXψ(x) according to (4).
3: Initialize θ(0) randomly and k ← 0.
4: Choose step length α.
5: while true do
6: ∆f(θ(k))← GRAD(θ(k), EXψ(x), q).
7: θ(k+1) ← Sαλ

(
θ(k) − α∆f(θ(k))

)
.

8: if Stopping criteria met then
9: θ̃ = θ(k+1), return θ̃.

10: end if
11: k ← k + 1
12: end while
13: end function

with
A(θ) = log

∑

x∈{0,1}p
exp(θ>ψ(x)),

where Θ ⊆ Rm is the parameter space of θ’s, λ ≥ 0,
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and A(θ) is the log partition function. We denote the
differentiable part of (1) as

f(θ) = − 1

n

∑

x∈X
θ>ψ(x) +A(θ). (2)

Solving (1) requires evaluating the gradient of f(θ),
which is given by:

∇f(θ) = Eθψ(x)− EXψ(x), (3)

with

Eθψ(x) =
∑

x∈{0,1}p
Pθ(x)ψ(x), EXψ(x) =

1

n

∑

x∈X
ψ(x).

(4)
Eθψ(x) represents the expectation of the sufficient
statistics under Pθ(x) = exp(θ>ψ(x))

exp(A(θ)) , which is a
discrete MRF probability distribution parameterized by
θ. EXψ(x) represents the expectation of the sufficient
statistics under the empirical distribution. Computing
EXψ(x) is straightforward, but computing Eθψ(x)
exactly is intractable due to the entanglement of A(θ).
As a result, various approximations have been made
[Wainwright et al., 2007, Höfling and Tibshirani, 2009,
Viallon et al., 2014].

2.2 Stochastic Proximal Gradient

To efficiently solve (1), many efforts have been made
in combining Gibbs sampling [Levin et al., 2009] and
proximal gradient descent [Parikh et al., 2014] into SPG,
a method that adopts the proximal gradient framework to
update iterates, but uses Gibbs sampling as a stochastic
oracle to approximate the gradient when the gradient
information is needed [Honorio, 2012a, Atchade et al.,
2014, Miasojedow and Rejchel, 2016].

Specifically, Gibbs sampling with q chains running τ
steps (Gibbs-τ ) can generate q samples for Pθ(x).
Gibbs-τ is achieved by iteratively applying Gibbs-1 for
τ times. Gibbs-1 is summarized in Algorithm 1, where

Pθ(Xi | x−i) = Pθ(xi | x1, · · · , xi−1, xi+1, · · · , xp)
(5)

represents the conditional distribution of Xi given the
assignment of the remaining variables x−i under the
parameterization θ. Denoting the set of these q
(potentially repetitive) samples as S, we can approximate
Eθψ(x) by the easily computable

ESψ(x) =
1

q

∑

x∈S
ψ(x) (6)

and thus reach the approximated gradient
∆f(θ) = ESψ(x) − EXψ(x) with the gradient

approximation error:

δ(θ) = ∆f(θ)−∇f(θ).

By replacing ∇f(θ) with ∆f(θ) in proximal
gradient, the update rule for SPG can be derived
as θ(k+1) = Sαλ

(
θ(k) − α∆f(θ(k))

)
, where

α > 0 is the step length and Sλ(a) is the
soft-thresholding operator whose value is also an
m × 1 vector, with its ith component defined as
Sλ(a)i = sgn(ai)max(0, |ai| − λ) and sgn(ai) is the
sign function.

By defining

Gα(θ
(k)) :=

1

α

(
θ(k) − θ(k+1)

)

=
1

α

(
θ(k) − Sαλ

(
θ(k) − α∆f(θ(k))

))
,

(7)

we can rewrite the previous update rule in a form
analogous to the update rule of a standard gradient
descent, resulting in the update rule of a generalized
gradient descent algorithm:

θ(k+1) = θ(k) − αGα(θ
(k)). (8)

SPG is summarized in Algorithm 3. Its gradient
evaluation procedure based on Algorithm 1 is given in
Algorithm 2.

3 MOTIVATION

Both practical performance and theoretical guarantees
of SPG are still far from satisfactory. Empirically,
there are no convincing schemes for selecting τ and
q, which hinders the efficiency and accuracy of SPG.
Theoretically, to the best of our knowledge, existing
non-asymptotic convergence rate guarantees can only be
achieved for SPG with an averaging scheme [Schmidt
et al., 2011, Honorio, 2012a, Atchade et al., 2014]
(see also Section 3.3), instead of ordinary SPG. In
contrast, in the exact proximal gradient descent method,
the objective function value is non-decreasing and
convergent to the optimal value under some mild
assumptions [Parikh et al., 2014]. In Section 3.2, we
identify that the absence of non-asymptotic convergence
rate guarantee for SPG primarily comes from the
existence of gradient approximation error δ(θ). In
Section 3.3, we further validate that the objective
function value achieved by SPG is also highly dependent
on δ(θ). These issues bring about the demand of
inspecting and controlling δ(θ) in each iteration.
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3.1 Setup and Assumptions

For the ease of presentation, we rewrite the objective
function in (1) as g(θ) = f(θ) + h(θ), where
h(θ) = λ ‖θ‖1, and f(θ) is given in (2). Since ∇f(θ)
is Lipschitz continuous [Honorio, 2012b], we denote
its Lipschitz constant as L. We also make the same
assumption that α ≤ 1/L as Schmidt et al. [2011].

3.2 Decreasing Objective

It is well-known that exact proximal gradient enjoys
a O

(
1
k

)
convergence rate [Parikh et al., 2014]. One

premise for this convergence result is that the objective
function value decreases in each iteration. However,
satisfying the decreasing condition is much more
intricate in the context of SPG. Theorem 1 clearly points
out that δ(θ) is one main factor determining whether the
objective function decreases in SPG.

Theorem 1. Let θ(k) be the iterate of SPG after the kth

iteration. Let θ(k+1) be defined as in (8). With α ≤ 1/L,
we have

g(θ(k+1))− g(θ(k)) ≤ αδ(θ(k))>Gα(θ
(k))

−α
2
‖Gα(θ

(k))‖22.

Furthermore, a sufficient condition for
g(θ(k+1)) < g(θ(k)) is

‖δ(θ(k))‖2 <
1

2
‖Gα(θ

(k))‖2.

According to Theorem 1, if the magnitude of the
noise, quantified by ‖δ(θ(k))‖2, is reasonably small,
the objective function value decreases in each iteration.
Under this condition, we can further construct a
theoretical support for the convergence rate of the
objective function value in the Section 3.3.

3.3 Convergence Rate

Assuming that δ(θ) is small enough in each iteration to
generate a decreasing objective value sequence, we can
derive Theorem 2 following Proposition 1 in Schmidt
et al. [2011]:

Theorem 2. Let K = (θ(0),θ(1),θ(2), · · · ,θ(κ))
be the iterates generated by Algorithm 3. Then if
g(θ(k+1)) ≤ g(θ(k)) with k ∈ {1, 2, · · · , κ − 1}, we
have

g(θ(κ))− g(θ̂) ≤

L

2κ

(
‖θ(0) − θ̂‖2 +

2

L

κ∑

k=1

‖δ(θ(k))‖2
)2

.

(9)

Recall that θ̂ is an optimal solution to the sparse MLE
problem defined in (1). From (9), it is obvious that if the
gradient approximation error is reasonably small, then
during the early iterations of SPG, ‖θ(0)−θ̂‖2 dominates
2
L

∑κ
k=1‖δ(θ(k))‖2. Therefore, in the beginning, the

convergence rate is O(1/κ). However, as the iteration
proceeds, 2

L

∑κ
k=1‖δ(θ(k))‖2 accumulates and hence in

practice SPG can only maintain a convergence rate of
O(1/κ) up to some noise level that is closely related to
δ(θ(k)). Therefore, δ(θ(k)) plays an importance role in
the performance of SPG.

Notice that Theorem 2 offers convergence analysis of
the objective function value in the last iteration g(θ(κ)).
This result is different from the existing non-asymptotic
analysis on g(

∑κ
k=1 θ

(k)/κ), the objective function
evaluated on the average of all the visited solutions
[Schmidt et al., 2011, Honorio, 2012a, Atchade et al.,
2014]. Theorem 2 is more practical than previous
analysis, since

∑κ
k=1 θ

(k)/κ is a dense parameterization
not applicable to structure learning.

According to the analysis above, we need to control
δ(θ(k)) in each iteration to achieve a decreasing and
O
(
1
k

)
-converging objective function value sequence.

Therefore, we focus on checkable bounds for gradient
approximation error in Section 4.

4 MAIN RESULTS

In this section, we derive an asymptotic and a
non-asymptotic bound to control the gradient
approximation error δ(θ(k)) in each iteration. For
this purpose, we consider an arbitrary θ, and perform
gradient approximation via Gibbs-τ using Algorithm 2,
given an initial value for the Gibbs sampling algorithm,
x̃0. By bounding δ(θ), we can apply the same technique
to address δ(θ(k)).

We first provide a bound for the magnitude of the
conditional expectation of δ(θ), ‖Ex̃τ [δ(θ) | x̃0]‖2, in
Section 4.1. Based on this result, we further draw a
non-asymptotic bound for the magnitude of the gradient
approximation error, ‖δ(θ)‖2, in Section 4.2. Both
results are verifiable in each iteration.

For the derivation of the conclusions, we will focus
on binary pairwise Markov networks (BPMNs). Let
x ∈ {0, 1}p and θ be given, a binary pairwise Markov
network [Höfling and Tibshirani, 2009, Geng et al.,
2017] is defined as:

Pθ(x) =
1

Z(θ)
exp




p∑

i=1

p∑

j≥i
θijxixj


 , (10)

where Z(θ) = exp(A(θ)) is the partition function.
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θij is a component of θ that represents the strength of
conditional dependence between Xi and Xj .

4.1 An Asymptotic Bound

We first consider the magnitude of the conditional
expectation of δ(θ) with respect to x̃τ ,
‖Ex̃τ [δ(θ) | x̃0]‖2. To this end, we define U a
p× p computable matrix that is related to θ and the type
of MRF in question. Uij , the component in the ith row
and the jth column of U, is defined as follows:

Uij =
|exp (−ξij)− 1|b∗

(1 + b∗ exp (−ξij)) (1 + b∗)
, (11)

where

b∗ = max

{
r,min

{
s, exp

(
ξij
2

)}}
,

s = exp


−ξii −

∑

k 6=i,k 6=j
ξikmax {−sgn(ξik), 0}




r = exp


−θii −

∑

k 6=i,k 6=j
ξi,kmax {sgn(ξi,k), 0}


 ,

and sgn(ξik) is the sign function evaluated on
ξij = θmin{i,j},max{i,j}.

We then define Bi as a p × p identity matrix except
that its ith row is replaced by the ith row of U, with
i ∈ {1, 2, · · · , p}. We further define

B = BpBp−1Bp−2 · · ·Bi · · ·B1

and the grand sum G (B) =
∑p
i=1

∑p
j=1Bij , where Bij

is the entry in the ith row and the jth column of B. With
the definitions above, ‖Ex̃τ [δ(θ) | x̃0]‖2 can be upper
bounded by Theorem 3.

Theorem 3. Let x̃τ be the sample generated after
running Gibbs sampling for τ steps (Gibbs-τ ) under the
parameterization θ initialized by x̃0 ∈ {0, 1}p; then with
m denoting the size of sufficient statistics, the following
inequality holds:

‖Ex̃τ [δ(θ) | x̃0]‖2 ≤ 2
√
mG (Bτ ), (12)

where Bτ represents the τ th power of B.

In Theorem 3, the bound provided is not only observable
in each iteration, but also efficient to compute, offering a
convenient method to inspect the quality of the gradient
approximation. When the spectral norm of U is less than
1, the left hand side of (12) will converge to 0. Thus, by
increasing τ , we can decrease ‖Ex̃τ [δ(θ) | x̃0]‖2 to an
arbitrarily small value.

Theorem 3 is derived by bounding the influence of a
variable on another variable in X (i.e., the Dobrushin
influence defined in 2) with U. Furthermore, U defined
in (11) is a sharp bound of the Dobrushin influence
whenever b∗ 6= exp

(
ξij
2

)
, explaining why (12) using the

definition of U is tight enough for practical applications.

4.2 A Non-Asymptotic Bound

In order to provide a non-asymptotic guarantee for
the quality of the gradient approximation, we need to
concentrate ‖δ(θ)‖2 around ‖Ex̃τ [δ(θ) | x̃0]‖2. Let
q defined in Section 2.2 be given. Then, q trials
of Gibbs sampling are run, resulting in q samples,
{x̃(1)

τ , x̃
(2)
τ , · · · , x̃(q)

τ }. That is to say, for each sufficient
statistic, ψj(θ), with j ∈ {1, 2, · · · ,m}, we have q

samples,
{
ψ
(1)
j (θ), ψ

(2)
j (θ), · · · , ψ(q)

j (θ)
}

. Defining
the sample variance of the corresponding sufficient
statistics as Vψj , we have Theorem 4 to provide a
non-asymptotic bound for ‖δ(θ)‖2:

Theorem 4. Let θ, q, and an arbitrary x̃0 ∈ {0, 1}p be
given. Let m represent the dimension of θ and ‖δ(θ)‖2
represent the magnitude of the gradient approximation
error by running q trials of Gibbs-τ initialized by x̃0.
Compute B according to Section 4.1 and choose εj > 0.
Then, with probability at least 1 − 2

∑m
j=1 βj , where

βj > 0, j ∈ {1, 2, · · · ,m},

‖δ(θ)‖2 ≤ 2
√
m


G (Bτ ) +

√∑m
j=1 ε

2
j

4m


 , (13)

with βj satisfying

εj = 2



√
Vψj ln 2/βj

2q
+

7 ln 2/βj
3(q − 1)


 . (14)

Notice that the bound in Theorem 4 is easily checkable,
i.e., given τ , q, Vψj ’s, and θ, we can determine a
bound for ‖δ(θ)‖2 that holds with high probability.
Furthermore, Theorem 4 provides the sample complexity
needed for gradient estimation. Specifically, given small
enough βj’s, if we let

G (Bτ ) =

√√√√
m∑

j=1

ε2j/4m,

we can show that

2
√
m


G (Bτ ) +

√√√√
m∑

j=1

ε2j/4m


 = O

(
1

q

)
.
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That is to say, by assuming that G (Bτ ) and√∑m
j=1 ε

2
j/4m share the same scale, the upper bound

of the gradient approximation error converges to 0 as q
increases. Moreover, we include sample variance, Vψj ’s,
in (13). This is because the information provided by
sample variance leads to an improved data dependent
bound.

5 PROOF SKETCH OF MAIN RESULTS

As mentioned in Section sec:non-asy-bound, the
non-asymptotic result in Theorem 4 is derived from
the asymptotic bound in Theorem 3 by concentration
inequalities, we therefore only highlight the proof of
Theorem 3 in this section, and defer other technical
results to Supplements. Specifically, the proof of
Theorem 3 is divided into two parts: bounding
‖Ex̃τ [δ(θ) | x̃0]‖2 by the total variation distance
(Section 5.1) and bounding the total variation distance
(Section 5.2).

5.1 Bounding ‖Ex̃τ [δ(θ) | x̃0]‖2 by the Total
Variation Distance

To quantify ‖Ex̃τ [δ(θ) | x̃0]‖2, we first introduce the
concept of total variation distance [Levin et al., 2009]
that measures the distance between two distributions
over {0, 1}p.

Definition 1. Let u(x), and v(x) be two probability
distributions of x ∈ {0, 1}p. Then the total variation
distance between u(x) and v(x) is given as:

‖u(x)− v(x)‖TV =
1

2

∑

x∈{0,1}p
|u(x)− v(x)|.

With the definition above, ‖Ex̃τ [δ(θ) | x̃0]‖2 can be
upper bounded by the total variation distance between
two distributions (Pτ (x | x̃0) and Pθ(x)) using the
following lemma:

Lemma 1. Let x̃τ be the sample generated after
running Gibbs sampling for τ steps (Gibbs-τ ) under the
parameterization θ initialized by x̃0 ∈ {0, 1}p, then the
following is true:

‖Ex̃τ [δ(θ) | x̃0]‖2 ≤ 2
√
m ‖Pτ (x | x̃0)− Pθ(x)‖TV .

With Lemma 1, bounding ‖Ex̃τ [δ(θ) | x̃0]‖2 can be
achieved by bounding the total variation distance
‖Pτ (x | x̃0)− Pθ(x)‖TV. Recent advances in the
quality control of Gibbs samplers offer us emphverifiable
upper bounds for ‖Pτ (x | x̃0)− Pθ(x)‖TV on the
learning of a variety of MRFs [Mitliagkas and Mackey,

2017]. However, they can not be applied to BPMNs
because of the positive constraint on parameters. We
describe these next.

5.2 Bounding ‖Pτ (x | x̃0)− Pθ(x)‖TV

Now we generalize the analysis in Mitliagkas and
Mackey [2017] to BPMNs without constraints on the
sign of parameters by introducing the definition of the
Dobrushin influence matrix and a technical lemma.
Definition 2 (Dobrushin influence matrix). The
Dobrushin influence matrix of Pθ(x) is a p × p matrix
C with its component in the ith row and the jth column,
Cij , representing the influence of Xj on Xi given as:

Cij = max
(X,Y)∈Nj

‖Pθ(Xi | X−i)− Pθ(Yi | Y−i)‖TV ,

where (X,Y) ∈ Nj represents Xl = Yl for all l 6= j.
Lemma 2. Let Pθ(x) represent a binary pairwise
Markov network defined in (10) that is parameterized by
θ. An upper bound of the total influence matrix is given
by U defined in Section 4.1.

It should be noticed that, similar to the Theorem 12 in
Mitliagkas and Mackey [2017], Lemma 2 provides an
exact calculation except when b∗ = exp

(
ξi,j
2

)
.

Therefore, we can consider the U defined in Section 4.1
as an upper bound for Dobrushin influence matrix in
BPMN and thus apply U to Theorem 9 in Mitliagkas and
Mackey [2017]. Then, we have

‖Pτ (x | x̃0)− Pθ(x)‖TV ≤ G (Bτ ),

where Bτ represents the τ th power of B. Theorem 3
follows this combined with Lemma 1

6 STRUCTURE LEARNING

With the two bounds introduced in Section 4, we
can easily examine and control the quality of gradient
approximation in each iteration by choosing τ . In detail,
we introduce a criterion for the selection of τ in each
iteration. Satisfying the proposed criterion, the objective
function is guaranteed to decrease asymptotically. That
is to say, the difference between g(θ(k+1)) and g(θ̂) is
asymptotically tightened, compared with the difference
between g

(
θ(k)

)
and g(θ̂). Therefore, we refer to the

proposed criterion as TAY-CRITERION. Furthermore,
using TAY-CRITERION we provide an improved SPG
method denoted by TAY for short.

Specifically, staring from τ = 1, TAY stops increasing τ
when the following is satisfied:

2
√
mG (Bτ ) <

1

2
‖Gα(θ

(k))‖2. (TAY-CRITERION)

161



We can also derive a non-asymptotic counterpart of
TAY-CRITERION by combining the results of Theorem 1
and Theorem 4:

0 < 2
√
m


G (Bτ ) +

√∑m
j=1 ε

2
j

4m


 ≤ 1

2
‖Gα(θ

(k))‖2,

εj = 2



√

2Vψj ln 2/βj

4q
+

7 ln 2/βj
3(q − 1)


 ,

(15)
where the Vψj ’s and βj’s are defined in Theorem 4. (15)
provides the required sample complexity, q, for TAY in
each iteration. However, the selection of q according to
(15) is conservative, because it includes the worst-case
scenario where the gradient approximation errors in any
two iterations cannot offset each other.

In Section 6.1 and 6.2, we theoretically analyze the
performance guarantees of TAY-CRITERION and the
convergence of TAY, respectively.

6.1 Guarantees of TAY-CRITERION

The theorem below provides the performance guarantee
for TAY-CRITERION in each iteration.

Theorem 5. Let θ(k) and x̃0 be given. Let q and B
defined in Theorem 4 be given. For θ(k+1) generated
in Algorithm 3 using TAY-CRITERION, the following is
true:

lim
q→∞

P
(
g(θ(k+1)) < g(θ(k)) |

2
√
mG (Bτ ) <

1

2
‖Gα(θ

(k))‖2
)

= 1.

Theorem 5 makes a statement that the objective
function value decreases with large q. Specifically,
TAY-CRITERION assumes that the upper bound of the
conditional expectation of ‖δ(θ)‖2 is small enough to
satisfy the sufficient condition proven in Theorem 1.
When the number of samples q is large enough, ‖δ(θ)‖2
itself is very likely to meet the condition and hence
the objective function is also likely to decrease with
TAY-CRITERION satisfied.

6.2 Convergence of TAY

Finally, based on Theorem 2 and Theorem 5, we derive
the following theorem on the convergence of TAY.

Theorem 6. Let K = (θ(0),θ(1),θ(2), · · · ,θ(κ))
be the iterates generated by TAY. Then, with
k ∈ {1, 2, · · · , κ − 1}, the following is true:

lim
q→∞

P


g(θ(κ))− g(θ̂) ≤

L

2κ

(
‖θ(0) − θ̂‖2 +

2

L

κ∑

k=1

‖δ(θ(k))‖2
)2

 = 1,

where θ̂ is defined in (1).

6.3 Generalizations

As we demonstrate in Section 4 and Section 5, the
derivation of our main results relies on bounding the
Dobrushin influence with U and we show a procedure
to construct U in the context of BPMNs. Moreover,
Mitliagkas and Mackey [2017] and Liu and Domke
[2014] provide upper bounds U’s for other types of
discrete pairwise MRFs. Therefore, combined with
their results, our framework can also be applied to
other discrete pairwise Markov networks. Dealing with
pairwise MRFs is without any loss of generality, since
any discrete MRF can be transformed into a pairwise one
[Wainwright et al., 2008, Ravikumar et al., 2010].

7 EXPERIMENTS

We demonstrate that the structure learning of discrete
MRFs benefits substantially from the application of TAY
with synthetic data and that the bound provided on
the gradient estimation error by Theorem 3 is tighter
than existing bounds. To illustrate that TAY is readily
available for practical problems, we also run TAY using a
real world dataset. Because of the limit of space, we only
report the experiments under one set of representative
experiment configurations. Exhaustive results using
different experiment configurations are presented in the
Supplements.

7.1 Structure Learning

In order to demonstrate the utility of TAY for effectively
learning the structures of BPMNs, we simulate two
BPMNs (one with 10 nodes and the other one with 20
nodes):

• We set the number of features to p = 10
(p = 20). Components of θ in the ground truth
model are randomly chosen to be nonzero with an
edge generation probability of 0.3. The non-zero
components of the real parameter have a uniform
distribution on [−2,−1]⋃[1, 2]

• 1000 (2000 for 20 nodes) samples are generated by
Gibbs sampling with 1000 burn-in steps.

162



0.5

0.6

0.7

0.8

0.9

0 50 100

Time (s)

A
U

C

Methods
SPG−1
TAY
SPG−Inc
SPG−30

(a) AUC v.s. Time
10 nodes

0.5

0.6

0.7

0.8

0.9

0 250 500 750 1000

Iterations

A
U

C

Methods
SPG−1
TAY
SPG−Inc
SPG−30

(b) AUC v.s. Iterations
10 nodes

0

200

400

600

0 100 200 300 400 500

Iterations

S
te

p
s 

o
f 

G
ib

b
s Methods

SPG−1
TAY
SPG−Inc
SPG−30

(c) τ v.s. Iterations
10 nodes

0.5

0.6

0.7

0.8

0.9

0 500 1000 1500

Time (s)

A
U

C

Methods
SPG−1
TAY
SPG−Inc
SPG−60

(d) AUC v.s. Time
20 nodes

0.5

0.6

0.7

0.8

0.9

0 500 1000 1500

Iterations

A
U

C

Methods
SPG−1
TAY
SPG−Inc
SPG−60

(e) AUC v.s. Iterations
20 nodes

0

100

200

300

400

500

0 100 200 300 400 500

Iterations

S
te

p
s 

o
f 

G
ib

b
s Methods

SPG−1
TAY
SPG−Inc
SPG−60

(f) τ v.s. Iterations
20 nodes

Figure 1: Area under curve (AUC) and the steps of Gibbs sampling (τ ) in each iteration for structure learning of a
20-node network.
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Figure 2: The gradient approximation error, the existing
bound and the bound (12) in the structure learning of a
10-node network.

• The results are averaged over 10 trials.

The sizes of the BPMNs generated in this paper are
comparable to those in [Honorio, 2012a, Atchade et al.,
2014, Miasojedow and Rejchel, 2016].

Then, using the generated samples, we consider SPG
and TAY. According to the analysis in Section 4, the
quality of the gradient approximation is closely related
to the number of Gibbs sampling steps τ . However,
for SPG, there are no convincing schemes for selecting
τ . Therefore, we consider a large enough τ = 30
(τ = 60 for 20 nodes) to make sure that the gradient
approximation error is small enough. Furthermore, we
also evaluate the performance of the algorithm using an
increasing τ ( τ = k in the kth iteration), suggested by
Atchade et al. [2014] (SPG-Inc).

To strike a fair comparison, we use the same step length
α = 0.4 and regularization parameter λ = 0.025 (
λ = 0.017 for 20 nodes) for different methods. We do
not tune the step length individually for each method,
since Atchade et al. [2014] has shown that various
learning rate selection schemes have minimal impact on
the performance in the context of SPG. The number
of chains used in Gibbs sampling, q, is not typically a
tunable parameter either, since it indicates the allocation
of the computational resources. For each method, it
can be easily noticed that the larger the number of
samples is, the slower but more accurate the method will
be. Furthermore, if the q’s are different for different
methods, it would be difficult to distinguish the effect of
τ from that of q. Therefore, we set it to 2000 for 10-node
networks and 5000 for 20-node networks. Performances
of different methods are compared using the area under
curve (AUC) of receiver operating characteristic (ROC)
for structure learning in Figure 1. The Gibbs sampling
steps in each method are also compared in Figure 1.

Notice that we plot AUCs against both time (Figure 1a
and Figure 1d) and iterations (Figure 1b and Figure 1e).
The two kinds of plots provide different information
about the performances of different methods: the former
ones focus on overall complexity and the latter illustrate
iteration complexity. We run each method until it
converges. Using much less time, TAY achieves a similar
AUC to SPG with τ = 30 and τ = 60. Moreover, SPG
with τ = 1 reaches the lowest AUC, since the quality
of the gradient approximation cannot be guaranteed with
such a small τ . Therefore, the experimental results
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Jay Rockefeller

Figure 3: The result of TAY on the senator voting data: Red vertices denote Republicans, blue Democracts, and green
Independent. The figure is rendered by Gephi [Bastian et al., 2009].

indicate that TAY adaptively chooses a τ achieving
reasonable accuracy as well as efficiency for structure
learning in each iteration. For a more thorough
comparison, we also contrast the performance of TAY
and a non-SPG-based method, i.e., the pseudo-likelihood
method [Höfling and Tibshirani, 2009, Geng et al.,
2017], in the Supplements. As a result, the two methods
achieve comparable AUCs.

7.2 Tightness of the Proposed Bound

According to the empirical results above, TAY needs a
τ only on the order of ten, suggesting that the bound in
Theorem 3 is tight enough for practical applications. To
illustrate this more clearly, we compare (12) with another
bound on the expectation of the gradient approximation
error derived by Fischer [2015]. Specifically, we
calculate the gradient approximation error, the bound
(12), and Fischer [2015]’s bound, in each iteration of
learning a 10-node network. The results are reported in
Figure 2. Notice that the bound in Fischer [2015] gets
extraordinarily loose with more iterations. Considering
this, we may need run Gibbs chains for thousands of
steps if we use this bound. In contrast, bound (12) is
close to and even slightly less than the real error. This
is reflective of the fact that the proposed bound is on the
expectation instead of the error itself. As a result, (12) is
much tighter and thus more applicable.

7.3 Real World Data

In our final experiment, we run TAY using the Senate
voting data from the second session of the 109th

Congress [USS]. The dataset has 279 samples and 100
variables. Each sample represents the vote cast by
each of the 100 senators for a particular bill, where
0 represents nay, and 1 represents yea. Missing data
are imputed as 0’s. The task of interest is to learn a

BPMN model that identifies some clusters that represent
the dependency between the voting inclination of each
senator and the party with which the senator is affiliated.

We use TAY with α = 0.4. 5000 Markov chains are
used for Gibbs sampling. Since our task is exploratory
analysis, λ = 0.1 is selected in order to deliver an
interpretable result. The proposed algorithm is run for
100 iterations. The resultant BPMN with only edges
corresponding to the positive parameters is shown in
Figure 3, where each node represents the voting record
of a senator and the edges represent some positive
dependency between the pair of senators connected. The
nodes in red represent Republicans and the nodes in blue
represents Democrats. The clustering effects of voting
consistency within a party are captured, coinciding
with conventional wisdom. More interestingly, Jay
Rockefeller, as a Democrat, has many connections with
Republicans. This is consistent with the fact that his
family has been a “traditionally Republican dynasty”
[Wikipedia, 2017].

8 CONCLUSION

We consider SPG for L1-regularized discrete MRF
estimation. Furthermore, we conduct a careful analysis
of the gradient approximation error of SPG and
provide upper bounds to quantify its magnitude. With
the aforementioned analysis, we introduce a learning
strategy called TAY and show that it can improve the
accuracy and efficiency of SPG.
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Supplements

A Proofs

A.1 Proof of Theorem 1

We first introduce the following technical lemma.

Lemma 3. Let g(θ), f(θ), and h(θ) be defined as in Section 2.1; hence f(θ) is convex and differentiable, and ∇f(θ) is Lipschitz
continuous with Lipschitz constant L. Let α ≤ 1/L. LetGα(θ) and ∆f(θ) be defined as in Section (2.2). Then for all θ1 and θ2,
the following inequality holds:

g(θ†1) ≤ g(θ2) +G>α (θ1)(θ1 − θ2) + (∇f(θ1)−∆f(θ1))>(θ†1 − θ2)− α

2
‖Gα(θ1)‖22 , (16)

where θ†1 = θ1 − αGα(θ1).

Proof. The proof is based on the convergence analysis of the standard proximal gradient method [Vandenberghe, 2016]. f(θ) is
a convex differentiable function whose gradient is Lipschitz continuous with Lipschitz constant L. By the quadratic bound of the
Lipschitz property:

f(θ†1) ≤ f(θ1)− α∇>f(θ1)Gα(θ1) +
α2L

2
‖Gα(θ1)‖22 .

With α ≤ 1/L, and adding h(θ†1) on both sides of the quadratic bound, we have an upper bound for g(θ†1):

g(θ†1) ≤ f(θ1)− α∇>f(θ1)Gα(θ1) +
α

2
‖Gα(θ1)‖22 + h(θ†1).

By convexity of f(θ) and h(θ), we have:

f(θ1) ≤ f(θ2) + ∇>f(θ1)(θ1 − θ2),

h(θ†1) ≤ h(θ2) + (Gα(θ1)−∆f(θ1))>(θ+1 − θ2),

which can be used to further upper bound g(θ†1), and results in (16). Note that we have used the fact that Gα(θ1) −∆f(θ1) is a
subgradient of h(θ†1) in the last inequality.

With Lemma 3, we are now able to prove Theorem 1. In Lemma 3, let θ1 = θ2 = θ(k). Then by (8), θ†1 = θ(k+1). The inequality
in (16) can then be simplified as:

g(θ(k+1))− g(θ(k)) ≤ αδ(θ(k))>Gα(θ(k))− α

2
‖Gα(θ(k))‖22.

By the Cauchy-Schwarz inequality and the sufficient condition that ‖δ(θ(k))‖2 < 1
2
‖Gα(θ(k))‖2, we can further simplify the

inequality and conclude g(θ(k+1)) < g(θ(k)).

A.2 Proof of Theorem 2

To prove Theorem 2, we first review Proposition 1 in Schmidt et al. [2011]:

Theorem 7 (Convergence on Average, Schmidt et al. [2011]). Let K = (θ(0),θ(1),θ(2), · · · ,θ(κ)) be the iterates generated by
Algorithm 3, then

g

(
1

κ

κ∑

k=1

θ(k)
)
− g(θ̂) ≤ L

2κ

(
‖θ(0) − θ̂‖2 +

2

L

κ∑

k=1

‖δ(θ(k))‖2
)2

.

Furthermore, according to the assumption that g(θ(k+1)) ≤ g(θ(k)) with k ∈ {1, 2, · · · , κ}, we have:

g
(

1
κ

∑κ
k=1 θ

(k)
)
≥ g(θ(κ)). Therefore,

g(θ(κ))− g(θ̂) ≤ L

2κ

(
‖θ(0) − θ̂‖2 +

2

L

κ∑

k=1

‖δ(θ(k))‖2
)2

.
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Abstract

We consider partially-specified optimization
problems where the goal is to actively, but
efficiently, acquire missing information about
the problem in order to solve it. An algo-
rithm designer wishes to solve a linear pro-
gram (LP), max cTx s.t. Ax ≤ b,x ≥ 0,
but does not initially know some of the pa-
rameters. The algorithm can iteratively choose
an unknown parameter and gather information
in the form of a noisy sample centered at the
parameter’s (unknown) value. The goal is to
find an approximately feasible and optimal so-
lution to the underlying LP with high proba-
bility while drawing a small number of sam-
ples. We focus on two cases. (1) When the
parameters b of the constraints are initially un-
known, we propose an efficient algorithm com-
bining techniques from the ellipsoid method
for LP and confidence-bound approaches from
bandit algorithms. The algorithm adaptively
gathers information about constraints only as
needed in order to make progress. We give
sample complexity bounds for the algorithm
and demonstrate its improvement over a naive
approach via simulation. (2) When the param-
eters c of the objective are initially unknown,
we take an information-theoretic approach and
give roughly matching upper and lower sam-
ple complexity bounds, with an (inefficient)
successive-elimination algorithm.

1 INTRODUCTION

Many real-world settings are modeled as optimization
problems. For example, a delivery company plans driver
routes to minimize the driver’s total travel time; an airline

assigns vehicles to different origin-destination pairs to
maximize profit. However, in practice, some parameters
of the optimization problems may be initially unknown.
The delivery company may not know the average con-
gestion or travel time of various links of the network, but
has ways to poll Waze1 drivers to get samples of travel
times on links of the network. The delivery company
may not know the demand and the revenues for each
origin-destination pair, but can get estimates of them by
selling tickets on chosen origin-destination pairs.

To capture such settings, this paper proposes a model
of optimization wherein the algorithm can iteratively
choose a parameter and draw a “sample” that gives in-
formation about that parameter; specifically, the sample
is an independent draw from a subgaussian random vari-
able centered at the true value of the parameter. This
models, for instance, observing the congestion on a par-
ticular segment of road on a particular day. Drawing each
sample is presumed to be costly, so the goal of the algo-
rithm is to draw the fewest samples necessary in order to
find a solution that is approximately feasible and approx-
imately optimal.

Thus, the challenge falls under an umbrella we term
active information acquisition for optimization (AIAO).
The key feature of the AIAO setting is the structure of
the optimization problem itself, i.e. the objective and
constraints. The challenge is to understand how the diffi-
culty of information acquisition relates to this underlying
structure. For example, are there information-theoretic
quantities relating the structure to the sample complex-
ity? Meanwhile, the opportunity of AIAO is to exploit
algorithms for the underlying optimization problem. For
example, can one interface with the algorithm to reduce
sample complexity by only acquiring the information
needed, as it is needed?

These are the questions investigated in this paper, which
focuses on active information acquisition for linear opti-

1https://www.waze.com
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mization problems. Specifically, we consider linear pro-
grams in the form

max
x

cTx, s.t. Ax ≤ b,x ≥ 0 (1)

with A ∈ Rm×n, c ∈ Rn, and b ∈ Rm. We will con-
sider either the case that the b in the constraints is un-
known or else the case that the c in the objective is un-
known, with all other parameters initially known to the
algorithm. The algorithm can iteratively choose an un-
known parameter, e.g. bi, and draw a “sample” from it,
e.g. observing bi+η for an independent, zero-mean, sub-
gaussian η. The algorithm must eventually output a so-
lution x such that, with probability 1− δ, Ax ≤ b+ ε11
and cTx ≥ cTx∗− ε2, where x∗ is the optimal solution.
The goal is for the algorithm to achieve this while using
as few total samples as possible.

There is a natural “naive” or “static” approach: draw
samples for all unknown parameters until they are known
to high accuracy with high probability, then solve the
“empirical” linear program. However, we can hope to
improve by leveraging known algorithms and properties
of linear programs. For example, in the case that b is
unknown, if a linear program has an optimal solution, it
has an optimal solution that is an extreme point (a corner
point of the feasible region); and at this extremal optimal
solution, several constraints are binding. These suggest
that it is more important to focus on binding constraints
and to gather information on the differing objective val-
ues of extreme points. Algorithms developed in this pa-
per leverage these properties of linear programs to decide
how much information to acquire for each unknown pa-
rameter.

1.1 APPROACHES AND RESULTS

Two settings and our approaches. The paper inves-
tigates two settings: unknown b but known c, and un-
known c but known b. We always suppose A is known
and assume that the linear program has an optimal solu-
tion.

It might initially appear that these cases are “equiva-
lent” via duality theory, but we argue that the two cases
are quite different when we do not know the parame-
ters of LP exactly. Given a primal linear program of
the form (1), the dual program is given by miny bTy
s.t. ATy ≥ c,y ≥ 0, which is easily transformed into
the maximization format of (1). In particular, the pa-
rameters c in the objective function of a primal LP be-
comes the parameters in the constraints of the dual LP.
By duality theory, the (exact) optimal solutions to the
primal and dual are connected by complementary slack-
ness conditions. However, this approach breaks down in

the approximate setting for two reasons. First, approx-
imately optimal solutions do not satisfy complementary
slackness; and second, even knowing which constraints
bind does not suffice to determine the optimal solution
x∗ when some of the constraint or objective parameters
are unknown.2 We hence take two different approaches
toward our two settings.

Unknown-b case. In the unknown b setting, the un-
certainty is over the constraints. Our algorithm combines
two main ideas: the ellipsoid method for solving linear
programs, and multi-armed bandit techniques for gath-
ering data. The ellipsoid algorithm only requires the in-
formation of one violated constraint at each iteration, if
there exists a violated one. We then leverage the multi-
armed bandits method to find the most violated constraint
(if there exists one) using as few samples as possible.

We theoretically bound the number of samples drawn by
our algorithm as a function of the parameters of the prob-
lem. In simulations on generated linear programs, UCB-
Ellipsoid far outperforms the naive approach of sampling
all parameters to high accuracy, and approaches the per-
formance of an oracle that knows the binding constraints
in advance and needs only to sample these. In other
words, the algorithm spends very few resources on unim-
portant parameters.

Unknown-c case. In the unknown-objective setting,
we know the feasible region exactly. Our algorithm fo-
cuses only on the set of extreme points of the feasible
region. For each of the extreme point, there are a set of
possible values for c such that if c takes any value in the
set, this extreme point is the optimal solution to the LP.
The algorithm hence draws just enough samples to deter-
mine with high probability which is actually the case for
the true c.

We define an information-theoretic measure, Low(I) for
an instance I. We show that this quantity essentially
characterizes the sample complexity of a problem in-
stance and we give an algorithm, not necessarily effi-
cient, for achieving it up to low-order factors.

2 RELATED WORK

The setting considered in this paper, active information
acquisition for optimization, is related at a conceptual

2Nor does knowing which constraints bind even necessarily
help, as approximately satisfying them may still lead to large
violations of other constraints. Thus, while we do not rule out
some future approach that connects approximate solutions of
the primal and dual, the evidence suggests to us that the two
settings are quite different and we approach each differently in
this paper.
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level to a large number of lines of work that deal with
optimization and uncertainty. But it differs from them
mostly in either the active aspect or the optimization as-
pect. We’ll discuss some of these related lines of work
and the differences below.

Optimization under uncertainty Our problem con-
siders optimization with uncertain model parameters,
which is also a theme in stochastic programming [Hey-
man and Sobel, 2003, Neely, 2010], chance-constrained
programming [Ben-Tal et al., 2009], and robust opti-
mization [Ben-Tal et al., 2009, Bertsimas et al., 2004].
In both stochastic optimization and chance-constrained
programming, there are no underlying true, fixed values
of the parameters; instead, a probabilistic, distributional
model of the parameters is used to capture the uncer-
tainty and such model of uncertainty becomes part of the
optimization formulation. Hence, optimality in expecta-
tion or approximate optimality is sought after under the
probabilistic model. But in our problem underlying fixed
parameters exist, and the problem is only how much in-
formation to gather about them. Meanwhile, robust opti-
mization models deterministic uncertainty (e.g. parame-
ters come from a known set) and often seeks for a worst-
case solution, i.e. a solution that is feasible in the worst
case over a set of possible constraints. A key distinc-
tion of our model is that there are underlying true values
of the parameters and we do not incorporate any proba-
bilistic or deterministic model of the uncertainty into the
optimization problem itself. Instead, we take an ”active
querying” approach to approximately solve the true opti-
mization problem with high probability.

Artificial intelligence. Several existing lines of work
in the artificial intelligence literature, deal with actively
acquiring information about parameters of an optimiza-
tion problem in order to solve it. Preference elicita-
tion [Braziunas, 2006, Blum et al., 2004] typically fo-
cuses on acquiring information about parameters of the
objective by querying a user about his preferences, this
is similar to our goal for the unknown-c setting. Rel-
evant to our unknown-b case, for more combinatorial
problems, the constraint acquisition literature [OConnell
et al., 2002, Bessiere et al., 2015] is closer to our prob-
lem in some respects, as it posits an optimization prob-
lem with unknown constraints that must be learned via
interactive querying. We emphasize that a central fea-
ture of the model in this paper is noisy observations: the
observations of the algorithm are only noisy samples of
a true underlying parameter. The key challenge is to
choose how many repeated samples of each parameter
to draw. This aspect of the problem is not to our knowl-
edge present in preference elicitation or model/constraint
acquisition.

Machine learning and theoretical computer science.
Much work in active learning considers acquiring data
points iteratively with a goal of low sample complexity
[Balcan et al., 2006, 2007, Castro and Nowak, 2008].The
key difference to AIAO is between data and parameters.
In learning, the goal is to minimize the average or expec-
tation of some loss function over a distribution of data
points. Other than its likelihood, each data point plays
the same role in the problem. Here, the focus is on how
much information about each of various parameters is
necessary to solve a structured optimization problem to
a desired level of accuracy. In other words, the key ques-
tion here, which is how much an optimization algorithm
needs to know about the parameters of the problem it is
solving, does not apply in active learning.

A line of work on sample complexity of reinforce-
ment learning (or approximate reinforcement learn-
ing) [Kakade et al., 2003, Lattimore and Hutter, 2012,
Azar et al., 2012, Wang, 2017, Chen and Wang, 2016]
also bears some resemblance to our problem. A typical
setting considered is solving a model-free Markov De-
cision Processes (MDP), where the transition probabili-
ties and the reward functions are initially unknown but
the algorithm can query an oracle to get samples. This
problem is a special case of our AIALO problem with
unknown A and b because an MDP can be formulated
as an linear program. The solutions provided focuses on
the particular structure of MDP, while we consider gen-
eral linear programs.

Broadly related is recent work on optimization from sam-
ples Balkanski et al. [2016], which considers the sample
complexity of a two-stage process: (1) draw some num-
ber of i.i.d. data points; (2) optimize some loss function
or submodular function on the data. In that setting, the al-
gorithm sees a number of input-output pairs of the func-
tion, randomly distributed, and must eventually choose a
particular input to optimize the function. Therefore, it is
quite different from our setting in both important ways:
(1) the information collected are data points (and evalu-
ations), as in ML above, rather than parameters as in our
problem; (2) (so far) it is not active, but acquires infor-
mation in a batch.

A line of work that is closely related to our unknown-c
problem is the study of combinatorial pure exploration
(CPE) problem, where a learner collects samples of un-
known parameters of an objective function to identify
the optimal member in a solution set. The problem was
first proposed in Chen et al. [2014], and subsequently
studied by Gabillon et al. [2016], Chen et al. [2016a,b,
2017]. CPE only considers combinatorial optimization
problems whose solution set contains only binary vec-
tors of length n. A recent work by Chen et al. [2017]
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extended CPE to a General-Sampling problem by allow-
ing general solution sets. Our unknown-c problem can
be fitted into the setting of General-Sampling. Our algo-
rithm for unknown-c was inspired by the work of Chen
et al. [2017], but leverages the structure of LP and hence
has better sample complexity performance than directly
treating it as a General-Sampling problem. The General-
Sampling problem does not encompass all AIAO set-
tings, e.g., our unknown-b case.

3 MODEL AND PRELIMINARIES

3.1 THE AIALO PROBLEM

We now formally define an instance I of the active in-
formation acquisition for linear optimization (AIALO)
problem. We then describe the format of algorithms for
solving this problem. Note that one can easily extend
this into a more general formal definition of AIAO, for
more general optimization problems, but we leave this
for future work.

An instance I consists of three components. The first
component consists of the parameters of the underlying
linear program on n variables andm constraints: a vector
c ∈ Rn, a vector b ∈ Rm, and a matrix A ∈ Rn×m.
Naturally, these specify the program3

max
x

cTx s.t. Ax ≤ b,x ≥ 0. (2)

We assume for simplicity in this paper that all linear
programs are feasible and are known a priori to have
a solution of norm at most R. The second component
specifies which parameters are initially known and which
are initially unknown. The third and final component
specifies, for each unknown parameter (say ci), of a σ2-
subgaussian distribution with mean equal to the value of
the parameter.4

Given I, we define the following sets of approximately-
feasible, approximately-optimal solutions.

Definition 3.1. Given an instance I, let x∗ be an optimal
solution to the LP. DefineOPT (I; ε1, ε2) to be the set of
solutions x satisfying cTx ≥ cTx∗ − ε1 and Ax ≤ b +
ε21. We use OPT (I) as shorthand for OPT (I; 0, 0).

3Note that any linear program can be transformed into the
given format with at most a factor 2 increase in n and m.

4DistributionD with mean µ is σ2-subgaussian if, for X ∼
D, we have E[et(X−µ)] ≤ eσ2t2/2 for all t. The family of sub-
Gaussian distributions with parameter σ encompasses all distri-
butions that are supported on [0, σ] as well as many unbounded
distributions such as Gaussian distributions with variance σ2.

3.2 ALGORITHM SPECIFICATION

An algorithm for the AIALO problem, run on an instance
I, functions as follows. The algorithm is given as in-
put n (number of variables), m (number of constraints),
and σ2 (subgaussian parameter). It is also given the sec-
ond component of the instance I, i.e. a specification of
which parameters are known and which are unknown.
For each parameter that is specified as “known”, the al-
gorithm is given the value of that parameter, e.g. it is
given “A11 = 42.” Finally, the algorithm is given an op-
timality parameter ε1, a feasibility parameter ε2, and a
failure probability parameter δ.

The algorithm may iteratively choose an unknown pa-
rameter and sample that parameter: observe an indepen-
dent and identically-distributed draw from the distribu-
tion corresponding to that parameter (as specified in the
third component of the instance I). At some point, the
algorithm stops and outputs a solution x ∈ Rn.
Definition 3.2 ((δ, ε1, ε2)-correct algorithm). An algo-
rithmA is (δ, ε1, ε2)-correct if for any instance I and in-
puts (δ, ε1, ε2), with probability at least 1− δ,A outputs
a solution x ∈ OPT (I; ε1, ε2). In the case ε1 = ε2 = 0,
we say A is δ-correct.

Our goal is to find algorithms with low sample complex-
ity, i.e., the number of samples drawn by the algorithm.

4 UNKNOWN CONSTRAINTS

We will first consider the unknown-b case where every
parameter of the constraint vector b is initially unknown,
and all other parameters are initially known. Geomet-
rically, the algorithm is given an objective “direction”
(c) and a set of constraint “orientations” (A), but does
not initially know the “offset” or displacement bi of each
constraint i.

In this setting, we do not expect to attain either exact
feasibility or exact optimality, as the exact constraints
can never be known, and in general an arbitrarily small
change in constraints of an LP leads to a nonzero change
in the value of the optimal solution.

The section begins with a lower bound of the sample
complexity (across all LP instances) of any correct al-
gorithm.
Theorem 4.1 (Lower bound for unknown b). Suppose
we have a (δ, ε1, ε2)-correct algorithm A where δ ∈
(0, 0.1), ε1 > 0, ε2 > 0. Then for any n > 0, there
exists infinitely many instances of the AIALO problem
with unknown-b with n variables with objective function
‖c‖∞ = 1 such that A must draw at least

Ω
(
n ln(1/δ) ·max{ε1, ε2}−2

)
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samples in expectation on each of them.

The idea of the lower bound (proof in Appendix C.1) is
that in the worst case, an algorithm must accurately es-
timate at least all n binding constraints (in general with
n variables, up to n constraints bind at the optimal so-
lution). It remains open whether we can get a tighter
lower bound which also captures the difficulty of ruling
out non-binding constraints.

4.1 ELLIPSOID-UCB ALGORITHM

Background. The standard ellipsoid algorithm for lin-
ear programming begins with an ellipsoid E(0) known to
contain the optimal solution, Then, it checks two cases:
(1) The center of this ellipsoid x(0) is feasible, or (2)
it is not feasible. If (2), say it violates constraint i, then
the algorithm considers the halfspace defined by the con-
straint Aix

(0) ≤ bi. If (1), the algorithm considers the
halfspace defined by the “constraint” cTx ≥ cTx(0), as
the optimal solution must satisfy this constraint. In ei-
ther case, it updates to a new ellipsoid E(1) defined as
the minimal ellipsoid containing the intersection of E(0)

with the halfspace under consideration.

The obstacle is that, now, b is initially unknown. A first
observation is that we only need to find a single violated
constraint, so there may be no need to sample most pa-
rameters at a given round. A second observation is that
it suffices to find the most violated constraint. This can
be beneficial as it may require only a few samples to find
the most violated constraint; and in the event that no con-
straint is violated, we still need to find an upper bound on
“closest to violated” constraint in order to certify that no
constraint is violated.

To do so, we draw inspiration from algorithms for ban-
dits problems (whose details are not important to this
paper). Suppose we have m distributions with means
µ1, . . . , µm and variances σ2

1 , . . . , σ
2
m, and we wish to

find the largest µi. After drawing a few samples from
each distribution, we obtain estimates µ̂i along with con-
fidence intervals given by tail bounds. Roughly, an
“upper confidence bound” (UCB) algorithm (see e.g.
Jamieson and Nowak [2014]) for finding maxi µi pro-
ceeds by always sampling the i whose upper confidence
bound is the highest.

We therefore will propose a UCB-style approach to do-
ing so, but with the advantage that we can re-use any
samples from earlier stages of the ellipsoid algorithm.

Algorithm and results. Ellipsoid-UCB is given in Al-
gorithm 1. At each round k = 1, 2, . . . , we choose the
center point x(k) of the current ellipsoid E(k) and call the
subroutine Algorithm 2 to draw samples and check for

violated constraints. We use the result of the oracle to
cut the current space exactly as in the standard ellipsoid
method, and continue.

Some notation: t is used to track the total number of
samples drawn (from all parameters) and Ti(t) denotes
the number of samples of bi drawn up to “time” t. The
average of these samples is:

Definition 4.1. LetXi,s denote the s-th sample of bi and
let Ti(t) denote the number of times bi is sampled in the
first t samples. Define b̂i,Ti(t) =

∑Ti(t)
s=1 Xi,s/Ti(t) to be

the empirical mean of bi up to “time” t.

Algorithm 1 Modified ellipsoid algorithm
Let E(0) be the initial ellipsoid containing the feasible region.
Draw one sample for each bi, i ∈ [m].
Let k = 0 and t = m.
Let Ti(t) = 1 for all i.
while stopping criterion is not met5 do

Let x(k) be the center of E(k)
Call UCB method to get constraint i or “feasible”
if x(k) is feasible then

x← x(k) if x not initialized or cTx(k) > cTx.
y← −c

else
y← AT

i

end if
Let E(k+1) be the minimal ellipsoid that contains E(k) ∩
{p : yTp ≤ yTx(k)}
Let k ← k + 1

end while
Output x or “failure” if it was never set.

The performance of the algorithm is measured by how
many samples (observations) it needs to draw. To state
our theoretical results, define Vi(k) = Aix

(k) − bi
to be the amount by which the i-th constraint is vi-
olated by x(k), and V ∗(k) = maxi Vi(k). Define
gapi,ε(k) = max{|Vi(k)|, V ∗(k) − Vi(k), ε} and ∆i,ε

= mink gapi,ε(k).

Theorem 4.2 (Ellipsoid-UCB algorithm). The Ellipsoid-
UCB algorithm is (δ, ε1, ε2)-correct and with probability
1− δ, draws at most the following number of samples:

O

(
m∑

i=1

σ2
i

∆2
i,ε2/2

log
m

δ
+

m∑

i=1

σ2
i

∆2
i,ε2/2

log log

(
σ2
i

∆2
i,ε2/2

))
.

Specifically, the number of samples used for bi is at most
σ2
i

∆2
i,ε2/2

(
log(m/δ) + log log(σ2

i /∆
2
i,ε2/2

)
)

.

5Our stopping criterion is exactly the same as in the stan-
dard ellipsoid algorithm, for which there are a variety of pos-
sible criteria that work. In particular, one is

√
cTP−1c ≤

min{ε1, ε2}, where P is the matrix corresponding to ellipsoid
E(k) as discussed above.
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Algorithm 2 UCB-method
Input x(k)

Output either index j of a violated constraint, or “feasible”.
Set δ′ =

(
δ

20m

)2/3
loop

1. Let j be the constraint with the largest index,

j = arg max
i

Aix
(k) − b̂i,Ti(t) + Ui(Ti(t)),

where Ui(s) = 3
√

2σ2
i log (log(3s/2)/δ′) /s and

b̂i,Ti(t) as in Definition 4.1.
2. If Ajx

(k) − b̂j,Tj(t) − Uj(Tj(t)) > 0 return j.
3. If Ajx

(k)− b̂j,Tj(t)+Uj(Tj(t)) < 0 return “feasible”.

4. If Uj(Tj(t)) < ε2/2 return “feasible”.
5. Let t← t+ 1
6. Draw a sample of bj .
7. Let Tj(t) = Tj(t− 1) + 1.
8. Let Ti(t) = Ti(t− 1) for all i 6= j.

end loop

Proof Sketch: Define event A to be the event that∣∣∣̂bi,s − bi
∣∣∣ ≤ Ui(s) for all s and i ∈ [m]. According to

Lemma 3 in Jamieson et al. [2014], A holds with proba-
bility at least 1− δ.

Correctness: Conditioning on event A holds, our UCB
method will only return a constraint that is violated (line
2) and when it returns “feasible”, no constraint is violated
more than ε2 (line 3 and 4).

Number of samples: We bound the number of samples
used on each constraint separately. Consider a fixed el-
lipsoid iteration k in which UCB method is given input
x(k), the key idea is to prove that if bi is sampled in
this iteration at “time” t, Ui(Ti(t)) should be larger than
gapi,ε2/2(k). This gives an upper bound of Ti(t). Taking
the maximum of them, we get the final result.

Discussion. To understand the bound, suppose for sim-
plicity that each σi = 1. We observe that the first term
will dominate in all reasonable parameter settings, so we
can ignore the second summation in this discussion.

Next, note that each term in the sum reflects a bound
on how many times constraint i must be sampled over
the course of the algorithm. This depends inversely on
∆i,ε2/2, which is a minimum over all stages k of the
“precision” we need of constraint i at stage k. We only
need a very precise estimate if both of the following con-
ditions are satisfied: (1) |Vi(k)| is small, meaning that the
ellipsoid center x(k) is very close to binding constraint i;
(2) There is no other constraint that is significantly vio-
lated, meaning that i is very close to the most-violated

constraint for x(k) if any. Because this is unlikely to
happen for most constraints, we expect ∆i,ε2/2 to gener-
ally be large (leading to a good bound), although we do
not have more precise theoretical bounds. The only con-
straints where we might expect ∆i,ε2/2 to be small are
the binding constraints, which we expect to come close
to satisfying the above two conditions at some point. In-
deed, this seems inevitable for any algorithm, as we ex-
plore in our experiments.

Comparison to static approach. Again suppose each
σi = 1 for simplicity. Note that each ∆i,ε2/2 ≥
ε2/2. This implies that our bound is always better than
O
(
m log(m/δ)

ε22

)
, ignoring the dominated second term.

The static approach is to measure each bi with enough
samples to obtain a good precision so that relaxed fea-
sibility can be satisfied with high probability, then solve
the linear program using the estimated constraints. This
uses 4m log(m/δ)

ε22
samples. (This number comes from us-

ing tail bounds to ensure good precision is achieved on
every bi.)

Therefore, the UCB-Ellipsoid algorithm dominates the
static approach up to some constant factors and can show
dramatic instance-wise improvements. Indeed, in some
simple cases, such as the number of variables equal to the
number of constraints, we do not expect any algorithm to
be able to improve over the static approach. However, a
nice direction for future work is to show that, if m is
very large compared to n, then the UCB-Ellipsoid algo-
rithm (or some other algorithm) is guaranteed to asymp-
totically improve on the static approach.

5 UNKNOWN OBJECTIVE FUNCTION

In this section, we consider the unknown-c case. Here,
every parameter of the objective c is initially unknown,
and all other parameters are initially known. Geometri-
cally, the algorithm is initially given an exact description
of the feasible polytope, in the form of Ax ≤ b and
x ≥ 0, but no information about the “direction” of the
objective.

Because the constraints are known exactly, we focus on
exact feasibility in this setting, i.e. ε2 = 0. We also
focus on an information-theoretic understanding of the
problem, and produce an essentially optimal but compu-
tationally inefficient algorithm. We assume that there is a
unique optimal solution x∗,6 and consider the problem of

6If we only aim for a ε1-suboptimal solution, we can termi-
nate our algorithm when ε(r) (defined in Line 5 of Algorithm 3)
becomes smaller than ε1/2, such that the algorithm no longer
requires the best point to be unique.
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finding an exact optimal solution with confidence δ (i.e.,
a δ-correct algorithm). We also make the simplifying as-
sumption that each parameter’s distribution is a Gaussian
of variance 1 (in particular is 1-subgaussian). Our results
can be easily extend to the general case.

Our approaches are based on the techniques used in Chen
et al. [2017], but address a different class of optimization
problems. We thus use the same notations as in Chen
et al. [2017]. We first introduce a function Low(I) that
characterizes the sample complexity required for an LP
instance I. The function Low(I) is defined by the so-
lution of a convex program. We then give an instance-
wise lower bound in terms of the Low(I) function and
the failure probability parameter δ. We also formulate a
worst-case lower bound of the problem, which is poly-
nomially related to the instance-wise lower bound. Fi-
nally, we give an algorithm based on successive elimi-
nation that matches the worst-case lower bound within a
factor of ln(1/∆), where ∆ is the gap between the ob-
jective function value of the optimal extreme point (x∗)
and the second-best.

5.1 LOWER BOUNDS

The function Low(I) is defined as follows.

Definition 5.1 (Low(I)). For any instance I of AIALO
(or more generally, for any linear program), we define
Low(I) ∈ R to be the optimal solution to the following
convex program.

min
τ

n∑

i=1

τi (3)

s.t.
n∑

i=1

(s
(k)
i − x∗i )2

τi
≤
(
cT (x∗ − s(k))

)2

,∀k

τi ≥ 0,∀i

Here x∗ is the optimal solution to the LP in I and
s(1), . . . , s(k) are the extreme points of the feasible re-
gion {x : Ax ≤ b,x ≥ 0}.

For intuition about Low(I), consider a thought experi-
ment where we are given an extreme point x∗, and we
want to check whether or not x∗ is the optimal solution
using as few samples as possible. Given our empirical
estimate ĉ we would like to have enough samples so that
with high probability, for each s(k) 6= x∗, we have

ĉT(x∗ − s(k)) > 0 ⇐⇒ cT(x∗ − s(k)) > 0.

This will hold by a standard concentration bound
(Lemma D.2) if enough samples of each parameter are
drawn; in particular, “enough” is given by the k-th con-
straint in (3).

Theorem 5.1 (Instance lower bound). Let I be an in-
stance of AIALO in the unknown-c case. For 0 < δ <
0.1, any δ-correct algorithm A must draw

Ω(Low(I) ln δ−1)

samples in expectation on I.

We believe that it is unlikely for an algorithm to match
the instance-wise lower bound without knowing the
value of c and x∗ in the definition of Low(I). To for-
mally prove this claim, for any δ-correct algorithm A,
we construct a group of LP instances that share the same
feasible region Ax ≤ b, x ≥ 0 but have different objec-
tive functions and different optimal solutions. We prove
that A will have unmatched performance on at least one
of these LP instances.

Our worst-case lower bound can be stated as follows.

Theorem 5.2 (Worst-case lower bound for unknown c).
Let n be a positive integer and δ ∈ (0, 0.1). For any δ-
correct algorithm A, there exists an infinite sequence of
LP instances with n variables, I1, I2, . . . , such that A
takes

Ω
(
Low(Ik)(ln |S(1)

k |+ ln δ−1)
)

samples in expectation on Ik, where S(1)
k is the set of all

extreme points of the feasible region of Ik, and Low(Ik)
goes to infinity.

5.2 SUCCESSIVE ELIMINATION ALGORITHM

Before the description of the algorithm, we first define
a function LowAll(S, ε, δ) that indicates the number of
samples we should take for each ci, such that the dif-
ference in objective value between any two points in S
can be estimated to an accuracy ε with probability 1− δ.
Define LowAll(S, ε, δ) to be the optimal solution of the
following convex program,

min
τ

n∑

i=1

τi (4)

s.t.

n∑

i=1

(xi − yi)2

τi
≤ ε2

2 ln(2/δ)
,∀x,y ∈ S

τi ≥ 0,∀i.

Our algorithm starts with a set S(1) that contains all ex-
treme points of the feasible region {x : Ax ≤ b,x ≥
0}, which is the set of all possible optimal solutions.
We first draw samples so that the difference between
each pairs in S(1) is estimated to accuracy ε(1). Then
we delete all points that are not optimal with high prob-
ability. In the next iteration, we halve the accuracy
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ε(2) = ε(1)/2 and repeat the process. The algorithm ter-
minates when the set contains only one point.

Algorithm 3 A successive elimination algorithm
1: S(1) ← set of all extreme points of feasible region {x :

Ax ≤ b,x ≥ 0}
2: r ← 1
3: λ← 10
4: while |S(r)| > 1 do
5: ε(r) ← 2−r , δ(r) ← δ/(10r2|S(1)|2)

6: (t
(r)
1 , . . . , t

(r)
n )← LowAll(S(r), ε(r)/λ, δ(r))

7: Sample ci for t(r)i times. Let ĉ(r)i be its empirical mean
8: Let x(r) be the optimal solution in S(r) with respect to

ĉ(r)

9: Eliminate the points in S(r) that are ε(r)/2 + 2ε(r)/λ

worse than x(r) when the objective function is ĉ(r),

S(r+1) ←{x ∈ S(r) : 〈x, ĉ(r)〉
≥ 〈x(r), ĉ(r)〉 − ε(r)/2− 2ε(r)/λ} (5)

10: r ← r + 1
11: end while
12: Output x ∈ S(r)

The algorithm has the following sample complexity
bound.

Theorem 5.3 (Sample complexity of Algorithm 3). For
the AIALO with unknown-c problem, Algorithm 3 is δ-
correct and, on instance I, with probability 1− δ draws
at most the following number of samples:

O
(
Low(I) ln ∆−1(ln |S(1)|+ ln δ−1 + ln ln ∆−1)

)
,

where S(1) is the set of all extreme points of the feasible
region and ∆ is the gap in objective value between the
optimal extreme point and the second-best,

∆ = max
x∈S(1)

cTx− max
x∈S(1)\x∗

cTx.

Proof Sketch: We prove that conditioning on a good
event E that holds with probability at least 1 − δ, the
algorithm will not delete the optimal solution and will
terminate before blog(∆−1)c + 1 iterations. Then we
bound the number of samples used in iteration r by show-
ing that the optimal solution of Low(I) times α(r) =
32λ2 ln(2/δ(r)) is a feasible solution of the convex pro-
gram that defines LowAll(S(r), ε(r)/λ, δ(r)). Therefore
the number of samples used in iteration r is no more than
α(r)Low(I).

This matches the worst-case lower bound within a
problem-dependent factor ln(1/∆). Notice, however,
that the size of |S(1)| can be exponentially large, and so

is the size of the convex program (4). So Algorithm 3
is computationally inefficient if implemented straightfor-
wardly, and it remains open whether the algorithm can be
implemented in polynomial time or an alternative algo-
rithm with similar sample complexity and better perfor-
mance can be found.

6 EXPERIMENTS

In this section, we investigate the empirical number
of samples used by Ellipsoid-UCB algorithm for the
unknown-b case of AIALO. We fix δ = 0.1 and focus
on the impact of the other parameters7, which are more
interesting.

We compare three algorithms on randomly generated LP
problems. The first is Ellipsoid-UCB. The second is the
naive “static approach”, namely, draw 4σ2 log(m/δ)/ε2

2

samples of each constraint, then solve the LP using esti-
mated means of the parameters. (This is the same ap-
proach mentioned in the previous section, except that
previously we discussed the case σ = 1 for simplic-
ity.) The third is designed to intuitively match the lower
bound of Theorem 4.1: Draw 4σ2 log(d/δ)/ε2

2 samples
of each of only the binding constraints, where there are
d of them, then solve the LP using estimated means of
the bi. (For a more fair comparison, we use the same tail
bound to derive the number of samples needed for high
confidence, so that the constants match more appropri-
ately.)

We generate instances as follows. c is sampled from
[−10, 10]n uniformly at random. b is uniformly drawn
from [0, 10]n. Each Ai is sampled from unit ball uni-
formly at random. Notice that the choice of bi ≥ 0 guar-
antees feasibility because the origin is always a feasible
solution. We also add additional constraints xi ≤ 500 to
make sure that the LP generated is bounded. When the
algorithm makes an observation, a sample is drawn from
Gaussian distribution with variance σ2.

In Figure 1, each algorithm’s number of samples (aver-
age of 50 instances) is plotted as function of different
parameters. The number of samples used by Ellipsoid-
UCB is proportional to n, σ2 and ε−2. However, it does
not change much as m increases.8 This will not be sur-
prising if ellipsoid uses most of its samples on binding
constraints, just as the lower bound does. This is shown
in Table 1, where it can be seen that Ellipsoid-UCB re-

799.5 percent of the outputs turn out to satisfy relaxed fea-
sibility and relaxed optimality.

8Indeed, the standard ellipsoid algorithm for linear pro-
gramming requires a number of iterations that is bounded in
terms of the number of variables regardless of the number of
constraints.
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quires much fewer samples of non-binding constraints
than binding constraints.
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Figure 1: Number of samples as we vary m, n, σ and 1/ε.
Every data point is the mean of 50 randomly drawn problem
instances. The baseline parameters arem = 80, n = 6, σ = 1,
ε1 = ε2 = 0.1. In figure (d), ε1 = ε2 = ε.

Binding Non-binding
Static approach 2674 2674
Ellipsoid-UCB 3325 11.7
Lower bound 1476 0

Table 1: Average number of samples used per binding con-
straint and per non-binding constraint. Numbers are average
from 100 trials. Here, m = 80, n = 4, σ = 1 ε1 = ε2 = 0.1.

Figure 2 addresses the variance in the number of samples
drawn by Ellipsoid-UCB by plotting its empirical CDF
over 500 random trials. The horizontal axis is the ra-
tio of samples required by Ellipsoid-UCB to those of the
lower bound. For comparison, we also mentionR, the ra-
tio between the performances of the static approach and
the lower bound. These results suggest that the variance
is quite moderate, particularly when the total number of
samples needed grows.

7 DISCUSSION AND FUTURE WORK

One question is whether we can extend our results to situ-
ations when the constraint matrix A is unknown as well
as b. The goal is again to solve the problem with few
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m=50 n=8 σ=1 ǫ=0.05 R=11.75

Figure 2: Empirical cumulative distribution function of
Ellipsoid-UCB’s number of samples, in units of the “lower
bound”, over 500 trials. Note that the lower bound varies when
parameters change. R = m log(m)

d log(d)
is the ratio between the

number of samples used by static approach and lower bound.

total observations. This extended model will allow us
to study a wider range of problems. For example, the
sample complexity problem in Reinforcement Learning
studied by Kakade et al. [2003], Wang [2017], Chen and
Wang [2016] is a special case of our AIALO problem
with unknown A and b.

A second extension to the model would allow algorithms
access to varying qualities of samples for varying costs.
For instance, perhaps some crowd workers can give very
low-variance estimates for high costs, while some work-
ers can give cheaper estimates, but have larger variance.
In this case, some preliminary theoretical investigations
suggest picking the worker that minimizes the product
(price)(variance). A direction for future work is for the
algorithm to select samples dynamically depending on
the payment-variance tradeoffs currently available. A fi-
nal interested direction is a more mechanism-design ap-
proach where the designer collects bids from the agents
and selects a winner whose data is used to update the
algorithm.
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Abstract

Meta learning algorithms are effective at ob-
taining meta models with the capability of
solving new tasks quickly. However, they crit-
ically require sufficient tasks for meta model
training and the resulted model can only solve
new tasks similar to the training ones. These
limitations make them suffer performance de-
cline in presence of insufficiency of training
tasks in target domains and task heterogene-
ity—the source (model training) tasks presents
different characteristics from target (model ap-
plication) tasks. To overcome these two signif-
icant limitations of existing meta learning al-
gorithms, we introduce the cross-domain meta
learning framework and propose a new trans-
ferable meta learning (TML) algorithm. TML
performs meta task adaptation jointly with
meta model learning, which effectively nar-
rows divergence between source and target
tasks and enables transferring source meta-
knowledge to solve target tasks. Thus, the re-
sulted transferable meta model can solve new
learning tasks in new domains quickly. We ap-
ply the proposed TML to cross-domain few-
shot classification problems and evaluate its
performance on multiple benchmarks. It per-
forms significantly better and faster than well-
established meta learning algorithms and fine-
tuned domain-adapted models.

1 Introduction

Meta learning aims at obtaining a model that can cap-
ture common characteristics across different learning
tasks, such that the learned model can adapt to new
tasks quickly. Recently, various meta learning meth-
ods (Hariharan & Girshick, 2016; Koch et al., 2015; Lake

et al., 2013; Ravi & Larochelle, 2016; Santoro et al.,
2016b; Vinyals et al., 2016) have been developed to solve
multiple challenging problems, e.g., few-shot classifica-
tion (Fei-Fei et al., 2006), and achieved promising per-
formance. Those methods devise different approaches to
train a meta model that can be applied to new tasks via
simple fine-tuning.In contrast to conventional supervised
learning methods that suffer poor generalization perfor-
mance, meta learning methods explicitly optimize the
model generalization ability to new tasks and therefore
achieve better performance.

Under the standard meta learning paradigm, the meta
model is trained on a meta-training dataset consisting of
sufficient training tasks and evaluated on another dataset
with novel tasks. However, existing meta learning meth-
ods usually assume the training and test tasks have sim-
ilar characteristics. For instance, for few-shot classifica-
tion tasks, the samples of different tasks are usually from
splits of the same dataset (Finn et al., 2017; Hariharan &
Girshick, 2016; Vinyals et al., 2016). This actually de-
viates from the real world scenarios where a pre-trained
meta model usually needs to be applicable to heteroge-
neous tasks in different domains. Moreover, constructing
the meta-training set demands sufficiently many labeled
examples, which are usually not available in practice
considering the “few-shot” nature of meta learning prob-
lems. Existing meta learning methods generally ignore
such discrepancy between the traditional meta learning
paradigm and realistic application scenarios, leading to
poor generalization ability of the obtained model to new
tasks in new domains.

To extend applicability of meta learning methods, we
propose a new framework to utilize data from another
(source) domain to construct the meta-training set and
aim to develop a new meta learning algorithm to learn
a meta model from the source domain that can be di-
rectly applied to target domains, without requiring fur-
ther meta-training. We term this new framework as the
cross-domain meta learning. See Fig. 1 for an exam-
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source domain

target domain II

target domain I

Figure 1: Illustration of the cross-domain meta learning.
The pre-trained meta learning model M in the source do-
main is applied to solve new learning tasks T 1

1 , . . . , T 2
2

in different target domains. The target domains have too
few labeled samples to construct sufficient meta-training
tasks. Our proposed TML algorithm solves this problem
by learning a transferable meta model which can be di-
rectly applied to target tasks.

ple. Developing cross-domain meta learning algorithms
is difficult due to the scarcity of meta-training examples
in target domains and task heterogeneity caused by do-
main shift. As far as we know, none of existing meta
learning methods can deal with these challenging issues.

To address the above challenges, we propose a novel
transferable meta learning (TML) algorithm, which pro-
vides a meta model capable of fast adapting to new learn-
ing tasks in different domains via a few simple gradi-
ent descent fine-tuning. Inspired by state-of-the-art meta
learning methods (Finn et al., 2017; Vinyals et al., 2016),
TML introduces a new learning scheme. It first orga-
nizes available training data, very few of which are from
target domains, to form a collection of cross-domain
meta learning tasks. Taking these tasks as training exam-
ples, TML explicitly optimizes the capability of “learn-
ing to fast adapt” of the meta model. By taking sensi-
tiveness of model parameters to different tasks and do-
main shift as the joint learning objective, TML effec-
tively trains the meta model to learn task representa-
tions robust to domain-shift, enables cross-domain meta-
knowledge transfer and makes the model fast adaptable
to novel target tasks of different characteristics from the
source ones.

TML trains a meta model in two alternating phases. In
meta learning, TML optimizes the meta model to mini-
mize the loss over all its task-specific fine-tuned models,
i.e., minimizing the meta loss. In meta adaptation, TML

reinforces the meta model by adapting task representa-
tions to minimize domain divergence and thus facilitates
meta-knowledge transfer across heterogeneous tasks. We
use a domain discriminative loss for measuring domain
divergence. Through these two phases, TML effectively
minimizes the source domain meta loss and domain di-
vergence jointly, which together serve as an accurate sur-
rogate for learning to minimize the meta loss in the tar-
get domain. Therefore, a meta model trained by TML is
readily applicable to solving new tasks in target domains.

We apply and evaluate TML for cross-domain few-shot
learning problems, on multiple datasets with various do-
main shift issues. The results demonstrate that TML sur-
passes fine-tuning based methods and other meta learn-
ing models significantly in terms of few-shot classifica-
tion accuracy and adaptation speed. To our best knowl-
edge, TML is the first one that considers the illness of
current meta learning frameworks and explicitly pursues
generalization across heterogeneous tasks in different
domains. It substantially extends existing meta learning
algorithms and mitigates the gap between meta learning
frameworks and realistic application scenarios.

2 Related Work

Meta Learning Recently, some meta learning (Koch
et al., 2015; Ravi & Larochelle, 2016; Santoro et al.,
2016b; Snell et al., 2017; Vinyals et al., 2016; Wang &
Hebert, 2016) works are developed to solve the few-shot
learning problems. A meta model is usually trained over
a set of similar tasks to capture generalizable properties
across tasks, such that it can fast adapt to new similar
tasks. Several different strategies for designing meta-
learning algorithms are adopted (Andrychowicz et al.,
2016; Ravi & Larochelle, 2016). For instance, “learning
to compare” aims to learn a comparison metric that can
be used to find the most similar labeled sample for each
unlabeled input (Koch et al., 2015; Mishra et al., 2017;
Vinyals et al., 2016). Some meta learning methods adopt
external memory to augment the model (Munkhdalai &
Yu, 2017; Santoro et al., 2016a). For example, (San-
toro et al., 2016a) builds a meta model upon a Neural
Turing Machine (Graves et al., 2014), which encodes
and writes labeled examples into the memory and re-
trieve relevant information from the memory for classi-
fying an unlabeled sample. Differently, Model-Agnostic
Meta-Learning (MAML) (Finn et al., 2017) tries to find
a proper intermediate model, which can be fine-tuned
for several steps to produce a task-specific model given
very few samples. However, all these existing models
assume that training and testing tasks have similar char-
acteristics, and suffer performance decline in presence
of task heterogeneity. Moreover, they all require suffi-
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ciently many training tasks. Our proposed TML algo-
rithm is the first one that tries to achieve fast adaptation
to new meta learning tasks in presence of varying in the
task characteristics in applied domains.

Few-shot Learning Few-shot learning (Fei-Fei et al.,
2006; Hariharan & Girshick, 2016; Lake et al., 2013)
is proposed to learn to recognize new categories with
few examples. (Fei-Fei et al., 2006) provides a solution
based on Bayesian inference over a pre-trained model
to capture general knowledge from previously learned
categories, whose generalization ability however is lim-
ited by heavy dependency on the relation between pre-
viously seen and new objects. Recently, (Hariharan &
Girshick, 2016; Luo et al., 2017) propose to transfer
intra-class features from base classes to new classes.
This method achieves good performance on new exam-
ples while maintaining the accuracy on original train-
ing classes. But all these conventional few-shot learning
methods require retraining the model from scratch when
applied to new few-shot learning tasks with randomly as-
signed labels, thus are incapable of fast adapting to mul-
tiple new tasks.

Domain Adaptation Many works have been devel-
oped for domain adaptation learning (Ganin et al., 2016;
Hoffman et al., 2013; Liu & Tuzel, 2016; Motiian et al.,
2017a,b; Tzeng et al., 2015, 2017). Maximum Mean
Discrepancy (MMD) Tzeng et al. (2014) measures the
distribution difference between the source and target do-
mains by computing norm of the mean feature differ-
ence between two domains. (Long et al., 2015; Sun &
Saenko, 2016) have shown that combining MMD with
popular deep learning models is effective. More recently,
Generative Adversarial Network (GAN) (Goodfellow
et al., 2014) based models have achieved remarkable suc-
cess, e.g. Adversarial Discriminative Domain Adaptation
(ADDA) (Tzeng et al., 2017) and CoGAN (Liu & Tuzel,
2016). ADDA adapts a well-learned source CNN by
learning a target CNN that maps target-domain images
into a feature space, where they are indistinguishable
from the source feature space by the GAN discriminator.
However, existing domain adaptation methods cannot be
applied to solve meta learning tasks.

3 The Proposed Algorithm

Meta learning aims to learn a meta model that captures
generalizable properties across tasks, such that the model
can adapt to solving new similar tasks quickly. In this
work, we consider the few-shot classification tasks in
particular, which are widely adopted for evaluating meta
learning methods. We first define the problem of meta
learning for few-shot classification. Then we elaborate

on our target problem, cross-domain meta learning, and
our proposed TML algorithm.

3.1 Problem Definition

Let X denote the input space and Y be the label space.
We are interested in meta learning for the N -category k-
shot learning tasks, where only a small number of k an-
notated samples per category (e.g., k ≤ 5) are available
for training a classification model within each task.

Let fθ(·): X→Y denote the meta learning model with
learnable parameter θ which is optimized to solve the
following few-shot learning tasks:

T � {(x1, y1), . . . , (xNk, yNk)︸ ︷︷ ︸
training samples

, (xt, yt)︸ ︷︷ ︸
test samples

, fθ, �}. (1)

More specifically, each task is to learn a specific classifi-
cation model fθ′(·) from only Nk training samples such
that the following task-specific classification loss on test
samples (xt, yt) can be minimized:

LT (fθ′) � �(fθ′(xt), yt), (2)

where � is the classification loss function.

Existing meta learning approaches generally learn a meta
model fθ(·) through meta-training over a collection of
tasks T ∼ p(T ) with similar distribution. In meta train-
ing, the meta model parameter θ is learned to minimize
the meta loss computed from all the training tasks:

θ = arg min
θ

m∑

i=1

LTi
(fθ′

i
), Ti ∼ p(T ), (3)

where θ′
i is derived from the meta model θ through task-

specific adaptation, e.g., by fine-tuning θ on training
samples of task Ti. When there are sufficiently many
meta-training tasks Ti from the same distribution p(T ),
i.e., m is sufficiently large, one can reliably obtain a
well-performing meta model that can solve new task
Tt ∼ p(T ) with satisfactory task-specific loss.

However, in many realistic few-shot learning problems,
only a few labeled data are available which are not suf-
ficient to form many tasks for performing meta-training
in Eqn. (3). Thus the resulted meta model would suffer
from insufficient meta-training and would not generalize
well to new tasks. In this work, we propose to address
this problem by constructing a meta-training set from an-
other (source) domain of different characteristics where
rich labeled data are available. Despite being promising
and fitting realistic scenarios better, such a method brings
a cross-domain meta learning problem as defined below.
This problem is challenging to existing meta learning
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methods as they usually assume the meta-training and
meta-test tasks are from the same distribution. We aim
to solve the following problem in this work, whose so-
lution would also bring significant practical benefits in
extending application of meta learning models to other
heterogeneous tasks in different domains.

Definition 1 (Cross-domain Meta Learning). Suppose
there are two different datasets of X × Y with domain
shift in X , called source data DS and target data DT ,
and DT only provides very few labeled samples. We aim
to learn a meta model fθ(·) by leveraging the sufficiently
many source data DS and their formed meta-training
tasks Ti ∈ pS(T ), such that the model can generalize
well to new tasks Tt ∈ pT (T ) in target dataset DT with
small task loss. Here pT (T ) is different from pS(T ) in
terms of label space Y and data distribution X .

Directly training a meta model via minimizing the meta
loss (Eqn. (3)) in target dataset DT is infeasible due to
limited labeled data and consequently insufficient meta-
training tasks. On the other hand, although the source
domain data is enough for training a meta model, directly
applying it to the target domain will suffer poor general-
ization performance due to domain shift (verified by ex-
periments in Sec. 4). To address this problem, we aim to
fully utilize cross-domain knowledge to learn a powerful
meta model fθ, which is well prepared for fast adapta-
tion to new few-shot learning tasks in target dataset DT .
To this end, we develop the transferable meta learning
algorithm in this work.

3.2 Model-Agnostic Meta-Learning (MAML)

We develop our transferable meta learning (TML) algo-
rithm from the state-of-the-art MAML algorithm (Finn
et al., 2017). While we extend MAML here, our pro-
posed idea is applicable to other meta-learning methods.

MAML solves above few-shot learning problems
by learning the parameter θ such that fθ can
solve a new task rapidly via several gradient de-
scent steps on few-shot task-related training exam-
ples. To this end, MAML forms a set of train-
ing tasks T ={T1, . . . , Tm}, where each task instan-
tiates an N -category k-shot classification problem
Ti = {(x

(i)
1 , y

(i)
1 ), . . . , (x

(i)
Nk, y

(i)
Nk), (x

(i)
t , y

(i)
t ), fθ, �} as

in Eqn. (1).

MAML fine-tunes the meta model fθ to a particular task
Ti by gradient descent:

θ′
i ← θ − α∇LTi(fθ) (4)

where LTi
(fθ) = 1

Nk

∑Nk
j=1 �(fθ(x

(i)
j ), y

(i)
j ) is the task-

related training loss and α is a universal learning rate.

By treating each task as a training example, MAML opti-
mizes meta model parameter θ such that the total loss for
the task-wise fine-tuned parameter θ′

i over testing sam-
ples (x

(i)
t , y

(i)
t ) can be minimized:

min
θ

m∑

i=1

LTi
(fθ′) =

m∑

i=1

LTi
(fθ−α∇θLTi

(fθ)),

where LTi(fθ′) = �(fθ′(x
(i)
t ), y

(i)
t ), i.e., classification

loss on the reserved testing samples. The meta pa-
rameter θ is then updated by gradient descent θ ←
θ − β∇θ

∑m
i=1 LTi

(fθ′
i
). The trained meta model fθ

can be applied directly to a new similar N -category k-
shot learning task through gradient descent fine-tuning
in Eqn. (4) and performs remarkably well.

MAML inspires us in two aspects for solving few-shot
learning problems. First, instead of training a single
model on all available training data at once (which is
a common practice in most few-shot learning meth-
ods (Fei-Fei et al., 2006; Hariharan & Girshick, 2016;
Lake et al., 2013)), we should construct learning tasks
exactly matching the testing case for model training,
which is a more suitable learning scheme for obtaining
strong generalization ability from few examples. Sec-
ond, compared with optimizing the classification accu-
racy, optimizing the model adaptive capability to new
tasks better fits the nature of few-shot learning.

Although MAML provides promising solutions to few-
shot learning, its performance highly depends on the sim-
ilarity of training and testing tasks. It cannot handle dis-
crepancies among tasks—in particular the domain shift
between source and target data we aim to address—and
suffers performance decline.

3.3 Transferable Meta Learning Algorithm

Our proposed Transferable Meta Learning (TML) algo-
rithm solves cross-domain meta learning problems by
learning a meta model from the source data DS along
with a few unlabeled target data, which can fast adapt
to various few-shot classification tasks in target data DT .
Beyond existing meta-learning algorithms (like MAML),
TML entails the meta model with two-fold fast adapta-
tion capability. First, the model can learn from few train-
ing examples fast through simple fine-tuning, solving the
few-shot learning tasks. Second, the model can adapt to
tasks in different domains, addressing the task hetero-
geneity issues caused by domain shift.

TML is developed following a simple intuition: the loss
function computed in the source domain is expected
to be a good indicator of the target loss when both
tasks are similar. The main idea of TML is to learn
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a meta model that is capable of adapting to new tasks
fast and meanwhile learning domain-invariant represen-
tations such that source tasks can provide useful meta-
knowledge for training models in target domains. To this
end, we develop a new learning scheme and propose a
novel meta model architecture. The meta model fϕ,θ

learned by TML includes two components, a domain-
invariant representation learner fϕ parameterized by ϕ
and a meta-classifier fθ with parameters θ, as illustrated
in Fig. 2. TML optimizes these two components jointly
such that the domain divergence can be reduced in a
way favorable for few-shot learning and facilitate cross-
domain meta-knowledge transfer.

TML Learning Scheme We apply TML to train a
meta model on a collection of source training tasks,
with a new learning scheme suiting cross-domain meta
learning. For notational simplicity, we use (xS , yS)
and xT to collectively denote source data and unlabeled
target data respectively, and let (xt,S , yt,S) denote an-
other source sample reserved for evaluating the loss in
Eqn. (2). Then, we define a cross-domain few-shot learn-
ing task for TML as

Ti � {(x
(i)
S , y

(i)
S ), (x

(i)
t,S , y

(i)
t,S), x

(i)
T , fϕ,θ, �}, (5)

which includes two model training steps. First, fine-tune
the meta-classifier θ and representation learner ϕ with
few-shot source training samples (x

(i)
S , y

(i)
S ) by gradient

descent:

ϕ′
i, θ

′
i ← (ϕ, θ) − α∇ϕ,θLTi

(fϕ,θ), (6)

and evaluate classification loss on (x
(i)
t,S , y

(i)
t,S) based on �

as in Eqn. (2). Second, optimize representation learner ϕ
to minimize distribution divergence (see below) between
source data x

(i)
S and target data x

(i)
T . This new task for-

mulation distinguishes TML from existing meta learning
algorithms. TML explicitly meta-learns both few-shot
classification and task adaptation.

When applying the meta model fϕ,θ to few-shot learning
tasks in target domain DT , we apply gradient descent
to fine-tune the model parameters ϕ and θ over the few
labeled target data, following Eqn. (6).

TML Algorithm We explain how TML trains a
meta model on the training tasks {Ti} constructed as
above, which alternates between two optimization sub-
procedures, as illustrated in Fig. 2.

The first is meta learning step, where TML tries to learn
a domain-specific meta-classifier θ and representation
learner ϕ such that fine-tuning over them can minimize

Figure 2: TML for meta model training. TML performs
meta learning and task adaptation jointly to optimize the
meta model (consisting of representation learner ϕ and
classifier θ) and the discriminative model ω.

the loss over source test data:

min
ϕ,θ

∑

Ti∈T
LTi

(fϕ′
i,θ

′
i
)

=
∑

Ti∈T
LTi(f(ϕ−α∇ϕLTi

(fϕ,θ)),(θ−α∇θLTi
(fϕ,θ)))

where the inner loss LTi
(fϕ,θ) is the total cross-entropy

loss over the training samples (x
(i)
S , y

(i)
S ) in task i:

LTi(fϕ,θ) =
∑

(xj ,yj)∈(x
(i)
S ,y

(i)
S )

yj log fϕ,θ(xj)

+(1−yj) log(1−fϕ,θ(xj)).

(7)

The outer meta loss LTi
(fϕ′

i,θ
′
i
) is the cross-entropy

loss defined on the task-specific testing samples
(x

(i)
t,S , y

(i)
t,S) ∈ Ti for the fine-tuned model after one gra-

dient descent step fϕ′,θ′ :

LTi
(fϕ′

i,θ
′
i
) =

∑

(xt,S ,yt,S)∈Ti

yt,S log fϕ′
i,θ

′
i
(xt,S)

+(1−yt,S) log(1−fϕ′
i,θ

′
i
(xt,S)).

The involved meta model parameters are updated by gra-
dient descent:

ϕ ← ϕ−β∇ϕ

∑

Ti∈T
LTi(fϕ′

i,θ
′
i
),

θ ← θ−β∇θ

∑

Ti∈T
LTi

(fϕ′
i,θ

′
i
).

This meta learning step is similar to MAML but it de-
couples the representation learner ϕ and classifier θ for
developing the following meta adaptation learning.

The second step in TML is meta adaptation with a tar-
get to make the meta model fast adaptable to the target
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domain DT which is different from the source DS used
for extensive meta model training. In particular, TML
trains the representation learner fϕ in this step such that
it can be adapted through fine-tuning to minimize the
distribution divergence between DT and DS , to allevi-
ate domain-shift issues when applying the meta-classier
fθ. Specifically, we use a domain adversarial discrimina-
tive loss to measure divergence between domains DS and
DT , in the feature space produced by the representation
learner fϕ, inspired by (Ganin et al., 2016).

Formally, we use US to denote the source feature space
derived by passing source data xS through the represen-
tation learner fϕ. The target feature space UT ← xT :
fϕ is derived similarly. A domain discriminator Dω pa-
rameterized by ω is trained on tasks Ti to distinguish
whether a sample x is from US or UT :

ω = arg max log Dω(fϕ(xS)) + log(1 − Dω(fϕ(xT )),

where we give label 1 to the data from source domain and
0 otherwise. We use the negative cross-entropy loss of
Dω as a measure over the domain divergence—a larger
discriminative loss means the samples are indistinguish-
able w.r.t. domain shift, indicating a small domain diver-
gence. The domain divergence is calculated as below,
dependent on the meta model parameter ϕ and discrimi-
nator ω:

dϕ,ω(DS , DT ) := − ExS∈DS
[log Dω(fϕ(xS))]

− ExT ∈DT
[log(1 − Dω(fϕ(xT ))] .

In meta adaptation, TML learns ϕ and ω jointly to min-
imize the domain divergence derived from samples pro-
vided in training tasks Ti, i.e.,

dϕ,ω(DS , DT ; Ti) := −
∑

xS∈x
(i)
S

[log Dω(fϕ(xS))]

−
∑

xT ∈x
(i)
T

[log(1 − Dω(fϕ(xT ))] .

In all, the learning objective for TML is

min
θ,ϕ

max
ω

∑

Ti∈T
LTi(fϕ′

i,θ
′
i
) − dϕ,ω(DS , DT ; Ti),

s.t. ϕ′
i, θ

′
i ← (ϕ, θ) − α∇ϕ,θLTi

(fϕ,θ).

TML updates meta model parameters ϕ, θ and discrim-
inator ω by gradient descent. Details for our proposed
TML algorithm are summarized in Alg. 1. The output
meta model has following attractive advantages. First, it
is well prepared for fast adapting to new tasks and do-
mains through gradient based fine-tuning. Second, its
representation learner maps the heterogeneous-domain

Algorithm 1: Transferable Meta Learning
Input: Source domain data DS , target domain data DT ,

task set T , learning rates α, β, γ, max iteration I
Output: Representation learner ϕ, classifier θ, domain

discriminator ω
1 Randomly initialize θ, ϕ, ω
2 for i = 1, . . . , I do
3 Sample task Ti ∈ T .
4 Estimate ∇LTi

(fϕ,θ) using task provided training
samples (x, y) based on Eqn. (7)

5 Fine-tune the parameters ϕ, θ as Eqn. (6):
(ϕ′

i, θ
′
i) = (ϕ, θ) − α∇(ϕ,θ)LTi

(fϕ,θ)
6 Estimate meta learning gradient w.r.t. (ϕ, θ) on the

testing examples in task Ti by:
(Δcls

ϕ , Δcls
θ ) = ∇(ϕ,θ)

∑
Ti∈T LT S

i
(fϕ′

i,θ
′
i
)

7 Sample source data xS ∈ DS , target data xT ∈ DT

8 Estimate meta adaptation gradient w.r.t. ϕ based on
(xS , xT ) by: Δadpt

ϕ = ∇ϕdϕ,ω(DS , DT )

9 Update model parameters:
10 ϕ ← ϕ − βΔcls

ϕ − γΔadpt
ϕ

11 θ ← θ − βΔcls
θ

12 ω ← ω − γ∇ωdϕ,ω(DS , DT )

13 end

data into a common space with minimized domain di-
vergence such that model can effectively transfer meta-
knowledge for few-shot learning across domains. In
the experiments, we also verify that TML is superior to
the approach that performs domain adaptation and meta
learning separately.

4 Experiments
Datasets We first conduct experiments on learning a
meta few-shot classification model with TML across
three digits datasets, i.e., MNIST (LeCun et al., 1998),
USPS (Le Cun et al., 1989) and SVHN (Netzer et al.,
2011). Each dataset contains 10 categories of digit im-
ages with varying characteristics. Then we evaluate
TML on the office dataset (Saenko et al., 2010), which
is a more challenging benchmark with more complex
image contents and more significant domain shift. The
dataset contains 31 classes of office supplies from three
distinct domains, i.e., Amazon, DSLR and Webcam.

Experiment Settings All experiments follow the stan-
dard N -way K-shot protocol (Vinyals et al., 2016) for
few-shot learning, which is widely used for evaluating
meta learning algorithms. Under this protocol, samples
from one dataset are split and re-organized into multi-
ple tasks. Each task provides N selected classes with K
labeled training instances per class. Each task requires
training a few-shot learning model on the provided la-
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beled samples. See Sec. 3.1 for the formal definition
of the task. We form the learning tasks for TML in the
way described in Sec. 3.3. Note the labels for the N se-
lected classes are randomly assigned under the few-shot
learning protocol. The purpose is to evaluate whether
the model indeed gains the capability of learning to rec-
ognize from few examples, instead of memorizing train-
ing examples from all the tasks. In our implementation,
both the N classes and K samples are randomly selected
from the whole dataset. Performance of a few-shot learn-
ing model is measured by the classification accuracy on
another K × N unseen samples.

As we are interested in the cross-domain setting, in the
experiments we train a model with access to the source
data but evaluate its performance on tasks from the speci-
fied target domain. For instance, under the cross-domain
setting of “MNIST ⇒ USPS”, we train a model on
MNIST data and evaluate its performance in USPS few-
shot learning tasks.

Baselines Since the problem of cross-domain few-shot
classification is new, few valid methods are available
for solving it. Here we compare TML with follow-
ing strong baselines, which leverage the state-of-the-art
meta learning algorithms and domain adaptation meth-
ods, for obtaining the meta model. 1) Train a stan-
dard supervised-learning classifier on the source dataset,
and fine-tune it for each specific target task. Comparing
with this baseline aims to verify effectiveness of TML
in training a meta few-shot learning model with strong
generalization ability from few samples, compared with
standard supervised learning methods. 2) The state-of-
the-art meta learning algorithm, MAML (Finn et al.,
2017). In particular, we use MAML to train the meta
model in the source domain following the few-shot learn-
ing protocols and directly apply MAML to solve target
tasks. We aim to demonstrate the advantage of TML
over MAML in handling cross-domain few-shot learn-
ing problems. 3) The “oracle” MAML. It is trained us-
ing the full target datasets and provides performance up-
per bound for all the cross-domain trained models. 4)
MAML+ADDA. Concretely, apply state-of-the-art do-
main adaptation method ADDA (Tzeng et al., 2017) to
align target domain samples with the source domain at
first, and then apply MAML on the adapted sample rep-
resentations. For this baseline, the domain adaptation is
blind and unaware of few-shot learning tasks. Compar-
ing TML with it verifies the benefits of end-to-end meta-
adaptation and meta-learning in TML.
Implementation Details The meta model in TML con-
sists of two components, a meta representation learner
and a meta classifier. The former contains four cascade
convolutional units, while the latter is built with a linear
transformation layer followed by a softmax layer, follow-

ing similar architectures in (Finn et al., 2017; Vinyals
et al., 2016). The architecture of the convolutional units
varies along with the number of input image channels.
For gray-scale images (e.g., digit images), each convolu-
tional unit is composed of 1) 3×3 2D convolution with
64 filters and stride 2×2, 2) batch normalization (Ioffe &
Szegedy, 2015), and 3) ReLU nonlinear activation func-
tion. After the convolutions, a mean pooling layer is used
to transform multiple 2D feature maps into a linear fea-
ture vector. For color images (e.g., office images), the
convolutional unit changes to 1) 3×3 2-D convolution
with 32 filters and stride 1, 2) batch normalization, 3)
2×2 max pooling layer, and 4) ReLU nonlinearity. Then
the feature maps are simply flatten to produce a feature
vector for classification. The domain discriminator con-
sists of 3 fully connected layers. Each of the two hidden
layers has 500 neurons and is followed by a ReLU activa-
tion function. One single unit in the output layer is used
to indicate the input is from the source or target domain.

To train all network models, we adopt Adam (Kingma &
Ba, 2014) as the optimizer. The meta learning rate β is
set as 0.001, while the adaptation learning rate γ is set
as 2×10−4. The update (or fine-tuning) learning rate α
is fixed as 0.4 for training on gray images and 0.01 for
color images. The task batch size is 32 for gray images
and 4 for color image due to GPU memory limitation.
All models are trained on a single GeForce GTX TITAN
Black GPU with 12G memory.

4.1 Results on Digit Datasets

We present results on the digit datasets with multiple
cross-domain directions. We first convert all images to
gray scale and resize them to 28×28. When building
learning tasks, we rotate images class-wise by 90◦ ran-
domly for data augmentation (Santoro et al., 2016a).

We test our TML in following few-shot settings: 5-way
1-shot and 5-way 5-shot, and four cross-domain direc-
tions: MNIST ⇒ USPS, MNIST ⇒ SVHN, USPS ⇒
MNIST and SVHN ⇒ USPS. For the fine-tuning base-
line, we first train three classifiers of the same architec-
ture as our model on the three full digit datasets (using
the training set) individually. Then the learned classifier
on source domain is fine-tuned on the other two target
domains under the few-shot setting, i.e., fine-tuning the
model on a few training samples and evaluating it on the
testing samples for each task individually. For effectively
preventing over-fitting, we carefully select the fine-tune
learning rate which is set as 2 × 10−4.

Table 1 reports the few-shot classification accuracy av-
eraged over 500 randomly sampled tasks. One can ob-
serve that MAML, MMAL+ADDA and TML all surpass
the fine-tune baseline by a large margin in all settings,
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Table 1: Few-shot classification results for digit images. The left-most column shows the cross-domain direction,
where M, U, S denotes MNIST, USPS, SVHN respectively. The results are reported in terms of classification accuracy
(%) averaged over 500 tasks. The gray number in parentheses for MAML is the averaged accuracy obtained by training
MAML on the full target datasets. “M + A” denotes the MAML+ADDA baseline.

Direction 5-way 1-shot 5-way 5-shot
Fine-tune MAML M + A TML Fine-tune MAML M + A TML

M ⇒ U 39.12 86.33 (97.97) 86.83 91.70 63.42 93.43 (97.95) 93.44 94.43
M ⇒ S 21.08 22.30 (83.00) 24.03 29.60 24.56 28.82 (89.70) 29.43 29.68
U ⇒ M 37.48 83.30 (99.30) 81.80 88.90 52.99 89.42 (99.59) 90.03 90.01
S ⇒ U 23.36 84.60 (97.97) 82.70 82.67 61.21 87.23 (97.95) 87.86 89.23

Direction 10-way 1-shot 10-way 5-shot
Fine-tune MAML M + A TML Fine-tune MAML M + A TML

M ⇒ U 24.50 74.15 (94.60) 75.05 80.45 49.50 81.86 (95.85) 82.54 86.43
M ⇒ S 11.14 12.52 (67.57) 13.13 13.55 13.09 15.36 (84.41) 14.22 15.44
U ⇒ M 17.64 53.98 (98.68) 59.05 65.58 31.49 73.09 (98.98) 72.96 75.99
S ⇒ U 21.46 54.88 (94.60) 59.30 68.80 43.23 78.71 (95.85) 78.96 80.04

Table 2: Few-shot classification accuracy (in %) of TML
in source domain of the digit datasets, averaged over 500
randomly sampled tasks.

5-way 1-shot 5-way 5-shot

M 99.47 99.42
U 97.40 97.05
S 83.87 89.82

proving the benefits of considering the nature of few-
shot learning in model training. More importantly, TML
outperforms MAML for almost all settings, by a mar-
gin up to 8%. This shows effectiveness of TML in solv-
ing domain-shift issues for few-shot learning tasks. The
second-best baseline ADDA+MAML also tries to solve
domain-shift explicitly by applying ADDA to align do-
mains at first. However its performance is inferior to
TML as it conducts domain adaptation blindly which
may harm the few-shot learning performance. In con-
trast, our proposed TML performs meta-adaptation and
meta-learning jointly, providing fast adaptation abilities
to both new tasks and new domains. Thus it improves
ADDA+MAML by up to 9.5%. The superiority of TML
over ADDA+MAML becomes more significant when
training samples are very limited.

For the U ⇒ M (5-way, 5-shot) setting, TML performs
comparably well as ADDA+MAML, where the target
domain data are sufficient for ADDA to achieve good
domain adaptation. For the S ⇒ U (5-way, 1-shot) set-
ting, MAML performs slightly better than TML. This is
because the domain divergence between S and U is large
and target data from a single task are limited for TML to
perform meta-adaptation sufficiently well.

For better understanding the domain shift challenge to
few-shot learning, we also evaluate the oracle MAML

Figure 3: Adaptation speed comparison. Left: MNIST
⇒ USPS, 5-way 1-shot. Right: SVHN ⇒ USPS, 10-way
1-shot. The fine-tuning baseline updates for 300 steps in
total, i.e., one step amounts to 30 actual steps.

baseline which has full access to samples in the target
domain. The results in Table 1 show that domain shift
brings a significant performance drop to MAML, demon-
strating the necessity of addressing domain-shift in few-
shot learning. TML can reduce the performance gap
moderately. TML is effective at minimizing the domain
divergence without harming performance in source do-
main. To show this, we also evaluate its few-shot clas-
sification performance on the source domain. The re-
sults in Table 2 demonstrate that TML performs as well
as MAML in the source domain, proving TML can learn
domain-invariant representations benefiting applications
in both source and target domains.

Moreover, fast adaptation is important in practical ap-
plications. Therefore, we evaluate adaptation speed (in
terms of adaptation steps) of different methods. Given
a new task from the target domain, each model is up-
dated for several steps (e.g., 10) with gradient descent
using the task-provided few-shot training data. We plot
the few-shot classification performance against model
updating steps for the naive fine-tuning model, MAML,

184



Table 3: Few-shot classification results for office images. The left-most column shows the cross-domain direction,
where A, D, W denote Amazon, DSLR, Webcam respectively. The results are reported in terms of classification
accuracy (in %), averaged over 500 tasks. “M + A” denotes the MAML+ADDA baseline.

Direction 5-way 1-shot 5-way 5-shot
Fine-tune MAML M + A TML Fine-tune MAML M + A TML

A ⇒ D 42.44 45.90 49.43 54.50 74.12 71.74 71.63 80.72
A ⇒ W 41.67 46.43 48.50 53.83 69.71 70.70 69.70 78.59
D ⇒ W 46.48 72.77 72.20 76.70 74.02 77.51 78.78 88.97
W ⇒ D 49.28 80.20 80.93 82.83 78.91 90.48 89.55 91.25

Direction 10-way 1-shot 10-way 5-shot
Fine-tune MAML M + A TML Fine-tune MAML M + A TML

A ⇒ D 32.62 32.90 35.05 41.92 64.37 60.20 60.04 71.47
A ⇒ W 31.47 32.72 35.02 38.80 60.39 60.13 61.36 66.22
D ⇒ W 34.78 51.43 50.33 58.67 65.01 80.08 80.22 82.08
W ⇒ D 38.66 58.58 57.07 60.92 69.09 81.02 81.17 83.88

(a) (b)

Figure 4: (a) Adaptation speed comparison on office datasets (D ⇒ W, 5-way 5-shot). (b) Corresponding few-shot
classification confusion matrices on task-specific testing set.

MAML+ADDA and TML in Fig. 3. TML presents much
faster adaptation than others and achieves the best perfor-
mance. Notably, TML only needs one step adaptation to
achieve better performance than all the baselines.

4.2 Results on Office Datasets
We then evaluate TML on the more challenging office
dataset for four few-shot settings and three cross-domain
directions: Amazon ⇒ DSLR, Amazon ⇒ Webcam and
Webcam ⇒ DSLR. Since Amazon provides sufficient
training examples, we always take it as source domain.
The experimental results are shown in Table 1. Simi-
lar to the digit images, TML brings improvement up to
10.72% over MAML and MAML+ADDA, and performs
significantly better than the fine-tuning baseline.

We also analyze the adaptation speed of different ap-
proaches to multiple 5-way 5-shot learning tasks from
Dslr to Webcam domains, which is visualized in Fig. 4a.
TML adapts significantly faster than all the baselines,
demonstrating the meta-adaptation is effective for aug-
menting model adaptation ability. For understanding
few-shot classification performance more transparently,
we also plot classification confusion matrix for all the ap-
proaches in Fig. 4b. TML provides more accurate clas-

sification for all the 5 categories than baselines, show-
ing its effectiveness in overcoming challenges from both
domain-shift and limited training examples. In contrast,
MAML+ADDA degrades the performance of MAML
for the second category, demonstrating blind domain
adaptation may confuse some categories and harm the
few-shot learning performance.

5 Conclusion

This work introduced the new cross-domain meta learn-
ing problems challenged by insufficiency of training ex-
amples and varying characteristics of tasks. We devel-
oped the first transferable meta learning (TML) algo-
rithm which substantially extends existing meta learning
algorithms to solve new tasks in different domains and
relieve the issues brought by insufficient training tasks.
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Abstract

A common goal in psychometrics, sociology,
and econometrics is to uncover causal rela-
tions among latent variables representing hy-
pothetical constructs that cannot be measured
directly, such as attitude, intelligence, and
motivation. Through measurement models,
these constructs are typically linked to mea-
surable indicators, e.g., responses to question-
naire items. This paper addresses the prob-
lem of causal structure learning among such la-
tent variables and other observed variables. We
propose the ‘Copula Factor PC’ algorithm as a
novel two-step approach. It first draws samples
of the underlying correlation matrix in a Gaus-
sian copula factor model via a Gibbs sampler
on rank-based data. These are then translated
into an average correlation matrix and an ef-
fective sample size, which are taken as input to
the standard PC algorithm for causal discovery
in the second step. We prove the consistency of
our ‘Copula Factor PC’ algorithm, and demon-
strate that it outperforms the PC-MIMBuild al-
gorithm and a greedy step-wise approach. We
illustrate our method on a real-world data set
about children with Attention Deficit Hyperac-
tivity Disorder.

1 INTRODUCTION

Social scientists, psychologists, and many other scien-
tists are usually interested in learning causal relations be-
tween latent variables that cannot be measured directly,
e.g., attitude, intelligence, and motivation (see [15, 24],
and Chapter 10 of [27] for more details). In order to
get a grip on these latent concepts, one commonly-used
strategy is to construct a measurement model for such a

latent variable, in the sense that domain experts design
a set of measurable “items” or survey “questions” that
are considered to be indicators of the latent variable. For
instance, in the study of Attention Deficit Hyperactivity
Disorder (ADHD), 18 questions are designed to measure
three latent variables: inattention, hyperactivity, and im-
pulsivity [29]. In some other cases where it is difficult to
design a measurement model due to the absence of do-
main knowledge or for other reasons, there are some off-
the-shelf algorithms, e.g., BPC [24] and FOFC [15], for
learning the measurement models from indicator data.
In this paper, we focus on inferring the causal structure
among latent variables, assuming that the measurement
models are given. We also allow interactions between
these latent variables and other (explicit) variables, e.g.,
subject characteristics like gender and age. Another is-
sue we consider is that there are diverse types of variables
in most real-world data: the questionnaire data in a sur-
vey is typically ordinal, whereas other variables might be
binary, or continuous.

In this paper, we use a Gaussian copula factor model
(the formal definition is given in Section 3) to describe
such situations, in which a factor can be connected to ei-
ther one or more observed variables (indicators). Factors
with multiple indicators are used to model latent vari-
ables corresponding to psychological traits, such as atti-
tude and intelligence. The copula model provides a good
way of analyzing diverse types of variables, where the
associations between variables are parameterized sepa-
rately from their marginal distributions [13].

We propose the ‘Copula Factor PC’ algorithm for esti-
mating the causal structure among factors of a Gaussian
copula factor model, which is based on a two-step ap-
proach. The first step draws samples of the underlying
correlation matrix, where the Gibbs sampler by [13] for
Gaussian copula models is extended to Gaussian copula
factor models by replacing the Wishart prior with the G-
Wishart prior and adding a new strategy to sample latent
factors. These samples are then translated into an aver-
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age correlation matrix, and an effective sample size that
is used to account for information loss incurred by dis-
crete variables [9]. The second step takes the estimated
correlation matrix and effective sample size as input to
the standard PC algorithm [27] for causal discovery.

The rest of this paper is organized as follows. Section 2
reviews necessary knowledge and related work. Sec-
tion 3 gives the definition of a Gaussian copula factor
model. Section 4 describes our ‘Copula Factor PC’ al-
gorithm, and introduces two alternative approaches: the
PC-MIMBuild algorithm [24] and a greedy step-wise ap-
proach. Section 5 compares the ‘Copula Factor PC’ algo-
rithm with the two alternative approaches on simulated
data, and Section 6 gives an illustration on real-world
data of ADHD patients. Section 7 concludes this paper
and gives some discussion.

2 BACKGROUND

Causal discovery A graphical model is a graph G =
(V ,E), where the vertices V = {X1, . . . , Xd} cor-
respond to random variables and the edges E repre-
sent dependence structure among the variables. A graph
is directed if it just contains directed edges and undi-
rected if all edges are undirected. A graph that contains
both directed and undirected edges is called a partially
directed graph. Graphs without directed cycles (e.g.,
Xi → Xj → Xi) are acyclic. We refer to a graph as
a Directed Acyclic Graph (DAG) if it is both directed
and acyclic. If there is a directed edge Xi → Xj , Xi

is called a parent of Xj . A distribution over a random
vector X with Xi ∈ V is said to be Markov w.r.t. a
DAG G = (V ,E), if X satisfies the Causal Markov
Condition: each variable in the DAG G is independent of
its non-descendants given its parents, which is also im-
plied by the so-called d-separation [20]. A distribution
is faithful w.r.t. a DAG G if there are no conditional in-
dependencies in the distribution that are not encoded by
the Causal Markov Condition. If a distribution is both
Markov and faithful w.r.t. a DAG G, the DAG is called a
perfect map of the distribution.

Several DAGs may, via d-separation, correspond to the
same set of conditional independencies. The set of such
DAGs is called a Markov equivalence class, which can
be represented by a completed partially directed acyclic
graph (CPDAG). Arcs in a CPDAG suggest a cause-
effect relationship between pairs of variables since the
same arc appears in all members of the CPDAG. An
undirected edge Xi−Xj in a CPDAG implies that some
of its members contain an arc Xi → Xj while oth-
ers contain an arc Xj → Xi. Causal discovery aims
to learn the Markov equivalence class of the underlying
DAG from observations.

The PC algorithm The PC algorithm [27], a reference
algorithm for causal discovery, consists of two stages:
adjacency search and orientation. The adjacency search
starts with a fully connected undirected graph, and then
recursively removes the edges according to conditional
independence decisions, yielding the skeleton and sepa-
ration sets. In the orientation stage, we first orient the
unshielded triples according to the separation sets, and
then orient as many of the remaining undirected edges as
possible by applying the orientation rules repeatedly.

A key part of the procedure is to test for conditional in-
dependencies. When a random vector X ∼ N (0, C),
the PC algorithm considers the so-called partial corre-
lation, denoted by ρuv|S , which can be obtained by the
correlation matrix C [1]. Given observations of X and
significance level α, classical decision theory yields

Xu ⊥⊥ Xv|XS ⇔ (1)
√
n− |S| − 3

∣∣∣∣
1

2
log

(
1 + ρ̂uv|S
1− ρ̂uv|S

)∣∣∣∣ ≤ Φ−1(1− α/2),

where u 6= v, S ⊆ {1, . . . , d}\{u, v} and Φ is the cu-
mulative distribution function of the standard Gaussian.
Hence, the PC algorithm requires the correlation matrix
C (to compute partial correlations ρuv|S) and the sample
size n as input. Uniform consistency of the PC algo-
rithm for Gaussian data is shown under some relatively
mild assumptions on the sparsity of the true underlying
structure [14] .

Harris & Drton [11] use rank correlations, typically
Spearman’s ρ and Kendall’s τ , to replace the Pearson
correlation, which extends the PC algorithm to the so-
called nonparanormal models. The resulting ‘Rank PC’
algorithm performs as well as the PC algorithm using
Pearson correlations on Gaussian data, yet much bet-
ter on nonparanormal data. The PC algorithms using
both Pearson and rank correlations require all univari-
ate marginal distributions to be continuous. Cui et al. [9]
extend the PC algorithm to mixed discrete and contin-
uous data assumed to be drawn from a Gaussian copula
model, where each observed variable is assumed to be in-
duced by a latent Gaussian variable and the dependence
between observed variables is determined by the correla-
tion matrix of the latent variables. The resulting ‘Copula
PC’ algorithm works well for mixed data, but requires
each latent variable to have only a single indicator. Silva
et at. [24] propose the PC-MIMBuild algorithm, which
allows a latent variable to have multiple indicators, but
it is limited to continuous observations and assumes that
each latent variable has at least two indicators.

In this paper, we aim to generalize the PC algorithm to
handle latent variables having one or more indicators and
observations being either discrete or continuous.
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3 GAUSSIAN COPULA FACTOR
MODEL

Definition 1 (Gaussian Copula Factor Model).
Consider a latent random (factor) vector
η = (η1, . . . , ηk)T , a response random vector
Z = (Z1, . . . , Zp)

T and an observed random vec-
tor Y = (Y1, . . . , Yp)

T , satisfying

η ∼ N (0, C), (2)
Z = Λη + ε, (3)

Yj = F−1
j

(
Φ
[
Zj/σ(Zj)

])
,∀j = 1, . . . , p, (4)

with Λ = (λij) a p × k matrix of factor loadings
(k ≤ p), ε ∼ N (0, D) Gaussian noise with D =
diag (σ2

1 , . . . , σ
2
p), σ(Zj) the standard deviation of Zj ,

and Fj−1(t) = inf{x : Fj(x) ≥ t} the pseudo-inverse
of a cumulative distribution function Fj . This model is
called a Gaussian Copula Factor Model with correlation
matrix C, factor loadings Λ, and univariate margins Fj .
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cc

η3

;;
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Figure 1: Gaussian copula factor model.

The model is also defined in [18], but the authors restrict
the factors to be independent of each other while we al-
low for their interactions. An example of the model is
shown in Figure 1. Our model is a combination of a
Gaussian factor model (from η to Z) and a Gaussian
copula model (from Z to Y ). In the special case of a
factor having a single response (thus a single observed
variable), e.g., η1 → Z1 → Y1, it reduces to a Gaussian
copula model where we set λ11 = 1 and ε1 = 0, thus
Y1 = F−1

1 (Φ[η1]).

In the typical design for questionnaires, one tries to get a
grip on a latent concept through a particular set of well-
designed questions [16, 4], which implies that a factor
(latent concept) in our model is connected to multiple in-
dicators (questions) while an indicator is only used to
measure a single factor, as shown in Figure 1. This
kind of measurement model is called a pure measurement
model (Definition 2 of [23]). Throughout this paper, we
assume that all measurement models are given and pure,
which makes that there is only a single non-zero entry in

each row of the factor loadings matrix Λ. This inductive
bias about the sparsity pattern of Λ is fully motivated by
the typical design of a measurement model.

In what follows, we transform the Gaussian copula fac-
tor model into an equivalent model, which we will use
for inference in the next section. We consider an inte-
grated random vector X = (ZT ,ηT )T , which is still
multivariate Gaussian, and obtain its covariance matrix

Σ =

[
ΛCΛT +D ΛC

CΛT C

]
, (5)

and precision matrix

Ω = Σ−1 =

[
D−1 −D−1Λ

−ΛTD−1 C−1 + ΛTD−1Λ

]
. (6)

Since D is diagonal and Λ only has one non-zero entry
per row, Ω contains many intrinsic zeros. The sparsity
pattern of such Ω = (ωij) can be represented by an undi-
rected graph G = (V ,E), where (i, j) 6∈ E whenever
ωij = 0 by construction. Then, a Gaussian copula factor
model can be transformed into an equivalent model con-
trolled by a single precision matrix Ω, which in turn is
constrained by G, i.e., P (X|C,Λ, D) = P (X|ΩG).
Definition 2 (G-Wishart Distribution [22]). Given an
undirected graph G = (V ,E), a zero-constrained ran-
dom matrix Ω has a G-Wishart distribution, if its density
is

p(Ω|G) =
|Ω|(ν−2)/2

IG(ν,Ψ)
exp

[
− 1

2
tr(ΨΩ)

]
1Ω∈M+(G),

with M+(G) the space of symmetric positive definite
matrices with off-diagonal elements ωij = 0 whenever
(i, j) 6∈ E, ν the number of degrees of freedom, Ψ a
scale matrix, IG(ν,Ψ) the normalizing constant, and 1
the indicator function.

The G-Wishart distribution is the conjugate prior of pre-
cision matrices Ω that are constrained by a graph G [22].
That is, given the G-Wishart prior, i.e., P (Ω|G) =
WG(ν0,Ψ0) and data X = (x1, . . . ,xn)T drawn from
N (0,Ω−1), the posterior for Ω is anotherG-Wishart dis-
tribution:

P (Ω|G,X) =WG(ν0 + n,Ψ0 +XTX).

When the graph G is fully connected, the G-Wishart dis-
tribution reduces to a Wishart distribution [17]. Plac-
ing a G-Wishart prior on Ω is equivalent to placing an
inverse-Wishart on C, a product of multivariate normals
on Λ, and an inverse-gamma on the diagonal elements
of D. With a diagonal scale matrix Ψ0 and the num-
ber of degrees of freedom ν0 equal to the number of fac-
tors plus one, the implied marginal densities between any
pair of factors are uniformly distributed in the interval
[−1, 1] [3].
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4 METHODS

In this section, we propose a Bayesian inference method
for Gaussian copula factor models, based on which we
derive our ‘Copula Factor PC’ algorithm. Then, we in-
troduce two alternative approaches.

4.1 INFERENCE FOR GAUSSIAN COPULA
FACTOR MODEL

For a Gaussian copula model, Hoff [13] proposed a
likelihood that only concerns the ranks among observa-
tions, which is derived as follows. Since the transfor-
mation Yj = F−1

j

(
Φ
[
Zj
])

is non-decreasing, observ-
ing yj = (y1,j , . . . , yn,j)

T implies a partial ordering on
zj = (z1,j , . . . , zn,j)

T , namely, zj must lie in the space
restricted by yj :

D(yj) = {zj ∈ Rn : yi,j < yk,j ⇒ zi,j < zk,j} .

Therefore, observing Y suggests that Z must be in

D(Y ) = {Z ∈ Rn×p : zj ∈ D(yj),∀j = 1, . . . , p} .

Taking the occurrence of this event as the data, one can
compute the following likelihood

P (Z ∈ D(Y )|S, F1, . . . , Fp) =

∫

D(Y )

p(Z|S)dZ

= P (Z ∈ D(Y )|S),

where S is the correlation matrix over Z.

Following the same argumentation, the likelihood in our
Gaussian copula factor model reads

P (Z ∈ D(Y )|η,Ω, F1, . . . , Fp) = P (Z ∈ D(Y )|η,Ω),

which is independent of the margins Fj .

For the Gaussian copula factor model, inference for the
precision matrix Ω of the vector X = (ZT ,ηT )T can
now proceed via construction of a Markov chain hav-
ing its stationary distribution equal to P (Z,η,Ω|Z ∈
D(Y ), G), where we ignore the values for η and Z in
our samples. The prior graph G is uniquely determined
by the sparsity pattern of the loading matrix Λ = (λij)
and the residual matrix D (see Equation 6), which in
turn is uniquely decided by the pure measurement mod-
els. The Markov chain can be constructed by iterating
the following three steps:

1. Sample Z: Z ∼ P (Z|η,Z ∈ D(Y ),Ω);
Since each coordinate Zj directly depends on only
one factor, i.e., ηq such that λjq 6= 0, we can
sample each of them independently through Zj ∼
P (Zj |ηq, zj ∈ D(yj),Ω).

Algorithm 1 Gibbs sampler for Gaussian copula factor
model
Require: Measurement models (decide sparsity of Λ

and thus G), and indicator data Y .
1: Step 1: sample Z ∼ P (Z|η,Z ∈ D(Y ),Ω).
2: for j ∈ {1, . . . , p} do
3: q = factor index of Zj
4: a = Σ[j,q+p]/Σ[q+p,q+p]

5: σ2
j = Σ[j,j] − aΣ[q+p,j]

6: for y ∈ unique{y1,j , . . . , yn,j} do
7: zl = max{zi,j : yi,j < y}
8: zu = min{zi,j : y < yi,j}
9: for i such that yi,j = y do

10: µi,j = η[i,q] × a
11: ui,j ∼ U

(
Φ
[ zl−µi,j

σj

]
,Φ
[ zu−µi,j

σj

])

12: zi,j = µi,j + σj × Φ−1(ui,j)
13: end for
14: end for
15: end for
16: Step 2: sample η ∼ P (η|Z,Ω).
17: A = Σ[η,Z]Σ

−1
[Z,Z]

18: B = Σ[η,η] −AΣ[Z,η]

19: for i ∈ {1, . . . , n} do
20: µi = (Z[i,:]A

T )T

21: η[i,:] ∼ N (µi, B)
22: end for
23: η[:,j] = η[:,j]×sign(Cov[η[:,j],Z[:,f(j)]]), ∀j, where

f(j) is the index of the first indicator of ηj .
24: Step 3: sample Ω ∼ P (Ω|Z,η, G).
25: X = (Z,η)
26: Ω ∼ WG(ν0 + n,Ψ0 +XTX)
27: Σ = Ω−1

28: Σij = Σij/
√

ΣiiΣjj ,∀i, j

2. Sample η: η ∼ P (η|Z,Ω);

3. Sample Ω: Ω ∼ P (Ω|Z,η, G).

A Gibbs sampler that implements the Markov chain is
summarized in Algorithm 1.

Identifiability of C: Without additional con-
straints, the correlation matrix C over factors is
non-identifiable [2]. More precisely, given a de-
composable covariance matrix S = ΛCΛT + D,
we can always replace Λ with ΛU and C with
U−1CU−T to obtain an equivalent decomposition
S = (ΛU)(U−1CU−T )(UTΛT ) + D, where U is a
k × k invertible matrix. Since Λ only has one non-zero
entry per row in our model, U can only be diagonal to
ensure that ΛU has the same sparsity pattern as Λ (see
Lemma 3 in Supplement). Thus, from the same S, we
get a class of solutions for C, i.e., U−1CU−1, where
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U can be any invertible diagonal matrix. However,
we find that all members in this class encode the same
set of conditional independencies (see Lemma 4 in
Supplement), and therefore imply the same causal
structure [27]. Hence, any solution in this class is
appropriate for finding the underlying causal structure
among latent variables.

In order to get a unique solution for C, we impose two
sufficient identifying conditions: 1) restrictC to be a cor-
relation matrix; 2) force the first non-zero entry in each
column of Λ to be positive (see Lemma 5 in Supple-
ment). Condition 1 is implemented via line 28 in Al-
gorithm 1. As for the second condition, we force the co-
variance between a factor and its first indicator to be pos-
itive (line 23), which is equivalent to Condition 2. One
could also choose one’s favorite constraints for identify-
ing C, as long as the unique solution belongs to the class
U−1CU−1.

4.2 COPULA FACTOR PC ALGORITHM

By iterating the steps in Algorithm 1 and extracting the
submatrix over η, we can draw samples of C, denoted
by {C(1), . . . , C(m)}. The mean over all the samples is
a natural estimate of the underlying correlation matrix
Ĉ, i.e., Ĉ = 1

m

∑m
i=1 C

(i). As for the effective sample
size n̂, we build upon the idea in [9], that is, taking the
posterior distribution’s degrees of freedom ν as an ap-
proximation to n̂. Theorem 1 (the proof is provided in
the Supplement) suggests a procedure to estimate the de-
grees of freedom of a G-Wishart distribution.

Theorem 1. Consider a random matrix Ω following a
G-Wishart distribution with graph G = (V ,E) as well
as parameters ν and Ψ, i.e., Ω ∼ WG(ν,Ψ). Let Σ =

Ω−1 and Σ̃ be the normalized matrix of Σ, i.e., Σ̃ij =
Σij/

√
ΣiiΣjj . Then, for large ν, we have

Var [Σ̃ij ] ≈
(1− (E [Σ̃ij ])

2)2

ν
, (7)

for off-diagonal elements Σ̃ij whenever (i, j) ∈ E.

From the theorem, we have that all off-diagonal elements
of the latent correlation matrix satisfy Equation (7), be-
cause the prior subgraph over latent factors is fully con-
nected. Therefore, we estimate n̂ as follows

n̂ =
1

k(k − 1)

∑

i 6=j
νij , where νij =

(1− (E [Cij ])
2)2

Var [Cij ]
.

The ‘Copula Factor PC’ (CFPC) algorithm arises when
taking the estimated correlation matrix Ĉ and the effec-
tive sample size n̂ (to replace the n in Equation 1) as the

input to the standard PC algorithm.1 The CFPC algo-
rithm is consistent, as shown in Theorem 2 (see proof in
the Supplement).

Theorem 2 (Consistency of the CFPC algorithm).
Let Yn = (y1, . . . ,yn)T be independent observations
drawn from a Gaussian copula factor model. If 1) the
measurement model per factor is known and pure; and
2) the distribution over factors is faithful to a DAG G,
then

lim
n→∞

P
(
M̂n(G) =M(G)

)
= 1 ,

where M̂n(G) is the output of the CFPC algorithm and
M(G) is the Markov equivalent class of the true under-
lying DAG G.

4.3 ALTERNATIVE APPROACHES

The PC-MIMBuild algorithm The original PC-
MIMBuild algorithm only works for continuous data.
Here, we extend it to mixed cases by learning the cor-
relation matrix of response variables via the Gibbs sam-
pler by [13] and taking it as input to the original PC-
MIMBuild. We further generalize the PC-MIMBuild al-
gorithm to handle latent factors with just a single indi-
cator, by replacing the conditional independence testing
method designed only for factors with at least two indi-
cators (Theorem 19 in [24]) with a test based on partial
correlation. See Supplement B for more details.

A greedy step-wise approach This approach first ex-
tracts the measurement model of a factor with multiple
indicators, e.g., the subpart of Figure 1 consisting of the
variables {η3, Z3, Z4, Z5, Y3, Y4, Y5}. Then, it uses off-
the-shelf techniques [10] to fit such a model and obtain
pseudo-data of the factor (factor scores). Using pseudo-
data for factors with multiple indicators together with
real data for factors with a single indicator, the ‘Copula
PC’ algorithm is next applied for causal discovery. We
refer to this approach as the greedy step-wise PC algo-
rithm, whose pseudo-code is written out step by step in
the Supplement C. One disadvantage of this approach is
that it can overestimate the effective sample size when
treating the pseudo-data at the same footing as real data.
This might incur many false positives, as we will indeed
observe in the experiment section.

5 SIMULATION STUDY

In this section, we compare our ‘Copula Factor PC’
algorithm (CFPC) with the PC-MIMBuild algorithm
(MBPC) and the greedy step-wise PC algorithm (GSPC)

1The R code is publicly available in https://github.
com/cuiruifei/CopulaFactorModel.
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on simulated data. Kalisch & Buhlmann [14] provide
a procedure to generate random DAGs and simulate nor-
mally distributed samples that are faithful to them. It first
generates a k×k adjacency matrix A representing a ran-
dom DAG: 1) generate a k × k zero matrix, 2) randomly
set entries in the lower-triangle area to be one with proba-
bility s (measuring the sparseness), 3) change the ones to
be random weights in the interval [0.1, 1]. Given the ad-
jacency matrixA, values of a random vector η are drawn
recursively via

ηi =
∑

k<i

Aikηk + εi ,

with each εi ∼ N (0, 1). Following this procedure, we
simulate the factors of a Gaussian copula factor model,
i.e., the η in Equation (2). Then, the edge weights from
factors to response variables (non-zero elements of Λ
in Equation 3) are uniformly drawn from the interval
[0.1, 1]. We next generate response variables using Equa-
tion (3) together with standard Gaussian noise. After dis-
cretizing some response variables, we obtain data follow-
ing a Gaussian copula factor distribution.

Three metrics are used to evaluate the algorithms: the
true and false positive rate (TPR and FPR) for assess-
ing the skeleton, and the structural Hamming distance
(SHD), counting the number of edge insertions, dele-
tions, and flips to transfer the estimated CPDAG into the
correct CPDAG [28], for assessing the CPDAG. A higher
TPR, a lower FPR, and a smaller SHD imply better per-
formance. We set the significance level in the PC algo-
rithm to α = 0.01 (experiments with other values done
suggest the same conclusion) and the sparseness param-
eter in generating DAGs to s = 2/(k − 1), such that the
average neighbors of each node is 2 [14]. For the Gibbs
sampler, the first 500 samples (burn-in) are discarded and
the next 500 samples are stored. We test the algorithms
for different numbers of factors k ∈ {4, 10}, and sample
sizes n ∈ {500, 1000, 2000}.

Evaluation on Gaussian data We first consider the
case where the observed data are Gaussian and all fac-
tors have multiple indicators, since this matches the as-
sumptions of the original PC-MIMBuild algorithm. The
number of indicators per factor is randomly chosen from
3 to 10, to mimic typical real-world datasets [25, 29].

Figure 2 shows the results, providing the mean of TPR,
FPR, and SHD over 100 repeated experiments with er-
rorbars representing 95% confidence intervals. First, we
see that CFPC performs clearly better than MBPC w.r.t.
TPR despite an indistinguishable performance w.r.t. FPR
(CFPC is slightly better than MBPC for k = 4 while the
other way around for k = 10). Therefore, w.r.t. the over-
all metric SHD, CFPC significantly outperforms MBPC.

Our analysis is that MBPC tests for conditional inde-
pendencies between all pairs of indicators and claims
a dependence between factors even if just one of the
pairs fails the test. This multiple testing approach, al-
though elegant in theory, is difficult to make robust for
largely varying numbers of indicators and sizes of the
conditioning set. Second, while CFPC and GSPC re-
port similar TPR scores, CFPC shows a clear advantage
over GSPC w.r.t. FPR (thus a better SHD than GSPC),
which becomes more prominent for a larger sample size.
This is because the correlations between factors are es-
timated indirectly through their indicators, which makes
the correlations less reliable than those estimated directly
through the observed data. The effective sample size
used in CFPC naturally incorporates the reduced reliabil-
ity, whereas GSPC that still uses the original sample size
rejects the null hypothesis of conditional independence
more easily, resulting in more false positives.

Evaluation on mixed data We now focus on mixed
data, in which two cases are considered: 1) all factors
have multiple indicators; 2) half of the factors have mul-
tiple indicators and half only have a single indicator.
When a factor has multiple indicators, the number of in-
dicators per factor is randomly chosen from 3 to 10, and
all such indicators are discretized into ordinal variables
where the number of levels per variable is randomly cho-
sen from 2 to 5. For factors with a single indicator, we
discretize half into ordinal variables (from 2 to 5 levels)
and keep the other half continuous.

Figures 3 and 4 summarize the experimental results, pro-
viding the mean of TPR, FPR, and SHD over 100 re-
peated experiments with 95% confidence intervals. From
Figure 3a, we first see that GSPC is slightly better than
CFPC w.r.t. TPR while GSPC and CFPC show a clear
advantage over MBPC. Second, MBPC is rather sensi-
tive to sample sizes in cases with only multiple indica-
tors, where a small sample size incurs a poor perfor-
mance. Figure 3b shows that CFPC is significantly better
than GSPC w.r.t. FPR, which becomes more prominent
in cases with only multiple indicators and larger sample
sizes. This is because the effective sample size in CFPC
better than GSPC represents the uncertainty in the partial
correlation estimates and then incurs less false positives.
CFPC also shows clear advantages over MBPC w.r.t.
FPR when the number of factors is 4 (k = 4), whereas
MBPC works slightly better than CFPC when k = 10.
As for the overall metric SHD shown in Figure 4, CFPC
and GSPC perform clearly better than MBPC in almost
all situations because of the bad performance of MBPC
w.r.t. TPR. Meanwhile, we can see that CFPC generates
a more accurate CPDAG than GSPC, in particular for
larger sample sizes. This is because our proposed infer-
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Figure 2: TPR, FPR, and SHD of CFPC, GSPC, and MBPC over different sample sizes when the data are fully Gaus-
sian and all factors have multiple indicators, showing the mean over 100 experiments together with 95% confidence
intervals. The two rows represent the results when the number of latent factors is 4 and 10 respectively.

ence procedure more accurately estimates the correlation
matrix (not shown here) and, through the effective sam-
ple size, better represents the uncertainty in the correla-
tion estimates than the greedy step-wise method. In a
nutshell, our ‘Copula Factor PC’ algorithm, outperforms
its two competitors in almost all situations.

6 REAL-WORLD APPLICATION

In this section, we give an illustration on a real-world
dataset collected by [30] that includes 236 children with
Attention Deficit Hyperactivity Disorder (ADHD) and
406 controls. We focus on 4 (explicit) variables that are
related to ADHD symptoms: gender (Gen), Age, ver-
bal IQ (VIQ), performance IQ (PIQ), as well as 18 ques-
tions that are designed to measure three latent concepts:
inattention (Inatt), hyperactivity (Hyper), and impulsiv-
ity (Impul). The first 9 questions (Q1-Q9) are designed
to measure ‘Inatt’, while the next 5 questions (Q10-Q14)
and the last 4 questions (Q15-Q18) are used to measure
‘Hyper’ and ‘Impul’ respectively [29]. All the questions
are ordinal with four levels: never (0), sometimes (1),
frequently (2), and always (3).

Our task is to infer the causal structure among the 4 vari-
ables and 3 latent concepts from observations of the 4
variables and 18 questions. We run our ‘Copula Factor
PC’ algorithm (using the order-independent version of
the PC algorithm [7]) on this dataset and enforce the prior
knowledge that no variables cause gender. The resulting

graph is shown in Figure 5, in which double arrows ‘⇒’
represent the mapping from the three latent concepts to
their corresponding questions (known) and other edges
are those learned by our algorithm.

First, in the inferred model, we find that ‘Gen’ has a di-
rect causal influence on ‘Inatt’. The finding is in the ex-
pected direction, namely males are at an increased risk
of inattention, hyperactivity, and impulsivity problems.
Meta-analyses in population-based samples suggested
that males are 24 times more likely to meet full criteria
for ADHD than females [31] and in clinically referred
ADHD samples, the gender ratio was about 5:1 [19].

Second, the causal model implies that there is a sig-
nificant causal path from inattention to hyperactivity
(and subsequently to impulsivity), but not the other
way around. It suggests that factors that cause inat-
tention affect hyperactivity/impulsivity downstream of
that, whereas those factors that lead to high hyperac-
tivity/impulsivity do not necessarily lead to higher inat-
tention. This causal path was previously observed in
this sample and was also confirmed in two independent
ADHD samples [26].

Third, the causal direction of the associations between
verbal IQ and inattention as well as impulsivity is not
clear from our model. Both interpretations seem reason-
able. Previous studies suggest that ADHD is associated
with lower (verbal) IQ, and particularly attention prob-
lems have been found to be strong predictors for lower
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Figure 3: (a) TPR of CFPC, GSPC, and MBPC for the case where all factors have multiple indicators (left column) and
the case where half of the factors have multiple indicators while the other half have a single indicator (right column),
showing the mean over 100 experiments together with 95% confidence intervals. The two rows represent the results
when the number of latent factors is 4 and 10 respectively. (b) FPR for the same experiments as in (a).
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Figure 4: SHD of CFPC, GSPC, and MBPC, showing the
mean over 100 experiments together with 95% confidence
intervals, for the same experiments as in Figure 3.
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Figure 5: The resulting causal graph obtained by the
‘Copula Factor PC’ algorithm on the ADHD dataset, in
which double arrows ‘⇒’ represent the mapping from la-
tent concepts to their corresponding questions (known)
and other edges are those learned by our algorithm.

IQ and poorer academic performance [12].

To conclude, using the Copula Factor PC algorithm in
an ADHD sample allows us to infer causal relations
between the different ADHD traits and generic factors

(age, gender, and IQ). This enhances knowledge of the
causal structure of ADHD (e.g., by answering the ques-
tion whether inattention is causing hyperactivity, or vice
versa), which may have significant clinical implications,
as it may inform therapeutic interventions.
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7 CONCLUSION AND DISCUSSION

In this paper, we focused on learning causal relations
between latent variables with pre-designed or pre-fitted
measurement models. Our typical use case is that of
psychological constructs that are linked to responses on
questionnaire items. To the best of our knowledge, we
are the first to propose a provably convergent algorithm
that is able to recover the underlying causal structure be-
tween such factors and other observed variables, which
can be both discrete and continuous.

In the experiments, our ‘Copula Factor PC’ algorithm
clearly outperformed both the PC-MIMBuild algorithm
and the greedy step-wise approach. PC-MIMBuild tests
for conditional independencies between all pairs of indi-
cators and concludes that the latent factors are dependent
even if just one of the pairs fails the independence test. In
our experience, this multiple testing approach, although
elegant in theory, is difficult to make robust for largely
varying numbers of indicators and sizes of the condition-
ing set. The ‘Copula Factor PC’ algorithm more natu-
rally appears to find the right balance between true posi-
tives and false positives under varying conditions. It im-
proves upon the greedy step-wise approach by estimating
the full correlation matrix instead of individual sub-parts,
which increases the power of the conditional indepen-
dence tests.

Our approach extends earlier work, particularly [9]
and [11], with various novel and essential ingredients
needed to handle latent variables. Compared to [9], we
replaced the Wishart prior with a G-Wishart distribu-
tion over factors and indicator variables, whose struc-
ture directly follows from the measurement model. The
corresponding marginal prior on the factors is then still
a Wishart distribution, which can be chosen such that
the pairwise correlations are uniformly distributed. As
in [11], but unlike [9], we can prove that our procedure is
consistent. In the Supplement we show that, although the
correlation matrix over factors itself is non-identifiable,
all characteristics that relate to the identification of the
correct causal structure can be consistently recovered.

While we considered the PC algorithm for inferring the
underlying causal structure, one could plug in other stan-
dard algorithms like FCI [27], GES [5], or the recent im-
provements [6, 8, 32]. We further focused on so-called
pure measurement models [24, 15], which is the major
simplifying assumption of our procedure. We would ar-
gue that this is often satisfied, since it is the way in which
questionnaires are typically designed by domain experts
and that allows for a specific interpretation of the factors
(e.g., a predefined set of items relates to the concept “hy-
peractivity”, another non-overlapping set of items to the

concept “inattention”). If the measurement models are
not given, they can be learned using off-the-shelf algo-
rithms, such as BPC [24] and FOFC [15], which output
pure measurement models.
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Abstract

Learning sparse features from only positive and
unlabeled (PU) data is a fundamental task for
problems of several domains, such as natural lan-
guage processing (NLP), computer vision (CV),
information retrieval (IR). Considering the nu-
merous amount of unlabeled data, most prevalent
methods rely on negative sampling (NS) to in-
crease computational efficiency. However, sam-
pling a fraction of unlabeled data as negative for
training may ignore other important examples,
and thus lead to non-optimal prediction perfor-
mance. To address this, we present a fast and
generic batch gradient descent optimizer (fBGD)
to learn from all training examples without sam-
pling. By leveraging sparsity in PU data, we ac-
celerate fBGD by several magnitudes, making
its time complexity the same level as the NS-
based stochastic gradient descent method. Mean-
while, we observe that the standard batch gradi-
ent method suffers from gradient instability is-
sues due to the sparsity property. Driven by a
theoretical analysis for this potential cause, an in-
tuitive solution arises naturally. To verify its effi-
cacy, we perform experiments on multiple tasks
with PU data across domains, and show that
fBGD consistently outperforms NS-based mod-
els on all tasks with comparable efficiency.

1 INTRODUCTION

Learning from only positive and unlabeled (or non-
observed) data, aka PU learning, occurs in numerous do-
mains such as NLP, CV, IR. In these scenarios, the observed
training data usually consists of positive data only. More-
over, the overall training data is typically very sparse, since

only a small fraction of positive examples are observed, and
the non-observed negative examples are of a much larger
scale.

To generalize well on such sparse data (He and Chua,
2017), embedding learning, such as word embedding in
NLP (Mikolov et al., 2013b), image (category) embedding
in CV (Weston et al., 2011), user (item) embedding in IR
(Koren et al., 2009; Yuan et al., 2016a), and DNA k-mer
embedding in genetic engineering (Ng, 2017), has become
a common practice. However, learning embeddings from
PU (or positive-only) data is computationally expensive,
since each observed positive example needs to be paired
with all non-observed negatives.

To learn from large-scale non-observed data, most recent
embedding methods employ negative sampling (NS) and
stochastic gradient descent (SGD) for efficient optimiza-
tion (Mikolov et al., 2013b; Weston et al., 2012; Guo et al.,
2018a,b; Yuan et al., 2016a, 2017). However, the train-
ing time and prediction accuracy are largely determined
by the sampling distribution and size of negative samples.
Sampling a fraction of non-observed data as negative for
training may ignore other useful examples, or lead to in-
sufficient training of them. This is our main motivation in
this work. Another well-known difficulty is that the SGD
optimizer performs frequent gradient updates with a high
variance, which can cause the objective function to fluctu-
ate heavily near the optimum (Ruder, 2016). By contrast,
batch gradient descent (BGD) computes the gradient on all
training data for updating a model parameter. As such, the
learning process has the potential to converge to a better
optimum. Unfortunately, the low efficiency caused by the
full-batch gradient computation makes it less applicable to
large-scale datasets.

To deal with these issues, we present a fast and generic
batch gradient descent algorithm (called fBGD) for learn-
ing embeddings from positive-only data. fBGD optimizes
a commonly used square loss function that accounts for all

198



non-observed examples without any sampling. To ensure
the learning efficiency, we accelerate fBGD with rigorous
mathematical reasoning. Notably, despite that fBGD com-
putes loss and gradients over all examples, its actual com-
plexity is comparable with NS-based SGD methods that
utilize only partial examples. Furthermore, we show that
standard batch learning are prone to the gradient exploding
and vanishing problem and stabilize it by an intuitive way.

To summarize, the main contributions of this paper are as
follows:

• We propose a unified BGD approach to solve the
sparse feature learning problem from PU data. For ef-
ficiency optimization, we accelerate it by a natural re-
formulation of the loss and rearrangement for the dot
product operation. For generality, we identify the dot
product structure for a variety of embedding models.

• We provide theoretical explanations that the standard
batch gradient learning suffers from gradient instabil-
ity issues when learning embedding models due to
large batched summation of sparse features.

• We implement a general weighting scheme that suits
well for unlabeled examples in various domains,
which not only largely improves the prediction accu-
racy of fBGD, but also makes efficiency optimization
possible.

• fBGD achieves state-of-the-art performance in multi-
ple research fields with comparable costs to NS-based
SGD methods. Insightful comparisons for sampling
based methods have been thoroughly studied. An-
other insightful observation is that many specific mod-
els used in one of these fields are promising to benefit
others by minor (or no) changes. This opens a new
direction of research to bridge these fields.

• We release the source code of fBGD at: https://
github.com/fajieyuan/fBGD.

2 PROBLEM FORMULATION

2.1 LEARNING FROM POSITIVE-ONLY DATA

Assuming we have two sets of examples that are available
for training: the positive set P and an unlabeled set U ,
which is typically non-observed and contains both positive
and negative samples. Each sample in P is an observed
(x, y) pair, where x ∈ X and y ∈ Y . X and Y are the set
of distinct x and y respectively. For a given x, we have a
set of relevant y labelled, denoted by Y +

x , the size of which
is much smaller than that of the non-observed set Y −x . As
shown in Figure 1 (a), we can use a matrix H ∈ R|X|×|Y |
to denote the historical interactions between x and y. The
goal of PU learning is to find a function r̂xy (parameterized
by Θ) that explains a set of observed pairs (x, y), such as
“relevant-or-not” and “like-or-not”.

1 3 

7 

1 2 

3 

1 

1 

1 9 

X 

Y 

(a) Co-occurrence matrix

𝑟 𝑥𝑦 

𝑓 ∙  𝑔 ∙  

𝒑𝑥 𝒒𝑦 

(b) Embedding function

Figure 1: (a): PU data with (x, y) co-occurrence matrix H. The
grey cells denote no explicitly observed (x, y) examples. (b): Em-
bedding function. f(·) and g(·) are functions to construct the em-
bedding vectors px and qy respectively.

2.2 EMBEDDING MODELS

Embedding models have been widely adopted in many spe-
cific PU learning tasks. In this work, we focus on optimiz-
ing the embedding functions that can be explicitly or im-
plicitly expressed by a dot product structure, given below.

r̂xy = 〈px,qy〉 =

g∑

d=1

px,dqy,d (1)

where px and qy are compressed embedding vectors with
embedding dimension g. They can be obtained by di-
rectly projecting the ID of row/column into the embed-
ding space (i.e., explicit structure as in Xin et al. (2018)
and He et al. (2016b)), or projecting with other features
of row/column (i.e., implicit stricture as in Rendle and
Freudenthaler (2014); Bayer et al. (2017)). The time com-
plexity of evaluating this equation is O(g). Note that
the implicit dot product structure can describe a variety
of multi-linear models, such as SVDFeature (Chen et al.,
2012) and tensor models (Bailey and Aeron, 2017; Rendle
and Schmidt-Thieme, 2010). Later, we will show how to
construct this dot product structure for some state-of-the-
art embedding models.

2.3 LOSS FUNCTION AND BGD OPTIMIZATION

We propose optimizing the standard regression loss, which
can also be used for classification and ranking tasks. Unlike
previous works (Pennington et al., 2014; Cer et al., 2017),
the optimized loss function should explicitly account for all
unlabeled samples.

J(Θ) =
∑

(x,y)∈P
α+
xy(r+ − r̂xy)

2
+

∑

(x,y)∈U
α−xy(r−−r̂xy)

2

︸ ︷︷ ︸
JM(Θ)

(2)

where JM(Θ) denotes the errors of all unlabeled exam-
ples, α+

xy and α−xy are the weight functions. Eq. (2) can be
minimized by BGD, which computes the gradient of loss
function w.r.t. θ ∈ Θ on the entire (positive and unlabeled)
samples:

θ ← θ − γOθJ(θ) (3)
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where γ is the learning rate, and OθJ(θ) is the gradient of
J(Θ) w.r.t. θ, given below:

OθJ(θ) =2
( ∑

(x,y)∈P
α+
xy(r+ − r̂xy)Oθ r̂xy

︸ ︷︷ ︸
O(|Y +

x |g)

+
∑

(x,y)∈U
α−xy(r−−r̂xy)Oθ r̂xy

︸ ︷︷ ︸
O(|Y−x |g)

) (4)

where O(|Y +
x |g) and O(|Y −x |g) are the complexity of gra-

dient computation on positive and unlabeled data.

2.4 EFFICIENCY ISSUES

As can be seen, the second term JM (Θ) in Eq.(2) domi-
nates the computational complexity. This is because com-
puting JM (Θ) in Eq.(2) has almost O(|X||Y |g) time be-
cause |P | � |U |. Similarly, updating a parameter (un-
der the explicit dot product setting), e.g., px,d, by Eq.(4)
is O((|Y −x |)g), or O(|Y |g), because |Y +

x | � |Y −x |. The
total cost by iterating over all px,d in Θ in each iteration
becomes O(|X||Y |g). Clearly, the straight-forward way to
calculate gradients by BGD is generally infeasible, because
|X||Y | can easily reach billion level or even higher.

3 FAST & GENERIC BGD For PU DATA

In this section, we first describe the derivation of fBGD for
the optimization of Eq.(1), and show how to generalize it
to complex embedding models. Then, we design a general
weighting scheme for the missing examples in fBGD.

3.1 EFFICIENT fBGD LOSS

In the above learning setting, the dominant computation is
the minimization of JM (Θ) in Eq.(2) since each x has its
standalone unlabeled set of y, i.e., Y −x . As such, the BGD
algorithm basically needs to iterate through all elements in
Y −x , and repeat the operation for all x ∈ X , which pro-
duces the main cost. To solve the problem, we reformulate
the standard BGD loss according to the set theory1. Natu-
rally, for any PU learning problem the loss ofU (unlabeled)
data can be expressed by the residual between the loss of
all data and that of P (positive) data.

JM (Θ)=
∑

x∈X

(∑

y∈Y
α−xy(r−−r̂xy)

2−
∑

y∈Y +
x

α−xy(r−−r̂xy)
2
)

(5)

A new objective function can be achieved by substituting
Eq.(5) in Eq.(2). We combine the two terms that associates
with P data together into a single term (Note that r+, r−,

1The set relation was also applied in He et al. (2016b); Xin et al. (2018), which
can be regarded as a special case of fBGD as r̂xy is only limited to an explicit dot
product function that deals with two features in a specific domain.

α+
xy , α−xy are independent of θ ∈ Θ). J(Θ) is rewritten as

J(Θ) = const+ JA(Θ) + JP (Θ) (6)

where

JA(Θ)=
∑

x∈X

∑

y∈Y
α−xy(r̂xy − r−)

2

JP (Θ)=
∑

x∈X

∑

y∈Y +
x

(α+
xy−α−xy)

(
r̂xy−

α+
xyr

+ − α−xyr−
α+
xy−α−xy

)
2

(7)

where JA(Θ) and JP (Θ) denote the loss for all and P data
respectively; const denotes a Θ-invariant constant value.
Clearly, the loss of U data has been eliminated. The new
computation complexity is now in J̃A(Θ), which is part of
JA(Θ), defined as:

J̃A(Θ) =
∑

x∈X

∑

y∈Y
α−xy r̂

2
xy − 2r−

∑

x∈X

∑

y∈Y
α−xy r̂xy (8)

So far, we have focused on the loss without considering the
specific formulation of model prediction r̂xy . As described
in Section 2.2, we focus on r̂xy that can be either explic-
itly or implicitly formalized as a dot product (i.e., Eq.(1))
structure based on embedding vectors of x and y. In the
following, we first show the generalized transformation for
a compressed dot product structure. Then, we show how to
apply fBGD to various complex embedding functions with
more input features by constructing the similar structure.

α−xy r̂
2
xy = α−xy

g∑

d=1

px,dqy,d

g∑

d′=1

px,d′qy,d′

=

g∑

d=1

g∑

d′=1

α−xy
(
px,dpx,d′

)(
qy,dqy,d′

) (9)

where we observe that there exists a very nice structure in
above equation — if α−xy is a constant value or a value only
associates with x or y but not (x, y) pair. Considering that
there is no observed (x, y) interaction in unlabeled exam-
ples, it is reasonable to set α−xy as α−y or α−x . The sim-
plified weight design is a necessary condition for efficient
optimization in the following. Here we continue to dis-
cuss the algorithm, assuming α−xy = α−y , and later show
how to design a good weighting scheme. With this set-
ting, the interaction between px,d and qy,d can be safely
separated. Thereby,

∑
y∈Y α

−
y qy,dqy,d′ can be indepen-

dent of the optimization of x-related parameters. That is,
we could achieve a significant speed-up by precomputing
this term. Let caches Sqdd′ =

∑
y∈Y α

−
y qy,dqy,d′ , and

Sqd =
∑
y∈Y α

−
y qy,d, J̃A(Θ) is derived as follows

J̃A(Θ) =

g∑

d=1

g∑

d′=1

Sqdd′
∑

x∈X
px,dpx,d′−2r−

g∑

d=1

Sqd
∑

x∈X
px,d (10)

The rearrangement of nested sums in Eq.(10) is the
key transformation that allows the fast optimization of
fBGD. The computation complexity has reduced from
O(|X||Y |g) in Eq.(8) to O((|X|+ |Y |)g2) in Eq.(10). Op-
timization details regarding the gradient computation are
given in Section 3.3.
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3.2 IDENTIFYING THE DOT PRODUCT
STRUCTURE

𝒑𝑥 

𝒒𝑦 

g 𝑓 

g 𝑓 2 

𝒑𝑥 

𝒒𝑦  

2 

(a) (b) 

Figure 2: (a) denotes the explicit dot product structure, such as
in AllVec (Xin et al., 2018), while (b) is the dot product that im-
plicitly exists in SVDFeature. Each cell denotes a real value.

We notice that the dot product structure implicitly exists in
a variety of embedding modes. Here we show the structure
for a general embedding model, aka SVDFeature (Chen
et al., 2012), which can be used in context-aware rec-
ommender systems (CARS), content-based image retrieval
system (CBIR) and prior knowledge based word represen-
tation. We also identify the dot product structure for two
tensor-based embedding models (Bailey and Aeron, 2017;
Rendle and Schmidt-Thieme, 2010) in Appendix A. The
model equation of SVDFeature is defined as

r̂xy = w0 + wzT +

pX∑

j=1

pY∑

j′=1

〈vXj , vYj′〉zXx,jzYy,j′ (11)

where z is the feature vector. E.g., in a context-aware music
recommender system, it is defined as

z=(

user IDs︷ ︸︸ ︷
0, ..., 1, ..., 0,

10 previous tracks IDs︷ ︸︸ ︷
0, 0.1, ..., 0.1, 0,

time︷︸︸︷
0, 1︸ ︷︷ ︸

zXx

,

current track ID︷ ︸︸ ︷
0, ..., 1, ..., 0,

artists︷ ︸︸ ︷
0, 1, ..., 0︸ ︷︷ ︸

zYy

)

x and y are described by zXx and zYy respectively. zXx,j is
j-th element in zXx , which is x-th row in ZX ∈ R|X|×pX .
pX is the number of features in zXx . vXj is the j-th row
in VX ∈ RpX×f , where f is the original embedding size.
Inspired by Rendle and Freudenthaler (2014), we rewrite
Eq.(11) as an implicit dot product structure (see Figure 2).

r̂xy =

g∑

d=1

px,dqy,d (12)

where g = f + 2 and

px,d =

pX∑

j=1

zXx,jv
X
j,d , qy,d =

pY∑

j=1

zYy,jv
Y
j,d

px,f+1 = w0 +

pX∑

j=1

wjz
X
x,j , qy,f+1 = 1

px,f+2 = 1 , qy,f+2 =

pY∑

j=1

w(j+pX)z
Y
y,j

(13)

where vXj,d is the d-th element in vXj . Next, we show the
gradient computation for both explicit (i.e., Eq. (1)) and
implicit dot product (e.g., Eq. (11)) structure.

3.3 EFFICIENT GRADIENTS

Following Section 3.1, the gradients of J̃A(θ) w.r.t. θX ∈
ΘX is given by

OθX J̃A(θ) = 2

g∑

d=1

g∑

d′=1

Sqdd′
∑

x∈X
px,d′Oθpx,d

− 2r−
g∑

d=1

Sqd
∑

x∈X
Oθpx,d

(14)

The optimization process of θY ∈ ΘY is almost symmetric
to θX , except that the weighting scheme α−y is inside the
sum of y ∈ Y . In what follows, we present the gradient
computation for Eq.(14) with both explicit and implicit dot
products.

3.3.1 GRADIENT COMPUTATION WITH EQ.(1)

Assume Eq.(1) is a basic dot product, the gradient of px,d
with respect to px∗,d∗ is given by

Opx∗,d∗ px,d =

{
1 x = x∗ ∧ d = d∗

0 otherwise
(15)

Thus, Eq.(14) simplifies to

Opx∗,d∗ J̃A(θ) = 2

g∑

d=1

Sqd∗dpx∗,d − 2r−Sqd∗ (16)

The complexity of Eq.(16) is inO(g), and correspondingly,
updating all θX ∈ ΘX isO(|X|g2). Overall, gradient com-
putation for all θ ∈ Θ is O((|X| + |Y |)g2 + |P |g), where
O(|P |g) is the complexity for the gradients of the positive
loss. In contrast, the cost of NS-SGD is O((n + 1)|P |g),
where n+ 1 denotes n negative y and 1 positive y.

3.3.2 GRADIENT COMUTATION WITH EQ.(11)

The gradients of px,d with respect to wj∗ and vXj∗,d∗ are
given by

Owj∗ px,d=

{
zXx,j∗ d = f + 1

0 otherwise
,OvX

j∗,d∗
px,d=

{
zXx,j∗ d ≤ f
0 otherwise

(17)
Thus, Eq.(14) w.r.t. to wj∗ and vXj∗,d∗ simplifies to

Owj∗ J̃A(θ)=2

g∑

d=1

Sq(f+1)d

∑

x∈X
px,dz

X
x,j∗−2r−Sq(f+1)

∑

x∈X
zXx,j∗

(18)
OvX

j∗,d∗
J̃A(θ)=2

g∑

d=1

Sqd∗d
∑

x∈X
px,dz

X
x,j∗−2r−Sqd∗

∑

x∈X
zXx,j∗ (19)

Note that the computation of sums over x ∈ X can be ac-
celerated by only iterating over x where zXx,j∗ 6= 0. More-
over, px,d is able to be precomputed to reduce the cost.
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Although px,d changes when updating θX , it can be up-
dated in synchronization with the changes in θX , denoted
by4θX .

px,d ← px,d + zXx,j4θX = px,d − zXx,jγOθJ(θ) (20)

Analogously with Section 3.3.1, the total time complexity
of OθJA(θ) (or OθJ̃A(θ)) in one iteration for all parameters
is O(g2(N(X) +N(Y ))), where N(X) and N(Y ) are the
number of non-zero elements in ZX and ZY . Finally, the
efficient computation for θ is reasonably given as follows2

θ ← θ − γ(OθJA(θ) + OθJp(θ)) (21)

The detailed implementation of fBGD is in Appendix B.

3.4 WEIGHTING ON UNLABELED DATA

Now that the basic description of the speed-up process for
fBGD is completed, we proceed to discuss the weighting
scheme in this section. First, in terms of α+

xy , any reason-
able weighting scheme could be adopted and will not af-
fect the analysed computation. For example, on the word
embedding task (see Section 5) we set α+

xy the same as in
GloVe (Pennington et al., 2014), while we set it as 1 for the
other tasks considering that there is no available frequency
information for positive (x, y) pairs.

As for α−y , we design a non-uniform weighting scheme
based on the property of y. Our weighting scheme is origi-
nally motivated by the frequency-based oversampling idea
such as Skip-gram model (Mikolov et al., 2013b) and (Yuan
et al., 2016a). However, both methods are tailored for the
SGD or the mini-batch gradient descent (MGD) (He and
Chua, 2017) optimization. Clearly, sampling techniques do
not suit our model, because the focus of fBGD is an all-
sample based optimization method. Hence, a frequency-
based weighting scheme is more suitable for our optimiza-
tion setting. To effectively differentiate true negative and
unknown examples, we assign a larger weight for the unla-
beled data with high y frequency, and a smaller weight for
the low-frequency y.

α−y = α0
(ezy − 1)ρ∑|Y |
y=1(ezy − 1)ρ

where zy =
py
|P | (22)

where py denotes the frequency of y, given by the num-
ber of observations in P , and α0 determinates the over-
all weight of unlabeled examples to solve the imbalanced-
class problem. The exponent ρ controls weight distribution,
which should be tuned based on the dataset.

4 IMPROVED fBGD

So far, we have discussed the efficiency optimization of
fBGD, However, we observe unreliable results during eval-
uation especially for complex embedding models with

2Again, OθJp(Θ) can be calculated by the standard way, which has the same
time complexity with NS-SGD with the same ratio of negative and positive samples.

Figure 3: Performance of the improved fBGD (Section 4.2) and
standard fBGD on Last.fm with four features. Note for the stan-
dard fBGD , some gradients will be evaluated as infinite (NaN)
when γ > 5 × 10−5. Clearly, fBGD with vanishing gradient
performs poorly on Last.fm even by fine tuning the learning rate.

more input features, as shown in Figure 3. A novel con-
tribution here is to reveal why unstable gradient issues will
occur for the standard BGD.

4.1 GRADIENT INSTABILITY OF fBGD

While the unstable gradient problem, such as the gradient
exploding and vanishing, has been observed when train-
ing deep neural networks (He et al., 2016a), the optimized
models of fBGD in this paper are mostly shallow embed-
dings. Therefore, the cause of the unstable gradient issue
in our case is fundamentally different from that in the ex-
isting deep layer models, in the sense that in deep models
unstable gradients occur mainly due to cumulative multi-
plying of small/big numbers from previous layers, whereas
in fBGD it is caused by the large batched summation of
sparse features. We expect the following theoretical anal-
ysis and solution could provide practical guidelines for the
future development of batch gradient optimization.

To understand the weird behavior of gradient instability, we
need to revisit the form of gradients. We take the derivation
of vXj,d (d ≤ f ) in Eq. (11) w.r.t. the loss of positive data as
an example.

OvX
j∗,d∗

JP (θ) = 2
∑

x∈X

∑

y∈Y +
x

zXx,j∗(α
+
xy − α−y )

(
r̂xy −

α+
xyr

+
xy − α−y r−xy
α+
xy − α−y

)
qy,d∗

(23)

Due to the data sparsity, to compute
∑
x∈X

∑
y∈Y +

x
zXx,j∗

we only need to consider x ∈ X that has a non-zero zXx,j∗
(note that for a feature j, most x have zXx,j∗ equal to zero
which can be safely ignored). Let lj∗ be the number of
non-zero elements in the j∗-th column of ZX .

In real-world data sets, the number of rows in ZX , i.e.,
|X|, can easily scale to many millions or even billion
level and, therefore, it is very likely that lj∗ has dis-
tinct magnitudes for a different column j∗. Moreover, in
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Eq.(23) there is another summation
∑
y∈Y +

x
, which rep-

resents the size of observed y for x. The component
value of

∑
x∈X

∑
y∈Y +

x
xXx,j∗ in Eq.(23) varies from 1 to

|X| · |Y |, assuming ZX is a binary matrix. This indicates
the value of Eq.(23) may be very unstable: OvX

j∗,d
JP (θ)

can be too large for a denser feature j∗ that is accompa-
nied by a large

∑
x∈X

∑
y∈Y +

x
zXx,j∗ (e.g., = 106), while

it may be too small for a sparser feature with a small∑
x∈X

∑
y∈Y +

x
zXx,j∗ (e.g., = 1). Accordingly, the overall

gradient OθJ(θ) in Eq.(21) has the same unstable problem.
In this case, a uniform learning rate γ is no longer suit-
able because OθJ(θ) with a larger

∑
x∈X

∑
y∈Y +

x
zXx,j∗ is

likely to explode (i.e. OθJ(θ) = NaN) if using a large
γ, while OθJ(θ) with a smaller

∑
x∈X

∑
y∈Y +

x
zXx,j∗ may

vanish (i.e. OθJ(θ) ≈ 0) if using a small γ. Generally, it
is hard or even impossible to find a medium learning rate
that balances reasonably well in both conditions. To gain
more insight into the performance of fBGD with unstable
gradients, we show results with different learning rates in
Figure 3.

Interestingly, we empirically find that on many datasets
with only two input features (or an explicit dot product
structure), the gradient instability problem may be allevi-
ated by carefully tuning γ. In other words, by many tri-
als with different learning rates, fBGD sometimes is able
to offer reasonable results. However, on data sets with
more feature variables (e.g., Last.fm), the outputs of fBGD
are prone to the NaN error. This is because in the pure
dot product setting, the nested summation

∑
x∈X can be

dropped. As such, although the gradient instability issue
may still happen because of

∑
y∈Y +

x
, it is less severe as the

value of |Y +
x | is much smaller than that of lj · |Y +

x |.

4.2 SOLVING THE UNSTABLE GRADIENT ISSUE

The above theoretical analysis for the gradient estimation
over all data suggests that the same learning rate does not
hold for all model parameters due to the large batched sum-
mation of sparse features. Analytically, by assigning a spe-
cific learning rate for each parameter update, we can con-
trol the unstable gradient to a certain extent. In other words,
fBGD should perform larger updates for small OθJ(θ), and
vice verse.

Based on the above analysis, an intuitive solution is to adapt
the learning rate for each parameter, such as having done in
Adagrad Duchi et al. (2011). While Adagrad is originally
proposed for stochastic gradient method to accelerate con-
vergence, here we show how to apply it on the full gradient
method to address the gradient instability issue. Denoting
γt as the learning rate for the t-th update, we then assign a
personalized learning rate for each parameter θ:

γt(θ)=
γ

Gt(θ)
, Gt(θ) =

{
OθJ(θ)t + ε Gt(θ) = 0√∑

t=1(OθJ(θ)t)2 Gt(θ) 6= 0
(24)

Table 1: Dataset statistics (|U | = |X × Y | − |P |). “Open”
is the OpenImages dataset. “K”, “M” and “B” are short for
thousand, million and billion. (x, y) denotes (word, con-
text), (user, item) and (image, label) on the WE, CF and IC
tasks respectively. Note that user and item in Lastfm con-
tain user- and item-related variables. The density can be
calculated by |P |

|X×Y |

Data |X| |Y | pX pY |P | |X×Y |
NewsIR 83K 83K 83K 83K 150M 6.9B
Text8 71K 71K 71K 71K 47M 5.0B
Yahoo 200K 136K 200K 136K 76M 27.2B
Lastfm 63K 58K 65K 75K 1.3M 3.7B
Open 1.4M 7.5K 1.4M 7.5K 11.4M 10.5B

where OθJ(θ)t is the gradient w.r.t. θ for the t−th up-
date, GT (θ) is the accumulation of the squared gradients,
and ε is a smoothing term to avoid division by zero, set as
10−4. The overall algorithm of improved fBGD can be im-
plemented by replacing γ in Eq.(21) and Eq.(20) with the
new γt(θ).

5 EXPERIMENTS

fBGD is a generic PU learning model and can be applied
in a wide range of tasks with PU data and sparse features.
For evaluation purpose, we verify its performance in three
fields — word embedding (WC) of NLP, collaborative fil-
tering (CF) of IR, and image classification (IC) of CV.

5.1 EXPERIMENTAL SETUP

5.1.1 Datasets

We use five large benchmark datasets for evaluation:
NewsIR3 and Text84 for WE, Yahoo music5 and Lastfm6

for CF, and OpenImages Krasin et al. (2017) for IC. For
NewsIR, we preprocess them by a standard pipeline, i.e.,
removing non-textual elements, lowercasing and tokeniza-
tion. For Yahoo, we use the “train_0” file. For Lastfm,
we follow Weston et al. (2012) by extracting the latest one-
week actions per user via the timestamp, and consider two
tracks played by the same user as “consecutive" if they are
played within 90 minutes. It is used as a context-aware (or
next-item) recommendation dataset, where each x contains
a user and his previously played music tracks and each y
contains a music track and its artist. For OpenImages, we
randomly sample a number of (image, label) pairs from the
original dataset. The statistics of datasets are summarized

3
http://research.signalmedia.co/newsir16/

signal-dataset.html
4
http://mattmahoney.net/dc/text8.zip

5
http://webscope.sandbox.yahoo.com/catalog.php?

datatype=r&did=2
6
http://www.dtic.upf.edu/~ocelma/

MusicRecommendationDataset/
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Table 2: Comparison of well-known PU learning models. “SG”
and “SVDF" is short for Skip-gram and SVDFeature respectively.

Model Sampler Ratio Optimizer Loss

SG×10 Static 1:10 SGD LOG
GloVe - - SGD LS
SVDF×8 Uniform 1:8 SGD LS
BPRFM Uniform 1:1 SGD L2R
λFM Static 1:1 SGD L2R
WARP Dynamic 1:1 SGD L2R
VSE-ens Dynamic 1:1 SGD L2R
fBGD - - BGD LS

“Uniform”,“Static” and “Dynamic” are short for a uniform, static and dynamic
sampler respectively. Static sampler means the sampling distribution of negative
examples is defined before training and keeps unchanged during the whole opti-
mization process. Dynamic sampler changes the sampling distribution of negative
examples according to the current state of the learning algorithm. “Ratio” repre-
sents the positive-to-negative example ratio. “LS”, “LOG”, and “L2R” are short
for the least square, logistic, and learning-to-rank loss function respectively. Note
that we only evaluate λFM with the static sampler in this paper, considering the
efficiency issues of the dynamic samplers.

in Table 1.

5.1.2 Baselines and Evaluation

For WE, we compare fBGD with Skip-gram (Mikolov
et al., 2013b) and GloVe (Pennington et al., 2014). For
CF, we compare it with SVDFeature (Chen et al., 2012),
BPRFM (Rendle, 2012; Rendle et al., 2009), and λFM
(Yuan et al., 2016a). For IC, we compare it with SVDFea-
ture, WARP (Weston et al., 2011) and VSE-ens (Guo et al.,
2018b). For SVDFeature, we optimize it with the least
square loss, and use the negative sampling strategy. The
negative examples used for training are uniformly sampled
from U . To show the impact of negative sampling, we vary
the size of negative examples for each positive one. E.g.,
SVDFeature×8 means the positive-to-negative ratio is 1:8.
Table 2 summarizes the characteristics of these baselines.

To assess the performance of fBGD on the WE task, we
use the analogical reasoning task introduced by Mikolov
et al. (2013a). While to evaluate the CF and IC tasks,
we regard them as a ranking or classification task. We
report NDCG@10 (Normalized Discounted Cumulative
Gain) and MRR@10 (Mean Reciprocal Rank) for CF and
AUC (Area Under ROC Curve) for IC.

On the WE task, we evaluate the quality of the word vectors
learned from the training datasets. For CF and IC, we adopt
the leave-one-out evaluation protocol (Rendle et al., 2009).

5.1.3 Experimental Reproducibility

All reported results on each task use a fixed-size embedding
dimension without special mention. Specifically, we set
embedding dimension as 200, 20 and 100 for the WE, CF
and IC tasks respectively. For fBGD, we set the learning
rate γ as 0.05 on all three tasks. Regarding r+, we apply
the PPMI (positive pointwise mutual information) on the
WE task inspired by Levy and Goldberg (2014). For the

Table 3: Results on the word analogy task. “Sem”, “Syn”
and “Tot” denote the semantic, syntactic and total accu-
racy [%]. The positive-to-negative example ratio in SG is
1 : 10 and 1 : 25 in NewsIR and Text8 respectively sug-
gested by Mikolov et al. (2013b).

Model NewsIR Text8

Sem Syn Tot Sem Syn Tot

SG 70.8 47.5 58.1 47.5 32.3 38.6
GloVe 78.8 41.6 58.5 45.1 26.9 34.5
fBGD 77.0 46.1 59.7 56.5 30.4 41.3

Table 4: Results on the CF task. NDCG and MRR de-
note NDCG@10 and MRR@10 respectively. For each
measure, the best results for SVDFeature (SVDF) and
all models are indicated in bold. The results of SVDF,
BPRFM, λFM and fBGD are reported with all features in
the Lastfm dataset.

Model Yahoo Lastfm

NDCG MRR NDCG MRR

SVDF×1 0.0067 0.0044 0.0436 0.0285
SVDF×4 0.0133 0.009 0.0565 0.0391
SVDF×16 0.0186 0.0132 0.0535 0.0390
SVDF×64 0.0197 0.0139 0.0360 0.0263
SVDF×256 0.0193 0.0139 - -
BPRFM 0.0178 0.0124 0.1056 0.0740
λFM 0.0200 0.0140 0.1312 0.0950
fBGD 0.0224 0.0161 0.1800 0.1371

other two tasks, we simply set it as 1. r− can be set as 0
or -0.5. Empirically, we report results of baseline models
with optimal hyperparameters whereas for fBGD, we only
report results with above default settings.

5.2 ACCURACY AND DISCUSSION

5.2.1 Overall Results and Sampling Bias

We report results of all models in Tables 3, 4 and 5 for the
three tasks. Our first observation is that fBGD achieves the
best performance across all the evaluation metrics and all
the datasets. For example, fBGD outperforms Skip-gram
and GloVe in the two text corpora w.r.t. the total accuracy.

Remarkably, fBGD can easily outperform the strong base-
lines (e.g., λFM, WARP and VSE-ens) in the ranking and
classification tasks, although it optimizes a regression loss
which is typically suboptimal for ranking and classifica-
tion. We attribute the advantage of fBGD to two aspects:
(1) the optimization of each model parameter in fBGD

Table 5: Results on the IC task.

Metric SVDF×1 SVDF×4 SVDF×16
AUC 0.681 0.724 0.747

SVDF×64 WARP VSE-ens fBGD
0.663 0.696 0.723 0.772
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Figure 4: Impact of α0 and ρ on fBGD.

Table 6: Accuracy evaluation of fBGD by adding features.
u, p, i and a denote user, last item (song), next item and
artist respectively. All hyperparameters of fBGD are fixed.

Metrics (u, i) (u, p, i) (u, p, i, a)
NDCG@10 0.0416 0.1722 0.1800
MRR@10 0.0281 0.1301 0.1371

makes use of all unlabeled data, whereas the SGD mod-
els (including MGD) only use a fraction of sampled data.
In other words, important negative examples may be ig-
nored or under-trained; (2) the tailored weighting scheme
can help BGD address the imbalanced-class problem in PU
data (see Table 1), and assign fine-grained penalties for fur-
ther improvement.

Our second key observation in the following also veri-
fies the above analysis. As shown in Table 4 (Yahoo),
SVDF×64 > SVDF×16 >SVDF×4 >SVDF×1, while
SVDF×256 <SVDF×64. The results suggest that the per-
formance of SGD models is sensitive to the sampling size
of negative examples. To be more specific, one negative
sample for a positive example is insufficient to achieve
optimal performance; sampling more negative examples
is beneficial but too many negative examples may also
hurt the performance. In addition, although SVDF×64
> SVDF×1, the theoretical computation complexity of
SVDF×64 is about 32 times higher than SVDF×1. Still
in Table 4, λFM largely improves BPRFM, which demon-
strates the impact of sampling distribution of negative ex-
amples (see Table 2). However, the true distribution of neg-
ative (x, y) pairs in unlabeled samples is unknown in prac-
tice. That is, regardless of what samplers are used, sam-
pling based methods cannot converge to the same loss with
all examples or true data.

Table 7: Time Complexity of various optimizers per itera-
tion. |X||Y |g is much larger than (|X|+ |Y |)g2 and |P |g.
The size relation between |P |g and (|X|+ |Y |)g2 depends
on the sparsity of the data and the embedding dimension g.

Model Time Complexity
SGD×n O((n+ 1)|P |g)
BGD O(|X||Y |g)
fBGD O((|X|+ |Y |)g2 + |P |g)

Table 8: Comparison of runtime (second/minute/hour
[s/m/h]). “S”, "I" and "T" represents the training time for
a single iteration, overall iterations and total time respec-
tively. SGD denotes Skip-gram for NewsIR and SVDFea-
ture for other datasets. n is set as the optimal value, i.e., 10,
4 and 16 for NewsIR, Lastfm and OpenImages respectively.

Model NewsIR Lastfm OpenImages

S I T S I T S I T

SGD×n 715s 15 179m 156s 50 130m 26m 100 43h

fBGD 388s 75 485m 26s 200 87m 576s 200 32h

5.2.2 Impact of Weighting in fBGD

In this section, we show the impact of the weighting func-
tion for fBGD. We take the NewsIR and Lastfm datasets
as an example, and omit similar results in other datasets.
Figure 4 shows the prediction quality by tuning α0 and ρ
in the weight function. We first fix the value of ρ (e.g., 0
in CF and 0.8 in WE) to study the impact of α0. Then, we
use the best value of α0 to study ρ. As shown, the over-
all coefficient α0 largely impacts the performance as the
amount of positive and “negative” examples fed in fBGD
is highly imbalanced, the results of which are reflected in
(a) and (c). We observe that a proper ρ can improve the
performance, as shown in (b) and (d). The intuition behind
the improvement is that high-frequent y (words or items)
that are not observed in Y +

x have a higher likelihood to be
true negatives, and thus deserve more penalties.

5.2.3 Effectiveness in Modelling features

To show the generality of fBGD, we have described how to
apply it to complex embedding models, e.g., SVDFeature
used in CARS. For example, we gradually add features for
fBGD on Lastfm and report results in Table 6. As expected,
fBGD performs largely better with (u, p, i) than (u, i) and
that performance is further enhanced with (u, p, i, a). That
is, fBGD yields the best prediction accuracy with all fea-
tures, demonstrating its power on feature engineering.

5.2.4 Runtime

Table 7 summarizes the time complexity of the SGD, BGD
and fBGD algorithms in one iteration when optimizing the
pure dot product function. As shown, the complexity of
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fBGD is determined by the gradient computation of both
positive and unlabeled data, rather than the unlabeled data
only. In practice, the runtime is mainly affected by the
data sparsity and embedding size. For example, on the WE
task, O(|P |g) is larger than O((|X|+ |Y |)g2), while on the
IC task O((|X| + |Y |)g2) is almost 10 times larger than
O(|P |g) because the NewsIR and Text8 datasets are much
denser than the OpenImages dataset (see Table 1). We have
compared the overall training time7 of fBGD with the NS-
based SGD methods in Table 8. It shows that fBGD obtains
comparable efficiency to the classic SGD-based algorithm.
More detailed runtime results are shown in Appendix C.

6 RELATED WORK

Gradient methods are one of the most popular algorithms
to perform optimization in the practice of machine learn-
ing. They have also been widely used for training embed-
ding models, and have almost dominated the optimization
field. So far the most commonly used gradient optimiza-
tion method is SGD (Mikolov et al., 2013a,b; Pennington
et al., 2014; Rendle et al., 2009; Weston et al., 2011) or a
compromise MGD (mini-batch gradient descent) (Li et al.,
2014; He et al., 2017), which attempts to approximate the
true gradient by a single or a mini-batch of instances with
sampling techniques. However, the balance between com-
puting the expensive true gradient based on the whole batch
and the immediate gradient based on a single or a frac-
tion of instances could easily result in suboptimal perfor-
mance. More importantly, on large-scale data the sampling
size and distribution for SGD/MGD also significantly af-
fect the convergence rate and prediction accuracy (Bengio
and Senécal, 2008). In particular for PU data, it is non-
trivial to sample from large and highly imbalanced unla-
beled data. Most works deal with this issue by proposing a
certain trade-off between efficiency and accuracy. For ex-
ample, various negative sampling methods have been pro-
posed in recent literature (Mikolov et al., 2013b; Pan et al.,
2008; Weston et al., 2012; Yuan et al., 2016a, 2017; Wang
et al., 2017; Guo et al., 2018a,b). The basic idea behind this
is to select the most informative unlabeled instances as neg-
ative examples for an SGD/MGD trainer which, however,
easily leads to bias itself. Moreover, all aforementioned
works either expose efficiency issues with a dynamic sam-
pler (Weston et al., 2012; Wang et al., 2017; Yuan et al.,
2016a) or result in suboptimal training instances with a
uniform (Rendle et al., 2009) or static (defined before op-
timization) sampler (Mikolov et al., 2013a,b; Yuan et al.,
2016b, 2017) in practice. Our fBGD in this work departs
from all above studies by adopting BGD to optimize gen-
eral embedding models with the entire batch of data.

It is worth mentioning that the fBGD method is inspired

7For fairness, efficiency tests for all training models were running on Intel(R)
Xeon(R) E5620 @ 2.40GHz CPU and 49G RAM. Note that on the WE task, we
implemented all models using C++ with 8 threads in parallel, while on the other two
tasks, we implemented the models using Java in a single-thread.

from our extensive empirical studies on previous works (He
et al., 2016b; Bayer et al., 2017; Xin et al., 2018). The
main difference is that these works are focused on a spe-
cific task, e.g., He et al. (2016b); Bayer et al. (2017) are
only on recommendation and Xin et al. (2018) is on word
representation. Specifically, He et al. (2016b); Xin et al.
(2018) worked on the simple matrix factorization model,
which cannot be used to incorporate other features, such
as contextual variables associated with each observed ex-
ample. While the alternating least squares (ALS) method
proposed in Bayer et al. (2017) can be applied to any k-
separable model8, it requires to estimate the second-order
derivatives to apply the Newton update and only supports a
constant weight on unlabeled examples; moreover, our em-
pirical evidence shows that training with Newton update is
(1) very sensitive to initialization point and the regulariza-
tion term, and (2) highly unstable due to some gradient is-
sues, especially for embedding models (e.g., FM and SVD-
Feature) with many input features or large word corpus. By
contrast, this work targets at solving the generic PU learn-
ing problem with generic embedding models. It leads to a
unified solution that is applicable to a wide range of tasks,
including but not limited to the ones demonstrated in this
paper, with just simple changes on input features.

7 CONCLUSION

This work has several key contributions. First, we showed
how to efficiently train a class of embedding models by
batch gradient descent for positive unlabeled (PU) data.
Second, we identified an unstable gradient issue in fBGD
due to the large batched summation of sparse features, and
solve it by an intuitive way. To make the prediction ac-
curacy of fBGD comparable to the state-of-the-arts, we
employed a general weighting scheme for unlabeled exam-
ples. Despite simple, the weighting scheme could address
two challenges, namely imbalanced-class issue in PU data
and the differentiation of true negative and unknown exam-
ples. We studied the performance of fBGD in three sub-
fields, and showed that fBGD outperformed state-of-the-
art baselines. Compared with the ranking or classification
models, fBGD is clearly a regression model, which means
the real-valued scores estimated by it are more informa-
tive than those by ranking or classification algorithms. This
will make our method highly attractive for practical usage.
Moreover, the proposed fBGD is not limited to the domains
discussed in this paper. It potentially benefits many real-
world applications with PU data, such as genes association
studies (Asgari and Mofrad, 2015; Yang et al., 2014) and
data stream mining (Li et al., 2009), etc.

8In essence, the concept of k-separable is to describe a model with a dot product
structure of Equation (1).
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Abstract

Robust Reinforcement Learning aims to derive
an optimal behavior that accounts for model un-
certainty in dynamical systems. However, pre-
vious studies have shown that by considering
the worst case scenario, robust policies can be
overly conservative. Our soft-robust framework
is an attempt to overcome this issue. In this
paper, we present a novel Soft-Robust Actor-
Critic algorithm (SR-AC). It learns an optimal
policy with respect to a distribution over an
uncertainty set and stays robust to model uncer-
tainty but avoids the conservativeness of robust
strategies. We show the convergence of SR-AC
and test the efficiency of our approach on dif-
ferent domains by comparing it against regular
learning methods and their robust formulations.

1 INTRODUCTION

Markov Decision Processes (MDPs) are commonly used
to model sequential decision making in stochastic envi-
ronments. A strategy that maximizes the accumulated
expected reward is then considered as optimal and can be
learned from sampling. However, besides the uncertainty
that results from stochasticity of the environment, model
parameters are often estimated from noisy data or can
change during testing [Mannor et al., 2007; Roy et al.,
2017]. This second type of uncertainty can significantly
degrade the performance of the optimal strategy from the
model’s prediction.

Robust MDPs were proposed to address this problem
[Iyengar, 2005; Nilim and El Ghaoui, 2005; Tamar et al.,
2014]. In this framework, a transition model is assumed to
belong to a known uncertainty set and an optimal strategy
is learned under the worst parameter realizations. Al-
though the robust approach is computationally efficient

when the uncertainty set is state-wise independent, com-
pact and convex, it can lead to overly conservative results
[Mannor et al., 2012, 2016; Xu and Mannor, 2012; Yu
and Xu, 2016].

For example, consider a business scenario where an
agent’s goal is to make as much money as possible. It can
either create a startup which may make a fortune but may
also result in bankruptcy. Alternatively, it can choose to
live off school teaching and have almost no risk but low
reward. By choosing the teaching strategy, the agent may
be overly conservative and not account for opportunities
to invest in his own promising projects. Our claim is
that one could relax this conservativeness and construct
a softer behavior that interpolates between being aggres-
sive and robust. Ideally, the soft-robust agent should stay
agnostic to outside financing uncertainty but still be able
to take advantage of the startup experience.

This type of dilemma can be found in various domains.
In the financial market, investors seek a good trade-off
between low risk and high returns regarding portfolio
management [Mitchell and Smetters, 2013]. In strategic
management, product firms must choose the amount of re-
sources they put into innovation. A conservative strategy
would then consist of innovating only under necessary
conditions [Miller and Friesen, 1982].

In this paper, we focus on learning a soft-robust policy
(defined below) by incorporating soft-robustness into an
online actor-critic algorithm and show its convergence
properties. Existing works mitigate conservativeness of
robust MDP either by introducing coupled uncertainties
[Mannor et al., 2012, 2016] or by assuming prior informa-
tion on the uncertainty set [Xu and Mannor, 2012; Yu and
Xu, 2016]. They use dynamic programming techniques to
estimate a robust policy. However, these methods present
some limiting restrictions such as non-scalability and of-
fline estimation. Besides being computationally more effi-
cient than batch learning [Wiering and van Otterlo, 2012],
the use of an online algorithm is of significant interest in
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robust MDPs because it can detect non-adversarial state-
actions pairs along a trajectory and result in less conserva-
tive results, something which cannot be performed when
solving the planning problem [Lim et al., 2016]. Other
works have attempted to incorporate robustness into an on-
line algorithm for policy optimization [Mankowitz et al.,
2018; Tamar et al., 2015]. Although these approaches can
deal with large domains, a sampling procedure is required
for each critic estimate in Tamar et al. [2015], which dif-
fers from the strictly-speaking actor-critic. In Mankowitz
et al. [2018], the authors introduce a robust version of
actor-critic policy-gradient but its convergence results are
only shown for the actor updates. Moreover, these works
target the robust solution which may be too conservative.
We review all existing methods in Section 7 and compare
them to our approach.

To the best of our knowledge, our proposed work is the
first attempt to incorporate a soft form of robustness into
an online algorithm that has convergence guarantees be-
sides being computationally scalable. We deal with the
curse of dimensionality by using function approximation
that parameterizes the expected value within a space of
much smaller dimension than the state space. By fixing
a distribution over the uncertainty set, the induced soft-
robust actor-critic learns a locally optimal policy in an
online manner. Under mild assumptions on the set of
distributions and uncertainty set, we show that our novel
Soft-Robust Actor-Critic (SR-AC) algorithm converges.
We test the performance of soft-robustness on different
domains, including a large state space with continuous
actions. As far as we know, no other work has previously
incorporated robustness into continuous action spaces.

Our specific contributions are: (1) A soft-robust deriva-
tion of the objective function for policy-gradient; (2) An
SR-AC algorithm that uses stochastic approximation to
learn a variant of distributionally robust policy in an on-
line manner; (3) Convergence proofs of SR-AC; (4) An
experiment of our framework to different domains that
shows the efficiency of soft-robust behaviors in a continu-
ous action space as well. All proofs can be found in the
Appendix.

2 BACKGROUND

In this section, we introduce the background material
related to our soft-robust approach.

Robust MDP A robust MDP is a tuple 〈X ,A, r,P〉
where X is a finite state-space, A is a finite set of ac-
tions, r : X × A → R is the immediate reward function
which is deterministic and bounded and P is a set of
transition matrices. We assume that P is structured as
a cartesian product

⊗
x∈X Px, which is known as the

rectangularity assumption [Nilim and El Ghaoui, 2005].
Given a state x ∈ X , the uncertainty set Px is a family
of transition models px ∈ Px we represent as vectors
in which the transition probabilities of each action are
arranged in the same block. For x, y ∈ X and a ∈ A,
denote by p(x, a, y) the probability of getting from state
x to state y given action a.

At timestep t, the agent is in state xt and chooses an
action at according to a stochastic policy π : X → M(A)
that maps each state to a probability distribution over the
action space, M(A) denoting the set of distributions over
A. It then gets a reward rt+1 and is brought to state xt+1

with probability p(xt, at, xt+1).

Policy-Gradient Policy-gradient methods are commonly
used to learn an agent policy. A policy π is parametrized
by θ and estimated by optimizing an objective function
using stochastic gradient descent. A typical objective to
be considered is the average reward function

Jp(π) = lim
T→+∞

Ep[
1

T

T−1∑

t=0

rt+1 | π]

=
∑

x∈X
dπ

p (x)
∑

a∈A
π(x, a)r(x, a)

where rt is the reward at time t, p an aperiodic and irre-
ducible transition model under which the agent operates
and dπ

p is the stationary distribution of the Markov process
induced by p under policy π. The gradient objective has
previously been shown to be

∇θJp(π) =
∑

x∈X
dπ

p (x)
∑

a∈A
∇θπ(x, a)Qπ

p (x, a)

where Qπ
p (x, a) is the expected differential reward as-

sociated with state-action pair (x, a). This gradient is
then used to update the policy parameters according to:
θt+1 = θt + βt∇θJp(π), with βt a positive step-size
[Sutton et al., 2000].

Actor-Critic Algorithm Theoretical analysis and empir-
ical experiments have shown that regular policy-gradient
methods present a major issue namely high variance in the
gradient estimates that results in slow convergence and
inefficient sampling [Grondman et al., 2012]. First pro-
posed by Barto et al. [1983], actor-critic methods attempt
to reduce the variance by using a critic that estimates the
value function. They borrow elements from both value
function and policy-based methods. The value function
estimate plays the role of a critic that helps evaluating the
performance of the policy. As in policy-based methods,
the actor then uses this signal to update policy parameters
in the direction of a gradient estimate of a performance
measure. Under appropriate conditions, the resulting algo-
rithm is tractable and converges to a locally optimal policy
[Bhatnagar et al., 2009; Konda and Tsitsiklis, 2000].
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Deep Q-networks Deep Q-Networks (DQNs) have
proven their capability of solving complex learning tasks
such as Atari video games [Mnih et al., 2013]. The Q-
learning of Watkins and Dayan [1992] typically learns
a greedy or ǫ-greedy policy by updating the Q-function
based on a TD-error. In Deep Q-learning [Mnih et al.,
2013, 2015], a non-linear function such as a neural net-
work is used as an approximator of the Q-function. It
is referred to as a Q-network. The agent is then trained
by optimizing the induced TD loss function thanks to
stochastic gradient descent. Like actor-critic, DQN is an
online algorithm that aims at finding an optimal policy.
The main difference with actor-critic is that it is off-policy:
it learns a greedy strategy while following an arbitrary
behavior [Mnih et al., 2013].

Deep Deterministic Policy-Gradient Since DQN acts
greedily at each iteration, it can only handle small action
spaces. The Deep Deterministic Policy-Gradient (DDPG)
is an off-policy algorithm that can learn behaviors in con-
tinuous action spaces [Lillicrap et al., 2016]. It is based
on an actor-critic architecture that follows the same base-
line as in DQN. The critic estimates the current Q-value
of the actor using a TD-error while the actor is updated
according to the critic. This update is based on the chain
rule principle which establishes equivalence between the
stochastic and the deterministic policy gradient [Silver
et al., 2014].

3 SOFT-ROBUSTNESS

3.1 SOFT-ROBUST FRAMEWORK

Unlike robust MDPs that maximize the worst-case per-
formance, we fix a prior on how transition models are
distributed over the uncertainty set. A distribution over P
is denoted by ω and is structured as a cartesian product⊗

x∈X ωx. We find the same structure in Xu and Mannor
[2012]; Yu and Xu [2016]. Intuitively, ω can be thought
as the way the adversary distributes over different transi-
tion models. The product structure then means that this
adversarial distribution only depends on the current state
of the agent without taking into account its whole trajec-
tory. This defines a probability distribution ωx over Px

independently for each state.

We further assume that ω is non-diffuse. This implies that
the uncertainty set is non-trivial with respect to ω in a
sense that the distribution does not affect zero mass to all
of the models.

3.2 SOFT-ROBUST OBJECTIVE

Throughout this paper, we make the following assump-
tion:

Assumption 3.1. Under any policy π, the Markov chains
resulting from any of the MDPs with transition laws p ∈
P are irreducible and aperiodic.

Define dπ
p as the stationary distribution of the Markov

chain that results from following policy π under transition
model p ∈ P .

Definition 3.1. We call soft-robust objective or
soft-robust average reward the function J̄(π) :=
Ep∼ω [Jp(π)].

The distribution ω introduces a softer form of robustness
in the objective function because it averages over the
uncertainty set instead of considering the worst-case sce-
nario. It also gives flexibility over the level of robustness
one would like to keep. A robust strategy would then
consist of putting more mass on pessimistic transition
models. Likewise, a distribution that puts all of its mass
on one target model would lead to an aggressive behavior
and result in model misspecification.

The soft-robust differential reward is given by
Q̄π(x, a) := Ep∼ω

[
Qπ

p (x, a)
]

where

Qπ
p (x, a) := Ep

[+∞∑

t=0

rt+1 − Jp(π)|x0 = x, a0 = a, π

]
.

Similarly, we introduce the quantity

V̄ π(x) :=
∑

a∈A
π(x, a)Q̄π(x, a) = Ep∼ω

[
V π

p (x)
]

with V π
p (x) :=

∑
a∈A π(x, a)Qπ

p (x, a). We will inter-
changeably term it as soft-robust expected differential
reward or soft-robust value function.

3.3 SOFT-ROBUST STATIONARY
DISTRIBUTION

The above performance objective J̄(π) cannot as yet be
written as an expectation of the reward over a station-
ary distribution because of the added measure ω on tran-
sition models. Define the average transition model as
p̄ := Ep∼ω[p]. It corresponds to the transition probability
that results from distributing all transition models accord-
ing to ω. In analogy to the transition probability that
minimizes the reward for each given state and action in
the robust transition function [Mankowitz et al., 2018],
our average model rather selects the expected distribution
over all the uncertainty set for each state and action. Un-
der Assumption 3.1, we can show that the transition p̄ as
defined is irreducible and aperiodic, which ensures the
existence of a unique stationary law we will denote by
d̄π .
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Proposition 3.1 (Stationary distribution in the average
transition model). Under Assumption 3.1, the average
transition matrix p̄ := Ep∼ω[p] is irreducible and aperi-
odic. In particular, it admits a unique stationary distribu-
tion.

As in regular MDPs, the soft-robust average reward sat-
isfies a Poisson equation, as it was first stated in the dis-
counted reward case in Lemma 3.1 of Xu and Mannor
[2012]. The following proposition reformulates this result
for the average reward.

Proposition 3.2 (Soft-Robust Poisson equation).

J̄(π) + V̄ π(x)

=
∑

a∈A

π(x, a)

(
r(x, a) +

∑

x′∈X
p̄(x, a, x′)V̄ π(x′)

)

This Poisson equation enables us to establish an equiv-
alence between the expectation of the stationary distri-
butions over the uncertainty set and the stationary distri-
bution of the average transition model, naming d̄π(x) =
Ep∼ω[dπ

p (x)] with x ∈ X . Indeed, we have the following:

Corollary 3.1. Recall d̄π the stationary distribution for
the average transition model p̄. Then

J̄(π) =
∑

x∈X
d̄π(x)

∑

a∈A
π(x, a)r(x, a).

The goal is to learn a policy that maximizes the soft-robust
average reward J̄ . We use a policy-gradient method for
that purpose.

4 SOFT-ROBUST POLICY-GRADIENT

In policy-gradient methods, we consider a class of
parametrized stochastic policies πθ : X → M(A) with
θ ∈ Rd1 and estimate the gradient of the objective func-
tion J̄ with respect to policy parameters in order to update
the policy in the direction of the estimated gradient of J̄ .
The optimal set of parameters thus obtained is denoted by

θ∗ := arg max
θ
J̄(πθ).

When clear in the context, we will omit the subscript θ in
πθ for notation ease. We further make the following as-
sumption, which is standard in policy-gradient litterature:

Assumption 4.1. For any (x, a) ∈ X × A, the mapping
θ 7→ πθ(x, a) is continuously differentiable with respect
to θ.

Using the same method as in Sutton et al. [2000], we
can derive the gradient of the soft-robust average reward
thanks to the previous results.

Theorem 4.1 (Soft-Robust Policy-Gradient). For any
MDP satisfying previous assumptions, we have

∇θJ̄(π) =
∑

x∈X
d̄π(x)

∑

a∈A
∇θπ(x, a)Q̄π(x, a).

In order to manage with large state spaces, we also
introduce a linear approximation of Q̄π we define as
fw(x, a) := wTψxa. Sutton et al. [2000] showed that
if the features ψxa satisfy a compatibility condition and
the approximation is locally optimal, then we can use it
in place of Q̄π and still point roughly in the direction of
the true gradient.

In the case of soft-robust average reward, this defines
a soft-robust gradient update that possesses the ability
to incorporate function approximation, as stated in the
following result. The main difference with that of Sutton
et al. [2000] is that we combine the dynamics of the
system with distributed transitions over the uncertainty
set.

Theorem 4.2 (Soft-Robust Policy-Gradient with Function
Approximation). Let fw : X × A → R be a linear
approximator of the soft-robust differential reward Q̄π . If
fw minimizes the mean squared error

Eπ(w) :=
∑

x∈X
d̄π(x)

∑

a∈A
π(x, a)

[
Q̄π(x, a)−fw(x, a)

]2

and is compatible in a sense that ∇wfw(x, a) =
∇θ log π(x, a), then

∇θJ̄(π) =
∑

x∈X
d̄π(x)

∑

a∈A
∇θπ(x, a)fw(x, a)

We can further improve our gradient estimate by reducing
its variance. One direct method to do so is to subtract a
baseline b(x) from the previous gradient update. It is easy
to show that this will not affect the gradient derivation. In
particular, Bhatnagar et al. [2009] proved that the value
function minimizes the variance. It is therefore a proper
baseline to choose. We can thus write the following:

∇θJ̄(π) =
∑

x∈X
d̄π(x)

∑

a∈A
∇θπ(x, a)

(
Q̄π(x, a) − V̄ π(x)

)

=
∑

x∈X
d̄π(x)

∑

a∈A
π(x, a)ψxaĀ

π(x, a),

(1)

where Āπ(x, a) is the soft-robust advantage function de-
fined by Āπ(x, a) := Q̄π(x, a) − V̄ π(x).
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5 SOFT-ROBUST ACTOR-CRITIC
ALGORITHM

In this section, we present our SR-AC algorithm which
is defined as Algorithm 1. This novel approach incor-
porates a variation of distributional robustness into an
online algorithm that effectively learns an optimal policy
in a scalable manner. Under mild assumptions, the re-
sulting two-timescale stochastic approximation algorithm
converges to a locally optimal policy.

5.1 SR-AC ALGORITHM

An uncertainty set and a nominal model without uncer-
tainty are provided as inputs. In practice, the nominal
model and the uncertainty set can respectively be an es-
timate of the transition model resulting from data sam-
pling and its corresponding confidence interval. A dis-
tribution ω over the uncertainty set is also provided. It
corresponds to our prior information on the uncertainty
set. The step-size sequences (αt, βt, ξt; t ≥ 0) consist of
small non-negative numbers properly chosen by the user
(see Appendix for more details).

At each iteration, samples are generated using the nom-
inal model and the current policy. These are utilized to
update the soft-robust average reward (Line 5) and the
critic (Line 7) based on an estimate of a soft-robust TD-
error we detail further. In our setting, the soft-robust value
function plays the role of the critic according to which
the actor parameters are updated. We then exploit the
critic to improve our policy by updating the policy pa-
rameters in the direction of a gradient estimate for the
soft-robust objective (Line 8). This process is repeated
until convergence.

5.2 CONVERGENCE ANALYSIS

We establish convergence of SR-AC to a local maximum
of the soft-robust objective function by following an ODE
approach [Kushner and Yin, 1997].

Consider V̂ and Ĵ as unbiased estimates of V̄ and J̄ re-
spectively. Calculating δt (Line 6 in Algorithm 1) requires
an estimate of the soft-robust average-reward that can be
obtained by averaging over samples given immediate re-
ward r and distribution ω (Line 5). In order to get an
estimate of the soft-robust differential value V̂ , we use
linear function approximation. Considering ϕ as a d2-
dimensional feature extractor over the state space X , we
may then approximate V̄ π(x) as vTϕx, where v is a d2-
dimensional parameter vector that we tune using linear
TD. This results in the following soft-robust TD-error:

δt := rt+1 − Ĵt+1 +
∑

x′∈X
p̄(xt, at, x

′)vT
t ϕx′ − vT

t ϕxt
,

Algorithm 1 SR-AC

1: Input: P - An uncertainty set; p̂ ∈ P - A nominal
model; ω - A distribution over P; fx - A feature
extractor for the SR value function;

2: Initialize: θ = θ0 - An arbitrary policy parameter;
v = v0 - An arbitrary set of value function param-
eters; α0, β0, ξ0 - Initial learning-rates; x0 - Initial
state

3: repeat
4: Act under at ∼ πθt

(xt, at)
Observe next state xt+1 and reward rt+1

5: SR Average Reward Update:
Ĵt+1 = (1 − ξt)Ĵt + ξtrt+1

6: SR TD-Error:
δt = rt+1 − Ĵt+1 +

∑
x′∈X p̄(xt, at, x

′)V̂x′ − V̂xt

7: Critic Update: vt+1 = vt + αtδtϕxt

8: Actor Update: θt+1 = θt + βtδtψxtat

9: until convergence
10: Return: SR policy parameters θ and SR value-

function parameters v

where vt corresponds to the current estimate of the soft-
robust value function parameter.

As in regular MDPs, when doing linear TD learning, the
function approximation of the value function introduces
a bias in the gradient estimate [Bhatnagar et al., 2009].
Denoting it as eπ, we have E[∇̂θJ(π) | θ] = ∇θJ̄(π) +
eπ (see Appendix). This bias term then needs to be small
enough in order to ensure convergence.

Convergence of Algorithm 1 can be established by apply-
ing Theorem 2 from Bhatnagar et al. [2009] which ex-
ploits Borkar’s work on two-timescale algorithms [1997].
The convergence result is presented as Theorem 5.1.

Theorem 5.1. Under all the previous assumptions, given
ǫ > 0, there exists δ > 0 such that for a parameter vector
θt, t ≥ 0 obtained using the algorithm, if supπt

‖eπt‖ < δ,
then the SR-AC algorithm converges almost surely to an
ǫ-neighborhood of a local maximum of J̄ .

6 NUMERICAL EXPERIMENTS

We demonstrate the performance of soft-robustness on
various domains of finite as well as continuous state and
action spaces. We used the existing structure of OpenAI
Gym environments to run our experiments [Brockman
et al., 2016].

6.1 DOMAINS

Single-step MDP We consider a simplified formulation
of the startup vs teaching dilemma described in Section 1.
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s0

F1

S1

F2

S2

F3

S3

a1, R = -105

a1, R = 105

a2,R = 0

a2,R = 2000

a3,R = −100

a3,R = 5000

Figure 1: Illustration of the MDP with initial state s0.
States F1, F2, F3 correspond to failing scenarios for each
action. The succeeding states are represented by states
S1, S2, S3.

The problem is modeled as a 7-state MDP in which one
action corresponds to one strategy. An illustration of this
construction is given in Figure 1. At the starting state s0,
the agent chooses one of three actions. Action a1 [corre-
sponds to the startup adventure] may lead it to a very high
reward in case of success but can be catastrophic in case
of failure. Action a2 [corresponds to the teaching carrier]
leads it to low positive reward in case of success with no
possibility of negative reward. Action a3 [corresponds
to an intermediate strategy] can lead to an intermediate
positive reward with a slight risk of negative reward. De-
pending on the action it chose and if it succeeded or not,
the agent is brought to one of the six right-hand states and
receives the corresponding reward. It is brought back to
s0 at the end of each episode. We assume the probability
of success to be the same for all three actions.

Cart-Pole In the Cart-Pole system, the agent’s goal con-
sists of balancing a pole atop a cart in a vertical position.
It is modeled as a continuous MDP in which each state
consists of a 4-tuple 〈x, ẋ, θ, θ̇〉 which represents the cart
position, the cart speed, the pole angle with respect to the
vertical and its angular speed respectively. The agent can
make two possible actions: apply a constant force either
to the right or to the left of the pole. It gets a positive
reward of 1 if the pole has not fallen down and if it stayed
in the boundary sides of the screen. If it terminates, the
agent receives a reward of 0. Since each episode lasts for

200 timesteps, the maximal reward an agent can get is
200 over one episode.

Pendulum In the inverted pendulum problem, a pendu-
lum starts in a random position and the goal is to swing
it up so that it stabilizes upright. The state domain con-
sists in a 2-tuple 〈θ, θ̇〉 which represents the pendulum
angle with respect to the vertical and its angular velocity.
At each timestep, the agent’s possible actions belong to
a continuous interval [−a, a] which represents the force
level being applied. Since there is no specified termina-
tion, we establish a maximal number of 200 steps for each
episode.

6.2 UNCERTAINTY SETS

For each experiment, we generate an uncertainty set P
before training. In the single-step MDP, we sample from
5 different probabilities of success using a uniform dis-
tribution over [0, 1]. In Cart-Pole, we sample 5 different
lengths from a normal distribution centered at the nominal
length of the pole which we fix at 0.3. We proceed simi-
larly for Pendulum by generating 10 different masses of
pendulum around a nominal mass of 2. Each correspond-
ing model thus generates a different transition function.
We then sample the average model by fixing ω as a real-
ization of a Dirichlet distribution. A soft-robust update for
the actor is applied by taking the optimal action according
to this average transition function.

6.3 LEARNING ALGORITHMS

We trained the agent on the nominal model in each exper-
iment. The soft-robust agent was learned using SR-AC in
the single-step MDP. In Cart-Pole, we run a soft-robust
version of a DQN algorithm. The soft-robust agent in
Pendulum was trained using a soft-robust DDPG.

Soft-Robust AC We analyze the performance of SR-AC
by training a soft-robust agent on the single-step MDP.
We run a regular AC algorithm to derive an aggressive
policy and learn a robust behavior by using a robust for-
mulation of AC which consists in replacing the TD-error
with a robust TD-error, as implemented in Mankowitz
et al. [2018]. The derived soft-robust agent is then com-
pared with the resulting aggressive and robust strategies
respectively.

Soft-Robust DQN Robustness has already been incorpo-
rated in DQN [Di-Castro Shashua and Mannor, 2017].
The Q-network addressed there performs an online esti-
mation of the Q-function by minimizing at each timestep

213



t the following robust TD-error:

δrob
dqn,t : = r(xt, at) −Q(xt, at)

+ γ inf
p∈P

∑

x′∈X
p(xt, at, x

′) max
a′∈A

Q(x′, a′),

where γ is a discount factor.

In our experiments, we incorporate a soft-robust TD-error
inside a DQN that trains a soft-robust agent according to
the induced loss function. The soft-robust TD-error for
DQN is given by:

δsrob
dqn,t : = r(xt, at) −Q(xt, at)

+ γ
∑

x′∈X
p̄(xt, at, x

′) max
a′∈A

Q(x′, a′)

We use the Cart-Pole domain to compare the resulting
policy with the aggressive and robust strategies that were
obtained from a regular and a robust DQN respectively.

Soft-Robust DDPG Define µt as the estimated determin-
istic policy at step t. We incorporate robustness in DDPG
by updating the critic network according to the following
robust TD-error:

δrob
ddpg,t : = r(xt, at) −Q(xt, at)

+ γ inf
p∈P

∑

x′∈X
p(xt, at, x

′)Q(x′, µ(xt)),

Similarly, we incorporate soft-robustness in DDPG by
using the soft-robust TD-error:

δsrob
ddpg,t : = r(xt, at) −Q(xt, at)

+ γ
∑

x′∈X
p̄(xt, at, x

′)Q(x′, µt(xt))

We compare the resulting soft-robust DDPG with its reg-
ular and robust formulations in the Pendulum domain.

6.4 IMPLEMENTATION

For each experiment, we train the agent on the nominal
model but incorporate soft-robustness during learning.
A soft-robust policy is learned thanks to SR-AC in the
single-step MDP. We use a linear function approxima-
tion with 5 features to estimate the value function. For
Cart-Pole, we run a DQN using a neural network of 3
fully-connected hidden layers with 128 weights per layer
and ReLu activations. In Pendulum, a DDPG algorithm
learns a policy based on two target networks: the actor
and the critic network. Both have 2 fully-connected hid-
den layers with 400 and 300 units respectively. We use
a tanh activation for the actor and a Relu activation for
the critic output. We chose the ADAM optimizer to min-
imize all the induced loss functions. We used constant

learning rates which worked well in practice. Each agent
was trained over 3000 episodes for the single-step MDP
and Cartpole and tested over 600 episodes per parameter
setting. For Pendulum, the agents were trained over 5000
episodes evaluated over 800 episodes per parameter set-
ting. Other hyper-parameter values can be found in the
Appendix.

6.5 RESULTS

Single-step MDP Figure 2 shows the evolution of the
performance for all three agents during training. It be-
comes more stable along training time, which confirms
convergence of SR-AC. We see that the aggressive agent
performs best due to the highest reward it can reach on
the nominal model. The soft-robust agent gets rewards
in between the aggressive and the robust agent which
performs the worst due to its pessimistic learning method.

Figure 2: Comparison of robust, soft-robust and aggres-
sive agents during training. One training epoch corre-
sponds to 300 episodes.

The evaluation of each strategy is represented in Figure 3.
As the probability of success gets low, the performance
of the aggressive agent drops down below the robust and
the soft-robust agents, although it performs best when
the probability of success gets close to 1. The robust
agent stays stable independently of the parameters but
underperforms soft-robust agent which presents the best
balance between high reward and low risk. We noticed
that depending on the weighting distribution initially set,
soft-robustness tends to being more or less aggressive
(see Appendix). Incorporating a distribution over the
uncertainty set thus gives significant flexibility on the
level of aggressiveness to be assigned to the soft-robust
agent.

Cart-Pole In Figure 4, we show the performance of all
three strategies over different values of pole length during
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Figure 3: Average reward for AC, robust AC and SR-AC
methods

testing. Similarly to our previous example, the non-robust
agent performs well around the nominal model but its
reward degrades on more extreme values of pole length.
The robust agent keeps a stable reward under model un-
certainty which is consistent with the results obtained
in Di-Castro Shashua and Mannor [2017]; Mankowitz
et al. [2018]. However, it is outperformed by the soft-
robust agent around the nominal model. Furthermore,
the soft-robust strategy shows an equilibrium between
aggressiveness and robustness thus leading to better per-
formance than the non-robust agent on larger pole lengths.
We trained a soft-robust agent on other weighting distri-
butions and noted that depending on its structure, soft-
robustness interpolates between aggressive and robust
behaviors (see Appendix).

Figure 4: Average reward performance for DQN, robust
DQN and soft-robust DQN

Pendulum Figure 5 shows the performance of all three

Figure 5: Max-200 episodes average performance for
DDPG, robust DDPG and soft-robust DDPG

agents when evaluating them on different masses. Since
the performance among different episodes is highly vari-
able, we considered the best 200-episodes average reward
as a performance measure. As seen in the figure, the
robust strategy solves the task in a sub-optimal fashion,
but is less affected by model misspecification due to its
conservative strategy. The aggressive non-robust agent
is more sensitive to model misspecification compared to
the other methods as can be seen by its sudden dip in
performance, below even that of the robust agent. The
soft-robust solution strikes a nice balance between being
less sensitive to model misspecification than the aggres-
sive agent, and producing better performance compared
to the robust solution.

7 RELATED WORK

This paper is related to several domains in RL such as
robust and distributionally robust MDPs, actor-critic meth-
ods and online learning via stochastic approximation algo-
rithms. Our work solves the problem of conservativeness
encountered in robust MDPs by incorporating a varia-
tional form of distributional robustness. The SR-AC algo-
rithm combines scalability to large scale state-spaces and
online estimation of the optimal policy in an actor-critic
algorithm. Table 1 compares our proposed algorithm with
previous approaches.

Many solutions have been addressed to mitigate conserva-
tiveness of robust MDP. Mannor et al. [2012, 2016] relax
the state-wise independence property of the uncertainty
set and assume it to be coupled in a way such that the plan-
ning problem stays tracktable. Another approach tends to
assume a priori information on the parameter set. These
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Table 1: Comparison of previous approaches with SR-AC

Reference Scalable Actor-
Critic

Softly-
Robust

SR-AC (this paper) ✓ ✓ ✓

Mankowitz et al.
[2018]

✓ ✗ ✗

Lim et al. [2016] ✗ ✗ ✗

Yu and Xu [2016] ✗ ✗ ✓

Mannor et al. [2012,
2016]

✗ ✗ ✗

Tamar et al. [2015] ✓ ✗ ✗

Xu and Mannor
[2012]

✗ ✗ ✓

Bhatnagar et al.
[2009]

✓ ✓ ✗

methods include distributionally robust MDPs [Xu and
Mannor, 2012; Yu and Xu, 2016] in which the optimal
strategy maximizes the expected reward under the most
adversarial distribution over the uncertainty set. For finite
and known MDPs, under some structural assumptions on
the considered set of distributions, this max-min prob-
lem reduces to classical robust MDPs and can be solved
efficiently by dynamic programming [Puterman, 2009].

However, besides becoming untracktable under large-
sized MDPs, these methods use an offline learning ap-
proach which cannot adapt its level of protection against
model uncertainty and may lead to overly conservative
results. The work of Lim et al. [2016] solutions this
issue and addresses an online algorithm that learns the
transitions that are purely stochastic and those that are
adversarial. Although it ensures less conservative results
as well as low regret, this method sticks to the robust
objective while strongly relying on the finite structure of
the state-space. To alleviate the curse of dimensionality,
we incorporate function approximation of the objective
value and define it as a linear functional of features.

First introduced in Barto et al. [1983] and later addressed
by Bhatnagar et al. [2009], actor-critic algorithms are on-
line learning methods that aim at finding an optimal policy.
We used the formulation of Bhatnagar et al. [2009] as a
baseline for the algorithm we proposed. The key differ-
ence between their work and ours is that we incorporate
soft-robustness. This relates in a sense to the Bayesian
Actor-Critic setup in which the critic returns a complete
posterior distribution of value functions using Bayes’ rule
[Ghavamzadeh and Engel, 2007; Ghavamzadeh et al.,
2015, 2016]. Our study keeps a frequentist approach,
meaning that our algorithm updates return point estimates
of the average value-function which prevents from track-
tability issues besides enabling the distribution to be more

flexible. Another major distinction is that the Bayesian
approach incorporates a prior distribution on one model
parameters whereas our method considers a prior on dif-
ferent transition models over an uncertainty set.

In Mankowitz et al. [2018]; Tamar et al. [2015], the au-
thors incorporate robustness into policy-gradient methods.
A sampling procedure is required for each critic estimate
in Tamar et al. [2015], which differs from the strictly-
speaking actor-critic. A robust version of actor-critic
policy-gradient is introduced in Mankowitz et al. [2018]
but its convergence guarantees are only shown for robust
policy-gradient ascent. Both of these methods target the
robust strategy whereas we seek a soft-robust policy that
is less conservative while protecting itself against model
uncertainty.

8 DISCUSSION

We have presented the SR-AC framework that is able to
learn policies which keep a balance between aggressive
and robust behaviors. SR-AC requires a stationary distri-
bution under the average transition model and compatibil-
ity conditions for deriving a soft-robust policy-gradient.
We have shown that this ensures convergence of SR-AC.
This is the first work that has attempted to incorporate a
soft form of robustness into an online actor-critic method.
Our approach has been shown to be computationally scal-
able to large domains because of its low computational
price. In our experiments, we have also shown that the
soft-robust agent interpolates between aggressive and ro-
bust strategies without being overly conservative which
leads it to outperform robust policies under model uncer-
tainty even when the action space is continuous. Sub-
sequent experiments should test the efficiency of soft-
robustness on more complex domains.

The chosen weighting over the uncertainty set can be
thought as the way the adversary distributes over different
transition laws. In our current setting, this adversarial
distribution stays constant without accounting for the re-
wards obtained by the agent. Future work should address
the problem of learning the sequential game induced by
an evolving adversarial distribution to derive an optimal
soft-robust policy. Other extensions of our work may also
consider non-linear objective functions such as higher or-
der moments with respect to the adversarial distribution.
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Abstract

Stochastic gradient methods enable learning
probabilistic models from large amounts of
data. While large step-sizes (learning rates)
have shown to be best for least-squares (e.g.,
Gaussian noise) once combined with param-
eter averaging, these are not leading to con-
vergent algorithms in general. In this pa-
per, we consider generalized linear models,
that is, conditional models based on exponen-
tial families. We propose averaging moment
parameters instead of natural parameters for
constant-step-size stochastic gradient descent.
For finite-dimensional models, we show that
this can sometimes (and surprisingly) lead to
better predictions than the best linear model.
For infinite-dimensional models, we show that
it always converges to optimal predictions,
while averaging natural parameters never does.
We illustrate our findings with simulations on
synthetic data and classical benchmarks with
many observations.

1 INTRODUCTION

Faced with large amounts of data, efficient parameter es-
timation remains one of the key bottlenecks in the ap-
plication of probabilistic models. Once cast as an op-
timization problem, for example through the maximum
likelihood principle, difficulties may arise from the size
of the model, the number of observations, or the poten-
tial non-convexity of the objective functions, and often
all three (Koller and Friedman, 2009; Murphy, 2012).

In this paper we focus primarily on situations where the
number of observations is large; in this context, stochas-
tic gradient descent (SGD) methods which look at one
sample at a time are usually favored for their cheap iter-

ation cost. However, finding the correct step-size (some-
times referred to as the learning rate) remains a practi-
cal and theoretical challenge, for probabilistic modeling
but also in most other situations beyond maximum like-
lihood (Bottou et al., 2016).

In order to preserve convergence, the step size γn at the
n-th iteration typically has to decay with the number of
gradient steps (here equal to the number of data points
which are processed), typically as C/nα for α ∈ [1/2, 1]
(see, e.g., Bach and Moulines, 2011; Bottou et al., 2016).
However, these often leads to slow convergence and the
choice of α and C is difficult in practice. More re-
cently, constant step-sizes have been advocated for their
fast convergence towards a neighborhood of the optimal
solution (Bach and Moulines, 2013), while it is a stan-
dard practice in many areas (Goodfellow et al., 2016).
However, it is not convergent in general and thus small
step-sizes are still needed to converge to a decent estima-
tor.

Constant step-sizes can however be made to converge
in one situation. When the functions to optimize are
quadratic, like for least-squares regression, using a con-
stant step-size combined with an averaging of all estima-
tors along the algorithm can be shown to converge to the
global solution with the optimal convergence rates (Bach
and Moulines, 2013; Dieuleveut and Bach, 2016).

The goal of this paper is to explore the possibility of such
global convergence with a constant step-size in the con-
text of probabilistic modeling with exponential families,
e.g., for logistic regression or Poisson regression (Mc-
Cullagh, 1984). This would lead to the possibility of
using probabilistic models (thus with a principled quan-
tification of uncertainty) with rapidly converging algo-
rithms. Our main novel idea is to replace the averag-
ing of the natural parameters of the exponential family
by the averaging of the moment parameters, which can
also be formulated as averaging predictions instead of
estimators. For example, in the context of predicting bi-
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θ̄n

θn

θ̄γ

θ∗

θ0

θn − θ̄γ = Op(γ
1/2)

θn − θ̄γ = Op(n
−1/2)

θ∗ − θ̄γ = O(γ)

Figure 1: Convergence of iterates θn and averaged it-
erates θ̄n to the mean θ̄γ under the stationary distribu-
tion πγ .

nary outcomes in {0, 1} through a Bernoulli distribution,
the moment parameter is the probability p ∈ [0, 1] that
the variable is equal to one, while the natural parameter
is the “log odds ratio” log p

1−p , which is unconstrained.
This lack of constraint is often seen as a benefit for op-
timization; it turns out that for stochastic gradient meth-
ods, the moment parameter is better suited to averaging.
Note that for least-squares, which corresponds to mod-
eling with the Gaussian distribution with fixed variance,
moment and natural parameters are equal, so it does not
make a difference.

More precisely, our main contributions are:

• For generalized linear models, we propose in Sec-
tion 4 averaging moment parameters instead of
natural parameters for constant-step-size stochastic
gradient descent.

• For finite-dimensional models, we show in Sec-
tion 5 that this can sometimes (and surprisingly)
lead to better predictions than the best linear model.

• For infinite-dimensional models, we show in Sec-
tion 6 that it always converges to optimal pre-
dictions, while averaging natural parameters never
does.

• We illustrate our findings in Section 7 with simu-
lations on synthetic data and classical benchmarks
with many observations.

2 CONSTANT STEP SIZE
STOCHASTIC GRADIENT DESCENT

In this section, we present the main intuitions behind
stochastic gradient descent (SGD) with constant step-
size. For more details, see Dieuleveut et al. (2017). We

consider a real-valued function F defined on the Eu-
clidean space Rd (this can be generalized to any Hilbert
space, as done in Section 6 when considering Gaussian
processes and positive-definite kernels), and a sequence
of random functions (fn)n>1 which are independent and
identically distributed and such that Efn(θ) = F (θ) for
all θ ∈ Rd. Typically, F will the expected negative log-
likelihood on unseen data, while fn will be the negative
log-likelihood for a single observation. Since we require
independent random functions, we assume that we make
single pass over the data, and thus the number of itera-
tions is equal to the number of observations.

Starting from an initial θ0 ∈ Rd, then SGD will perform
the following recursion, from n = 1 to the total number
of observations:

θn = θn−1 − γn∇fn(θn−1). (1)

Since the functions fn are independent, the iterates (θn)n
form a Markov chain. When the step-size γn is con-
stant (equal to γ) and the functions fn are identically
distributed, the Markov chain is homogeneous. Thus,
under additional assumptions (see, e.g., Dieuleveut et al.,
2017; Meyn and Tweedie, 1993), it converges in distribu-
tion to a stationary distribution, which we refer to as πγ .
These additional assumptions include that γ is not too
large (otherwise the algorithm diverges) and in the tra-
ditional analysis of step-sizes for gradient descent tech-
niques, we analyze the situation of small γ’s (and thus
perform asymptotic expansions around γ = 0).

The distribution πγ is in general not equal to a Dirac
mass, and thus, constant-step-size SGD is not conver-
gent. However, averaging along the path of the Markov
chain has some interesting properties. Indeed, several
versions of the “ergodic theorem” (see, e.g., Meyn and
Tweedie, 1993) show that for functions g from Rd to any
vector space, then the empirical average 1

n

∑n
i=1 g(θi)

converges in probability to the expectation
∫
g(θ)dπγ(θ)

of g under the stationary distribution πγ . This conver-
gence can also be quantified by a central limit theorem
with an error whichs tends to a normal distribution with
variance proportional equal to a constant times 1/n.

Thus, if denote θ̄n = 1
n+1

∑n
i=0 θi, applying the previ-

ous result to the identity function g, we immediately ob-
tain that θ̄n converges to θ̄γ =

∫
θdπγ(θ), with a squared

error converging inO(1/n). The key question is the rela-
tionship between θ̄γ and the global optimizer θ∗ of F , as
this characterizes the performance of the algorithm with
an infinite number of observations.

By taking expectations in Eq. (1), and taking a limit
with n tending to infinity we obtain that

∫
∇F (θ)dπγ(θ) = 0, (2)
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that is, under the stationary distribution πγ , the aver-
age gradient is zero. When the gradient is a linear
function (like for a quadratic objective F ), this leads to
∇F (

∫
θdπγ(θ)) = ∇F (θ̄γ) = 0, and thus θ̄γ is a sta-

tionary point of F (and hence the global minimizer if F
is convex). However this is not true in general.

As shown by Dieuleveut et al. (2017), the deviation
θ̄γ − θ∗ is of order γ, which is an improvement on
the non-averaged recursion, which is at average distance
O(γ1/2) (see an illustration in Figure 1); thus, small or
decaying step-sizes are needed. In this paper, we ex-
plore alternatives which are not averaging the estimators
θ1, . . . , θn, and rely instead on the specific structure of
our cost functions, namely negative log-likelihoods.

3 WARM-UP: EXPONENTIAL
FAMILIES

In order to highlight the benefits of averaging moment
parameters, we first consider unconditional exponential
families. We thus consider the standard exponential fam-
ily q(x|θ) = h(x) exp(θ>T (x) − A(θ)), where h(x) is
the base measure, T (x) ∈ Rd is the sufficient statis-
tics and A the log-partition function. The function A
is always convex (see, e.g., Koller and Friedman, 2009;
Murphy, 2012). Note that we do not assume that the
data distribution p(x) comes from this exponential fam-
ily. The expected (with respect to the input distribution
p(x)) negative log-likelihood is equal to

F (θ) = −Ep(x) log q(x|θ)
= A(θ)− θ>Ep(x)T (x)− Ep(x) log h(x).

It is known to be minimized by θ∗ such that ∇A(θ∗) =
Ep(x)T (x). Given i.i.d. data (xn)n>1 sampled from
p(x), then the SGD recursion from Eq. (1) becomes:

θn = θn−1 − γ
[
∇A(θn−1)− T (xn)

]
,

while the stationarity equation in Eq. (2) becomes
∫ [
∇A(θ)− Ep(x)T (x)]dπγ(θ) = 0,

which leads to
∫
∇A(θ)dπγ(θ) = Ep(x)T (x) = ∇A(θ∗).

Thus, averaging∇A(θn) will converge to∇A(θ∗), while
averaging θn will not converge to θ∗. This simple obser-
vation is the basis of our work.

Note that in this context of unconditional models, a sim-
pler estimator exists, that is, we can simply compute the

empirical average 1
n

∑n
i=1 T (xi) that will converge to

∇A(θ∗). Nevertheless, this shows that averaging mo-
ment parameters∇A(θ) rather than natural parameters θ
can bring convergence benefits. We now turn to condi-
tional models, for which no closed-form solutions exist.

4 CONDITIONAL EXPONENTIAL
FAMILIES

Now we consider the conditional exponential family
q(y|x, θ) = h(y) exp

(
y·ηθ(x)−a(ηθ(x))

)
. For simplic-

ity we consider only one-dimensional families where y ∈
R—but our framework would also extend to more com-
plex models such as conditional random fields (Lafferty
et al., 2001). We will also assume that h(y) = 1 for all y
to avoid carrying constant terms in log-likelihoods. We
consider functions of the form ηθ(x) = θ>Φ(x), which
are linear in a feature vector Φ(x), where Φ : X → Rd
can be defined on an arbitrary input set X. Calculating
the negative log-likelihood, one obtains:

fn(θ) = − log q(yn|xnθ) = −ynΦ(xn)>θ+a
(
Φ(xn)θ

)
,

and, for any distribution p(x, y), for which p(y|x) may
not be a member of the conditional exponential family,

F (θ) = Ep(xn,yn)fn(θ)

= Ep(xn,yn)
[
− ynΦ(xn)>θ + a

(
Φ(xn)θ

)]
.

The goal of estimation in such generalized linear models
is to find an unknown parameter θ given n observations
(xi, yi)i=1,...,n:

θ∗ = arg min
θ∈Rd

F (θ). (3)

4.1 FROM ESTIMATORS TO PREDICTION
FUNCTIONS

Another point of view is to consider that an estima-
tor θ ∈ Rd in fact defines a function η : X → R,
with value a natural parameter for the exponential family
q(y) = exp(ηy − a(η)). This particular choice of func-
tion ηθ is linear in Φ(x), and we have, by decomposing
the joint probability p(xn, yn) in two (and dropping the
dependence on n since we have assumed i.i.d. data):

F (θ) = Ep(x)
(
Ep(y|x)

[
− yΦ(x)>θ + a(Φ(x)>θ)

])

= Ep(x)
(
− Ep(y|x)yΦ(x)>θ + a(Φ(x)>θ)

)

= F(ηθ),

with F(η) = Ep(x)
(
− Ep(y|x)y · η(x) + a(η(x))

)
is the

performance measure defined for a function η : X → R.
By definition F (θ) = F(ηθ) = F(θ>Φ(·)).
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Figure 2: Graphical representation of reparametrization:
firstly we expand the class of functions, replacing pa-
rameter θ with function η(·) = Φ>(·)θ and then we do
one more reparametrization: µ(·) = a′(η(·)). Best linear
prediction µ∗ is constructed using θ∗ and the global min-
imizer of G is µ∗∗. Model is well-specified if and only if
µ∗ = µ∗∗.

However, the global minimizer of F(η) over all functions
η : X → R may not be attained at a linear function
in Φ(x) (this can only be the case if the linear model
is well-specified or if the feature vector Φ(x) is flexi-
ble enough). Indeed, the global minimizer of F is the
function η∗∗ : x 7→ (a′)−1(Ep(y|x)y) (starting from
F(η) =

∫ [
a(η(x)) − Ep(x|y)y · η(x)

]
p(x)dx and writ-

ing down the Euler - Lagrange equation: ∂F∂η − d
dx

∂F
∂η′ =

0 ⇔
[
a′(η) − Ep(x|y)y

]
p(x) = 0 and finally η 7→

(a′)−1(Ep(x|y)y)) and is typically not a linear function
in Φ(x) (note here that p(y|x) is the conditional data-
generating distribution).

The function η corresponds to the natural parameter of
the exponential family, and it is often more intuitive to
consider the moment parameter, that is defining func-
tions µ : X → R that now correspond to moments of
outputs y; we will refer to them as prediction functions.
Going from natural to moment parameter is known to
be done through the gradient of the log-partition func-
tion, and we thus consider for η a function from X to R,
µ(·) = a′(η(·)), and this leads to the performance mea-
sure

G(µ) = F((a′)−1(µ(·))).

Note now, that the global minimum of G is reached at

µ∗∗(x) = Ep(y|x)y.

We introduce also the prediction function µ∗(x) corre-
sponding to the best η which is linear in Φ(x), that is:

µ∗(x) = a′
(
θ>∗ Φ(x)

)
.

We say that the model is well-specified when µ∗ = µ∗∗,
and for these models, infθ F (θ) = infµ G(µ). How-
ever, in general, we only have infθ F (θ) > infµ G(µ)

and (very often) the inequality is strict (see examples in
our simulations).

To make the further developments more concrete, we
now present two classical examples: logistic regression
and Poisson regression.

Logistic regression. The special case of conditional
family is logistic regression, where y ∈ {0, 1}, a(t) =
log(1 + e−t) and a′(t) = σ(t) = 1

1+e−t is the sigmoid
function and the probability mass function is given by
p(y|η) = exp(ηy − log(1 + eη)).

Poisson regression. One more special case is Poisson
regression with y ∈ N, a(t) = exp(t) and the response
variable y has a Poisson distribution. The probability
mass function is given by p(y|η) = exp(ηy − eη −
log(y!)). Poisson regression may be appropriate when
the dependent variable is a count, for example in ge-
nomics, network packet analysis, crime rate analysis, flu-
orescence microscopy, etc. (Hilbe, 2011).

4.2 AVERAGING PREDICTIONS

Recall from Section 2 that πγ is the stationary distribu-
tion of θ. Taking expectation of both parts of Eq. (1), we
get, by using the fact that πγ is the limiting distribution
of θn and θn−1:

Eπγ(θn)θn
= Eπγ(θn−1)θn−1 − γEπγ(θn−1)Ep(xn,yn)f

′
n(θn−1),

which leads to Eπγ(θ)Ep(xn,yn)∇fn(θ) = 0, that is, now
removing the dependence on n (data (x, y) are i.i.d.):

Eπγ(θ)Ep(x,y)
[
− yΦ(x) + a′

(
Φ(x)>θ

)
Φ(x)

]
= 0,

which finally leads to

Ep(x)
[
Eπγ(θ)a

′(Φ(x)>θ
)
− µ∗∗(x)

]
Φ(x) = 0. (4)

This is the core equation our method relies on. It does
not imply that b(x) = Eπγ(θ)a′

(
Φ(x)>θ

)
− µ∗∗(x) is

uniformly equal to zero (which we want), but only that
Ep(x)Φ(x)b(x) = 0, i.e., b(x) is uncorrelated with Φ(x).

If the feature vector Φ(x) is “large enough” then this is
equivalent to b = 0.1 For example, when Φ(x) is com-
posed of an orthonormal basis of the space of integrable

1Let Φ(x) = (φ1(x), . . . , φn(x))> be an orthogonal ba-
sis and b(x) =

∑n
i=1 ciφi(x) + ε(x), where ε(x) is small

if the basis is big enough. Then Ep(x)Φ(x)b(x) = 0 ⇔
Eφi(x)

[∑n
i=1 ciφi(x) + ε(x)

]
= 0 for every i, and due

to the orthogonality of the basis and the smallness of ε(x):
ci · Ep(x)φ2(x) ≈ 0 and hence ci ≈ 0 and thus b(x) ≈ 0.

222



functions (like for kernels in Section 6), then this is ex-
actly true. Thus, in this situation,

µ∗∗(x) = Eπγ(θ)a
′(Φ(x)>θ

)
, (5)

and averaging predictions a′
(
Φ(x)>θn

)
, along the path

(θn) of the Markov chain should exactly converge to the
optimal prediction.

This exact convergence is weaker (requires high-
dimensional fatures) than for the unconditional family in
Section 3 but it can still bring surprising benefits even
when Φ is not large enough, as we present in Section 5
and Section 6.

4.3 TWO TYPES OF AVERAGING

Now we can introduce two possible ways to estimate the
prediction function µ(x).

Averaging estimators. The first one is the usual way:
we first estimate parameter θ, using Ruppert-Polyak av-
eraging (Polyak and Juditsky, 1992): θ̄n = 1

n+1

∑n
i=0 θi

and then we denote

µ̄n(x) = a′(Φ(x)>θ̄n) = a′
(

Φ(x)> 1
n+1

∑n
i=0 θi

)

the corresponding prediction. As discussed in Section 2
it converges to µ̄γ : x 7→ a′(Φ(x)>θ̄γ), which is not
equal to in general to a′(Φ(x)>θ∗), where θ∗ is the op-
timal parameter in Rd. Since, as presented at the end of
Section 2, θ̄γ − θ∗ is of order O(γ), F (θ̄γ)−F (θ∗) is of
order O(γ2) (because∇F (θ∗) = 0), and thus an error of
O(γ2) is added to the usual convergence rates inO(1/n).

Note that we are limited here to prediction functions
which corresponds to linear functions in Φ(x) in the nat-
ural parameterization, and thus F (θ∗) > G(µ∗∗), and the
inequality is often strict.

Averaging predictions. We propose a new estimator

¯̄µn(x) =
1

n+ 1

n∑

i=0

a′(θ>i Φ(x)).

In general G(¯̄µn) − G(µ∗∗) does not converge to zero
either (unless the feature vector Φ is large enough and
Eq. (5) is satisfied). Thus, on top of the usual conver-
gence inO(1/n) with respect to the number of iterations,
we have an extra term that depends only on γ, which we
will study in Section 5 and Section 6.

We denote by ¯̄µγ(x) the limit when n → ∞, that is,
using properties of converging Markov chains, ¯̄µγ(x) =
Eπγ(θ)a′

(
Φ(x)>θ

)
.

Rewriting Eq. (4) using our new notations, we get:

E
[
(µ∗∗(x)− ¯̄µγ(x))Φ(xn)

]
= 0.

When Φ : R → Rd is high-dimensional, this leads to
µ∗∗ = ¯̄µγ and in contrast to µ̄γ , averaging predictions
potentially converge to the optimal prediction.

Computational complexity. Usual averaging of esti-
mators (Polyak and Juditsky, 1992) to compute µ̄n(x) =
a′(Φ(x)>θ̄n) is simple to implement as we can sim-
ply update the average θ̄n with essentially no extra cost
on top the complexity O(nd) of the SGD recursion.
Given the number n of training data points and the num-
ber m of testing data points, the overall complexity is
O(d(n+m)).

Averaging prediction functions is more challenging
as we have to store all iterates θi, i = 1, . . . , n,
and for each testing point x, compute ¯̄µn(x) =
1

n+1

∑n
i=0 a

′(θ>i Φ(x)). Thus the overall complexity is
O(dn+mnd), which could be too costly with many test
points (i.e., m large).

There are several ways to alleviate this extra cost: (a)
using sketching techniques (Woodruff et al., 2014), (b)
using summary statistics like done in applications of
MCMC (Gilks et al., 1995), or (c) leveraging the fact that
all iterates θi will end up being close to θ̄γ and use a Tay-
lor expansion of a′

(
θ>Φ(x)

)
around θ̄γ . This expansion

is equal to:

a′
(
Φ(x)>θγ

)
+ (θ − θγ)>Φ(x) · a′′

(
Φ(x)>θγ

)
+

+
1

2

(
(θ− θγ)>Φ(x)

)2 ·a′′′
(
Φ(x)>θγ

)
+O

(
‖θ− θγ‖3

)
.

Taking expectation in both sides above leads to:

¯̄µγ(x) ≈ µ̄γ(x) +
1

2
Φ(x)>cov (θ) ·Φ(x) ·a′′′

(
θ
>
γ Φ(x)

)
,

where cov (θ) is the covariance matrix of θ under πγ .
This provides a simple correction to µ̄γ , and leads to an
approximation of ¯̄µn(x) as

µ̄n(x) +
1

2
Φ(x)>covn(θ) Φ(x) · a′′′

(
θ
>
nΦ(x)

)
,

where covn(θ) is the empirical covariance matrix of the
iterates (θi).

The computational complexity now becomes O(nd2 +
md2), which is an improvement when the number of test-
ing points m is large. In all of our experiments, we used
this approximation.
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5 FINITE-DIMENSIONAL MODELS

In this section we study the behavior of ¯̄A(γ) = G(¯̄µγ)−
G(µ∗) for finite-dimensional models, for which it is usu-
ally not equal to zero. We know that our estimators
¯̄µn will converge to ¯̄µγ , and our goal is to compare it
to Ā(γ) = G(µ̄γ) − G(µ∗) = F (θ̄γ) − F (θ∗) which
is what averaging estimators tends to. We also con-
sider for completeness the non-averaged performance
A(γ) = Eπγ(θ)

[
F (θ)− F (θ∗)

]
.

Note that we must have A(γ) and Ā(γ) non-negative,
because we compare the negative log-likelihood perfor-
mances to the one of of the best linear prediction (in the
natural parameter), while ¯̄A(γ) could potentially be neg-
ative (it will in certain situations), because the the corre-
sponding natural parameters may not be linear in Φ(x).

We consider the same standard assumptions
as Dieuleveut et al. (2017), namely smoothness of
the negative log-likelihoods fn(θ) and strong convexity
of the expected negative log-likelihood F (θ). We first
recall the results from Dieuleveut et al. (2017). See
detailed explicit formulas in the supplementary material.

5.1 EARLIER WORK

Without averaging. We have that A(γ) = γB +
O(γ3/2), that is γ is linear in γ, with B non-negative.

Averaging estimators. We have that Ā(γ) = γ2B̄ +
O(γ5/2), that is Ā is quadratic in γ, with B̄ non-
negative. Averaging does provably bring some benefits
because the order in γ is higher (we assume γ small).

5.2 AVERAGING PREDICTIONS

We are now ready to analyze the behavior of our new
framework of averaging predictions. The following re-
sult is shown in the supplementary material.

Proposition 1 Under the assumptions on the negative
loglikelihoods fn of each observation from Dieuleveut
et al. (2017):

• In the case of well-specified data, that is, there exists
θ∗ such that for all (x, y), p(y|x) = q(y|x, θ∗), then
¯̄A ∼ γ2 ¯̄Bwell, where ¯̄Bwell is a positive constant.

• In the general case of potentially mis-specified data,
¯̄A = γ ¯̄Bmis +O(γ2), where ¯̄Bmis is constant which

may be positive or negative.

Note, that in contrast to averaging parameters, the con-
stant ¯̄Bmis can be negative. It means, that we obtain the

estimator better than the optimal linear estimator, which
is the limit of capacity for averaging parameters. In our
simulations, we show examples for which ¯̄Bmis is pos-
itive, and examples for which it is negative. Thus, in
general, for low-dimensional models, averaging predic-
tions can be worse or better than averaging parameters.
However, as we show in the next section, for infinite di-
mensional models, we always get convergence.

6 INFINITE-DIMENSIONAL MODELS

Recall, that we have the following objective function to
minimize:

F (θ) = Ex,y
[
− y · ηθ(x) + a

(
ηθ(x)

)]
, (6)

where till this moment we consider unknown functions
ηθ(x) which were linear in Φ(x) with Φ(x) ∈ Rd, lead-
ing to a complexity in O(dn).

We now consider infinite-dimensional features, by con-
sidering that Φ(x) ∈ H, where H is a Hilbert space.
Note that this corresponds to modeling the function ηθ
as a Gaussian process (Rasmussen and Williams, 2006).

This is computationally feasible through the usual “ker-
nel trick” (Scholkopf and Smola, 2001; Shawe-Taylor
and Cristianini, 2004), where we assume that the kernel
function k(x, y) = 〈Φ(x),Φ(y)〉 is easy to compute. In-
deed, following Bordes et al. (2005) and Dieuleveut and
Bach (2016), starting from θ0, each iterate of constant-
step-size SGD is of the form θn =

∑n
t=1 αtΦ(xt),

and the gradient descent recursion θn = θn−1 −
γ[a′(ηθn−1

(xn)) − yn]Φ(xn) leads to the following re-
cursion on αt’s:

αn = −γ
[
a′
(∑n−1

t=1 αt〈Φ(xt),Φ(xn)〉
)
− yn

]

= −γ
[
a′
(∑n−1

t=1 αtk(xt, xn)
)
− yn

]
.

This leads to ηθn(x) = 〈Φ(x), θn〉 and µθn(x) =
a′
(
ηθn(x)

)
with

ηθn(x) =

n∑

t=1

αt〈Φ(x),Φ(xt)〉 =

n∑

t=1

αtk(x, xt),

and finally we can express ¯̄µn(x) in kernel form as:

¯̄µn(x) =
1

n+ 1

n∑

t=0

a′
[ t∑

l=1

αl · k(x, xl)
]
.

There is also a straightforward estimator for averaging

parameters, i.e., µ̄n(x) = a′
(

1
n+1

n∑
t=0

t∑
l=1

αlk(x, xl)
)
. If

we assume that the kernel function is universal, that is, H
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is dense in the space of squared integrable functions, then
it is known that if Exb(x)Φ(x) = 0, then b = 0 (Sripe-
rumbudur et al., 2008). This implies that we must have
¯̄µγ = 0 and thus averaging predictions does always con-
verge to the global optimum (note that in this setting, we
must have a well-specified model because we are in a
non-parametric setting).

Column sampling. Because of the usual high running-
time complexity of kernel method in O(n2), we con-
sider a “column-sampling approximation” (Williams
and Seeger, 2001). We thus choose a small sub-
set I = (x1, . . . , xm) of samples and construct
a new finite m-dimensional feature map Φ̄(x) =
K(I, I)−1/2K(I, x) ∈ Rm, whereK(I, I) is them×m
kernel matrix of the m points and K(I, x) the vector
composed of kernel evaluations k(xi, x). This allows
a running-time complexity in O(m2n). In theory and
practice, m can be chosen small (Bach, 2013; Rudi et al.,
2017).

Regularized learning with kernels. Although we can
use an unregularized recursion with good convergence
properties (Dieuleveut and Bach, 2016), adding a reg-
ularisation by the squared Hilbertian norm is easier to
analyze and more stable with limited amounts of data.
We thus consider the recursion (in Hilbert space), with λ
small:

θn = θn−1 − γ
[
f ′n(θn−1) + λθn−1

]

= θn−1 + γ(yn − a′(〈Φ(xn), θ〉))Φ(xn)− γλθn−1.

This recursion can also be computed efficiently as above
using the kernel trick and column sampling approxima-
tions.

In terms of convergence, the best we can hope for is
to converge to the minimizer θ∗,λ of the regularized ex-
pected negative log-likelihood F (θ) + λ

2 ‖θ‖2 (which we
assume to exist). When λ tends to zero, then θ∗,λ con-
verges to θ∗.

Averaging parameters will tend to a limit θ̄γ,λ which is
O(γ)-close to θ∗,λ, thus leading to predictions which de-
viate from the optimal predictions for two reasons: be-
cause of regularization and because of the constant step-
size. Since λ should decrease as we get more data, the
first effect will vanish, while the second will not.

When averaging predictions, the two effects will vanish
as λ tends to zero. Indeed, by taking limits of the gradient
equation, and denoting by ¯̄µγ,λ the limit of ¯̄µn, we have

E
[
(µ∗∗(x)− ¯̄µγ,λ(x))Φ(x)

]
= λθ̄γ,λ. (7)

Given that θ̄γ,λ is O(γ)-away from θ∗, if we assume that

θ∗ corresponds to a sufficiently regular2 element of the
Hilbert space H, then the L2-norm of the deviation sat-
isfies ‖µ∗∗(x) − ¯̄µγ,λ‖ = O(λ) and thus as the regular-
ization parameter λ tends to zero, our predictions tend to
the optimal one.

7 EXPERIMENTS

In this section, we compare the two types of averag-
ing (estimators and predictions) on a variety of prob-
lems, both on synthetic data and on standard bench-
marks. When averaging predictions, we always consider
the Taylor expansion approximation presented at the end
of Section 4.3.

7.1 SYNTHETIC DATA

Finite-dimensional models. we consider the follow-
ing logistic regression model:

q(y|x, θ) = exp
(
y · ηθ(x)− a(ηθ(x))

)
,

where we consider a linear model ηθ(x) = θ>x in x
(i.e., Φ(x) = x), the link function a(t) = log(1+et) and
a′(t) = σ(t) is the sigmoid function. Let x be distributed
as a standard normal random variable in dimension d =
2, y ∈ {0, 1} and P(y = 1|x) = µ∗∗(x) = σ

(
η∗∗(x)

)
,

where we consider two different settings:

• Model 1: η∗∗(x) = sinx1 + sinx2,

• Model 2: η∗∗(x) = x31 + x32.

The global minimum F∗∗ of the corresponding optimiza-
tion problem can be found as

F∗∗ = Ep(x)
[
− µ∗∗(x) · η∗∗(x) + a(η∗∗(x))

]
.

We also introduce the performance measure F(η)

F(η) = Ep(x)
[
− µ∗∗(x) · η(x) + a(η(x))

]
, (8)

which can be evaluated directly in the case of synthetic
data. Note that in our situation, the model is misspeci-
fied because η∗∗(x) is not linear in Φ(x) = x, and thus,
infθ F (θ) > F∗∗, and thus our performance measures
F(µn)−F∗∗ for various estimators µn will not converge
to zero.

The results of averaging 10 replications are shown in
Fig. 3 and Fig. 4. We first observed that constant step-
size SGD without averaging leads to a bad performance.

2While our reasoning is informal here, it can be made more
precise by considering so-called “source conditions” com-
monly used in the analysis of kernel methods (Caponnetto and
De Vito, 2007), but this is out of the scope of this paper.
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Figure 3: Synthetic data for linear model ηθ(x) = θ>x
and η∗∗(x) = sinx1 + sinx2. Excess prediction perfor-
mance vs. number of iterations (both in log-scale).
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Figure 4: Synthetic data for linear model ηθ(x) = θ>x
and η∗∗(x) = x31 + x32. Excess prediction performance
vs. number of iterations (both in log-scale).

Moreover, we can see, that in the first case (Fig. 3) aver-
aging predictions beats averaging parameters, and more-
over beats the best linear model: if we use the best linear
error F∗ instead of F∗∗, at some moment F(ηn) − F∗
becomes negative. However in the second case (Fig. 4),
averaging predictions is not superior to averaging param-
eters. Moreover, by looking at the final differences be-
tween performances with different values of γ, we can
see the dependency of the final performance in γ for aver-
aging predictions, instead of γ2 for averaging parameters
(as suggested by our theoretical results in Section 5). In
particular in Fig. 3, we can observe the surprising behav-
ior of a larger step-size leading to a better performance
(note that we cannot increase too much otherwise the al-
gorithm would diverge).
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Figure 5: Synthetic data for Laplacian kernel for
η∗∗(x) = 5

5+x>x . Excess prediction performance vs.
number of iterations (both in log-scale).

Infinite-dimensional models Here we consider the
kernel setup described in Section 6. We consider Lapla-
cian kernels k(s, t) = exp

(‖s−t‖1
σ

)
with σ = 50, di-

mension d = 5 and generating log odds ratio η∗∗(x) =
5

5+x>x . We also use a squared norm regularization with
several values of λ and column sampling with m = 100
points. We use the exact value of F∗∗ which we can com-
pute directly for synthetic data. The results are shown in
Fig. 5, where averaging predictions leads to a better per-
formance than averaging estimators.

7.2 REAL DATA

Note, that in the case of real data, one does not have ac-
cess to unknown µ∗∗(x) and computing the performance
measure in Eq. (8) is inapplicable. Instead of it we use
its sampled version on held out data:

F̂(η) = −
∑

i:yi=1

log
(
µ(xi)

)
−
∑

j:yj=0

log
(
1− µ(xi)

)
.

We use two datasets, with d not too large, and n large,
from (Lichman, 2013): the “MiniBooNE particle identi-
fication” dataset (d = 50, n = 130 064), the “Covertype”
dataset (d = 54, n = 581 012).

We use two different approaches for each of them: a
linear model ηθ(x) = θ>x and a kernel approach with
Laplacian kernel k(s, t) = exp

(‖s−t‖1
σ

)
, where σ = d.

The results are shown in Figures 6 to 9. Note, that for
linear models we use F̂∗–the estimator of the best per-
formance among linear models (learned on the test set,
and hence not reachable from learning on the training
data), and for kernels we use F̂∗∗ (same definition as F̂∗
but with the kernelized model), that is why graphs are
not comparable (but, as shown below, the value of F̂∗∗ is
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Figure 6: MiniBooNE dataset, dimension d = 50, linear
model. Excess prediction performance vs. number of
iterations (both in log-scale).
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Figure 7: MiniBooNE dataset, dimension d = 50, kernel
approach, column sampling m = 200. Excess prediction
performance vs. number of iterations (both in log-scale).

lower than the value of F̂∗ because using kernels corre-
spond to a larger feature space).

For the “MiniBooNE particle identification” dataset
F̂∗ = 0.35 and F̂∗∗ = 0.21; for the“Covertype” dataset
F̂∗ = 0.46 and F̂∗∗ = 0.39. We can see from the four
plots that, especially in the kernel setting, averaging pre-
dictions also shows better performance than averaging
parameters.

8 CONCLUSION

In this paper, we have explored how averaging proce-
dures in stochastic gradient descent, which are crucial for
fast convergence, could be improved by looking at the
specifics of probabilistic modeling. Namely, averaging
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Figure 8: CoverType dataset, dimension d = 54, linear
model. Excess prediction performance vs. number of
iterations (both in log-scale).

in the moment parameterization can have better proper-
ties than averaging in the natural parameterization.

While we have provided some theoretical arguments
(asymptotic expansion in the finite-dimensional case,
convergence to optimal predictions in the infinite-
dimensional case), a detailed theoretical analysis with
explicit convergence rates would provide a better under-
standing of the benefits of averaging predictions.
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Abstract

We consider the problem of inference in dis-
crete probabilistic models, that is, distributions
over subsets of a finite ground set. These
encompass a range of well-known models in
machine learning, such as determinantal point
processes and Ising models. Locally-moving
Markov chain Monte Carlo algorithms, such
as the Gibbs sampler, are commonly used for
inference in such models, but their conver-
gence is, at times, prohibitively slow. This
is often caused by state-space bottlenecks that
greatly hinder the movement of such samplers.
We propose a novel sampling strategy that
uses a specific mixture of product distributions
to propose global moves and, thus, acceler-
ate convergence. Furthermore, we show how
to construct such a mixture using semigradi-
ent information. We illustrate the effective-
ness of combining our sampler with existing
ones, both theoretically on an example model,
as well as practically on three models learned
from real-world data sets.

1 INTRODUCTION

Discrete probabilistic models have played a fundamen-
tal role in machine learning. Examples range from clas-
sic graphical models, such as Ising and Potts models
(Koller and Friedman, 2009), which have long been used
in computer vision applications (Boykov et al., 2001),
to determinantal point processes (Kulesza and Taskar,
2012) used in video summarization (Gong et al., 2014),
and facility location diversity models used for product
recommentation (Tschiatschek et al., 2016). Recently,
there has been increased interest in general distributions
over subsets of a finite ground set V ; that is, given a

set function F : 2V → R, distributions of the form
π(S) ∝ exp(F (S)), for all S ⊆ V . These can be equiv-
alently seen as distributions over binary random vectors,
if S is replaced by the indicator function of the corre-
sponding vector. All the aforementioned examples can
be expressed in this form for a suitable choice of F .

While exact inference in such models is known to be in-
tractable in general (Jerrum and Sinclair, 1993), there has
been recent work on analyzing approximate inference
techniques, such as variational methods (Djolonga and
Krause, 2014; Djolonga et al., 2016b), and Markov chain
Monte Carlo (MCMC) sampling (Gotovos et al., 2015;
Rebeschini and Karbasi, 2015). The sampling analyses,
in particular, focus on the Gibbs sampler, and derive suf-
ficient conditions under which it mixes—converges to-
ward the target distribution—sufficiently fast.

Unfortunately, oftentimes in practice these conditions
do not hold and the Gibbs sampler mixes prohibitively
slowly. A fundamental reason for this slow mixing be-
havior is the existence of bottlenecks in the state space
of the Markov chain. Conceptually, one can think about
the state-space graph containing several isolated compo-
nents that are poorly connected to each other, thus mak-
ing it hard for the Gibbs sampler to move between them.

In this work, we propose a novel sampling strategy that
allows for global moves in the state space, thereby avoid-
ing bottlenecks, and, thus, accelerating mixing. Our sam-
pler is based on using a proposal distribution that ap-
proximates the target π by a mixture of product distribu-
tions. We further propose an algorithm for constructing
such a mixture using discrete semigradient information
of the associated function F . This idea makes a step to-
wards bridging optimization and sampling, a theme that
has been successful in continuous spaces. Our sampler
is readily combined with other existing samplers, and we
show provable theoretical, as well as empirical examples
of speedups.
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Contributions. The main contributions of this paper
are as follows.

• We propose the M3 sampler, which makes global
moves according to a specific mixture of product
distributions.

• We theoretically analyze mixing times on an illus-
trative family of Ising models, and prove that adding
the M3 sampler results in an exponential improve-
ment over the Gibbs sampler.

• We demonstrate the effectiveness of combining the
M3 and Gibbs samplers in practice on three models
learned from real-world data.

Related work. Recent work on analyzing the mixing
time of MCMC samplers for discrete probabilistic mod-
els includes deriving general conditions on F to achieve
fast mixing (Gotovos et al., 2015; Rebeschini and Kar-
basi, 2015; Li et al., 2016), as well as looking at specific
subclasses, such as strongly Rayleigh distributions (Li
et al., 2016; Anari et al., 2016).

There has also been work on mapping discrete infer-
ence to continuous domains (Zhang et al., 2012; Pak-
man and Paninski, 2013; Dinh et al., 2017; Nishimura
et al., 2018) to enable the use of well-established contin-
uous samplers, such as Hamiltonian Monte Carlo (Neal,
2012; Betancourt, 2017). It is worth pointing out that,
while these methods usually outperform simple Gibbs or
Metropolis samplers, they still tend to suffer from con-
siderable slowdowns in multimodal distributions (Neal,
2012). Our work is orthogonal to these methods, in the
sense that our proposed sampler can be combined with
any of the existing ones to provide a principled way for
performing global moves that can lead to improved mix-
ing.

Both darting Monte Carlo (Sminchisescu and Welling,
2007; Ahn et al., 2013) and variational MCMC (de Fre-
itas et al., 2001) share the high-level concept of combin-
ing two chains, one making global moves between high-
probability regions, and another making local moves
around those regions. However, their proposed global
samplers for continuous spaces are generally not appli-
cable to the class of discrete distributions we consider.

There are several well-known results on mixing of the
Gibbs sampler for the Ising model on different graph
structures (Jerrum and Sinclair, 1993; Berger et al., 2005;
Levin et al., 2008a;b). Other (non-MCMC) approaches
to discrete sampling include Perturb-and-MAP (Papan-
dreou and Yuille, 2011; Hazan et al., 2013), and random
projections (Zhu and Ermon, 2015). Semigradients of
submodular set functions have recently been exploited

for optimization (Iyer et al., 2013; Jegelka and Bilmes,
2011) and variational inference (Djolonga et al., 2016a),
but, to our knowledge, no prior work has used them for
sampling.

2 BACKGROUND

We consider set functions F : 2V → R, where V is
a finite ground set of size n that can be assumed to be
V = {1, . . . , n} without loss of generality. In this paper,
we focus on distributions over Ω := 2V of the form

π(S) =
1

Z
exp (F (S)) , (1)

for all S ∈ Ω. The partition function Z :=∑
S∈Ω exp(F (S)) serves as the normalizer of the dis-

tribution. Alternatively, we can describe distributions of
the above form via binary vectors X ∈ {0, 1}n. If we
define V (X) := {v ∈ V | Xv = 1}, then the distri-
bution pX(X) ∝ exp(F (V (X))) over binary vectors is
isomorphic to the distribution (1) over sets.

Perhaps the simplest family of such models are log-
modular distributions, which describe a collection of in-
dependent binary random variables. Equivalently, they
are distributions of the form (1) where F is a modular
function, that is, a function of the form F (S) = c +∑
v∈Smv , where c,mv ∈ R, for all v ∈ V . The parti-

tion function of a log-modular distribution can be derived
in closed form as Zm = exp(c)

∏
v∈V (1 + exp(mv)).

Consequently, the corresponding log-modular distribu-
tion is

πm(S) =
exp

(∑
v∈Smv

)
∏
v∈V (1 + exp(mv))

.

Inference and sampling. Performing exact inference
in models of the form (1), that is, computing conditional
probabilities such as π(A ⊆ S ⊆ B | C ⊆ S ⊆ D),
is known to be in general #P-hard (Jerrum and Sinclair,
1993). As a result, we have to resort to approximate in-
ference algorithms, such as Markov chain Monte Carlo
sampling (Levin et al., 2008b), which is the primary fo-
cus of this paper. An MCMC algorithm for distribution π
simulates a Markov chain in state space Ω in such a way
that the sequence of visited states (X0, X1, . . .) ∈ ΩN

ultimately converges to π.

Gibbs sampler. One of the most commonly used
chains is the (single-site) Gibbs sampler, which adds or
removes a single element at a time. It first selects uni-
formly at random an element v ∈ V ; subsequently, it
adds or removes v to the current stateXt according to the
probability of the resulting state. We denote by P : Ω×

230



Ω → R the transition matrix of a Markov chain, that is,
for all S,R ∈ Ω, P (S,R) := P [Xt+1 = R | Xt = S].
Then, if we define

pS→R =
exp(F (R))

exp(F (R)) + exp(F (S))
,

and denote by S ∼ R states that differ by exactly one
element (i.e.,

∣∣|R| − |S|
∣∣ = 1), the transition matrix PG

of the Gibbs sampler is

PG(S,R) =





1

n
pS→R , if R ∼ S

1−
∑

T∼S

1

n
pS→T , if R = S

0 , otherwise

.

Mixing. The efficiency of a Markov chain in approx-
imating its target distribution depends largely on the
speed of convergence of the chain, which is quanti-
fied by the chain’s mixing time. Most commonly, dis-
tance from stationarity is measured by the maximum
total variation distance, over all starting states, be-
tween Xt and the target distribution π, that is, d(t) :=
maxX0∈Ω dTV (P t(X0, ·), π). Then, the mixing time de-
notes the minimum number of iterations required to get
ε-close to stationarity, tmix(ε) := min{t | d(t) ≤ ε}.
A common way to obtain an upper bound on the mixing
time of a chain is by lower bounding its spectral gap, de-
fined as γ := 1 − λ2, where λ2 is the second largest
eigenvalue of the transition matrix P . The following
well-known theorem connects the spectral gap to mixing
time.

Theorem 1 (cf. Theorems 12.3, 12.4 in (Levin et al.,
2008b)). Let P be the transition matrix of a lazy, irre-
ducible, and reversible Markov chain, and let γ be its
spectral gap, and πmin := minS∈Ω π(S). Then,
(

1

γ
− 1

)
log

(
1

2ε

)
≤ tmix(ε) ≤ 1

γ
log

(
1

επmin

)
.

3 THE MIXTURE CHAIN

Despite the simplicity and computational efficiency of
the Gibbs sampler, the fact that it is constrained to per-
forming local moves makes it susceptible to state-space
bottlenecks, which hinder the movement of the chain
around the state space. Intuitively, the state space may
contain several high-probability regions arranged in such
a way that moving from one to another using only single-
element additions and deletions requires passing through
states of very low probability. As a result, the Gibbs sam-
pler may mix extremely slowly on the whole state space,
despite the fact that it can move sufficiently fast within
each of the high-probability regions.

To alleviate this shortcoming, it is natural to ask whether
it is possible to bypass such bottlenecks by using a chain
that performs larger moves. In this paper, we introduce a
novel approach that uses a Metropolis chain based on a
specific mixture of log-modular distributions, which we
call the M3 chain, to perform global moves in state space.
Concretely, we define a proposal distribution

q(S,R) = q(R) =
1

Zq

r∑

i=1

exp (Fi(R))

=
1

Zq

r∑

i=1

wi exp (mi(R)) , (2)

where each Fi(R) = ci +
∑
v∈Rmiv is a modular func-

tion, while each mi(R) =
∑
v∈Rmiv is a normalized

modular function (mi(∅) = 0), and wi = exp(ci) > 0.
If we denote by Zi the normalizer of mi, then the nor-
malizer of the mixture can be written in closed form as

Zq =
∑

R∈Ω

q(R) =
∑

R∈Ω

r∑

i=1

wi exp (mi(R))

=

r∑

i=1

wi
∑

R∈Ω

exp (mi(R))

=
r∑

i=1

wiZi.

We define the M3 chain as a Metropolis chain (Levin
et al., 2008b) using q as a proposal distribution; its tran-
sition matrix PM : Ω× Ω→ R is given by

PM(S,R) =





q(R)pa(S,R) , if R 6= S

1−
∑

T 6=S
q(T )pa(S, T ) , otherwise ,

where

pa(S,R) := min

{
1,
π(R)q(S)

π(S)q(R)

}
.

Note that, contrary to usual practice, the proposal q only
depends on the proposed state, but not on the current state
of the chain. As a result, the chain is not constrained to
local moves, but rather can potentially jump to any part
of the state space. In practice, M3 sampling proceeds in
two steps: first, a candidate set R is sampled according
to q; then, the move to R is accepted with probability
pa. Sampling from q can be done in O(n) time—first,
sample a log-modular component, then sample a set from
that component. Computing pa requires O(r) time for
the sum in (2), and it can be straightforwardly improved
by parallelizing this computation. All in all, the total
time for one step of M3 is O(n+ r).
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As is always the case with Metropolis chains, the mix-
ing time of the M3 sampler will depend on how well the
proposal q approximates the target distribution π. The
following observation shows that, in theory, we can ap-
proximate any distribution of the form (1) by a mixture
of the form (2).

Proposition 1. For any π on Ω as in (1), and any ε >
0, there are positive constants wi = wi(ε) > 0, and
normalized modular functions mi = mi(ε), such that, if
we define q(S) :=

∑r
i=1 wi exp(mi(S)), for all S ∈ Ω,

then dTV (π, q) ≤ ε.

Conceptually, the proof relies on having one log-modular
term per set in Ω.1 Therefore, while the above re-
sult shows that mixtures of log-modulars are expressive
enough, the constructed mixture of exponential size in n
is not useful for practical purposes. On the other hand, it
is not necessary for us to have q be an accurate approx-
imation of π everywhere, as long as the corresponding
M3 chain is able to bypass state-space bottlenecks. With
this in mind, we suggest combining the M3 and Gibbs
chains, so that each of them serve complementary pur-
poses in the final chain; the role of M3 is to make global
moves and avoid bottlenecks, while the role of Gibbs is
to move fast within well-connected regions of the state
space. To make this happen, we define the transition ma-
trix PC : Ω× Ω→ R of the combined chain as

PC(S,R) = αPG(S,R) + (1− α)PM(S,R), (3)

where 0 < α < 1. It is easy to see that PC is reversible,
and has stationary distribution π.

We next illustrate how combining the two chains works
on a simple example, where a mixture of only a few log-
modular distributions can dramatically improve mixing
compared to running the vanilla Gibbs chain. Then we
propose an algorithm for automatically creating such a
mixture.

3.1 EXAMPLE: ISING MODEL ON THE
COMPLETE GRAPH

We consider the Ising model on a finite complete graph
(Levin et al., 2008a), also known as the Curie-Weiss
model in statistical physics, which can be written in the
form of (1) as follows:

πβ(S) =
1

Z(β)
exp

(
−2β

n
|S|(n− |S|)

)
. (ISINGβ)

1Detailed proofs of all our results can be found in the ap-
pendix.

In particular, we focus on the case where β = ln(n), that
is,

π(S) =
1

Z
exp

(
−2 ln(n)

n
|S|(n− |S|)

)
. (ISING)

In this case, if we define dn := 2 ln(n)/n, then F (S) =
−dn|S|(n− |S|).

The Gibbs sampler is known to experience poor mixing
in this model; the following is an immediate corollary of
Theorem 15.3 in (Levin et al., 2008b).

Corollary 1 (cf. Theorem 15.3 in (Levin et al., 2008b)).
For n ≥ 3, the Gibbs sampler on ISING has spectral gap
γG = O (e−cn), where c > 0 is a constant.

From Theorem 1 it follows that the mixing time of Gibbs
is tmix(ε) = Ω ((ecn − 1) log(1/(2ε))). Yet, it has been
shown that the only reason for this is a single bottleneck
in the state space (Levin et al., 2008a). To make this
statement more formal, let us define a decomposition of
Ω into two disjoint sets, Ω0 := {S ∈ Ω | |S| < n/2},
and Ω1 := {S ∈ Ω | |S| > n/2} (Jerrum et al., 2004).
To keep things simple, we will assume for the remain-
der of this section that n is odd; the analysis when n is
even follows from the same arguments with only a minor
technical adjustment. Our goal is to separately examine
two characteristics of the sampler: (i) its movement be-
tween the two sets Ω0, Ω1, and (ii) its movement when
restricted to stay within each of these sets.

For analyzing the “between-sets” behavior, we define the
projection π̄ : {0, 1} → R of π as

π̄(i) :=
∑

S∈Ωi

π(S),

and, for any reversible chain P , we define its projection
chain P̄ : {0, 1} × {0, 1} → R as

P̄ (i, j) :=
1

π̄(i)

∑

S∈Ωi,R∈Ωj

π(S)P (S,R).

It is easy to see that P̄ is also reversible and has stationary
distribution π̄. For analyzing the “within-set” behavior,
we define the restrictions πi : Ωi → R of π as

πi(S) :=
πi(S)

π̄(i)
,

and the two restriction chains Pi : Ωi ×Ωi → R of P as

Pi(S,R) :=





P (S,R) , if S 6= R

1−
∑

T∈Ωi:T 6=S
P (S, T ) , otherwise .

Again, it is easy to see that each of the Pi is also re-
versible and has stationary distribution πi.
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Coming back to the Gibbs sampler, if we could show that
it mixes fast within each of Ω0 and Ω1, then we could de-
duce that the only reason for the slow mixing on Ω is the
bottleneck between these two sets. Indeed, the follow-
ing corollary of a theorem by Ding et al. (2009) shows
exactly that.

Corollary 2 (cf. Theorem 2 in (Ding et al., 2009)).
For all n ≥ 3, the restriction chains of the Gibbs sam-
pler PG

i , i = 0, 1, on ISING have spectral gap γG
i =

Θ
( 2 ln(n)−1

n

)
.

To improve mixing we want to create an M3 chain that
is able to bypass the aforementioned bottleneck. For this
purpose, we use a mixture of two log-modular distribu-
tions, the first of which puts most of its mass on Ω0, and
the second on Ω1. We define the mixture of the form (4)
by

m1(S) =
∑

v∈S
−dn(n− 1) = −dn(n− 1)|S|,

m2(S) =
∑

v∈S
dn(n− 1) = dn(n− 1)|S|.

We also use w1 = 1/Z1 and w2 = 1/Z2, where Z1 and
Z2 are the normalizers of m1 and m2 respectively. It
follows that Zq = 1/2, and, furthermore, the mixture
q is symmetric, that is, q(S) = q(V \ S). Since the
proposal q is symmetric and state independent, we would
expect the M3 chain to jump between Ω0 and Ω1 without
being hindered by the bottleneck described previously.
We verify this intuition by proving the following lemma.

Lemma 1. For all n ≥ 10, the projection chain P̄M of
the M3 sampler on ISING has spectral gap γ̄M = Ω(1).

Putting everything together we show the following result
about the combined chain PC.

Theorem 2. For all n ≥ 10, the combined chain PC on
ISING has spectral gap

γC = Ω

(
2 ln(n)− 1

2n

)
.

The proof consists of two steps. In the first step
we make a comparison argument (Diaconis and Saloff-
Coste, 1993; Levin et al., 2008b) to show that the spectral
gaps of the projection and restriction chains of the com-
bined sampler are smaller by at most a constant factor
in α compared to those of Gibbs and M3. In particu-
lar, we use the M3 bound (Lemma 1) for the projection
chain, and the Gibbs bound (Theorem 2) for the restric-
tion chains. The second step, then, combines the projec-
tion and restriction bounds to establish a bound on the
spectral gap of the combined chain. To accomplish this
we use a result by Jerrum et al. (2004), which, roughly

Algorithm 1 Iterative semigradient-based mixture con-
struction
Input: Set function F , mixture size r
1: for i = 1 to r do
2: σ← GREEDY(F , {m1, . . . ,mi−1})
3: mi← SEMIGRADIENT(F , σ)
4: return {m1, . . . ,mr}

speaking, states that the spectral gap of the whole chain
cannot be much smaller than the smallest of the projec-
tion and restriction spectral gaps.

Finally, using Theorem 1, and noting that, in this case,
πmin = O(e−n) (cf. proof of Lemma 1), we get a mix-
ing time of tmix(ε) = O(n2 log(1/ε)) for the combined
chain. This shows that the addition of the M3 sampler re-
sults in an exponential improvement in mixing time over
the Gibbs sampler by itself.

4 CONSTRUCTING THE MIXTURE

Having seen the positive effect of the M3 sampler, we
now turn to the issue of how to choose the proposal q.
While a manual construction like the one we just pre-
sented for the Ising model may be feasible in some cases,
it is often more practical to have an automated way of ob-
taining the mixture.

Let us assume, as is usually the case, that we have ac-
cess to a function oracle for F , and we want to create a
mixture of size r. Ideally, we would like to construct a
proposal q that is as close to π as possible, that is, mini-
mize an objective such as the following,

E1(q) := min
q
‖π − q‖

= min
q

∥∥∥∥
exp(F (·))

Z
− 1

Zq

∑r
i=1 wi exp(mi(·))

∥∥∥∥ ,

where ‖ · ‖ could be, for example, total variation dis-
tance or the maximum norm. Unfortunately, this prob-
lem is hard: both computing the partition function Z,
and jointly optimizing over all wi,mi are infeasible in
practice. To make the problem easier, we could try to
get rid of the normalizers and weights wi, and iteratively
minimize over each mi individually:

E
(i)
2 (mi) := min

mi

∥∥∥exp(F (·))−∑i−1
j=1 exp(mi(·))

∥∥∥ ,

for i ∈ {1, . . . , r}. This problem is still hard, since opti-
mizing ‖ exp(F (·))‖ is by itself infeasible in general.

To arrive at a practical algorithm, we approximate
the above objective using the two-step procedure de-
scribed in Algorithm 1. In the first step, we gener-
ate a permutation σ of the ground set V by running
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Algorithm 2 Greedy difference maximization

Input: Set function F , modular functions {m1, . . . ,mi−1}
1: Di(S)← F (S)− log

∑i−1
j=1 exp(mj(S)), for all S ∈ Ω

2: σ← (1, . . . , n)

3: A← ∅
4: for i = 1 to n do
5: v∗← argmaxv∈V (Di(A ∪ {v})−Di(A))

6: σi← v∗

7: A← A ∪ {v∗}
8: return σ

the greedy algorithm on function Di(S) := F (S) −
log
∑i−1
j=1 exp(mj(S)), as shown in Algorithm 2. Intu-

itively, the sets that are formed by elements near the be-
ginning of σ are those on which F and the current mix-
ture disagree by the most. Therefore, in the second step,
we would like to add to the mixture a modular function
mi that is a good approximation for F on {σ1, . . . , σk},
for a choice of 1 ≤ k ≤ n. To accomplish this, we pro-
pose using discrete semigradients.

Semigradients are modular functions that provide lower
(subgradient) or upper (supergradient) approximations of
a set functionF (Fujishige, 2005; Iyer et al., 2013). More
concretely, given a set S ∈ Ω, a modular function m is a
subgradient of F at S, if, for allR ∈ Ω, F (R) ≥ F (S)+
m(R) − m(S). Similarly, m is a supergradient if the
inequality is reversed. Although, in general, a function
is not guaranteed to have sub- or supergradients at each
S ∈ Ω, it has been shown that this is true when F is
submodular or supermodular (Fujishige, 2005; Jegelka
and Bilmes, 2011; Iyer and Bilmes, 2012).

Submodularity expresses a notion of diminishing returns;
that is, adding an element to a larger set provides less
benefit than adding that same element to a smaller set.
More formally, F is submodular if, for any S ⊆ R ⊆ V ,
and any v ∈ V \R, it holds that F (R ∪ {v})− F (R) ≤
F (S ∪ {v}) − F (S). Supermodularity is defined in a
similar way by reversing the sign of this inequality. The
resulting models of the form (1) are referred to as log-
submodular and log-supermodular respectively. Many
commonly used models fall under these categories; Ising
and Potts models, including our example in the previous
section, are log-supermodular, while determinantal point
processes and facility location diversity models are log-
submodular.

Coming back to the second step of Algorithm 1, to create
a subgradient of F given permutation σ we just need to
define a modular function via marginal gains according
to the permutation order (Iyer et al., 2013), as shown in
Algorithm 3. Moreover, this is a subgradient of F at
{σ1, . . . , σk}, for all 1 ≤ k ≤ n. On the other hand,

Algorithm 3 Subgradient computation
Input: Set function F , permutation σ
1: A← ∅
2: f ← F (∅)
3: for v = 1 to n do
4: mv ← F (A ∪ {σv})− F (A)

5: A← A ∪ σv
6: return m(S) :=

∑
v∈Smv , for all S ∈ Ω

Algorithm 4 Supergradient computation
Input: Set function F , permutation σ
1: k← DRAWUNIFORM(1, n)
2: for v = 1 to k do
3: mv ← F (V )− F (V \ {v})
4: for v = k + 1 to n do
5: mv ← F ({v})
6: return m(S) :=

∑
v∈Smv , for all S ∈ Ω

Algorithm 4 creates a supergradient of F at {σ1, . . . , σk}
for a randomly chosen k. (This type of supergradient is
denoted by ḡY by Iyer et al. (2013).) In fact, the modular
functions m1, m2 that we used in analyzing the Ising
model in the previous section were supergradients of F
at sets S1 = ∅, and S2 = V respectively.

In practice, we can use Algorithm 1 regardless of
whether F is sub- or supermodular. We have, however,
noticed that subgradients give better results when F is
submodular, and the same goes for supergradients and
supermodular functions.

5 EXPERIMENTS

We now evaluate the performance of our proposed sam-
pler on the Ising model we analyzed earlier, as well as
the following three models learned from real-world data
sets.

WATER. A (log-submodular) facility location model,
which was used in a problem of sensor placement in a
water distribution network (Krause et al., 2008). The
function F is of the form

F (S) =
L∑

j=1

max
i∈S

cij .

We randomly subsample the original facility location
matrix C = (cij), so that n = 50, and L = 500.

SENSOR. A (log-submodular) determinantal point pro-
cess (Kulesza and Taskar, 2012), which was used in
a problem of sensor placement for indoor temperature
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Figure 1: (a)-(c) Ising model results for increasing n. Note how the Gibbs sampler gets worse significantly faster than
the combined ones. (d)-(f) Potential scale reduction factor (PSRF) as a function of sampling iterations. (g)-(i) PSRF
as a function of wall-clock time in milliseconds. The combined sampler outperforms Gibbs both in terms of samples
required, as well as actual runtime.

monitoring (Guestrin et al., 2005). The function F is of
the form

F (S) = log |K + σ2I|,

where K is a kernel matrix, and σ is a noise parameter.
The size of the ground set is n = 46.

GAME. A (log-submodular) facility location diversity
model (Tschiatschek et al., 2016), which represents the
characters that are chosen by players in the popular on-
line game “Heroes of the Storm”. We learned the model
from an online data set of approximately 8, 000 teams of

5 characters2 using noise-contrastive estimation, as de-
scribed by Tschiatschek et al. (2016). The function F is
of the form

F (S) =
∑

v∈S
wv +

L∑

j=1

max
i∈S

cij ,

with n = 48, and L = 10. In practice, we would only be
interested in sampling sets of fixed size ` = 5. The Gibbs
sampler can be easily modified to sample under a cardi-
nality constraint by using moves that swap an element in

2https://www.hotslogs.com
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Figure 2: (a) Increasing the number of mixture components improves performance. (b) The combination of Gibbs and
M3 performs better than either of them does individually.

the current set Xt with an element in V \ Xt. Extend-
ing the M3 chain to sample from cardinality-constrained
models is also straightforward. In fact, the only addi-
tional ingredient required is a procedure to sample a set
of size ` from a log-modular distribution, which can be
easily done, as before, in O(n) time.

In what follows, we compare the performance of the
Gibbs sampler (GIBBS) against our proposed combined
sampler using a proposal mixture q constructed by Algo-
rithm 1 (COMBO-I). We also compare against a variation
where we substitute the greedy procedure in line 2 of Al-
gorithm 1 with picking a permutation σ of the ground set
uniformly at random (COMBO-R).

To assess convergence we use the potential scale reduc-
tion factor (PSRF) (Brooks et al., 2011) using 20 paral-
lel chains. We compute the PSRF using single-element
marginal probabilities averaged over 50 repetitions of
each simulation.

In Figures 1a–1c we show the results for the Ising model
(n = 6, 7, 8) with the additional COMBO-F line denot-
ing the combined sampler with two mixture components
described in Section 3.1. The other two combined sam-
plers use mixtures of size r = 20. Note that Gibbs mixes
dramatically slower than the combined sampler, even for
such small n.

In Figures 1d–1f we show the results on the three log-
submodular models described before using mixtures of
size r = 200. It is interesting to see that even random
permutations are enough to significantly improve over
the performance of Gibbs. Similar observations can be
made with respect to computation time, as shown in Fig-
ures 1g–1i, which measure wall-clock time on the x-axis.

In Figure 2a we show how mixture size affects perfor-
mance; as expected, adding more components to the mix-
ture results in a proposal that approximates the target
distribution better, and, therefore, mixes faster. Finally,
in Figure 2b we see that both Gibbs (α = 1) and M3

(α = 0, r = 200) perform poorly by themselves, but
combining them results in much improved performance.
This highlights again the complementary nature of the
two chains (local vs. global moves) we discussed earlier.

6 CONCLUSION

We considered the problem of sampling from general
discrete probabilistic models, and presented the M3 sam-
pler that proposes global moves using a mixture of log-
modular distributions. We theoretically analyzed the ef-
fect of combining our sampler with the Gibbs sampler
on a class of Ising models, and proved an exponential
improvement in mixing time. We also demonstrated no-
table improvements when combining the two samplers
on three models of practical interest. We believe that
our work represents a step towards moving beyond lo-
cal samplers, and incorporating ideas from optimization,
such as semigradients, into probabilistic inference.
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Abstract

The uncertainty associated with human per-
ception is often reduced by one’s extensive
prior experience and knowledge. Current
datasets and systems do not emphasize the ne-
cessity and benefit of using such knowledge.
In this work, we propose the task of solving a
genre of image-puzzles (“image riddles”) that
require both capabilities involving visual de-
tection (including object, activity recognition)
and, knowledge-based or commonsense rea-
soning. Each puzzle involves a set of images
and the question “what word connects these
images?”. We compile a dataset of over 3k
riddles where each riddle consists of 4 im-
ages and a groundtruth answer. The annota-
tions are validated using crowd-sourced eval-
uation. We also define an automatic evalua-
tion metric to track future progress. Our task
bears similarity with the commonly known IQ
tasks such as analogy solving, sequence fill-
ing that are often used to test intelligence. We
develop a Probabilistic Reasoning-based ap-
proach that utilizes commonsense knowledge
about words and phrases to answer these rid-
dles with a reasonable accuracy. Our approach
achieves some promising results for these rid-
dles and provides a strong baseline for future
attempts. We make the entire dataset and re-
lated materials publicly available to the com-
munity (bit.ly/22f9Ala).

1 INTRODUCTION
Human visual perception is greatly aided by the human’s
knowledge and reasoning (with that knowledge) about
the domain (what it is looking at) and purpose (what it is
looking for and why) (Lake et al., 2016). This knowledge

Figure 1: An Image Riddle Example. Question: “What
word connects these images?” .

greatly helps in overcoming the uncertainty often associ-
ated with perception. Most work in computer vision do
not take into account the vast body of knowledge that hu-
mans use in their visual perception. Several researchers1

have recently pointed out the necessity and the potential
benefit of using such knowledge, as well as the lack of it
in current systems. This absence is also reflected in the
various popular data sets and benchmarks. Our goal in
this paper is to present a new task, a corresponding new
data set, and our approach to them that highlights the
importance of using knowledge and reasoning in visual
perception. This necessitates considering issues such as
what kind of knowledge is needed, where and how to get
them, and what kind of reasoning mechanism to adopt
for such knowledge.

The new task we propose in this paper is referred to
as Image Riddles which requires deep conceptual un-
derstanding of images. In this task a set of images are
provided and one needs to find a common concept that
is invoked by all the images. Often the common con-
cept is not something that even a human can observe in
the first glance; but after some thought about the images,
he/she can come up with it. Hence the word “riddle” in
the phrase “image riddles”. Figure 1 shows an example

1Lake et al. (2016) quotes a reviewer: “Human learners -
unlike DQN and many other deep Learning systems - approach
new problems armed with extensive prior experience.”. The
authors also ask “How do we bring to bear rich prior knowledge
to learn new tasks and solve new problems?”. In “A Path to AI”,
Prof. Yann Lecun recognizes the absence of common-sense to
be an obstacle to AI.
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of an image riddle. The images individually connect to
multiple concepts such as: outdoors, nature, trees, road,
forest, rainfall, waterfall, statue, rope, mosque etc. On
further thought, the common concept that emerges for
this example is “fall”. Here, the first image represents
the fall season (concept). There is a “waterfall” (region)
in the second image. In the third image, it shows “rain-
fall” (concept) and the fourth image depicts that a statue
is “fall”ing (action/event). The word “fall” is invoked
by all the images as it shows logical connections to ob-
jects, regions, actions or concepts specific to each image.
Additionally, the answer also connects the most salient
aspects of the images. Other possible answers like “na-
ture” or “outdoors” do not demonstrate such properties.
They are too abstract. In essence, answering Image Rid-
dles is a challenging task that not only tests an intelligent
agent’s ability to detect visual concepts, but also tests its
(ontological) knowledge and its ability to think and rea-
son.

Image Riddles can also be thought of as a visual coun-
terpart to IQ tests such as sequence filling (x1, x2, x3, ?)
and analogy solving (x1 : y1 :: x2 : ?)2, where one
needs to find commonalities between items. It is worth
to note that this task is different from traditional Visual
Question-Answering (VQA), as in VQA the queries pro-
vide some clues regarding what to look for in the im-
age. Most Image Riddles require both superior detection
and reasoning capabilities, whereas a large percentage
of questions from the VQA dataset tests mainly the sys-
tem’s detection capabilities. Moreover, answering Image
Riddles differs from both VQA and Captioning in that it
requires analysis of multiple seemingly different images.

Hence, this task of answering Image Riddles is simple
to explain; shares similarities with well-known and pre-
defined types of IQ questions and it requires a combina-
tion of vision and reasoning capabilities. In this paper,
we introduce a novel benchmark for Image Riddles and
put forward a promising approach to tackle it. In our ap-
proach, we first use the state-of-the-art Image Classifica-
tion techniques (Sood (2015) and He et al. (2016)) to get
the top identified class-labels from each image. Given
these detections, we use ontological and commonsense
relations of these words to infer a set of most proba-
ble concepts. We adopt ConceptNet 5 (Liu and Singh,
2004) as the source of commonsense and background
knowledge that encodes the relations between words and
short phrases through a structured graph. Note, the pos-
sible range of candidates are the entire vocabulary of
ConceptNet 5 (roughly 0.2 million), which is fundamen-
tally different from supervised end-to-end models. For
representation and reasoning with this huge probabilis-

2Examples are: word analogy tasks (male : female :: king :
?); numeric sequence filling tasks: (1, 2, 3, 5, ?).

tic knowledge one needs a powerful reasoning engine.
Here, we adopt the Probabilistic Soft Logic (PSL) (Kim-
mig et al., 2012; Bach et al., 2013) framework. Given
the inferred concepts of each image, we adopt a second
stage inference to output the final answer.

Our contributions are threefold: i) we introduce the 3K
Image Riddles Dataset; ii) we present a probabilistic rea-
soning approach to solve the riddles with reasonable ac-
curacy; iii) our reasoning module inputs detected words
(a closed set of class-labels) and logically infers all rel-
evant concepts (belonging to a much larger vocabulary),
using background knowledge about words.

2 RELATED WORK

The problem of Image Riddles has some similarities to
the genre of topic modeling (Blei, 2012) and Zero-shot
Learning (Larochelle et al., 2008). However, this dataset
imposes a few unique challenges: i) the possible set of
target labels is the entire natural language vocabulary;
ii) each image, when grouped with different sets of im-
ages can map to a different label; iii) almost all the tar-
get labels in the dataset are unique (3k examples with
3k class-labels). These challenges make it hard to sim-
ply adopt topic model-based or Zero-shot learning-based
approaches.

Our work is also related to the field of Visual Question
Answering (VQA). Very recently, researchers spent a
significant amount of efforts on both creating datasets
and proposing new models (Antol et al., 2015; Mali-
nowski et al., 2015; Gao et al., 2015; Ma et al., 2016) for
VQA. Interestingly both (Antol et al., 2015; Goyal et al.,
2017) and Gao et al. (2015) adapted MS-COCO (Lin
et al., 2014) images and created an open domain dataset
with human generated questions and answers. Both Ma-
linowski et al. (2015) and Gao et al. (2015) use recurrent
networks to encode the sentence and output the answer.

Even though some questions from Antol et al. (2015) and
Gao et al. (2015) are very challenging, and actually re-
quire logical reasoning in order to answer correctly, pop-
ular approaches still aim to learn the direct signal-to-
signal mapping from image and question to its answer,
given a large enough annotated data. The necessity of
common-sense reasoning is often neglected. Here we in-
troduce the new Image Riddle problem to serve as the
testbed for vision and reasoning research.

3 KNOWLEDGE AND REASONING
MECHANISM

In this Section, we briefly introduce the kind of knowl-
edge that is useful for solving Image Riddles and the
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kind of reasoning needed. The primary types of knowl-
edge needed are the distributional and relational similar-
ities between words and concepts. We obtain them from
analyzing the ConceptNet knowledge base and using
Word2Vec. Both the knowledge sources are considered
because ConceptNet embodies commonsense knowledge
and Word2vec encodes word-meanings.

ConceptNet (Speer and Havasi, 2012), is a multilingual
Knowledge Graph, that encodes commonsense knowl-
edge about the world and is built primarily to assist
systems that attempts to understand natural language
text. The knowledge in ConceptNet is semi-curated.
The nodes (called concepts) in the graph are words or
short phrases written in natural language. The nodes
are connected by edges which are labeled with meaning-
ful relations. For example: (reptile, IsA, animal), (rep-
tile, HasProperty, cold blood) are some edges. Each
edge has an associated confidence score. Compared to
other knowledge-bases such as WordNet, YAGO, NELL
(Suchanek et al., 2007; Mitchell et al., 2015), Concept-
Net has a more extensive coverage of English language
words and phrases. These properties make this Knowl-
edge Graph a perfect source for the required probabilis-
tic commonsense knowledge. We use different methods
on ConceptNet, elaborated in the next section, to define
similarity between different types of words and concepts.

Word2vec uses the theory of distributional semantics
to capture word meanings and produce word embed-
dings (vectors). The pre-trained word-embeddings have
been successfully used in numerous Natural Language
Processing applications and the induced vector-space
is known to capture the graded similarities between
words with reasonable accuracy (Mikolov et al., 2013).
Throughout the paper, for word2vec-based similarities,
we use the 3 Million word-vectors trained on Google-
News corpus (Mikolov et al., 2013).

The similarity between words wi and wj with a simi-
larity score wij is expressed as propositional formulas
of the form: wi ⇒ wj : wij . (The exact formulas,
and when they are bidirectional and when they are not
are elaborated in the next section.) To reason with such
knowledge we explored various reasoning formalisms
and found Probabilistic Soft Logic (PSL) (Kimmig et al.,
2012; Bach et al., 2013) to be the most suitable, as it can
not only handle relational structure, inconsistencies and
uncertainty, thus allowing one to express rich probabilis-
tic graphical models (such as Hinge-loss Markov random
fields), but it also seems to scale up better than its al-
ternatives such as Markov Logic Networks (Richardson
and Domingos, 2006). In this work, we also use differ-
ent weights for different groundings of the same rule.
Even though some work has been done along this line

for MLNs (Mittal et al., 2015), implementing those ideas
in MLNs to define weights using word2vec and Concept-
Net is not straightforward. Learning grounding-specific
weights is also difficult as that will require augmentation
of MLN syntax and learning.

3.1 PROBABILISTIC SOFT LOGIC (PSL)

Probabilistic soft logic (PSL) differs from most other
probabilistic formalisms in that its ground atoms have
continuous truth values in the interval [0,1], instead of
having binary truth values. The syntactic structure of
rules and the characterization of the logical operations
have been chosen judiciously so that the space of inter-
pretations with nonzero density forms a convex polytope.
This makes inference in PSL a convex optimization prob-
lem in continuous space, which in turn allows efficient
inference. We now give a brief overview of PSL.

A PSL model is defined using a set of weighted if-then
rules in first-order logic. Let C = (C1, ..., Cm) be such
a collection where each Cj is a disjunction of literals,
where each literal is a variable yi or its negation ¬yi,
where yi ∈ y. Let I+j (resp. I−j ) be the set of indices of
the variables that are not negated (resp. negated) in Cj .
Each Cj is:

wj : ∧i∈I−j yi → ∨i∈I+j yi, (1)

or equivalently, wj : ∨i∈I−j (¬yi)
∨∨i∈I+j yi. Each rule

Cj is associated with a non-negative weight wj . PSL
relaxes the boolean truth values of each ground atom a
(constant term or predicate with all variables replaced by
constants) to the interval [0, 1], denoted as I(a). To com-
pute soft truth values, Lukasiewicz’s relaxation (Klir and
Yuan, 1995) of conjunctions (∧), disjunctions (∨) and
negations (¬) is used:

I(l1 ∧ l2) = max{0, I(l1) + I(l2)− 1}
I(l1 ∨ l2) = min{1, I(l1) + I(l2)}
I(¬l1) = 1− I(l1).

(2)

In PSL, the ground atoms are considered as random vari-
ables and the distribution is modeled using Hinge-Loss
Markov Random Field, which is defined as follows:
Let y and x be two vectors of n and n′ random variables
respectively, over the domain D = [0, 1]n+n

′
. The feasi-

ble set D̃ is a subset ofD, which satisfies a set of inequal-
ity constraints over the random variables. A Hinge-Loss
Markov Random Field P is a probability density, defined
as: if (y,x) /∈ D̃, then P(y|x) = 0; if (y,x) ∈ D̃, then:

P(y|x) = 1

Z(w,x)
exp(−fw(y,x)), (3)

where Z(w,x) =
∫
y|(y,x)∈D̃ exp(−fw(y,x))dy.

Here, the hinge-loss energy function fw is defined as:

fw(y,x) =
m∑
j=1

wj(max{lj(y,x), 0})pj , where wj’s
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are non-negative free parameters and lj(y,x) are linear
constraints over y,x and pj ∈ {1, 2}. As we are inter-
ested in finding the maximum probable solution given
the evidence, the inference objective of HL-MRF be-
comes:

P(y|x) ≡ argmin
y∈[0,1]n

m∑

j=1

wj(max{lj(y,x), 0})pj . (4)

In PSL, each logical rule Cj in the database C is used
to define lj(y,x), i.e. the linear constraints over (y,x).
Given a set of weighted logical formulas, PSL builds a
graphical model defining a probability distribution over
the continuous value space of the random variables in the
model.

More precisely, lj(.) is defined in terms of “distance to
satisfaction”. For each rule Cj ∈ C this “distance to
satisfaction” is measured using the term wj ×max

{
1−∑

i∈I+j yi−
∑
i∈I−j (1−yi), 0

}
. This encodes the penalty

if a rule is not satisfied. Then, the right hand side of the
Eq. 4 becomes:

argmin
y∈[0,1]n

∑

Cj∈C

wj max
{
1−

∑

i∈I+j

yi−
∑

i∈I−j

(1− yi), 0
}
, (5)

which is used to estimate P(y|x) efficiently.

4 APPROACH

Given a set of images ({I1, I2, I3, I4}), our objective is
to determine a set of ranked words (T ) based on how well
they semantically connect the images. In this work, we
present an approach that uses the previously introduced
Probabilistic Reasoning framework on top of a proba-
bilistic Knowledge Base (ConceptNet). It also uses addi-
tional semantic knowledge from Word2vec. Using these
knowledge sources, we predict the answers to the riddles.
Although our approach consists of multiple resources
and stages, it can be easily modularized, pipelined and
reproduced. It is also worth to mention that the PSL
engine is a general tool. It could be used for further
research along the conjunction of vision, language and
reasoning.

4.1 OUTLINE OF OUR FRAMEWORK
As outlined in algorithm 1, for each image Ik (here,
k ∈ {1, ..., 4}), we follow three steps to infer related
words and phrases: i) Image Classification: we get top
class labels and the confidence from Image Classifier
(Sk, P̃ (Sk|Ik)), ii) Rank and Retrieve: using these la-
bels and confidence scores, we rank and retrieve top re-
lated words (Tk) from ConceptNet (Kcnet), iii) Proba-
bilistic Reasoning and Inference (Stage I): using the la-
bels (Sk) and the top related words (Tk), we design an
inference model to logically infer final set of words (T̂k)

Algorithm 1: Solving Image Riddles
1: procedure UNRIDDLER(I = {I1, I2, I3, I4},Kcnet)
2: for Ik ∈ I do
3: P̃ (Sk|Ik) = getClassLabelsNeuralNetwork(Ik).
4: for s ∈ Sk do
5: Ts,Wm(s,Ts) = retrieveTargets(s,Kcnet);
6: Wm(s, tj) = sim(s, tj)∀tj ∈ Ts.
7: end for
8: Tk = rankTopTargets(P̃ (Sk|Ik),TSk

,Wm);
9: I(T̂k) = inferConfidenceStageI(Tk, P̃ (Sk|Ik)).

10: end for
11: I(T ) = inferConfidenceStageII([T̂k]

4
k=1, [P̃ (Sk|Ik)]4k=1).

12: end procedure

for each image. Lastly, we use another probabilistic rea-
soning model (Stage II) on the combined set of inferred
words (targets) from all images in a riddle. This model
assigns the final confidence scores on the combined set
of targets (T ). We depict the pipeline with an example in
Figure 2.

Figure 2: An overview of the framework followed for each
Image; demonstrated using an example image of an aardvark
(resembles animals such as tapir, ant-eater). As shown, the un-
certainty in detecting concepts is reduced after considering ad-
ditional knowledge. We run a similar pipeline for each image
and then infer final results using a final Probabilistic Inference
Stage (Stage II).

4.2 IMAGE CLASSIFICATION

Neural Networks trained on ample source of images and
numerous image classes has been very effective. Stud-
ies have found that convolutional neural networks (CNN)
can produce near human level image classification accu-
racy (Krizhevsky et al., 2012), and related work has been
used in various visual recognition tasks such as scene la-
beling (Farabet et al., 2013) and object recognition (Gir-
shick et al., 2014). To exploit these advances, we use the
state-of-the-art class detections provided by the Clarifai
API (Sood, 2015) and the Deep Residual Network Archi-
tecture by (He et al., 2016) (using the trained ResNet-200
model). For each image (Ik) we use top 20 detections
(Sk) (seeds). Figure 2 provides an example. Each detec-
tion is accompanied with the classifier’s confidence score
(P̃ (Sk|Ik)).
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4.3 RETRIEVE AND RANK RELATED WORDS

Our goal is to logically infer words or phrases that repre-
sent (higher or lower-level) concepts that can best explain
the co-existence of the detected seeds in a scene. For ex-
amples, for “hand” and “care”, implied words could be
“massage”, “ill”, “ache” etc. For “transportation” and
“sit”, implied words/phrases could be “sit in bus” and
“sit in plane”. The reader might be inclined to infer other
concepts. However, to “infer” is to derive “logical” con-
clusions. Hence, we prefer the concepts which shares
strong explainable connections (i.e. relational similarity)
with the seeds.

A logical choice would be traversing a knowledge-graph
like ConceptNet and find the common reachable nodes
from these seeds. As this is computationally infeasi-
ble, we use the association-space matrix representation
of ConceptNet, where the words are represented as vec-
tors. The similarity between two words approximately
embodies the strength of the connection over all paths
connecting the two words in the graph. We get the top
similar words for each seed, approximating the reachable
nodes.

4.3.1 Retrieve Related Words For a Seed

We observe that, for objects, the ConceptNet-similarity
gives a poor result (See Table 1). So, we define a met-
ric called visual similarity. Let us call the similar words
as targets. In this metric, we represent the seed and the
target as vectors. To define the dimensions, for each
seed, we use the relations (HasA, HasProperty, PartOf
and MemberOf). We query ConceptNet to get the related
words (W1,W2,W3...) under such relations for the seed-
word and its superclasses. Each of these relation-word
pairs (i.e. HasA-W1,HasA-W2,PartOf-W3,...) becomes a
separate dimension. The values for the seed-vector are
the weights assigned to the assertions. For each target,
we query ConceptNet and populate the target-vector us-
ing the edge-weights for the dimensions defined by the
seed-vector.

To get the top words using visual similarity, we use the
cosine similarity of the seed-vector and the target-vector
to re-rank the top 10000 retrieved similar target-words.
For abstract seeds, we do not get any such relations and
thus use the ConceptNet similarity directly.

Table 1 shows the top similar words using ConceptNet,
word2vec and visual-similarity for the word “men”.

Formulation: For each seed (s), we get the top words
(Ts) from ConceptNet using the visual similarity met-
ric and the similarity vector Wm(s,Ts). Together for an
image, these constitute TSk and the matrix Wm, where

ConceptNet Visual Similarity Word2vec
man, merby, misandrous,
philandry, male human,
dirty pig, mantyhose,

date woman,guyliner,manslut

priest, uncle, guy,
geezer, bloke, pope,
bouncer, ecologist,

cupid, fella

women, men, males,
mens, boys, man, female,

teenagers,girls,ladies

Table 1: Top 10 similar Words for “Men”. The ranked list
based on visual-similarity ranks boy, chap, husband, godfather,
male person, male in the ranks 16 to 22. See appendix for
more.

Wm(si, tj) = simvis(si, tj)∀si ∈ Sk, tj ∈ TSk .

A large percentage of the error from Image Classifiers are
due to visually similar objects or objects from the same
category (Hoiem et al., 2012). In such cases, we use this
visual similarity metric to predict the possible visually
similar objects and then use an inference model to infer
the actual object.

4.3.2 Rank Targets

We use the classifier confidence scores P̃ (Sk|Ik) as
an approximate vector representation for an image, in
which the seeds are the dimensions. The columns of
Wm provides vector representations for the target words
(t ∈ TSk ) in the space. We calculate cosine similarities
for each target with such a image-vector and then re-rank
the targets. We denote the top θ#t targets as Tk (see Ta-
ble. 2).

4.4 PROBABILISTIC REASONING AND
INFERENCE

4.4.1 PSL Inference Stage I

Given a set of candidate targets Tk and a set of weighted
seeds (Sk, P̃ (Sk|Ik)), we build an inference model to
infer a set of most probable targets (T̂k). We model
the joint distribution using PSL as this formalism adopts
Markov Random Field which obeys the properties of
Gibbs Distribution. In addition, a PSL model is declared
using rules. Given the final answer, the set of satisfied
rules show the logical connections between the detected
words and the final answer. The PSL model can be best
explained as an Undirected Graphical Model involving
seeds (observed) and targets (unobserved). We define the
seed-target and target-target potentials using PSL rules.
We connect each seed to each target and the potential de-
pends on their similarity and the target’s popularity bias.
We connect each target to θt-t (1 or 2) maximally similar
targets. The potential depends on their similarity.

Formulation: Using PSL, we add two sets of rules: i)
to define seed-target potentials, we add rules of the form
wtij : sik → tjk for each word sik ∈ Sk and target
tjk ∈ Tk; ii) to define target-target potentials, for each
target tjk, we take the most similar θt-t targets (Tmaxj ).
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For each target tjk and each tmk ∈ Tmaxj , we add two
rules wtjm : tjk → tmk and wtjm : tmk → tjk. Next,
we describe the choices in detail.

i) From the perspective of optimization, the rule wtij :
sik → tjk adds the term wtij ∗max{I(sik)− I(tjk), 0}
to the objective. This means that if confidence score of
the target tjk is not greater than I(sik) (i.e. P̃ (Sk|Ik)),
then the rule is not satisfied and we penalize the model by
wtij times the difference between the confidence scores.
We add the above rule for seeds and targets for which
the combined similarity (wtij) exceeds certain threshold
θsim,psl1. We encode the commonsense knowledge of
words and phrases obtained from different knowledge
sources into the weights of these rules wtij . It is also
important that the inference model is not biased towards
more popular targets (i.e. abstract words or words too
commonly used/detected in corpus). We compute eigen-
vector centrality score (C(.)) for each word in the context
of ConceptNet. Higher C(.) indicates higher connectiv-
ity of a word in the graph. This yields a higher similarity
score to many words and might give an unfair bias to this
target in the inference model. Hence, the higher the C(.),
the word provides less specific information for an image.
Hence, the weight becomes

wtij = θα1 ∗ simcn(sik, tjk)+

θα2 ∗ simw2v(sik, tjk) + 1/C(tjk),
(6)

where simcn(., .) is the normalized ConceptNet-based
similarity. simw2v(., .) is the normalized word2vec sim-
ilarity of two words and C(.) is the eigenvector-centrality
score of the argument in the ConceptNet matrix.

ii) To model dependencies among the targets, we observe
that if two concepts t1 and t2 are very similar in mean-
ing, then a system that infer t1 should infer t2 too, given
the same set of observed words. Therefore, the two rules
wtjm : tjk → tmk and wtjm : tmk → tjk are de-
signed to force the confidence values of tjk and tmk to
be as close to each other as possible. wtjm is the same
as Equation 6 without the penalty for popularity.

Using Equation 5, the PSL inference objective becomes:

argmin
I(Tk)∈[0,1]|Tk|

∑

sik∈Sk

∑

tjk∈Tk

wtij max
{
I(sik)− I(tjk), 0

}
+

∑

tjk∈Tk

∑

tmk∈Tmaxj

wtjm
{
max

{
I(tmk)− I(tjk), 0

}
+

max
{
I(tjk)− I(tmk), 0

}}
.

To let the targets compete against each other, we add
one more constraint on the sum of the confidence scores
of the targets i.e.

∑
j:tjk∈Tk

I(tjk) ≤ θsum1. Here
θsum1 ∈ {1, 2} and I(tjk) ∈ [0, 1]. The above opti-
mizer provides us P(Tk|Sk) and thus the top set of tar-
gets [T̂k]4k=1.

4.4.2 PSL Inference Stage II

To learn the most probable common targets jointly, we
consider the targets and the seeds from all images to-
gether. Assume that the seeds and the targets are nodes
in a knowledge-graph. Then, the most appropriate target-
nodes should observe similar properties as an appropriate
answer to the riddle: i) a target-node should be connected
to the high-weight seeds in an image i.e. should relate to
the important aspects of the image; and ii) a target-node
should be connected to seeds from all images.

Formulation: Here, we use the rules wtij : sik → tjk
for each word sik ∈ Sk and target tjk ∈ T̂k for all k ∈
{1, 2.., 4}. To let the set of targets compete against each
other, we add the constraint

∑4
k=1

∑
j:tjk∈T̂k

I(tjk) ≤
θs2. Here θs2 = 1 and I(tjk) ∈ [0, 1]. The second infer-
ence stage provides us P([T̂k]4k=1|S1, S2, S3, S4) and
thus the top targets that constitutes the final answers. To
minimize the penalty for each rule, the optimal solution
maximizes the confidence score of tjk. To minimize the
overall penalty, it should maximize the confidence scores
of these targets which satisfy most of the rules. As the
summation of confidence scores is bounded, only a few
top inferred targets should have non-zero confidence.

5 EXPERIMENTS AND RESULTS

5.1 DATASET VALIDATION AND ANALYSIS

We have collected a set of 3333 riddles from the Inter-
net (puzzle websites). Each riddle has 4 images and a
groundtruth answer associated with it. To make it more
challenging to computer systems, we include both pho-
tographic and non-photographic images in the dataset.

To verify the groundtruth answers, we define the met-
rics: i) “correctness” - how correct and appropriate the
answers are, and ii) “difficulty” - how difficult are the
riddles. We conduct an Amazon Mechanical Turker
(AMT)-based evaluation for dataset validation. We ask
them to rate the correctness from 1-63. The “difficulty” is
rated from 1-74. We provide the Turkers with examples
to calibrate our evaluation. According to the Turkers, the
mean correctness rating is 4.4 (with Standard Deviation

31: Completely gibberish, incorrect, 2: relates to one im-
age, 3 and 4: connects two and three images respectively, 5:
connects all 4 images, but could be a better answer, 6: connects
all images and an appropriate answer.

4These gradings are adopted from VQA AMT instructions
(Antol et al., 2015). 1: A toddler can solve it (ages:3-4), 2:
A younger child can solve it (ages:5-8), 3: A older child can
solve it (ages:9-12), 4: A teenager can solve it (ages:13-17),
5: An adult can solve it (ages:18+), 6: Only a Linguist (one
who has above-average knowledge about English words and
the language in general) can solve it, 7: No-one can solve it.
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1.5). The “difficulty” ratings show the following distri-
bution: toddler (0.27%), younger child (8.96%), older
child (30.3%), teenager (36.7%), adult (19%), linguist
(3.6%), no-one (0.64%). In short, the average age to an-
swer the riddles is closer to 13-17yrs. Also, few of these
(4.2%) riddles seem to be incredibly hard. Interestingly,
the average age perceived reported for the recently pro-
posed VQA dataset (Antol et al., 2015) is 8.92 yrs. Al-
though, this experiment measures “the turkers’ percep-
tion of the required age”, one can conclude with statisti-
cal significance that the riddles are comparably harder.

5.2 SYSTEMS EVALUATION

The presented approach suggests the following hypothe-
ses that requires empirical tests: I) the proposed ap-
proach (and their variants) attain reasonable accuracy in
solving the riddles; II) the individual stages of the frame-
work improves the final inference accuracy of the an-
swers. In addition, we also experiment to observe the
effect of using commercial classification methods like
Clarifai against a published state-of-the-art Image Clas-
sification method.

5.2.1 Systems

We propose several variations of the proposed approach
and compare them with simple vision-only baselines. We
introduce an additional Bias-Correction stage after the
Image Classification, which aims to re-weight the de-
tected seeds using additional information from other im-
ages. The variations then are created to test the effects of
varying the Bias-Correction stage and the effects of the
individual stages of the framework on the final accuracy
(hypothesis II). We also vary the initial Image Classifica-
tion Methods (Clarifai, Deep Residual Network).

Bias-Correction: We experimented with two variations:
i) greedy bias-correction and ii) no bias-correction. We
follow the intuition that the re-weighting of the seeds
of one image can be influenced by the others5. To
this end, we develop the “GreedyUnRiddler” (GUR) ap-
proach. In this approach, we consider all of the im-
ages together to dictate the new weight of each seed.
Take image Ik for example. To re-weight seeds in Sk,
we calculate the weights using the following equation:
W̃ (sk) =

∑
j∈1,..4 simcosine(Vsk,j ,Vj)

4.0 . Vj is vector of
the weights assigned P̃ (Sj |Ij) i.e. confidence scores
of each seed in the image. Each element of Vsk,j [i] is
the ConceptNet-similarity score between the seed sk and
si,j i.e. the ith seed of the jth image. The re-weighted
seeds (Sk, W̃ (Sk)) of an image are then passed through

5A person often skims through all the images at one go and
will try to come up with the aspects that needs more attention.

the rest of the pipeline to infer the final answers.

In the original pipeline (“UnRiddler”,in short UR), we
just normalize the weights of the seeds and pass on to the
next stage. We experiment with another variation (called
BiasedUnRiddler or BUR), the results of which are in-
cluded in appendix, as GUR achieves the best results.

Effect of Stages: We observe the accuracy after each
stage in the pipeline (VB: Up to Bias Correction, RR:
Up to Rank and Retrieve stage, All: The entire Pipeline).
For VB, we use the normalized weighted seeds, get the
weighted centroid vector over the word2vec embeddings
of the seeds for each image. Then we obtain the mean
vector over these centroids. The top similar words from
the word2vec vocabulary to this mean vector, constitutes
the final answers. For RR, we get the mean vector over
the top predicted targets for all images. Again, the most
similar words from the word2vec vocabulary constitutes
the answers.

Baseline (VQA+VB+UR): For the sake of completion,
we experiment with a pre-trained Visual Question An-
swering system (from Lu et al. (2016)). For each image,
we take top 20 answers for the question “What is the
image about”, and, then we follow the above procedure
(VB+UR) to calculate the mean. We get the closest word
using the mean vector, from the Word2vec vocabulary.
We observe that, the detected words are primarily top
frequent answers and do not contain any specific infor-
mation. Therefore, subsequent stages hardly improve the
results. We provide one detailed example in appendix.

Baseline (Clarifai+VB+UR and ResNet+VB+UR): We
create a strong baseline by directly going from seeds to
target using word2vec-based similarities. We use the
class-labels and the confidence scores predicted using the
state-of-the-art classifiers. For each image, we calculate
the weighted centroid of the word2vec embeddings of
these labels and the mean of these centroids for the 4 im-
ages. For the automatic evaluation we use top K (10)
similar words and for human evaluation, we use the most
similar word to this vector, from the word2vec vocabu-
lary. The Baseline performances are listed in Table 3.

Human Baseline: In an independent AMT study, we
ask the turkers to answer each riddle without any hint
towards the answer. We ask them to input maximum 5
words (comma-separated) that can connect all four of
the images. In cases, where the riddles are difficult we
instruct them to find words that connect at least three im-
ages. These answers constitute our human baseline.

5.2.2 Experiment I: Automatic Evaluation

We evaluate the performance of the proposed approach
on the Image Riddles dataset using both automatic and
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Amazon Mechanical Turker (AMT)-based evaluations.
An answer to a riddle may have several semantically sim-
ilar answers. Hence, as evaluation metrics, we use both
word2vec and WordNet-based similarity measures. For
each riddle, we calculate the maximum similarity be-
tween the groundtruth with the top 10 detections, and
report the average of such maximum similarities in per-

centage form: S = 1
n

n∑
i=1

max
1≤l≤10

sim(GTi, Tl). To cal-

culate phrase similarities, i) we use n similarity
method of the gensim.models.word2vec package;
or, ii) average of WordNet-based word pair similarities
that is calculated as a product of length (of the short-
est path between sysnsets of the words), and depth (the
depth of the subsumer in the hierarchical semantic net)
(Li et al., 2006) 6.

Number of Targets: θ#t (2500), ConceptNet-similarity Weight: θα1
(1),

word2vec-similarity weight: θα2
(4), Number of maximum similar Targets: θt-t (1)

Seed-target similarity Threshold: θsim,psl1 (0.8),
Sum of confidence scores in Stage I: θsum1 (2)

Table 2: A List of parameters θ used in the approach

3.3k 2.8k
W2V WN W2V WN

Human - - 74.6 68.9 74.56 67.8

VQA VB UR † 59.6 15.7 59.7 15.6
GUR 62.59 17.7 62.5 17.7

VB UR † 65 26.2 65.3 26.4
GUR 65.3 26.2 65.36 26.2

Clarifai RR UR 65.9 34.9 65.7 34.8
GUR 65.9 36.6 65.73 36.4

All UR 68.5 40.3 68.57 40.4*
GUR 68.8* 40.3 68.7 40.4*

VB UR † 68.3 35 68 33.5
GUR 66.8 33.1 66.4 32.6

Resnet RR UR 66.7 38.5 66.7 38.2
GUR 66.3 38.1 66.2 37.6

All UR 68.53 39.9 68.2 40.2
GUR 68.2 39.5 68.2 39.6

Table 3: Accuracy (in percentage) on the Image Riddle
Dataset. Pipeline variants (VB, RR and All) are combined
with Bias-Correction stage variants (GUR, UR). We show both
word2vec and WordNet-based (WN) accuracies. (*- Best, † -
Baselines).

To select the parameters in the parameter vector θ, We
employed a random search on the parameter-space over
first 500 riddles over 500 combinations. The final set of
parameters used and their values are tabulated in Table 2.

The accuracies after different stages of the pipeline (VB,
RR and All) combined with variations of the initial Bias-
Correction stage (GUR and UR), are listed in Table 37.
We provide our experimental results on this 3333 riddles

6The groundtruth is a single word. Code: bit.ly/2gqmnwEe.
7For ablation study on varying top K, check appendix.

and 2833 riddles (barring 500 riddles as validation set for
the parameter search).

5.2.3 Experiment II: Human Evaluation

We conduct an AMT-based comparative evaluation of the
results of the proposed approach (GUR+All using Clar-
ifai) and two vision-only baselines. We define two met-
rics: i) “correctness” and ii) “intelligence”. Turkers are
presented with the instructions: We have three separate
robots that attempted to answer this riddle. You have
to rate the answer based on the correctness and the de-
gree of intelligence (explainability). The correctness is
defined as before. In addition, turkers are asked to rate
intelligence in a scale of 1-48. Figure 3 plots the per-
centage of total riddles per each value of correctness and
intelligence. In these histograms plots, we expect an in-
crease in the rightmost buckets for the more “correct”
and “intelligent” systems.

.Figure 3: AMT Results of The Clarifai+GUR+All (our), Clar-
ifai+UR+VB (baseline 1) and ResNet+UR+VB (baseline 2)
approaches. Correctness Means are: 2.6 ± 1.4, 2.4 ± 1.45,
2.3± 1.4. For Intelligence: 2.2± 0.87, 2± 0.87, 1.8± 0.8

5.2.4 Analysis

Experiment I shows that the GUR variant
(Clarifai+GUR+All in Table 3) achieves the best
results in terms of word2vec-based accuracy. The
WordNet-based metric gives clear evidence of improve-
ment by the stages of our pipeline (a sharp 14% increase
over Clarifai and 6% increase over ResNet baselines).
Improvement from the final reasoning stage is also
evident from the result. The increase in accuracy after
reasoning shows how knowledge helped in decreasing
overall uncertainty in perception. Similar trend is
reflected in the AMT-based evaluations (Figure 3).

8{1: Not, 2: Moderately, 3: Normal, 4: Very} intelligent
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Figure 4: Positive and Negative (in red) results of the
“GUR” approach (Clarifai+GUR+All) on some of the
riddles. The groundtruth labels, closest label among top
10 from GUR and the Clarifai+VB+UR baseline are pro-
vided for all images. For more results, check Appendix.

Our system has increased the percentage of puzzles
for the rightmost bins i.e. produces more “correct”
and “intelligent” answers for more number of puzzles.
The word2vec-based accuracy puts the performance
of ResNet baseline close to that of the GUR variant.
However, as evident from the WordNet-based metric and
the AMT evaluation of the correctness (Figure 3), the
GUR variant clearly predicts more meaningful answers
than the ResNet baseline. Experiment II also includes
what the turkers think about the intelligence of the
systems that tried to solve the puzzles. This also puts the
GUR variant at the top. The above two experiments em-
pirically show that our approach achieves a reasonable
accuracy in solving the riddles (Hypothesis I). In table
3, we observe how the accuracy varies after each stage
of the pipeline (hypothesis II). The table shows a jump
in the (WN) accuracy after the RR stage, which leads us
to believe the primary improvement of our approach is
attributed to the Probabilistic Reasoning model. We also
provide our detailed results for the “GUR” approach
using a few riddles in Figure 4.

Difficulty of Riddles: From our AMT study (Human
baseline), we observe that the riddles are quite difficult
for (untrained) human mechanical turkers. There are
around 500 riddles which were labeled as “blank”, an-
other 500 riddles were labeled as “not found”. Lastly,
457 riddles (391 with wordnet similarity higher than 0.9
and 66 higher than 0.8) were predicted perfectly, which
leads us to believe that these easy riddles mostly show
visual similarities (object-level) whereas others mostly

show conceptual similarity.

Running Time: Our implementation of PSL solves each
riddle in nearly 20s in an Intel core i7 2.0 GHz processor,
with 4 parallel threads. Solving each riddle boils down
to solving 5 optimization problems (1 for each image and
1 joint). This eventually means our engine takes nearly
4 sec. to solve an inference problem with approximately
20× 2500 i.e. 50k rules.

Reason to use a Probabilistic Logic: We stated our rea-
sons for choosing PSL over other available Probabilistic
Logics. However, the simplicity of the used rules can
leave the reader wondering about the reason for choos-
ing a complex probabilistic logic in the first place. Each
riddle requires an answer which is “logically” connected
to each image. To show such logical connection, we
need ontological knowledge graphs such as ConceptNet
which shows connections between the answer and words
detected from the images. To integrate ConceptNet’s
knowledge seamlessly into the reasoning mechanism, we
use a probabilistic logic such as PSL.

6 CONCLUSION

In this work, we presented a Probabilistic Reasoning
based approach that uses background knowledge to solve
a new class of image puzzles, called “Image Riddles”.
We have collected over 3k such riddles. Crowd-sourced
evaluation of the dataset demonstrates the validity of the
annotations and the nature of the difficulty of the rid-
dles. We empirically show that our approach improves
on vision-only baselines and provides a stronger base-
line for future attempts. The task of “Image Riddles”
is equivalent to conventional IQ test questions such as
analogy solving, sequence filling; which are often used
to test human intelligence. This task of “Image Riddles”
is also in line with the current trend of VQA datasets
which require visual recognition and reasoning capabil-
ities. However, it focuses more on the combination of
both vision and reasoning capabilities. In addition to the
task, the proposed approach introduces a novel inference
model to infer related words (from a large vocabulary)
given class labels (from a smaller set), using semantic
knowledge of words. This method is general in terms
of its applications. Systems such as (Wu et al., 2016),
which use a collection of high-level concepts to boost
VQA performance; can benefit from this approach.
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Abstract
We formalize the notion of nesting probabilistic
programming queries and investigate the result-
ing statistical implications. We demonstrate
that while query nesting allows the definition
of models which could not otherwise be ex-
pressed, such as those involving agents reason-
ing about other agents, existing systems take
approaches which lead to inconsistent estimates.
We show how to correct this by delineating pos-
sible ways one might want to nest queries and
asserting the respective conditions required for
convergence. We further introduce a new on-
line nested Monte Carlo estimator that makes it
substantially easier to ensure these conditions
are met, thereby providing a simple framework
for designing statistically correct inference en-
gines. We prove the correctness of this online
estimator and show that, when using the recom-
mended setup, its asymptotic variance is always
better than that of the equivalent fixed estimator,
while its bias is always within a factor of two.

1 INTRODUCTION
Probabilistic programming systems (PPSs) allow proba-
bilistic models to be represented in the form of a genera-
tive model and statements for conditioning on data (Good-
man et al., 2008; Gordon et al., 2014). Informally, one
can think of the generative model as the definition of
a prior, the conditioning statements as the definition of
a likelihood, and the output of the program as samples
from a posterior distribution. Their core philosophy is to
decouple model specification and inference, the former
corresponding to the user-specified program code and the
latter to an inference engine capable of operating on ar-
bitrary programs. Removing the need for users to write
inference algorithms significantly reduces the burden of
developing new models and makes effective statistical
methods accessible to non-experts.

Some, so-called universal, systems (Goodman et al., 2008;
Goodman and Stuhlmüller, 2014; Mansinghka et al.,
2014; Wood et al., 2014) further allow the definition of
models that would be hard, or even impossible, to convey
using conventional frameworks such as graphical models.
One enticing manner they do this is by allowing arbitrary
nesting of models, known in the probabilistic program-
ming literature as queries (Goodman et al., 2008), such
that it is easy to define and run problems that fall outside
the standard inference framework (Goodman et al., 2008;
Mantadelis and Janssens, 2011; Stuhlmüller and Good-
man, 2014; Le et al., 2016). This allows the definition of
models that could not be encoded without nesting, such
as experimental design problems (Ouyang et al., 2016)
and various models for theory-of-mind (Stuhlmüller and
Goodman, 2014). In particular, models that involve agents
reasoning about other agents require, in general, some
form of nesting. For example, one might use such nesting
to model a poker player reasoning about another player as
shown in Section 3.1. As machine learning increasingly
starts to try and tackle problem domains that require in-
teraction with humans or other external systems, such as
the need for self-driving cars to account for the behavior
of pedestrians, we believe that such nested problems are
likely to become increasingly common and that PPSs will
form a powerful tool for encoding them.
However, previous work has, in general, implicitly, and in-
correctly, assumed that the convergence results from stan-
dard inference schemes carry over directly to the nested
setting. In truth, inference for nested queries falls out-
side the scope of conventional proofs and so additional
work is required to prove the consistency of PPS inference
engines for nested queries. Such problems constitute spe-
cial cases of nested estimation. In particular, the use of
Monte Carlo (MC) methods by most PPSs mean they form
particular instances of nested Monte Carlo (NMC) esti-
mation (Hong and Juneja, 2009). Recent work (Rainforth
et al., 2016a, 2018; Fort et al., 2017) has demonstrated
that NMC is consistent for a general class of models, but
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also that it entails a convergence rate in the total com-
putational cost which decreases exponentially with the
depth of the nesting. Furthermore, additional assumptions
are required to achieve this convergence, most noticeably
that, except in a few special cases, one needs to drive not
only the total number of samples used to infinity, but also
the number of samples used at each layer of the estimator,
a requirement generally flaunted by existing PPSs.
The aim of this work is to formalize the notion of query
nesting and use these recent NMC results to investigate
the statistical correctness of the resulting procedures car-
ried out by PPS inference engines. To do this, we pos-
tulate that there are three distinct ways one might nest
one query within another: sampling from the conditional
distribution of another query (which we refer to as nested
inference), factoring the trace probability of one query
with the partition function estimate of another (which we
refer to as nested conditioning), and using expectation es-
timates calculated using one query as first class variables
in another. We use the aforementioned NMC results to
assess the relative correctness of each of these categories
of nesting. In the interest of exposition, we will mostly
focus on the PPS Anglican (Tolpin et al., 2016; Wood
et al., 2014) (and also occasionally Church (Goodman
et al., 2008)) as a basis for our discussion, but note that
our results apply more generally. For example, our nested
inference case covers the problem of sampling from cut
distributions in OpenBugs (Plummer, 2015).
We find that nested inference is statistically challenging
and incorrectly handled by existing systems, while nested
conditioning is statistically straightforward and done cor-
rectly. Using estimates as variables turns out to be exactly
equivalent to generic NMC estimation and must thus be
dealt with on a case-by-case basis. Consequently, we will
focus more on nested inference than the other cases.
To assist in the development of consistent approaches, we
further introduce a new online NMC (ONMC) scheme
that obviates the need to revisit previous samples when
refining estimates, thereby simplifying the process of writ-
ing consistent online nested estimation schemes, as re-
quired by most PPSs. We show that ONMC’s convergence
rate only varies by a small constant factor relative to con-
ventional NMC: given some weak assumptions and the
use of recommended parameter settings, its asymptotic
variance is always better than the equivalent NMC estima-
tor with matched total sample budget, while its asymptotic
bias is always within a factor of two.

2 BACKGROUND
2.1 NESTED MONTE CARLO
We start by providing a brief introduction to NMC, us-
ing similar notation to that of Rainforth et al. (2018).
Conventional MC estimation approximates an intractable

expectation γ0 of a function λ using

γ0 = E
[
λ(y(0))

]
≈ I0 =

1

N0

N0∑

n=1

λ(y(0)n ) (1)

where y(0)n
i.i.d.∼ p(y(0)), resulting in a mean squared er-

ror (MSE) that decreases at a rate O(1/N0). For nested
estimation problems, λ(y(0)) is itself intractable, cor-
responding to a nonlinear mapping of a (nested) esti-
mation. Thus in the single nesting case, λ(y(0)) =
f0
(
y(0),E

[
f1
(
y(0), y(1)

)∣∣y(0)
])

giving

γ0 = E
[
f0

(
y(0),E

[
f1

(
y(0), y(1)

)∣∣∣y(0)
])]

≈ I0 =
1

N0

N0∑

n=1

f0

(
y(0)n ,

1

N1

N1∑

m=1

f1

(
y(0)n , y(1)n,m

))

where each y(1)n,m ∼ p(y(1)|y(0)n ) is drawn independently
and I0 is now a NMC estimate using T = N0N1 samples.
More generally, one may have multiple layers of nesting.
To notate this, we first presume some fixed integral depth
D ≥ 0 (with D = 0 corresponding to conventional esti-
mation), and real-valued functions f0, . . . , fD. We then
recursively define

γD

(
y(0:D−1)

)
= E

[
fD

(
y(0:D)

)∣∣∣y(0:D−1)
]
, and

γk(y(0:k−1)) = E
[
fk

(
y(0:k), γk+1

(
y(0:k)

))∣∣∣y(0:k−1)
]

for 0 ≤ k < D. Our goal is to estimate γ0 =
E
[
f0
(
y(0), γ1

(
y(0)

))]
, for which the NMC estimate is

I0 defined recursively using

ID

(
y(0:D−1)

)
=

1

ND

ND∑

nD=1

fD

(
y(0:D−1), y(D)

nD

)
and

Ik

(
y(0:k−1)

)
(2)

=
1

Nk

Nk∑

nk=1

fk

(
y(0:k−1), y(k)nk

, Ik+1

(
y(0:k−1), y(k)nk

))

for 0 ≤ k < D, where each y(k)n ∼ p
(
y(k)|y(0:k−1)

)
is

drawn independently. Note that there are multiple values
of y(k) for each associated y(0:k−1) and that Ik

(
y(0:k−1)

)

is still a random variable given y(0:k−1).
As shown by (Rainforth et al., 2018, Theorem 3), if each
fk is continuously differentiable and

ς2k = E
[(
fk

(
y(0:k), γk+1

(
y(0:k)

))
−γk

(
y(0:k−1)

))2]

<∞ ∀k ∈ 0, . . . , D, then the MSE converges at rate

E
[
(I0 − γ0)

2
]
≤ ς20
N0

+

(
C0ς

2
1

2N1
+
D−2∑

k=0

(
k∏

d=0

Kd

)
Ck+1ς

2
k+2

2Nk+2

)2

+O(ε)

(3)

where Kk and Ck are respectively bounds on the magni-
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tude of the first and second derivatives of fk, and O(ε)
represents asymptotically dominated terms – a convention
we will use throughout. Note that the dominant terms in
the bound correspond respectively to the variance and
the bias squared. Theorem 2 of Rainforth et al. (2018)
further shows that the continuously differentiable assump-
tion must hold almost surely, rather than absolutely, for
convergence more generally, such that functions with
measure-zero discontinuities still converge in general.
We see from (3) that if any of the Nk remain fixed, there
is a minimum error that can be achieved: convergence
requires each Nk →∞. As we will later show, many of
the shortfalls in dealing with nested queries by existing
PPSs revolve around implicitly fixing Nk ∀k ≥ 1.
For a given total sample budget T = N0N1 . . . ND, the
bound is tightest when

√
N0 ∝ N1 ∝ · · · ∝ ND giving

a convergence rate of O(1/T
2

D+2 ). The intuition behind
this potentially surprising optimum setting is that the vari-
ance is mostly dictated by N0 and bias by the other Nk.
We see that the convergence rate diminishes exponen-
tially with D. However, this optimal setting of the Nk
still gives a substantially faster rate than the O(1/T

1
D+1 )

from naı̈vely setting N0 ∝ N1 ∝ · · · ∝ ND.

2.2 THE ANGLICAN PPS

Anglican is a universal probabilistic programming lan-
guage integrated into Clojure (Hickey, 2008), a dialect
of Lisp. There are two important ideas to understand
for reading Clojure: almost everything is a function and
parentheses cause evaluation. For example, a+ b is coded
as (+ a b) where + is a function taking two arguments
and the parentheses cause the function to evaluate.
Anglican inherits most of the syntax of Clojure, but ex-
tends it with the key special forms sample and observe
(Wood et al., 2014; Tolpin et al., 2015, 2016), between
which the distribution of the query is defined. Informally,
sample specifies terms in the prior and observe terms
in the likelihood. More precisely, sample is used to make
random draws from a provided distribution and observe
is used to apply conditioning, factoring the probability
density of a program trace by a provided density evaluated
at an “observed” point.
The syntax of sample is to take a distribution object
as its only input and return a sample. observe instead
takes a distribution object and an observation and returns
nil, while changing the program trace probability in
Anglican’s back-end. Anglican provides a number of
elementary random procedures, i.e. distribution object
constructors for common sampling distributions, but also
allows users to define their own distribution object con-
structors using the defdist macro. Distribution objects
are generated by calling a class constructor with the re-
quired parameters, e.g. (normal 0 1).

Anglican queries are written using the macro defquery.
This allows users to define a model using a mixture of
sample and observe statements and deterministic code,
and bind that model to a variable. As a simple example,
(defquery my-query [data]
(let [µ (sample (normal 0 1))

σ (sample (gamma 2 2))
lik (normal µ σ)]

(map (fn [obs] (observe lik obs)) data)
[µ σ]))

corresponds to a model where we are trying to in-
fer the mean and standard deviation of a Gaus-
sian given some data. The syntax of defquery is
(defquery name [args] body) such that we are
binding the query to my-query here. The query starts by
sampling µ ∼ N (0, 1) and σ ∼ Γ(2, 2), before construct-
ing a distribution object lik to use for the observations.
It then maps over each datapoint and observes it under
the distribution lik. After the observations are made, µ
and σ are returned from the variable-binding let block
and then by proxy the query itself. Denoting the data as
y1:S this particular query defines the joint distribution

p(µ, σ, y1:S) = N (µ; 0, 1) Γ(σ; 2, 2)
∏S

s=1
N (ys;µ, σ).

Inference on a query is performed using the macro
doquery, which produces a lazy infinite sequence
of approximate samples from the conditional distribu-
tion and, for appropriate inference algorithms, an es-
timate of the partition function. Its calling syntax is
(doquery inf-alg model inputs & options).
Key to our purposes is Anglican’s ability to nest queries
within one another. In particular, the special form
conditional takes a query and returns a distribution
object constructor, the outputs of which ostensibly cor-
responds to the conditional distribution defined by the
query, with the inputs to the query becoming its param-
eters. However, as we will show in the next section,
the true behavior of conditional deviates from this,
thereby leading to inconsistent nested inference schemes.

3 NESTED INFERENCE
One of the clearest ways one might want to nest queries is
by sampling from the conditional distribution of one query
inside another. A number of examples of this are pro-
vided for Church in (Stuhlmüller and Goodman, 2014).1

Such nested inference problems fall under a more general
framework of inference for so-called doubly (or multi-
ply) intractable distributions (Murray et al., 2006). The
key feature of these problems is that they include terms
with unknown, parameter dependent, normalization con-
stants. For nested probabilistic programming queries, this
manifests through conditional normalization.

1Though their nesting happens within the conditioning predi-
cate, Church’s semantics means they constitute nested inference.
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Consider the following unnested model using the Angli-
can function declaration defm
(defm inner [y D]
(let [z (sample (gamma y 1))]
(observe (normal y z) D)
z))

(defquery outer [D]
(let [y (sample (beta 2 3))

z (inner y D)]
(* y z)))

Here inner is simply an Anglican function: it takes in
inputs y and D, effects the trace probability through its
observe statement, and returns the random variable z as
output. The unnormalized distribution for this model is
thus straightforwardly given by

πu(y, z,D) = p(y)p(z|y)p(D|y, z)
=BETA(y; 2, 3) Γ(z; y, 1)N (D; y, z2),

for which we can use conventional inference schemes.
We can convert this model to a nested inference problem
by using defquery and conditional as follows
(defquery inner [y D]
(let [z (sample (gamma y 1))]
(observe (normal y z) D)
z))

(defquery outer [D]
(let [y (sample (beta 2 3))

dist (conditional inner)
z (sample (dist y D))]

(* y z)))

This is now a nested query: a separate inference proce-
dure is invoked for each call of (sample (dist y D)),
returning an approximate sample from the conditional
distribution defined by inner when input with the cur-
rent values of y and D. Mathematically, conditional
applies a conditional normalization. Specifically, the com-
ponent of πu from the previous example corresponding to
inner was p(z|y)p(D|y, z) and conditional locally
normalizes this to the probability distribution p(z|D, y).
The distribution now defined by outer is thus given by

πn(y, z,D) = p(y)p(z|y,D) =
p(y)p(z|y)p(D|y, z)∫
p(z|y)p(D|y, z)dz

= p(y)
p(z|y)p(D|y, z)

p(D|y)
6= πu(z, y,D).

Critically, the partial normalization constant p(D|y) de-
pends on y and so the conditional distribution is doubly
intractable: we cannot evaluate πn(y, z,D) exactly.
Another way of looking at this is that wrapping inner in
conditional has “protected” y from the conditioning
in inner (noting πu(y, z,D) ∝ p(y|D)p(z|y,D)), such
that its observe statement only affects the probability of
z given y and not the marginal probability of y. This is
why, when there is only a single layer of nesting, nested
inference is equivalent to the notion of sampling from “cut

distributions” (Plummer, 2015), whereby the sampling of
certain subsets of the variables in a model are made with
factors of the overall likelihood omitted.
It is important to note that if we had observed the out-
put of the inner query, rather than sampling from it, this
would still constitute a nested inference problem. The
key to the nesting is the conditional normalization applied
by conditional, not the exact usage of the generated
distribution object dist. However, as discussed in Ap-
pendix B, actually observing a nested query requires nu-
merous additional computational issues to be overcome,
which are beyond the scope of this paper. We thus focus
on the nested sampling scenario.

3.1 MOTIVATING EXAMPLE

Before jumping into a full formalization of nested infer-
ence, we first consider the motivating example of model-
ing a poker player who reasons about another player. Here
each player has access to information the other does not,
namely the cards in their hand, and they must perform
their own inference to deal with the resulting uncertainty.
Imagine that the first player is deciding whether or not to
bet. She could naı̈vely just make this decision based on
the strength of her hand, but more advanced play requires
her to reason about actions the other player might take
given her own action, e.g. by considering whether a bluff
is likely to be successful. She can carry out such reasoning
by constructing a model for the other player to try and
predict their action given her action and their hand. Again
this nested model could just simply be based on a naı̈ve
simulation, but we can refine it by adding another layer
of meta-reasoning: the other player will themselves try to
infer the first player’s hand to inform their own decision.
These layers of meta-reasoning create a nesting: for the
first player to choose an action, they must run multiple
simulations for what the other player will do given that
action and their hand, each of which requires inference to
be carried out. Here adding more levels of meta-reasoning
can produce smarter models, but also requires additional
layers of nesting. We expand on this example to give a
concrete nested inference problem in Appendix E.

3.2 FORMALIZATION

To formalize the nested inference problem more generally,
let y and x denote all the random variables of an outer
query that are respectively passed or not to the inner query.
Further, let z denote all random variables generated in the
inner query – for simplicity, we will assume, without loss
of generality, that these are all returned to the outer query,
but that some may not be used. The unnormalized density
for the outer query can now be written in the form

πo(x, y, z) = ψ(x, y, z)pi(z|y) (4)
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where pi(z|y) is the normalized density of the outputs of
the inner query and ψ(x, y, z) encapsulates all other terms
influencing the trace probability of the outer query. Now
the inner query defines an unnormalized density πi(y, z)
that can be evaluated pointwise and we have

pi(z|y) =
πi(y, z)∫
πi(y, z′)dz′

giving (5)

po(x, y, z) ∝ πo(x, y, z) =
ψ(x, y, z)πi(y, z)∫

πi(y, z′)dz′
(6)

where po(x, y, z) is our target distribution, for which we
can directly evaluate the numerator, but the denominator
is intractable and must be evaluated separately for each
possible value of y. Our previous example is achieved by
fixing ψ(x, y, z) = p(y) and πi(y, z) = p(z|y)p(D|y, z).
We can further straightforwardly extend to the multiple
layers of nesting setting by recursively defining πi(y, z)
in the same way as πo(x, y, z).

3.3 RELATIONSHIP TO NESTED ESTIMATION

To relate the nested inference problem back to the nested
estimation formulation from Section 2.1, we consider
using a proposal q(x, y, z) = q(x, y)q(z|y) to calculate
the expectation of some arbitrary function g(x, y, z) under
po(x, y, z) as per self-normalized importance sampling

Epo(x,y,z) [g(x, y, z)] =
Eq(x,y,z)

[
g(x,y,z)πo(x,y,z)

q(x,y,z)

]

Eq(x,y,z)
[
πo(x,y,z)
q(x,y,z)

]

=

Eq(x,y,z)

[
g(x, y, z)ψ(x, y, z)πi(y, z)

q(x, y, z)Ez′∼q(z|y) [πi(y, z′)/q(z′|y)]

]

Eq(x,y,z)

[
ψ(x, y, z)πi(y, z)

q(x, y, z)Ez′∼q(z|y) [πi(y, z′)/q(z′|y)]

].

(7)
Here both the denominator and numerator are nested ex-
pectations with a nonlinearity coming from the fact that
we are using the reciprocal of an expectation. A similar
reformulation could also be applied in cases with multi-
ple layers of nesting, i.e. where inner itself makes use
of another query. The formalization can also be directly
extended to the sequential MC (SMC) setting by invoking
extended space arguments (Andrieu et al., 2010).
Typically g(x, y, z) is not known upfront and we instead
return an empirical measure from the program in the form
of weighted samples which can later be used to estimate
an expectation. That is, if we sample (xn, yn) ∼ q(x, y)
and zn,m ∼ q(z|yn) and return all samples (xn, yn, zn,m)
(such that each (xn, yn) is duplicated N1 times in the
sample set) then our unnormalized weights are given by

wn,m =
ψ(xn, yn, zn,m)πi(yn, zn,m)

q(xn, yn, zn,m) 1
N1

∑N1

`=1
πi(yn,zn,`)
q(zn,`|yn)

. (8)

This, in turn, gives us the empirical measure

p̂(·) =

∑N0

n=1

∑N1

m=1 wn,mδ(xn,yn,zn,m)(·)∑N0

n=1

∑N1

m=1 wn,m
(9)

where δ(xn,yn,zn,m)(·) is a delta function centered on
(xn, yn, zn,m). By definition, the convergence of this
empirical measure to the target requires that expectation
estimates calculated using it converge in probability for
any integrable g(x, y, z) (presuming our proposal is valid).
We thus see that the convergence of the ratio of nested ex-
pectations in (7) for any arbitrary g(x, y, z), is equivalent
to the produced samples converging to the distribution
defined by the program. Informally, the NMC results then
tell us this will happen in the limit N0, N1 → ∞ pro-
vided that

∫
πi(y, z)dz is strictly positive for all possible

y (as otherwise the problem becomes ill-defined). More
formally we have the following result. Its proof, along
with all others, is given in Appendix A.

Theorem 1. Let g(x, y, z) be an integrable function,
let γ0 = Epo(x,y,z)[g(x, y, z)], and let I0 be a self-
normalized MC estimate for γ0 calculated using p̂(·) as
per (9). Assuming that q(x, y, z) forms a valid impor-
tance sampling proposal distribution for po(x, y, z), then

E
[
(I0 − γ0)

2
]

=
σ2

N0
+

δ2

N2
1

+O(ε) (10)

where σ and δ are constants derived in the proof and, as
before, O(ε) represents asymptotically dominated terms.

Note that rather than simply being a bound, this result is
an equality and thus provides the exact asymptotic rate.
Using the arguments of (Rainforth et al., 2018, Theo-
rem 3), it can be straightforwardly extended to cases of
multiple nesting (giving a rate analogous to (3)), though
characterizing σ and δ becomes more challenging.

3.4 CONVERGENCE REQUIREMENTS
We have demonstrated that the problem of nested infer-
ence is a particular case of nested estimation. This prob-
lem equivalence will hold whether we elect to use the
aforementioned nested importance sampling based ap-
proach or not, while we see that our finite sample esti-
mates must be biased for non-trivial g by the convexity of
f0 and Theorem 4 of Rainforth et al. (2018). Presuming
we cannot produce exact samples from the inner query
and that the set of possible inputs to the inner query is not
finite (these are respectively considered in Appendix D
and Appendix C), we thus see that there is no “silver bul-
let” that can reduce the problem to a standard estimation.
We now ask, what behavior do we need for Anglican’s
conditional, and nested inference more generally, to
ensure convergence? At a high level, the NMC results
show us that we need the computational budget of each
call of a nested query to become arbitrarily large, such
that we use an infinite number of samples at each layer of
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the estimator: we require each Nk →∞.
We have formally demonstrated convergence when this
requirement is satisfied and the previously introduced
nested importance sampling approach is used. Another
possible approach would be to, instead of drawing sam-
ples to estimate (7) directly, importance sample N1 times
for each call of the inner query and then return a single
sample from these, drawn in proportion to the inner query
importance weights. We can think of this as drawing the
same raw samples, but then constructing the estimator as

p̂∗(·) =

∑N0

n=1 w
∗
nδ(xn,yn,zn,m∗(n))(·)∑N0

n=1 w
∗
n

(11)

where w∗n =
ψ(xn, yn, zn,m∗(n))

q(xn, yn)
and (12)

m∗(n) ∼DISCRETE

(
πi(yn, zn,m)/q(zn,m|yn)

∑N1

`=1 πi(yn, zn,`)/q(zn,`|yn)

)

As demonstrated formally in Appendix A, this approach
also converges. However, if we Rao Blackwellize (Casella
and Robert, 1996) the sampling of m∗(n), we find that
this recovers (9). Consequently, this is a strictly inferior
estimator (it has an increased variance relative to (9)).
Nonetheless, it may often be a convenient setup from
the perspective of the PPS semantics and it will typically
have substantially reduced memory requirements: we
need only store the single returned sample from the inner
query to construct our empirical measure, rather than all
of the samples generated within the inner query.
Though one can use the results of Fort et al. (2017) to
show the correctness of instead using an MCMC estima-
tor for the outer query, the correctness of using MCMC
methods for the inner queries is not explicitly covered by
existing results. Here we find that we need to start a new
Markov chain for each call of the inner query because
each value of y defines a different local inference prob-
lem. One would intuitively expect the NMC results to
carry over – as N1 → ∞ all the inner queries will run
their Markov chains for an infinitely long time, thereby
in principle returning exact samples – but we leave for-
mal proof of this case to future work. We note that such
an approach effectively equates to what is referred to as
multiple imputation by Plummer (2015).

3.5 SHORTFALLS OF EXISTING SYSTEMS
Using the empirical measure (9) provides one possible
manner of producing a consistent estimate of our target
by taking N0, N1 →∞ and so we can use this as a gold-
standard reference approach (with a large value of N1) to
assess whether Anglican returns samples for the correct
target distribution. To this end, we ran Anglican’s im-
portance sampling inference engine on the simple model
introduced earlier and compared its output to the refer-
ence approach using N0 = 5 × 106 and N1 = 103. As

Figure 1: Empirical densities produced by running the
nested Anglican queries given in the text, a reference
NMC estimate, the unnested model, a naı̈ve estimation
scheme where N1 = 1, and the ONMC approach intro-
duced in Section 6, with the same computational budget
of T = 5× 109 and τ1(n0) = min(500,

√
n0). Note that

the results for ONMC and the reference approach overlap.

shown in Figure 1, the samples produced by Anglican
are substantially different to the reference code, demon-
strating that the outputs do not match their semantically
intended distribution. For reference, we also considered
the distribution induced by the aforementioned unnested
model and a naı̈ve estimation scheme where a sample
budget of N1 = 1 is used for each call to inner, effec-
tively corresponding to ignoring the observe statement
by directly returning the first draw of z.
We see that the unnested model defines a noticeably differ-
ent distribution, while the behavior of Anglican is similar,
but distinct, to ignoring the observe statement in the
inner query. Further investigation shows that the default
behavior of conditional in a query nesting context
is equivalent to using (11) but with N1 held fixed to at
N1 = 2, inducing a substantial bias. More generally, the
Anglican source code shows that conditional defines
a Markov chain generated by equalizing the output of the
weighted samples generated by running inference on the
query. When used to nest queries, this Markov chain is
only ever run for a finite length of time, specifically one
accept-reject step is carried out, and so does not produce
samples from the true conditional distribution.
Plummer (2015) noticed that WinBugs and Open-
Bugs (Spiegelhalter et al., 1996) similarly do not provide
valid inference when using their cut function primitives,
which effectively allow the definition of nested inference
problems. However, they do not notice the equivalence to
the NMC formulation and instead propose a heuristic for
reducing the bias that itself has no theoretical guarantees.

4 NESTED CONDITIONING
An alternative way one might wish to nest queries is to
use the partition function estimate of one query to factor
the trace probability of another. We refer to this as nested
conditioning. In its simplest form, we can think about
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conditioning on the values input to the inner query. In
Anglican we can carry this out by using the following
custom distribution object constructor
(defdist nest [inner inputs inf-alg M] []
(sample [this] nil)
(observe [this _]
(log-marginal (take M
(doquery inf-alg inner inputs)))))

When the resulting distribution object is observed, this
will now generate, and factor the trace probability by, a
partition function estimate for inner with inputs inputs,
constructed using M samples of the inference algorithm
inf-alg. For example, if we were to use the query
(defquery outer [D]
(let [y (sample (beta 2 3))]
(observe (nest inner [y D] :smc 100) nil)
y))

with inner from the nested inference example, then this
would form a pseudo marginal sampler (Andrieu and
Roberts, 2009) for the unnormalized target distribution

πc(y,D) =BETA(y; 2, 3)

∫
Γ(z; y, 1)N (D; y, z2)dz.

Unlike the nested inference case, nested conditioning
turns out to be valid even if our budget is held fixed,
provided that the partition function estimate is unbiased,
as is satisfied by, for example, importance sampling and
SMC. In fact, it is important to hold the budget fixed to
achieve a MC convergence rate. In general, we can define
our target density as

po(x, y) ∝ πo(x, y) = ψ(x, y)pi(y), (13)
where ψ(x, y) is as before (except that we no longer have
returned variables from the inner query) and pi(y) is the
true partition function of the inner query when given
input y. In practice, we cannot evaluate pi(y) exactly,
but instead produce unbiased estimates p̂i(y). Using an
analogous self-normalized importance sampling to the
nested inference case leads to the weights

wn = ψ(xn, yn)p̂i(yn)/q(xn, yn) (14)
and corresponding empirical measure

p̂(·) =
1

∑N0

n=1 wn

N0∑

n=1

wn,δ(xn,yn)(·) (15)

such that we are conducting conventional MC estima-
tion, but our weights are now themselves random vari-
ables for a given (xn, yn) due to the p̂i(yn) term. How-
ever, the weights are unbiased estimates of the “true
weights” ψ(xn, yn)pi(yn)/q(xn, yn) such that we have
proper weighting (Naesseth et al., 2015) and thus conver-
gence at the standard MC rate, provided the budget of
the inner query remains fixed. This result also follows
directly from Theorem 6 of Rainforth et al. (2018), which
further ensures no complications arise when conditioning
on multiple queries if the corresponding partition func-
tion estimates are generated independently. These results

further trivially extend to the repeated nesting case by
recursion, while using the idea of pseudo-marginal meth-
ods (Andrieu and Roberts, 2009), the results also extend
to using MCMC based inference for the outermost query.
Rather than just fixing the inputs to the nested query, one
can also consider conditioning on the internally sampled
variables in the program taking on certain values. Such a
nested conditioning approach has been implicitly carried
out by Rainforth et al. (2016b); Zinkov and Shan (2017);
Scibior and Ghahramani (2016); Ge et al. (2018), each of
which manipulate the original program in some fashion
to construct a partition function estimator that is used
used within a greater inference scheme, e.g. a PMMH
estimator (Andrieu et al., 2010).

5 ESTIMATES AS VARIABLES
Our final case is that one might wish to use estimates
as first class variables in another query. In other words,
a variable in an outer query is assigned to a MC expec-
tation estimate calculated from the outputs of running
inference on another, nested, query. By comparison, the
nested inference case (without Rao-Blackwellization) can
be thought of as assigning a variable in the outer query to
a single approximate sample from the conditional distri-
bution of the inner query, rather than an MC expectation
estimate constructed by averaging over multiple samples.
Whereas nested inference can only encode a certain class
of nested estimation problems – because the only nonlin-
earity originates from taking the reciprocal of the partition
function – using estimates as variables allows, in principle,
the encoding of any nested estimation. This is because
using the estimate as a first class variable allows arbitrary
nonlinear mappings to be applied by the outer query.
An example of this approach is shown in Appendix G,
where we construct a generic estimator for Bayesian ex-
perimental design problems. Here a partition function
estimate is constructed for an inner query and is then used
in an outer query. The output of the outer query depends
on the logarithm of this estimate, thereby creating the
nonlinearity required to form a nested expectation.
Because using estimates as variables allows the encoding
of any nested estimation problem, the validity of doing
so is equivalent to that of NMC more generally and must
thus satisfy the requirements set out in (Rainforth et al.,
2018). In particular, one needs to ensure that the budgets
used for the inner estimates increase as more samples of
the outermost query are taken.

6 ONLINE NESTED MONTE CARLO
NMC will be highly inconvenient to actually implement
in a PPS whenever one desires to provide online estimates;
for example, a lazy sequence of samples that converges
to the target distribution. Suppose that we have already
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calculated an NMC estimate, but now desire to refine it
further. In general, this will require an increase to all Nk
for each sample of the outermost estimator. Consequently,
the previous samples of the outermost query must be
revisited to refine their estimates. This significantly com-
plicates practical implementation, necessitating additional
communication between queries, introducing computa-
tional overhead, and potentially substantially increasing
the memory requirements.
To highlight these shortfalls concretely, consider the
nested inference class of problems and, in particular, con-
structing the un–Rao–Blackwellized estimator (11) in an
online fashion. Increasing N1 requires m∗(n) to be re-
drawn for each n, which in turn necessitates storage of
previous samples and weights.2 This leads to an over-
head cost from the extra computation carried out for re-
visitation and a memory overhead from having to store
information about each call of the inner query.
Perhaps even more problematically, the need to revisit old
samples when drawing new samples can cause substantial
complications for implementation. Consider implement-
ing such an approach in Anglican. Anglican is designed
to return a lazy infinite sequence of samples converging
to the target distribution. Once samples are taken from
this sequence, they become external to Anglican and can-
not be posthumously updated when further samples are
requested. Even when all the output samples remain inter-
nal, revisiting samples remains difficult: one either needs
to implement some form of memory for nested queries
so they can be run further, or, if all information is instead
stored at the outermost level, additional non-trivial code is
necessary to apply post-processing and to revisit queries
with previously tested inputs. The latter of these is likely
to necessitate inference–algorithm–specific changes, par-
ticularly when there are multiple levels of nesting, thereby
hampering the entire language construction.
To alleviate these issues, we propose to only increase the
computational budget of new calls to nested queries, such
that earlier calls use fewer samples than later calls. This
simple adjustment removes the need for communication
between different calls and requires only the storage of
the number of times the outermost query has previously
been sampled to make updates to the overall estimate. We
refer to this approach as online NMC (ONMC), which, to
the best of our knowledge, has not been previously con-
sidered in the literature. As we now show, ONMC only
leads to small changes in the convergence rate of the re-
sultant estimator compared to NMC: using recommended
parameter settings, the asymptotic root mean squared er-

2Note that not all previous samples and weights need storing
– when making the update we can sample whether to change
m∗(n) or not based on combined weights from all the old sam-
ples compared to all the new samples.

ror for ONMC is never more than twice that of NMC for
a matched sample budget and can even be smaller.
Let τk(n0) ∈ N+, k = 1, . . . , D be monotonically in-
creasing functions dictating the number of samples used
by ONMC at depth k for the n0-th iteration of the outer-
most estimator. The ONMC estimator is defined as

J0 =
1

N0

N0∑

n0=1

f0

(
y(0)n0

, I1

(
y(0)n0

, τ1:D(n0)
))

(16)

where I1(y
(0)
n0 , τ1:D(n0)) is calculated using I1 in (2), set-

ting y(0) = y
(0)
n0 and Nk = τk(n0),∀k ∈ 1, . . . , D. For

reference, the NMC estimator, I0, is as per (16), except
for replacing τ1:D(n0) with τ1:D(N0). Algorithmically,
we have that the ONMC approach is defined as follows.

Algorithm 1 Online Nested Monte Carlo
1: n0 ← 0, J0 ← 0
2: while true do
3: n0 ← n0 + 1, y

(0)
n0 ∼ p(y(0))

4: Construct I1
(
y
(0)
n0 , τ1:D(n0)

)
using Nk = τk(n0) ∀k

5: J0 ← n0−1
n0

J0 + f0
(
y
(0)
n0 , I1

(
y
(0)
n0 , τ1:D(n0)

))

We see that OMMC uses fewer samples at inner layers
for earlier samples of the outermost level, and that each
of resulting inner estimates is calculated as per an NMC
estimator with a reduced sample budget. We now show
the consistency of the ONMC estimator.

Theorem 2. If each τk(n0) ≥ A (log(n0))
α
,∀n0 > B

for some constants A,B, α > 0 and each fk is continu-
ously differentiable, then the mean squared error of J0 as
an estimator for γ0 converges to zero as N0 →∞.

In other words, ONMC converges for any realistic choice
of τk(n0) provided limn0→∞ τk(n0) = ∞: the require-
ments on τk(n0) are, for example, much weaker than
requiring a logarithmic or faster rate of growth, which
would already be an impractically slow rate of increase.
In the case where τk(n0) increases at a polynomial rate,
we can further quantify the rate of convergence, along
with the relative variance and bias compared to NMC:

Theorem 3. If each τk(n0) ≥ Anα0 , ∀n0 > B for some
constants A,B, α > 0 and each fk is continuously differ-
entiable, then

E
[
(J0 − γ0)

2
]
≤ ς20
N0

+

(
βg(α,N0)

ANα
0

)2

+O(ε), (17)

where g(α,N0) =





1/(1− α), α < 1

log(N0) + η, α = 1

ζ(α)Nα−1
0 , α > 1

; (18)

β =
C0ς

2
1

2
+
D−2∑

k=0

(
k∏

d=0

Kd

)
Ck+1ς

2
k+2

2
; (19)

η ≈ 0.577 is the Euler–Mascheroni constant; ζ is the
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Riemann–zeta function; andCk,Kk, and ςk are constants
defined as per the corresponding NMC bound given in (3).
Corollary 1. Let J0 be an ONMC estimator setup as per
Theorem 3 with N0 outermost samples and let I0 be an
NMC estimator with a matched overall sample budget.
Defining c = (1 + αD)(−1/(1+αD)), then

Var[J0]→ cVar[I0] as N0 →∞.
Further, if the NMC bias decreases at a rate proportional
to that implied by the bound given in (3), namely

|E[I0 − γ0]| = b

Mα
0

+O(ε) (20)

for some constant b > 0, where M0 is the number of
outermost samples used by the NMC sampler, then
|E[J0 − γ0]| ≤ cαg(α,N0) |E[I0 − γ0]|+O(ε).

We expect the assumption that the bias scales as 1/Mα
0 to

be satisfied in the vast majority of scenarios, but there may
be edge cases, e.g. when an fk gives a constant output, for
which faster rates are observed. Critically, the assumption
holds for all nested inference problems because the rate
given in (10) is an equality.
We see that if α < 1, which will generally be the case in
practice for sensible setups, then the convergence rates for
ONMC and NMC vary only by a constant factor. Specifi-
cally, for a fixed value of N0, they have the same asymp-
totic variance and ONMC has a factor of 1/(1−α) higher
bias. However, the cost of ONMC is (asymptotically) only
c < 1 times that of NMC, so for a fixed overall sample
budget it has lower variance.
As the bound varies only in constant factors for
α < 1, the asymptotically optimal value for α for
ONMC is the same as that for NMC, namely α =
0.5 (Rainforth et al., 2018). For this setup, we have
c ∈ {0.763, 0.707, 0.693, 0.693, 0.699, 1} respectively
for D ∈ {1, 2, 3, 4, 5,∞}. Consequently, when α = 0.5,
the fixed budget variance of ONMC is always better than
NMC, while the bias is no more than 1.75 times larger if
D ≤ 13 and no more than 2 times large more generally.

6.1 EMPIRICAL CONFIRMATION
To test ONMC empirically, we consider the simple an-
alytic model given in Appendix F, setting τ1(n0) =
max(25,

√
no). The rationale for setting a minimum

value of N1 is to minimize the burn-in effect of ONMC
– earlier samples will have larger bias than later samples
and we can mitigate this by ensuring a minimum value
for N1. More generally, we recommend setting (in the
absence of other information) τ1(n0) = τ2(n0) = · · · =
τD(n0) = max(T

1/3
min,
√
n0), where Tmin is the minimum

overall budget we expect to spend. In Figure 2, we have
chosen to set Tmin deliberately low so as to emphasize
the differences between NMC and ONMC. Given our
value for Tmin, the ONMC approach is identical to fix-

Figure 2: Convergence of ONMC, NMC, and fixed N1.
Results are averaged over 1000 runs, with solid lines
showing the mean and shading the 25-75% quantiles. The
theoretical rates for NMC are shown by the dashed lines.

ing N1 = 25 for T < 253 = 15625, but unlike fixing
N1, it continues to improve beyond this because it is not
limited by asymptotic bias. Instead, we see an inflection
point-like behavior around Tmin, with the rate recovering
to effectively match that of the NMC estimator.

6.2 USING ONMC IN PPSs
Using ONMC based estimation schemes to ensure con-
sistent estimation for nested inference in PPSs is straight-
forward – the number of iterations the outermost query
has been run for is stored and used to set the number of
iterations used for the inner queries. In fact, even this min-
imal level of communication is not necessary – n0 can be
inferred from the number of times we have previously run
inference on the current query, the current depth k, and
τ1(·), . . . , τk−1(·).
As with NMC, for nested inference problems ONMC can
either return a single sample from each call of a nested
query, or Rao–Blackwellize the drawing of this sample
when possible. Each respectively produces an estimator
analogous to (11) and (9) respectively, except that N1 in
the definition of the inner weights is now a function of n.
Returning to Figure 1, we see that using ONMC with
nested importance sampling and only returning a single
sample corrects the previous issues with how Anglican
deals with nested inference, producing samples indistin-
guishable from the reference code.

7 CONCLUSIONS
We have formalized the notion of nesting probabilistic
program queries and investigated the statistical validity of
different categories of nesting. We have found that current
systems tend to use methods that lead to asymptotic bias
for nested inference problems, but that they are consistent
for nested conditioning. We have shown how to carry out
the former in a consistent manner and developed a new on-
line estimator that simplifies the construction algorithms
that satisfy the conditions required for convergence.
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Abstract

Linear mixed models (LMMs) are used exten-
sively to model observations that are not in-
dependent. Parameter estimation for LMMs
can be computationally prohibitive on big data.
State-of-the-art learning algorithms require
computational complexity which depends at
least linearly on the dimension p of the co-
variates, and often use heuristics that do not
offer theoretical guarantees. We present scal-
able algorithms for learning high-dimensional
LMMs with sublinear computational complex-
ity dependence on p. Key to our approach are
novel dual estimators which use only kernel
functions of the data, and fast computational
techniques based on the subsampled random-
ized Hadamard transform. We provide theo-
retical guarantees for our learning algorithms,
demonstrating the robustness of parameter es-
timation. Finally, we complement the theory
with experiments on large synthetic and real
data.

1 INTRODUCTION

Linear mixed models (LMMs) are widely used in many
real world applications ranging from longitudinal data
analysis (Laird and Ware, 1982; Demidenko, 2013) and
genome wide association studies (Kang et al., 2008; Lip-
pert et al., 2011; Zhou, 2017) to recommender systems
(Zhang et al., 2016). LMMs provide a flexible frame-
work for modeling a wide range of data types, including
clustered, longitudinal, and spatial data. Parameter esti-
mation for LMMs is computationally prohibitive for big
data, both for large sample size n (Zhou and Stephens,
2014; Darnell et al., 2017; Perry, 2017) and for high-
dimensional covariates p (Schelldorfer et al., 2011). The

main computational bottlenecks for parameter estimation
arise from the non-convexity of the optimization prob-
lem (Kang et al., 2008; Perry, 2017) as well as the com-
putational cost of matrix inversions (Zhou, 2017; Laird
et al., 1987; Lindstrom and Bates, 1988; Bates et al.,
2015). State-of-the-art methods for parameter estima-
tion in LMMs require computational complexity that de-
pends at least linearly on p: (i) O (nkp) for the setting
n > p with a rank k covariance matrix (Zhou, 2017;
Darnell et al., 2017); and (ii) O

(
n2p
)

per iteration for
p � n (Schelldorfer et al., 2011, 2014; Jakubı́k, 2015).
In this paper, we present scalable algorithms with sub-
linear computational complexity in p, making the pro-
posed approach useful for high-dimensional LMMs. In
addition, we provide a theoretical analysis for our ap-
proach that states provable error guarantees between the
estimated and ground-truth parameters.

Two sets of parameters are estimated in LMMs, the
fixed-effects coefficients and the variances for the unob-
servable random effects and noise. The random-effects
variance is generally assumed to have a certain structure,
such as a block-diagonal matrix (Laird and Ware, 1982;
Demidenko, 2013). To estimate both sets of parameters,
an expectation maximization (EM) algorithm is typically
used (Laird et al., 1987; Bates et al., 2015) to handle the
latent random-effect variable. The M-step in the EM al-
gorithm incurs high computational costs due to matrix
inversions. Newton-Raphson has been used to reduce the
number of iterations required for parameter estimates to
converge (Lindstrom and Bates, 1988); however, each it-
eration is still costly due to matrix inversions. A recent
research focus is to avoid matrix inversions at each iter-
ation. For instance, when n > p a spectral algorithm is
available (Kang et al., 2008; Lippert et al., 2011; Patter-
son and Thompson, 1971). The state-of-the-art algorithm
(Darnell et al., 2017) further improved the computational
complexity of the spectral algorithm using randomized
singular value decomposition (Darnell et al., 2017).

While approximate learning algorithms (Zhou, 2017;
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Darnell et al., 2017) are efficient, few provide prov-
able guarantees in terms of estimation accuracy. Re-
cently, a guaranteed non-iterative algorithm was pro-
posed in (Perry, 2017), which runs in O

(
n (p+ d)

4
)

time for d random effects. Inference with guarantees for
high-dimensional LMMs, i.e., p � n, typically incurs
greater computational complexity due to the regulariza-
tion required to address high-dimensional data (Schell-
dorfer et al., 2011, 2014). In the high-dimensional set-
ting, most algorithms perform block coordinate descent
with an O

(
n2p
)

per-iteration cost (Schelldorfer et al.,
2011, 2014). In this paper, we show that efficiency and
provable guarantees can be achieved simultaneously for
learning high-dimensional LMMs.

There are two key ideas we use in our efficient algo-
rithms. The first idea is to propose an approximate esti-
mator that relies on an n×n kernel matrix (§ 3) which can
be computed efficiently using the subsampled random-
ized Hadamard transform (SRHT) (Tropp, 2011). This
reduces the linear complexity dependence on p. Unlike
some other approximation algorithms (Lu et al., 2013),
the proposed estimator also has the advantage of recov-
ering the fixed-effects coefficients for all p dimensions
as opposed to the reduced dimensions. This allows us to
provide effect sizes in terms of the original covariates,
a requirement in many applications. The second idea
is the introduction of approximate variance components
(AVCs) to replace variance components when estimating
the fixed-effects coefficients. These AVCs have a closed-
form expression and are fast to compute.

We apply our novel approach to LMMs with a both gen-
eral covariances as well as a block-diagonal covariances
for the random effects. The former can be viewed as a
special case of the latter with a single block, and has been
adopted in genome-wide association studies (Kang et al.,
2008; Lippert et al., 2011; Zhou, 2017). LMMs with
a block-diagonal covariance structure have been widely
used for modeling repeated measures data (Laird and
Ware, 1982). We propose a non-iterative algorithm for
the general covariance setting and a fast EM variant for
the block-diagonal setting.

Contribution Our main contribution is providing a
class of approximation algorithms for parameter infer-
ence in high-dimensional LMMs with provable guaran-
tees. In Table 1, we state the computational complexity
for several standard and state-of-the-art parameter infer-
ence algorithms. In the table and in this paper, n is the
sample size, p is the number of covariates, k is the rank of
the covariance matrix, s are the number of subsamples,
and ε is the approximation error. Our method is the only
one that is sublinear in p, and can be a n/log pmagnitude

Table 1: Computational complexity for parameter infer-
ence. † denotes that the estimator has provable guaran-
tees.

REML (LIPPERT ET AL., 2011) O
(
n2p
)

†MOMENTS (PERRY, 2017) O
(
n (p+ q)4

)

SUBSAMPLING (ZHOU, 2017) O
(
ps2
)

RSVD (DARNELL ET AL., 2017) O (pnk)
†THIS WORK O

(
n2(k+log p) log k

ε2

)

faster than the others (discussed in § 4.1). In addition to
theoretical advantages, we demonstrate the empirical ac-
curacy and speed of our method on both synthetic and
real data in § 6.

Notation We denote the maximum and minimum
eigenvalues of a matrix A by λmax (A) and λmin (A),
respectively. Similarly, we denote the maximum and
minimum singular values respectively by σmax (A) and
σmin (A). A† represents the Moore–Penrose pseudoin-
verse of A, and κ (A) denotes the condition number of
A. The superscripted notation y(i) refers to the copy of
y for group i. We write the spectral norm of a matrix
as ‖·‖2, the Frobenius norm as ‖·‖F , and the Ky Fan k-
norm (the sum of the k largest singular values) as |||·|||k.

Organization Section 2 provides the background on
standard LMMs. In section 3, we formulate the L2-
regularized LMMs and present approximate estimators
based on a kernel matrix. Section 4 describes fast com-
putational techniques for the approximate estimators. In
section 5, we provide theoretical guarantees for our esti-
mators. Section 6 reports empirical evidence of the speed
and accuracy of our methods, and section 7 concludes
this paper.

2 LINEAR MIXED MODELS

Consider a regression problem with n observations,
where y ∈ Rn denotes the response vector and X ∈
Rn×p represents the covariate matrix with p covariates.
The standard LMM is given by

y = Xβ +Zγ + c1 + e with
[
γ
e

]
∼ MVN

(
0,

[
Λ 0
0 σ2I

])
,

(1)

where β ∈ Rp is the fixed-effect coefficient vector,
Z ∈ Rn×q is a full-rank random-effects design matrix,
γ ∈ Rq is the random-effect coefficient vector, c is the
intercept, and e ∈ Rn is the noise vector. The parame-
ters to be estimated are the fixed-effects coefficients β,
and variance components Λ and σ2.
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In general, the variablesX , y, γ, and e in (1) correspond
to observations from m classes, and are grouped by the
following structure (Laird and Ware, 1982):




X(1)

X(2)

...
X(m)


 ,




y(1)

y(2)

...
y(m)


 ,




γ(1)

γ(2)

...
γ(m)


 ,




e(1)

e(2)

...
e(m)


 ,

where ·(i) denote the variables specific to group i,
whose dimensions are X(i) ∈ Rni×p, γ(i) ∈ Rd, and
y(i), e(i) ∈ Rni ,

∑m
i=1 ni = n. The LMM assumes that

γ(i) corresponding to distinct classes are independent. In
particular, the random-effects design matrix Z and the
random-effects covariance are block-diagonal

Z =



Z(1) 0

. . .
0 Z(m)


 , Λ =



H 0

. . .
0 H




with Z(i) ∈ Rni×d,H ∈ Rd×d, and q = md.

Computational challenges Parameter inference in
LMMs aims to accurately recoverP :=

{
β,Λ, σ2

}
from

{X,y,Z}. This is straightforward if Λ is given. When
Λ is unknown, inference can be computationally chal-
lenging even in the standard setting where n > p (Laird
and Ware, 1982; Lippert et al., 2011; Zhou, 2017; Laird
et al., 1987; Lindstrom and Bates, 1988; Patterson and
Thompson, 1971; Zhang et al., 2011).

First, parameter estimation problem is non-convex for
both maximum likelihood and restricted maximum like-
lihood (REML) (Laird et al., 1987; Patterson and
Thompson, 1971; Harville, 1974). For instance, the
methods using REML (Kang et al., 2008; Lippert et al.,
2011) project the data onto two uncorrelated parts, and
then estimate the fixed-effects and variance components
separately on each part. This has the advantage of giving
unbiased estimates of the variance components. How-
ever, the REML likelihood function is a non-convex
function which involves the eigenvalues of the variance
of the projected data (Patterson and Thompson, 1971).

Second, regularization is typically required to support
the high-dimensional setting, which adds further com-
putational overheads (Lippert et al., 2011; Zhou, 2017;
Schelldorfer et al., 2011, 2014; Jakubı́k, 2015). To ad-
dress these challenges, we develop novel approximate
estimators that are efficient to compute (§ 4), and have
provable accuracy guarantees (§ 5).

3 APPROXIMATE ESTIMATORS FOR
HIGH-DIMENSIONAL LMMS

In this section, we consider an L2-regularized LMM to
support the high-dimensional setting p > n, and develop
efficient approximate estimators for the parameters.

Standard parameter estimation algorithms for LMMs
such as (Kang et al., 2008; Laird et al., 1987; Bates et al.,
2015) do not support the high-dimensional setting p > n.
We consider introducing the L2 regularization on the
fixed-effects coefficients, which can be viewed as adding
the prior β ∼ N (0,Φ). The L2-regularized LMM has
the following log-likelihood

log p (y,β |X;V )

∝ −1

2
β>Φ−1β − 1

2
log detV

− 1

2
(y −Xβ − c1)V −1 (y −Xβ − c1)

(2)

with the marginal variance V := ZΛZ> + σ2I .

Parameter estimation of an LMM is typically iterative
and computationally prohibitive, especially in the high-
dimensional setting (Darnell et al., 2017; Perry, 2017;
Schelldorfer et al., 2011). To improve the computational
efficiency, we propose dual as well as approximate esti-
mators. These estimators are non-iterative and have re-
duced computational complexity, as we will show in § 4.

3.1 FIXED-EFFECT COEFFICIENTS

We first derive the estimators for the fixed-effects coef-
ficients β̂ and ĉ, which are the maximizers of the log-
likelihood (2). A dual estimator of β is then given for use
in the high-dimensional setting. Using the partial deriva-
tives, it is straightforward to show
(
X>V −1X + Φ−1

)
β̂ = X>V −1 (y − ĉ1) (3)

ĉ =
1>V −1y − 1>V −1Xβ̂

1>V −11
. (4)

Let L = I − 11>V −1
(
1>V −11

)−1
, we obtain

β̂ =
(
X>V −1LX + Φ−1

)−1
X>V −1Ly. (5)

The dual estimator using XΦX> was proposed in
(Saunders et al., 1998) where the authors used Lagrange
multipliers to obtain the following estimator for ridge re-
gression:

β̂Dual = ΦX>
(
V +XΦX>

)−1
y.

Here, Φ is set to be diagonal, and the above estimator (6)
can be evaluated in O

(
n2p
)

time, a significant improve-
ment when p � n. However, the computational bottle-
neck becomes evaluating the kernel matrixXΦX>.
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For the zero intercept case ĉ = 0, the dual estimator
(6) is equivalent to (5) from the following variant of the
Woodbury identity

(
U−1 +A>V −1A

)−1
A>V −1 =

UA>
(
AUA> + V

)−1
for invertible matrices U and

V . The dual estimator can be generalized to any inter-
cept,

β̂ = ΦX>V −1L
(
XΦX>V −1L+ I

)−1
y. (6)

Computing the dual estimator (6) takes O
(
n2p
)

time as
opposed toO

(
p3
)

time required by (5). This complexity
will be further improved in § 4 for the setting p� n.

3.2 APPROXIMATE VARIANCE COMPONENTS

The variance components Λ and σ2 are typically es-
timated using an iterative EM algorithm with a per-
iteration cost O

(
p3
)

(Laird et al., 1987; Lindstrom and
Bates, 1988) or an exhaustive grid search for the solution
of a system of eigenvalue equations (Kang et al., 2008;
Lippert et al., 2011). We consider an approximate non-
iterative estimator based on the key observation that the
optimization of the (2) has a simple closed-form solution
if carried out with respect to M = V + XΦX>. We
will estimate M and use it as a proxy for estimating Λ
as well as σ2. The variance components inferred using
M are referred to as the approximate variance compo-
nents (AVCs). While AVCs may be used as variance
components estimates under certain circumstances, the
main purpose is to serve as fast replacements in estimat-
ing fixed-effects coefficients.

Proxy component estimation To perform the REML
estimation of the variance components in terms of M ,
we first rewrite the log-likelihood (2) as

l (β,V ) = −1

2
log detV

− 1

2
(y − ĉ1)

>
M−1 (y − ĉ1)

− 1

2

(
β − β̂ (V )

)>
Q
(
β − β̂ (V )

)
(7)

where Q = X>V −1X + Φ−1 and β̂ (V ) =(
X>V −1X + Φ−1

)−1
X>V −1 (y − ĉ1). Here, the

estimate β̂ depends on V , and is consistent with the es-
timate given by (5). The ĉ in (7) can be set to the mean
response, or estimated based on a prior distribution as in
(Zhou et al., 2013).

Then, the REML estimator for the variance components
is based on marginalizing the fixed effects β (Harville,

1974). It follows that

lp (V ) ∝ log

∫

Rp
exp (l (β,V )) dβ

∝ −1

2
log detV − 1

2
log detQ

− 1

2
(y − ĉ1)

>
M−1 (y − ĉ1) .

From Sylvester’s determinant theorem, one observes that
det (M) = det (Φ) det (V ) det (Q). Thus, we arrive at

lp (V ) ∝ −1

2
log detM

− 1

2
(y − ĉ1)

>
M−1 (y − ĉ1) .

(8)

Now, what we have achieved through (8) is a simple
closed-form REML estimate of V , rather than the non-
convex or iterative updates for Λ̂ and σ̂2 in state-of-
the-art LMM parameter estimation algorithms. Uncon-
strained maximization of (8) with respect to M results
in the closed-form equality

ZΛ̂Z> + σ̂2I = (y − ĉ1) (y − ĉ1)
> −XΦX>,

(9)

for an optimalM . Note thatZΛ̂Z> is positive semidef-
inite, whereas the right hand side has at most one positive
eigenvalue. Thus, this optimal M may not be achiev-
able and the unbiased estimate of Λ may possibly have
negative eigenvalues. The issue of negative variance esti-
mates in linear mixed models is an open problem (Demi-
denko, 2013) and beyond the scope of this paper. One
resolution is to introduce a Gamma prior on Λ (Chung
et al., 2013). For unbiased estimation, we allow Λ to
have negative eigenvalues, and intuitively we refer to
the variance estimators obtained this way as approximate
variance components.

Approximate variance estimators Assume thatZ has
full column rank and let S = (y − ĉ1) (y − ĉ1)

> −
XΦX>. The approximate variance components Λ̂AVC
and σ̂2

AVC can be obtained via

arg min
Λ,σ2

∥∥ZΛZ> − S + σ2I
∥∥2
F
. (10)

Optimizing with respect to Λ yields

Λ? = Z†
(
S − σ2I

)
Z†>, (11)

where Z† :=
(
Z>Z

)−1
Z>. The estimators are com-

puted by substituting Λ? into (10) and optimizing with
respect to σ2:

σ̂2
AVC =

tr
[
S
(
I −ZZ†

)]

n− q
Λ̂AVC = Z†SZ†> − σ̂2

AVC

(
Z>Z

)−1
.

(12)
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Consider the parameterization Λ = θD in (Kang et al.,
2008; Lippert et al., 2011) with a fixed symmetric posi-
tive semi-definiteD, the solution to (10) is written as

Λ∗ =
tr
(
G
(
S − σ2I

))

tr (G2)
D (13)

withG = ZDZ>. Substituting into (10), we obtain

σ̂2
AVC =

1

n− α

[
tr (S)− tr (GS)

tr (G2)

]
, (14)

where α = tr (G)
2
/tr
(
G2
)
. Combined with (13), we

arrive at

Λ̂AVC =
tr
(
G
(
S − σ̂2

AVCI
))

tr (G2)
D. (15)

While AVCs may be used as variance components es-
timates under certain circumstances, the main purpose
is to speed up estimating the fixed-effect coefficients.
The complexity for computing the AVCs is O

(
n3
)
, if

S is given. Like the dual fixed-effects estimator (6), the
computational bottleneck of AVCs also lies in evaluating
XΦX>.

4 FAST COMPUTATIONAL
ALGORITHMS

In this section, we further improve the computational
complexity O

(
n2p
)

of the proposed approximate esti-
mators in the high-dimensional setting p � n, where
the computation bottleneck lies in evaluating the ker-
nel XΦX>. We adopt the subsampled randomized
Hadamard transform (SRHT) (Tropp, 2011) to compute
the kernel matrix efficiently. In particular, the high-
dimensional data is first projected into lower dimensions
using SRHT, and the parameters of the LMM are then es-
timated using the projected data. However, there are two
main challenges involved: 1) the estimated parameter β̂
now corresponds to the projected data of reduced dimen-
sions, whereas the coefficients of the full original covari-
ates are desired; and 2) the impact of applying the SRHT
on the accuracy of parameter estimation needs to be jus-
tified. The techniques developed in this section recovers
the coefficients to the full covariates from the SRHT pro-
jected data with high accuracy, as will be shown in § 5.

4.1 NON-ITERATIVE ALGORITHM FOR
GENERAL LMMS

In this subsection, we provide a fast algorithm for pa-
rameter estimation in case of a general covariance ma-
trix. Algorithm 1 takes as input the matrices X and Φ

Algorithm 1 Approximate kernel matrix computation.

Require: X , Φ, and error tolerance ε.
1: Let p′ = 2dlog2 pe, append p′ − p all zero columns

to X , and p′ − p all zero rows and columns to Φ.
Compute a diagonal matrix D of dimension p′ with
Rademacher random diagonal elements.

2: Denote the fast Walsh-Hadamard transform by

Wp′ =

[
Wp′/2 Wp′/2

Wp′/2 −Wp′/2

]
with W1 = 1.

Let r be the rank of X or r = n for unknown rank,
then define

sε :=
6
[√

r +
√

8 log (rp′)
]2

log r

ε2
.

Sample without replacementm rows ofWp′D/
√
sε

to obtain the SRHT Π. ComputeA = X
√

ΦΠ>.
3: return the approximate kernelAA>,A, and Π.

(which will be typically diagonal) and an approximation
error ε described in § 5. Both an approximation to the
kernel matrixXΦX> and the SRHT matrix Π are com-
puted. The computational efficiency of the algorithm is
a result of replacing X with the smaller transform A in
subsequent operations. Additionally, the structure of the
SRHT allows for a divide-and-conquer scheme to com-
pute A = X

√
ΦΠ> in O (np log p) time. Note that

the matrix Wp′ is not formed explicitly. The computa-
tionAA> requiresO

(
n2sε

)
time, which becomes dom-

inant setting ε ≤ Cn
√

logn
p log p for some universal con-

stant C. Thus, the overall runtime for the algorithm is
O
(
n3 logn
ε2

)
for dense full-rank X , and will be faster if

X is of low rank. The quality of the approximation de-
pends on ε, which will be discussed in § 5.

Given the approximate kernel, it is straight forward to
compute the AVCs ΛAVC and σ2

AVC via (12). The coef-
ficients for the fixed-effects can also be computed effi-
ciently using the following estimator

β̂ =
√

ΦΠ>A>V̂ −1L
(
I +AA>V̂ −1L

)−1
y.

(16)

Given the approximate kernel matrix and A, com-

puting A>V̂ −1L
(
I +AA>V̂ −1L

)−1
y takes time

O
(
max

{
n2sε, n

3
})

and multiplication of this vector
by
√

ΦΠ> is O (p log p) due to the structure of the
SRHT matrix as well as the fact that

√
Φ is diago-

nal. The resulting complexity in computing (16) is
O
(
max

{
n2sε, n

3, p log p
})

.
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Approximating the kernel matrix using the SRHT was
proposed for ridge regression in (Lu et al., 2013), a spe-
cial case of our setting. A method for estimating the full
set of fixed-effects coefficients was not provided in (Lu
et al., 2013). Instead, a reduced set ofm fixed-effects co-
efficients corresponding to the transformed covariate ma-
trixXΠ> was reported. For many applications, a major
point of using an LMM is to estimate the effect-size of
the fixed-effect coefficients, so computing β̂ is essential
to the problem.

4.2 FAST EM FOR MULTI-GROUP LMMS

For efficient parameter estimation in L2-regularized
LMMs with repeated measurements, we extend the EM
algorithm for the low-dimensional setting n ≥ p (Laird
et al., 1987) by combing the kernel estimators and Algo-
rithm 1. While this high-dimensional EM variant is iter-
ative, we show that the per-iteration computational cost
is scalable in p.

The log-likelihood of the L2-regularized LMM (17) can
be rewritten in terms of class-specific variables as

log p
(
y,γ,β |X;σ2,Λ

)

∝ −1

2
β>Φ−1β − n

2
log σ2 − m

2
log detH

− 1

2

m∑

i=1

γ(i)>H−1γ(i) − e
>e

2σ2
,

(17)

where e = y − c1−Xβ −Zγ.

From the above log-likelihood, the posterior distri-
bution of β conditioned on the data and parameter
estimates P̂ :=

{
ĉ, σ̂2, Ĥ

}
is multivariate normal

with mean ΦX>M̂−1 (y − ĉ1) and covariance Φ −
ΦX>M̂−1XΦ. Similarly, the posterior distribution
of the vector of latent variables γ is multivariate nor-
mal with mean Λ̂Z>M̂−1 (y − ĉ1) and covariance Λ̂−
Λ̂Z>M̂−1ZΛ̂. Denote by γ̂ the mean of the posterior
distribution of γ, we also obtain the following posterior
distributions of class-specific latent variable γ(i):

N
(
γ̂(i), Ĥ − ĤZ(i)>

(
M̂−1

)(i)
Z(i)Ĥ

)
. (18)

Note that ·(i) represents the block matrix corresponding
to group i. These posteriors are used in the E-step, dis-
cussed next.

E-step In the E-step, we derive the expectation of the
log-likelihood (17) with respect to the aforementioned
posterior distribution of β and γ(i):

Eβ,γ|y,P̂
[
log p

(
y,γ,β |X;σ2,H

)]
.

We only need to consider terms in the expectation that
involve c, σ2, and H . Denote by Σ̂γ(i) the variance of
(18), the following holds Eβ,γ|y,P̂

(
γ(i)>H−1γ(i)

)
=

γ̂(i)>H−1γ̂(i) + tr
(
Σ̂γ(i)H−1

)
. Using the previously

derived posterior distributions, we get

E
(
e | y, P̂

)
= y −Xβ̂ −Zγ̂ − ĉ1

cov
(
e | y, P̂

)
= σ̂2I − σ̂4M̂−1.

Thus, we arrive at Eβ,γ|y,P̂
(
e>e

)
= ê>ê + σ̂2I −

σ̂4M̂−1, where ê := E
(
e | y, P̂

)
.

M-step We now update the parameter estimates with
the maximizers of the expectation from the E-step. First,
observe that the β estimate from the posterior distribu-
tion is the same as the the dual estimator developed in
§ 3. To maximize the expectation with respect to H and
σ2, we take the partial derivatives with respect to H−1

and σ−2, and set them to zero. This gives the following
M-step updates:

Ĥ ← 1

m

m∑

i=1

(
γ̂(i)γ̂(i)> + Σ̂γ(i)

)

σ̂2 ← σ̂2 +
1

n

[
ê>ê− σ̂4 tr

(
M̂−1

)]
.

(19)

The fast version of the above EM variant uses Algo-
rithm 1 for computing the kernel. Note that the original
X is no longer needed after the SRHT projection. This
provides additional space advantages as data X can be
preprocessed, and the Hadamard transform in Step 1 re-
quires a small constant amount of memory. Overall, the
per-iteration computational complexity of the EM algo-
rithm is O

(
max

{
n2sε, n

3
})

.

5 THEORETICAL GUARANTEES

In this section, we provide an analysis of the difference in
the parameters estimated via the approximate algorithms
versus minimizing the L2-regularized LMM. We are not
proving consistency of our estimator—convergence of
the parameter estimates to the population quantity. Con-
sistency results for LMMs and-regularized LMMs were
provided in (Schelldorfer et al., 2011; Cui et al., 2004;
Hall and Yao, 2003). See the supplementary materials
for proofs of the theorems in this section.

Theorem 1 (Fixed-effect norm error). Let β̂ be the fixed-
effect coefficients estimated by (5) and β̂′ be the fixed-
effect coefficients estimated by the approximate proce-
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dure in (16). Then, with probability at least 1− 3/n

∥∥∥β̂ − β̂′
∥∥∥

∥∥∥β̂
∥∥∥

≤ ε

1− ε

∥∥Φ−1
∥∥
2
κ (Γ)

‖Φ‖−1
2

1+
√

2/3ε
+ λmin (X>V −1X)

with Γ := Φ−1 +X>V −1X , or loosely
∥∥∥β̂ − β̂′

∥∥∥
∥∥∥β̂
∥∥∥

≤
ε
(

1 +
√

2/3ε
)

1− ε κ (Φ)κ (Γ)

for all 0 ≤ ε < 1.

An intuitive interpretation of the theorem is that the
fixed-effects coefficients estimator (16) has better accu-
racy when the predefined Φ is better conditioned and has
smaller spectral norm. One can certainly improve the ac-
curacy by setting a smaller ε, which in turn uses more
samples in Algorithm 1.

Theorem 2 (AVC approximation errors). Let σ2
AVC and

Λ̂AVC be computed using (12). Let σ̂′2AVC and Λ̂′AVC be
computed using the same equations but with approximate
kernel from Algorithm 1. Then, the following two state-
ments hold jointly with probability at least 1− 3/n:

∣∣σ̂2
AVC − σ̂′2AVC

∣∣ ≤ ε ·
∣∣∣∣∣∣XΦX>

∣∣∣∣∣∣
n−q

n− q and
∥∥∥Λ̂AVC − Λ̂′AVC

∥∥∥
2

≤ ε

σ̂min (Z)
2

(
∥∥XΦX>

∥∥
2

+

∣∣∣∣∣∣XΦX>
∣∣∣∣∣∣
n−q

n− q

)
.

Note that the fraction of the Ky Fan norm does not
exceed the spectral norm. A looser but more conve-
nient bounds are

∣∣σ̂2
AVC − σ̂′2AVC

∣∣ ≤ ε
∥∥XΦX>

∥∥
2

and∥∥∥Λ̂AVC − Λ̂′AVC

∥∥∥
2
≤ 2εσmin (Z)

−2 ∥∥XΦX>
∥∥
2
.

6 EXPERIMENTS

In this section, we conduct a simulation study as well
as numerical experiments on real data. The simula-
tion study demonstrates the accuracy of parameter es-
timation using the proposed Approximate Ridge LMM
(arLMM) methods. We also examined the results on a
real data example from the Wellcome Trust Case Control
Consortium (WTCCC) study (The Wellcome Trust Case
Control Consortium, 2007), which include about 14,000
cases from seven common diseases and a total of about
450,000 SNPs.

The main finding of the experiments is that the pro-
posed approximate inference algorithms enjoy similar

predictive accuracy as state-of-the-art methods at a sig-
nificantly reduced computation cost in practice. In par-
ticular, our Matlab prototype implementation is 6x faster
than the optimized C implementation of the state-of-the-
art BSLMM method for genome-wide association studies.

6.1 SIMULATION STUDIES

To evaluate parameter estimation, we consider two per-
formance metrics. The first one is the correlation be-
tween the estimated and ground-truth fixed-effect coef-
ficients. The second metric is the Negative Log Likeli-
hood (NLL) of the standard LMM, which meaningfully
reflects the quality of variance estimation.

For the simulation, we compare the performance of
our non-iterative algorithm arLMM-AVC based on (16)
and (12), the proposed multi-group variant arLMM-EM
based on (19), the standard REML (Bates et al., 2015),
L1-regularized LMM lmmlasso (Schelldorfer et al.,
2011), and CovexLasso using both L1- and L2-
regularization (Jakubı́k, 2015).

Synthetic data generation The simulation is based on
synthetic training and validation sets sampled from a
fixed LMM distribution. The design matrices as well as
the parameters for the fixed LMM are randomly gener-
ated. Specifically,

Xij
i.i.d.∼ N (0, 1) Z

(k)
ij

i.i.d.∼ U (0, 1)

γ(k) i.i.d.∼ N
(
0,K>K

)
Kij

i.i.d.∼ N (0, 1)

β ∼ N (0, I) σ2 ∼ U (0, d) .

Note that there are d random-effect variables with co-
variance K>K. Thus, the random-effect design ma-
trix Z ∈ Rn×q , q = md, will be block-diagonal with
diagonal blocks Z(k). Given the number of observa-
tions n, we randomly sample nk observations for each
group k, where the fractions nk/n are specified by the
Dirichlet distribution with the concentration parameters
(1, 1, · · ·)>.

Overdetermined settings Let us first consider the
standard setting n > p, which are supported by many
parameter estimation algorithms of LMMs. We evalu-
ate the performance of arLMM-AVC and arLMM-EM in
a variety of p, d, and m settings. The parameter es-
timates obtained using the proposed methods are com-
pared with the estimates given by the standard REML
(see e.g., (Kang et al., 2008; Lippert et al., 2011; Laird
et al., 1987; Bates et al., 2015)) which is known to pro-
duce unbiased estimates.
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Figure 1: Comparing the performance of parameter esti-
mation on synthetic data with n = 1, 000 observations.
Note that arLMM-AVC is only applicable to the single
group setting. This figure shows that the arLMM-EM
and arLMM-AVC achieve comparable estimation perfor-
mance as REML.

Figure 1 shows the error for the fitted parameters using
1,000 observations sampled from the underlying LMM.
The average results are reported over 10 runs on inde-
pendently generated datasets. These generated datasets
have the same number of observations n = 1, 000 but
different settings of p, d, and m.

As shown in Figure 1, arLMM-EM and arLMM-AVC
exhibit comparable estimation accuracy as the standard
REML. Note that arLMM-AVC is applicable only when
m = 1 (the first row of Figure 1). Since arLMM-AVC
is based on non-iterative approximation to the variance
components, the error is slighted higher than the others
as expected.

High-dimensional (underdetermined) setting We
also examined the performance of our model in the high-

dimensional setting where we are interested in variable
selection based on the fixed-effects coefficients. In Ta-
ble 2, we specify the three regimes for which we generate
simulated data: an overdetermined LMM, a moderate-
dimensional LMM, and a high-dimensional LMM. Each
regime is characterized by n, p, d, and m, and an extra
parameter s, the number of non-zeros in the ground-truth
βTrue. Since m > 1 we did not apply arLMM-AVC.

Table 2: Regimes of data.

(n, p, d,m, s)
LOW (100, 1000, 5, 3, 10)
MOD

(
200, 104, 5, 3, 10

)

HIGH
(
104, 106, 10, 100, 100

)

Figure 2 reports variable selection results for
arLMM-EM, lmmlasso (Schelldorfer et al., 2011), and
ConvexLasso. All the settings in Table 2 have sparse
ground-truth βTrue. Figure 2 shows the fraction of the
signal (non-zeros in βTrue) recovered in the estimate
β̂. We varied the regularization parameters to obtain
β̂ with different sparsity

∥∥∥β̂
∥∥∥
0
. The entries with the

largest magnitude of β̂ is considered the signal in these
evaluations. As can be seen, arLMM-EM delivers a
competitive signal recovery ratio for p = 103, 104, and
scales to considerably large dimensions n = 104 and
p = 106, which the other two methods cannot handle.

6.2 GENOME WIDE ASSOCIATION STUDIES

LMMs have been used extensively for mapping traits in
statistical genetics. The problem formulation is that of
regressing a quantitative or categorical trait onto a high-
dimensional vector of 450,000 single nucleotide poly-
morphisms (SNPs), or locations of discrete genetic vari-
ation, for each subject included in the study. The random
effects are driven by population structure or the pairwise
similarity or relatedness between individuals.

We compare our approximate estimator to the per-
formance of a state-of-the-art estimator called BSLMM
(Bayesian sparse linear mixed model) (Zhou et al., 2013).
Specifically, we run BSLMM in its ridge-regression with
mixed models setting, the fastest setting of the package
for a fair comparison. In this setting BSLMM is comput-
ing the maximum a posteriori estimate of the regularized
LMM. We compare performance on the Wellcome Trust
Case Control Consortium (WTCCC) dataset of 14,000
cases of 7 diseases - bipolar disorder (BD), coronary
artery disease (CAD), Crohn’s disease (CD), hyperten-
sion (HT), rheumatoid arthritis (RA), type 1 diabetes
(T1D), and type 2 diabetes (T2D) - and 3,000 shared con-
trols. This dataset characterizes over 450,000 single nu-
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Figure 2: Fraction of signals captured by β̂. From left to right, the configurations are respectively LOW, MOD, and
HIGH in Table 2. It shows that arLMM-EM performs competitively in variable selection.

Table 3: Comparing the prediction performance as well as the runtime of BSLMM and arLMM-AVC on the WTCCC
dataset. Corr

(
β̂BSLMM, β̂arLMM-AVC

)
denotes the correlation between the fixed-effect coefficient estimates given by

BSLMM and arLMM-AVC.

DISEASE
TIME (MIN) AUC CORR

(
β̂BSLMM, β̂ARLMM-AVC

)
BSLMM ARLMM-AVC BSLMM ARLMM-AVC

BD 115.8 25.1 0.6520 0.6461 0.9898
CAD 161.0 26.1 0.5899 0.5937 0.9776
CD 110.3 25.4 0.6260 0.6328 0.9862
HT 120.6 19.4 0.5956 0.6010 0.9766
RA 147.4 19.9 0.6173 0.6206 0.9834
T1D 120.0 20.4 0.6846 0.6840 0.9939
T2D 155.3 18.9 0.6003 0.5993 0.9783

cleotide polymorphisms (SNPs), or locations of discrete
genetic variation, for each subject included in the study.
Disease status is indicated as a binary response (1 for
disease case, −1 for control). Each of the datasets had
roughly equal numbers of cases and controls.

For this experiment, we adopted the same random-
effect covariance parameterization used to control for
population structure θXX>/p as BSLMM, and used
arLMM-AVC with AVCs (15) and (14). arLMM-AVC
and BSLMM were run under identical conditions on each
of the seven approximately 5,000-subject × 450,000-
SNP datasets. This was the same experimental setup
used to validate BSLMM in (Zhou et al., 2013).

Observed runtimes for each of the seven datasets are re-
ported in Table 3. Correlation between the β̂ reported
by arLMM-AVC and BSLMM in all cases was very high,
0.977 or greater.

We also compared disease status prediction by splitting
each dataset into a training set comprised of 80% of sub-
jects and a test set of the remaining 20%, selected at ran-
dom. arLMM-AVC and BSLMM each estimated β̂ from
the training set and attempted to predict disease status on
the held-out set. We repeated this 20 times for each of the

seven datasets and evaluated performance of prediction
on the held-out set by area under the ROC curve (AUC).
These results are also given in Table 3. Predictive per-
formance by arLMM-AVC and BSLMM was almost iden-
tical. Predicting disease status from genetic markers is
hard and it is well known that the effect sizes of genetic
variants are individually small and that a great deal of
variance in the response will also be driven by environ-
mental factors.

7 CONCLUSIONS

State-of-the-art parameter inference in LMMs requires
computational complexity which depends at least lin-
early on the number of covariates p and generally relies
on heuristics. In this paper, we presented scalable learn-
ing algorithms which have sublinear computational com-
plexity in p and provide theoretical guarantees for the
accuracy of parameter estimation. Our approach com-
bines novel approximate estimators that use a kernel ma-
trix of the observations and the subsampled randomized
Hadamard transform. Experiments on synthetic and real
data corroborate the theory.
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D. Bates, M. Mächler, B. Bolker, and S. Walker. Fitting

linear mixed-effects models using lme4. Journal of
Statistical Software, 67(1):1–48, 2015.

Y. Chung, S. Rabe-Hesketh, V. Dorie, A. Gelman, and
J. Liu. A nondegenerate penalized likelihood estima-
tor for variance parameters in multilevel models. Psy-
chometrika, 78(4):685–709, 2013.

H. Cui, K. W. Ng, and L. Zhu. Estimation in mixed ef-
fects model with errors in variables. Journal of Multi-
variate Analysis, 91(1):53–73, 2004.

G. Darnell, S. Georgiev, S. Mukherjee, and B. E. Engel-
hardt. Adaptive randomized dimension reduction on
massive data. JMLR, Apr. 2017.

E. Demidenko. Mixed Models: Theory and applications
with R. Wiley, 2nd edition, 2013.

P. Hall and Q. Yao. Inference in components of variance
models with low replication. Annals of Statistics, 31
(2):414–441, 2003.

D. A. Harville. Bayesian inference for variance com-
ponents using only error contrasts. Biometrika, 61:
383–385, 1974.

J. Jakubı́k. Convex method for variable selection in high-
dimensional linear mixed models. In Proceedings of
the 10th International Conference on Measurement,
pages 55–58, 2015.

H. M. Kang, N. A. Zaitlen, C. M. Wade, A. Kirby,
D. Heckerman, M. J. Daly, and E. Eskin. Efficient
control of population structure in model organism as-
sociation mapping. Genetics, 178:1709–23, Mar 2008.

N. Laird, N. Lange, and D. Stram. Maximum likelihood
computations with repeated measures: Application of
the EM algorithm. Journal of the American Statistical
Association, 82:97–105, 1987.

N. M. Laird and J. H. Ware. Random-effects models for
longitudinal data. Biometrics, 38(4):963–974, Dec.
1982.

M. J. Lindstrom and D. M. Bates. Newton-Raphson
and EM algorithms for linear mixed-effects models for
repeated-measures data. Journal of the American Sta-
tistical Association, 83:1014–1022, 1988.

C. Lippert, J. Listgarten, Y. Liu, C. Kadie, R. David-
son, and D. Heckerman. Fast linear mixed models for
genome-wide association studies. Nature Methods, 8
(10):833–835, Oct. 2011.

Y. Lu, P. Dhillon, D. P. Foster, and L. Ungar. Faster ridge
regression via the subsampled randomized Hadamard
transform. In NIPS, pages 369–377. 2013.

H. D. Patterson and R. Thompson. Recovery of inter-
block information when block sizes are unequal.
Biometrika, 58:545–554, 1971.

P. O. Perry. Fast moment-based estimation for hierar-
chical models. Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology), 79(1):267–
291, 2017.

C. Saunders, A. Gammerman, and V. Vovk. Ridge
regression learning algorithm in dual variables. In
ICML, pages 515–521, 1998.
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Abstract

We address the problem of causal discovery
from data, making use of the recently pro-
posed causal modeling framework of modu-
lar structural causal models (mSCM) to handle
cycles, latent confounders and non-linearities.
We introduce σ-connection graphs (σ-CG), a
new class of mixed graphs (containing undi-
rected, bidirected and directed edges) with ad-
ditional structure, and extend the concept of
σ-separation, the appropriate generalization of
the well-known notion of d-separation in this
setting, to apply to σ-CGs. We prove the
closedness of σ-separation under marginalisa-
tion and conditioning and exploit this to im-
plement a test of σ-separation on a σ-CG. This
then leads us to the first causal discovery algo-
rithm that can handle non-linear functional re-
lations, latent confounders, cyclic causal rela-
tionships, and data from different (stochastic)
perfect interventions. As a proof of concept,
we show on synthetic data how well the algo-
rithm recovers features of the causal graph of
modular structural causal models.

1 INTRODUCTION

Correlation does not imply causation. To go beyond spu-
rious probabilistic associations and infer the asymmetric
causal relations we need sufficiently powerful models.
Structural causal models (SCMs), also known as struc-
tural equation models (SEMs), provide a popular mod-
eling framework (see [12, 25, 26, 32]) that is up to this
task. Still, the problem of causal discovery from data
is notoriously hard. Theory and algorithms need to ad-
dress several challenges like probabilistic settings, sta-
bility under interventions, combining observational and

interventional data, latent confounders and marginalisa-
tion, selection bias and conditioning, faithfulness viola-
tions, cyclic causation like feedback loops and pairwise
interactions, and non-linear functional relations in order
to go beyond artificial simulation settings and become
successful on real-world data.

Several algorithms for causal discovery have been intro-
duced over the years. For the acyclic case without la-
tent confounders, numerous constraint-based [25,32] and
score-based approaches [6, 14, 17] exist. More sophisti-
cated constraint-based [5,25,32,34] and score-based ap-
proaches [4,7,8,10,11] can deal with latent confounders
in the acyclic case. For the linear cyclic case, most algo-
rithms assume no latent confounders [18,27,29], though
some of the more recent ones allow for those [19,30]. To
the best of our knowledge, no algorithms have yet been
proposed for the general non-linear cyclic case.

In this work we present a novel conditional independence
constraint-based causal discovery algorithm that—up to
the knowledge of the authors—is the first causal discov-
ery algorithm that addresses most of the previously men-
tioned problems at once, notably non-linearities, cycles,
latent confounders, and multiple interventional data sets,
only excluding selection bias and faithfulness violations.

For this to work we build upon the theory of modu-
lar structural causal models (mSCM) introduced in [12].
mSCMs form a general and convenient class of struc-
tural causal models that can deal with cycles and latent
confounders. The measure-theoretically rigorous presen-
tation opens the door for general non-linear measurable
functions and any kind of probability distributions (e.g.
mixtures of discrete or continuous ones). mSCM are
provably closed under any combination of perfect inter-
ventions and marginalisations (see [12]).

Unfortunately, it is known that the direct generaliza-
tion of the d-separation criterion (also called m- or m∗-
separation, see [9, 24, 25, 28, 33]), which relates the con-
ditional independencies of the model to its underlying
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graphical structure, does not apply in general if the struc-
tural equations are non-linear and the graph contains cy-
cles (see [12, 31] or example 2.17).

Luckily, one key property of mSCMs is that the vari-
ables of the mSCM always entail the conditional inde-
pendences implied by σ-separation, a non-naive gener-
alization of the d/m/m∗-separation (see [12]), which also
works in the presence of cycles, non-linearities and latent
confounders, and reduces to d-separation in the acyclic
case.

To prove the σ-separation criterion, the authors of [12]
have constructed an extensive theory for directed graphs
with hyperedges. As a first contribution in this paper
we give a simplified but equivalent definition of mSCMs
plainly in terms of directed graphs and prove the σ-
separation criterion directly under weaker assumptions.

As a second contribution we extend the definition of
σ-separation to mixed graphs (including also bi- and
undirected edges) by introducing additional structure.
We will refer to this class of mixed graphs as σ-
connection graphs (σ-CG), since they are inspired by the
d-connection graphs introduced by [19]. We prove that
σ-CGs and σ-separation are closed under marginalisa-
tion and conditioning, in analogy with the d-connection
graphs (d-CG) from [19].

The work of [19] provides an elegant approach to causal
discovery using a weighted SAT solver to find the causal
graph that is most compatible with (weighted) condi-
tional independences in the data, encoding the notion
of d-separation into answer set programming (ASP), a
declarative programming language with an expressive
syntax for implementing discrete or integer optimization
problems. Our third contribution is to adapt the approach
of [19] by replacing d-separation by σ-separation and d-
CGs by σ-CGs. The results mentioned above will then
ensure all the needed properties to make the adapted al-
gorithm of [19] applicable to general mSCMs, i.e., to
non-linear causal models with cycles and latent con-
founders, under the additional assumptions of no selec-
tion bias and of σ-faithfulness.

Finally, as a proof of concept, we will show the effective-
ness of our proposed algorithm in recovering features of
the causal graphs of mSCMs from simulated data.

2 THEORY

2.1 MODULAR STRUCTURAL CAUSAL
MODELS

Structural causal or equation models (SCM/SEM) usu-
ally start with a set of variables (Xv)v∈V attached to a

graphG that satisfy (or are even defined by) equations of
the form:

Xv = g{v}(XPaG(v), Ev),

with a function g{v} and noise variable Ev attached to
each node v ∈ V . Here PaG(v) denotes the set of (direct
causal) parents of v. In linear models the functions g{v}
are linear functions, in acyclic models the nodes of V
form an acyclic graph G, and under causal sufficiency
the variables Ev are independent (i.e. “no latent con-
founders”). The functions g{v} are usually interpreted
as local causal mechanisms that produce the values of
Xv from the values of XPaG(v) and Ev . These local
mechanisms g{v} are—in the causal setting—assumed
to be stable even when one intervenes upon some of the
variables, i.e. one makes a causal local compatibility as-
sumption. One important observation now is that one can
also consider the global mechanism g that maps the val-
ues of the latent variables (Ev)v∈V to the values of the
observed variables (Xv)v∈V . The assumption of acyclic-
ity or invertible linearity will then guarantee the global
compatibility of all these mechanisms g{v} and g. How-
ever, if we now abstain from assuming acyclicity or lin-
earity, the global compatibility does not follow from the
local compatibility anymore (see figure 1). So in a gen-
eral consistent causal setting this needs to be guaranteed
or assumed.

Figure 1: Gear analogy. Left: A cyclic mechanism that is
locally compatible but not globally. Center: For acyclic
mechanisms local compatibility implies global compat-
ibility. Right: A cyclic mechanism that is locally and
globally compatible. This shows that the assumption of
global compatibility is needed when cycles are present.

The definition of modular structural causal models
(mSCM) and the mentioned list of desirable properties
basically follow directly from causal postulates:

Postulate 2.1 (Causal postulates). The observed world
appears as the projection of an extended world such that:

1. All latent and observed variables in this extended
world are causally linked by a directed graph.

2. Every subsystem of this extended world can be ex-
pressed as the joint effect of its joint direct causes.

3. All these mechanisms are globally compatible.
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Special subsystems of interest are the loops of a graph.

Definition 2.2 (Loops). Let G = (V,E) be a directed
graph (with or without cycles).

1. A loop of G is a set of nodes S ⊆ V such that for
every two nodes v1, v2 ∈ S there are two directed
paths v1 · · · v2 and v2 · · · v1

in G with all the intermediate nodes also in S (if
any). The single element sets S = {v} are also
considered as loops.

2. The strongly connected component of v in G is de-
fined to be:

ScG(v) := AncG(v) ∩DescG(v),

the set of nodes that are both ancestors and descen-
dants of v (including v itself).

3. Let L(G) := {S ⊆ G |S a loop of G} be the loop
set of G.

Remark 2.3. Note that the loop set L(G) contains all
single element loops {v} ∈ L(G), v ∈ V , as the smallest
loops and all strongly connected components ScG(v) ∈
L(G), v ∈ V , as the largest loops, but also all non-
trivial intermediate loops S with {v} ( S ( ScG(v)
inside the strongly connected components (if existent). If
G is acyclic thenL(G) only consists of the single element
loops: L(G) = {{v} | v ∈ V }.

The definition of mSCM is made in such a way that it
will automatically incorporate the causal postulates 2.1.
In the following, all spaces are meant to be equipped with
σ-algebras, forming standard measurable spaces, and all
maps to be measurable.

Definition 2.4 (Modular Structural Causal Model, [12]).
A modular structural causal model (mSCM) by definition
consists of:

1. a set of nodes V + = U ∪̇V , where elements of V
correspond to observed variables and elements of
U to latent variables,

2. an observation/latent space Xv for every v ∈ V +,
X :=

∏
v∈V + Xv ,

3. a product probability measure P := PU = ⊗u∈UPu
on the latent space

∏
u∈U Xu,1

1The assumption of independence of the noise variables
here is not to be confused with causal sufficiency. The noise
variables here might have two or more child nodes and thus
can play the role of latent confounders. The independence as-
sumption here also does not restrict the model class. If they
were dependent we would just consider them as one variable
and use a different graph that encoded this.

4. a directed graph structure G+ = (V +, E+) with
the properties:2

(a) V = ChG
+

(U),

(b) PaG
+

(U) = ∅,3
(c) ChG

+

(u1) * ChG
+

(u2) for every two distinct
u1, u2 ∈ U ,3

where ChG
+

and PaG
+

stand for children and par-
ents in G+, resp.,

5. a system of structural equations g = (gS)S∈L(G+)
S⊆V

:

gS :
∏

v∈PaG
+

(S)\S

Xv →
∏

v∈S
Xv, 24

that satisfy the following global compatibility con-
ditions: For every nested pair of loops S′ ⊆
S ⊆ V of G+ and every element x

PaG
+

(S)∪S ∈∏
v∈PaG

+
(S)∪S Xv we have the implication:

gS(x
PaG

+
(S)\S) = xS

=⇒ gS′(x
PaG

+
(S′)\S′) = xS′ ,

where x
PaG

+
(S′)\S′ and xS′ denote the correspond-

ing components of x
PaG

+
(S)∪S .

The mSCM can be summarized by the tuple M =
(G+,X ,P, g).

Remark 2.5. Given the mechanisms attached to the
nodes g{v} the existence (and compatibility) of the other
mechanisms gS for non-trivial loops S can be guaran-
teed under certain conditions, e.g. trivially in the acyclic
case, or if every cycle is contractive (see subsection 4.1),
or more generally if the cycles are “uniquely solvable”
(see [3, 12]).

We are now going to define the actual random variables
(Xu)u∈V + attached to any mSCM.

Remark 2.6. Let M = (G+,X ,P, g) be a mSCM with
G+ = (U ∪̇V,E+).

2Even though we allow for selfloops in the directed graph
G+ we note that the causal mechanisms gS will depend only on
PaG

+

(S) \ S, removing the self-dependence on the functional
level. Otherwise, the functions gS would not hold up to a di-
rect interventional interpretation and one would want to replace
them with functions that do.

3This assumption is only necessary to give the mSCM a “re-
duced/summarized” form. In practice one could allow for more
latent variables and more complex latent structure.

4Note that the index set runs over all “observable loops”
S ⊆ V , S ∈ L(G+), which contains the usual single element
sets S = {v}, which relate to the usual mechanisms g{v}.

271



v1

v2

v3

v4

v5

v6

v7

v8

u4

u1

u5

u3

u2

Figure 2: The graph G+ of a modular structural causal
model (mSCM). The observed variables vi ∈ V are in
blue and the latent variables uj ∈ U are in red. We have
the four observed strongly connected components: {v1},
{v2, v3, v4, v5}, {v6, v7}, {v8}.

1. The latent variables (Xu)u∈U are given by the
canonical projections Eu :

∏
u′∈U Xu′ → Xu and

are jointly P-independent (by 3). Sometimes we will
write (Eu)u∈U instead of (Xu)u∈U to stress their
interpretation as error/noise variables.

2. The observed variables (Xv)v∈V are inductively
defined by:

Xv := gS,v
(
(Xw)

w∈PaG
+

(S)\S
)
,

where S := ScG
+

(v) := AncG
+

(v) ∩ DescG
+

(v)
and where the second index v refers to the v-
component of gS . Note that the inductive definition
is possible because when “aggregating” each of the
biggest cycles ScG

+

(v) into one node then only an
acyclic graph is left, which can be totally ordered.

3. By the compatibility condition for g we then have
that for every S ∈ L(G+) with S ⊆ V the following
equality holds:

XS = gS(X
PaG

+
(S)\S),

where we put XA := (Xv)v∈A for subsets A.

As a consequence of the convenient definition 2.4 all the
following desirable constructions (like marginalisations
and interventions) are easily seen to be well-defined (for
proofs see [12]). Note that already defining these con-
structions was a key challenge in the theory of causal
models in the presence of cycles (see [3, 12], a.o.).
Definition 2.7. LetM = (G+,X ,P, g) be a mSCM with
G+ = (U ∪̇V,E+).

1. By plugging the functions gS into each other we can
define the marginalised mSCM M ′ w.r.t. a subset
W ⊆ V . For example, when marginalizing out
W = {w} we can define (for the non-trivial case
w ∈ PaG

+

(S) \ S):

gS′,v(xPaG
′
(S′)\S′) :=

gS,v(xPaG
+

(S)\(S∪{w}), g{w}(xPaG
+

(w)\{w})),

whereG′ is the marginalised graph ofG+, S′ ⊆ V ′
is any loop of G′ and S the corresponding induced
loop in G+.

2. For a subset I ⊆ V and a value xI ∈
∏
v∈I Xv we

define the intervened graph G′ by removing all the
edges from parents of I to I . We put Xdo(xI)

u :=

Xu for u ∈ U and Xdo(xI)
I := xI and inductively

(S := ScG
′
(v)):

Xdo(xI)
v := gS,v(X

do(xI)

PaG
′
(S)\S).

By selecting all functions gS where S is still a
loop in the intervened graph G′ we get the post-
interventional mSCMM ′. These constructions give
us all interventional distributions, e.g. (cf. [25]):

P(XA|do(xI), XB) := P(X
do(xI)
A |Xdo(xI)

B ).

Instead of fixing X
do(xI)
I to a value xI we could

also specify a distribution P′I for it (“randomiza-
tion”). In this way we define stochastic interven-
tions do(ξI) with an independent random variable
ξI taking values in XI and get a Pdo(I) similarly.

2.2 Σ-SEPARATION IN MSCMS AND
Σ-CONNECTION GRAPHS

We now introduce σ-separation as a generalization of d-
separation directly on the level of mixed graphs. To make
the definition stable under marginalisation and condition-
ing we need to carry extra structure. The resulting graphs
will be called σ-connection graphs (σ-CG), where the
name is inspired by [19]. An example that shall clarify
the difference between d- and σ-separation is given later
in figure 2 and table 1.

Definition 2.8 (σ-Connection Graphs (σ-CG)). A σ-
connection graph (σ-CG) is a mixed graph G with a set
of nodes V and directed ( ), undirected ( ) and bidi-
rected ( ) edges, together with an equivalence relation
∼σ on V that has the property that every equivalence
class σ(v), v ∈ V , is a loop in the underlying directed
graph structure: σ(v) ∈ L(G). Undirected self-loops
(v v) are allowed, (bi)-directed self-loops (v v,
v v) are not.

In particular, every node is assigned to a unique fixed
loop σ(v) in G with v ∈ σ(v) and two of such loops
σ(v1), σ(v2) are either identical or disjoint. The reason
for why we need such structure is illustrated in figure 5.

Definition 2.9 (σ-Open Path in a σ-CG). Let G be a σ-
CG with set of nodes V and Z ⊆ V a subset. Consider
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a path π in G with n ≥ 1 nodes:

v1 · · · vn.
5

The path will be called Z-σ-open if:

1. the endnodes v1, vn /∈ Z, and

2. every triple of adjacent nodes in π that is of the
form:

(a) collider:

vi−1 vi vi+1,

satisfies vi ∈ Z,
(b) (non-collider) left chain:

vi−1 vi vi+1,

satisfies vi /∈ Z or vi ∈ Z ∩ σ(vi−1),
(c) (non-collider) right chain:

vi−1 vi vi+1,

satisfies vi /∈ Z or vi ∈ Z ∩ σ(vi+1),
(d) (non-collider) fork:

vi−1 vi vi+1,

satisfies vi /∈ Z or vi ∈ Z∩σ(vi−1)∩σ(vi+1),
(e) (non-collider) with undirected edge:

vi−1 vi vi+1,

vi−1 vi vi+1,

satisfies vi /∈ Z.

The difference between σ- and d-separation lies in the
additional conditions involving Z ∩ σ(vi±1). The intu-
ition behind them is that the dependence structure inside
a loop σ(vi) is so strong that non-colliders can only be
blocked by conditioning if an edge is pointing out of the
loop (see example 2.17 and table 1).

Similar to d-separation we can now define σ-separation
in a σ-CG.
Definition 2.10 (σ-Separation in a σ-CG). Let G be a
σ-CG with set of nodes V . Let X,Y, Z ⊆ V be subsets.

1. We say that X and Y are σ-connected by Z or not
σ-separated by Z if there exists a path π (with some
n ≥ 1 nodes) in G with one endnode in X and
one endnode in Y that is Z-σ-open. In symbols this
statement will be written as follows:

X
σ

6⊥⊥
G
Y |Z.

5The stacked edges are meant to be read as an “OR” at each
place independently. We also allow for repeated nodes in the
paths.

2. Otherwise, we will say that X and Y are σ-
separated by Z and write:

X
σ

⊥⊥
G
Y |Z.

Remark 2.11. 1. The finest/trivial σ-CG structure of
a mixed graph G is given by σ(v) := {v} for all
v ∈ V . In this way σ-separation inG coincides with
the usual notion of d-separation in a d-connection
graph (d-CG) G (see [19]). We will take this as the
definition of d-separation and d-CG in the follow-
ing.

2. The coarsest σ-CG structure of a mixed graph G is
given by σ(v) := ScG(v) := AncG(v) ∩DescG(v)
w.r.t. the underlying directed graph. Note that the
definition of strongly connected component totally
ignores the bi- and undirected edges of the σ-CG.

3. In any σ-CG we will always have that σ-separation
implies d-separation, since every Z-d-open path is
also Z-σ-open because {v} ⊆ σ(v).

4. If a σ-CG G is acyclic (implying ScG(v) = {v})
then σ-separation coincides with d-separation.

We now want to “hide” or marginalise out the latent
nodes u ∈ U from the graph of any mSCM and repre-
sent their induced dependence structure with bidirected
edges.

Definition 2.12 (Induced σ-CG of a mSCM). Let M =
(G+,X ,P, g) be a mSCM with G+ = (U ∪̇V,E+). The
induced σ-CG G of M , also referred to as the causal
graph G of M is defined as follows:

1. The nodes of G are all v ∈ V , i.e. all observed
nodes of G+.

2. G contains all the directed edges of G+ whose
endnodes are both in V , i.e. observed.

3. G contains the bidirected edge v w with v, w ∈
V if and only if v 6= w and there exists a u ∈ U

with v, w ∈ ChG
+

(u), i.e. v and w have a common
latent confounder.

4. G contains no undirected edges.

5. We put σ(v) := ScG(v) = AncG(v) ∩DescG(v).

Remark 2.13. Caution must be applied when going
from G+ to G: It is possible that three observed nodes
v1, v2, v3 have one joint latent common cause u1, which
can be read off G+. This information will get lost when
going from G+ to G, as we will represent this with three
bidirected edges. G will nonetheless capture the condi-
tional independence relations (see Theorem 2.14).
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We now present the most important ingredient for our
constraint-based causal discovery algorithm, namely a
generalized directed global Markov property that relates
the underlying causal graph (σ-CG) G of any mSCM M
to the conditional independencies of the observed ran-
dom variables (Xv)v∈V via a σ-separation criterion.

Theorem 2.14 (σ-Separation Criterion, see Corol-
lary B.3). The observed variables (Xv)v∈V of any
mSCM M satisfy the σ-separation criterion w.r.t. the in-
duced σ-CGG. In other words, for all subsetsW,Y,Z ⊆
V we have the implication:

W
σ

⊥⊥
G
Y |Z =⇒ XW ⊥⊥P XY |XZ .

v1

v2

v3

v4

v5

v6

v7

v8

Figure 3: The induced σ-connection graph (causal
graph) of the modular structural causal model
(mSCM) of figure 2, with σ-equivalence classes
{{v1}, {v2, v3, v4, v5}, {v6, v7}, {v8}}.

Table 1: d- and σ-separation in the σ-connection graph
G from figure 3. σ-separation implies d-separation, but
i.g. d-separation encodes more conditional independen-
cies than σ-separation:

d-separation σ-separation
{v2} ⊥⊥ d

G{v4} |{v3, v5} {v2} 6⊥⊥ σ
G{v4} |{v3, v5}

{v1} ⊥⊥ d
G{v6} {v1} ⊥⊥ σ

G{v6}
{v1} ⊥⊥ d

G{v6} |{v3, v5} {v1} 6⊥⊥ σ
G{v6} |{v3, v5}

{v1} 6⊥⊥ d
G{v8} {v1} 6⊥⊥ σ

G{v8}
{v1} ⊥⊥ d

G{v8} |{v3, v5} {v1} 6⊥⊥ σ
G{v8} |{v3, v5}

{v1} ⊥⊥ d
G{v8} |{v4} {v1} ⊥⊥ σ

G{v8} |{v4}

If we want to infer the causal graph (σ-CG) G of a
mSCM from data with help of conditional independence
tests in practice we usually need to assume also the
reverse implication of the σ-separation criterion from
2.14 for the observational distribution P(XV ) and the
relevant interventional distributions P(XV |do(ξI)) (see
2.7). This will be called σ-faithfulness.

Definition 2.15 (σ-faithfulness). We will say that the
tuple (G,P) is σ-faithful if for every three subsets
W,Y,Z ⊆ V we have the equivalence:

W
σ

⊥⊥
G
Y |Z ⇐⇒ XW ⊥⊥P XY |XZ .

Remark 2.16 (Strong σ-completeness, cf. [22]). We do
believe that the generic non-linear mSCM is σ-faithful
to G, as the needed conditional dependence structure
in all our simulated (sufficiently non-linear) cases was
observed (cf. example 2.17). But proving such a strong
σ-completeness result is difficult (and to our knowledge
only done for multinomial and linear Gaussian DAG
models, see [22]) and left for future research. Further
note that the class of linear models, which even follow d-
separation, would i.g. not be considered σ-faithful. Since
linear models are of measure zero in the bigger class of
general mSCMs this would not contradict our conjecture.

Example 2.17. Consider a directed four-cycle, e.g. the
subgraph {v2, v3, v4, v5} from figure 2, where all other
observed nodes are assumed to be absent. Consider only
the non-linear causal mechanisms given by (i = 3, 4, 5):

g{v2}(X5, E1) := tanh (0.9 ·X5 + 0.5) + E1,
g{vi}(Xi−1, Ei) := tanh (0.9 ·Xi−1 + 0.5) + Ei,

where E1, E3, E4, E5 are assumed to be independent.
The equations Xi = g{vi}(Xi−1, Ei) and the one for
X2 will imply the conditional dependence

X2 6⊥⊥
P
X4 |(X3, X5),

which can be checked by computations and/or simula-
tions. As one can read off table 1, d-separation fails
to express the dependence, in contrast to σ-separation,
which captures it correctly.

2.3 MARGINALISATION AND CONDITIONING
IN Σ-CONNECTION GRAPHS

Inspired by [19] we will define marginalisation and con-
ditioning operations on σ-connection graphs (σ-CG) and
prove the closedness of σ-separation (and thus its crite-
rion) under these operations. These are key results to
extend the algorithm of [19] to the setting of mSCMs.

Definition 2.18 (Marginalisation of a σ-CG). Let G be
a σ-CG with set of nodes V and w ∈ V , W := {w}.
We define the marginalised σ-CG GW with set of nodes
V \W via the rules for v1, v2 ∈ V \W :
v1 a b v2 ∈ GW with arrow heads/tails a and b if and
only if there exists:

1. v1 a b v2 in G, or

2. v1 a w q b v2 in G, or

3. v1 a q w b v2 in G, or

4. v1 a w w b v2 in G.

Note that directed paths in G have no colliders, so loops
in G map to loops in GW (if not empty). Thus we have
the induced σ-CG structure ∼σ on GW .
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Definition 2.19 (Conditioning of a σ-CG). Let G be a
σ-CG with set of nodes V and c ∈ V , C := {c}. We
define the conditioned σ-CG GC with set of nodes V \C
via the rules for v1, v2 ∈ V \ C:
v1 a b v2 ∈ GC if and only if there exists:

1. v1 a b v2 in G, or

2. v1 a c b v2 in G, or

3. v1 a c b v2 in G, σ(v1) = σ(c), or

4. v1 a c b v2 in G, σ(c) = σ(v2), or

5. v1 a c b v2 in G, σ(v1) = σ(c) = σ(v2).

Note that directed paths in σ(v) in G condition to di-
rected paths, so loops in σ(v) in G map to loops in GC
(if not empty). Thus we have a well-defined induced σ-
CG structure ∼σ on GC .

The proofs of the following theorem, stating the closed-
ness of σ-separation under marginalisation and condi-
tioning, can be found in the supplementary material
(Theorem A.1 and Theorem A.2). See also figure 5.

Theorem 2.20. Let G be a σ-CG with set of nodes V
and X,Y, Z ⊆ V any subsets. For any nodes w, c ∈
V \ (X ∪ Y ∪ Z), W := {w}, C := {c}, we then have
the equivalences:

X
σ

⊥⊥
GW

Y |Z ⇐⇒ X
σ

⊥⊥
G
Y |Z,

X
σ

⊥⊥
GC

Y |Z ⇐⇒ X
σ

⊥⊥
G
Y |Z ∪ C.

Corollary 2.21. Let G be a σ-CG with set of nodes V
and X,Y, Z ⊆ V pairwise disjoint subsets and W :=
V \ (X ∪ Y ∪ Z). Then we have the equivalence:

X
σ

⊥⊥
G
Y |Z ⇐⇒ X

σ

⊥⊥
GWZ

Y,

where GWZ is any σ-CG with set of nodes X ∪ Y ob-
tained by marginalising out all the nodes from W and
conditioning on all the nodes from Z in any order. This
means that if X = {x} and Y = {y} then x and y are
σ-separated by Z in G if and only if x and y are not
connected by any edge in the σ-CG GWZ .

It is also tempting to introduce an intervention operator
directly on the level of σ-CGs. However, since the in-
terplay between conditioning and intervention is compli-
cated (e.g. they do not commute i.g.) we do not investi-
gate this further in this paper. The intervention operator
on the level of mSCMs will be enough for our purposes
as we assume no pre-interventional selection bias and
then only encounter observational or post-interventional
conditioning, which is covered by our framework.

3 ALGORITHM

In this section, we propose an algorithm for causal dis-
covery that is based on the theory in the previous section.
Given that theory, our proposed algorithm is a straight-
forward modification of the algorithm by [19]. The main
idea is to formulate the causal discovery problem as
an optimization problem that aims at finding the causal
graph that best matches the data at hand. This is done
by encoding the rules for conditioning, marginalisation,
and intervention (see below) on a σ-CG into Answer Set
Programming (ASP), an expressive declarative program-
ming language based on stable model semantics that sup-
ports optimization [15, 20]. The optimization problem
can then be solved by employing an off-the-shelf ASP
solver.

3.1 CAUSAL DISCOVERY WITH
Σ-CONNECTION GRAPHS

Let M = (G+,X ,P, g) be a mSCM with G+ =
(U ∪̇V,E+) and I ⊆ V a subset. Consider a (stochas-
tic) perfect intervention do(ξI) that enforces XI = ξI
for an independent random variable ξI taking values in
XI . Denote the (unique) induced distribution of the in-
tervened mSCMMdo(ξI) by Pdo(I), and the causal graph
(i.e., induced σ-CG of the intervened mSCM on the ob-
served variables) by Gdo(I) = (G+

do(I))
U .

Under Pdo(I), the observed variables (Xv)v∈V satisfy
the σ-separation criterion w.r.t. Gdo(I) by Theorem 2.14.
For the purpose of causal discovery, we will in addition
assume σ-faithfulness (Definition 2.15), i.e., that each
conditional independence between observed variables is
due to a σ-separation in the causal graph. Taken together,
and by applying Corollary 2.21, we get for all subsets
W,Y,Z ⊆ V the equivalences:

XW ⊥⊥
Pdo(I)

XY |XZ ⇐⇒ W
σ

⊥⊥
Gdo(I)

Y |Z

⇐⇒ W
σ

⊥⊥
(Gdo(I))

V \W∪Y∪Z
Z

Y.
(1)

If W = {w} and Y = {y} consist of a single node each,
the latter can be easily checked by testing whether w is
non-adjacent to y in (Gdo(I))

V \W∪Y ∪Z
Z .

3.2 CAUSAL DISCOVERY AS AN
OPTIMIZATION PROBLEM

Following [19], we formulate causal discovery as an op-
timization problem where a certain loss function is op-
timized over possible causal graphs. This loss function
sums the weights of all the inputs that are violated as-
suming a certain underlying causal graph.
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The input for the algorithm is a list S =(
(wj , yj , Zj , Ij , λj)

)n
j=1

of weighted conditional
independence statements. Here, the weighted statement
(wj , yj , Zj , Ij , λj) with wj , yj ∈ V , Zj , Ij ⊆ V ,
and λj ∈ R := R ∪ {−∞,+∞} encodes that
Xwj ⊥⊥ Pdo(XIj

) Xyj |XZj holds with confidence λj ,
where a finite value of λj gives a “soft constraint” and a
value of λj = ±∞ imposes a “hard constraint”. Positive
weights encode that we have empirical support in favor
of the independence, whereas negative weights encode
empirical support against the independence (in other
words, in favor of dependence).

As in [19], we define a loss function that measures the
amount of evidence against the hypothesis that the data
was generated by an mSCM with causal graph G, by
simply summing the absolute weights of the input state-
ments that conflict with G under the σ-Markov and σ-
faithfulness assumptions:

L(G,S)

:=
∑

(wj ,yj ,Zj ,Ij ,λj)∈S
λj(1λj>0 − 1wj ⊥⊥ σGdo(Ij)

yj |Zj )

(2)

where 1 is the indicator function. This loss function dif-
fers from the one used in [19] in that we use σ-separation
instead of d-separation. Causal discovery can now be for-
mulated as the optimization problem:

G∗ = arg min
G∈G(V )

LR(G,S) (3)

where G(V ) denotes the set of all possible causal graphs
with variables V .

The optimization problem (3) may have multiple optimal
solutions, because the underlying causal graph may not
be identifiable from the inputs. Nonetheless, some of the
features of the causal graph (e.g., the presence or absence
of a certain directed edge) may still be identifiable. We
employ the method proposed by [21] for scoring the con-
fidence that a certain feature f is present by calculating
the difference between the optimal losses under the ad-
ditional hard constraints that the feature f is present vs.
that the feature f is absent in G.

In our experiments, we will use the weights proposed
in [21]: λj = log pj − logα, where pj is the p-value
of a statistical test with independence as null hypothe-
sis, and α is a significance level (e.g., 1%). This test
is performed on the data measured in the context of the
(stochastic) perfect intervention Ij . These weights have
the desirable property that independences typically get a
lower absolute weight than strong dependences. For the
conditional independence test, we use a standard partial

correlation test after marginal rank-transformation of the
data so as to obtain marginals with standard-normal dis-
tributions.

3.3 FORMULATING THE OPTIMIZATION
PROBLEM IN ASP

In order to calculate the loss function (2), we make use of
Corollary 2.21 to reduce the σ-separation test to a sim-
ple non-adjacency test in a conditioned and marginalised
σ-CG, as in (1). We do this by encoding σ-CGs, Theo-
rem 2.20 and the marginalisation and conditioning oper-
ations on σ-CGs (Definitions 2.18 and 2.19) in ASP. The
details of the encoding are provided in the Supplemen-
tary Material.6 The optimization problem in (3) can then
be solved straightforwardly by running an off-the-shelf
ASP solver with as input the encoding and the weighted
independence statements.

A more precise statement of the following result is pro-
vided in the Supplementary Material. The proof is basi-
cally the same as the one given in [21].
Theorem 3.1. The algorithm for scoring features f is
sound for oracle inputs and asymptotically consistent un-
der mild assumptions.

4 EXPERIMENTS

4.1 CONSTRUCTING MSCMS AND SAMPLING
FROM MSCMS

To construct a modular structural causal model (mSCM)
in practice we need to specify the compatible system of
functions (gS)S∈L(G). The following Theorem is helpful
(and a direct consequence of Banach’s fixed point theo-
rem).
Theorem 4.1. Consider the functions g{v} for the trivial
loops {v} ∈ L(G), v ∈ V and assume the following
contractivity condition:

For every non-trivial loop S ∈ L(G) and for every
value x

PaG
+

(S)\S the multi-dimensional function:

x′S 7→
(
g{v}(x

′
S∩PaG

+
(v)\{v}, xPaG

+
(v)\S)

)
v∈S

is a contraction, i.e. Lipschitz continuous with Lip-
schitz constant L(x

PaG
+

(S)\S) < 1 w.r.t. a suitable
norm || · ||.

Then all the functions gS for the non-trivial loops S ∈
L(G) exist, are unique and g = (gS)S∈L(G) forms a

6The full source code for the algorithm and to reproduce
our experiments is available under an open source license from
https://github.com/caus-am/sigmasep.
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globally compatible system.
More constructively, for every value x

PaG
+

(S)\S and ini-

tialization x(0)
S the iteration scheme (using vector nota-

tions):

x
(t+1)
S := (g{v})v∈S(x

(t)
S , x

PaG
+

(S)\S)

converges to a unique limit vector xS (for t → ∞ and
independent of x(0)

S ). gS is then given by putting:

gS(x
PaG

+
(S)\S) := xS .

This provides us with a method for constructing very
general non-linear mSCMs (e.g. neural networks, see
Section C in Supplementary Material) and to sample
from them: by sampling xU from the external distribu-
tion and then apply the above iteration scheme until con-
vergence for all loops, yielding the limit xV as one data
point.

4.2 RESULTS ON SYNTHETIC DATA

In our experiments we will—due to computational
restrictions—only allow for d = 5 observed nodes and
k = 2 additional latent confounders. We sample edges
independently with a probability of p = 0.3. We
model the non-linear function g{v} as a neural network
with tanh activation, bias terms that have a normal dis-
tribution with mean −0.5 and standard deviation 0.2,
and weights sampled uniformly from the L1-unit ball
to satisfy the contraction condition of Theorem 4.1 (see
also Supplementary Material, Section C). We simulate
0–5 single-variable interventions with random (unique)
targets. For each intervened model we sample from
standard-normal noise terms and compute the observa-
tions. To also detect weak dependencies in cyclic mod-
els we allow for n = 104 samples in each such model for
each allowed intervention. We then run all possible con-
ditional independence tests between every pair of single
nodes and calculate their p-values. We used α = 10−3

as the threshold between dependence and independence.
For computational reasons we restrict to partial correla-
tion tests of marginal Gaussian rank-transforms of the
data. These tests are then fed into the ASP solver to-
gether with our encoding of the optimization problem
(3). We query the ASP solver for the confidence for the
absence or presence of each possible directed and bidi-
rected edge. We simulate 300 models and aggregate re-
sults, using the confidence scores to compute ROC- and
PR-curves for features. Figure 4 shows that, as expected,
our algorithm recovers more directed edges of the under-
lying causal graph in the simulation setting as the num-
ber of single-variable interventions increases. More re-
sults (ROC- and PR-curves for directed edges and con-

founders for different numbers of single-variable inter-
ventions and for different encodings) are provided in the
Supplementary Material.
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Figure 4: The ROC curves for identifying directed edges.
See also figures 6 and 7 in the Supplementary Material.

5 CONCLUSION

We introduced σ-connection graphs (σ-CG) as a gener-
alization of the d-connection graphs (d-CG) of [19] and
extended the notion of σ-separation that was introduced
in [12] to σ-CGs. We showed how σ-CGs behave under
marginalisation and conditioning. This provides a graph-
ical representation of how conditional independencies of
modular structural causal models (mSCMs) behave un-
der these operations. We provided a sufficient condi-
tion that allows constructing mSCMs and sampling from
them. We extended the algorithm of [19] to deal with
the more generally applicable notion of σ-separation in-
stead of d-separation, thereby obtaining the first algo-
rithm for causal discovery that can deal with cycles, non-
linearities, latent confounders and a combination of data
sets corresponding to observational and different inter-
ventional settings. We illustrated the effectiveness of
the algorithm on simulated data. In this work, we re-
stricted attention to (stochastic) perfect (“surgical”) in-
terventions, but a straightforward extension to deal with
other types of interventions and to generalize the idea of
randomized controlled trials can be obtained by apply-
ing the JCI framework [23]. In future work we wish to
improve our algorithm to also handle selection bias, be-
come more scalable and apply it to real world data sets.
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Abstract

We consider the structured-output prediction
problem through probabilistic approaches and
generalize the “perturb-and-MAP” framework
to more challenging weighted Hamming losses,
which are crucial in applications. While in
principle our approach is a straightforward
marginalization, it requires solving many re-
lated MAP inference problems. We show that
for log-supermodular pairwise models these op-
erations can be performed efficiently using the
machinery of dynamic graph cuts. We also pro-
pose to use double stochastic gradient descent,
both on the data and on the perturbations, for
efficient learning. Our framework can naturally
take weak supervision (e.g., partial labels) into
account. We conduct a set of experiments on
medium-scale character recognition and image
segmentation, showing the benefits of our algo-
rithms.

1 INTRODUCTION

Structured-output prediction is an important and chal-
lenging problem in the field of machine learning. When
outputs have a structure, often in terms of parts or el-
ements (e.g., pixels, sentences or characters), methods
that do take it into account typically outperform more
naive methods that consider outputs as a set of indepen-
dent elements. Structured-output methods based on opti-
mization can be broadly separated in two main families:
max-margin methods, such as structured support vector
machines (SSVM) (Taskar et al., 2003; Tsochantaridis
et al., 2005) and probabilistic methods based on maximum
likelihoods such as conditional random fields (CRF) (Laf-
ferty et al., 2001).

Structured-output prediction faces many challenges:

(1) on top of large input dimensions, problems also have
large outputs, leading to scalability issues, in particular
when prediction or learning depends on combinatorial
optimization problems (which are often polynomial-time,
but still slow given they are run many times); (2) it is often
necessary to use losses which go beyond the traditional
0-1 loss to shape the behavior of the learned models to-
wards the final evaluation metric; (3) having fully labelled
data is either rare or expensive and thus, methods should
be able to deal with weak supervision.

Max-margin methods can be used with predefined losses,
and have been made scalable by several recent contribu-
tions (see, e.g., Lacoste-Julien et al., 2013, and references
therein), but do not deal naturally with weak supervision.
However, a few works (Yu and Joachims, 2009; Kumar
et al., 2010; Girshick et al., 2011) incorporate weak super-
vision into the max-margin approach via the CCCP (Yuille
and Rangarajan, 2003) algorithm.

The flexibility of probabilistic modeling naturally allows
(a) taking into consideration weak supervision and (b)
characterizing the uncertainty of predictions, but it comes
with strong computational challenges as well as a non-
natural way of dealing with predefined losses beyond
the 0-1 loss. The main goal of this paper is to provide
new tools for structured-output inference with probabilis-
tic models, thus making them more widely applicable,
while still being efficient. There are two main techniques
to allow for scalable learning in CRFs: stochastic opti-
mization (Vishwanathan et al., 2006) and piecewise train-
ing (Sutton and McCallum, 2005, 2007; Kolesnikov et al.,
2014); note that the techniques above can also be used
for weak supervision (and we reuse some of them in this
work).

Learning and inference in probabilistic structured-output
models recently received a lot of attention from the re-
search community (Bakir et al., 2007; Nowozin and Lam-
pert, 2011; Smith, 2011). In this paper we consider
only models for which maximum-a posteriori (MAP)
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inference is feasible (a step often referred to as decod-
ing in max-margin formulations, and which typically
makes them tractable). A lot of efforts were spent to
explore MAP-solvers algorithms for various problems,
leveraging various structures, e.g., graphs of low tree-
width (Bishop, 2006; Wainwright and Jordan, 2008; Son-
tag et al., 2008; Komodakis et al., 2011) and function
submodularity (Boros and Hammer, 2002; Kolmogorov
and Zabih, 2004; Bach, 2013; Osokin and Vetrov, 2015).

Naturally, the existence of even an exact and efficient
MAP-solver does not mean that the partition function (a
key tool for probabilistic inference as shown below) is
tractable to compute. Indeed, the partition function com-
putation is known to be #P -hard (Jerrum and Sinclair,
1993) in general. For example, MAP-inference is efficient
for log-supermodular probabilistic models, while com-
putation of their partition function is not (Djolonga and
Krause, 2014).

For such problems where MAP-inference is efficient, but
partition function computation is not, “perturb-and-MAP”
ideas such as proposed by Papandreou and Yuille (2011);
Hazan and Jaakkola (2012) are a very suitable treatment.
By adding random perturbations, and then performing
MAP-inference, they can lead to estimates of the partition
function. In Section 2, we review the existing approaches
to the partition function approximation, parameter learn-
ing and inference.

An attempt to learn parameters via “perturb-and-MAP”
ideas was made by Hazan et al. (2013), where the au-
thors have developed a PAC-Bayesian-flavoured approach
for the non-decomposable loss functions. While the pre-
sented algorithm has something in common with ours
(gradient descent optimization of the objective upper
bound), it differs in the sense of the objective function
and the problem setup, which is more general but that
requires a different (potentially with higher variance) es-
timates of the gradients. Such estimates are usual in
reinforcement learning, e.g., the log-derivative trick from
the REINFORCE algorithm (Williams, 1992).

The goal of this paper is to make the “perturb-and-MAP”
technique applicable to practical problems, in terms of (a)
scale, by increasing the problem size significantly, and (b)
losses, by treating structured losses such as the Hamming
loss or its weighted version, which are crucial to obtaining
good performance in practice.

Overall, we make the following contributions:

– In Section 3, we generalize the “perturb-and-MAP”
framework to more challenging weighted Hamming
losses which are commonly used in applications. In
principle, this is a straightforward marginalization but
this requires solving many related MAP inference prob-

lems. We show that for graph cuts (our main inference
algorithm for image segmentation), this can be done
particularly efficiently. Besides that, we propose to use
a double stochastic gradient descent, both on the data
and on the perturbations.

– In Section 4, we show how weak supervision (e.g., par-
tial labels) can be naturally dealt with. Our method in
this case relies on approximating marginal probabili-
ties that can be done almost at the cost of the partition
function approximation.

– In Section 5, we conduct a set of experiments on
medium-scale character recognition and image segmen-
tation, showing the benefits of our new algorithms.

2 PERTURB-AND-MAP

In this section, we introduce the notation and review the
relevant background. We study the following probabilistic
model (a.k.a. a Gibbs distribution) over a discrete product
space Y = Y1 × · · · × YD,

P (y) =
1

Z(f)
ef(y), (1)

which is defined by a potential function f : Y → R.
The constant Z(f) =

∑
y∈Y e

f(y) is called the partition
function and normalizes P (y) to be a valid probability
function, i.e., to sum to one. Z(f) is in general intractable
to compute as the direct computation requires summing
over exponentially (in D) many elements.

Various partition function approximations methods have
been used in parameter learning algorithms (Parise and
Welling, 2005), e.g., mean-field (MF, Jordan et al., 1999),
tree-reweighted belief propagation (TRW, Wainwright
and Jordan, 2008) or loopy belief propagation (LBP,
Weiss, 2001). We will work with the upper bound on
the partition function proposed by Hazan and Jaakkola
(2012) as it allows us to approximate the partition func-
tion via MAP-inference, calculate gradients efficiently,
approximate marginal probabilities and guarantee tight-
ness for some probabilistic models. We introduce this
class of techniques below.

2.1 Gumbel perturbations

Recently, Hazan and Jaakkola (2012) provided a general-
purpose upper bound on the log-partition function
A(f) = logZ(f), based on the “perturb-and-MAP”
idea (Papandreou and Yuille, 2011): maximize the po-
tential function perturbed by Gumbel-distributed noise.1

1The Gumbel distribution on the real line has cumulative
distribution function F (z) = exp(− exp(−(z + c))), where c
is the Euler constant.
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Proposition 1 (Hazan and Jaakkola (2012), Corollary 1).
For any function f : Y → R, we have A(f) 6 AG(f),
where

AG(f) = Ez1,...,zD∼Gumbel

[
max
y∈Y

(
f(y)+

D∑

d=1

zd(yd)
)]
.

(2)
Gumbel denotes the Gumbel distribution and
{zd(yd)}d=1,...,D

yd∈Yd is a collection of independent
Gumbel samples.

The bound is tight when f(y) is a separable function (i.e.,
a sum of functions of single variables), and the tightness
of this bound was further studied by Shpakova and Bach
(2016) for log-supermodular models (where f is super-
modular). They have shown that the bound AG is always
lower (and thus provide a better bound) than the “L-field”
bound proposed by Djolonga and Krause (2014, 2015),
which is itself based on separable optimization on the
base polytope of the associated supermodular function.

The partition function bound AG can be approximated
by replacing the expectation by an empirical average.
That is, to approximate it we need to solve a large num-
ber (as many as the number of Gumbel samples used
to approximate the expectation) of MAP-like problems
(i.e., maximizing f plus a separable function) which are
feasible by our assumption. Strictly speaking, the MAP-
inference is NP-hard in general, but firstly, it is much eas-
ier than the partition function calculation, secondly, there
are solvers for special cases, e.g., for log-supermodular
models (which include functions f which are negatives
of cuts (Kolmogorov and Zabih, 2004; Boykov and Kol-
mogorov, 2004)) and those solvers are often efficient
enough in practice. In this paper, we will focus primarily
on a subcase of supermodular potentials, namely nega-
tives of graph cuts.

2.2 Parameter learning and Inference

In the standard supervised setting of structured prediction,
we are givenN pairs of observations D = {(xn, yn)}Nn=1,
where xn is a feature representation of the n-th object and
yn ∈ Y = Y1 × · · · × YDn is a structured vector of in-
terest (e.g., a sequence of tags, a segmentation MAP or a
document summarization representation). In the standard
linear model, the potential function f(y|x) is represented
as a linear combination: f(y|x) = wTΨ(x, y), where
w is a vector of weights and the structured feature map
Ψ(x, y) contains the relevant information for the feature-
label pair (x, y). To learn the parameters using the prede-
fined probabilistic model, one can use the (regularized)
maximum likelihood approach:

max
w

1

N

N∑

n=1

logP (yn|xn, w)− λ

2
‖w‖2, (3)

where λ > 0 is a regularization parameter and the likeli-
hood P (y|x,w) is defined as exp(f(y|x))

Z(f,x) = exp(f(y|x)−
A(f, x)), whereA(f, x) is the log-partition function (that
now depends on x, since we consider conditional models).

Hazan and Jaakkola (2012) proposed to learn parame-
ters based on the Gumbel bound AG(f, x) instead of the
intractable log-partition function:

logP (y|x) = f(y|x)−A(f, x) ≤ f(y|x)−AG(f, x)

= f(y|x)− Ez
[

max
y∈Y

{ D∑

d=1

zd(yd) + f(y)
}]

≈ f(y|x)− 1

M

M∑

m=1

max
y(m)∈Y

{ D∑

d=1

z
(m)
d (y

(m)
d ) + f(y(m))

}
.

Hazan and Jaakkola (2012) considered the fully-
supervised setup where labels yn were given for all data
points xn. Shpakova and Bach (2016) developed the ap-
proach, but also considered a setup with missing data (part
of the labels yn are unknown) for the small Weizmann
Horse dataset (Borenstein et al., 2004). Leveraging the
additional stochasticity present in the Gumbel samples,
Shpakova and Bach (2016) extend the use of stochastic
gradient descent, not on the data as usually done, but on
the Gumbel randomization. It is equivalent to the choice
of parameter M = 1 for every gradient computation (but
with a new Gumbel sample at every iteration). In our
work, we use the stochastic gradient descent in a regime
stochastic w.r.t. both the data and the Gumbel perturba-
tions. This allows us to apply the method to large-scale
datasets.

For linear models, we have f(y|x) = wTΨ(x, y) and
Ψ(x, y) is usually given or takes zero effort to compute.
We assume that the gradient calculation ∇wf(y|x) =
Ψ(x, y) does not add complexity to the optimization algo-
rithm. The gradient of logP (y|x) is equal to∇wf(y|x)−
∇w max

y∈Y

{∑D
d=1 zd(yd) + f(y|x)

}
= ∇wf(y|x) −

∇wf(y∗|x), where y∗ lies in arg max of the perturbed op-
timization problem. The gradient of 〈logP (y|x)〉 (the av-
erage over a subsample of data, typically a mini-batch) has
the form 〈∇wf(y|x)〉−〈∇wf(y∗|x)〉 = 〈Ψ(x, y)〉emp.−
〈Ψ(x, y∗)〉, where 〈Ψ(x, y)〉emp. denotes the empirical
average over the data. Algorithm 1 contains this double
stochastic gradient descent (SGD) with stochasticity w.r.t.
both sampled data and Gumbel samples. The choice of
the stepsize γh = 1

λh is standard for strongly-convex
problems (Shalev-Shwartz et al., 2011).

Note, that the classic log-likelihood formulation (3) is
implicitly considering a “0-1 loss” l0-1(y, ŷ) = [y 6=
ŷ] as it takes probability of the entire output object yn

conditioned on the observed feature representation xn.

However, in many structured-output problems 0-1 loss
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Algorithm 1 Double SGD: stochasticity w.r.t. data and
Gumbel samples

Input: dataset D = {(xn, yn)}Nn=1, number of iter-
ations H , size of the mini-batch T , stepsize se-
quence {γh}Hh=1, regularization parameter λ

Output: model parameters w
1: Initialization: w = 0
2: for h = 1 to H do
3: Sample data mini-batch of small size T (that is, T

pairs of observations)
4: Calculate sufficient statistics 〈Ψ(x, y)〉emp. from

the mini-batch
5: for t=1 to T do
6: Sample zd(yd) as independent Gumbels for all

yd ∈ Yd and for all d

7: Find y∗ ∈ arg maxy∈Y
{ D∑
d=1

zd(yd) + f(y)
}

8: end for
9: Make a gradient step:

wh+1 → wh+γh

(
〈Ψ(x, y)〉emp.−〈Ψ(x, y∗)〉−λwh

)

10: end for

evaluation is not an adequate performance measure. The
Hamming or weighted Hamming losses that sum mistakes
across the D elements of the outputs, are more in demand
as they count misclassification per element.

2.3 Marginal probability estimation

Either at testing time (to provide an estimate of the un-
certainty of the model) or at training time (in the case of
weak supervision, see Section 4), we need to compute
marginal probabilities for a single variable yd out of the d
ones, that is,

P (yd|x) =
∑

y−d

P (y−d, yd|x),

where y−d is a sub-vector of y obtained by elimination
of the variable yd. Following Hazan and Jaakkola (2012)
and Shpakova and Bach (2016), this can be obtained by
taking m Gumbel samples and the associated maximizers
ym ∈ Y = Y1 × · · · × YD, and, for any particular d,
counting the number of occurrences in each possible value
in all the d-th components ymd of the maximizers ym.

While this provides an estimate of the marginal probabil-
ity, this is not an easy expression to optimize at it depends
on several maximizers of potentially complex optimiza-
tion problems. In the next section, we show how we can
compute a different (and new) approximation which is
easily differentiable and on which we can apply stochastic
gradient descent.

3 MARGINAL LIKELIHOOD

In this section, we demonstrate the learning procedure
for the element-decoupled losses. We consider the regu-
larized empirical risk minimization problem in a general
form:

max
w

1

N

N∑

n=1

`(w, xn, yn)− λ

2
‖w‖2, (4)

where `(w, x, y) can take various forms from Table 1
and λ is the regularization parameter. The choice of the
likelihood form is based on the problem setting such as
presence of missing data and the considered test-time
evaluation function.

3.1 Hamming loss

The Hamming loss is a loss function that counts misclas-
sification per dimension: lh(y, ŷ) = 1

D

∑D
d=1[yd 6= ŷd].

For this type of loss instead of the classic log-likelihood
objective it is more reasonable to consider the following
decoupling representation from Table 1:

`(w, x, y) =
D∑
d=1

logP (yd|x,w), (5)

where
P (yd|x,w) =

∑
y−d

exp(f(w, y−d|yd, x) − A(f, x))

= exp(B(f, yd, x)−A(f, x))

is the marginal probability of the single element
yd given the entire input x, and B(f, yd) =
log
∑
y−d

exp(f(w, y−d|yd)), where y−d ∈ Y1 ×
. . . Yd−1 × Yd+1 × · · · × YD. Thus, the log-marginal
probability may be obtained from the difference of two
log-partition functions (which we will approximate below
with Gumbel samples).

This idea of considering the marginal likelihood was pro-
posed by Kakade et al. (2002). Our contribution is to
consider the approximation by “perturb-and-MAP” tech-
niques. We thus have a new objective function `(w, x, y):
`(w, x, y) =

∑D
d=1 [(B(f, x, yd)−A(f, x))] , and now

the following approximation could be applied:

A(f) ≈ AG(f) = Ez
{

max
y∈Y

D∑

d=1

zd(yd) + f(y)
}
,

B(f |yd) ≈ BG(f |yd)

= Ez
{

max
y−d∈Y−d

D∑

s=1:s6=d
zs(ys) + f(y−d|yd)

}
.

It is worth noting, that the approximation is not anymore
an upper bound of the marginal likelihood; moreover it
is a difference of convex functions. Remarkably, the ob-
jective function exactly matches the log-likelihood in the
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Table 1: Variants of the Objective Loss `(w, x, y) Function. {θd(yd)}Dd=1 are the weights of the weighted Hamming
loss, {qd(yd)}Dd=1 are the marginal probabilities P (yd|x).

Loss Labelled Data Unlabelled Data
0-1 logP (w, y|x) log

∑
y∈Y

P (w, y, x)

Hamming
D∑
d=1

logP (w, yd|xd)
D∑
d=1

∑
yd∈Yd

qd(yd) logP (w, yd|xd)

Weighted Hamming
D∑
d=1

θd(yd) logP (w, yd|xd)
D∑
d=1

∑
yd∈Yd

qd(yd)θd(yd) logP (w, yd|xd)

case of unary potentials (separable potential function) as
the log-likelihood function becomes the sum of marginal
likelihoods.

As noted, the objective `(w, x, y) is not convex anymore,
but it is presented as the difference of two convex func-
tions. We can still try to approximate with stochastic gra-
dient descent (which then only converges to a stationary
point, typically a local minimum). Algorithm 2 describes
the implementation details.

Algorithm 2 Double SGD for Marginal Likelihood

Input: dataset D = {(xn, yn)}Nn=1, number of iter-
ations H , size of the mini-batch T , stepsize se-
quence {γh}Hh=1, regularization parameter λ

Output: model parameters w
1: Initialization: w = 0
2: for h = 1 to H do
3: Sample data mini-batch of small size T (that is, T

pairs of observations)
4: for t=1 to T do
5: Sample zd(yd) as independent Gumbels for all

yd ∈ Yd and for all d

6: Find y∗A ∈ arg maxy∈Y
{ D∑
d=1

zd(yd) + f(y)
}

7: for d=1 to D do

8: Find y∗B ∈ arg max
y−d∈Y−d

{
D∑

s=1:s6=d
zs(ys) +

f(y−d|yd)}
9: end for

10: end for
11: Make a gradient step:

wh+1 → wh+γh

(〈
〈Ψ(x, y∗B)〉−Ψ(x, y∗A)

〉
−λwh

)

12: end for

Acceleration trick. Interestingly we can use the same
Gumbel perturbation realizations for approximating
AG(f) and BG(f |yd) through an empirical average. On
the one hand, this restriction should not influence on the
result as with a sufficient large averaging number M ,
AG(f) and BG(f |yd) converges to their expectations.
This is the same for stochastic gradients: on every itera-

tion, we use a different Gumbel perturbation, but we share
this one for the estimation of the gradients of AG(f) and
BG(f |yd). This allows us to save some computations
as shown below, while preserving convergence (the ex-
tra correlation added by using the same samples for the
two gradients does not change the unbiasedness of our
estimates).

Moreover, if y∗A has the same label value yd as the ground
truth, then the MAP inference problem for y∗A exactly
matches the one for y∗B (with the element yd fixed from
the ground truth). Then y∗A = y∗B and the corresponding
difference of gradients gives zero impact into the gradient
step. This fact allows us to reduce the number of MAP-
inference problems. We should thus calculate y∗B only
for those indices d that leads to a mismatch between d-th
label of y∗A and the ground truth one. Remarkably, during
the convergence to the optimal value, the reduction will
occur more often and decrease the execution time with
the number of iteration increase. Besides that, in the ex-
periments with graph cuts in Section 5 we use dynamic
graph cut algorithm for solving several optimization prob-
lems of similar structure (here D marginal probabilities
calculation). We describe it in more details in Section 3.3.

3.2 Weighted Hamming loss

The weighted Hamming loss is used for performance
evaluation in the models, where each dimension has its
own level of importance, e.g., in an image segmentation
with superpixels, proportional to the size of superpix-
els. It differs from the usual Hamming loss in this way:
lh(y, ŷ) = 1

D

∑D
d=1 θd(yd)[yd 6= ŷd].

Thus we consider a dimension-weighted model as it can
be adjusted for the problem of interest that gives the model
more flexibility. The optimization problem of interest is
transformed from the previous case by weighted multipli-
cation:

`(w, x, y) =

D∑

d=1

θd(yd) [(B(f, x, yd)−A(f, x))] . (6)

To justify this objective function, we notice that in the
case of unit weights, the weighted loss and objective
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function (6) match the loss and the objective from the
previous section. Furthermore, yd with a large weight
θd(yd) puts more importance towards making the right
prediction for this yd, and that is why we put more weight
on the d-th marginal likelihood. This corresponds to the
usual rebalancing used in binary classification (see, e.g.,
Bach et al., 2006, and references therein). Then, the
algorithm for this case duplicated the one for the usual
Hamming loss and the acceleration trick can be used as
well.

3.3 Scalable algorithms for graph cuts

As a classical efficient MAP-solver for pairwise potentials
problem we will use graph cut algorithms from Boykov
and Kolmogorov (2004). The function f(y|x) should
then be supermodular, i.e., with pairwise potentials, all
pairwise weights of w should remain negative.

In both Sections 3.1 and 3.2 we can apply the dynamic
graphcut algorithm proposed by Kohli and Torr (2007),
which is a modification of the Boykov-Kolmogorov graph-
cut algorithms. It is dedicated to situations when a se-
quence of graphcut problems with slightly different unary
potentials need to be solved. Then, instead of solving
them separately, we can use the dynamic procedure and
find the solutions for slightly different problems with less
costs. This makes graphcut scalable for a special class of
problems.

It can easily be seen that our sequence of problems
y∗B ∈ arg max

y−d∈Y−d
{ ∑
s=1:s6=d

zs(ys) + f(y−d|yd)} for

d = 1, . . . , D is a perfect application for the dynamic
graph cut algorithm. At each iteration we solve T sets of
graph cut problems, each of set contains 1 + at problems
solvable by the same dynamic cut, where at is the num-
ber of not matched pixels between y∗A and ground truth
yn. Finally, using acceleration trick and dynamic cuts
we reduce the gradient descent iteration complexity from∑T

t=1 (1 +Dt) graphcut problems to T dynamic graph
cut problems. We make the approach scalable and can
apply it for large datasets.

4 PARAMETER LEARNING IN THE
SEMISUPERVISED SETUP

In this section we assume the presence of objects with
unknown labels in the train dataset. We can separate
the given data in two parts: fully annotated data D1 =
{(xn, yn)}Nn=1 as in the supervised case and unlabeled
data D2 = {xl}Ll=1. Then, the optimal model parameter
w is a solution of the following optimization problem:

max
w

L1(w) + κL2(w)− λ

2
‖w‖2, (7)

where L1(w) =
∑N
n=1 `1(w, xn, yn), L2(w) =

∑L
l=1 `2(w, xl) and the parameter κ governs the impor-

tance of the unlabeled data. `1(w, xn, yn) can have a
form from the left column of the Table 1, and `2(w, xl)
from the right one.

Marginal calculations. It is worth reminding from Sec-
tion 2.3, that we can approximate marginal probabilities
q(y) of holding yd = k along with the partition function
approximation almost for free. This can be obtained by
taking m Gumbel samples and the associated maximizers
ym ∈ Y = Y1×· · ·×YD, and, for any particular d, count-
ing the number of occurrences in each possible value in
all the d-th components ymd of the maximizers ym. The
approximation accuracy depends on number of samples
M . To calculate this we already need to have a trained
weight vector w which we can obtained from the fully
annotated dataset D = {(xn, yn}Nn=1). We will calcu-
late q(y) for the unlabelled data D2 = {xl}ll=1. Those
marginal probabilities contain much more information
than MAP inference for the new data as can be seen on
the example in Figure 1. We believe that proper use of the
marginal probabilities will help to gain better result than
using labels from the MAP inference (which we observe
in experiments).

It is worth noting that for the inference and learning
phases we use a different number of Gumbel samples.
During the learning phase, we incorporate the double
stochastic procedure and use 1 sample per 1 iteration
and 1 label. For the marginal calculation (inference) we
should use large number of samples (e.g. 100 samples) to
get accurate approximation.

Algorithm 3 Sketch for the semisupervised algorithm.

Input: fully annotated dataset D1 = {(xn, yn)}Nn=1,
number of iterations H , size of the mini-batch T ,
stepsize sequence {γh}Hh=1, regularization param. λ

Output: model parameters w1

1: Initialization: w1 = 0
2: Find w1 via Algorithm 2

Input: fully annotated dataset D1 = {(xn, yn)}Nn=1,
unlabeled dataset D2 = {xl}Ll=1, number of it-
erations H , size of the mini-batch T , stepsize se-
quence {γh}Hh=1, regularization parameter λ

Output: model parameters w1,2

3: Initialization: w1,2 = w1

4: Calculate: q(y) for unlabeled data via w1

5: Find w1,2 via mixture of Algorithms 2 and 4

We provide the sketch of the proposed optimization
algorithm in Algorithm 3. The optimization of L1

is fully supervised and this can be done with tools
of the previous section. The optimization of L2 re-
quires the specification of `2(w, x), which we take as
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`2(w, x) =
D∑
d=1

∑
yd∈{0,...,K}

qd(yd) logP (w, yd|xd) =

D∑
d=1

∑
yd∈{0,...,K}

qd(yd)B(f |yd)−DA(f), that is, the av-

erage of the fully supervised cost function with labels
generated from the model q. The term L2 corresponds to
the common way of treating unlabeled data through the
marginal likelihood. The sub-algorithm for the optimiza-
tion of `2 is presented as Algorithm 4.

Algorithm 4 Double SGD for Unsupervised Learning

Input: unlabeled dataset D2 = {xl}Ll=1, parameter es-
timate w1, number of iterations H , size of the mini-
batch T , stepsize sequence {γh}Hh=1, regularization
parameter λ

Output: model parameters w1,2

1: Initialization: w1,2 = w1

2: for h = 1 to H do
3: Sample data mini-batch of small size T (that is, T

pairs of observations)
4: for t=1 to T do
5: Sample zd(yd) as independent Gumbels for all

yd ∈ Yd and for all d

6: Find y∗A ∈ arg maxy∈Y
{ D∑
d=1

zd(yd) + f(y)
}

7: for d=1 to D and k=0 to K do

8: Find y∗B,d,k ∈ arg max
y−d∈Y−d

{
D∑

s=1:s 6=d
zs(ys) +

f(y−d|yd = k)}
9: end for

10: end for
11: Make a gradient step:

wh+1 → wh+γh

(〈
〈∑K

k=0 qd(k)Ψ(x, y∗B,d,k)〉−
Ψ(x, y∗A)

〉
− λwh

)

12: end for

Acceleration trick. Suppose, that yd can take values in
the range {0, . . . ,K}. Again we use the same Gumbel
perturbation for estimating AG(f) and BdkG(f |yd = k)
for all k ∈ {0, . . . ,K}. The consequence of using the
same perturbations is that if the d-th label yd of y∗A takes
value k, than the corresponding d-th gradient will cancel
out with one of the y∗Bk. Thus, we will calculate only K
(instead of K+1 labels) structured labels y∗Bl(l 6= k) and
reduce the number of optimization problems to be solved.
Dynamic graph cuts are applied here as well.

Finally in Table 1 we see the relationships between the
proposed objective functions. Firstly, the known labels
yn in the supervised case are equivalent to the binary
marginal probabilities q(yn) ∈ {0, 1}Dn . Secondly, the
unit weights θd(yd) = 1 in the weighted Hamming loss
are equivalent to the basic Hamming loss.

Partial labels. Another case that we would like to men-
tion is annotation with partial labels, e.g., in an image
segmentation application, the bounding boxes of the
images are given. Then denote ygiven as the set of
given labels. In this setup the marginal probabilities
become conditional ones q(yd|ygiven) and to approxi-
mate this we need to solve several conditional MAP-
inference problems. The objective function `2(w) =∑
d

∑
yd∈{0,...,K}

qd(yd|ygiven) logP (w, yd|xd, ygiven) re-

mains feasible to optimize.

5 EXPERIMENTS

The experimental evaluation consists of two parts: Section
5.1 is dedicated to the chain model problem, where we
compare the different algorithms for supervised learning;
Section 5.2 is focused on evaluating our approach for the
pairwise model on a weakly-supervised problem.

5.1 OCR dataset

The given OCR dataset from Taskar et al. (2003) consists
of handwritten words which are separated in letters in
a chain manner. The OCR dataset contains 10 folds of
∼ 6000 words overall. The average length of the word is
∼ 9 characters. Two traditional setups of these datasets
are considered: 1) “small” dataset when one fold is con-
sidered as a training data and the rest is for test, 2) “large”
dataset when 9 folds of 10 compose the train data and
the rest is the test data. We perform cross-validation over
both setups and present results in Table 2.

As the MAP oracle we use the dynamic programming al-
gorithm of Viterbi (1967). The chain structure also allows
us to calculate the partition function and marginal proba-
bilities exactly. Thus, the CRF approach can be applied.
We compare its performance with the structured SVM
from Osokin et al. (2016), perturb-and-MAP (Hazan and
Jaakkola, 2012) and the one we propose for marginal
perturb-and-MAP (as Hamming loss is used for evalua-
tion).

The goal of this experiment is to demonstrate that the CRF
approach with exact marginals shows a slightly worse
performance as the proposed one with approximated
marginals but correct Hamming loss.

Table 2: OCR Dataset. Performance Comparison.

method small dataset large dataset
CRF 19.5± 0.4 13.1± 0.8

S-SVM+BCFW 19.5± 0.4 12.0± 1.1
perturb&MAP 19.1± 0.3 12.5± 1.1

marg. perturb&MAP 19.1± 0.3 12.8± 1.2
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For the OCR dataset, we performed 10-fold cross-
validation and the numbers of Table 2 correspond to the
averaged loss function (Hamming loss) values over the 10
folds. As we can see from the result in Table 2, the approx-
imate probabilistic approaches slightly outperforms the
CRF on both datasets. The Gumbel approximation (with
or without marginal likelihoods) does lead to a better esti-
mation for the Hamming loss. Note that S-SVM performs
better in the case of a larger dataset, which might be ex-
plained by stronger effects of model misspecification that
hurts probabilistic models more than S-SVM (Pletscher
et al., 2011).

5.2 HorseSeg dataset

The problem of interest is foreground/background super-
pixel segmentation. We consider a training set of images
{xn}n=1...N that contain different numbers of superpix-
els. A hard segmentation of the image is expressed by
an array yn ∈ {0, 1}Dn , where Dn is the number of
superpixels for the n-th image.

The HorseSeg dataset was created by Kolesnikov et al.
(2014) and contains horse images. The “small” dataset
has images with manually annotated labels and contains
147 images. The second “medium” dataset is partially
annotated (only bounding boxes are given) and contains
5974 images. The remaining “large” one has 19317 im-
ages with no annotations at all. A fully annotated hold
out dataset was used for the test stage. It consists of 241
images.

The graphical model is a pairwise model with loops. We
consider log-supermodular distribution and thus, the max
oracle is available as the graph cut algorithm by Boykov
and Kolmogorov (2004). Note that CRFs with exact in-
ference cannot be used here.

Following Kolesnikov et al. (2014), for the performance
evaluation the weighted Hamming loss is used, where
the weight is governed by the superpixel size and fore-
ground/background ratio in the particular image.

That is, lh(y, ŷ) = 1
D

∑D
d=1 θd(yd)[yd 6= ŷd], where

θd(yd) =





Vd
2Vforeground

, if yd = 1.

Vd
2Vbackground

, if yd = 0.

Vd is the size of superpixel d, Vbackground and
Vforeground are the sizes of the background and the fore-
ground respectively. In this way smaller object sizes have
more penalized mistakes.

Since we incorporate θ(y) into the learning process and
for its evaluation we need to know the background and
foreground sizes of the image, this formulation is only
applicable for the supervised case, where yd is given for

(a) original image (b) marginal inf. (c) MAP inf.

Figure 1: Example of the marginal and MAP inference for
an image from the HorseSeg database Kolesnikov et al.
(2014).

Table 3: HorseSeg Dataset. Performance Comparison.

method “small” “medium” “large”
S-SVM+BCFW 12.3 10.9 10.9
perturb&MAP 20.9 21.0 20.9

w.m. perturb&MAP 11.6 10.9 10.9

all superpixels. However, in this dataset we have plenty
of images with partial or zero annotation. For these set of
images D2 = {xl}Ll=1, we handle approximate marginal
probabilities qld associated to the unknown labels. Using
them we can approximate the foreground and background
volumes: V lforeground ≈

∑Dl

d=1 q
l
d and V lbackground ≈∑Dl

d=1(1− qld).

We provide an example of the marginal and MAP in-
ference in Figure 1. The difference of the information
compression between these two approaches is visually
comparable. We believe that the smoother and accurate
marginal approach should have a positive impact on the
result, as the uncertainty about the prediction is well prop-
agated.

As an example of the max-margin approaches we take
S-SVM+BCFW from the paper of Osokin et al. (2016)
which is well adapted to large-scale problems. For S-
SVM+BCFW and perturb-and-MAP methods we use
MAP-inference for labelling unlabelled data using w1

(see Section 4).

For the HorseSeg dataset (Table 3), the numbers cor-
respond to the averaged loss function (weighted Ham-
ming loss) values over the hold out test dataset. The
results of the experiment in Table 3 demonstrate that the
approaches taking into account the weights of the loss
θd(·) (S-SVM+BCFW and w.m. perturb&MAP) give a
much better accuracy than the regular perturb&MAP. S-
SVM+BCFW uses loss-augmented inference and thereby
augments the weighted loss structure into the learning
phase. Weighted marginal perturb-and-MAP plugs the
weights of the weighted Hamming loss inside the objec-
tive log-likelihood function. Basic perturb-and-MAP does
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Table 4: Reduced HorseSeg Dataset. Performance Com-
parison.

method 10% of “medium” “medium”
“small” with bbox w/o bbox

S-SVM+BCFW 17.3 14.0 16.1
perturb&MAP 23.2 23.4 23.0
w.m. p.&MAP 18.1 13.7 14.4

not use the weights θd(·) and loses a lot of accuracy. This
shows us that the predefined loss for performance evalua-
tion has a significant influence on the result and should
be taken into account.

Small dataset size influence. We now investigate the
effect of the reduced “small” dataset. We preserve the
setup from the previous section and the only thing that
we change is N , the size of the “small” fully-annotated
dataset D1 = {(xn, yn)}Nn=1. The new “small” dataset
is 10% the size of the initial one, i.e., only 14 images.
By taking a small labelled dataset, we test the limit of
supervised learning when few labels are present.

For the HorseSeg dataset (Table 4), the numbers corre-
spond to the averaged loss function (weighted Hamming
loss) values over the hold out test dataset. The results of
this experiments are presented in Table 4. In this setup, the
probabilistic approach “weighted marginal perturb-and-
MAP” gains more than max-margin “S-SVM+BCFW”.
This could happen because of very limited fully super-
vised data. The learned parameter w1 gives a noisy model
and this noisy model produces a lot of noisy labels for
the unlabeled data, while weighted perturb-and-MAP is
more cautious as it uses probabilities that contain more
information (see Figure 1).

5.2.1 Acceleration trick impact

We now compare the execution time of the algorithm
with and without our acceleration techniques (namely
Dynamic Cuts [DC] and Gumbel Reduction[ GR]) to
get an idea on how helpful they are. Table 5 shows the
execution time for calculating all y∗B (Algorithm 2) for
different numbers of iterations on the HorseSeg small
dataset. We conclude that the impact of DC does not
depend on the total number of iterations always leading to
acceleration around 1.3. For GR, acceleration goes from
3.5 for 100 iterations to 7.6 for one million iterations.
Overall, we get acceleration of factor around 10 for one
million iterations.

5.3 Experiments analysis
The experiments results mainly show that not taking into
account the right loss in the learning procedure is detri-
mental to probabilistic technique such as CRFs, while

method \ it 100 103 104 105 106

basic 0.9 9.2 89.5 900 8993
DC 0.7 6.9 69.0 696 7171
GR 0.3 2.1 15.5 133.4 1186

DC+GR 0.2 1.5 10.9 83.5 727

Table 5: Execution time comparison in seconds. HorseSeg
small dataset.

taking it into account (our novelty) improves results. Also,
Tables 2 and 3 show that the proposed methods achieves
(and sometimes surpasses) the level performance of the
max-margin approach (with loss-augmented inference).

Further, we observed that the size of the training set influ-
ences the SSVM and perturb-and-MAP approaches differ-
ently. For smaller datasets, the max-margin approaches
tend to lose information due to usage of the hard estimates
for the unlabelled data (e.g. in Table 4: 16.1 against 14.4
for “medium” dataset without bounding boxes labeling).

Table 4 reports an experiment about using weakly-labeled
data at the training stage (the results on the partially an-
notated “medium” dataset). This experiment studied the
impact on the final prediction quality of the training set
of “medium” size on top of the reduced “small” fully-
labelled set. The results of Table 4 mean that the usage
of our approach adopted to the correct test measure out-
performs the default perturb-and-MAP by a large margin.
Our approach also significantly outperformed the compa-
rable baseline of SSVM due to reduced size of the “small”
fully-labelled set.

6 CONCLUSION

In this paper, we have proposed an approximate learn-
ing technique for problems with non-trivial losses. We
were able to make marginal weighted log-likelihood for
perturb-and-MAP tractable. Moreover, we used it for
semi-supervised and weakly-supervised learning. Finally,
we have successfully demonstrated good performance
of the marginal-based and weighted-marginal-based ap-
proaches on the middle-scale experiments. As a future
direction, we can go beyond the graph cuts and image seg-
mentation application and consider other combinatorial
problems with feasible MAP-inference, e.g., matching.
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Abstract

We present the first framework for Gaussian-
process-modulated Poisson processes when
the temporal data appear in the form of panel
counts. Panel count data frequently arise when
experimental subjects are observed only at dis-
crete time points and only the numbers of oc-
currences of the events between subsequent
observation times are available. The exact
occurrence timestamps of the events are un-
known. The method of conducting the efficient
variational inference is presented, based on the
assumption of a Gaussian-process-modulated
intensity function. We derive a tractable lower
bound to alleviate the problems of the in-
tractable evidence lower bound inherent in the
variational inference framework. Our algo-
rithm outperforms classical methods on both
synthetic and three real panel count sets.

1 INTRODUCTION

Background and issues. Temporal data frequently
arise as outcomes of an underlying temporal point pro-
cess (Kingman, 1993) in continuous time. Temporal data
can generally be classified into two types. One is from
experiments that monitor subjects in a continuous fash-
ion; and thereby the exact timestamps of all occurrences
of the events are fully observable. These data are usually
referred to as recurrent event data (Cook and Lawless,
2007). On the other hand, we have the so-called panel
count data (Sun and Zhao, 2016), which is the focus of
our paper. Under this framework, subjects are examined
or observed only at discrete time-points and thus give
only the numbers of occurrences of the events between
subsequent observation times.

Characteristics of panel count data. A common
characteristic of the panel count data is that we only have
the numbers of occurrences between subsequent obser-
vation times. In particular, the exact occurrence times of
the events are unknown. Hence, panel counts are non-
negative integers and they represent the number of oc-
currences of events within a fixed period. Classical ex-
amples often arise in the clinical trials (Thall and Lachin,
1988) where patients are required to go back to the hos-
pital after a certain treatment and only the numbers of
symptoms between subsequent visits are recorded, such
as the number of vomits or new tumors. Figure 1 gives
an example of panel count data.

Objective of this study. The purpose of this paper is to
present the variational Bayesian inference on Gaussian-
process-modulated Poisson processes (GP3) that permits
panel data observations.

There have been extensive studies on GP3 models and
various inference algorithms are introduced for recur-
rent event data when timestamps of the events are fully
observable, e.g., Monte Carlo sampling (Diggle et al.,
2013; Adams et al., 2009), Laplace approximation (Flax-
man et al., 2015) and variational inference (Lloyd et al.,
2015). Among these approaches, the variational infer-
ence method (Lloyd et al., 2015) provides a computa-
tionally efficient estimate of the intensity function and
does not require a careful discretization of the underly-
ing space.

To the best of our knowledge, however, there has not
been any study carried out on the variational inference
of the GP3 model when the data come in the form of
panel counts. Our ultimate goal is to infer the underlying
intensity function in the panel count data.

Related statistical works. Based on the maximum
likelihood criterion, several non-parametric estima-
tors have been proposed to infer the underlying
intensity function (Sun and Zhao, 2016), e.g., a
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Figure 1: Bladder Cancer Data Set. This figure illus-
trates the panel count data from the patients. For the kth
subject (or the kth patient), his/her observation window
X (k) is divided into disjoint intervals. The ith interval is
denoted as X (k)

i . For example, patient No. 4 (k = 4)
has an observation window which is divided into 8 dis-
joint intervals, i.e.,

⋃8
i=1 X

(4)
i = X (4) and Xi ∩Xj = ∅

for i 6= j. Patients may drop out from the study at any
time and therefore their observation windows are differ-
ent. An interval is shown by a rectangle. We use different
colors to indicate the different numbers of new bladder
tumors observed in this interval. Note that we only have
access to the number of events in each interval.

non-parametric maximum pseudo-likelihood estima-
tor (NPMPLE) (Wellner and Zhang, 2000), a non-
parametric maximum pseudo-likelihood estimator with
gamma frailty (NPMPLGF) (Zhang and Jamshidian,
2003) and the local Expectation-Maximization (Lo-
calEM) estimator (Fan et al., 2011). Unlike NPMPLE
and NPMPLGF, which only estimate the cumulative in-
tensity function at a set of points, LocalEM provides a
smooth estimate of the underlying intensity function due
to the use of an exponential quadratic kernel (Fan et al.,
2011).

Besides the computational cost in selecting the band-
width of the exponential quadratic kernel, the estima-
tors obtained by the LocalEM algorithm and other sim-
ilar algorithms are point-estimates in the sense that the
estimated intensity function is a point in the functional
space. These point-estimates fail to capture the uncer-
tainty in the data set. We show an example of the esti-
mated intensity function by LocalEM in Figure 2. The
uncertainty of the intensity function helps us understand
the difficulty of the prediction at a given time.

Contributions. The contributions of our work are two-
fold. 1) In the first place it undertakes to construct a vari-
ational inference procedure for the Gaussian-Process-
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Figure 2: Bladder Cancer Data Set. Inferred inten-
sity function by the LocalEM and GP4C methods. For
GP4C, a 75% credible interval is given by dotted lines.
Our estimator GP4C provides the additional uncertainty
in the estimated intensity function compared with Lo-
calEM. See Section 5 for details.

modulated Poisson Process model for Panel Count data
(GP4C). 2) To carry out a variational inference in this
setting, we derive a simple and tractable lower bound
of the intractable evidence lower bound and demonstrate
through empirical evidence that with this lower bound,
GP4C outperforms a non-Bayesian method.

2 BACKGROUND

Throughout this paper, we denote the set of panel count
data fromK ∈ N+ independent subjects asD. Each sub-
ject will generate a sequence of events in the continuous
space X . We only consider the temporal point processes
where the continuous space X is a subset of R. In the re-
current event data, the timestamps of the events are fully
observable. We denote the timestamps from the kth sub-
ject as {x(k)

j ∈ X}.
In the panel count data, the kth subject is assessed in Nk
disjoint intervals {X (k)

i }Nki=1, where ∪iX (k)
i = X (k) ⊂

X . We have access to each interval X (k)
i and the num-

ber of events observed in this interval m(k)
i = |{x(k)

j ∈
X (k)
i }|. Let dk = {(X (k)

i ,m
(k)
i )}Nki=1 and D = {dk}.

Figure 1 illustrates an example of the panel count data.

2.1 LIKELIHOOD OF PANEL COUNT DATA

In the recurrent event data, one approach to modeling
the events {x(k)

j ∈ X} from each subject is to use the in-
homogeneous Poisson processes (IPP) (Kingman, 1993)
and assume that there is a fixed underlying intensity func-
tion λ(x) : X → R+. Given the intensity function λ(x),
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the likelihood for the observed events is

p({x(k)
j }|λ(x)) = exp

(
−
∫

X
λ(x)dx

)∏

j

λ(x
(k)
j ).

To derive the likelihood of the panel count data D, we
use two important features of an IPP (Kingman, 1993).
The first is that given the intensity function λ(x), the
probability that we observe m(k)

i events in the interval
X (k)
i is given as follows:

p(m
(k)
i |λ(x);X (k)

i ) =
r
m

(k)
i

ik

m
(k)
i !

exp(−rik), (1)

where rik
∆
=
∫
X (k)
i
λ(x)dx is the rate parameter of the

Poisson distribution. Hereafter, we omit the dependency
on X (k)

i for simplicity. However, the likelihood depends
on the intervals and even for the same sequence, after
censored with different intervals, the likelihood of the
sequence will vary. See Appendix E.1 for a brief dis-
cussion.

The second feature is that on two disjoint intervals X (k)
i

and X (k)
j ( X (k)

i

⋂X (k)
j = ∅), the numbers of events on

these intervals are independent random variables.

p(m
(k)
j ,m

(k)
i |λ(x)) = p(m

(k)
j |λ(x))p(m

(k)
i |λ(x)).

(2)
Based on these two features, the likelihood of the panel
count dataD can be derived. We assume that all subjects
share the same intensity function λ(x). SinceK subjects
are independent of each other and for the kth subject,
the Nk intervals {X (k)

i }Nki=1 are disjoint, we obtain the
following likelihood:

p(D|λ(x)) =

K∏

k=1

p(dk|λ(x)) =

K∏

k=1

Nk∏

i=1

p(m
(k)
i |λ(x)).

(3)
Several maximum likelihood estimators have been pro-
posed on the basis of this likelihood or its variants,
e.g., NPMPLE (Wellner and Zhang, 2000; Wellner et al.,
2007), NPMPLGF (Zhang and Jamshidian, 2003) and
the LocalEM estimator (Fan et al., 2011). An estimate
from LocalEM on the data set in Figure 1 is given in Fig-
ure 2. As we discussed, these estimators fail to model the
uncertainty in the intensity function.

2.2 GP3 MODEL

In order to model the uncertainty of the intensity function
λ(x) via a kernel, the traditional approach is to use the
Cox process (Kingman, 1993). A Cox process is defined
via a stochastic intensity function λ(x). The stochastic

process to generate the intensity function is usually cho-
sen to be a Gaussian process (GP) (Adams et al., 2009)
and the model using a GP is called a GP3 model.

For the recurrent event data, GP3 models have been stud-
ied extensively (Adams et al., 2009; Gunter et al., 2014;
Lloyd et al., 2015). The following model is an example
of GP3 models (Lloyd et al., 2015),

λ(x) = f2(x), f ∼ GP(g(x), κ(x, x′)), (4)

where GP(g(x), κ(x, x′)) denotes the Gaussian pro-
cess with mean function g(x) and covariance function
κ(x, x′). The function f(x) drawn from a GP prior
is squared to ensure the non-negativity of the intensity
function. The GP3 model in Equation (4) admits a com-
plete variational inference framework. Moreover, this in-
tensity model can be enhanced with an independent vari-
able for each subject or a mixture structure (Lloyd et al.,
2016) to flexibly model the heterogeneity of the intensity
functions across several subjects.

3 OUR MODEL GP4C : GP3 MODEL
FOR PANEL COUNT DATA

In order to retain the scalability and efficiency of the vari-
ational inference approach (Lloyd et al., 2015) and add
the uncertainty on the intensity function when we only
observe the panel count data, we use the GP3 model de-
fined in Equation (4) as the underlying intensity model.

The joint distribution p(D, f) can be obtained by com-
bining the likelihood model in Equation (3) and the in-
tensity model in Equation (4).

p(D, f) =
[ K∏

k=1

p(dk|λ(x))
]
p(f ; g, κ). (5)

We call this model the GP-modulated Poisson Process
model for Panel Count data (GP4C).

4 INFERENCE

In this section, we will discuss the problems when apply-
ing variational inference techniques on the GP4C model.

4.1 VARIATIONAL INFERENCE

We use sparse GPs to reduce the computational com-
plexity with the set of pseudo inputs {xr}Rr=1 on X (Tit-
sias, 2009). Let fR

∆
= [f(x1), . . . , f(xR)]>. The joint

model with additional pseudo inputs is p(D, f,fR) =
p(D|f)p(f |fR)p(fR) and the variational distribution is
defined as follows:

q(f,fR) = p(f |fR)q(fR), (6)
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where q(fR) = N (µ,Σ) and N (µ,Σ) denotes the nor-
mal distribution with mean µ and covariance matrix Σ.
The evidence lower bound (ELBO) L can be obtained by
using Jensen’s inequality.

ln p(D) ≥
∫∫

q(f,fR) ln
p(D, f,fR)

q(f,fR)
dfdfR

=

K∑

k=1

Nk∑

i=1

(
m

(k)
i Eq

[
ln

∫

X (k)
i

f2(x)dx
]
− ln(m

(k)
i !)

)

−
K∑

k=1

Eq
[ ∫

X (k)

f2(x)dx
]

+ Eq
[

ln
p(fR)

q(fR)

]
∆
= L.

(7)

In ELBO, when assuming that the covariance function
κ(x, x′) is the automatic relevance determination (ARD)
function κ(x, x′) = γ exp

(
− (x−x′)2

2a2

)
, x, x′ ∈ X , the

second term in the ELBO can be analytically calculated
(Lloyd et al., 2015) as follows:

Eq
[ ∫

X (k)

f2(x)dx
]

= γ|X (k)| − tr(K−1
RRΦ)

+ tr(K−1
RRΦK−1

RR(µµ> + Σ)),
(8)

where Φ is an R×R matrix related to the pseudo inputs
with its (i, j)-th entry equal to

∫
X (k) κ(xi, x)κ(x, xj)dx

and KRR is the covariance matrix computed at the
pseudo inputs. However, the ELBO L is still intractable,
since we can not analytically compute the expected inte-
gral Eq

[
ln
∫
X (k)
i
f2(x)dx

]
in the first term.

4.2 A TRACTABLE LOWER BOUND

We tackle the intractable expectation by deriving a
tractable lower bound. First we introduce a relevant
lemma on the expectation of the logarithm of the square
of a normal-distributed random variable.

Lemma 1. Let y ∼ N (µ, σ2) and ϕ = (µ/σ)2. Then

Ey[ln y2] = ln(2σ2)+

∞∑

j=0

(ϕ/2)j exp(−ϕ/2)

j!
ψ(j+1/2),

(9)
where ψ(·) is the digamma function.

The proof of Lemma 1 can be found in Appendix A. Let

gm(y) =

∞∑

j=0

yj exp(−y)

j!
ψ(j +m). (10)

Then Ey[ln y2] = ln(2σ2) + g0.5(ϕ/2). The function
gm(y), where y is a positive real number and m is a pos-
itive integer, has been studied in the analysis of mobile

and wireless communication systems (Moser, 2007). For
m = 1/2, g0.5(ϕ/2) can be computed using a conflu-
ent hyper-geometric function G(·) (Lloyd et al., 2015),
which is stored in a pre-computed look-up table.

g0.5(ϕ/2) = −G(−ϕ/2)− 2 ln 2− C, (11)

where C is Euler’s constant and C ≈ 0.5772. How-
ever, to the best of our knowledge, it is still not clear how
to calculate the integral of the function G(−ϕ/2) when
using a GP. To derive a tractable lower bound of the in-
tractable expectation, we introduce the following lemma
to give a lower bound of the function gm(y) and the proof
can be found in Appendix B.

Lemma 2. Let y ∼ N (µ, σ2) andC be Euler’s constant.

Ey[ln y2] ≥ ln(µ2 + bσ2)−C − ln 2, ∀b ∈ [0, 1]. (12)

Based on Lemma 2, we propose the following lower
bound for the intractable expectation in the ELBO.

Theorem 1. Let f be a GP as defined in Equation (4).
For b ∈ [0, 1], the following bound holds:

Eq
[

ln

∫

X (k)
i

f2(x)dx
]
≥ −C − ln 2

+ ln
(∫

X (k)
i

(
E2
qf(x) + bVarqf(x)

)
dx
)
, (13)

where the distribution q is given in Equation (6).

Proof. We first use Jensen’s inequality on the logarithm
function and then interchange the order of integration
and expectation.

Eq
[

ln

∫

X (k)
i

f2(x)dx
]

= Eq
[

ln

∫

X (k)
i

p̃(x)
f2(x)

p̃(x)
dx
]

≥
∫

X (k)
i

p̃(x)Eq
[

ln
f2(x)

p̃(x)

]
dx, (14)

where p̃(x) is a probability distribution onX (k)
i . Further-

more, maximizing this lower bound with respect to p̃(x)
yields the optimal distribution:

p̃opt(x) ∝ exp
(
Eq ln f2(x)

)
. (15)

We remark that this result is analogous to that of the dis-
crete version presented in Paisley (2010). Substituting
Equation (15) into the right-hand side of Equation (14)

293



yields

Eq
[

ln

∫

X (k)
i

f2(x)dx
]
≥ ln

(∫

X (k)
i

eEq ln f2(x)dx
)

(13)

≥ ln
(∫

X (k)
i

eln(E2
qf(x)+bVarqf(x))−C−ln 2dx

)

= ln
(∫

X (k)
i

(
E2
qf(x) + bVarqf(x)

)
dx
)
− C − ln 2,

where we have invoked Lemma 2 in the penultimate line
whilst defining y := f(x).

It should be emphasized that we are making no further
assumptions on the dimensionality of x in the proof of
Theorem 1. Hence we may augment the dimensionality
of x in Theorem 1 such that it can also be applied to prob-
lems in spatial point processes. In summary, the ELBO
in Equation (7) inherits an analytical bound. We present
the following:

Theorem 2. A tractable lower bound of the ELBO L in
the GP4C model is given as follows:

L ≥ L̃ ∆
= −

K∑

k=1

Eq
[ ∫

X (k)

f2(x)dx
]

+ Eq
[

ln
p(fR)

q(fR)

]

+
K∑

k=1

Nk∑

i=1

m
(k)
i ln

(∫

X (k)
i

(
E2
qf(x) + bVarqf(x)

)
dx
)

−
K∑

k=1

Nk∑

i=1

(
m

(k)
i (C + ln 2) + ln(m

(k)
i !)

)
. (16)

The details of the proof are deferred to Appendix C. The
derivations of E2

qf(x) and Varqf(x) follow similar lines
to the derivation of Equation (8). The third part of L̃
is a constant and thus can be omitted when maximizing
the lower bound. Let Ψ = {µ,Σ} and Φ = {γ, a} be
the variational parameters and hyper-parameters in the
covariance function of a GP, respectively. We use the
variational Expectation-Maximization (vEM) algorithm
(Dempster et al., 1977) to update the parameters Ψ and
Φ iteratively on the modified ELBO L̃.

4.3 THE VALUE OF PARAMETER b

A natural question is, how do we select the parameter b in
Theorem 1? Recall that two inequalities were used in the
proof. It is cumbersome to evaluate Inequality (14) since
it is an integral over X (k)

i . We first examine different
choices of b in Lemma 2.

In Paisley et al. (2012), a more correlated lower bound
of the ELBO serves as a better control variate in reduc-
ing the variance of a stochastic gradient. Inspired by this

10-2 10-1 100 101 102

Value of '

-2

0

2

4

6

F
un

ct
io

n 
V

al
ue

-G(-'/2)
ln('+1)
ln('+0.3)

0 0.1 0.3061 0.5 0.7 0.9
Value of b

10-2

10-1

100

101

102

E
m

pi
ric

al
 V

ar
ia

nc
e

Figure 3: Influences of b in Lemma 2. (Left) The true
value of −G(−ϕ/2) by a look-up table and two simple
lower bounds. The bound ln(φ + b) with b = 0.3 corre-
lates with the curve of the true value better. (Right). The
variance Var[h(ϕ; b)] when varying the choices of b and
the best b is shown with a red circle.

study, we introduce a heuristic method and conduct the
following experiment to evaluate the correlation for dif-
ferent choices of b. In Lemma 2, the difference between
the lower bound and the true value is

ln(µ2 + bσ2)− C − ln 2− Ey[ln y2]

= ln(ϕ+ b) +G(−ϕ/2)
∆
= h(ϕ; b). (17)

For each choice of b, we vary ϕ = (µ/σ)2 on a vector
of 5000 logarithmically spaced points between 10−6 and
106 and evaluate the correlation between the lower bound
and the true value by the variance Var[h(ϕ; b)]. We
calculate Var[h(ϕ; b)] on a vector of 50 evenly spaced
choices of b between 0 and 1 and the result is shown in
Figure 3. We see that the optimal choice of b is 0.3061 if
ϕ ranges from 10−6 to 106. In the actual situation, this
optimal value of b depends on the range of ϕ in the data
and the influence of Inequality (14), we evaluate several
choices of b on synthetic data sets in Section 5.

4.4 COMPUTATIONAL COMPLEXITY

Let each interval in temporal point processes be X (k)
i =

[x
(k)
ai , x

(k)
bi ] with two end points x(k)

ai and x(k)
bi . Two inter-

vals are different if at least one end point is different. We
denote the number of different intervals in the data set as
N and the number of pseudo inputs as M . For each in-
terval, the computation complexity of GP4C is O(M3)
which is determined by the matrix-matrix calculation
when evaluating Varqf(x) in Equation (16). The com-
putational complexity during one iteration of the vEM
algorithm is O(NM3) since in our implementation, we
calculate the integral of all N different intervals.

We analyze the computational complexity of the Lo-
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calEM (Fan et al., 2011) algorithm for comparison. In
LocalEM, {x(k)

ai } and {x(k)
bi } are first merged into a sin-

gle ordered set X where duplicated values are removed.
We denote the size of the merged set X as N̄ and gen-
erally N̄ ≤ N . Then the Gaussian quadratic rule with
M̄ points is used to calculate the integral of the inten-
sity function between subsequent values in the set X
and the computational complexity during one iteration
is O(N̄2M̄2). If the size of the merged set N̄ is sig-
nificantly smaller than N , LocalEM may be computa-
tionally more efficient than GP4C. However, if N̄ ≈ N ,
LocalEM may suffer from the term N̄2 in the computa-
tional complexity. We provide additional experiments on
the influence of the number N̄ in Appendix E.3.

5 EXPERIMENTS

We evaluate our proposed GP4C model and compare
it with the benchmark methods on both synthetic and
real-world data sets. The algorithms are programmed
in Matlab R2015b and run on an Intel Xeon E5-2667
CPU with a memory of 64GB. Our code is available at
github.com/Dinghy/GP4C.

5.1 EXPERIMENT SETTINGS

For each data set D, we randomly partition the subjects
into training and testing sets, which we denote as Dtrain

and Dtest, respectively. We repeat each setting for S =
40 times. In the sth trial, the training and testing sets are
denoted as D(s)

train and D(s)
test.

Benchmark. Two benchmark algorithms are used.

a) GP3 (Lloyd et al., 2015). This benchmark reflects
the best performance that can be obtained if we ob-
tain the recurrent event data set where we have the
exact timestamps.

b) LocalEM (Fan et al., 2011). Both LocalEM and
GP4C are nonparametric estimators based on the
maximum likelihood criterion. To fairly compare
the computation time, we implemented the Lo-
calEM algorithm in MATLAB based on the R code
provided in Fan et al. (2011). This method produces
a smooth estimate of the intensity function due to
the use of an exponential quadratic kernel. We use
a 5-fold cross-validation on the training set to select
the bandwidth of the exponential quadratic kernel.

Evaluation Metric. We evaluate the performance of the
algorithms in terms of three metrics.

a) Mean of the integrated squared error (MISE). In
synthetic data sets, we have the ground truth of the

intensity function λtrue and the integrated squared
error can be calculated using our estimated intensity
function λ(s)

est during the sth trial. To measure the
bias of each estimator, we calculate the mean of the
integrated squared error as follows:

MISE(s)
∆
=

∫

X
(λ

(s)
est(x)− λtrue(x))2dx. (18)

For GP4C, to measure its bias, we omit the variance
of the estimator and use the expectation of the in-
tensity function Eq(s) [f2(x)] as λ(s)

est(x).

b) Test log likelihood Ltest. During the sth trial, the
logarithm of the test likelihood can be written as
follows:

Ltest(s)
∆
= ln

∫
p(D(s)

test|f)p(f |D(s)
train)df. (19)

For LocalEM, since this estimator provides a point-
estimate and we directly use the estimated function
f (s) to calculate Ltest(s). For GP4C and GP3, we
need to sample the function f (s) from the varia-
tional distribution and the detailed calculation can
be found in Appendix D.

c) Computation time T . We record the training time
measured in seconds for each setting. For GP3 and
GP4C, we record the computation time of the train-
ing process. For LocalEM, it includes the time of
5-fold cross-validation on the training set to select
the bandwidth of the exponential quadratic kernel
and the time of a training process over the whole
training set.

Optimization Settings. For GP3 and GP4C, following
Lian et al. (2015), we use the re-parametrization trick
Σ = LL> by Cholesky decomposition and add positiv-
ity constraints to the diagonal elements in L. Due to this
constraint on L, we use the limited-memory projected
quasi-Newton algorithm (Schmidt et al., 2009) to opti-
mize the variational parameters Ψ = {µ,Σ}. We add a
jitter term εI where ε = 10−6 to the covariance matrix
KRR to avoid numerical instability (Titsias, 2009).

5.2 SYNTHETIC DATA SETS

We test three synthetic data sets which we denote as the
Synthetic A, B and C data sets, respectively.

On the Synthetic A data set, the intensity function is a
square wave function h1(x) as follows. See Figure 4 for
an illustration of h1(x).

h1(x) =





7 if mod
([ x

10

]
, 2
)

= 0,

2 otherwise.
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Table 1: Synthetic data sets. Mean and standard de-
viation of statistics about different choices of b over 40
runs. GP3 uses the recurrent event data while LocalEM
and GP4C use the panel count data. For GP4C, b = 0.3
and b = 0 perform better than b = 1 in terms of MISE
and Ltest.

Method MISE Ltest T [s]

(Synthetic A)
GP3 29.5±1.0 -1366.5±17.4 16±4
GP4C(1) 41.8±6.2 -3236.9±542.3 25±5
GP4C(0) 40.8±3.3 -1378.1±16.9 19±4
GP4C(0.3) 40.2±3.2 -1377.8±17.5 20±3
LocalEM 44.6±3.1 -1383.5±17.0 33±2

(Synthetic B)
GP3 0.5±0.2 -783.1±20.7 8±1
GP4C(1) 1.9±2.1 -1005.8±81.5 55±44
GP4C(0) 2.7±0.8 -794.5±20.1 17±3
GP4C(0.3) 2.4±0.7 -794.2±20.2 17±4
LocalEM 3.5±0.7 -800.3±19.6 33±2

(Synthetic C)
GP3 1.2±0.4 -864.1±14.9 8±3
GP4C(1) 2.3±1.5 -1194.6±100.5 52±53
GP4C(0) 2.1±0.6 -871.2±15.9 17±2
GP4C(0.3) 2.0±0.7 -872.0±15.7 18±3
LocalEM 5.2±1.1 -882.7±16.5 34±2

On the Synthetic B and C data set, the underlying in-
tensity functions are drawn according to Equation (4).
We first draw a function from a GP on a vector of 3001
evenly-spaced points in X = [0, T ], where T = 60.
We approximate the value of the function at an arbi-
trary position with linear interpolation. The function is
then squared to guarantee the positiveness of the inten-
sity function. See Figure 5 for an illustration.

During the sth trial, we first generate a recurrent event
data set with 100 subjects on the same observation win-
dow X (k) = X . Then we generate the corresponding
panel count data set D(s) by censoring each subject with
10 intervals. We generate the censored intervals by a
draw from a Dirichlet distribution w(k) ∼ Dir(θ) and
θ is a 10-dimensional vector with all elements equal to
1. The ith interval of the kth subject can be computed
as X (k)

i = [
∑i−1
j=1 w

(k)
j T,

∑i
j=1 w

(k)
j T ]. We randomly

partition D(s) into two parts, where 50 subjects are used
for training and 50 for testing.

Different choices of the hyper-parameter b. On all
three synthetic data sets, we test three different choices of
b in {0, 0.3, 1}. We choose the number of pseudo inputs
to be 30. We calculate the MISE and Ltest and the results
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Figure 4: Synthetic A Data Set. The estimated intensity
functions from GP4C (b = 1) and GP4C (b = 0.3) are
shown with 75% credible intervals. True intensity func-
tion h1(x) is given for comparison. We see that GP4C
(b = 1) over-estimates the variance of the intensity func-
tion.
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Figure 5: Synthetic B & C Data Sets. An illustration
of the underlying intensity functions and inferred inten-
sity functions by the LocalEM and GP4C methods. The
underlying intensity function is drawn from a Gaussian
process. For GP4C, a 75% credible interval is given by
dotted lines.

are provided in Table 1. We see that b = 0, 0.3 generally
outperform b = 1 on these simple synthetic data sets.
However, the difference between b = 0 and b = 0.3 is
not significant. The reason is that Inequality (14) and the
range of ϕ on X are also relevant to the actual perfor-
mance of different b, as we discussed in Section 4.3.

To investigate the reason behind the bad performance of
Ltest when b = 1, we plot the best result in terms of
MISE during 40 trials in Figure 4. We see that GP4C
(b = 1) over-estimates the variance of the intensity func-
tion and the over-estimated variance leads to the poor
performance in Ltest. We fix b = 0.3 during the remain-
ing experiments for simplicity.

Number of the pseudo inputs. We vary the number of
pseudo inputs in GP3 and GP4C since this number de-
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Figure 6: Synthetic Data Set. Comparison of performance of GP3, GP4C and LocalEM in terms of Ltest, MISE and
T when varying the number of pseudo inputs for sparse GPs. For the test likelihood, MISE and the computation time,
the median, the 0.25 and 0.75 quantiles of the statistics in 40 experiments are shown with error bars or shaded area.
For GP3 and GP4C, MISE and Ltest stay relatively stable with the increase of the number of pseudo inputs.

termines the accuracy of approximation in a sparse GP.
We expect that for GP-based methods the test likelihood
will be relatively stable when increasing the number of
pseudo inputs according to previous studies on sparse
GPs (Titsias, 2009).

The result for the Synthetic A data set is given in Figures
6. In Figure 6, we see that for GP3 and GP4C, MISE
and Ltest stay relatively stable with the increase of the
number of pseudo inputs. The computation time of GP3
and GP4C will grow with the increase of the number of
pseudo inputs.

In both Table 1 and Figure 6, we see that GP4C out-
performs LocalEM on these three datasets. However,
we also notice that there is still a gap between GP3 and
GP4C in terms of Ltest and MISE in Table 1. Two rea-
sons may account for this fact. The first one is that the
data are provided in the form of panel counts rather than
exact timestamps. The second reason is that we use a
lower bound of the true ELBO to perform the variational
inference, which may lead to a bias. This bias can be
alleviated with the stochastic variational inference (Pais-
ley et al., 2012), where our lower bound can serve as a
control variate. We leave this as a future study.

An additional experiment in which we increase the num-
ber of training subjects to evaluate the gain in perfor-
mance on the Synthetic A data set is given in Appendix
E.2.

5.3 REAL WORLD DATA SETS

Sun and Zhao (2016) provided three panel count data
sets. Some statistics can be found in Table 2. A brief
description about the these data sets can be found in Ap-

Table 2: Statistics about the three data sets, where K, X ,
N̄ and N denote the number of subjects in each data set,
the underlying continuous space, the number of different
end points and the number of different intervals X (k)

i ,
respectively.

Data Set X K N̄ N

Na-A [0, 55] 65 45 109
Na-B [0, 55] 48 38 84

Bl-A [0, 53] 38 52 176
Bl-B [0, 53] 47 52 201

Sk-A & Sk-B [0, 61.57] 143 751 816
Sk-C & Sk-D [0, 62.63] 147 808 887

pendix F.

We use 18 pseudo inputs for all real world experiments.
In each trial, we randomly split each data set into two
parts, which areD(s)

train (50%) andD(s)
test (50%). On these

three data sets, since the original data are in the form of
panel counts, GP3 is not tested. We compare GP4C with
LocalEM in terms of Ltest and the computation time T .

The results are given in Table 3. The standard deviation
of the likelihood is large since the likelihood depends on
the censored intervals of the subjects, which vary greatly
in different train/test split. We conduct an experiment to
reduce the standard deviation in Appendix H. In Table
3, LocalEM performs better on the Nausea and Bladder
data sets in terms of the computation time T . GP4C out-
performs LocalEM in terms of test likelihood Ltest in all
data sets.
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Figure 7: Bladder A Data Set. An illustration of the
panel count data in the test set (Left) and the test likeli-
hood from GP4C and LocalEM of each subject (Right).
GP4C mainly outperforms LocalEM on two subjects
whose numbers of newly-occurred cancers are large (No.
12 and 15).

To see the difference between GP4C and LocalEM, we
show the result of inferred intensities by two algorithms
during one trial on the Bladder A data set in Figure 2. We
see that GP4C provides the additional uncertainty which
helps improve Ltest compared with LocalEM. Since the
Bladder A set is small, we plot the panel count data in
the training set in Figure 1. The test set and the test like-
lihood of all its subjects are given in Figure 7. From
the test likelihood of each subject, we see that GP4C
outperforms LocalEM on two subjects whose counts of
newly-occurred tumors are large (No. 12 and No. 15).
The count 8 never occurs in the training set and a point-
estimate will fail to model this uncertainty while a GP-
modulated method will take the uncertainty into consid-
eration.

Another observation about this data set is that there is
a heterogeneity across all subjects. The traditional ap-
proach to modeling heterogeneity is to add an additional
variable on the intensity function for each subject (Cook
and Lawless, 2007). We briefly discuss how to add this
change to GP4C in Appendix G.

6 CONCLUSION

We presented the first framework for GP-modulated
Poisson processes when data appear in the form of panel
counts. We derived a tractable lower bound for the in-
tractable evidence lower bound when modeling the panel
count data using the GP-modulated intensity function.
Our model, GP4C, outperforms a non-Bayesian method
using the maximum likelihood criterion in terms of test
likelihood and achieves comparable results in terms of

Table 3: Mean and standard deviation of the test like-
lihood (Ltest) and the computation time T measured in
seconds on the three panel count data sets over 40 runs.
LocalEM performs better on the Nausea and Bladder
data sets in terms of computation time. In all data sets,
GP4C performs better on the test likelihood and outper-
forms LocalEM on computation time in the Skin data
sets.

Data Set METHOD Ltest T [s]

Na-A LocalEM -492.1±306.1 1±0
GP4C -484.9±201.8 10±10

Na-B LocalEM -473.2±212.2 1±0
GP4C -411.0±184.3 10±7

Bl-A LocalEM -201.8±46.9 1±0
GP4C -182.2±47.3 25±9

Bl-B LocalEM -313.1±54.2 1±0
GP4C -310.4±54.9 26±21

Sk-A LocalEM -259.1±27.3 39±3
GP4C -258.7±26.7 33±6

Sk-B LocalEM -198.1±47.1 39±3
GP4C -191.2±42.5 24±4

Sk-C LocalEM -358.0±35.8 47±4
GP4C -355.7±36.0 21±12

Sk-D LocalEM -200.9±31.9 46±3
GP4C -198.9±30.6 27±4

computational time.

In the future, we plan to implement the stochastic vari-
ational inference algorithm to evaluate the bias in the
tractable lower bound. We are also considering to find
an applicable two-dimensional data set where we can ex-
tend our algorithm to spatial point processes.

Acknowledgements

We thank the anonymous reviewers for their helpful sug-
gestions. MS was supported by KAKENHI 17H00757.

References
Adams, R. P., Murray, I., and MacKay, D. J. (2009).

Tractable nonparametric Bayesian inference in Pois-
son processes with Gaussian process intensities. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning, pages 9–16. ACM.

Cook, R. J. and Lawless, J. (2007). The Statistical Anal-
ysis of Recurrent Events. Springer Science & Business
Media.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the EM

298



algorithm. Journal of the royal statistical society. Se-
ries B (methodological), pages 1–38.

Diggle, P. J., Moraga, P., Rowlingson, B., and Tay-
lor, B. M. (2013). Spatial and spatio-temporal log-
Gaussian Cox processes: extending the geostatistical
paradigm. Statistical Science, pages 542–563.

Fan, C.-P. S., Stafford, J., and Brown, P. E. (2011).
Local-EM and the EMS algorithm. Journal of Com-
putational and Graphical Statistics, 20(3):750–766.

Flaxman, S., Wilson, A., Neill, D., Nickisch, H., and
Smola, A. (2015). Fast Kronecker inference in Gaus-
sian processes with non-Gaussian likelihoods. In In-
ternational Conference on Machine Learning, pages
607–616.

Gunter, T., Lloyd, C., Osborne, M. A., and Roberts, S. J.
(2014). Efficient Bayesian nonparametric modeling
of structured point processes. In Proceedings of the
Thirtieth Conference on Uncertainty in Artificial In-
telligence, pages 310–319. AUAI Press.

Kingman, J. F. C. (1993). Poisson Processes. Wiley On-
line Library.

Lian, W., Henao, R., Rao, V., Lucas, J., and Carin, L.
(2015). A multitask point process predictive model. In
International Conference on Machine Learning, pages
2030–2038.

Lloyd, C., Gunter, T., Osborne, M., and Roberts, S.
(2015). Variational inference for Gaussian process
modulated Poisson processes. In International Con-
ference on Machine Learning, pages 1814–1822.

Lloyd, C., Gunter, T., Osborne, M., Roberts, S., and
Nickson, T. (2016). Latent point process allocation. In
Artificial Intelligence and Statistics, pages 389–397.

Moser, S. M. (2007). Some expectations of a non-central
chi-square distribution with an even number of degrees
of freedom. In TENCON 2007-2007 IEEE Region 10
Conference, pages 1–4. IEEE.

Paisley, J. (2010). Two useful bounds for variational
inference. Technical report, Technical report, De-
partment of Computer Science, Princeton University,
Princeton, NJ.

Paisley, J., Blei, D. M., and Jordan, M. I. (2012). Vari-
ational Bayesian inference with stochastic search. In
Proceedings of the 29th International Coference on In-
ternational Conference on Machine Learning, pages
1363–1370. Omnipress.

Schmidt, M., Berg, E., Friedlander, M., and Murphy, K.
(2009). Optimizing costly functions with simple con-
straints: A limited-memory projected quasi-Newton
algorithm. In Artificial Intelligence and Statistics,
pages 456–463.

Sun, J. and Zhao, X. (2016). Statistical Analysis of Panel
Count Data. Springer.

Thall, P. F. and Lachin, J. M. (1988). Analysis of re-
current events: Nonparametric methods for random-
interval count data. Journal of the American Statistical
Association, 83(402):339–347.

Titsias, M. K. (2009). Variational model selection for
sparse Gaussian process regression. Report, Univer-
sity of Manchester, UK.

Wellner, J. A. and Zhang, Y. (2000). Two estimators of
the mean of a counting process with panel count data.
Annals of Statistics, pages 779–814.

Wellner, J. A., Zhang, Y., et al. (2007). Two likelihood-
based semiparametric estimation methods for panel
count data with covariates. The Annals of Statistics,
35(5):2106–2142.

Zhang, Y. and Jamshidian, M. (2003). The gamma-
frailty Poisson model for the nonparametric estimation
of panel count data. Biometrics, 59(4):1099–1106.

299



A Unified Probabilistic Model for Learning Latent Factors and
Their Connectivities from High-Dimensional Data

Ricardo Pio Monti1 and Aapo Hyvärinen1,2

1Gatsby Computational Neuroscience Unit, University College London, UK
2Department of Computer Science and HIIT, University of Helsinki, Finland

Abstract

Connectivity estimation is challenging in the
context of high-dimensional data. A useful
preprocessing step is to group variables into
clusters, however, it is not always clear how
to do so from the perspective of connectiv-
ity estimation. Another practical challenge is
that we may have data from multiple related
classes (e.g., multiple subjects or conditions)
and wish to incorporate constraints on the simi-
larities across classes. We propose a probabilis-
tic model which simultaneously performs both
a grouping of variables (i.e., detecting commu-
nity structure) and estimation of connectivities
between the groups which correspond to latent
variables. The model is essentially a factor anal-
ysis model where the factors are allowed to have
arbitrary correlations, while the factor loading
matrix is constrained to express a community
structure. The model can be applied on multiple
classes so that the connectivities can be differ-
ent between the classes, while the community
structure is the same for all classes. We pro-
pose an efficient estimation algorithm based on
score matching, and prove the identifiability of
the model. Finally, we present an extension to
directed (causal) connectivities over latent vari-
ables. Simulations and experiments on fMRI
data validate the practical utility of the method.

1 INTRODUCTION

Estimating the connectivity structure between observed
variables is a fundamental problem in statistics and ma-
chine learning. Probabilistic methods are often based on
estimation of the covariance matrix or it inverse. A num-
ber of estimators have been proposed for both (Demp-
ster, 1972; Ledoit & Wolf, 2003). On a more general

level, such undirected connectivity estimation is a special
case of modelling the covariance matrix, which is one of
the goals of classical dimensionality reduction methods
such as factor analysis and principal components analy-
sis (PCA). In contrast, directed connectivity estimation
studies the causal dependence structure across variables
(Pearl, 2009). In this work we present methods to perform
both directed and undirected connectivity estimation of
latent variables in the context of high-dimensional data.

An important problem in practice is that many connec-
tivity estimation methods assume we observe, and know
how to choose, the variables between which the connec-
tivity is to be estimated. However, in practice we often
have very high-dimensional data, and it may not be useful
or feasible to estimate the connectivities between all of
them. It is important to somehow reduce the number of
variables so that the connectivity estimation is feasible,
and furthermore, such reduction can greatly facilitate in-
terpretation of the results. It is often useful to perform the
dimension reduction so that it can be interpreted as clus-
tering, as in non-negative PCA (Sigg & Buhmann, 2008).
A relevant challenge is how such reduction in the number
of variables should be combined with connectivity esti-
mation. In the past, approaches based on stochastic block
models (Airoldi et al., 2008; Marlin & Murphy, 2009)
or clustered factor analysis (Buesing et al., 2014) have
been employed. However, such methods do not explicitly
model the connectivity over latent variables and cannot
easily be extended to accommodate multiple classes of
related datasets, both of which are of interest in this work.
Alternative methods recover correlation structure over
latent variables but do not focus on dimensionality reduc-
tion (Sasaki et al., 2017). Conversely, in the context of
directed connectivity, the causal clustering of observed
variables has been studied by Silva et al. (2006), Shimizu
et al. (2009) and Kummerfeld & Ramsey (2016).

A further challenge is estimating multiple related connec-
tivity matrices, assuming the data is divided into a num-
ber of classes, such as subjects in a biomedical setting.
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While the estimation of multiple related Gaussian graphi-
cal models, parameterized by the inverse covariance, has
been extensively studied (Varoquaux et al., 2010; Dana-
her et al., 2014; Monti et al., 2017), we want to combine
such multiple connectivity estimation with the variable
reduction scheme described above as well as extend such
methods to the domain of directed connectivities.

A practical application that motivates our theoretical de-
velopments is functional MRI (fMRI) data, where esti-
mation of “functional connectivity” is widely practiced.
Such analysis is a cornerstone of modern neuroscien-
tific research, having provided fundamental insights into
the structure and architecture of the human connectome.
However, the existing methods are often not very rigorous
and would benefit from a proper probabilistic formulation.
Traditionally, functional connectivity networks have been
modeled as covariance graphs, where the nodes in the
network correspond to spatially remote brain regions and
edges encode the marginal dependence structure (often
simply the covariance). In fMRI, we very clearly see the
importance of the theoretical points raised above, in the
form of the following challenges:

• Inter-subject consistency: Data is often collected
across a cohort of subjects. A hallmark of brain net-
works is their inter-subject consistency; observed pat-
terns in connectivity have been shown to demonstrate
reproducible properties across subjects (Damoiseaux
et al., 2006). This suggests significant benefits can
be obtained by sharing information across subjects
in a judicious manner. In fact, some of the most re-
cent developments are based on collecting hundreds
or even thousands of subjects’ data in a single data
base (Di Martino et al., 2014).

• Modularity: Current methods do not actively incor-
porate domain knowledge relating to brain networks,
a prime example of which is their modular structure
which suggests that variables can be aggregated into
non-overlapping modules or sub-networks (Sporns &
Betzel, 2016). We note this property is not unique to
brain networks, but also present in many real-world
networks (Newman, 2006).

While motivated by fMRI, we note that these two prop-
erties are relevant to wide range of applications such as
cyber-security, gene expression data and econometrics.

In this work, we propose a probabilistic latent variable
model which is able to directly address the aforemen-
tioned issues. The proposed model consists of a low
dimensional set of latent variables in a factor analytic
model. The associated factor loading matrix is shared
across classes and constrained to be non-negative and

orthonormal, thereby encoding module/community mem-
bership along its columns. Thus, the factors are inter-
preted as the activities in modules or communities.

Importantly, and in contrast to almost all related mod-
els, these latent variables or factors have full (i.e., non-
diagonal) covariance structure which we term latent con-
nectivities, giving the connectivity structure of the non-
overlapping modules. The connectivity structure can be
different between classes; however, the model can equally
well be applied on data from a single class. Thus, we
model both the grouping of variables, and the connec-
tivity between the groups in a single probabilistic model,
which can be seen as a variant of factor analysis. We argue
that such a formulation leads to important benefits from
the viewpoint of interpretation and identifiability whilst
remaining plausible from an application perspective.

In contrast to classical Gaussian factor analysis, we are
able to prove the uniqueness of the solution: the factors
and loadings are identifiable like in (non-Gaussian) in-
dependent component analysis (Comon, 1994), largely
based on non-negativity inherent in the module structure
(Paatero & Tapper, 1994; Seung & Lee, 1999; Donoho &
Stodden, 2004). We further propose an efficient parameter
estimation algorithm based on score matching. Finally,
we demonstrate that the proposed model can be extended
to modelling directed connectivities between the latent
variables. In this context, the factor loading matrix can be
seen as a “pure” measurement model of a Bayesian net-
work (Silva et al., 2006) of causal relationships between
high-dimensional observations and their latent variables.

The remainder of this manuscript is organized as follows;
in Section 2 we present the proposed model in the con-
text of undirected latent variables. Section 3 provides
an identifiability analysis for the proposed method. An
efficient estimation algorithm based on score matching is
presented in Section 4. The proposed method is extended
to recover causal structure over latent variables in Section
5. Experimental results are presented in Section 6.

2 LATENT CONNECTIVITIES MODEL

We propose a latent variable model to accurately find mod-
ules (communities, clusters) and model their connectivi-
ties, possibly across multiple related classes (conditions,
subjects). We assume we have access to multivariate data
over N distinct classes, but all our results allow for the
simple case N = 1 as well. For a given class i, we write
X(i) ∈ Rp to denote the p-dimensional observed random
vector. The ith class is associated with a k-dimensional
latent vector, Z(i), which is related to observations, X(i),
via a loading matrix W ∈ Rp×k. We note that the loading
matrix is shared across all classes and will serve to encode
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module memberships across classes.

We start by a model of undirected connectivities in this
section. Here, we assume that the data for each class fol-
lows a stationary multivariate Gaussian distribution with
zero mean and covariance Σ(i) ∈ Rp×p. Both observa-
tions and latent variables are taken to follow multivariate
Gaussian distributions, such that:

Z(i) ∼ N
(

0, G(i)
)

(1)

X(i)|Z(i) = z(i) ∼ N
(
Wz(i), v(i)I

)
. (2)

If G(i) were diagonal, equations (1) and (2) would cor-
respond to the traditional factor analysis or probabilistic
PCA models (Tipping & Bishop, 1999). Our model is able
to capture low-rank covariance structure via the loading
matrix, W , as follows:

Σ(i) = WG(i)WT + v(i)I. (3)

From equation (3) it follows that the loading matrix W
serves to encode reproducible covariance structure which
is present across all classes. In this work, we extend the
traditional factor analysis model as follows:

• The loading matrix, W , is constrained to be non-
negative and orthonormal. This leads to a loading
matrix with at most one non-zero entry per row.
We may interpret the columns of W as encoding
membership to k non-overlapping modules or sub-
networks.

• We introduce latent variables with a non-diagonal
covariance structure, which we term latent connec-
tivities. While the columns of the loading matrix en-
code module membership, the non-trivial covariance
structure over latent variables may be interpreted as
modeling marginal dependencies (i.e., connectivity)
across distinct modules or sub-networks. Such an in-
terpretation is very natural in many applied settings.

We note that the introduction of marginally dependent
latent variables is not possible in the context of traditional
factor analysis, since the effects of factor connectivity
and factor loadings cannot be distinguished. In fact, an
ordinary factor analysis model is non-indentifiable even
with uncorrelated factors. However, in combination with
the aforementioned constraints on the loading matrix, it is
possible to identify the latent connectivities in our model
(see next section). We thus argue that our model is able to
capture the modular nature of many real-world datasets
and, due to its identifiability, yields easily interpretable
results. Figure 1 provides an overview of the proposed
model in the context of estimating brain connectivity net-
works.

Figure 1: Visualization describing the various compo-
nents of the proposed covariance model. The factor load-
ing matrix, W , is shared across all subjects and serves to
denote membership into non-overlapping brain modules.
The latent connectivity across modules, parameterized by
G(i), is allowed to vary across subjects.

3 IDENTIFIABILITY ANALYSIS

We note that without the introduction of constraints on
W , the covariance model proposed in equation (3) is
not unique. For example, it would be possible to re-
parameterize W such that G(i) is diagonal matrix by us-
ing an eigen-value decomposition of G(i). However, the
following properties demonstrate that non-negativity and
orthonormality constraints are sufficient to ensure the
solution is identifiable.

Property 1. Assume non-negative, orthonormalW . Then
at most one entry per row of W can be non-zero.

Proof. Directly from the constraints on W , we can ex-
press the (i, j) entry of WTW as:

(
WTW

)
ij

=

k∑

r=1

(
WT

)
ir
Wrj =

k∑

r=1

WriWrj = δij

which, combined with non-negativity, implies that the i
and j columns of W can have no overlapping support for
i 6= j.

Property 2. Assume non-negative, orthonormalW . Then
any matrix V ∈ Rk×k for which W̃ = WV is non-
negative and orthonormal must be the identity matrix or
some permutation of the identity.

Proof. By Property 1 we have that both W and W̃ have
at most one non-zero entry per row. Since W̃T W̃ = I
we have that V TV = I . Define ci and c̃i to be the index
of the non-zero entry along the ith row for W and W̃
respectively. By construction:

W̃ic̃i = (WV )ic̃i =
k∑

r=1

WirVrc̃i = WiciVcic̃i > 0
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where the final equality follows from the fact that Wici

is the only non-zero entry along the ith row of W . Since
Wici > 0, this implies that Vcic̃i > 0. Furthermore, for
j 6= c̃i we have

W̃ij = (WV )ij =

k∑

r=1

WirVrj = WiciVcij = 0

Since Wici > 0, we must have that Vcij = 0 whenever
j 6= c̃i. When combined with the fact that V TV = I ,
it follows that V must either be the identity matrix of a
permutation it.

Property 2 indicates that the matrixW is uniquely defined
in our model, and there is nothing like an undetermined
factor rotation in conventional Gaussian factor analysis.
By similar logic, Property 2 also implies the uniqueness
of G(i).

4 ESTIMATION BY SCORE
MATCHING

The parameters associated with the proposed model con-
sist of the loading matrix, W , the latent variable covari-
ances, {G(i)}, and the observation noise, {v(i)}. One
potential strategy is to estimate latent variables in an
expectation-maximization framework. However, due to
relative simplicity of the proposed covariance model we
propose to directly marginalize out latent variables.

Parameters may also be estimated via maximum like-
lihood estimation, however, this results in an iterative
algorithm where the computational cost of each param-
eter update is O(p3) (a derivation of which is provided
in the Supplementary materials). Instead, we propose
to estimate parameters by score matching (Hyvärinen,
2005), leading to an algorithm with a computational cost
of O(p2k) per iteration. This is a significant reduction as
we will typically expect k � p. While score matching is
typically used in the context of unnormalized statistical
models, it may often result in optimization-related bene-
fits for normalized models as well (Hyvärinen, 2007; Lin
et al., 2016).

In the context of multivariate Gaussian data, the score
matching objective function is defined as (Hyvärinen,
2005):

J =

N∑

i=1

−tr
(

Ω(i)
)

+
1

2
tr
(

Ω(i)Ω(i)K(i)
)
, (4)

whereK(i) is the sample covariance matrix for class i and
Ω(i) is the inverse covariance, which may be computed
by the Sherman-Woodbury identity as:

Ω(i) = v(i)
−1 (

I −WG(i)(G(i) + v(i)I)−1WT
)
.

Directly optimizing the score matching objective (equa-
tion (4)) under non-negativity and orthonormality con-
straints on the loading matrix is challenging. One poten-
tial strategy is to employ projected gradient descent as
suggested by Hirayama et al. (2016). However, projecting
onto the non-negative Stiefel manifold is undesirable as
it requires W to have at most one non-zero entry per row
at each step of the optimization algorithm (see Property 1
above). Such an approach is therefore highly dependent
to the random initialization of the loading matrix.

In this work we seek to minimize equation (4) in a con-
strained optimization framework. This allows for the
orthonormality constraints to be enforced via an aug-
mented Lagrangian penalty (Bertsekas, 2014), while the
non-negativity is enforced at each iteration by projecting
onto the non-negative orthant.

The objective function associated with the augmented
Lagrangian is defined as:

J̃ = J +
ρ

2
||WTW − Ik||22 + tr(ΛT (WTW − Ik)),

where Λ ∈ Rk×k are Lagrange multipliers enforcing the
orthonormality constraints, ρ is a positive scalar parame-
ter parameterizing the augmented penalty term and J is
the original score matching objective. We may then pro-
ceed to iteratively optimize each of the parameters using
gradient descent. In particular, the gradient of the score
matching objective with respect to the loading matrix can
be computed as:

∂J

∂W
= −

N∑

i=1

K(i)WA(i)

(
I − 1

2
A(i)

)
,

where we define A(i) = G(i)(G(i) + v(i)I)−1. Similarly,
in the case of the latent connectivities, G(i), and observa-
tion noise, v(i), we have

∂J

∂G(i)
= v(i)

−2 [
v(i)I −WTK(i)W

(
I −A(i)

)]
×

[
(G(i) + v(i)I)−1

(
I −A(i)

)]
.

∂J

∂v(i)
=

N∑

i=1

−v(i)−3tr
(
K(i) − v(i)I

)

+ v(i)
−3

tr
(
WTK(i)WH

(i)
1

)
+H

(i)
2

where H(i)
1 ∈ Rk×k and H(i)

2 ∈ R are defined, together
with the relevant derivations, in the Supplementary mate-
rial.

Estimation proceeds by iteratively updating each of the pa-
rameters in a gradient descent framework. In the context
of the loading matrix the step-size, η, is selected via the
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Armijo rule and we project onto the non-negative orthant
at each iteration, resulting in an update of the form:

W ← P+

(
W − η

(
∂J

∂W
+ ρ(WWTW −W ) +WΛ

))

where P+(x) = max(0, x) is the projection onto the non-
negative orthant. Moreover, in the case of latent variable
connectivities we have:

∂J

∂G(i)
= 0 ⇐⇒ G

(i)
(G

(i)
+ v

(i)
I)

−1
= I − v(i)(WT

K
(i)
W )

which after some manipulation yields a closed form up-
date for the latent connectivity structure as:

G(i) ←WTK(i)W − v(i)I (5)

By writing WTK(i)W = (X(i)W )T (X(i)W ) we note
that this update has an intuitive interpretation as the covari-
ance across estimated modules. The Lagrange multipliers
are updated as (Bertsekas, 2014):

Λ← Λ + ρ(WTW − I)

It is important to note that the proposed method only
enforces orthonormality on the loading matrix in the limit
of convergence. However, the updates provided above
are premised on the assumption that W is orthonormal.
As such, the aforementioned updates only correspond to
approximations in the case where W is non-orthonormal.

Hyper-parameter Tuning In practice, the proposed
model requires the selection of a single hyper-parameter,
k, which determines the dimensionality of latent vari-
ables. We propose to tune k by minimizing the negative
log-likelihood over held-out data.

5 EXTENSION TO DIRECTED
CONNECTIVITY

In this section we describe a natural extension of the
aforementioned model to estimate causal structure (di-
rected connectivity) across latent variables. As in the
previous section, we restrict ourselves to linear latent
variables models where each observed variable is con-
ditionally dependent on a single latent variable. In the
context of Bayesian networks such models are known as
Pure 1-Factor models (Silva et al., 2006; Kummerfeld
& Ramsey, 2016). We note that such an assumption di-
rectly corresponds to each row of the loading matrix, W ,
containing at most one non-zero entry. This is precisely
what is enforced by the non-negativity and orthonormality
assumptions introduced in this work. As such, restricting
the loading matrix in this manner corresponds to a natural
and frequently employed assumption when attempting to
recover causal structure (Silva et al., 2006).

We follow Shimizu et al. (2006) and study a non-Gaussian
variant of Bayesian networks over latent variables. For-
mally, we assume variables Z(i)

j , j ∈ {1 . . . k} can be ar-
ranged in a causal ordering such no later variables causes
a variable ahead of it in the order. We denote such an
ordering by k(j) and assume that each variable, Z(i)

j ,
is a linear function of earlier variables together with a
non-Gaussian disturbance, e(i)j , such that:

Z
(i)
j =

∑

k(r)<k(j)

b
(i)
jr Z

(i)
r + e

(i)
j . (6)

Due to the linear nature of dependencies, we can write
equation (6) as follows:

Z(i) = B(i)Z(i) + e(i) (7)

=
(
I −B(i)

)−1
e(i). (8)

The matrix B(i) encodes a Directed Acyclic Graph
(DAG), which corresponds to the structural model over la-
tent variables. We note that equation (7) corresponds to a
Linear, non-Gaussian, acyclic model (LiNGAM; Shimizu
et al., 2006). As in the previous section, observed data
are subsequently related as follows:

X(i)|Z(i) = z(i) ∼ N (Wz(i), v(i)I) (9)

where the loading matrix encodes the measurement model.

To date, a wide range of algorithms have been pro-
posed to estimate measurement models. Prominent
examples include the BuildPureClusters and
FindOneFactorCluster algorithms. However,
such methods cannot easily be extended to the context of
multiple related datasets where the underlying structural
models are heterogeneous. Moreover, such methods do
not scale well to high-dimensional data. In contrast, our
method proposed below can easily accommodate such
data and is therefore a good candidate to accurately re-
cover the measurement model. Once the measurement
model has been estimated, we may proceed to infer the
causal structure over latent variables using established
methods such as LiNGAM.

We now outline our two-stage procedure to estimate Pure
1-Factor latent variable models. First, the score matching
algorithm detailed in Section 4 is employed to estimate the
measurement model (i.e., the loading matrix W ). Given
a measurement model, there are a variety of algorithms
to estimate the structural moel. In this work we follow
Shimizu et al. (2009) and propose to recover causal de-
pendencies over latent variables by applying LiNGAM to
projected observations, ŴTX(i). This step is performed
independently for each of the N classes.
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We note that the likelihood proposed in Section 2 is mis-
specified in the context of non-Gaussian Bayesian net-
works considered here (as latent variables follow non-
Gaussian distribution). However, in the first stage we
are only interested in the estimation of the loading ma-
trix,W , using covariance information which is unaffected
by non-Gaussianity over latent variables. In fact, as we
allow for arbitrary (i.e., non-diagonal) latent connectivi-
ties, the proposed model is able to accommodate covari-
ances induced by the causal structure whilst estimating
the loading matrix. Alternative approaches, such as the
BuildPureClusters algorithm, are also based ex-
clusively on studying covariance structure, albeit while
introducing additional higher-order algebraic constraints.

6 EXPERIMENTAL RESULTS

We systematically assess the performance of the proposed
model using simulated data under the Gaussian factor
analysis model of Section 2 as well as the directed latent
Pure Bayesian network model described in Section 5. Fi-
nally, we present an application to resting-state fMRI data
from the ABIDE consortium (Di Martino et al., 2014).

6.1 PERFORMANCE METRICS

We assess the performance of the proposed method in
the context of both a single class and multiple related
classes. Throughout these simulations, we quantify the
performance of various methods based on three distinct
tasks:

1. Recovery of the loading matrix, W . This corre-
sponds to accurately recovering the mixing matrix,
and by implication, the module memberships for
each variable.

2. Recovery of the latent connectivity structure. In the
context of undirected latent connectivities, this corre-
sponds to accurately recovering the covariance struc-
ture, G(i), across estimated modules. Conversely, in
the context of directed latent Bayesian network mod-
els it corresponds to accurately recovering the causal
dependence structure over latent variables, encoded
in B(i).

3. In the context of undirected connectivities we also
measure the negative log-likelihood over unseen data.
This provides an objective quantification of how well
the proposed method is able to model the data in
comparison to alternative methods.

6.2 GAUSSIAN FACTOR ANALYSIS MODEL

Data was generated according to the model described in
Section 2. The covariance structure for latent variables,
G(i), was randomly generated for each class by sampling
the lower triangular entries from a standard Gaussian dis-
tribution and multiplying by its transpose. We note that
generating G(i) in this fashion will randomly introduce
both positive and negative correlations across modules.
A random loading matrix, W , was generated by sam-
pling uniform random variables and projecting onto the
non-negative Stiefel manifold (this involved retaining the
largest entry per row and setting all other entries to zero).
Observations for each class were subsequently generated
according to equations (1) and (2). The dimensionality of
observations and latent variables was set to p = 50 and
k = 5 respectively. Data was generated in this manner for
N subjects. We consider two cases: N = 1 and N = 10,
which correspond to the single class and multiple class
scenarios. Each experiment was repeated 500 times.

The proposed method was benchmarked against several
widely used alternatives. In the context of recovering
the loading matrix, W , and covariance structure of latent
variables, G(i), we compare to non-negative PCA (us-
ing the method proposed by Sigg & Buhmann (2008))
and traditional factor analysis (where Varimax rotation
was employed, since it should be able to recover mod-
ule structure in the factor loadings). We note that while
these methods do not explicitly model the covariance
structure across latent variables, this can be estimated by
first projecting observations using the estimated loading
matrix and subsequently studying the covariance struc-
ture. Indeed, this is related to the update performed by
the proposed method in equation (5). When measuring
the negative log-likelihood over unseen data we add addi-
tional comparisons against the sample covariance matrix
and the estimate proposed by Ledoit & Wolf (2003) and
the graphical Lasso.

Simulation results for a single (N = 1) class are shown
along the top panel of Figure 2. The top left panel plots
the squared error when estimating the loading matrix. In
the presence of small sample sizes, the proposed method
is comparable to non-negative PCA. However, as the sam-
ple size increases the proposed method consistently out-
performs alternative methods as it is able to model the
connectivity of latent variables. Additional results relat-
ing the clustering implied by estimated loading matrices
are provided in the supplementary materials. Results for
the estimation of latent connectivities, G(i), are shown in
the top middle panel. We note that the proposed method
comfortably outperforms competing methods. Finally, the
right panel shows mean negative log-likelihood over un-
seen data; the proposed method consistently out-performs
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Figure 2: Simulated data results for Gaussian latent variable models with single (N = 1) and multiple (N = 10) classes
are shown along the top and bottom panels respectively. Left and middle panels plot the mean squared error for the
estimated loading and latent variable covariance matrices as a function of sample size, n. Right panels shows the mean
negative log-likelihood for unseen data as a function of sample size, n. Shaded regions correspond to 95% error bars.

alternative methods for small and moderate sample sizes
and remains competitive as sample size increases.

The bottom panel of Figure 2 plots results for the general
case of multiple subjects. While the loading matrix is
shared across all classes, the latent covariance structure is
heterogeneous. While the proposed method is well-suited
to accommodate such data, methods such as PCA and
factor analysis are not directly applicable. As such, non-
negative PCA and factor analysis models were applied
using a naive aggregation of the data which concatenated
observations across all classes. As before, by accurately
modeling the marginal dependencies across latent vari-
ables, the proposed method is able to obtain far more
accurate estimates of both the loading matrix as well as
the latent connectivity structure. The bottom right panel
of Figure 2 plots the mean negative log-likelihoods over
unseen data and provides empirical evidence that the pro-
posed model provides an accurate estimate of covariance
structure.

In addition to quantifying the recovery of the loading
matrix and latent connectivities, we also quantify the
computation cost associated with each algorithm. The
top panel of Figure 4 shows the mean running time as
a function of the number of observed variables, p. The
results validate our prior claims that the score matching

algorithm yields significant computational improvements
compared to the maximum likelihood algorithm described
in the Supplementary material. For high-dimensional data,
the proposed score matching algorithm also improves on
the running time compared to both factor analysis and
non-negative PCA.

6.3 LATENT PURE BAYESIAN NETWORKS

In this section we perform experiments where the data is
generated as described in Section 5. This involved gener-
ating latent variables following a non-Gaussian variant of
Bayesian networks where the disturbances, e(i), were sim-
ulated according to a Logistic distribution. The weights
for the structural model, encoded in B(i), were randomly
generated together with a distinct random causal ordering
for each class. The loading matrix, W , was generated as
in Section 6.2.

In the context of recovering the measurement model
(i.e., the loading matrix W ) we benchmark the proposed
method with factor analysis and non-negative PCA as
well as the FindOneFactorClusters (FOFC) algo-
rithm1 proposed by Kummerfeld & Ramsey (2016). For-
mally, the FOFC algorithm only returns non-overlapping

1The Tetrad project implementation was employed.
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Figure 3: Simulated data results for latent Bayesian networks with single (N = 1) and multiple (N = 10) classes
are shown along the top and bottom panels respectively. Left and middle panels plot the mean squared error for the
estimated loading matrix and structural dependency matrices as a function of sample size, n. The right panels show the
mean correlation between the estimated causal ordering of latent variables and the true causal order. For all algorithms
the causal structure over latent variables was estimated by LiNGAM. Shaded regions correspond to 95% error bars.

clusters of observed variables which share the same la-
tent parent. In order to estimate the associated loading
matrix we subsequently employ factor analysis whilst pre-
serving the 1-Factor structure as suggested by Shimizu
et al. (2009). Given an accurate estimate of W , we may
directly project observations, Ẑ(i) = ŴTX(i) and apply
traditional causal discovery algorithms by treating Ẑ(i)

as observed variables (Silva et al., 2006; Shimizu et al.,
2009). Throughout these experiments, the causal structure
of latent variables was inferred using LiNGAM.

Figure 3 shows results for a single (N = 1) and multiple
(N = 10) class cases along the top and bottom row re-
spectively. The left panels show the squared error when
estimating the loading matrix. In the context of causal
models this corresponds to accurately recovering the mea-
surement model. When data is only available for a single
class (top left panel) the performance of the proposed
method is similar to that of the FOFC algoritm. How-
ever, when data across multiple classes is available, the
proposed method is able to exploit this information and
improve upon the FOFC algorithm as shown in the bot-
tom left panel. We also plot the performance of running
the FOFC when naively aggregating data across multiple
subjects. Such a naive aggregation leads to worse perfor-
mance as each class has its own latent causal structure.

We observe a similar pattern when studying the recovery
of the structural equations, as shown in the middle and
right panels. The proposed method out-performs both
factor analysis and PCA and is comparable to FOFC in
the context of a single (N = 1) class. However, in the
context of multiple classes the proposed method is able
to out-perform alternative methods.

Finally, the bottom panel of Figure 4 plots the mean run-
ning time as the number of observed variables, p, in-
creases. In terms of running time, the proposed method is
significantly faster than the FOFC algorithm.

6.4 APPLICATION TO FMRI DATA

In this section we apply the proposed method to resting-
state fMRI data taken from the ABIDE consortium (Di
Martino et al., 2014). Data was collected from the Univer-
sity of Maryland site corresponding to 53 healthy controls
as well as 53 age matched Autism Spectrum Disorder
(ASD) subjects. Data from each subject was treated as a
distinct class, resulting in N = 106 classes. Data were
preprocessed via the CPAC pipeline from the ABIDE
repository2. Time courses were then extracted from 116

2http://preprocessed-connectomes-project.org/abide/
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Figure 4: Mean running times (in milliseconds) taken
to estimate the factor loading matrix, W , when data is
generated according to the Gaussian latent variable model
(top) and latent Bayesian network model (bottom). Mean
run times based on 10 experiments run on a Macbook Pro
(3.5 GHz Intel Core i7, 16 GB RAM).

regions defined by the Automated Anatomical Labeling
(AAL) atlas, yielding 296 observations over 116 nodes for
each subject. The data was analyzed under the assump-
tion of undirected latent connectivity structure as there
is a large literature discussing differences in covariance
structure between healthy controls and ASD subjects (Fox
& Greicius, 2010).

The proposed method requires the specification of a single
parameter, k, which dictates the dimensionality of latent
variables. As discussed in Section 4, this parameter was
selected by minimizing the negative log-likelihood over
held-out data, resulting in an choice of k = 5 modules.
Figure 5 shows the k = 5 estimated modules obtained by
applying the proposed method. The spatially consistency
and inter-hemispheric symmetry of module assignments
reflects the anatomical and functional architecture of the
brain. Moreover, edges in Figure 5 highlight significant
differences in covariance structure of latent variables be-
tween healthy controls and ASD subjects. Permutation
tests were performed on each edge of the latent connectiv-

Table 1: Mean log-likelihood scores on unseen data for
N = 106 subjects (standard deviations are provided in
brackets).

Method Log-likelihood
Ours -163.76 (8.86)
Non-neg. PCA -190.47 (9.26)
Factor Anal. -193.89 (8.05)
Glasso -198.58 (9.05)
Lediot-Wolf -247.91 (10.88)
Sample Cov. -329.75 (14.98)

Figure 5: Visualization of estimation brain modules. Each
black node represents a distinct brain region. Note that
estimated modules are both spatially consistent and sym-
metric across hemispheres. Edges indicate significant
increase in inter-module marginal dependence for ASD
subjects compared to healthy controls (edge-wise Bonfer-
roni corrected permutation tests, p < 0.01).

ity structure and Bonferroni corrected for multiple testing.
Results indicate that ASD subjects demonstrate increased
connectivity for which there is growing evidence (Keown
et al., 2013). In particular, we note increased connectivity
between the frontoparietal regions (module 2) and both
the occipital regions (module 1) and the hippocampus,
amydala and temporal lobes (module 3). Finally, Table 1
reports the mean log-likelihood scores on unseen data for
all N = 106 subjects, demonstrating the proposed model
accurately captures covariance structure of fMRI data.

7 CONCLUSION

We have proposed a probabilistic model which simultane-
ously performs grouping of variables as well as estimation
of the latent connectivities between groups. The proposed
method can be seen as an extension of traditional factor
analysis with the important difference that latent variables
are allowed to have a full (i.e., non-diagonal) covariance
structure while the loading matrix is restricted to encode
module membership. The proposed model can directly
accommodate datasets across multiple related classes un-
der the assumption that variables across classes share
the same modularity or community structure. While the
proposed method is introduced in the context of Gaus-
sian latent variable models, we also demonstrate that it
may be extended to latent Bayesian network models. We
present experiments on synthetic and fMRI data which
demonstrate the capabilities of our approach, in particular
showing it successfully scales to high-dimensional data.
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Abstract

The paper begins by introducing the definition
and construction of mutually unbiased bases,
which are a widely used concept in quantum
information processing but have received lit-
tle to no attention in the machine learning and
statistics literature. We demonstrate their use-
fulness by using them to create a new sampling
technique which offers an improvement on the
previously well established bounds of stochas-
tic trace estimation. This approach offers a
new state of the art single shot sampling vari-
ance while requiring O(log(n)) random bits
for x ∈ Rn which significantly improves on
traditional methods such as fixed basis meth-
ods, Hutchinson’s and Gaussian estimators in
terms of the number of random bits required
and worst case sample variance.

1 INTRODUCTION

Function space representations and transformations are
at the heart of many machine learning techniques. For
example, the relationship between computational space
and Fourier space arrises throughout machine learning
literature, from classic shift invariant filters studied in
image processing through to modern techniques for ker-
nel approximation such as random Fourier features [1].
The power of random Fourier features, for example, is
introduced by the unbiased relationship of the computa-
tional and Fourier bases, that is to say that a Dirac-delta
distribution in one basis is represented with uniformly
distributed mass in the other.

In this work we take advantage of not only pairs of
mutually unbiased bases, but entire sets of them. We
believe that the application of mutually unbiased bases
has potential to improve kernel matrix approximation

and feature learning. To exemplify their applicability,
we demonstrate their ability to create a novel sampling
method which improves upon the well established error
bounds of stochastic trace estimation.

The problem of stochastic trace estimation is relevant to
a range of problems from physics and applied mathemat-
ics such as electronic structure calculations [2], seismic
waveform inversion [3], discretized parameter estima-
tion problems with PDEs as constraints [4] and approx-
imating the log determinant of symmetric positive semi-
definite matrices [5]. Machine learning, in particular,
is a research domain which has many uses for stochas-
tic trace estimation. They have been used efficiently by
Generalised Cross Validation (GCV) in discretized iter-
ative methods for fitting Laplacian smoothing splines to
very large datasets [6], computing the number of trian-
gles in a graph [7, 8], string pattern matching [9, 10] and
training Gaussian Processes using score functions [11].
Motivated by accelerating Gaussian graphical models,
Markov random fields, variational methods and Bregman
divergences, work based on stochastic trace estimation
has also been developed to improve the computational
efficiency of log determinant calculations [12].

Stochastic trace estimation endeavours to choose n-
dimensional vectors x such that the expectation of xT Ax
is equal to the trace of the implicit symmetrical posi-
tive semi definite matrix A ∈ Rn×n. It can be seen that
many sampling policies satisfy this condition. Due to
this, several metrics are used in order to choose a sam-
pling policy such as the single shot sampling variance,
the number of samples to achieve a (ε,δ )-approximation
and the number of random bits required to create x [13].
This last metric is motivated in part by the relatively
long timescales for hardware random number generation,
and concerns about parallelising pseudo-random number
generators.

In this work we propose a new stochastic trace estima-
tor based on mutually unbiased bases (MUBs) [14], and
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quantify the single shot sampling variance of the pro-
posed MUBs sampling method and its corresponding re-
quired number of random bits. We will refer to methods
which sample from a fixed set of basis functions as be-
ing fixed basis sampling methods. For example, we can
randomly sample the diagonal values of the matrix A by
sampling x from the set of columns which form the iden-
tity matrix. This is referred to as the unit vector estima-
tor in the literature [13]. Other similar methods sample
from the columns Discrete Fourier Transform (DFT), the
Discrete Hartley Transform (DHT), the Discrete Cosine
Transform (DCT) or a Hadamard matrix. We prove that
sampling from the set of mutually unbiased bases signif-
icantly reduces this single shot sample variance, in par-
ticular in the worst case bound.

The paper is laid out as follows: Section 2 gives a brief
introduction to mutually unbiased basis and their con-
struction, Section 3 describes our novel approach of us-
ing mutually unbiased bases for trace estimation and Sec-
tion 3.2 gives a rigorous analysis of of the new estimator.
Section 4 compares the proposed MUBs estimator to es-
tablished approaches both in terms of the analytic expec-
tation of sample variance and as applied to synthetic and
real data. The tasks of counting the number of triangles
in a graph and of estimating the log determinant of kernel
matrices are considered as an example application.

2 MUTUALLY UNBIASED BASES

Linear algebra has found application in a diverse range
of fields, with each field drawing from a common set of
tools. However, occasionally, techniques developed in
one field do not become well known outside of that com-
munity, despite the potential for wider use. In this work,
we will make extensive use of mutually unbiased bases,
sets of bases that arise from physical considerations in
the context of quantum mechanics [14] and which have
been extensively exploited within the quantum informa-
tion community [15]. In quantum mechanics, physical
states are represented as vectors in a complex vector
space, and the simplest form of measurement projects
the state onto one of the vectors from some fixed or-
thonormal basis for the space, with the probability for
a particular outcome given by the square of the length
of the projection onto the corresponding basis vector 1.
In such a setting, it is natural to ask about the existence
of pairs or sets of measurements where the outcome of
one measurement reveals nothing about the outcome of
another measurement, and effectively erases any infor-
mation about the outcome had the alternate measure-

1For a more comprehensive introduction to the mathematics
of quantum mechanics in finite-dimensional systems, we refer
the reader to [16]

ment instead been performed. As each measurement cor-
responds to a particular basis, such a requirement im-
plies that the absolute value of the overlap between pairs
of vectors drawn from bases corresponding to different
measurements be constant. This leads directly to the con-
cept of mutually unbiased bases (MUBs).

A set of orthonormal bases {B1, . . . ,Bn} are said to be
mutually unbiased if for all choices of i and j, such that
i 6= j, and for every u ∈ Bi and every v ∈ B j, |u†v|= 1√

n ,
where n is the dimension of the space. While for real
vector spaces the number of mutually unbiased bases has
a complicated relationship with the dimensionality [17],
for complex vector spaces the number of mutually unbi-
ased bases is known to be exactly n+1 when n is either
a prime or an integer power of a prime [18]. Further-
more, a number of constructions are known for finding
such bases [18]. When n is neither prime nor a power of
a prime, the number of mutually unbiased bases remains
open, even for the case of n = 6 [19], but is known to
be at least pd1

1 + 1, where n = ∏i pdi
i and pi are prime

numbers such that pi < pi+1 for all i.

One practical method for constructing MUBs is to use
the unitary operators method with finite fields [20],
which is effective when the dimensionality of the space
is either prime or a prime power. For conciseness, we
will outline the procedure for only the prime dimension-
ality case but note that any integer dimensional space is
at most bounded by two times its closest prime power di-
mension which adds a constant cost to the memory and
runtime performance. First, let us construct the matrix X
as the identity matrix with the columns shifted one to the
left creating the form,

X =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0




and letting Z be a diagonal matrix with elements set to
the roots of unity, Zk,k = exp

( 2kπi
n

)
. Given these two

matrices a set of mutually unbiased bases are found as
the eigenvectors of the matrices,

X ,Z,XZ,XZ2, . . . ,XZn−1.

At first glance it may appear that the computational cost
of constructing vectors from these bases is O(d3) due to
the cost decomposing these matrices in Cn×n, however,
under more scrutiny we can see that X is a circulant per-
mutation matrix and as such its eigenvectors are equal to
Uk, j =

1√
n exp

(
jk2πi

n

)
irrespective of the dimensionality,
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where j indexes the elements of the eigenvector and v
indexes which eigenvector is under consideration.

As the elements the diagonal matrix Z are the roots
of unity in ascending order, it can be seen that
exp
( 2πi

n

)k
ZkX = QkX = XZk , where Q is some matrix

of the same form as Z but with a shift of phase of the
non-zero elements. As such, by writing the eigenbasis of
X =U−1ΣU we can derive the eigenbasis of XZk for ar-
bitrary value k with eigen decomposition XZk = Û−1Σ̂Û ,

XZk =U†ΣUZk

= QkU−1ΣU

Next, we pull Q
k
2 and Z

k
2 through the eigenvectors by

observing that we can transform the eigenvectors as Σ =

Z
1
2 Σ̂Q

k
2 ,

XZk = Q
k
2 U−1ΣUZ

k
2

= Q
k
2 U−1Z

1
2 Σ̂Q

k
2 UZ

k
2

= Û−1Σ̂Û

where Û = Q−
k
2 Z

k
2 U and hence the Ûi, j =

1√
n exp

(
2πi
n ( jv+ ( j+1)( j+2)

2 k)
)

using the same in-
dexing as before.

As a result, we can simply use the following procedure
to sample the vector x in linear computational time and
memory:

1 Choose k and v, representing the basis and the vec-
tor to select respectively, uniformly at random.

2 If k = 0, then we select the vector v from the com-
putational basis, that is to say the columns of the
identity matrix.

3 Else, let x j =
1√
n exp

(
2πi
n ( jv+ ( j+1)( j+2)

2 k
)

3 TRACE ESTIMATORS

In order to estimate the trace of a n× n positive semi-
definite matrix A from a single call to an oracle for x†Ax,
we consider four strategies:

• Fixed basis estimator: For a fixed orthonormal ba-
sis B, choose x uniformly at random from the ele-
ments of B. The trace is then estimated to be nx†Ax.

• Mutually unbiased bases (MUBs) estimator: For
a fixed choice of a set of b mutually unbiased bases
B = {B1, ...,Bb}, choose B uniformly at random
from B and then choose x uniformly at random from
the elements of B. Here b is taken to be the maxi-
mum number of mutually unbiased bases for a com-
plex vector space of dimension n. As in the fixed ba-
sis strategy, the trace is then estimated to be nx†Ax.

• Hutchinson’s estimator: Randomly choose
the elements of x independently and identi-
cally distributed from a Rademacher distribution(
Pr(xi =±1) = 1

2

)
. The trace is then estimated to

be x†Ax.

• Gaussian estimator: Randomly choose the ele-
ments of x independently and identically distributed
from a zero mean unit variance Gaussian distribu-
tion. The trace is then estimated to be x†Ax.

The first strategy is a generic formulation of approaches
which sample vectors from a fixed orthogonal basis, the
most efficient sampling method in terms of the number
of random bits required in the literature [13], while the
second strategy is novel and represents our main contri-
bution. Both strategies have similar randomness require-
ments: In the first strategy at least dlog2(n)e random bits
are necessary to ensure the possibility of choosing every
element of B. In the second strategy, an identical num-
ber of random bits is necessary to choose x for a fixed
B, and dlog2(b)e random bits are necessary to choose
B. Note that an upper bound on the number of mutually
unbiased bases is one greater than dimensionality of the
space, and this bound is saturated for spaces where the
dimensionality is prime or an integer power of a prime,
i.e. b ≤ n+ 1. Thus the number of random bits neces-
sary to implement these strategies differs by a factor of
approximately two. The third and forth strategies signif-
icantly outperform the fixed basis estimator in terms of
single-shot variance, at the cost of a dramatic increase in
the amount of randomness required, and have been ex-
tensively studied in the literature [13, 21, 22]. For con-
ciseness we will not repeat the analysis of these methods
in this paper but will compare the fixed basis estimator
and MUBs estimator to them in Table 4.1.

3.1 ANALYSIS OF FIXED BASIS ESTIMATOR

We first analyse the worst case variance of the fixed base
estimator. In this analysis and the analysis for the MUBs
estimator which follows, we make no assumption on A
and consider the worst case variance.

We begin from the definition of the variance of the es-
timator for a single query. Let X be a random variable
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such that X = x†Ax, where x is chosen according to the
fixed basis strategy. Then

Var(X) = E(X2)−E(X)2, (1)

where E(·) denotes the expectation value of the argu-
ment. We compute this term by term. First

E(X) =
1
n ∑

x∈B
x†Ax =

Tr(A)
n

.

where n = dimA, and hence the second term in Eq. 1 is
equal to Tr(A)2

n2 . Turning to the first term,

E(X2) =
1
n ∑

x∈B

(
x†Ax

)2

=
1
n

n

∑
i=1

M2
ii,

where M = UAU† for some fixed unitary matrix U such
that U†x is a vector in the standard basis for all x ∈ B,
and Mii is the ith entry on the main diagonal of M. The
variance for the fixed basis estimator is then given by
Vfixed = n∑n

i=1 M2
ii−Tr(A)2. The worst case occurs when

the value of ∑n
i=1 M2

ii is maximized for fixed trace of A
(and hence M), and so the worst case single shot variance
for the fixed basis estimator is V worst

f ixed = (n−1)Tr(A)2.

3.2 ANALYSIS OF MUBS ESTIMATOR

We now turn to analysis of the MUBs estimator. We as-
sume that n is either prime or a prime raised to some
integer power. In this case, it has been established that
b= n+1 [18]. The variance is defined as in Eq. 1, except
that X is defined in terms of x chosen according to the
MUBs strategy. Again, we analyse the individual terms
making up the variance. We begin with

E(X) =
1

nb ∑
B∈B

∑
x∈B

x†Ax =
Tr(A)

n
.

and hence the second term in the variance is the same as
for the fixed basis estimator. Analysing the first term is,
however, more difficult. We begin with the observation
that E(X2) can be expressed in terms of the trace of the
Kronecker product of two matrices, as follows

E(X2) =
1
nb ∑

B∈B
∑
x∈B

(
x†Ax

)2

=
1
nb ∑

B∈B
∑
x∈B

Tr
(
(xx†A)⊗2) .

Moving the summations inside the equation we obtain

E(X2) =
1

nb
Tr

(
∑

B∈B
∑
x∈B

(
xx†)⊗2

A⊗2

)

=
2

nb
Tr
(
PA⊗2) , (2)

where P = 1
2 ∑B∈B ∑x∈B

(
xx†
)⊗2.

While this form of P may appear intimidating, we now
prove that P is in fact a projector with each eigenvalue
being either 0 or 1. We prove this indirectly, first by
showing that P has rank at most n(n + 1)/2, and then
using the relationship between the traces of P and P2 to
conclude that the non-zero n(n + 1)/2 eigenvalues are
equal to unity. Any vector of the form w = u⊗v−u⊗v
for u,v∈B1 trivially satisfies Pw= 0. Since such vectors
form a basis for a subspace of dimension n(n−1)/2, we
conclude that rank(P) ≤ n2− n(n− 1)/2 = n(n+ 1)/2.
Turning now to the issue of trace, we have

Tr(P) = Tr

(
1
2 ∑

B∈B
∑
x∈B

(
xx†)⊗2

)

=
1
2 ∑

B∈B
∑
x∈B

(
x†x
)2

=
nb
2
.

We can similarly compute the trace of P2 to obtain

Tr(P2) = Tr

(
1
4 ∑

B,B′∈B
∑
x∈B

∑
y∈B′

(
xx†)⊗2 (yy†)⊗2

)

=
1
4 ∑

B,B′∈B
∑
x∈B

∑
y∈B′

∣∣x†y
∣∣4

=
nb
4

+
n2b(b−1)

4n2

=
b(n+b−1)

4
.

Notice that this implies that Tr(P) = Tr(P2) for dimen-
sions which are prime or integer powers of a prime, since
in such cases b = n+ 1. This implies that the eigenval-
ues on the non-zero subspace minimize the sum of their
squares for a fixed sum, and since P is positive semi-
definite, we can conclude that each non-zero eigenvalue
must be equal to unity.

Returning to the calculation of variance, we then have

E(X2) ≤ 2
nb

Tr
(
A⊗2)

=
2
nb

Tr(A)2 ,

and hence

Var(X)≤
(

2
nb
− 1

n2

)
Tr(M)2 ≤ Tr(A)2

n2 . (3)

This implies that the variance on the estimate of Tr(A)
is bounded from above by Tr(A)2. It is, in fact, possible
to compute the variance exactly from Eq. 2 by observing
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that M is the projector onto the symmetric subspace when
n is an integer power of a prime. That is to say, for any
vector u and any vector v orthogonal to u, the vectors
u⊗v+v⊗u, u⊗u and v⊗v are in the +1 eigenspace of
M, whereas the vector u⊗ v− v⊗u is in the null space
of M. Thus we can compute the exact variance of the
MUBs estimator, using the spectral decomposition A =

∑i λiuiu†
i as

VMUBs =
2n

n+1
Tr
(
PA⊗2)−Tr(A)2

=
2n

n+1

n

∑
i=1

n

∑
j=1

λiλ j

Tr
(
P(ui⊗u j)(ui⊗u j)

†)−Tr(A)2

=
2n

n+1

n

∑
i=1

(
λ 2

i +
1
2 ∑

j 6=i
λiλ j

)
−Tr(A)2

=
n

n+1
Tr(A2)− 1

n+1
Tr(A)2.

Since for all positive semi-definite matrices A the value
of Tr(A)2 is bounded from below by Tr(A2), the sin-
gle shot variance on the MUBs estimator is bounded
by Vworst

MUBs =
n−1
n+1 Tr(A2) in the worst case, a significant

improvement on the bound stemming from Eq. 3. The
worst case single shot variance of the MUBs estimator
is then at least a factor of n+ 1 better than that of any
fixed basis estimator. Furthermore, the variance for the
widely used Hutchinson estimator [21, 13], is given by
VH = 2

(
Tr(A2)−∑n

i=1 A2
ii
)
. In the worst case, ∑n

i=1 A2
ii =

1
n Tr(A2), and hence the worst case single shot variance
for Hutchinson estimator is V worst

H = 2(n−1)
n Tr(A2). Thus,

the MUBs estimator has better worst case performance
than the Hutchinson estimator by a factor 2(n+1)

n which
approaches 2 from above for large n.

4 RESULTS

4.1 THEORETICAL RESULTS

Table 1 compares the single shot variance, worst case
single shot variance and randomness requirements of the
trace estimators. As can be seen from the comparison
the MUBs estimator has strictly smaller variance than ei-
ther the Hutchinson or Gaussian methods, while requir-
ing significantly less randomness to implement. Given
the drastic reduction in randomness requirements, and
the improved worst case performance, the MUBs estima-
tor provides an attractive alternative to previous methods
for estimating the trace of implicit matrices.

4.2 NUMERICAL RESULTS

4.2.1 Example Matrices

Before we demonstrate the use of the MUBs estimator
on example applications we draw the readers attention to
a situation where the traditional methods perform poorly.
This occurs when the values of the matrix A are close to
the ones matrix with a small proportion of the diagonal
values much greater. The most extreme example being
when this small proportion is only one element of the
matrix. Due to the relationship between each of the un-
biased bases this ‘spikiness’ only appears in one of the
n+1 bases and hence the MUBs estimator appears very
robust to the condition.

It is worth noting the reason we observe an order of mag-
nitude improvement in this setting over the competing
methods. The spikes matrix described can be written as
the sum of two rank one matrices. Each of these matrices
will perform very poorly for the unitary estimator in that
basis but gets exactly the correct result in the n other mu-
tually unbiased bases. Naturally as n becomes large and
the number of samples utilised is relatively small, then
we sample the exact result with high probability.

5 10 15 20 25 30 35 40 45 50
Number of Samples

10 2

10 1

100
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SE
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rro
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Ones matrix with Spikes
Gaussian
Hutchinson
Unit
MUBs

Figure 1: Convergence of the methods when estimating
the trace of a 1000× 1000 ones matrix with 1 diagonal
element replaced with 1001. This ‘spike’ has little effect
of the convergence of the MUBs estimator and hence the
method vastly out performs the others. The experiment
was run 500 times and the mean and standard deviation
have been plotted for each method.

We can generalise this result to low rank matrices more
broadly. Any given rank-m matrix can be written as the
sum of m rank-1 matrices. Figure 2, demonstrates the
convergence of of the stochastic trace estimators to rank-
10 1000× 1000 matrices. These were created by sam-
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Estimator V V worst R

Fixed basis n∑n
i=1 M2

ii−Tr(A)2 (n−1)Tr(A)2 log2(n)

MUBs n
n+1 Tr(A2)− 1

n+1 Tr(A)2 n−1
n+1 Tr(A2) log2(n)+ log2(n+1)

Hutchinson [21] 2
(
Tr(A2)−∑n

i=1 A2
ii
) 2(n−1)

n Tr(A2) n

Gaussian [22] 2Tr(A2) 2Tr(A2) ∞ for exact; O(n) for fixed
precision

Table 1: Comparison of single shot variance V , worst case single shot variance V worst and number of random bits R
required for commonly used trace estimators and the MUBs estimator.

pling 10 eigenvalues from a standard χ2 distribution and
sampling the first 10 eigenvectors of a Gaussian random
matrix.
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Figure 2: Convergence of the methods when estimating
the trace of a 1000× 1000 rank-10 matrix. The eigen-
values were sampled from a standard χ2-distribution. As
the rank of the matrix is only 1% of the dimensionality of
the space we once again see substantially improved con-
vergence rates. The experiment was run 30 times and the
mean and standard deviation have been plotted for each
method.

4.2.2 Counting Triangles in Graphs

As an example application we will consider counting the
number of triangles in a graph. This is an important prob-
lem in a number of application domains such as identi-
fying the number of ‘friend of a friend’ connections in
a social network which is important for friendship sug-
gestions [23, 24], identifying spam like behaviour [25]
and even identifying thematic structures in the internet
[26]. An efficient method to do this is the Trace Triangle

algorithm [9]. The algorithm is based on a relationship
between the adjacency matrix, A, and the number of tri-
angles for an undirected graph, ∆g,

∆g =
Tr(A3)

6
.

The trace of the adjacency matrix cubed can be sampled
in O(n2) per sample as opposed to being explicitly com-
puted in O(n3). We compared Gaussian, Hutchinson’s,
Unit and MUBs estimators performance at predicting the
number of triangles for the graphs presented in Table 2
and the results of the experiment are presented in Fig-
ure 3. An efficient Python implementation for generat-
ing the MUBs sample vectors in O(n), is available at
www.github.com/OxfordMLRG/traceEst. The
MUBs estimator outperforms each of the classical meth-
ods in all of the experiments, as would be implied by the
theory.

Dataset Vertices Edges Triangles
Arxiv-HEP-th 27,240 341,923 1,478,735
CA-AstroPh 18,772 198,050 1,351,441
CA-GrQc 5,242 14,484 48,260
wiki-vote 7,115 100,689 608,389

Table 2: Datasets used for the comparison of stochastic
trace estimation methods in the counting of triangles in
graphs. All datasets can be found at snap.stanford.
edu/data

4.2.3 Log Determinant of Covariance Matrix

Next, let us consider a common linear algebraic calcula-
tion required in the training of Gaussian processes, de-
terminantal point processes and Gauss Markov random
field modelling to name just a few applications, namely
the log determinant of a kernel matrix.
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Figure 3: A comparison of the performance of the stochastic trace estimation methods on the four datasets. The
experiments were performed 500 times each. The solid line indicated the empirical mean absolute relative error and
the the surrounding transparent region indicates one empirical standard deviation of the 500 trials.

The use of stochastic trace estimation to approximate log
determinant calculations of kernel matrices has been well
studied [12, 27, 28] and a range of methods are feasi-
ble. Most notably, polynomial approaches such as trun-
cated Taylor approximations and Chebyshev approxima-
tions [12, 29] have been applied, with the latter achieving
consistently better results. The general concept relies on
the fact that the trace of a matrix is simply the sum of
its eigenvalues and the log determinant is the sum of the
log of its eigenvalues. Stochastic trace estimation aids
us in approximating the sum of the eigenvalues squared,
cubed and so on which we can use in a polynomial ap-
proximation of the log function,

log(x)≈
m

∑
j=0

c jx j → log(|K|)≈
m

∑
j=0

c jTr(K j)

where the constants c j refer to the coefficients of the
polynomial approximation. In practice, the trace of K0 is
simply the dimensionality of the matrix, K1 is the trace
of the explicit matrix and K2 can be found as ∑i, j Ki, j
due to the relationship between the matrix elements and
the Frobenius norm. As such, the approximation error
incurred is only due to the trace of the matrix raised to

three and above.

In order to demonstrate the effect of improved stochastic
trace estimation on log determinant estimations, we sam-
pled 1000 points from a 5-dimensional hypercube uni-
formly at random. These points in turn formed a covari-
ance matrix using an isotropic Gaussian kernel function.
This aimed to emulate a realistic dataset which may be
used by practitioners.

We used a order-6 Chebyshev polynomial approximation
and recorded estimation errors of the relative root mean
squared error (RMSE) for each power of the covariance
matrix. These can be seen in Figure 4. Also plotted is the
estimation error of the log determinant itself, as it com-
pounds both the polynomial approximation error and the
error due to the stochastic trace estimation. A fixed bud-
get of 25 probing vectors was allowed for each of the ap-
proaches. As can be seen in the figure, the error incurred
due to the stochastic trace estimation is non-negligible
and for the higher order estimates the MUBs approach
was achieving improved results in turns of both its ex-
pectation and standard error.
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Figure 4: The performance of estimating the trace of K3, K4, K5, K6 and their combined result in the Chebyshev
polynomial approximation of log(|K|). The experiment we ran 20 times and their expectation and standard error have
been shown above.

5 CONCLUSION

We have introduced a new MUBs sampler for stochastic
trace estimation which combines the efficiency of fixed
basis methods with performance which outperforms the
state of the art methods. We offer both empirical and the-
oretical comparisons to the previously established state
of the art techniques and clearly demonstrate the bene-
fit of using mutually unbiased bases for stochastic linear
algebraic procedures to accelerate machine learning al-
gorithms.
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Abstract

In this paper, we study the unsupervised
multi-view graph embedding (UMGE) prob-
lem, which aims to learn graph embedding
from multiple perspectives in an unsupervised
manner. However, the vast majority of multi-
view learning work focuses on non-graph data,
and surprisingly there are limited work on
UMGE. By systematically analyzing different
existing methods for UMGE, we discover that
cross-view and nonlinearity play a vital role in
efficiently improving graph embedding qual-
ity. Motivated by this concept, we develop
an unsupervised Multi-viEw nonlineaR Graph
Embedding (MERGE) approach to model re-
lational multi-view consistency. Experimen-
tal results on five benchmark datasets demon-
strate that MERGE significantly outperforms
the state-of-the-art baselines in terms of accu-
racy in node classification tasks without sacri-
ficing the computational efficiency.

1 INTRODUCTION

Most of the recent work on graph embedding [25, 9, 5]
focuses on the network information alone. In practice,
a graph may consist of additional node features; e.g., in
a paper citation network, each paper node includes text
content. Thus some pioneer work has started to con-
sider the node features in graph embedding; e.g., Plan-
etoid [33] uses a semi-supervised framework to learn a
network embedding for each node from its network fea-
tures and a content embedding from its content features.
Generally, network structure and node features are con-
sidered as two different “views” for a node in the graph.
Motivated by multi-view learning [31, 11], we allow the

∗Zhao Li and Vincent W. Zheng are co-first authors.
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Figure 1: A systematic comparison of different meth-
ods. xi,j denotes the ith instance (or node)’s jth-view
features, and ei,j is its embedding. In (c) ∼ (d), we
let view 1’s features be network, and view 2’s be con-
tent. 1© denotes the cross-instance in single view. 2©
denotes the intra-instance–cross-view. 3© denotes the
cross-instance–cross-view.

two views to reinforce each other, so as to obtain a better
graph embedding.

In this paper, we try to solve the Unsupervised Multi-
view Graph Embedding (UMGE) problem. Given a
graph with node features, we aim to learn a network
embedding and a content embedding simultaneously for
each node in an unsupervised manner. Most of the multi-
view learning work focuses on non-graph data, such as
image and caption features in [18], acoustic and artic-
ulatory features in speech [2], and so on. Combining
network and node features has been popular for graph
classification [17] and graph clustering [36]. However,
it has been under-explored in the literature for UMGE
[2, 32, 37]. Moreover, despite the success of these prior
methods, their development appears ad hoc and underly-
ing connections are not investigated yet.
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To approach the problem of UMGE, we start with sys-
tematically analyzing the underlying connections among
different prior methods in Fig. 1 (two-view example).
For simple discussion, let us denote xi,k as the features
corresponding to the ith instance in kth view, and ei,k
as its embedding. A naive way to extend the single view
graph embedding methods into multi-view scenarios is
concatenating the graph embedding (learned in network
structure only) and the node features directly. For exam-
ple, as shown in Fig. 1(a), SDNE [27] learns the graph
embedding taking no account of the node features. By
using a deep AutoEncoder [4] to model the node fea-
tures and concatenating these two kinds of embeddings
as node representation, SDNE can be extended to multi-
view scenarios. However, simply concatenating the two
views has no guarantee to reinforce each other. Typically,
multi-view learning focuses on enforcing intra-instance–
cross-view consistency on irrelevant data. In Fig. 1(b),
DCCA [2] first embeds each instance’s multi-view fea-
tures xi,k’s into low-dimensional representations ei,k’s,
then enforces the maximal correlation between ei,1 and
ei,2 for each i, which does not take the relational infor-
mation into consideration. Some recent work exploits
a different approach to model the relational information
by enforcing cross-instance–cross-view consistency. In
Fig. 1(c), TADW [32] recovers an adjacency matrix with
the multiplication between a network embedding matrix
and a text embedding matrix. Thus, two nodes with simi-
lar neighbors tend to have similar multi-view embedding.

Despite the recent advance of UMGE in network repre-
sentation, there are still rooms for improvement, as cur-
rent work has some limitations. First, the feature embed-
ding in TADW is linear. However, in practice, data non-
linearity is common for both network features [27] and
content features [30]. Second, the network structure is
under-explored. For example, DCCA does not preserve
any relational proximity. However, preserving network
structure is useful for graph embedding [25]. TADW
preserves the second-order proximity by using matrix
decomposition, which is computationally expensive. It
takes a complexity of O(nnz(M) + |V |) to decompose
the adjacency matrix M for a graph G = (V,E), where
V and E are the sets of nodes and edges respectively,
and nnz(M) is the number of non-zero entries in M . In
other words, its complexity is at leastO(|E|+|V |), since
nnz(M) ≥ |E|. Therefore, our goal is to efficiently
solve UMGE with nonlinearity. We consider nonlinear
embedding for both views in order to deal with the non-
linear data nature. Besides, we also preserve the second-
order proximity by enforcing cross-instance–cross-view
consistency, yet with less computational cost compared
against TADW.

In this paper, we propose a simple, yet effective un-

supervised Multi-viEw nonlineaR Graph Embedding
(MERGE) model. Our insights are two-fold. First, in-
spired by SDNE [27], MERGE encodes the nonlinear-
ity of the network/content by taking the network/content
features as input, and then applying a deep AutoEn-
coder [4] to learn a nonlinear network/content embed-
ding for each node. Second, MERGE preserves the
second-order proximity by extending DeepWalk [20] to
the multi-view setting. On the one hand, DeepWalk pre-
serves the second-order proximity by using one node’s
network embedding to interpret its “neighbor” node’s
context embedding. MERGE is easy to extend Deep-
Walk for using one node’s network embedding to in-
terpret its “neighbor” node’s content embedding, so as
to enforce cross-instance–cross-view consistency. Be-
sides, MERGE also fully leverages this formulation to
enforce intra-instance–cross-view consistency by using
one node’s network embedding to interpret its own con-
tent embedding. On the other hand, DeepWalk employs a
graph sampling approach to achieve comparable perfor-
mance, which takes an O(|V | log |V |) complexity with
a hierarchical softmax objective function. MERGE fur-
ther reduces the complexity to O(|V |) by using negative
sampling [19]. We back up this argument later with a de-
tailed complexity analysis of the MERGE algorithm in
Sec. 4.

Our contributions are summarize as follows. It is the first
time that different existing methods for UMGE are sys-
tematically analyzed, where cross-view and non-linearity
are discovered to be critical in improving graph em-
bedding quality, and we develop a simple, yet effective
MERGE model to efficiently incorporate nonlinearity in
graph embedding. MERGE is evaluated on five bench-
mark datasets, and it exceedingly outperforms the state-
of-the-art baselines by at least relatively 1.5% ∼ 17.9%
(macro-F1) and 0.4% ∼ 14.9% (micro-F1) over all the
datasets. Moreover, the computational complexity of
MERGE scales linearly with |V |, which is more favor-
ably applied to real-world scenarios.

2 RELATED WORD

Graph embedding is an important task for graph ana-
lytics. Generally, it aims to learn a vector representa-
tion for each node, such that two nodes being “close” on
the graph have similar vectors. Earlier work on graph
embedding, such as MDS [7], LLE [23], IsoMap [26]
and Laplacian eigenmap [3], typically treats to solve the
leading eigenvectors of graph affinity matrices as node
embedding. Recent methods explore deep learning for
graph embedding. For example, LINE [25] models the
node closeness by using both first-order and second-
order proximity, therefore two nodes either connect di-
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rectly or share the common neighbors result in simi-
lar embedding. Node2Vec [9] considers how to sample
paths for DeepWalk, with awareness of node homophily
and structural role. Besides, there are a number of works
study the heterogeneous graph embedding [24, 6, 16].
Most existing graph embedding work focuses on single-
view setting; i.e., only network structure is considered.
Only little work considers a multi-view setting, such as
COLDA [12], TADW [32] and GCN [13]. Yet, COLDA
is supervised; GCN is semi-supervised; only TADW is
unsupervised.

Multi-view learning is a machine learning paradigm,
which handles the data with multiple views of features
in its instances [28]. Some detailed surveys about multi-
view learning are available in [31, 15]. A large portion
of multi-view learning literatures focus on supervised or
semi-supervised settings, such as recommendation [8]
and classification [10, 35]. Some other work considers an
unsupervised setting, but not particularly for representa-
tion learning. For example, in [14], multi-view learning
is used to improve spectral clustering; whereas in [34],
the focus is to tackle the corrupted view with intra-view
and inter-view noises. An overall review of recent multi-
view embedding models is in [29]. Among them, a no-
table method is DCCA [2]. It extends CCA [1] by learn-
ing embedding for each view with a deep neural network
and then enforcing the maximal correlation across two
views’ embedding. However, some recent multi-view
embedding work, including COLDA [12], and TADW
[32], has paid less attention to graph data.

3 UNSUPERVISED MULTI-VIEW
GRAPH EMBEDDING

The UMGE is formalized as follows. Given a graph
G = (V,E) as the input, each node vi ∈ V has a network
feature vector xi,1 ∈ Rm1 and a content feature vec-
tor xi,2 ∈ Rm2 . UMGE then generates two embedding
vectors in a d-dimensional common space for each node
as the output. For instance, the network features xi,1
is extracted from G’s adjacency matrix, and the content
features xi,2 is extracted from each node’s text informa-
tion or attributes. They are treated as two different views
to represent node vi’s by generating the network embed-
ding ei,1 ∈ Rd and the content embedding ei,2 ∈ Rd
accordingly.

To tackle the problem, we propose MERGE, as shown
in Fig. 1(d), to efficiently model the relational multi-
view consistency with nonlinearity. MERGE enforces
the cross-instance–cross-view and intra-instance–cross-
view consistencies by DeepWalk style formulations with
an inexpensive realization, which models the relational
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Figure 2: Illustration of the MERGE model.

information with second-order proximity and the multi-
ple views correspondingly. Additionally, MERGE ap-
plies a deep neural network on the multi-view features
and couples the nonlinear embedding outputs with the
rich relational multi-view consistencies to model the fea-
ture nonlinearity. Fig. 2 summarizes the three major
components of the proposed MERGE model:

- A direct formulation of intra-instance–cross-view
and cross-instance–cross-view consistencies be-
tween node vi’s network embedding ei,1 and its
“neighbor” node vj’s content embedding ej,2 (by
setting i as a special “neighbor” node of itself, this
component handles the intra-instance–cross-view as
well);

- A nonlinear formulation of learning a network em-
bedding ei,1 from node vi’s network features xi,1;

- A nonlinear formulation of learning a content em-
bedding ej,2 from node vj’s content features xj,2.

By integrating all these components together, MERGE
learns the embedding ei,1 and ej,2 from G. In the fol-
lowing sections, we introduce the methodology to model
these consistencies.

Cross-instance–cross-view consistency for second-
order proximity. Formally, we define this consistency
between one node vi’s view-1 embedding ei,1 and an-
other node vj’s view-2 embedding ej,2 as a probability
p(ej,2|ei,1). To enforce this cross-instance–cross-view
consistency between ei,1 and ej,2, MERGE maximizes
p(ej,2|ei,1). Inspired by DeepWalk [20], which pre-
serves second-order proximity and uses graph sampling
for efficient realization, MERGE defines p(ej,2|ei,1)
with a softmax function over ei,1 and ej,2:

p(ej,2|ei,1) =
exp

(
e>j,2ei,1

)
∑
vk∈V exp

(
e>k,2ei,1

) . (1)
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Following the similar intuition as DeepWalk, MERGE
uses node vi’s network embedding ei,1 to interpret its
“neighbor” vj’s content embedding ej,2. Different from
DeepWalk, Eq. 1 does not contain any “context embed-
ding” as additional parameters. Instead, MERGE uses
one view’s embedding to interpret the other view’s em-
bedding across the nodes. If two nodes have similar
neighbors, the interpretations to the other view of these
neighbors tend to be similar. Therefore MERGE still
favors the second-order proximity with Eq. 1. Gener-
ally, it is possible to symmetrically define p(ei,1|ej,2)
∝ exp

(
e>i,1ej,2

)
. Since exp

(
e>i,1ej,2

)
= exp

(
e>j,2ei,1

)
,

introducing p(ei,1|ej,2) tends to achieve a similar effect
as Eq. 1. For simplicity, only p(ej,2|ei,1) is used to repre-
sent cross-instance–cross-view consistency in this paper.

Additionally, MERGE uses graph sampling to enforce
p(ej,2|ei,1) on a size-controllable set of (vi, vj)’s to re-
duce computation cost. On the one hand, vi and vj are
supposed to be “close” in G; otherwise it is not desirable
to require their network embedding and content embed-
ding to be consistent. We exploit a broad definition of
“closeness” for vi and vj as [20, 9]; i.e., a node vj is the
neighbor of vi if vj appears in a context window of vi
on a randomly sampled path from G. On the other hand,
MERGE controls the number of “neighbors” of vi by an
adjustable amount of sampled paths from G. Usually,
the number of sampled paths is set as a constant to avoid
computing all the edges inG, which leads the complexity
of TADW to be O(|E|).

Intra-instance–cross-view consistency for multiple
views. Formally, MERGE defines this consistency be-
tween node vi’s view-1 embedding ei,1 and its view-
2 embedding ei,2 as a probability p(ei,2|ei,1). To
enforce this intra-instance–cross-view consistency be-
tween ei,1 and ei,2, MERGE maximizes the likelihood∏
i p(ei,2|ei,1). Considering the similar intuition as

Eq. 1 that utilizes a given node’s network embedding to
interpret its content embedding, MERGE defines

p(ei,2|ei,1) =
exp

(
e>i,2ei,1

)
∑
vk∈V exp

(
e>k,2ei,1

) . (2)

In this regard, we simplify the objective function with a
unified formulation about the cross-view consistency.

Nonlinearity for feature embedding. To handle the
nonlinearity of each view’s features, we propose to learn
each vi’s embedding ei,k as a nonlinear function of its
corresponding feature vector xi,k. Specifically, we intro-
duce AutoEncoder [4], a deep neural network, to enable
this nonlinear embedding. For simplicity, we use a three-
layer architecture as an example to explain how AutoEn-
coder works. For any input vector z ∈ Rd, we denote

tanh(z) to return a vector value of the hyperbolic tanh
function over each dimension of z. For any view k, we
model each ei,k as

ei,k = tanh(W
(k)
1 xi,k + b

(k)
1 ), (3)

where W (k)
1 ∈ Rd×|V |, xi,k ∈ Rmk and b

(k)
1 ∈ Rd are

parameters. Here xi,k is assumed to be reconstructible
from ei,k by a nonlinear function:

x′i,k = tanh((W
(k)
2 )>ei,k + b

(k)
2 ), (4)

where W (k)
2 ∈ Rd×mk and b

(k)
2 ∈ Rmk are parameters.

Finally, MERGE minimizes the `2-distance between xi,k
and x′i,k over all possible (i, k) pairs.

4 LEARNING WITH MERGE

In this section, we derive the overall objective function to
compute the graph embedding. First of all, we consider
the two cross-view consistencies in Eq. 1 and Eq. 2. Ide-
ally, to enforce the two cross-view consistencies, we can
directly maximize both p(ej,2|ei,1) and p(ei,2|ei,1) for
all the i’s and their neighboring j’s. However, since we
need to sum up all the nodes in V , it is time consuming
to compute the normalization terms in Eq. 1 and Eq. 2.
DeepWalk exploits a hierarchical approximation to the
softmax function in Eq. 1 and Eq. 2, which reduces the
overall complexity to O(|V | log |V |). MERGE applies
negative sampling [19] to replace the softmax function
to further reduce the complexity. Specifically, instead of
maximizing log p(ej,2|ei,1) + log p(ei,2|ei,1), MERGE
introduces a surrogate function:

∆i,j = log σ(e>j,2ei,1)

+
∑`1
t=1 Evh∼Pn(vi)[log σ(−e>h,2ei,1)].

(5)
Here σ(x) = 1/(1 + exp(−x)) is the sigmoid function;
vh ∼ Pn(vi) indicates sampling a node vh as a negative
context of node vi from a distribution Pn(vi). We fol-
low [19] to define Pn(vi) ∝ deg(vi)

3/4, where deg(vi)
is vi’s degree. Besides, Evh∼Pn(vi)[·] is the expectation
over Pn(vi). Denote the positive context set of node vi
as Ci, where Ci ⊂ V . Then, we define the objective
function by enforcing the two cross-view consistencies
as

O1 = − 1
n

∑
vi∈V

∑
vj∈Ci∪vi ∆i,j , (6)

where n =
∑
i:vi∈V |Ci∪vi| is the number of ∆i,j’s. By

minimizing O1, we enforce the two cross-view consis-
tencies with second-order proximity. This O1 formula-
tion Eq. 6 also leads to reduce the complexity to O(|V |),
as we will see later.
Next, we consider the nonlinear embedding for two
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Algorithm 1 Learning Algorithm for MERGE
Require: graph G = (V,E) with node features xi,k’s,

context window size `0, # of negative samples `1,
sample path length τ , # of paths per node `3.

Ensure: embedding ei,k’s, parameters Θ.
1: Initialize the parameters inM;
2: while not converged do
3: Paths P ← SamplePath(G, `0, `1, τ, `3);
4: Batches {(vi, vj , λ)}, B ← ConstructBatch(P );
5: for each batch {(vi, vj , λ)} do
6: ∇M ← ∂L

∂M by AdaDelta;
7: M← GradDescent(∇M,M);
8: end for
9: end while

views. Specifically, we learn the nonlinear network em-
bedding and nonlinear content embedding by minimiz-
ing:

{
O2 =

∑
vi∈V ‖x′i,1 − xi,1‖2

O3 =
∑
vi∈V ‖x′i,2 − xi,2‖2

. (7)

Objective function. MERGE combines O1, O2 and
O3 together to learn ei,k’s. Denote our model M as
{ei,k,Θ|i = 1, ..., |V |, k = 1, 2}, which parameters are
listed in Θ = {W (k)

1 ,W
(k)
2 ,b

(k)
1 ,b

(k)
2 }. The overall ob-

jective function to minimize is

L(M) = O1 + αO2 + βO3 + γΩ(M), (8)

where α, β, γ are a set of positive trade-off parameters.
Ω(M) is a regularization term overM; e.g., it sums up
the `2-norm of each parameter inM.

Learning algorithm. To optimize L in Eq. 8, we use
batch stochastic gradient descent algorithm. The detailed
derivations of the parameter gradients are complex, es-
pecially when the layers of deep AutoEncoder increases.
Due to space limit, we skip the gradient details in this
paper. Empirically, these gradients can be automatically
computed in the state-of-the-art deep learning toolkits.
Since all the O1, O2 and O3 are larger than zero, L is
bounded, the minimization will converge in the end. Em-
pirically, the MERGE algorithm converges quickly, as
shown later in Sec. 5.

We summarize learning algorithm for MERGE in Alg. 1.
In line 1, we initialize all the parameters ei,k’s and Θ. In
line 3, we sample a set of paths from G, in order to iden-
tify the context neighbors for each node vi. In particular,
starting from each node v ∈ V , we sample `3 paths by
random walk. Each path’s length is τ . As we use nega-

tive sampling forO1, each node vi has both positive con-
text and negative context. Thus, in line 4, we construct
B batches, each of which has a set of tuples {(vi, vj , λ)}
from the sampled paths P . Here, vj is vi’s positive con-
text when λ = 1, negative when λ = −1. Empirically,
we find the batch size range from 100 to 1000 working
well. In lines 5 ∼ 8, we compute the batch gradient for
each parameter inM and do gradient descent.

Algorithm complexity. We analyze the complexity of
Alg. 1. Parameter initialization in line 1 takes O(|V |).
Path sampling in line 3 takes O(|V |τ`3). In line 4, the
following steps are implemented:

1. extracting all the vi and its context neighbor pairs,
which takes O(|V |τ`3);

2. sampling `4 negative context nodes for vi, which
takes O(`4);

3. sampling B batches, each of size `4, which takes
O(B`4).

In line 6, we compute the gradient of L w.r.t. each batch.
For O1, it takes O(1) for a single node. For O2, as each
network feature vector has the length of O(|V |), it takes
O(|V |) to compute the gradient. ForO3, it takesO(1) for
a single node. For Ω, it takes O(|V |) since the network
embedding has O(|V |) dimensions. In total, line 6 takes
O(|V |`4). Line 7 takes O(|V |) to update the parameters.
The complexity of Alg. 1 isO(|V |) = O(|V |+ |V |τ`3 +
`4 +B`4 +B(|V |`4 + |V |)), which is much smaller than
the TADW’s O(|E|+ |V |).

5 EXPERIMENTS

In this section, we demonstrate the effectiveness of
MERGE by comparing it against the current state-of-
the-art baselines. MERGE shows a superior advantage
over all other models in extensive experiments. In addi-
tion, we present a comprehensive analysis on MERGE in
terms of its parameter sensitivity, algorithm convergence
and computational complexity.

5.1 Experimental Setup

To quantitatively evaluate the quality of our node em-
bedding, we follow [20, 5] to use node classification as
the evaluation task. We feed the embedding output from
each method into a logistic regression model for node
classification. We use micro-F1 (i.e., the overall F1 w.r.t.
all the classes) and macro-F1 (i.e., the average F1 w.r.t.
each class) as the evaluation metrics. For each dataset,
we randomly sample 50% of nodes as the test set Dtst,
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Table 1: Benchmark datasets.
Dataset #(node) #(edge) #(class)

Cora 2708 5429 7
PubMed 19717 44338 3
CiteSeer 3264 4591 6

Wikipedia 2405 17981 19
MicroblogPCU 781 3315 2

30% as the training set Dtrn and the remaining as the
development set Ddev . We first train the model on Dtrn

and tune the hyperparameters withDdev . Then we fix the
hyperparameters, re-train our model on Dtrn∪Ddev and
test it on Dtst. We repeat this procedure for 10 times and
report the average results. All experiments are imple-
mented on a Linux server with 64GB memory, 24 Intel
Xeon CPUs (2.40GHz) and 1 Intel Tesla K80 GPU.

Datasets. Five different benchmark datasets are used for
evaluation:

1. Three paper citation networks1 as used in [33], in-
cluding Cora, PubMed and CiteSeer. In these net-
works, nodes are papers, edges are citations and
classes are paper categories.

2. One web document network2, i.e., Wikipedia, as
used in [32]. In this network, nodes are Wikipedia
articles, edges are hyperlinks and classes are web
page categories.

3. One microblog user network, i.e., MicroblogPCU3.
In this network, nodes are users, edges are follow-
ship and classes indicate spam users.

The network statistics of these datasets are summarized
in Table 1. Next we introduce the node features of each
dataset. For Cora and Citeseer, each node contains a pre-
processed bag-of-words text feature vector. For PubMed
and Wikipedia, each node corresponds a preprocessed tf-
idf text feature vector. For MicroblogPCU, each node
contains a raw document. As the vocabulary size is large
and the text is noisy, we follow TADW [32] to apply PCA
for dimensionality reduction on the node-by-text feature
matrix of each dataset. Then we keep m2 dimensions
corresponding to the largest singular values, which re-
tain 90% of the energy [21]. Thus each node has an m2-
dimensional content feature vector. Similarly, we also
apply PCA to reduce each dataset’s node adjacency ma-
trix to m1-dimensional network feature vector.

Baselines. To give a clear illustration on the contribu-
tion of cross-view consistency and model nonlinearity

1http://linqs.umiacs.umd.edu/projects/projects/lbc
2http://linqs.cs.umd.edu/projects//projects/lbc/index.html
3https://archive.ics.uci.edu/ml/datasets/microblogPCU

respectively, we classify our baselines into several cat-
egories:

1. Models which only use content information, such
as AEC: AutoEncoder of Content applies AutoEn-
coder [4] to the content features.

2. Models which only explore relational information,
such as DeepWalk [20], Node2Vec [9], SDNE [27]
and struc2vec [22].

3. Models which naively concatenate a content fea-
ture vector and a network embedding vector.
These approaches do not model the cross-view
consistency, which include: DeepWalk+AEC,
Node2Vec+AEC, SDNE+AEC, struc2vec+AEC and
AEG+AEC, where AutoEncoder of Graph (AEG)
is a method that applies AutoEncoder to the net-
work features to learn a network embedding for
each node.

4. TADW [32]: it learns both network embedding and
content embedding by matrix decomposition, which
only models the linearity.

5. DCCA [2]: it learns a network embedding and a
content embedding for each node by applying a
deep neural network to the corresponding features
and enforcing the embedding to be maximally cor-
related. It does not consider relational information.

Parameters. MERGE has a similar set of hyperparam-
eters as DeepWalk, which includes the context window
size `0, the number of negative samples `1, the sample
path length τ , the number of paths per node `3 and the
embedding dimension d. Typically, we set `0 = 4, `1 =
9, τ = 10, `3 = 10 and d = 128 for all of the datasets.
An exception is in PubMed, which is larger than the
other datasets: we follow the suggestion in [19] to set
a larger dimension d = 256 and a smaller number of
negative samples `1 = 2. In addition, we have trade-
off hyperparameters {α, β, γ}. We use grid search over
{1e-6, 1e-5, 1e-4, 1e-3, 1e-2} to tune each of them (re-
sults to be shown later). Typically, we set α = 1e-4, β =
1e-3, γ = 1e-5 for all the datasets.

For each baseline’s hyperparameters, we take their sug-
gested values as in references and fine tune them with
the development set on each dataset. For DeepWalk and
Node2Vec, we set `0 = 10, τ = 10, `3 = 80, d = 128.
For Node2Vec, we optimize p and q with a grid search
over p, q ∈ 0.25, 0.50, 1, 2, 4 as suggested by [9] on each
dataset’s development set. For TADW, we use the opti-
mal parameter values reported by [32] for Cora, CiteSeer
and Wikipedia; besides, we set its hyperparameter k =

324



200 for PubMed and k = 100 for MicroblogPCU. For
DCCA, we set its hyperparameters α = 1e-4 and β = 1e-
4. For SDNE, we optimize the hyperparameters of α ∈
{1, 10, 100, 300, 500, 700}, β ∈ {1, 10, 30, 50, 100},
and γ ∈ {1e − 4, 1e − 3, 1e − 2, 1e − 1, 1, 10} on the
validation set. For struc2vec, we fine tune the hyperpa-
rameters of `0 ∈ (0, 10), τ ∈ {10, 30, 50, 70, 90} and
`3 ∈ {1, 5, 10, 15} on the validation set. Besides, we set
the maximum layer used in struc2vec as six and enable
all of the optimization options in the paper. Note that it is
time consuming to get the comparable results when the
optimization options are disabled.

5.2 Model Performances

We report the results in Table 2. Note that all the im-
provements discussed below are calculated in relative
values. For each dataset, we average the improvements
over all the training ratios due to space limit. We draw
conclusions as follows.

- Jointly considering both content and network infor-
mation for graph embedding is critical, as indicated
by the uncompetitive performance of AEC, Deep-
Walk, Node2Vec, SDNE, and struc2vec. In con-
trast, the naive method of concatenating content-
based feature with network embedding vector al-
ready improves the overall performance. Deep-
Walk + AEC improves by 1% ∼ 28% over Deep-
Walk alone, Node2Vec + AEC improves by 1%
∼ 24%, SDNE + AEC improves by 1% ∼ 60%
and struc2vec improves by 5% ∼ 320% in terms
of macro-F1. Similarly, AEG+AEC improves AEC
by 1% ∼ 24%. However, directly concatenat-
ing two embeddings does not exploit the cross-
view relations among data, and thus cannot guar-
antee the performance improvements. For exam-
ple, AEC outperforms both DeepWalk+AEC and
Node2Vec+AEC in PubMed and CiteSeer.

- Utilization of either cross-instance consistency
(DeepWalk+AEC, node2vec+AEC, AEG+AEC,
SDNE+AEC, struc2vec+AEC) or cross-view con-
sistency (DCCA) alone is not sufficient to model the
relations in data. Particularly, by enforcing cross-
instance–cross-view consistency, MERGE outper-
forms cross-instance-only baselines by at least 2%
∼ 17% (macro-F1) and 2% ∼ 9% (micro-F1) on
average, and it improves DCCA by averagely 4%
∼ 20% (macro-F1) and 4% ∼ 17% (micro-F1).
This again proves that maximizing the utility of
both views for graph embedding, we need to care-
fully leverage the interdependency between the two
views rather than simply concatenating them.

- Modeling data nonlinearity in graph embedding
gives rise to an enhancement of performances. It is
shown that MERGE is better than TADW by 6.87%
∼ 20% (macro-F1) and 4% ∼ 16% (micro-F1) on
average.

- By comprehensively modeling cross-instance–
cross-view consistency with nonlinearity, MERGE
consistently and significantly outperforms all the
baselines on all the five datasets with different train-
ing ratios. Specifically, in most datasets training
with only 30% of labeled nodes, MERGE outper-
forms the baselines which are trained with 100%
of the training data(micro-F1) except Wikipedia and
MicroblogPCU . On average, MERGE improves the
best baselines by 2.1% ∼ 10.3% (macro-F1) and
2.3% ∼ 9.3% (micro-F1) across all the datasets.
The advantage of MERGE is more favorable es-
pecially with less training data. For example, in
Cora, MERGE outperforms the baselines at least
by 17.8% when using 10% training data and 6.2%
when using 100% training data in terms of macro-
F1.
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Figure 3: Results on parameter sensitivity.

5.3 Model Analysis

We validate the parameter sensitivity for MERGE by tun-
ing our model parameters α, β and γ. As shown in
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Table 2: Comparison with the baselines under different amounts of training labels. The bigger F1 value is better.
macro-F1 (%) micro-F1 (%)

% Labels 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

C
or

a

AEC 27.8 43.7 52.1 54.8 59.4 62.1 64.0 65.2 66.0 67.0 44.5 54.9 60.1 62.8 65.6 67.2 68.9 69.5 70.3 70.9
DeepWalk 61.8 68.1 71.2 72.8 73.9 74.8 75.8 76.2 76.7 77.1 64.2 69.7 72.5 74.3 75.0 76.1 76.9 77.3 77.6 78.1
Node2Vec 63.1 70.2 72.8 74.5 76.0 76.5 77.4 77.9 78.1 78.3 65.7 72.0 74.4 76.1 77.5 77.9 78.9 79.3 79.5 79.7
SDNE 60.1 67.7 70.3 71.4 72.4 73.9 74.6 75.1 75.7 76.2 62.9 69.4 71.6 72.7 73.7 74.9 75.6 76.1 76.6 77.0
struc2vec 21.0 23.2 24.6 26.1 27.4 28.2 28.5 29.6 29.9 30.6 26.2 27.7 29.2 30.9 32.3 33.3 34.0 35.2 35.7 36.7
DeepWalk+AEC 62.5 68.8 72.4 74.2 75.9 76.8 78.4 78.9 79.8 80.3 64.8 70.6 73.7 75.7 77.2 78.2 79.6 80.2 80.9 81.5
Node2Vec+AEC 63.6 70.7 73.7 75.5 77.2 78.0 79.0 79.6 80.2 80.9 66.3 72.6 75.3 77.2 78.7 79.5 80.5 81.2 81.6 82.3
AEG+AEC 37.9 57.6 66.3 69.0 72.8 75.2 77.0 77.9 79.0 79.7 51.0 64.0 69.8 72.8 75.5 77.4 79.1 79.7 80.6 81.1
SDNE+AEC 66.3 71.7 73.7 75.2 76.0 77.1 77.9 78.2 79.0 79.7 69.8 73.8 75.5 76.9 77.7 78.6 79.5 79.9 80.6 81.1
struc2vec+AEC 45.5 51.5 53.7 55.2 57.1 58.4 59.7 60.8 61.7 62.6 51.2 56.0 57.9 59.0 60.7 61.9 63.2 64.1 65.1 65.8
TADW 59.3 68.3 70.2 70.7 71.6 72.0 72.4 72.4 73.1 73.1 65.5 71.1 72.8 73.4 74.1 74.3 74.8 74.9 75.3 75.5
DCCA 58.8 66.4 68.6 69.7 71.0 71.6 72.8 72.9 73.3 73.5 64.0 69.4 71.4 72.5 73.5 73.9 75.0 75.3 75.5 75.7
MERGE 78.1 82.1 83.3 83.9 84.1 84.8 85.3 85.4 85.8 85.9 80.2 83.4 84.6 85.0 85.3 85.9 86.5 86.6 86.9 86.9

Pu
bM

ed

AEC 82.3 83.6 84.3 84.7 85.0 85.0 85.2 85.3 85.5 85.5 82.2 83.6 84.2 84.6 84.9 85.0 85.2 85.3 85.4 85.5
DeepWalk 64.7 65.5 66.3 67.0 67.0 67.2 67.2 67.3 67.4 67.5 67.8 69.5 70.4 71.2 71.3 71.6 71.6 71.7 71.9 72.0
Node2Vec 66.7 67.7 68.3 68.7 68.9 69.1 69.1 69.4 69.5 69.6 69.5 71.2 72.0 72.5 72.9 73.0 73.1 73.4 73.5 73.7
SDNE 59.4 61.2 61.9 62.3 62.4 62.5 62.5 62.5 62.6 62.7 62.2 64.2 64.9 65.2 65.4 65.5 65.5 65.5 65.6 65.7
struc2vec 39.5 41.4 42.2 42.6 43.1 43.4 43.4 43.7 43.8 43.7 42.2 44.9 46.0 46.7 47.3 47.7 47.8 48.2 48.4 48.4
DeepWalk+AEC 78.7 83.4 84.9 85.7 86.3 86.5 86.7 86.9 87.1 87.2 79.2 83.7 85.2 86.0 86.6 86.7 86.9 87.2 87.3 87.4
Node2Vec+AEC 79.0 83.7 85.1 85.9 86.4 86.6 86.9 87.0 87.1 87.2 79.6 83.9 85.4 86.1 86.6 86.8 87.0 87.2 87.3 87.4
AEG+AEC 83.2 84.7 85.4 85.9 86.3 86.3 86.5 86.7 86.8 86.9 83.2 84.8 85.5 86.0 86.4 86.4 86.7 86.8 87.0 87.1
SDNE+AEC 78.0 80.7 83.1 84.2 85.0 85.4 85.7 85.9 86.0 86.2 78.1 80.8 83.2 84.2 84.9 85.3 85.7 85.9 86.0 86.2
struc2vec+AEC 75.9 76.8 79.4 80.9 82.2 83.2 83.8 84.2 84.6 84.7 75.6 76.8 79.3 80.9 82.2 83.1 83.7 84.1 84.5 84.6
TADW 67.8 76.2 79.2 80.3 81.2 81.7 82.1 82.4 82.7 82.9 71.5 76.9 79.5 80.4 81.3 81.7 82.1 82.4 82.7 82.8
DCCA 82.9 83.9 84.2 84.5 84.6 84.7 84.8 84.8 84.7 84.8 83.1 84.1 84.4 84.7 84.8 84.8 84.9 85.0 84.9 85.0
MERGE 86.2 87.2 87.6 87.8 88.1 88.1 88.3 88.3 88.4 88.5 86.6 87.5 87.9 88.1 88.4 88.4 88.6 88.6 88.7 88.8
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AEC 45.4 55.2 57.7 58.8 59.5 60.2 60.1 61.0 61.3 61.6 55.3 64.3 66.8 67.7 68.3 69.0 69.1 69.4 69.7 69.8
DeepWalk 39.7 43.3 45.9 47.3 48.4 49.5 49.6 50.0 50.2 50.7 43.4 46.6 49.6 51.1 52.5 53.7 54.0 54.5 54.9 55.5
Node2Vec 40.4 45.5 48.3 50.5 52.0 52.6 52.9 53.3 54.2 53.8 44.1 49.1 52.3 54.5 56.3 56.9 57.3 57.9 58.6 58.5
SDNE 33.6 37.2 38.9 39.7 40.3 41.0 42.0 42.3 42.6 42.8 37.8 41.6 43.1 44.4 45.2 45.8 46.7 47.0 47.2 47.6
struc2vec 19.6 20.5 21.4 22.4 23.0 23.5 23.4 24.1 24.5 24.8 21.4 22.3 23.3 24.6 25.3 25.9 26.1 27.0 27.4 28.0
DeepWalk+AEC 40.9 45.8 49.7 53.0 55.3 57.6 59.1 60.4 61.4 62.2 44.6 49.4 53.8 57.2 60.0 62.3 64.1 65.2 66.4 67.3
Node2Vec+AEC 41.3 47.5 51.9 55.5 57.6 59.4 60.4 61.9 63.2 63.7 45.1 51.3 56.1 59.6 62.3 64.0 65.2 66.6 67.8 68.4
AEG+AEC 49.0 57.8 60.1 61.1 62.2 62.8 62.6 63.6 64.0 64.4 58.6 66.7 69.1 70.0 70.7 71.1 71.4 71.6 71.9 72.2
SDNE+AEC 53.7 56.9 59.1 60.6 61.2 62.0 63.4 63.8 64.3 64.6 57.4 61.1 63.5 65.0 66.1 66.7 68.0 68.5 69.1 69.5
struc2vec+AEC 48.8 51.7 51.6 53.0 54.0 54.8 56.6 57.6 58.2 59.4 53.1 55.6 55.7 57.3 58.4 59.2 60.9 62.1 62.7 64.0
TADW 58.8 62.0 62.8 63.4 64.1 64.8 64.7 65.5 65.6 65.7 65.5 67.5 68.4 68.7 69.5 69.9 70.1 70.5 70.7 70.8
DCCA 50.3 55.2 57.3 58.2 58.9 59.8 60.2 60.6 61.1 61.2 55.3 60.2 62.2 63.2 64.0 64.6 65.3 65.5 65.9 66.2
MERGE 62.3 65.7 66.4 68.0 68.7 69.6 69.3 70.1 70.5 70.6 69.5 71.9 72.8 73.7 74.2 74.8 75.1 75.1 75.4 75.5
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AEC 32.5 40.3 46.5 49.6 50.8 53.6 55.6 56.4 58.4 59.4 51.7 62.1 67.1 69.8 70.5 72.5 73.2 74.1 74.9 75.6
DeepWalk 36.4 40.9 44.3 46.1 47.2 49.2 50.1 50.9 52.1 52.3 49.3 54.6 57.1 59.5 60.7 61.7 62.6 63.4 64.2 64.4
Node2Vec 37.3 42.4 44.6 46.8 48.2 49.4 51.6 51.9 52.9 53.4 50.6 54.8 58.0 59.5 61.0 61.9 63.1 63.3 64.0 64.5
SDNE 31.8 37.1 39.3 42.0 43.6 45.4 46.1 46.9 48.2 48.7 41.4 48.1 51.1 53.4 55.4 56.7 57.3 58.4 59.2 59.8
struc2vec 7.8 8.6 9.5 10.2 10.3 10.6 11.1 11.1 11.5 11.5 12.7 13.5 14.4 15.1 15.0 15.3 16.0 16.0 16.3 16.5
DeepWalk+AEC 37.1 42.3 46.5 49.0 51.1 53.1 55.7 56.5 58.9 59.2 50.0 56.1 60.1 62.7 65.2 66.4 68.7 69.8 71.3 72.1
Node2Vec+AEC 37.9 43.7 46.5 49.6 51.7 53.8 56.3 57.9 59.6 60.2 51.4 56.3 60.4 62.9 65.3 66.6 68.5 70.0 71.3 72.1
AEG+AEC 37.9 45.3 50.5 54.3 55.2 57.9 59.3 60.0 61.7 62.4 56.1 65.3 69.8 72.5 73.5 75.1 75.9 76.8 77.7 78.2
SDNE+AEC 33.4 41.9 46.6 49.6 51.6 54.0 55.1 57.3 59.3 59.4 46.4 56.0 61.0 64.4 66.8 68.7 69.8 71.3 72.4 73.2
struc2vec+AEC 11.2 18.9 27.0 32.4 36.4 40.0 42.6 45.0 46.9 48.4 19.0 29.8 40.3 47.7 52.4 56.6 59.7 62.1 64.3 65.8
TADW 46.7 53.2 56.0 57.0 60.8 60.3 62.3 63.4 62.7 64.2 59.5 64.3 67.4 67.8 69.7 70.0 70.0 71.4 71.2 71.9
DCCA 43.5 48.6 50.4 53.1 54.2 54.7 56.4 57.0 57.0 57.4 59.4 64.4 66.7 68.4 69.8 70.3 71.0 71.6 71.8 72.3
MERGE 50.4 57.9 59.4 62.1 63.7 64.4 66.9 67.7 68.2 69.2 68.2 73.0 75.0 76.6 77.4 77.9 78.9 79.4 79.7 80.1
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AEC 39.3 44.4 48.4 52.0 52.4 52.8 58.2 59.6 59.2 60.2 63.2 64.4 66.0 67.4 67.0 67.8 69.4 70.1 69.8 69.9
DeepWalk 60.3 60.8 58.5 59.1 63.1 66.6 64.9 66.1 64.1 65.6 63.9 64.9 63.3 63.0 66.0 70.1 68.8 69.9 68.1 69.7
Node2Vec 58.5 59.4 56.9 57.9 60.8 62.9 62.9 65.0 63.6 63.4 62.3 63.8 62.6 62.3 64.4 67.4 68.0 70.0 68.4 68.3
SDNE 53.5 53.9 53.2 58.6 59.1 58.2 57.1 56.9 58.3 61.8 55.6 58.8 57.7 61.3 64.9 63.6 61.3 63.4 63.0 65.6
struc2vec 47.4 55.6 57.1 58.3 56.5 58.1 56.7 58.1 57.8 60.0 50.3 57.7 58.7 60.6 59.1 60.8 59.2 60.6 60.2 62.6
DeepWalk+AEC 60.4 61.0 58.3 59.6 64.0 67.5 65.1 67.1 65.9 67.3 64.2 65.3 64.0 63.6 66.7 70.8 68.6 70.8 69.7 70.9
Node2Vec+AEC 57.4 58.3 57.4 58.2 61.7 63.7 64.1 65.5 65.1 64.7 61.9 63.6 63.4 62.8 65.1 68.1 68.9 70.3 69.8 69.4
AEG+AEC 43.9 47.8 51.0 57.8 57.0 62.4 64.4 67.0 65.6 67.4 63.8 65.1 66.7 68.7 67.9 71.6 71.8 74.3 72.9 73.8
SDNE+AEC 54.0 58.3 61.1 64.6 64.8 66.9 67.7 68.4 69.1 69.3 56.4 60.0 62.3 65.8 66.2 68.3 69.3 70.0 70.7 71.0
struc2vec+AEC 53.0 58.2 60.5 62.7 63.4 65.1 63.9 65.1 66.1 66.1 54.9 59.1 61.4 63.9 64.9 66.4 65.4 66.7 67.6 67.6
TADW 56.8 59.7 60.5 60.6 62.7 62.7 63.1 62.8 63.2 62.7 64.4 68.3 69.2 69.4 71.4 71.2 71.9 71.8 71.7 71.6
DCCA 53.8 54.6 57.5 60.4 61.1 60.5 63.6 62.8 64.4 65.4 63.8 66.1 67.1 68.3 69.0 69.1 71.0 70.0 71.3 72.0
MERGE 63.6 68.4 67.5 70.5 71.2 69.3 70.0 73.4 71.8 71.2 69.7 72.4 71.1 73.7 73.6 72.9 73.0 76.1 74.7 74.1

only use content information only use relational information
concatenate a content and network embedding learns both network and content embedding
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Figure 4: Results on convergence.

Figure 5: Results on running time.

Fig. 3, MERGE performs optimally when α and β ∈
{1e−5, 1e−4, 1e−3, 1e−2} and γ ∈ {1e−6, 1e−5}.
Detailed parameter settings are described in Sec. 5.1.
Specifically, our model is relatively robust to the val-
ues of α and β. While taking large value for γ causes
over-regularization of the model, which leads to poor
performance. The suggested γ value is less than 1e − 4.
We further validate the convergence and time complex-
ity of MERGE. As shown in Fig. 4, the loss of the model
normalized by the number of nodes converges quickly
within a few iterations. In terms of asymptotic compu-
tation complexity, we test the algorithm complexity with
different amounts of nodes (i.e., different |V | values). As
shown in Fig. 5, it is observed that the running time of
MERGE scales linearly with |V |.

6 CONCLUSION

In this paper, we systematically investigate the problem
of UMGE, where multiple perspectives such as content
and network features are exploited to learn graph em-
bedding in an unsupervised fashion. We discover that
cross-view and nonlinearity play a critical role in im-
proving graph embedding quality. Therefore, we de-
velop a simple, yet effective approach, Multi-viEw non-
lineaR Graph Embedding (MERGE), to model relational
multi-view consistency with nonlinearity. MERGE in-
corporates both network embedding and content embed-
ding with a nonlinear AutoEncoder. Then, it enforces
both intra-instance–cross-view consistency and cross-
instance–cross-view consistency among nodes’ network
embedding with its neighbors’ content embedding. The

experimental results demonstrate that MERGE con-
sistently outperforms the state-of-the-art baselines by
at least relatively 2.12% ∼ 10.91% (macro-F1) and
2.29% ∼ 10.12% (micro-F1) on average over five pub-
lic datasets, yet with O(|V |) complexity. It is worthy to
note that, in most cases, MERGE outperforms the base-
lines in favor of using relatively one third of training data
yet with superior performance.
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Abstract

In this paper, we present the first differen-
tially private clustering method for arbitrary-
shaped node clusters in a graph. This algo-
rithm takes as input only an approximate Min-
imum Spanning Tree (MST) T released under
weight differential privacy constraints from the
graph. Then, the underlying nonconvex clus-
tering partition is successfully recovered from
cutting optimal cuts on T . As opposed to ex-
isting methods, our algorithm is theoretically
well-motivated. Experiments support our the-
oretical findings.

1 INTRODUCTION

Weighted graph data is known to be a useful representa-
tion data type in many fields, such as bioinformatics or
analysis of social, computer and information networks.
More generally, a graph can always be built based on
the data dissimilarity where points of the dataset are the
vertices and weighted edges express “distances” between
those objects. For both cases, graph clustering is one of
the key tools for understanding the underlying structure
in the graph (Schaeffer, 2007). These clusters can be seen
as groups of nodes close in terms of some specific simi-
larity.

Nevertheless, it is critical that the data representation
used in machine learning applications protects the pri-
vate characteristics contained into it. Let us consider an
application where one wants to identify groups of similar
web pages in the sense of traffic volume i.e. web pages
with similar audience. In that case, the nodes stand for
the websites. The link between two vertices represents

∗Rafael Pinot and Anne Morvan contributed equally.
†Partly supported by the Direction Générale de

l’Armement (French Ministry of Defense).

the fact that some people consult them both. In such a
framework, the web browsing history of an individual is
used to set the edge weights. We consider that this his-
tory can be a very sensitive information for the user, since
he/she could have visited sensible content web pages.
Treating such datasets as non-private could lead to leak-
ing information such as his/her political, sexual, or reli-
gious preferences. As a standard for data privacy preser-
vation, differential privacy (Dwork et al., 2006b) has
been designed: an algorithm is differentially private if,
given two close databases, it produces statistically indis-
tinguishable outputs. Since then, its definition has been
extended to weighted graphs. Though, machine learning
applications ensuring data privacy remain rare, in par-
ticular for clustering which encounters severe theoretical
and practical limitations. Indeed, some clustering meth-
ods lack of theoretical support and most of them restrict
the data distribution to convex-shaped clusters (Nissim
et al., 2007; Blum et al., 2008; McSherry, 2009; Dwork,
2011) or unstructured data (Ho and Ruan, 2013; Chen
et al., 2015). Hence, the aim of this paper is to offer a
theoretically motivated private graph clustering. More-
over, to the best of our knowledge, this is the first weight
differentially-private clustering algorithm able to detect
clusters with an arbitrary shape for weighted graph data.

Our method belongs to the family of Minimum Span-
ning Tree (MST)-based approaches. An MST represents
a useful summary of the graph, and appears to be a nat-
ural object to describe it at a lower cost. For clustering
purposes, it has the appealing property to help retriev-
ing non-convex shapes (Zahn, 1971; Asano et al., 1988;
Grygorash et al., 2006; Morvan et al., 2017). Moreover,
they appear to be well-suited for incorporating privacy
constraints as will be formally proved in this work.

Contributions: Our contributions are threefold: 1) we
provide the first theoretical justifications of MST-based
clustering algorithms. 2) We endow DBMSTCLU algo-
rithm (Morvan et al., 2017), an MST-based clustering al-
gorithm from the literature, with theoretical guarantees.
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3) We introduce a differentially-private version of DBM-
STCLU and give several results on its privacy/utility
tradeoff.

2 PRELIMINARIES

2.1 NOTATIONS

Let G = (V,E,w) be a simple undirected weighted
graph with a vertex set V , an edge set E, and a weight
function w := E → R. One will respectively call the
edge set and the node set of a graph G using the ap-
plications E(G) and V (G). Given a node set S ⊂ V ,
one denotes by G|S the subgraph induced by S. We call
G = (V,E) the topology of the graph, andWE denotes
the set of all possible weight functions mapping E to
weights in R. For the remaining of this work, cursive
letter are used to represent weighted graphs and straight
letters refer to topological arguments. Since graphs are
simple, the path Pu−v between two vertices u and v is
characterized either as the ordered sequence of vertices
{u, . . . , v} or corresponding binding edges depending on
the context. We also denote VPu−v the unordered set
of such vertices. Besides, edges eij denote an edge be-
tween nodes i and j. Finally, for all positive integer K,
[K] := {1, . . . ,K}.

2.2 DIFFERENTIAL PRIVACY IN GRAPHS

As opposed to node-differential privacy (Ka-
siviswanathan et al., 2013) and edge-differential
privacy (Hay et al., 2009), both based on the graph
topology, the privacy framework considered here is
weight-differential privacy where the graph topology
G = (V,E) is assumed to be public and the private in-
formation to protect is the weight functionw := E → R.
Under this model introduced by Sealfon (2016), two
graphs are said to be neighbors if they have the same
topology, and close weight functions. This framework
allows one to release an almost minimum spanning tree
with weight-approximation error of O (|V | log |E|) for
fixed privacy parameters. Differential privacy is ensured
in that case by using the Laplace mechanism on every
edges weight to release a spanning tree based on a
perturbed version of the weight function. The privacy
of the spanning tree construction is thus provided
by post-processing (cf. Th. 2.5). However, under a
similar privacy setting, Pinot (2018) recently manages
to produce the topology of a tree under differential
privacy without relying on the post-processing of a more
general mechanism such as the “Laplace mechanism”.
Their algorithm, called PAMST, privately releases the
topology of an almost minimum spanning tree thanks to
an iterative use of the “Exponential mechanism” instead.

For fixed privacy parameters, the weight approximation
error is O

(
|V |2
|E| log |V |

)
, which outperforms the former

method from Sealfon (2016) on arbitrary weighted
graphs under weak assumptions on the graph sparseness.
Thus, we keep here privacy setting from Pinot (2018).

Definition 2.1 (Pinot (2018)). For any edge set E, two
weight functions w,w′ ∈ WE are neighboring, denoted
w ∼ w′, if ||w − w′||∞ := max

e∈E
|w(e)− w′(e)| ≤ µ.

µ represents the sensitivity of the weight function and
should be chosen according to the application and the
range of this function. The neighborhood between such
graphs is clarified in the following definition.

Definition 2.2. Let G = (V,E,w) and G′ =
(V ′, E′, w′), two weighted graphs, G and G′ are said to
be neighbors if V = V ′, E = E′ and w ∼ w′.

The so-called weight-differential privacy for graph algo-
rithms is now formally defined.

Definition 2.3 (Sealfon (2016)). For any graph topology
G = (V,E), let A be a randomized algorithm that takes
as input a weight function w ∈ WE . A is called (ε, δ)-
differentially private on G = (V,E) if for all pairs of
neighboring weight functions w,w′ ∈ WE , and for all
set of possible outputs S, one has

P [A(w) ∈ S] ≤ eεP [A(w′) ∈ S] + δ.

If A is (ε, δ)-differentially private on every graph topol-
ogy in a class C, it is said to be (ε, δ)-differentially pri-
vate on C.

One of the first, and most used differentially private
mechanisms is the Laplace mechanism. It is based on
the process of releasing a numerical query perturbed by a
noise drawn from a centered Laplace distribution scaled
to the sensitivity of the query. We present here its graph-
based reformulation.

Definition 2.4 (reformulation Dwork et al. (2006b)).
Given some graph topology G = (V,E), for any fG :
WE → Rk, the sensitivity of the function is defined as
∆fG = max

w∼w′∈WE

||fG(w)− fG(w′)||1.

Definition 2.5 (reformulation Dwork et al. (2006b)).
Given some graph topology G = (V,E), any func-
tion fG : WE → Rk, any ε > 0, and
w ∈ WE , the graph-based Laplace mechanism is
ML(w, fG, ε) = fG(w) + (Y1, . . . , Yk) where Yi are
i.i.d. random variables drawn from Lap(∆fG/ε), and
Lap(b) denotes the Laplace distribution with scale b(

i.e probability density 1
2b exp

(
− |x|b

))
.

Theorem 2.1 (Dwork et al. (2006b)). The Laplace mech-
anism is ε-differentially private.
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We define hereafter the graph-based Exponential mech-
anism. In the sequel we refer to it simply as Expo-
nential mechanism. The Exponential mechanism rep-
resents a way of privately answering arbitrary range
queries. Given some range of possible responses to the
query R, it is defined according to a utility function
uG := WE × R → R, which aims at providing some
total preorder on the range R according to the total or-
der in R. The sensitivity of this function is denoted
∆uG := max

r∈R
max

w∼w′∈WE

|uG(w, r)− uG(w′, r)| .

Definition 2.6. Given some graph topologyG = (V,E),
some output range R ⊂ E, some privacy parameter
ε > 0, some utility function uG := WE × R → R, and
some w ∈ WE the graph-based Exponential mechanism
MExp (G,w, uG,R, ε) selects and outputs an element

r ∈ R with probability proportional to exp
(
εuG(w,r)

2∆uG

)
.

The Exponential mechanism defines a distribution on a
potentially complex and large rangeR. As the following
theorem states, sampling from such a distribution pre-
serves ε-differential privacy.
Theorem 2.2 (reformulation McSherry and Talwar
(2007)). For any non-empty rangeR, given some graph
topology G = (V,E), the graph-based Exponential
mechanism preserves ε-differential privacy, i.e if w ∼
w′ ∈ WE ,

P [MExp (G,w, uG,R, ε) = r]

≤ eεP [MExp (G,w′, uG,R, ε) = r] .

Further, Th 2.3 highlights the trade-off between privacy
and accuracy for the Exponential mechanism when 0 <
|R| < +∞. Th 2.4 presents the ability of differential
privacy to comply with composition while Th 2.5 intro-
duces its post-processing property.
Theorem 2.3 (reformulation Dwork and Roth (2013)).
Given some graph topologyG = (V,E), some w ∈ WE ,
some output range R, some privacy parameter ε > 0,
some utility function uG :=WE×R → R, and denoting
OPTuG(w) = max

r∈R
uG(w, r), one has ∀ t ∈ R,

uG (G,w,MExp (w, uG,R, ε))

≤ OPTuG(w)− 2∆uG
ε

(t+ ln |R|)

with probability at most exp(−t).
Theorem 2.4 (Dwork et al. (2006a)). For any ε > 0,
δ ≥ 0 the adaptive composition of k (ε, δ)-differentially
private mechanisms is (kε, kδ)-differentially private.
Theorem 2.5 (Post-Processing Dwork and Roth (2013)).
Let A : WE → B be a randomized algorithm that is
(ε, δ)-differentially private, and h : B → B′ a determin-
istic mapping. Then h ◦ A is (ε, δ)-differentially private.

2.3 DIFFERENTIALLY-PRIVATE CLUSTERING

Differentially private clustering for unstructured datasets
has been first discussed in Nissim et al. (2007). This
work introduced the first method for differentially pri-
vate clustering based on the k-means algorithm. Since
then most of the work in the field focused on adapta-
tion of this method (Blum et al., 2008; McSherry, 2009;
Dwork, 2011). The main drawback of this work is that it
is not able to deal with arbitrary shaped clusters. This is-
sue has been recently investigated in Ho and Ruan (2013)
and Chen et al. (2015). They proposed two new methods
to find arbitrary shaped clusters in unstructured datasets
respectively based on density clustering and wavelet de-
composition. Even though both of them allow one to pro-
duce non-convex clusters, they only deal with unstruc-
tured datasets and thus are not applicable to node cluster-
ing in a graph. Our work focuses on node clustering in
a graph under weight-differential privacy. Graph cluster-
ing has already been investigated in a topology-based pri-
vacy framework (Mülle et al., 2015; Nguyen et al., 2016),
however, these works do not consider weight-differential
privacy. Our work is, to the best of our knowledge, the
first attempt to define node clustering in a graph under
weight differential privacy.

3 DIFFERENTIALLY-PRIVATE
TREE-BASED CLUSTERING

We aim at producing a private clustering method while
providing bounds on the accuracy loss. Our method is an
adaptation of an existing clustering algorithm DBMST-
CLU. However, to provide theoretical guarantees under
differential privacy, one needs to rely on the same kind
of guarantees in the non-private setting. Morvan et al.
(2017) did not bring them in their initial work. Hence,
our second contribution is to demonstrate the accuracy
of this method, first in the non-private context.

In the following we present 1) the theoretical framework
motivating MST-based clustering methods, 2) accuracy
guarantees of DBMSTCLU in the non-private setting, 3)
PTCLUST our private clustering algorithm, 4) its accu-
racy under differential privacy constraints.

3.1 THEORETICAL FRAMEWORK FOR
MST-BASED CLUSTERING METHODS

MST-based clustering methods, however efficient, lack
proper motivation. This Section closes this gap by pro-
viding a theoretical framework for MST-based cluster-
ing. In the sequel, notations from Section 2.1 are kept.
The minimum path distance between two nodes in the
graph is defined which enables to explicit our notion of
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Cluster.

Definition 3.1 (Minimum path distance). Let be G =
(V,E,w) and u, v ∈ V . The minimum path distance
between u and v is

d(u, v) = min
Pu−v

∑

e∈Pu−v
w(e)

with Pu−v a path (edge version) from u to v in G.

Definition 3.2 (Cluster). Let be G = (V,E,w), 0 <
w(e) ≤ 1 ∀e ∈ E a graph, (V, d) a metric space based
on the minimum path distance d defined on G andD ⊂ V
a node set. C ⊂ D is a cluster iff. |C| > 2 and ∀C1, C2

s.t. C = C1 ∪ C2 and C1 ∩ C2 = ∅, one has:

argmin
z∈D\C1

{ min
v∈C1

d(z, v) } ⊂ C2

Assuming that a cluster is built of at least 3 points makes
sense since singletons or groups of 2 nodes can be legiti-
mately considered as noise. For simplicity of the proofs,
the following theorems hold in the case where noise is
neglected. However, they are still valid in the setting
where noise is considered as singletons (with each sin-
gleton representing a generalized notion of cluster).

Theorem 3.1. Let be G = (V,E,w) a graph and T a
minimum spanning tree of G. Let also be C a cluster in
the sense of Def. 3.2 and two vertices v1, v2 ∈ C. Then,
VPv1−v2 ⊂ C with Pv1−v2 a path from v1 to v2 in G, and
VPv1−v2 the set of vertices contained in Pv1−v2 .

Proof. Let be v1, v2 ∈ C. If v1 and v2 are neighbors,
the result is trivial. Otherwise, as T is a tree, there ex-
ist a unique path within T between v1 and v2 denoted
by Pv1−v2 = {v1, . . . , v2}. Let now prove by reduc-
tio ad absurdum that VPv1−v2 ⊂ C. Suppose there is
h ∈ VPv1−v2 s.t. h /∈ C. We will see that it leads to
a contradiction. We set C1 to be the largest connected
component (regarding the number of vertices) of T s.t.
v1 ∈ C1, and every nodes from C1 are in C. Because of
h’s definition, v2 /∈ C1. Let be C2 = C\C1. C2 6= ∅
since v2 ∈ C2. Let be z∗ ∈ argmin

z∈V \C1

{ min
v∈C1

d(z, v) } and

e∗ = (z∗, v∗) an edge that reaches this minimum. Let us
show that z∗ /∈ C. If z∗ ∈ C, then two possibilities hold:

1. There is an edge ez∗ ∈ T , s.t. ez∗ = (z∗, z′) with
z′ ∈ C1. This is impossible, otherwise by definition
of a connected component, z∗ ∈ C1. Contradiction.

2. For all ez∗ = (z∗, z′) s.t z′ ∈ C1, one has ez∗ /∈ T .
In particular e∗ /∈ T . Since h is the neighbor of C1

in G there is also eh ∈ T , s.t. eh = (h, h′) with
h′ ∈ C1. Once again two possibilities hold:

(a) w(ez∗) = min
z∈V \C1

{ min
v∈C1

d(z, v) } < w(eh).

Then, if we replace eh by ez∗ in T , its to-
tal weight decreases. So T is not a minimum
spanning tree. Contradiction.

(b) w(ez∗) = w(eh), therefore h ∈
argmin
z∈V \C1

{ min
v∈C1

d(z, v) }. Since h /∈ C,

one gets that argmin
z∈V \C1

{ min
v∈C1

d(z, v) } 6⊂ C2.

Thus, C is not a cluster. Contradiction.

We proved that z∗ /∈ C. In particular, z∗ /∈ C2. Then,
argmin
z∈V \C1

{ min
v∈C1

d(z, v) } 6⊂ C2. Thus, C is not a cluster.

Contradiction. Finally h ∈ C and VPv1−v2 ⊂ C.

This theorem states that, given a graph G, an MST T , and
any two nodes ofC, every node in the path between them
is in C. This means that a cluster can be characterized by
a subtree of T . It justifies the use of all MST-based meth-
ods for data clustering or node clustering in a graph. All
the clustering algorithms based on successively cutting
edges in an MST to obtain a subtree forest are mean-
ingful in the sense of Th.3.1. In particular, this theorem
holds for the use of DBMSTCLU (Morvan et al., 2017)
presented in Section 3.2.1.

3.2 DETERMINISTIC MST-BASED
CLUSTERING

This Section introduces DBMSTCLU (Morvan et al.,
2017) that will be adapted to be differentially-private,
and provide accuracy results on the recovery of the
ground-truth clustering partition.

3.2.1 DBMSTCLU algorithm

Let us consider T an MST of G, as the unique input of
the clustering algorithm DBMSTCLU. The clustering
partition results then from successive cuts on T so that a
new cut in T splits a connected component into two new
ones. Each final connected component, a subtree of T ,
represents a cluster. Initially, T is one cluster containing
all nodes. Then, at each iteration, an edge is cut if some
criterion, called Validity Index of a Clustering Partition
(DBCVI) is improved. This edge is greedily chosen to
locally maximize the DBCVI at each step. When no im-
provement on DBCVI can be further made, the algorithm
stops. The DBCVI is defined as the weighted average of
all cluster validity indices which are based on two pos-
itive quantities, the Dispersion and the Separation of a
cluster:

Definition 3.3 (Cluster Dispersion). The Dispersion of
a cluster Ci (DISP) is defined as the maximum edge
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weight of Ci. If the cluster is a singleton (i.e. con-
tains only one node), the associated Dispersion is set to
0. More formally:

∀i ∈ [K], DISP(Ci) =

{
max

j, ej∈Ci
wj if |E(Ci)| 6= 0

0 otherwise.

Definition 3.4 (Cluster Separation). The Separation of
a cluster Ci (SEP) is defined as the minimum distance
between the nodes of Ci and the ones of all other clus-
ters Cj , j 6= i, 1 ≤ i, j ≤ K,K 6= 1 where K is the
total number of clusters. In practice, it corresponds to
the minimum weight among all already cut edges from T
comprising a node from Ci. If K = 1, the Separation is
set to 1. More formally, with incCuts(Ci) denoting cut
edges incident to Ci,

∀i ∈ [K], SEP(Ci) =

{
min

j, ej∈incCuts(Ci)
wj if K 6= 1

1 otherwise.

Definition 3.5 (Validity Index of a Cluster). The Validity
Index of a cluster Ci is defined as:

VC(Ci) =
SEP(Ci)−DISP(Ci)

max(SEP(Ci),DISP(Ci))
∈ [−1; 1]

Definition 3.6 (Validity Index of a Clustering Partition).
The Density-Based Validity Index of a Clustering parti-
tion Π = {Ci}, 1 ≤ i ≤ K, DBCVI(Π) is defined as the
weighted average of the Validity Indices of all clusters in
the partition where N is the number of vertices.

DBCVI(Π) =
K∑

i=1

|Ci|
N

VC(Ci) ∈ [−1, 1]

DBMSTCLU is summarized in Algorithm 1:
evaluateCut(.) computes the DBCVI when the cut
in parameter is applied to T . Initial DBCVI is set −1.
Interested reader could refer to (Morvan et al., 2017)
Section 4. for a complete insight on this notions.

3.2.2 DBMSTClu exact clustering recovery proof

In this section, we provide theoretical guarantees for the
cluster recovery accuracy of DBMSTClu. Let us first
begin by introducing some definitions.

Definition 3.7 (Cut). Let us consider a graph G =
(V,E,w) with K clusters, T an MST of G. Let denote
(C∗i )i∈[K] the set of the clusters. Then, CutG(T ) :=
{ekl ∈ T | k ∈ C∗i , l ∈ C∗j , i, j ∈ [K]2, i 6= j}. In the
sequel, for simplicity, we denote e(ij) ∈ CutG(T ) the
edge between cluster C∗i and C∗j .

CutG(T ) is basically the set of effective cuts to perform
on T in order to ensure the exact recovery of the clus-
tering partition. More generally, trees on which CutG(.)

Algorithm 1 DBMSTCLU(T )

1: Input: T , the MST
2: dbcvi← −1.0
3: clusters← ∅
4: cut list← {E(T )}
5: while dbcvi < 1.0 do
6: cut tp← ∅
7: dbcvi tp← dbcvi
8: for each cut in cut list do
9: newDbcvi = evaluateCut(T , cut)

10: if newDbcvi ≥ dbcvi tp then
11: cut tp← cut
12: dbcvi tp← newDbcvi
13: if cut tp 6= ∅ then
14: clusters = cut(clusters, cut tp)
15: dbcvi← dbcvi tp
16: cut list← cut list\{cut tp}
17: else
18: break
19: return clusters

enables to find the right partition are said to be a parti-
tioning topology.
Definition 3.8 (Partitionning topology). Let us consider
a graph G = (V,E,w) with K clusters C∗1 , . . . , C

∗
K . A

spanning tree T of G is said to have a partitioning topol-
ogy if ∀i, j ∈ [K], i 6= j, |{e = (u, v) ∈ CutG(T ) | u ∈
C∗i , v ∈ C∗j }| = 1.

Def. 3.7 and 3.8 introduce a topological condition on the
tree as input of the algorithm. Nevertheless, conditions
on weights are necessary too. Hence, we define homoge-
neous separability which expresses the fact that within a
cluster the edge weights are spread in a controlled man-
ner.
Definition 3.9 (Homogeneous separability condition).
Let us consider a graph G = (V,E,w), s ∈ E and T
a tree of G. T is said to be homogeneously separable by
s, if

αT max
e∈E(T )

w(e) < w(s) with αT =

max
e∈E(T )

w(e)

min
e∈E(T )

w(e)
≥ 1.

One will write for simplicity that HT (s) is verified.
Definition 3.10 (Weak homogeneity condition of a Clus-
ter). Let us consider a graph G = (V,E,w) with K
clusters C∗1 , . . . , C

∗
K . A given cluster C∗i , i ∈ [K], C∗i

is weakly homogeneous if: for all T an MST of G, and
∀j ∈ [K], j 6= i, s.t. e(ij) ∈ CutG(T ), HT|C∗

i
(e(ij)) is

verified. For simplicity, one denote
¯
αi = max

T MST of G
αT|C∗

i

Definition 3.11 (Strong homogeneity condition of a
Cluster). Let us consider a graph G = (V,E,w) with
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K clusters C∗1 , . . . , C
∗
K . A given cluster C∗i , i ∈ [K],

C∗i is strongly homogeneous if: for all T a spanning
tree (ST) of G, and ∀j ∈ [K], j 6= i, s.t. e(ij) ∈
CutG(T ), HT|C∗

i
(e(ij)) is verified. For simplicity, one

denote ᾱi = max
T ST of G

αT|C∗
i

Weak homogeneity is indeed really natural considering
the non-private cases using an MST. Strong homogene-
ity is more demanding, but still a reachable condition.
Section 4 presents an experiment where the graph re-
spects strong homogeneity as well as being organised in
arbitrary shaped clusters. We show that the weak homo-
geneity condition is implied by the strong homogeneity
condition.

Proposition 3.1. Let us consider a graph G = (V,E,w)
with K clusters C∗1 , . . . , C

∗
K . If a given cluster C∗i ,

i ∈ [K] is strongly homogeneous, then, it is weakly ho-
mogeneous.

Proof. If T a spanning tree of G, and ∀j ∈ [K], j 6= i,
s.t. e(ij) ∈ CutG(T ), HT|C∗

i
(e(ij)) is verified, then in

particular, it is true for any MST.

Strong homogeneity condition appears to be naturally
more constraining on the edge weights than the weak
one. The accuracy of DBMSTCLU is proved under
the weak homogeneity condition, while the accuracy of
its differentially-private version is only given under the
strong homogeneity condition.

Theorem 3.2. Let us consider a graph G = (V,E,w)
with K homogeneous clusters C∗1 , . . . , C

∗
K and T an

MST of G. Let now assume that at step k < K − 1,
DBMSTClu built k + 1 subtrees C1, . . . , Ck+1 by cutting
e1, e2, . . . , ek ∈ E.

Then, Cutk := CutG(T ) \ {e1, e2, . . . , ek} 6= ∅ =⇒
DBCVIk+1 ≥ DBCV Ik, i.e. if there are still edges in
Cutk, the algorithm will continue to perform some cut.

Proof. See supplementary material.

Theorem 3.3. Let us consider a graph G = (V,E,w)
with K homogeneous clusters C∗1 , . . . , C

∗
K and T an

MST of G.

Assume now that at step k < K−1, DBMSTClu built k+
1 subtrees C1, . . . , Ck+1 by cutting e1, e2, . . . , ek ∈ E.
We still denote Cutk := CutG(T )\{e1, e2, . . . , ek}.
If Cutk 6= ∅ then argmax

e∈T \{e1, e2, ..., ek}
DBCV Ik+1(e) ⊂

Cutk i.e. the cut edge at step k + 1 is in Cutk.

Proof. See supplementary material.

Theorem 3.4. Let us consider a graph G = (V,E,w)
with K weakly homogeneous clusters C∗1 , . . . , C

∗
K and

T an MST of G. Let now assume that at step K −
1, DBMSTClu built K subtrees C1, . . . , CK by cutting
e1, e2, . . . , eK−1 ∈ E. We still denote CutK−1 :=
CutG(T )\{e1, e2, . . . , eK−1}.
Then, for all e ∈ T \{e1, e2, . . . , eK−1},
DBCV IK(e) < DBCV IK−1 i.e. the algorithm stops:
no edge gets cut during step K.

Proof. See supplementary material.

Corollary 3.1. Let us consider a graph G = (V,E,w)
with K weakly homogeneous clusters C∗1 , . . . , C

∗
K and

T an MST of G. DBMSTClu(T ) stops after K − 1
iterations and theK subtrees produced match exactly the
clusters i.e. under homogeneity condition, the algorithm
finds automatically the underlying clustering partition.

Proof. Th. 3.2 and 3.4 ensure that under homogene-
ity condition on all clusters, the algorithm performs the
K−1 distinct cuts withinCutG(T ) and stops afterwards.
By definition of CutG(T ), it means the DBMSTClu cor-
rectly builds the K clusters.

3.3 PRIVATE MST-BASED CLUSTERING

This section presents our new node clustering algorithm
PTCLUST for weight differential privacy. It relies on a
mixed adaptation of PAMST algorithm (Pinot, 2018) for
recovering a differentially-private MST of a graph and
DBMSTCLU.

3.3.1 PAMST algorithm

Given a simple-undirected-weighted graph G =
(V,E,w), PAMST outputs an almost minimal weight
spanning tree topology under differential privacy con-
straints. It relies on a Prim-like MST algorithm, and an
iterative use of the graph-based Exponential mechanism.
PAMST takes as an input a weighted graph, and a util-
ity function. It outputs the topology of a spanning tree
which weight is almost minimal. Algorithm 2 presents
this new method, using the following utility function:

uG : WE ×R → R
(w, r) 7→ −|w(r)− min

r′∈R
w(r′)|.

PAMST starts by choosing an arbitrary node to construct
iteratively the tree topology. At every iteration, it uses the
Exponential mechanism to find the next edge to be added
to the current tree topology while keeping the weights
private. This algorithm is the state of the art to find a
spanning tree topology under differential privacy. For
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readability, let us introduce some additional notations.
Let S be a set of nodes from G, and RS the set of edges
that are incident to one and only one node in S (also de-
noted xor-incident). For any edge r in such a set, the
incident node to r that is not in S is denoted r→. Finally,
the restriction of the weight function to an edge set R is
denoted w|R.

Algorithm 2 PAMST(G, uG, w, ε)

1: Input: G = (V,E,w) a weighted graph (separately
the topology G and the weight function w), ε a de-
gree of privacy and uG utility function.

2: Pick v ∈ V at random
3: SV ← {v}
4: SE ← ∅
5: while SV 6= V do
6: r =MExp(G, w, uG,RSV , ε

|V |−1 )

7: SV ← SV ∪ {r→}
8: SE ← SE ∪ {r}
9: return SE

Theorem 3.5 states that using PAMST to get an al-
most minimal spanning tree topology preserves weight-
differential privacy.

Theorem 3.5. Let G = (V,E) be the topol-
ogy of a simple-undirected graph, then ∀ε > 0,
PAMST(G, uG, •, ε) is ε- differentially private on G.

3.3.2 Differentially-private clustering

The overall goal of this Section is to show that one
can obtain a differentially-private clustering algorithm
by combining PAMST and DBMSTCLU algorithms.
However, PAMST does not output a weighted tree which
is inappropriate for clustering purposes. To overcome
this, one could rely on a sanitizing mechanism such as
the Laplace mechanism. Moreover, since DBMSTCLU
only takes weights from (0,1], two normalizing parame-
ters τ and p are introduced, respectively to ensure lower
and upper bounds to the weights that fit within DBM-
STCLU needs. This sanitizing mechanism is called the
Weight-Release mechanism. Coupled with PAMST, it
will allows us to produce a weighted spanning tree with
differential privacy, that will be exploited in our private
graph clustering.

Definition 3.12 (Weight-Release mechanism). Let G =
(G,w) be a weighted graph, ε > 0 a privacy parameter,
s a scaling parameter, τ ≥ 0, and p ≥ 1 two normal-
ization parameters. The Weight-Release mechanism is
defined as

Mw.r(G,w, s, τ, p) =

(
G,w′ =

w + (Y1, ..., Y|E|) + τ

p

)

where Yi are i.i.d. random variables drawn from
Lap (0, s). With w + (Y1, ..., Y|E|) meaning that if one
gives an arbitrary order to the edges E = (ei)i∈[|E|],
one has ∀i ∈ [|E|], w′(ei) = w(ei) + Yi.

The following theorem presents the privacy guarantees
of the Weight-Release mechanism.

Theorem 3.6. Let G = (V,E) be the topology of a
simple-undirected graph, τ ≥ 0, p ≥ 1, then ∀ε > 0,
Mw.r

(
G, •, µε , τ, p

)
is ε- differentially private on G.

Proof. Given τ ≥ 0, p ≥ 1, and ε > 0, the Weight
release mechanism scaled to µ

ε can be break down into a
Laplace mechanism and a post-processing consisting in
adding τ to every edge and dividing them by p. Using
Theorems 2.1 and 2.5, one gets the expected result.

So far we have presented DBMSTCLU and PAMST al-
gorithms, and the Weight-Release mechanism. Let us
now introduce how to compose those blocks to obtain a
Private node clustering in a graph, called PTCLUST. The

Algorithm 3 PTCLUST(G,w, uG, ε, τ, p)

1: Input: G = (V,E,w) a weighted graph (separately
the topology G and the weight function w), ε a de-
gree of privacy and uG utility function.

2: T = PAMST(G,w, uG, ε/2)
3: T ′ =Mw.r(T,w|E(T ),

2µ
ε , τ, p)

4: return DBMSTCLU(T ′)

algorithm 3 takes as an input a weighted graph (disso-
ciated topology and weight function), a utility function,
a privacy degree and two normalization parameters. It
outputs a clustering partition. To do so, a spanning tree
topology is produced using PAMST with time and space
complexities respectively equal to O(|V |2) and O(|E|).
Afterward a randomized and normalized version of the
associated weight function is released using the Weight-
release mechanism. Finally the obtained weighted tree is
given as an input to DBMSTCLU that performs a clus-
tering partition with O(|V |) time and space complexi-
ties. The following theorem ensures that our method pre-
serves ε-differential privacy.

Theorem 3.7. Let G = (V,E) be the topology of a
simple-undirected graph, τ ≥ 0, and p ≥ 1, then ∀ε > 0,
PTCLUST(G, •, uG, ε, τ, p) is ε-differentially private on
G.

Proof. Using Theorem 3.5 one has that T is produced
with ε/2-differential privacy, and using Theorem 3.6 one
has that w′ is obtained with ε/2-differential privacy as
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well. Therefore using Theorem 2.4, T ′ is released with ε-
differential privacy. Using the post-processing property
(Theorem 2.5) one gets the expected result.

3.4 DIFFERENTIAL PRIVACY TRADE-OFF OF
CLUSTERING

The results stated in this section present the se-
curity/accuracy trade-off of our new method in the
differentially-private framework. PTCLUST relies on
two differentially -private mechanisms, namely PAMST
and the Weight-Release mechanism. Evaluating the ac-
curacy of this method amounts to check whether us-
ing these methods for ensuring privacy does not dete-
riorate the final clustering partition. The accuracy is
preserved if PAMST outputs the same topology as the
MST-based clustering and if the Weight-Release mech-
anism preserves enough the weight function. According
to Def. 3.8, if a tree has a partitioning topology, then it fits
the tree-based clustering. The following theorem states
that with high probability PAMST outputs a tree with a
partitioning topology.

Theorem 3.8. Let us consider a graph G = (V,E,w)
with K strongly homogeneous clusters C∗1 , . . . , C

∗
K and

T = PAMST(G, uG , w, ε), ε > 0. T has a partitioning
topology with probability at least

1−
K∑

i=1

(|C∗i | − 1) exp

(
− A

2∆uG(|V | − 1)

)

with A = ε


ᾱimax(w(e))

e∈E
(
G|C∗

i

) −min (w(e))
e∈E

(
G|C∗

i

)


+ ln |E|.

Proof. See supplementary material.

The following theorem states that given a tree T under
the strong homogeneity condition, if the subtree associ-
ated to a cluster respects Def. 3.9, then it still holds after
applying the Weight-Release mechanism to this tree.

Theorem 3.9. Let us consider a graph G = (V,E,w)
with K strongly homogeneous clusters C∗1 , . . . , C

∗
K and

T = PAMST (G, uG , w, ε), T = (T,w|T ) and T ′ =
Mw.r(T,w|T , s, τ, p) with s� p, τ . Given some cluster
C∗i , and j 6= i s.t e(ij) ∈ CutG(T ), if HT|C∗

i
(e(ij)) is

verified, then HT ′|C∗
i
(e(ij)) is verified with probability

at least

1− V(ϕ)

V(ϕ) + E(ϕ)2

with the following notations :

• ϕ = (maxYj)
2

j∈[|C∗i |−1]

− minZj
j∈[|C∗i |−1]

×Xout

• Yj ∼
iid
Lap

(
max

e∈E(T )
w(e)+τ

p , sp

)

• Zj ∼
iid
Lap

(
min

e∈E(T )
w(e)+τ

p , sp

)

• Xout ∼ Lap
(
w(e(ij)+τ

p , sp

)
,

Proof. See supplementary material.

Note that Theorem 3.9 is stated in a simplified version. A
more complete version (specifying an analytic version of
V(ϕ) and E(ϕ)) is given in the supplementary material.

4 EXPERIMENTS

So far we have exhibited the trade-off between clustering
accuracy and privacy and we experimentally illustrate it
with some qualitative results. We have performed ex-
periments on two classical synthetic graph datasets for
clustering with nonconvex shapes: two concentric circles
and two moons, both in their noisy versions. For the sake
of readability and for visualization purposes, both graph
datasets are embedded into a two dimensional Euclidean
space. Each dataset contains 100 data nodes that are
represented by a point of two coordinates. Both graphs
have been built with respect to the strong homogene-
ity condition: edge weights within clusters are between
wmin = 0.1 and wmax = 0.3 while edges between clus-
ters have a weight strictly above w2

max/wmin = 0.9. In
practice, the complete graph has trimmed from its irrel-
evant edges (i.e. not respecting the strong homogene-
ity condition). Hence, those graphs are not necessarily
Euclidean since close nodes in the visual representation
may not be connected in the graph. Finally, weights are
normalized between 0 and 1.

Figures 1 and 2 (best viewed in color) show for each
dataset (a) the original homogeneous graph G built by
respecting the homogeneity condition, (b) the cluster-
ing partition1 of DBMSTCLU with the used underly-
ing MST, the clustering partitions for PTCLUST with
µ = 0.1 obtained respectively with different privacy de-
grees2 : (c) ε = 0.5, (d) ε = 0.7 and (e) ε = 1.0.
The utility function uG corresponds to the graph weight.
Each experiment is carried out independently and the tree
topology obtained by PAMST will eventually be differ-
ent. This explains why the edge between clusters may
not be the same when the experiment is repeated with a

1For the sake of clarity, the edges in those Figures are rep-
resented based on the original weights and not on the privately
released weights.

2Note that, although the range of ε is in R?+, it is usually
chosen in practice in (0, 1] (Dwork and Roth, 2013, Chap 1&2).
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(a) Homogeneous graph (b) DBMSTCLU (c) PTCLUST, ε = 1.0 (d) PTCLUST, ε = 0.7 (e) PTCLUST, ε = 0.5

Figure 1: Circles experiments for n = 100. PTCLUST parameters: wmin = 0.1, wmax = 0.3, µ = 0.1.
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(b) DBMSTCLU (c) PTCLUST, ε = 1.0 (d) PTCLUST, ε = 0.7 (e) PTCLUST, ε = 0.5

Figure 2: Moons experiments for n = 100. PTCLUST parameters: wmin = 0.1, wmax = 0.3, µ = 0.1.

different level of privacy. However, this will marginally
affect the overall quality of the clustering.

As expected, DBMSTCLU recovers automatically the
right partition and the results are shown here for com-
parison with PTCLUST. For PTCLUST, the true MST
is replaced with a private approximate MST obtained for
suitable τ and p ensuring final weights between 0 and 1.

When the privacy degree is moderate (ε ∈ {1.0, 0.7}),
it appears that the clustering result is slightly affected.
More precisely, in Figures 1c and 1d the two main clus-
ters are recovered while one point is isolated as a sin-
gleton. This is due to the randomization involved in de-
termining the edge weights for the topology returned by
PAMST. In Figure 2c, the clustering is identical to the
one from DBMSTCLU in Figure 2b. In Figure 1d, the
clustering is very similar to the DBMSTClu one, with
the exception of an isolated singleton. However, as ex-
pected from our theoretical results, when ε is decreasing
(even below 0.5), the clustering quality deteriorates, as
DBMSTCLU is sensitive to severe changes in the MST
(cf. Figure 1e, 2e).

5 CONCLUSION

In this paper, we introduced PTCLUST, a novel graph
clustering algorithm able to recover arbitrarily-shaped
clusters while preserving differential privacy on the
weights of the graph. It is based on the release of a pri-
vate approximate minimum spanning tree of the graph of

the dataset, by performing suitable cuts to reveal the clus-
ters. To the best of our knowledge, this is the first differ-
entially private graph-based clustering algorithm adapted
to nonconvex clusters. The theoretical analysis exhibited
a trade-off between the degree of privacy and the accu-
racy of the clustering result. Differential privacy is inves-
tigated in the framework of strong homogeneity but this
is quite restrictive. A smoother result would be very in-
teresting but it is more challenging. This will be a focus
of our future work. Our work suits to applications where
privacy is a critical issue and it could pave the way to
metagenomics and genes classification using individual
gene maps while protecting patient privacy. Future work
will also be devoted to deeply investigate these applica-
tions.
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Abstract

We propose a new network architecture, Gated
Attention Networks (GaAN), for learning on
graphs. Unlike the traditional multi-head at-
tention mechanism, which equally consumes
all attention heads, GaAN uses a convolutional
sub-network to control each attention head’s
importance. We demonstrate the effective-
ness of GaAN on the inductive node classi-
fication problem on large graphs. Moreover,
with GaAN as a building block, we construct
the Graph Gated Recurrent Unit (GGRU)
to address the traffic speed forecasting prob-
lem. Extensive experiments on three real-
world datasets show that our GaAN framework
achieves state-of-the-art results on both tasks.

1 INTRODUCTION

Many crucial machine learning tasks involve graph-
structured datasets, such as classifying posts in a social
network (Hamilton et al., 2017a), predicting interfaces
between proteins (Fout et al., 2017) and forecasting the
future traffic speed in a road network (Li et al., 2018).
The main difficulty in solving these tasks is how to find
the right way to express and exploit the graph’s underly-
ing structural information. Traditionally, this is achieved
by calculating various graph statistics like degree and
centrality, using graph kernels, or extracting human en-
gineered features (Hamilton et al., 2017b).

Recent research, however, has pivoted to solving these
problems by graph convolution (Duvenaud et al., 2015;
Atwood and Towsley, 2016; Kipf and Welling, 2017;
Fout et al., 2017; Hamilton et al., 2017a; Veličković
et al., 2018; Li et al., 2018), which generalizes the stan-

∗ These two authors contributed equally.

dard definition of convolution over a regular grid topol-
ogy (Gehring et al., 2017; Krizhevsky et al., 2012) to
‘convolution’ over graph structures. The basic idea
behind ‘graph convolution’ is to develop a localized
parameter-sharing operator on a set of neighboring nodes
to aggregate a local set of lower-level features. We re-
fer to such an operator as a graph aggregator (Hamilton
et al., 2017a) and the set of local nodes as the recep-
tive field of the aggregator. Then, by stacking multiple
graph aggregators, we build a deep neural network model
which can be trained end-to-end to extract the local and
global features across the graph. Note that we use the
spatial definition instead of the spectral definition (Ham-
mond et al., 2011; Bruna et al., 2014) of graph convo-
lution because the full spectral treatment requires eigen-
decomposition of the Laplacian matrix, which is com-
putationally intractable on large graphs, while the local-
ized versions (Defferrard et al., 2016; Kipf and Welling,
2017) can be interpreted as graph aggregators (Hamilton
et al., 2017a).

Graph aggregators are the basic building blocks of graph
convolutional neural networks. A model’s ability to cap-
ture the structural information of graphs is largely de-
termined by the design of its aggregators. Most exist-
ing graph aggregators are based on either pooling over
neighborhoods (Kipf and Welling, 2017; Hamilton et al.,
2017a) or computing a weighted sum of the neighbor-
ing features (Monti et al., 2017). In essence, functions
that are permutation invariant and can be dynamically
resizing are eligible graph aggregators. One class of
such functions is the neural attention network (Bahdanau
et al., 2015), which uses a subnetwork to compute the
correlation weight of the elements in a set. Among
the family of attention models, the multi-head attention
model has been shown to be effective for machine trans-
lation task (Lin et al., 2017; Vaswani et al., 2017). It has
later been adopted as a graph aggregator to solve the node
classification problem (Veličković et al., 2018). A sin-
gle attention head sums up the elements that are similar
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to the query vector in one representation subspace. Us-
ing multiple attention heads allows exploring features in
different representation subspaces, which provides more
modeling power in nature. However, treating each atten-
tion head equally loses the opportunity to benefit from
some attention heads which are inherently more impor-
tant than others. For instance, assume there are ten dif-
ferent relationships in the graph and only two of them
are valid for each node. If we use ten attention heads
to model these relationships and treat them equally, each
node will still aggregate features from eight non-existent
subspaces. This will mislead the final prediction.

To this end, we propose the Gated Attention Networks
(GaAN) for learning on graphs. GaAN uses a small con-
volutional subnetwork to compute a soft gate at each at-
tention head to control its importance. Unlike the tradi-
tional multi-head attention that admits all attended con-
tents, the gated attention can modulate the amount of
attended content via the introduced gates. From this
perspective, the gate-generation network acts as a high-
level controller that determines how to aggregate the fea-
tures extracted by the attention heads. Moreover, since
only a simple and light-weighted subnetwork is intro-
duced in constructing the gates, the computational over-
head is negligible and the model is easy to train. We
demonstrate the effectiveness of our new aggregator by
applying it to the inductive node classification problem.
To train our model and other graph aggregators on rela-
tively large graphs, we also improve the sampling strat-
egy introduced in (Hamilton et al., 2017a) to reduce the
memory cost and increase the run-time efficiency. Fur-
thermore, since our proposed aggregator is very general,
we extend it to construct a Graph Gated Recurrent Unit
(GGRU), which is directly applicable for spatiotempo-
ral forecasting problem. Extensive experiments on two
node classification datasets, PPI and the large Reddit
dataset (Hamilton et al., 2017a), and one traffic speed
forecasting dataset, METR-LA (Li et al., 2018), show
that GaAN consistently outperforms the baseline models
and achieves the state-of-the-art performance.

In summary, our main contributions include: (a) a new
multi-head attention-based aggregator with additional
gates on the attention heads; (b) a unified framework for
transforming graph aggregators to graph recurrent neural
networks; and (c) the state-of-the-art prediction perfor-
mance on three real-world datasets. To the best of our
knowledge, this is the first work to study the attention-
based aggregators on large and spatiotemporal graphs.

2 NOTATIONS

We denote vectors with bold lowercase letters, matrices
with bold uppercase letters, and sets with calligraphy let-

ters. We denote a single fully-connected layer with a
non-linear activation α(·) as FCαθ (x) = α(Wx + b),
where θ = {W,b} are the parameters. Also, θ with dif-
ferent subscripts mean different transformation parame-
ters. For activation functions, we denote h(·) to be the
LeakyReLU activation (Xu et al., 2015a) with negative
slope equals to 0.1 and σ(·) to be the sigmoid activa-
tion. FCθ(x) means applying no activation function after
the linear transform. We denote ⊕ as the concatenation
operation and

fK
k=1 xk as sequentially concatenating x1

through xK . We denote the Hadamard product as ‘◦’ and
the dot product between two vectors as 〈·, ·〉.

3 RELATED WORK

In this section, we will review relevant research on learn-
ing on graphs. Our model is also related to many graph
aggregators proposed by previous work. We will discuss
these aggregators in Section 4.3.

Neural attention mechanism Neural attention mech-
anism is widely adopted in deep learning literature and
many variants have been proposed (Xu et al., 2015b;
Seo et al., 2017; Zhang et al., 2017; Vaswani et al.,
2017; Cheng et al., 2017; Zhang et al., 2018). Among
them, our model takes inspiration from the multi-head
attention architecture proposed in (Vaswani et al., 2017).
Given a query vector q and a set of key-value pairs
{(k1,v1), ..., (kn,vn)}, a single attention head com-
putes a weighted combination of the value vectors∑n
i=1 wivi. The weights are generated by applying soft-

max to the inner product between the query and keys,
i.e., w = softmax({qTk1, ...,q

Tkn}). In the multi-head
case, the outputs of K different heads are concatenated
to form an output vector with fixed dimensionality. The
difference between the proposed GaAN and the multi-
head attention mechanism is that we compute additional
gates to control the importance of each head’s output.

Graph convolutional networks on large graph Ap-
plying graph convolution on large graphs is challeng-
ing because the memory complexity is proportional to
the total number of nodes, which could be hundreds
of thousands of nodes in large graphs (Hamilton et al.,
2017a). To reduce memory usage and computational
cost, (Hamilton et al., 2017a) proposed the GraphSAGE
framework that uses a sampling algorithm to select a
small subset of the nodes and edges. On each itera-
tion, GraphSAGE first uniformly samples a mini-batch
of nodes. Then, for each node, only a fixed number
of neighborhoods are selected for aggregation. More
recently, Chen et al. (Chen et al., 2018) proposed a
new sampling method that randomly samples two sets
of nodes according to a proposed distribution. How-
ever, this method is only applicable to one aggregator,
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i.e., the Graph Convolutional Network (GCN) (Kipf and
Welling, 2017). For the usage of the gate mechanism, the
gate in Li et al. (2016) refers to the gate in Gated Recur-
rent Units, which are imposed on the activations of the
neural network, while our gates are added to the atten-
tion heads to control each head’s relative importance.

Graph convolution networks for spatiotemporal fore-
casting Recently, researchers have applied graph con-
volution, which is commonly used for learning on
static graphs, to spatiotemporal forecasting (Yuan et al.,
2017). (Seo et al., 2016) proposed Graph Convolutional
Recurrent Neural Network (GCRNN), which replaced
the fully-connected layers in LSTM (Hochreiter and
Schmidhuber, 1997) with the ChebNet operator (Deffer-
rard et al., 2016), and applied it to a synthetic video pre-
diction task. Li et al. (Li et al., 2018) proposed Diffusion
Convolutional Recurrent Neural Network (DCRNN) to
address the traffic forecasting problem, where the goal
is to predict future traffic speeds in a sensor network
given historical traffic speeds and the underlying road
graph. DCRNN replaces the fully-connected layers in
GRU (Chung et al., 2014) with the diffusion convolu-
tion operator (Atwood and Towsley, 2016). Furthermore,
DCRNN takes the direction of graph edges into account.
The difference between our GGRU with GCRNN and
DCRNN is that we proposed a unified method for con-
structing a recurrent neural network based on an arbitrary
graph aggregator rather than proposing a single model.

4 GATED ATTENTION NETWORKS

In this section, we first give a generic formulation of
graph aggregators followed by the multi-head attention
mechanism. Then, we introduce the proposed gated at-
tention aggregator. Finally, we review the other kinds
of graph aggregators proposed by previous work and ex-
plain their relationships with ours.

Generic formulation of graph aggregators Given a
node i and its neighboring nodes Ni, a graph aggregator
is a function γ in the form of yi = γΘ(xi, {zNi}), where
xi and yi are the input and output vectors of the center
node i. zNi = {zj |j ∈ Ni} is a set of the reference
vectors in the neighboring nodes and Θ is the learnable
parameters of the aggregator. In this paper, we do not
consider aggregators that use edge features. However, it
is straightforward to incorporate edges in our definition
by defining zj to contain the edge feature vectors ei,j .

4.1 MULTI-HEAD ATTENTION AGGREGATOR

We linearly project the center node feature xi to get the
query vector and project the neighboring node features
to get the key and value vectors. We then apply the

learned 
gates

3 attention
heads

𝐱1, 𝐱2,

𝐖1 𝐖2

∅𝑔
× ×

Softmax

𝜃𝑥𝑎
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∅𝑤
𝜃𝑧𝑎

° °
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𝐳𝐳 , 𝐳 𝐳

Figure 1: Illustration of a three-head gated attention ag-
gregator with two center nodes in a mini-batch. |N1| = 3
and |N2| = 2 respectively. Different colors indicate dif-
ferent attention heads. Gates in darker color stands for
larger values. (Best viewed in color)

multi-head attention mechanism (Vaswani et al., 2017)
to obtain the final aggregation function. For the multi-
head attention mechanism, different heads capture fea-
tures from different representation subspaces. The de-
tailed formulation of the multi-head attention aggregator
is as follows:

yi = FCθo(xi ⊕
Kn

k=1

∑

j∈Ni
w

(k)
i,j FCh

θ
(k)
v

(zj)),

w
(k)
i,j =

exp(φ
(k)
w (xi, zj))∑|Ni|

l=1 exp(φ
(k)
w (xi, zl))

,

φ(k)
w (x, z) = 〈FC

θ
(k)
xa

(x),FC
θ
(k)
za

(z)〉.

(1)

Here, K is the number of attention heads. w
(k)
i,j is the

kth attentional weights between the center node i and
the neighboring node j, which is generated by apply-
ing a softmax to the dot product values. θ(k)

xa , θ(k)
za and

θ
(k)
v are the parameters of the kth head for computing

the query, key, and value vectors, which have dimensions
of da, da and dv respectively. The K attention outputs
are concatenated with the input vector and passed to a
fully-connected layer parameterized by θo to get the final
output yi, which has dimension do. The difference be-
tween our aggregator and that in GAT (Veličković et al.,
2018) is that we have adopted the key-value attention
mechanism and the dot product attention while GAT does
not compute additional value vectors and uses a fully-
connected layer to compute φ(k)

w .

4.2 GATED ATTENTION AGGREGATOR

While the multi-head attention aggregator can explore
multiple representation subspaces between the center
node and its neighborhoods, not all of these subspaces
are equally important; some subspaces may not even ex-
ist for specific nodes. Feeding the output of an attention
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Figure 2: Comparison of different graph aggregators. The aggregators are drawn for only one aggregation step. The
nodes in red are center nodes and the nodes in blue are neighboring nodes. The bold black lines between the center
node and neighbor nodes indicate that a learned pairwise relationship is used for calculating the relative importance.
The oval in dash line around the neighbors means the interaction among neighbors is utilized when determining the
weights. (Best viewed in color)

head that captures a useless representation can mislead
the mode’s final prediction.

Therefore, we compute an additional soft gate between 0
(low importance) and 1 (high importance) to assign dif-
ferent importance to each head. In combination with the
multi-head attention aggregator, we get the formulation
of the gated attention aggregator:

yi = FCθo(xi ⊕
Kn

k=1

(g
(k)
i

∑

j∈Ni
w

(k)
i,j FCh

θ
(k)
v

(zj))),

gi = [g
(1)
i , ..., g

(K)
i ] = ψg(xi, zNi),

(2)

where g(k)
i is a scalar, the gate value of the kth head at

node i. To make sure adding gates will not introduce
too many additional parameters, we use a convolutional
network ψg that takes the center node and neighboring
node features as the input to generate the gate values.
All the other parameters have the same meanings as in
Eqn. (1).

There are multiple possible designs of the ψg network. In
this paper, we combine average pooling and max pooling
to construct the network. The detailed formula is:

gi = FCσθg (xi ⊕max
j∈Ni

({FCθm(zj)})⊕
∑
j∈Ni zj
|Ni|

).

(3)
Here, θm maps the neighbor features to a dm dimen-
sional vector before taking the element-wise max and θg
maps the concatenated features to the final K gates. By
setting a small dm, the subnetwork for computing the
gates will have negligible computational overhead. A vi-
sual illustration of GaAN aggregator’s structure can be
found in Figure 1. Also, we compare the general struc-
tures of the multi-head attention aggregator and the gated
attention aggregator in Figure 2a and Figure 2b.

4.3 OTHER GRAPH AGGREGATORS

Most previous graph aggregators except attention-based
aggregators can be summarized into two general cate-
gories: graph pooling aggregators and graph pairwise
sum aggregators. In this section, we first describe these
two types of aggregators and then explain their relation-
ship with the attention-based aggregator. Finally, we give
a list of the baseline aggregators used in the experiments.

Graph pooling aggregators The main characteristic
of graph pooling aggregators is that they do not con-
sider the correlation between neighboring nodes and the
center node. Instead, neighboring nodes’ features are di-
rectly aggregated and the center node’s feature is simply
concatenated or added to the aggregated vector and then
passed through an output function φo:

yi = φo(xi ⊕ poolj∈Ni(φv(zj))). (4)

Here, the projection function φv and the output function
φo can be a single fully-connected layer and the pool(·)
operator can be average pooling, max pooling, or sum
pooling. The majority of existing graph aggregators are
special cases of the graph pooling aggregators. Some
models only integrate the node features of neighbor-
hoods (Duvenaud et al., 2015; Kipf and Welling, 2017;
Hamilton et al., 2017a), while others integrated edge fea-
tures as well (Atwood and Towsley, 2016; Fout et al.,
2017; Schütt et al., 2017). In Figure 2c, we illustrate the
architecture of the graph pooling aggregators.

Graph pairwise sum aggregators Like attention-
based aggregators, graph pairwise sum aggregators
also aggregate the neighborhood features by taking K
weighted sums. The difference is that the weight be-
tween node i and its neighbor j is not related to the other
neighbors in Ni. The formula of graph pairwise sum ag-
gregator is given as follows:
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yi = φo(xi ⊕
Kn

k=1

∑

j∈Ni
w

(k)
i,j φ

(k)
v (zj)),

w
(k)
i,j = φ(k)

w (xi, zj).

(5)

Here, w(k)
i,j is only related to the pair xi and zj , while

in attention-based models w
(k)
i,j is related to features

of all neighbors zNi . Models like the adaptive forget
gate strategy in Graph LSTM (Liang et al., 2016) and
MoNet (Monti et al., 2017) employed pairwise sum ag-
gregators with a single head or multiple heads. In Fig-
ure 2d, we illustrate the architecture of the graph pair-
wise sum aggregators.

Baseline aggregators To fairly evaluate the effective-
ness of GaAN against previous work, we choose two rep-
resentative aggregators in each category as baselines:

• Avg. pooling: yi = FCθo(xi⊕poolavg
j∈Ni(FChθv (zj))).

• Max pooling: yi = FCθo(xi⊕poolmax
j∈Ni(FChθv (zj))).

• Pairwise + sigmoid:

yi = FCθo(xi ⊕
Kn

k=1

∑

j∈Ni
w

(k)
i,j FCh

θ
(k)
v

(zj)),

w
(k)
i,j =

1

|Ni|
σ(〈FC

θ
(k)
xa

(xi),FC
θ
(k)
za

(zj)〉).

• Pairwise + tanh: Replace the sigmoid activation in
Pairwise + sigmoid to tanh.

5 INDUCTIVE NODE CLASSIFICA-
TION

5.1 MODEL

In the inductive node classification task, every node is as-
signed one or multiple labels. During training, the vali-
dation and testing nodes are not observable. And the goal
is to predict the labels of the unseen testing nodes. Our
approach follows that of (Hamilton et al., 2017a), where
a mini-batch of nodes are sampled on each iteration dur-
ing training and multiple layers of graph aggregators are
stacked to compute the predictions.

With a stack of M layers of graph aggregators, we will
first sample a mini-batch of nodes B0 and then recur-
sively expand B` to be B`+1 by sampling the neighboring
nodes of B`. After M sampling steps, we can get a hier-
archy of node batches: B1, ...,BM . The node represen-
tations, which are initialized to be the node features, will
be aggregated in reverse order from BM to B0. The rep-
resentations of the last layer, i.e., the final representations
of the nodes in B0, are projected to get the output. We
use the sigmoid activation for multi-label classification

Table 1: Effect of the merge operation. Both meth-
ods sample a maximum of 15 neighborhoods without re-
placement for three recursive steps on the Reddit dataset.
We start from 512 seed nodes. The total number of nodes
after the lth sampling step is denoted as |B`|. The sam-
pling process is repeated for ten times and the mean is
reported.

Strategy/Sample Step |B0| |B1| |B2| |B3|
Sample without merge 512 7.8K 124.4K 1.9M

Sample and merge 512 7.5K 70.7K 0.2M

and the softmax activation for multi-class classification.
Also, we use the cross-entropy loss to train the model.

A naive sampling algorithm is always to sample all
neighbors. However, it is not practical on large graphs
because the memory complexity is O(|V|) and the time
complexity is O(|E|), where |V| and |E| are the total
number of nodes and edges. Instead, similar to Graph-
SAGE (Hamilton et al., 2017a), we only sample a subset
of the neighborhoods for each node. In our implementa-
tion, at the `th sampling step, we sample min(|Ni|, S`)
neighbors without replacement for the node i, where S`
is a hyperparameter that controls the maximum number
of sampled neighbors at the `th step. Moreover, to im-
prove over GraphSAGE and further reduce memory cost,
we merge repeated nodes that are sampled from differ-
ent seeds’ neighborhoods within each mini-batch. This
greatly reduces the size of B`s as shown in Table 1.

Note that min(|Ni|, S`) is not the same for all the nodes
i. Thus, instead of padding the sampled neighborhood
set to the same size for utilizing fast tensor operation, we
implemented new GPU kernels that directly operate on
inputs with variable lengths to accelerate computations.

5.2 EXPERIMENTAL SETUP

We performed a thorough comparison of GaAN with the
state-of-the-art models, five aggregator-based models in
our framework and a two-layer fully connected neural
network on the PPI and Reddit datasets (Hamilton et al.,
2017a). The five baseline aggregators include the multi-
head attention aggregator, two pooling based aggrega-
tors, and two pairwise sum based aggregators mentioned
in Section 4.3. We also conducted comprehensive abla-
tion analysis.

The PPI dataset was collected from the molecular sig-
natures database (Subramanian et al., 2005). Each node
represents a protein and edges represent the interaction
between proteins. Labels represent the cellular functions
of each protein from gene ontology. Reddit is an online
discussion forum where users can post and discuss con-
tents on different topics. Each node represents a post and
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Table 2: Datasets for inductive node classification.
‘multi’ stands for multilabel classification and ‘single’
otherwise.

Data #Nodes #Edges #Fea #Classes
PPI 56.9K 806.2K 50 121(multi)

Reddit 233.0K 114.6M 602 41(single)

two nodes are connected if they are commented by the
same user. The labels indicate the community a post be-
longs to. Detailed statistics are listed in Table 2.

5.3 MODEL ARCHITECTURES AND
IMPLEMENTATION DETAIL

The GaAN and other five aggregator-based networks are
stacked with two graph aggregators. Each aggregator
is followed by the LeakyReLU activation with negative
slope equals to 0.1 and a dropout layer with dropout rate
set to be 0.1. The output dimension do of all layers are
fixed to be 128 except when we compare the relative
performance with different output dimensions. To keep
the number of parameters comparable for the multi-head
models with a different number of heads, we fix the prod-
uct of the dimension of the value vector and the number
of heads, i.e., dv×K to be the same when evaluating the
effect of varying the number of heads. Also, the hyper-
parameters of the first and the second layer are assumed
to be the same if no special explanation is given.

In the PPI experiments, both pooling aggregators have
dv = 512, where dv means the dimensionality of the
value vector projected by θv . For the pairwise sum ag-
gregators, the dimension of the keys da is set to be 24,
dv = 64, and K = 8. For both GaAN and the multi-
head attention based aggregator, da is set to be 24 and
the product dv × K is fixed to be 256. For GaAN, we
set dm to be 64 in the gate-generation network. Also, we
use the entire neighborhoods in the mini-batch training
algorithm. In the Reddit experiments, both pooling ag-
gregators have dv = 1024. For the pairwise sum aggre-
gators, da = 32, dv = 256 and K = 4. For the attention
based aggregators, da is set to be 32 and dv ×K is fixed
to be 512. We set the gate-generation network in GaAN
to have dm = 64. Also, the number of heads is fixed to
1 in the first layer for both attention-based models. The
maximum number of sampled neighbors in the first and
second sampling steps are denoted as S1 and S2 and are
respectively set to be 25 and 10 in Table 3. In the abla-
tion analysis, we also show the performance when setting
them to be (50, 20), (100, 40), and (200, 80).

To illustrate the effectiveness of incorporating graph
structures, we also evaluate a two-layer fully-connected
neural network with the hidden dimension of 1024 and

Table 3: Summary of different models’ test micro F1
scores in the inductive node classification task. In the
first block, we include the best-reported results in the pre-
vious papers. In the second block, we report the results
obtained by our models. For the PPI dataset, we do not
use any sampling strategies. For the Reddit dataset, we
use the maximum number sampling strategy with S1=25
and S2=10.

Models / Datasets PPI Reddit

GraphSAGE (Hamilton et al., 2017a) (61.2)1 95.4
GAT (Veličković et al., 2018) 97.3 ± 0.2 -
Fast GCN (Chen et al., 2018) - 93.7
2-Layer FNN 54.07±0.06 73.58±0.09
Avg. pooling 96.85±0.19 95.78±0.07
Max pooling 98.39±0.05 95.62±0.03
Pairwise+sigmoid 98.39±0.05 95.86±0.08
Pairwise+tanh 98.32±0.18 95.80±0.03
Attention-only 98.46±0.09 96.19±0.07
GaAN 98.71±0.02 96.36±0.03

ReLU activation. It only takes node features as input and
ignores graph structures.

We train all the aggregator-based models with
Adam (Kingma and Ba, 2015) and early stopping
on the validation set. Besides, we use the validation set
to perform learning rate decay scheduler. For Reddit,
before training we normalize all the features and project
all the features to a hidden dimension of 256. The
initial learning rate is 0.001 and gradually decreases
to 0.0001 with the decay rate of 0.5 each time the
validation F1 score does not decrease in a window of
4 epochs and early stopping occurs for 10 epochs. The
gradient normalization value clips no larger than 1.0.
For the PPI dataset, all the input features are projected
to a 64-dimension hidden state before passing to the
aggregators. The learning rate begins at 0.01 and decays
to 0.001 with the decay rate of 0.5 if the validation F1
score does not increase for 15 epochs and stops training
for 30 epochs.

The training batch size is fixed to be 512. Also, in all ex-
periments, we use the validation set to select the optimal
hyperparameters for training. The training, validation,
and testing splits are the same as that in (Hamilton et al.,
2017a). The micro-averaged F1 score is used to evalu-
ate the prediction accuracy for both datasets. We repeat
the training five times for Reddit and three times for PPI
with different random seeds and report the average test
F1 score along with the standard deviation.

1The performance reported in the paper is relatively low be-
cause the author has not trained their model into convergence.
Also, it is not fair to compare it with the other scores because it
uses the sampling strategy while the others have not.
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Table 4: Comparison of the test F1 score on the Reddit and PPI datasets with different sampling neighborhood sizes
and attention head number K. S1 and S2 are the maximum number of sampled neighborhoods in the 1st and 2nd
sampling steps. ‘all’ means to sample all the neighborhoods.

Models
Reddit PPI

#Param S1, S2 S1, S2 S1, S2 S1, S2 #Param S1, S2

25,10 50,20 100,40 200,80 all, all
2-Layer FNN 1.71M 73.58±0.09 73.58±0.09 73.58±0.09 73.58±0.09 1.23M 54.07±0.06
Avg. pooling 866K 95.78±0.07 96.11±0.07 96.28±0.05 96.35±0.02 274K 96.85±0.19
Max pooling 866K 95.62±0.03 96.06±0.09 96.18±0.11 96.33±0.04 274K 98.39±0.05
Pairwise+sigmoid 965K 95.86±0.08 96.19±0.04 96.33±0.05 96.38±0.08 349K 98.39±0.05
Pairwise+tanh 965K 95.80±0.03 96.11±0.05 96.26±0.03 96.36±0.04 349K 98.32±0.18
Attention-only-K1 562K 96.15±0.06 96.40±0.05 96.48±0.02 96.54±0.07 168K 96.31±0.08
Attention-only-K2 571K 96.19±0.07 96.40±0.04 96.52±0.02 96.57±0.02 178K 97.36±0.08
Attention-only-K4 587K 96.11±0.06 96.40±0.02 96.49±0.03 96.56±0.02 196K 98.09±0.07
Attention-only-K8 620K 96.10±0.03 96.38±0.01 96.50±0.04 96.53±0.02 233K 98.46±0.09
GaAN-K1 620K 96.29±0.05 96.50±0.08 96.67±0.04 96.73±0.05 201K 96.95±0.09
GaAN-K2 629K 96.33±0.02 96.59±0.02 96.71±0.05 96.82±0.05 211K 97.92±0.05
GaAN-K4 645K 96.36±0.03 96.60±0.03 96.73±0.04 96.83±0.03 230K 98.42±0.02
GaAN-K8 678K 96.31±0.13 96.60±0.02 96.75±0.03 96.79±0.08 267K 98.71±0.02

5.4 MAIN RESULTS

We compare our model with the previous state-of-the-art
methods on inductive node classification. This includes
GraphSAGE (Hamilton et al., 2017a), GAT (Veličković
et al., 2018), and FastGCN (Chen et al., 2018). The
GraphSAGE model used a 2-layer sample and aggre-
gate model with a neighborhood size of S(1) = 25 and
S(2) = 10 without dropout. The 3-layer GAT model
consisted of 4, 4, and 6 heads in the first, second, and
third layer respectively. Each attention head had 256 di-
mensions. GAT did not use neighborhood sampling, L2
regularization, or dropout. The FastGCN model is a fast
version of the 3-layer, 128-dimension GCN with sam-
pled neighborhood size being 400, 100, and 400 for each
layer and no sampling is done during testing.

Table 3 summarizes all results of the state-of-the-art
models and the models proposed in this paper. We denote
the multi-head attention aggregator as ‘Attention-only’ in
the tables and figures. We find that the proposed model,
GaAN, achieves the best F1 score on both datasets and
the other baseline aggregators can also show competitive
results to the state-of-the-art. We note that aggregator-
based models produce much higher F1 score than the
fully-connected model, which shows the effectiveness of
the graph aggregators. Our max pooling and avg. pool-
ing baselines have higher scores on Reddit than that in
the original GraphSAGE record. This mainly contributes
to our usage of dropout and the LeakyReLU activation.

Regarding the training time, the average training time of
the attention-only model for the first 100 epochs on PPI
is 36.5s and that of GaAN is 37.0s when we run on the

machine with a single TitanX GPU and Intel Xeon CPU
3.70 GHz. This shows that the computational overhead
of adding the gates is negligible.

5.5 ABLATION ANALYSIS

We ran some ablation experiments to analyze the per-
formance of different graph aggregators when different
hyperparameters were used. We also visualized the gates
of the GaAN model.

Effect of the number of attention heads and the sam-
ple size We compare the performance of the aggre-
gators when a different number of attention heads and
sampling strategies are used. Results are shown in Ta-
ble 4. We find that attention-based models consistently
outperform pooling and pairwise sum based models with
the fewer number of parameters, which demonstrates the
effectiveness of the attention mechanism in this task.
Moreover, GaAN consistently beats the multi-head at-
tention model with the same number of attention heads
K. This proves that adding additional gates to control
the importance of the attention heads is beneficial to the
final classification performance. From the last two row
blocks of Table 4, we note that increasing the number of
attention heads will not always produce better results on
Reddit. In contrast, on PPI, the larger the K, the better
the prediction results. Also, we can see steady improve-
ment with larger sampling sizes, which is consistent with
the observation in (Hamilton et al., 2017a).

Effect of output dimensions in the PPI dataset We
changed the output dimension to be 64, 96, and 128 in the
models for training in the PPI dataset. The test F1 score
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(a) Performance of different models with a varying number of
output dimensions on PPI.

(b) Visualization of 8 gate values of 5 example nodes on Reddit.
Each row represents a learned gate vector for one node.

Figure 3: Ablation analysis on PPI and Reddit

is shown in Figure 3a. All multi-head models have K=8.
We find that the performance becomes better for larger
output dimensions and the proposed GaAN consistently
outperforms the other models.

Visualization of gate values In Figure 3b, we visual-
ized the gate values of five different nodes output by the
GaAN-K8 model trained on the Reddit dataset. It illus-
trates the diversity of the learned gate combinations for
different nodes. In most cases, the gates vary across at-
tention heads, which shows that the gate-generation net-
work can be learned to assign different importance to dif-
ferent heads.

6 TRAFFIC SPEED FORECASTING

6.1 GRAPH GRU

Following (Lin et al., 2017), we formulate traffic speed
forecasting as a spatiotemporal sequence forecasting
problem where the input and the target are sequences
defined on a fixed spatiotemporal graph, e.g., the road
network. To simplify notations, we denote Y =
ΓΘ(X,Z;G) as applying the γ aggregator for all nodes
in G, i.e., yi = γΘ(x, zNi). Based on a given graph ag-
gregator Γ, we can construct a GRU-like RNN structure

Graph GRU

Graph GRU

Graph GRU

Graph GRU

Graph GRU

Graph GRU

Graph GRU

Graph GRU

SS

Encoder Decoder

SS

Figure 4: Illustration of the encoder-decoder structure
used in the paper. We use two layers of Graph GRUs
to predict a length-3 output sequence based on a length-
2 input sequence. ‘SS’ denotes the scheduled sampling
step.

Table 5: The Dataset used for traffic speed forecasting.

Data #Nodes #Edges #Timestamps
METR-LA 207 1,515 34,272

using the following equations:

Ut =σ(ΓΘxu (Xt,Xt;G) + ΓΘhu
(Xt ⊕Ht−1,Ht−1;G)),

Rt =σ(ΓΘxr (Xt,Xt;G) + ΓΘhr
(Xt ⊕Ht−1,Ht−1;G)),

H
′
t =h(ΓΘxh

(Xt,Xt;G) + Rt ◦ ΓΘhh
(Xt ⊕Ht−1,Ht−1;G)),

Ht =(1−Ut) ◦H′t + Ut ◦Ht−1.

(6)
Here, Xt ∈ R|V|×di are the input features and Ht ∈
R|V|×do are the hidden states of the nodes at the tth
timestamp. |V| is the total number of nodes, di is the
dimension of the input, and do is the dimension of the
state. Ut and Rt are the update gate and reset gate that
controls how Ht is calculated. G is the graph that defines
the connection structure between all the nodes.

We refer to this RNN structure as Graph GRU (GGRU).
GGRU can be used as the basic building block for
RNN encoder-decoder structure (Lin et al., 2017) to
predict the future K steps of traffic speeds, i.e.,
X̂J+1, X̂J+2, ..., X̂J+K , based on the previous J steps
of observed traffic speeds, i.e., X1,X2, ...,XJ . In the
decoder, we use the scheduled sampling (Bengio et al.,
2015) technique described in (Lin et al., 2017). Fig-
ure 4 illustrates our encoder-decoder structure. When
attention-based aggregators are used, i.e., the multi-head
attention aggregator or our GaAN aggregator, the con-
nection structure in the recurrent step will also be learned
based on the attention process. This can be viewed as
an extension of Trajectory GRU (TrajGRU) (Shi et al.,
2017) on irregular or graph-structured data.

6.2 EXPERIMENTAL SETUP

To evaluate the proposed GGRU model on traffic speed
forecasting, we use the METR-LA dataset from (Li et al.,
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Table 6: Performance comparison of different models for traffic speed forecasting on the METR-LA dataset. Models
marked with ‘†’ treat sensor map as a directed graph while other models convert it into an undirected graph. Scores
under “τmin” are the scores at the τ

5 th predicted frame. The last three columns contain the average scores of the 15
min, 30 min, and 60 min forecasting horizons.

Models / T 15 min 30 min 60 min Average
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

FC-LSTM (Li et al., 2018) 3.44 6.30 9.6% 3.77 7.23 10.9% 4.37 8.69 13.2% 3.86 7.41 11.2%
GCRNN (Li et al., 2018) 2.80 5.51 7.5% 3.24 6.74 9.0% 3.81 8.16 10.9% 3.28 6.80 9.13%
DCRNN† (Li et al., 2018) 2.77 5.38 7.3% 3.15 6.45 8.8% 3.60 7.60 10.5% 3.17 6.48 8.87%
Avg Pool 2.79 5.42 7.26% 3.20 6.52 8.84% 3.69 7.69 10.73% 3.22 6.54 8.94%
Max Pool 2.77 5.36 7.21% 3.18 6.45 8.78% 3.69 7.73 10.80% 3.21 6.51 8.93%
Pairwise + Sigmoid 2.76 5.36 7.14% 3.18 6.46 8.72% 3.70 7.73 10.77% 3.22 6.52 8.88%
Pairwise + Tanh 2.76 5.34 7.14% 3.18 6.46 8.73% 3.70 7.73 10.73% 3.21 6.51 8.87%
Attention-only 2.74 5.33 7.09% 3.16 6.45 8.69% 3.67 7.61 10.77% 3.19 6.49 8.85%
GaAN 2.71 5.24 6.99% 3.12 6.36 8.56% 3.64 7.65 10.62% 3.16 6.41 8.72%

2018). The nodes in the dataset represent sensors mea-
suring traffic speed and edges denote proximity between
sensor pairs measured by road network distance. The
sensor speeds are recorded every five minutes. Com-
plete dataset statistics are given in Table 5. We follow (Li
et al., 2018)’s way to split the dataset. The first 70% of
the sequences are used for training, the middle 10% are
used for validation, and the final 20% are used for test-
ing. We also use the same evaluation metrics as in (Li
et al., 2018) for evaluation, including Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and
Mean Absolute Percentage Error (MAPE). A sequence
of length 12 is used as the input to predict the future traf-
fic speed in one hour (12 steps).

6.3 MAIN RESULTS

We compare six variations of the proposed GGRU ar-
chitecture with three baseline models, including fully-
connected LSTM, GCRNN, and DCRNN (Li et al.,
2018). We use the same set of six aggregators as in the
inductive node classification experiment to construct the
GGRU and we use two layers of GGRUs with the state
dimension of 64 both in the encoder and the decoder. For
attention based models, we set K = 4, da = 16, and
dv = 16. For GaAN, we set dm = 64 and only use
max pooling in the gate-generation network. For pooling
based aggregators, we set dv = 128. For pairwise sum
aggregators, we set K = 4, da = 32, and dv = 16.

Since the road map is directed and our model does not
deal with edge information, we first convert the road map
into an undirected graph and use it as the G in Eqn. (6).
All models are trained by minimizing MAE loss with
Adam optimizer. The initial learning rate is set to 0.001
and the batch-size is 64. We use the same scheduled sam-

pling strategy as in (Li et al., 2018). Table 1 shows the
comparison of different approaches for 15 minutes, 30
minutes and 1 hour ahead forecasting on both datasets.

The scores for 15 minutes, 30 minutes, and 1 hour ahead
forecasting as well as the average scores over three fore-
casting horizons are shown in Table 6. For the average
score, we can see that the proposed GGRU models con-
sistently give better results than GCRNN, which models
the traffic network as an undirected graph. Moreover,
the GaAN based GGRU model, which does not use edge
information, achieves higher accuracy than DCRNN,
which uses edge information in the road network.

7 CONCLUSION AND FUTURE WORK

We introduced the GaAN model and applied it to two
challenging tasks: inductive node classification and traf-
fic speed forecasting. GaAN beats previous state-of-the-
art algorithms in both cases. In the future, we plan to ex-
tend GaAN by integrating edge features and processing
massive graphs with millions or even billions of nodes.
Moreover, our model is not restricted to graph learning.
A particularly exciting direction for future work is to ap-
ply GaAN to natural language processing tasks like ma-
chine translation.
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Abstract

Many models of dynamical systems have
causal interpretations that support reasoning
about the consequences of interventions, suita-
bly defined. Furthermore, local independence
has been suggested as a useful independence
concept for stochastic dynamical systems.
There is, however, no well-developed theore-
tical framework for causal learning based on
this notion of independence. We study inde-
pendence models induced by directed graphs
(DGs) and provide abstract graphoid proper-
ties that guarantee that an independence model
has the global Markov property w.r.t. a DG.
We apply these results to Itô diffusions and
event processes. For a partially observed sys-
tem, directed mixed graphs (DMGs) represent
the marginalized local independence model,
and we develop, under a faithfulness assump-
tion, a sound and complete learning algo-
rithm of the directed mixed equivalence graph
(DMEG) as a summary of all Markov equiva-
lent DMGs.

1 INTRODUCTION

Causal learning has been developed extensively using
structural causal models and graphical representations of
the conditional independence relations that they induce.
The Fast Causal Inference (FCI) algorithm and its varia-
tions (RFCI, FCI+, ...) can learn a representation of the
independence relations induced by a causal model even
when the causal system is only partially observed, i.e.,
the data is “causally insufficient” in the terminology of
Spirtes et al. (2000). FCI is, however, not directly ap-
plicable for learning causal relations among entire pro-
cesses in a continuous-time dynamical system. The dy-

namic evolution of such a system cannot be modeled us-
ing a finite number of variables related via a structural
causal model, and standard probabilistic independence
cannot adequately capture infinitesimal conditional in-
dependence relationships between processes since such
relationships can be asymmetric. The asymmetry can in-
tuitively be explained by the fact that the present of one
process may be independent of the past of another pro-
cess, or the reverse, or both.

Local independence was introduced by Schweder (1970)
and is a formalization of how the present of one stochas-
tic process depends on the past of others in a dynamical
system. This concept directly lends itself to a causal in-
terpretation as dynamical systems develop as functions
of their pasts, see e.g. Aalen (1987). Didelez (2000,
2006a, 2008) considered graphical representations of lo-
cal independence models using directed graphs (DGs)
and δ-separation and proved the equivalence of the pair-
wise and global Markov properties in the case of multi-
variate counting processes. Nodelman et al. (2002, 2003)
and Gunawardana et al. (2011) also considered learning
problems in continuous-time models. In this paper, we
extend the theory to a broader class of semimartingales,
showing the equivalence of pairwise and global Markov
properties in DGs. To represent marginalized local inde-
pendence models, Mogensen and Hansen (2018) intro-
duced directed mixed graphs (DMGs) with µ-separation.
Bidirected edges in DMGs (roughly) correspond to de-
pendencies induced by latent processes, and in this sense
DMGs can represent partially observed dynamical sys-
tems. In contrast to the “causally sufficient” setting as
represented by a DG, multiple DMGs may represent the
same set of (marginal) local independence relations; thus
we use the characterization of Markov equivalent DMGs
by Mogensen and Hansen (2018) to propose a sound and
complete algorithm for selecting a set of DMGs consi-
stent with a given collection of independence relations.

Proofs omitted from the main text can be found in the
supplementary material.
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Figure 1: Simulated sample paths (left) for the linear SDE determined by B in (1). The sample paths are from the
observational distribution started in the stationary mean as well as under an intervention regime on α. For the local
independence graph (middle) the color of the edge j → i indicates if the nonzero entryBij is positive (red) or negative
(blue). The step size h difference quotient at 0 for the semigroup t 7→ exp(tB) (right) determines the discrete time
conditional means for time step h transitions. It does not directly reflect the local independences except in the limit
h→ 0, where it converges to the infinitesimal generator B. Danks and Plis (2013) make a similar point in the case of
subsampled time series.

2 CAUSAL DYNAMICAL MODELS

The notion of interventions in a continuous-time model
of a dynamical system is not new, and has been investi-
gated thoroughly in the context of control theory. Causal
models and interventions for event processes and their
relation to graphical independence models have been
treated in detail (Didelez, 2008, 2015). Relations to
structural causal models have been established for ordi-
nary differential equations (ODEs) (Mooij et al., 2013;
Rubenstein et al., 2016). Notions of causality and in-
terventions have also been treated for general stocha-
stic processes such as stochastic differential equations
(SDEs) (Aalen et al., 2012; Commenges and Gégout-
Petit, 2009; Sokol and Hansen, 2014).

To motivate and explain the general results of this paper,
we introduce the toy linear SDE model in R5 given by
dXt = B(Xt −A)dt+ dWt with A = (1, 2, 3, 4, 5)T ,

B =




−1.1 1 1 · ·
· −1.1 · 2.0 ·
· · −1.1 · 1
· · −1 −1.1 ·
1 · · · −1.1


 , (1)

and (Wt) a five-dimensional standard Brownian motion.
The coordinates of this process will be denoted α, β, γ,
δ, and ε. If we assume that this SDE has a causal inter-
pretation, we can obtain predictions under interventions
via manipulations of the SDE itself, see e.g. Sokol and
Hansen (2014). In Figure 1, for instance, we replace the
α coordinate of the SDE by

dXα
t = 1(Xβ

t > 1)dt, Xα
t −Xα

t− = −Xα
t−1(Xβ

t ≤ 1).

The nonzero pattern of the B matrix defines a directed

graph which we identify as the local independence graph
below, which in turn is related to the local independence
model of the SDE. It is a main result of this paper that
the local independence model satisfies the global Markov
property w.r.t. this graph. Under a faithfulness assump-
tion we can identify (aspects of) the causal system from
observational data even when some processes are unob-
served.

It is well known that

Xt+h −Xt | Xt ∼ N ((ehB − I)(Xt −A),Σ(h))

with Σ(h) given in terms ofB. Thus a sample of the pro-
cess at equidistant time points is a vector autoregressive
process with correlated errors. We note that ehB − I is a
dense matrix that will not reveal the local independence
graph unless h is sufficiently small, see Figure 1. The
matrix B is, furthermore, a stable matrix, hence there is
a stationary solution to the SDE and for h→∞ we have
Σ(h)→ Σ, the invariant covariance matrix. We note that
Σ−1 is also a dense matrix, thus the invariant distribution
does not satisfy the global Markov property w.r.t. to any
undirected graph but the complete graph.

In conclusion, the local independence model of the SDE
is not encoded directly neither by Markov properties of
discrete time samples, nor by Markov properties of the
invariant distribution. This is the motivation for our ab-
stract development of local independence models, their
relation to continuous-time stochastic processes, and a
dedicated learning algorithm.
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3 INDEPENDENCE MODELS

Consider some finite set V . An independence model over
V is a set of triples 〈A,B | C〉 such that A,B,C ⊆ V .
We let I denote a generic independence model. Follow-
ing Didelez (2000, 2008) we will consider independence
models that are not assumed to be symmetric inA andB.
The independence models we consider do however satis-
fy other properties which allow us to deduce some inde-
pendences from others. We define the following prop-
erties, some of which have previously been described as
asymmetric (semi)graphoid properties (Didelez, 2006b,
2008). Many of them are analogous to properties in
the literature on conditional independence models (Lau-
ritzen, 1996), though due to the lack of symmetry, one
may define both left and right versions.

• Left redundancy: 〈A,B | A〉 ∈ I
• Left decomposition:
〈A,B | C〉 ∈ I, D ⊆ A⇒ 〈D,B | C〉 ∈ I
• Right decomposition:
〈A,B | C〉 ∈ I, D ⊆ B ⇒ 〈A,D | C〉 ∈ I
• Left weak union:
〈A,B | C〉 ∈ I, D ⊆ A⇒ 〈A,B | C ∪D〉 ∈ I
• Right weak union:
〈A,B | C〉 ∈ I, D ⊆ B ⇒ 〈A,B | C ∪D〉 ∈ I
• Left intersection:
〈A,B | C〉 ∈ I, 〈C,B | A〉 ∈ I ⇒
〈A ∪ C,B | A ∩ C〉 ∈ I
• Left composition:
〈A,B | C〉 ∈ I, 〈D,B | C〉 ∈ I ⇒
〈A ∪D,B | C〉 ∈ I
• Right composition:
〈A,B | C〉 ∈ I, 〈A,D | C〉 ∈ I ⇒
〈A,B ∪D | C〉 ∈ I
• Left weak composition:
〈A,B | C〉 ∈ I, D ⊆ C ⇒ 〈A ∪D,B | C〉 ∈ I

For disjoint sets A,C,D ⊆ V , we say that A and D
factorize w.r.t. C if there exists a partition C = C1 ∪̇ C2

such that (i) and (ii) hold:

(i) 〈A,C1 ∪D | C ∪D〉 ∈ I
(ii) 〈D,C2 ∪A | C ∪A〉 ∈ I.

Definition 1. The independence model I satisfies can-
cellation if 〈A,B | C∪{δ}〉 ∈ I implies 〈A,B | C〉 ∈ I
whenever A and {δ} factorize w.r.t. C. Such an indepen-
dence model is called cancellative.

Cancellation is related to ordered downward-stability as
defined by Sadeghi (2017) for symmetric independence
models over a set with a preorder and studied in relation
to separation in acyclic graphs.

3.1 DIRECTED MIXED GRAPHS

We wish to relate a local independence model, as defined
in Section 4, to a graph and therefore we need a notion
of graphical separation which allows for asymmetry. Di-
rected mixed graphs along with µ-separation will provide
the means for such graphical modeling of local indepen-
dence. The subsequent definitions follow Mogensen and
Hansen (2018), which we refer to for further details.

Definition 2 (Directed mixed graph). A directed mixed
graph (DMG) is an ordered pair (V,E) where V is a
finite set of vertices (also called nodes) and E is a finite
set of edges of the types → and ↔. A pair of vertices
α, β ∈ V may be joined by any subset of {α → β, α ←
β, α ↔ β}. Note that we allow for loops, i.e., edges
α→ α and/or α↔ α.

Let G1 = (V,E1) and G2 = (V,E2) be DMGs. If
E1 ⊆ E2, then we write G1 ⊆ G2 and say that G2 is a
supergraph of G1. The complete DMG on V is the DMG
which is a supergraph of all other DMGs with vertices
V . Throughout this paper, G will denote a DMG with
node set V and edge set E. We will also consider di-
rected graphs (DGs) which are DMGs with no bidirected
edges. Let α, β ∈ V . We will say that the edge α → β
has a head at β and a tail at α, and that the edge α ↔ β
has heads at both α and β. When we write e.g. α → β
this does not preclude other edges between these nodes.
We use α ∗→ β to denote any edge between α and β
that has a head at β. A letter over an edge, e.g. α e→ β,
denotes simply that e refers to that specific edge. If the
edge α→ β is in the graph then we say that α is a parent
of β and if α↔ β then we say that α and β are siblings.
Let pa(α) (or paG(α) to make the graph explicit) denote
the set of parents of α in G. Note that due to loops, α can
be both a parent and a sibling of itself.

A walk is an alternating, ordered sequence of nodes
and edges along with an orientation of the edge such
that each edge is between its two adjacent nodes,
〈ν1, e1, ν2, . . . , en, νn+1〉, where νi ∈ V and ej ∈ E.
We say that the walk is between ν1 and νn+1 or from
ν1 to νn+1. The ν1 and νn+1 are called the endpoint
nodes of the walk. A non-endpoint node νi, i 6= 1, n+ 1,
is called a collider if the two adjacent edges on the
walk both have heads at the node, and otherwise a non-
collider. Note that the endpoint nodes are neither colli-
ders nor non-colliders. A walk is called trivial if it con-
sists of a single node and no edges. A path is a walk
where no node is repeated. A path from α to β is di-
rected if every edge on the path is directed and points
towards β. We say that α is an ancestor of a set C ⊆ V
if there exists a (possibly trivial) directed path from α to
γ ∈ C. We let an(C) denote the set of nodes that are
ancestors to C. Note that C ⊆ an(C).
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3.1.1 µ-separation

Definition 3 (µ-connecting walk). A µ-connecting walk
from α to β given C is a non-trivial walk from α to β
such that α /∈ C, every non-collider is not inC and every
collider is in an(C), and such that the final edge has a
head at β.

Definition 4. Let α, β ∈ V,C ⊆ V . We say that β is
µ-separated from α given C in the graph G if there is no
µ-connecting walk from α to β in G givenC. For general
sets, A,B,C ⊆ V , we say that B is µ-separated from
A given C and write A ⊥µ B | C if β is µ-separated
from α given C for every α ∈ A and β ∈ B. We write
A ⊥µ B | C [G] if we wish to make explicit to which
graph the statement applies.

Note that this definition means that B is separated from
A given C whenever A ⊆ C. We associate an indepen-
dence model I(G) with a DMG G by

〈A,B | C〉 ∈ I(G)⇔ A ⊥µ B | C [G].

Lemma 5. The independence model I(G) satisfies left
and right {decomposition, weak union, composition}
and left {redundancy, intersection, weak composition}.
Furthermore, 〈A,B | C〉 ∈ I(G) whenever B = ∅.
Lemma 6. I(G) satisfies cancellation.

3.1.2 Markov equivalence

We say that DMGs G1 = (V,E1), G2 = (V,E2) are
Markov equivalent if I(G1) = I(G2) and this defines
an equivalence relation. We let [G] denote the (Markov)
equivalence class of G. For DMGs, it does not hold
that Markov equivalent graphs have the same adjacen-
cies. Note that the same is true for the directed (cyclic)
graphs with no loops considered by Richardson (1996,

1997) in another context. We say that a DMG is maxi-
mal if it is complete or if no edge can be added without
changing the associated Markov equivalence class. Mo-
gensen and Hansen (2018) define for every vertex in a
DMG a set of potential parents and potential siblings
(both subsets of V ) using the independence model in-
duced by the graph (these definitions are also included
in the supplementary material). We let pp(α, I) denote
the set of potential parents of α and ps(α, I) denote
the set of potential siblings of α in the independence
model I. If G1 and G2 are Markov equivalent we thus
have pp(α, I(G1)) = pp(α, I(G2)) and ps(α, I(G1)) =
ps(α, I(G2)) for each α ∈ V . Given a DMG G and
independence model I = I(G), one can construct an-
other DMG N in which α is a parent of β if and only
if α ∈ pp(β, I) and α and β are siblings if and only
if α ∈ ps(β, I). Mogensen and Hansen (2018) showed
that N ∈ [G], that it is a supergraph of all elements of
[G], and that N is maximal. This allows one to define
a directed mixed equivalence graph (DMEG) from the
(unique) maximal graph N in the equivalence class to
summarize the entire equivalence class. The DMEG is
constructed fromN by partitioning the edge set into two
subsets: one consisting of the edges which are common
to all graphs in the Markov equivalence class, and one
consisting of edges that are present in some members of
the equivalence class but absent in others. One may visu-
alize the DMEG by drawing N and making the edges in
the latter set dashed. Note that by collapsing the distinc-
tion between dashed and solid edges one may straight-
forwardly apply µ-separation to a given DMEG.

3.2 MARKOV PROPERTIES

The main result of this section gives conditions on an
abstract independence model ensuring equivalence be-
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tween the pairwise and the global Markov properties
w.r.t. a directed graph with µ-separation. In the next
section we give examples of classes of processes that ful-
fill these conditions, extending results in Didelez (2008)
to a broader class of models. We take an axiomatic ap-
proach to proving the equivalence in the sense that we
describe some abstract properties and use only these to
show the equivalence. This is analogous to what Lau-
ritzen and Sadeghi (2017) did in the case of symmetric
independence models.
Definition 7. A DG and an independence model satisfy
the pairwise Markov property if for α, β ∈ V ,

α /∈ pa(β)⇒ 〈α, β | V \ {α}〉 ∈ I
A DMG and an independence model satisfy the global
Markov property if for A,B,C ⊆ V ,

A ⊥µ B | C ⇒ 〈A,B | C〉 ∈ I.

Theorem 8. Assume that I is an independence
model that satisfies left {redundancy, intersection, de-
composition, weak union, weak composition}, right
{decomposition, composition}, is cancellative, and fur-
thermore 〈A,B | C〉 ∈ I whenever B = ∅. Let D be a
DG. Then I satisfies the pairwise Markov property with
respect to D if and only if it satisfies the global Markov
property with respect to D.

To keep consistency with earlier literature, we define
the pairwise Markov condition above as the absence of
an edge, which does not directly generalize to DMGs.
Therefore, we prove the equivalence of pairwise and
global Markov only in the class of DGs. The main pur-
pose of DMGs is to represent Markov properties from
marginalized DGs as defined below, in which case the
global Markov property w.r.t. a DMG is inherited from
the DG.
Definition 9 (Marginal independence model). Assume
that I is an independence model over V . Then the
marginal independence model of I over O ⊆ V , IO,
is the independence model,

IO = {〈A,B | C〉 | 〈A,B | C〉 ∈ I;A,B,C ⊆ O}.

Mogensen and Hansen (2018) give a marginalization al-
gorithm (a.k.a. a “latent projection”), which outputs a
marginal DMG, G = (O,F ), from a DG, D = (V,E),
such that I(D)O = I(G). If I satisfies the global
Markov property w.r.t. D then

I(G) = I(D)O ⊆ IO.
This shows that the marginalized independence model
IO then satisfies the global Markov property w.r.t. the
DMG G.

4 LOCAL INDEPENDENCE

This section introduces local independence models and
local independence graphs. The main results of the sec-
tion provide verifiable conditions that ensure that a local
independence model satisfies the global Markov property
w.r.t. the local independence graph.

Let X = (X1
t , . . . , X

n
t ) for t ∈ [0, T ] be a càdlàg

stochastic process defined on the probability space
(Ω,F , P ). Introduce for A ⊆ V = {1, . . . , n} the filtra-
tionFAt as the completed and right continuous version of
σ({Xα

s , s ≤ t, α ∈ A}). Let also λ = (λ1
t , . . . , λ

n
t ) be

an integrable càdlàg stochastic process. This λ-process
need not have any specific relation to X a priori, but for
the main Theorem 14 the relation is through the compat-
ibility processes defined below. Note that some compu-
tations below technically require that E(· | Ft) is com-
puted as the optional projection, cf. Theorem VI.7.1 and
Lemma VI.7.8 in Rogers and Williams (2000). This is
unproblematic, and will not be discussed any further.

Definition 10. We say that B is λ-locally independent
of A given C if the process

t 7→ E(λβt | FA∪Ct )

has an FCt -adapted version for all β ∈ B. In this case
we write A 6→λ B | C.

This is slightly different from the definition in Didelez
(2008) in that β is not necessarily in the conditioning
set. This change in the definition makes it possible for a
process to be locally independent from itself given some
separating set. We define the local independence model,
I(X,λ), determined by X and λ via

〈A,B | C〉 ∈ I(X,λ)⇔ A 6→λ B | C.

When there is no risk of ambiguity we say that B is lo-
cally independent of A given C, and we write A 6→ B |
C and I = I(X,λ).

The local independence model satisfies a number of the
properties listed in Section 3.

Lemma 11. Let I be a local independence model. Then
it satisfies left {redundancy, decomposition, weak union,
weak composition} and right {decomposition, composi-
tion} and furthermore 〈A,B | C〉 ∈ I whenever B = ∅.
If FAt ∩ FCt = FA∩Ct holds for all A,C ⊆ V and
t ∈ [0, T ], then left intersection holds.

Definition 12. The local independence graph is the di-
rected graph with node set V = {1, . . . , n} such that

α 6∈ pa(β)⇔ α 6→λ β | V \{α}.
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By Theorem 8 and Lemma 11 a local independence
model that satisfies left intersection and is cancellative
satisfies the global Markov property w.r.t. the local in-
dependence graph. Left intersection holds by Lemma
11 whenever FAt ∩ FCt = FA∩Ct . Theorem 14 below
gives a general factorization condition on the distribu-
tion of the stochastic processes that ensures a local in-
dependence model to be cancellative. This condition is
satisfied for example by event and Itô processes.

Introduce for C ⊆ V and β ∈ V the shorthand notation

λC,βt = E(λβt | FCt ).

Furthermore, for α ∈ A ⊆ V let

ΨA,α
t = ψαt ((λA,αs )s≤t, (X

α
s )s≤t)

denote a càdlàg process that is given in terms of a positive
functional ψαt of the history of the λA,α- and the Xα-
processes up to time t.

Definition 13. We say that P λ-factorizes with compa-
tibility processes ΨA,α > 0 if for all A ⊆ V

P =
1

ZAt

∏

α∈A
ΨA,α
t ·QAt

with QAt a probability measure on (Ω,F) such that
(Xα

s )0≤s≤t for α ∈ A are independent under QAt . Here,
ZAt is a deterministic normalization constant.

Theorem 14. The local independence model I(X,λ) is
cancellative if P λ-factorizes.

Proof. Assume that A, {δ} ⊆ V factorize w.r.t. C =
C1∪̇C2. In this proof, (i) and (ii) refer to the factorization
properties, see Definition 1. Let F = C ∪A∪{δ}. Then
by (i)

ΨF,γ
t = ψγt ((λC∪{δ},γs )s≤t, (X

γ
s )s≤t) = Ψ

C∪{δ},γ
t

for γ ∈ C1 ∪ {δ}, and by (ii)

ΨF,γ
t = ψγt ((λC∪A,γs )s≤t, , (X

γ
s )s≤t) = ΨC∪A,γ

t

for γ ∈ C2 ∪A.

It follows that

∏

γ∈F
ΨF,γ
t =

Ψ1
t︷ ︸︸ ︷∏

γ∈C1∪{δ}
Ψ
C∪{δ},γ
t

Ψ2
t︷ ︸︸ ︷∏

γ∈C2∪A
ΨC∪A,γ
t

= Ψ1
tΨ

2
t ,

cf. Figure 2. Note that Ψ2
t is FC∪At -adapted. Let β ∈

B. We have 〈A,B | C ∪ {δ}〉 ∈ I, hence with λ̄βt =

λ
C∪{δ},β
t

E(λβt | FC∪At ) = E(E(λβt | FC∪A∪{δ}t ) | FC∪At )

= E(λ̄βt | FC∪At )

=
EQFt (λ̄βt Ψ1

tΨ
2
t | FC∪At )

EQFt (Ψ1
tΨ

2
t | FC∪At )

=
EQFt (λ̄βt Ψ1

t | FC∪At )

EQFt (Ψ1
t | FC∪At )

=
EQFt (λ̄βt Ψ1

t | FCt )

EQFt (Ψ1
t | FCt )

= λC,βt

where the second last identity follows from Xα for α ∈
A being independent of Xγ for γ ∈ C ∪ {δ} under QFt .
We conclude that 〈A,B | C〉 ∈ I, and this shows that I
is cancellative.

4.1 ITÔ PROCESSES

For X a multivariate Itô process with Xα fulfilling the
equation

Xα
t =

∫ t

0

λαs ds+ σt(α)Wα
t

with Wt a standard Brownian motion (σt(α) > 0 deter-
ministic) we introduce the compatibility processes

ΨA,α
t = exp

(∫ t

0

λA,αs

σ2
s(α)

dXα
s −

1

2

∫ t

0

(
λA,αs

σs(α)

)2

ds

)
.

The following result is a consequence of Theorem 7.3 in
Liptser and Shiryayev (1977) combined with Theorem
VI.8.4 in Rogers and Williams (2000).

Proposition 15. If for all A ⊆ V

E

(∏

α∈A
(ΨA,α

t )−1

)
= 1 (2)

then P λ-factorizes.

It can be shown that the linear SDE introduced earlier
satisfies the integrability condition (2).

4.2 EVENT PROCESSES

For X a multivariate counting process with Xα having
intensity process λα we introduce the compatibility pro-
cesses

ΨA,α
t = exp

(∫ t

0

log(λA,αs− )dXα
s −

∫ t

0

λA,αs ds

)
.
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Here λA,αs− = limr→s− λA,αr denotes the left continuous
(and thus predictable) version of the intensity process
λA,αt = E(λαt | FAt ). With these compatibility pro-
cesses, Proposition 15 above holds exactly as formulated
for Itô processes, see e.g. Sokol and Hansen (2015) for
details and weak conditions ensuring that (2) holds.

5 LEARNING ALGORITHMS

In this section, we assume that we have access to a lo-
cal independence oracle that can answer whether or not
some independence statement is in I. In applications,
the oracle would of course be substituted with statisti-
cal tests of local independence. The local independence
model, I, is assumed to be faithful to some DMG G0, i.e.
I = I(G0).

Meek (2014) described a related algorithm for learning
local independence graphs which is, however, not com-
plete when the system of stochastic processes is only par-
tially observed. In the FCI algorithm, which learns an
equivalence class of MAGs (Maximal Ancestral Graphs),
one can exploit the fact that Markov equivalent graphs
have the same adjacencies, so the learning algorithm can
first find this so-called skeleton of the graph and then ori-
ent the edges by applying a finite set of rules (Zhang,
2008; Ali et al., 2009). Since Markov equivalent DMGs
may have different adjacencies, we cannot straightfor-
wardly copy the FCI strategy here, and our procedure is
more complicated.

5.1 A THREE-STEP PROCEDURE

As described in Section 3.1.2, we know that there exists
a unique graph which is Markov equivalent to G0 and a
supergraph of all DMGs in [G0] and we denote this graph
by N . In this section we give a learning algorithm ex-
ploiting this fact. Having learned the maximal DMG N
we can subsequently construct a DMEG to summarize
the Markov equivalence class.

The characterization of Markov equivalence of DMGs in
Mogensen and Hansen (2018) implies a learning algo-
rithm to construct N which is Markov equivalent to G0.
For each pair of nodes α, β there exists a well-defined
list of independence tests such that α→ β is inN if and
only if all requirements in the list is met by I(G0), ana-
logously for the edge α ↔ β (see conditions (p1)-(p4)
and (s1)-(s3) in the supplementary material). This means
that we can use these lists of tests to construct a maxi-
mal graph N such that I(N ) = I(G0). However such
an algorithm would perform many more independence
tests than needed and one can reduce the number of in-
dependence tests conducted by a kind of preprocessing.
Our proposed algorithm starts from the complete DMG

input : a local independence oracle for I
output: a DMG, G = (V,E)
initialize G as the complete DMG, set n = 0, initialize
Ls = ∅,Ln = ∅;

while n ≤ maxβ∈V |paG(β)| do
foreach α→ β ∈ E do

foreach C ⊆ paG(β)\{α}, |C| = n do
if α 6→λ β | C then

delete α→ β and α↔ β from G;
update Ls = Ls ∪ {〈α, β | C〉};

else
update Ln = Ln ∪ {〈α, β | C〉};

end
end

end
update n = n+ 1;

end
set n = 1;
while n ≤ maxα,β∈V |DG(α, β)| do

foreach α→ β ∈ E do
foreach C ⊆ DG(α, β), |C| = n do

if α 6→λ β | C then
delete α→ β and α↔ β from G;
update Ls = Ls ∪ {〈α, β | C〉};

else
update Ln = Ln ∪ {〈α, β | C〉};

end
end
update n = n+ 1;

end
end
return G, Ls, Ln

Subalgorithm 1: Separation step

and removes edges that are not in G0 by an FCI-like ap-
proach, exploiting properties of DMGs and µ-separation,
and then in the end applies the potential parents and po-
tential siblings definitions (see the supplementary mate-
rial), but only if and when needed.

In this section we describe three steps (and three subalgo-
rithms): a separation, a pruning, and a potential step, and
then we argue that we can construct a sound and com-
plete algorithm by using these steps. For all three steps,
we sequentially remove edges starting from the complete
DMG on nodes V . We will also along the way update
a set of triples Ls corresponding to independence state-
ments that we know to be in I and a set of triples Ln
corresponding to independence statements that we know
to not be in I. We keep track of this information as we
will reuse some of it to reduce the number of indepen-
dence tests that we conduct. Figure 3 illustrates what
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input : a separability graph, S, a set of known
independencies Ls

output: a DMG
initialize G = S;
foreach unshielded W -structure in S , w(α, β, γ) do

if β ∈ Sα,γ such that 〈α, γ | Sα,γ〉 ∈ Ls then
if β ↔ γ is in G then

delete β ↔ γ from G;
end

else
if β → γ is in G then

delete β → γ from G;
end

end
end
return G

Subalgorithm 2: Pruning step

each subalgorithm outputs for an example G0.

5.1.1 The separation step

When we have an independence model I over V , we will
for α, β ∈ V say that β is inseparable from α if there
exists no C ⊆ V \ {α} such that 〈α, β | C〉 ∈ I. Let

u(β, I) = {γ ∈ V | β is inseparable from γ in I}.

The purpose of the first step is to output a separability
graph. The separability graph of an independence model
I is the DMG such that the edge α → β is in the DMG
if and only if α ∈ u(β, I) and the edge α ↔ β is in the
DMG if and only if α ∈ u(β, I) and β ∈ u(α, I).

We say that γ is directedly collider connected to β if
there exists a non-trivial walk from γ to β such that every
non-endpoint node on the walk is a collider and such that
the final edge has a head at β. As shorthand, we write
γ � β. We define the separator set of β from α,

DG(α, β) = {γ ∈ an(α, β) | γ � β} \ {α}.

If there exists a subset of V \ {α} that separates β from
α, then this set does (Mogensen and Hansen, 2018). This
set will play a role analogous to that of the set Possible-
D-Sep in the FCI algorithm (Spirtes et al., 2000).

In the first part of Subalgorithm 1, we consider pairs
of nodes, α, β, and test if they can be separated by
larger and larger conditioning sets, though only subsets
of paG(β) \ {α} in the current G. In the second part, we
use all subsets of the current separator set DG(α, β) to
determine separability of each pair of nodes. Note that
separability is not symmetric, hence, one needs to de-
termine separability of β from α and of α from β. The

input : a local independence oracle for I, a DMG
G = (V,E), a set of known dependencies Ln

output: a DMG
foreach α e→ β ∈ E do

if I(G − e) ∩ Ln = ∅ then
if α /∈ pp(β, I) then

delete α→ β in G;
end

end
end
foreach α e↔ β ∈ E do

if I(G − e) ∩ Ln = ∅ then
if α /∈ ps(β, I) then

delete α↔ β in G;
end

end
end
return G

Subalgorithm 3: Potential step

candidate separator sets may be chosen in more-or-less
efficient ways, but we will not discuss this aspect of the
algorithm (Colombo et al., 2012; Claassen et al., 2013).

Lemma 16. Subalgorithm 1 outputs the separability
graph of I, S, and furthermore N ⊆ S.

5.1.2 The pruning step

Let S denote the graph in the output of Subalgorithm
1. One can use some of the information encoded by the
graph along with the set Ls to further prune the graph.
For this purpose, we consider W -structures which are
triples of nodes α, β, γ such that α 6= β 6= γ, and α →
β ∗→ γ. We denote such a triple by w(α, β, γ). We will
say that a W -structure is unshielded if the edge α → γ
is not in the graph. For every unshielded W -structure
w(α, β, γ), there exists exactly one triple 〈α, γ | C〉 in
Ls (output from Subalgorithm 1) and we let Sα,γ denote
the separating set C.

Lemma 17. Subalgorithm 2 outputs a supergraph of N .

5.1.3 Potential step

In the final step, we sequentially consider each edge
which is still in the graph. If G = (V,E) and e ∈ E
we let G − e denote the DMG (V,E \ {e}). We then
check if I(G − e) ∩ Ln = ∅. If not, we leave this edge
in the graph. On the other hand, if the intersection is the
empty set, we check if the edge is between a pair of po-
tential parents/siblings using the definition of these sets.
That is, in the case of a directed edge we check each of
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Figure 3: Illustration of the learning algorithm. The DMG G0 is the underlying graph and we have access to I = I(G0).
Subalgorithm 1 outputs S, the separability graph of I(G0). Subalgorithm 2 prunes S and outputs S̃. Note e.g. the
unshielded W -structure α → β → ε in S. The DMG N is the maximal element in [G0]. Note that δ → ε has been
removed by Subalgorithm 3 using the potential parent criteria. The final graph Ñ is the DMEG constructed from N .

α β

γ

δ

ε

α β

δ

ε

Figure 4: Left: linear SDE example (see Figure 1).
Right: the DMEG after marginalization over γ. It is
not possible to decide if a loop is directed or bidirected
from the independence model only and we choose only
to draw the directed loop and to not present it as dashed.

the conditions (p1)-(p4) and in the case of a bidirected
edge each of the conditions (s1)-(s3); both sets of con-
ditions are in the supplementary material. Note that if
α ∈ ps(β, I), then also β ∈ ps(α, I).

Theorem 18. The algorithm defined by first doing the
separation step, then the pruning, and finally the potential
step outputs N , the maximal element of [G0].

Using properties of maximal DMGs, Mogensen and
Hansen (2018) showed how one can construct the DMEG
efficiently. The learning algorithm that is defined by
first constructing N and then constructing the DMEG is
sound and complete in the sense that if an edge is absent
in the DMEG, then it is also absent in any element of [G0]
and therefore also in G0. If it is present and not dashed in
the DMEG, then it is present in all elements of [G0] and
therefore also in G0. Finally, if it is present and dashed
in the DMEG, then there exist G1,G2 ∈ [G0] such that
the edge is present in G1 and absent in G2 and therefore
it is impossible to determine if the edge is in G0 using

knowledge of I(G0) only.

One could also skip the potential step to reduce the com-
putational requirements. The resulting DMG is then a
supergraph of the true graph. A small simulation study
(supplementary material) indicates that one could save
quite a number of tests and still get close to the true N .

6 CONCLUSION AND DISCUSSION

We have shown that for a given directed graph with µ-
separation it is possible to specify abstract properties that
ensure equivalence of the pairwise and global Markov
properties in asymmetric independence models. We have
shown that under certain conditions these properties hold
in local independence models of Itô diffusions and event
processes, extending known results.

Assuming faithfulness, we have given a sound and com-
plete learning algorithm for the Markov equivalence
class of directed mixed graphs representing a marginal-
ized local independence model. Faithfulness is not an
innocuous assumption and it remains an open research
question how common this property is in different classes
of stochastic processes.
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Abstract

Zero-inflated datasets, which have an ex-
cess of zero outputs, are commonly en-
countered in problems such as climate or
rare event modelling. Conventional ma-
chine learning approaches tend to overesti-
mate the non-zeros leading to poor perfor-
mance. We propose a novel model family
of zero-inflated Gaussian processes (ZiGP)
for such zero-inflated datasets, produced
by sparse kernels through learning a la-
tent probit Gaussian process that can zero
out kernel rows and columns whenever the
signal is absent. The ZiGPs are particu-
larly useful for making the powerful Gaus-
sian process networks more interpretable.
We introduce sparse GP networks where
variable-order latent modelling is achieved
through sparse mixing signals. We derive
the non-trivial stochastic variational infer-
ence tractably for scalable learning of the
sparse kernels in both models. The novel
output-sparse approach improves both pre-
diction of zero-inflated data and inter-
pretability of latent mixing models.

1 INTRODUCTION

Zero-inflated quantitative datasets with overabun-
dance of zero output observations are common in
many domains, such as climate and earth sciences
(Enke & Spekat, 1997; Wilby, 1998; Charles et al.,
2004), ecology (del Saz-Salazar & Rausell-Köster,
2008; Ancelet et al., 2009), social sciences (Bohn-
ing et al., 1997), and in count processes (Barry &
Welsh, 2002). Traditional regression modelling of
such data tends to underestimate zeros and overes-
timate nonzeros (Andersen et al., 2014).

A conventional way of forming zero-inflated mod-
els is to estimate a mixture of a Bernoulli “on-off”
process and a Poisson count distribution (Johnson
& Kotz, 1969; Lambert, 1992). In hurdle models a
binary “on-off” process determines whether a hur-
dle is crossed, and the positive responses are gov-
erned by a subsequent process (Cragg, 1971; Mul-
lahy, 1986). The hurdle model is analogous to first
performing classification and training a continuous
predictor on the positive values only, while the zero-
inflated model would regress with all observations.
Both stages can be combined for simultaneous clas-
sification and regression Abraham & Tan (2010).

Gaussian process models have not been proposed
for zero-inflated datasets since their posteriors are
Gaussian, which are ill-fitted for zero predictions. A
suite of Gaussian process models have been proposed
for partially related problems, such as mixture mod-
els (Tresp, 2001; Rasmussen & Ghahramani, 2002;
Lázaro-Gredilla et al., 2012) and change point de-
tection (Herlands et al., 2016). Structured spike-
and-slab models place smoothly sparse priors over
the structured inputs (Andersen et al., 2014).

In contrast to other approaches, we propose a
Bayesian model that learns the underlying latent
prediction function, whose covariance is sparsified
through another Gaussian process switching be-
tween the ‘on’ and ‘off’ states, resulting in an zero-
inflated Gaussian process model. This approach
introduces a tendency of predicting exact zeros
to Gaussian processes, which is directly useful in
datasets with excess zeros.

A Gaussian process network (GPRN) is a latent
signal framework where multi-output data are ex-
plained through a set of latent signals and mixing
weight Gaussian processes (Wilson et al., 2012). The
standard GPRN tends to have dense mixing that
combines all latent signals for all latent outputs. By
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applying the zero-predicting Gaussian processes to
latent mixture models, we introduce sparse GPRNs
where latent signals are mixed with sparse instead
of dense mixing weight functions. The sparse model
induces variable-order mixtures of latent signals re-
sulting in simpler and more interpretable models.
We demonstrate both of these properties in our ex-
periments with spatio-temporal and multi-output
datasets.

Main contributions. Our contributions include1

1. A novel zero-inflated Gaussian process formal-
ism consisting of a latent Gaussian process and
a separate ‘on-off’ probit-linked Gaussian pro-
cess that can zero out rows and columns of the
model covariance. The novel sparse kernel adds
to GPs the ability to predict zeros.

2. Novel stochastic variational inference (SVI) for
such sparse probit covariances, which in gen-
eral are intractable due to having to compute
expectations of GP covariances with respect to
probit-linked processes. We derive the SVI for
learning both of the underlying processes.

3. A novel sparse GPRN with an on-off process
in the mixing matrices leading to sparse and
variable-order mixtures of latent signals.

4. A solution to the stochastic variational infer-
ence of sparse GPRN where the SVI is derived
for the network of full probit-linked covariances.

2 GAUSSIAN PROCESSES

We begin by introducing the basics of conventional
Gaussian processes. Gaussian processes (GP) are
a family of non-parametric, non-linear Bayesian
models (Rasmussen & Williams, 2006). Assume a
dataset of n inputs X = (x1, . . . ,xn) with xi ∈ RD
and noisy outputs y = (y1, . . . , yn) ∈ Rn. The ob-
servations y = f(x)+ε are assumed to have additive,
zero mean noise ε ∼ N (0, σ2

y) with a zero-mean GP
prior on the latent function f(x),

f(x) ∼ GP (0,K(x,x′)) , (1)

which defines a distribution over functions f(x)
whose mean and covariance are

E[f(x)] = 0 (2)

cov[f(x), f(x′)] = K(x,x′). (3)

1The TensorFlow compatible code will be
made publicly available at https://github.com/
hegdepashupati/zero-inflated-gp

Figure 1: Illustration of a zero-inflated GP (a) and
standard GP regression (b). The standard approach
is unable to model sudden loss of signal (at 4 . . . 5)
and signal close to zero (at 0 . . . 1 and 7 . . . 9).

Then for any collection of inputs X, the function
values follow a multivariate normal distribution f ∼
N (0,KXX), where f = (f(x1), . . . , f(xN ))T ∈ Rn,
and where KXX ∈ Rn×n with [KXX ]ij = K(xi,xj).
The key property of Gaussian processes is that they
encode functions that predict similar output values
f(x), f(x′) for similar inputs x,x′, with similarity
determined by the kernel K(x,x′). In this paper we
assume the Gaussian ARD kernel

K(x,x′) = σ2
f exp


−1

2

D∑

j=1

(xj − x′j)2
`2j


 , (4)

with a signal variance σ2
f and dimension-specific

lengthscale `1, . . . , `D parameters.

The inference of the hyperparameters θ =
(σy, σf , `1, . . . , `D) is performed commonly by max-
imizing the marginal likelihood

p(y|θ) =

∫
p(y|f)p(f |θ)df , (5)

which results in a convenient marginal likelihood
called evidence, p(y|θ) = N(y|0,KXX + σ2

yI) for
a Gaussian likelihood.

The Gaussian process defines a univariate nor-
mal predictive posterior distribution f(x)|y, X ∼
N (µ(x), σ2(x)) for an arbitrary input x with the
prediction mean and variance2

µ(x) = KxX(KXX + σ2
yI)−1y, (6)

σ2(x) = Kxx −KxX(KXX + σ2
yI)−1KXx, (7)

2In the following we omit the implicit conditioning on
data inputs X for clarity.
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where KXx = KT
xX ∈ Rn is the kernel column vector

over pairs X×x, and Kxx = K(x,x) ∈ R is a scalar.
The predictions µ(x)± σ(x) come with uncertainty
estimates in GP regression.

3 ZERO-INFLATED GAUSSIAN
PROCESSES

Figure 2: Illustration of the zero-inflated GP (a)
and the sparse kernel (b) composed of a smooth
latent function (c,d) filtered by a probit support
function (e,f), which is induced by the underlying
latent sparsity (g,h).

We introduce zero-inflated Gaussian processes that
have – in contrast to standard GP’s – a tendency to
produce exactly zero predictions (See Figure 1). Let
g(x) denote the latent “on-off” state of a function
f(x). We assume GP priors for both functions with
a joint model

p(y, f ,g) = p(y|f)p(f |g)p(g), (8)

where

p(y|f) = N (y|f , σ2
yI) (9)

p(f |g) = N (f |0,Φ(g)Φ(g)T ◦Kf ) (10)

p(g) = N (g|β1,Kg) (11)

The sparsity values g(x) are squashed between 0 and
1 through a standard Normal cumulative distribu-
tion, or a probit link function, Φ : R→ [0, 1]

Φ(g) =

∫ g

−∞
φ(τ)dτ =

1

2

(
1 + erf

(
g√
2

))
, (12)

where φ(τ) = 1√
2π
e−

1
2 τ

2

is the standard normal den-

sity function. The structured probit sparsity Φ(g)
models the “on-off” smoothly due to the latent spar-
sity function g having a GP prior with prior mean
β. The latent function f is modeled throughout but
it is only visible during the “on” states. This mask-
ing effect has similarities to both zero-inflated and
hurdle models. The underlying latent function f is
learned from only non-zero data similarly to in hur-
dle models, but the function f is allowed to predict
zeros similarly to zero-inflated models.

The key part of our model is the sparse probit-
sparsified covariance Φ(g)Φ(g)T ◦K where the “on-
off” state Φ(g) has the ability to zero out rows and
columns of the kernel matrix at the “off” states
(See Figure 2f for the probit pattern Φ(g)Φ(g)T and
Figure 2b for the resulting sparse kernel). Since
the sparse kernel is represented as Hadamard prod-
uct between a covariance kernel K and an outer
product kernel Φ(g)Φ(g)T , Schur product theorem
implies that it is a valid kernel. As the sparsity
g(x) converges towards minus infinity, the probit
link Φ(g(x)) approaches zero, which leads the func-
tion distribution approaching N (fi|0, 0), or fi = 0.
Numerical problems are avoided since in practice
Φ(g) > 0, and due to the conditioning noise vari-
ance term σ2

y > 0.

The marginal likelihood of the zero-inflated Gaus-
sian process is intractable due to the probit-
sparsification of the kernel. We derive a stochastic
variational Bayes approximation, which we show to
be tractable due to the choice of using the probit
link function.

3.1 STOCHASTIC VARIATIONAL
INFERENCE

Inference for standard Gaussian process models is
difficult to scale as complexity grows with O(n3) as
a function of the data size n. Titsias (2009) pro-
posed a variational inference approach for GPs using
m < n inducing variables, with a reduced computa-
tional complexity of O(m3) for m inducing points.
The novelty of this approach lies in the idea that
the locations and values of inducing points can be
treated as variational parameters, and optimized.
Hensman et al. (2013, 2015) introduced more effi-
cient stochastic variational inference (SVI) with fac-
torised likelihoods that has been demonstrated with
up to billion data points (Salimbeni & Deisenroth,
2017). This approach cannot be directly applied to
sparse kernels due to having to compute expectation
of the probit product in the covariance. We derive
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the SVI bound tractably for the zero-inflated model
and its sparse kernel, which is necessary in order to
apply the efficient parameter estimation techniques
with automatic differentiation with frameworks such
as TensorFlow (Abadi et al., 2016).

We begin by applying the inducing point augmen-
tations f(zf ) = uf and g(zg) = ug for both
the latent function f(·) and the sparsity function
g(·). We place m inducing points uf1, . . .ufm
and ug1, . . .ugm for the two functions. The aug-
mented joint distribution is p(y, f ,g,uf ,ug) =
p(y|f)p(f |g,uf )p(g|ug)p(uf )p(ug), where3

p(f |g,uf ) = N (f |diag(Φ(g))Qfuf ,Φ(g)Φ(g)T ◦ K̃f )
(13)

p(g|ug) = N (g|Qgug, K̃g) (14)

p(uf ) = N (uf |0,Kfmm) (15)

p(ug) = N (ug|0,Kgmm) (16)

and where

Qf = KfnmK
−1
fmm (17)

Qg = KgnmK
−1
gmm (18)

K̃f = Kfnn −KfnmK
−1
fmmKfmn (19)

K̃g = Kgnn −KgnmK
−1
gmmKgmn. (20)

We denote the kernels for functions f and g by the
corresponding subscripts. The kernel Kfnn is be-
tween all n data points, the kernel Kfnm is between
all n datapoints and m inducing points, and the ker-
nelKfmm is between allm inducing points (similarly
for g as well).

The distributions p(f |uf ) and p(g|ug) can be ob-
tained by conditioning the joint GP prior between
respective latent and inducing functions. Further,
the conditional distribution p(f |g,uf ) can be ob-
tained by the sparsity augmentation of latent con-
ditional f |uf similar to equation (10) (See Supple-
ments).

Next we use the standard variational approach by
introducing approximative variational distributions
for the inducing points,

q(uf ) = N (uf |mf ,Sf ) (21)

q(ug) = N (ug|mg,Sg) (22)

where Sf ,Sg ∈ Rm×m are square positive semi-
definite matrices. The variational joint posterior is

q(f ,g,uf ,ug) = p(f |g,uf )p(g|ug)q(uf )q(ug). (23)

3We drop the implicit conditioning on z’s for clarity.

We minimize the Kullback-Leibler divergence be-
tween the true augmented posterior p(f ,g,uf ,ug|y)
and the variational distribution q(f ,g,uf ,ug),
which is equivalent to solving the following evi-
dence lower bound (as shown by e.g. Hensman et al.
(2015)):

log p(y) ≥ Eq(f) log p(y|f)−KL[q(uf ,ug)||p(uf ,ug)],
(24)

where we define

q(f) =

∫∫∫
p(f |g,uf )q(uf )p(g|ug)q(ug)dufdugdg

=

∫
q(f |g)q(g)dg, (25)

where the variational approximations are tractably

q(g) =

∫
p(g|ug)q(ug)dug (26)

= N (g|µg,Σg)

q(f |g) =

∫
p(f |g,uf )q(uf )duf (27)

= N (f |diag(Φ(g))µf ,Φ(g)Φ(g)T ◦ Σf )

with

µf = Qfmf (28)

µg = Qgmg (29)

Σf = Kfnn +Qf (Sf −Kfmm)QTf (30)

Σg = Kgnn +Qg(Sg −Kgmm)QTg . (31)

We additionally assume the likelihood p(y|f) =∏N
i=1 p(yi|fi) factorises.

We solve the final ELBO of equations (24) and (25)
as (See Supplements for detailed derivation)

LZI =
N∑

i=1

{
logN (yi|〈Φ(gi)〉q(gi)µfi, σ2

y) (32)

− 1

2σ2
y

(
Var[Φ(gi)]µ

2
fi + 〈Φ(gi)

2〉q(gi)σ2
fi

)}

−KL[q(uf )||p(uf )]−KL[q(ug)||p(ug)],

where µfi is the i’th element of µf and σ2
fi is the

i’th diagonal element of Σf (similarly with g).
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The expectations are tractable,

〈Φ(gi)〉q(gi) = Φ(λgi), λgi =
µgi√

1 + σ2
gi

(33)

〈Φ(gi)
2〉q(gi) = Φ(λgi)− 2T

(
λgi,

λgi
µgi

)
(34)

Var[Φ(gi)] = Φ(λgi)− 2T

(
λgi,

λgi
µgi

)
− Φ(λgi)

2.

(35)

The Owen’s T function T (a, b) = φ(a)
∫ b
0
φ(aτ)
1+τ2 dτ

(Owen, 1956) has efficient numerical solutions in
practise (Patefield & Tandy, 2000).

The ELBO is considerably more complex than the
standard stochastic variational bound of a Gaussian
process (Hensman et al., 2013), due to the probit-
sparsified covariance.

The bound is likely only tractable for the choice of
probit link function Φ(g), while other link functions
such as the logit would lead to intractable bounds
necessitating slower numerical integration (Hensman
et al., 2015).

We optimize the Lzi with stochastic gradient as-
cent techniques with respect to the inducing lo-
cations zg, zf , inducing value means mf ,mg and
covariances Sf ,Sg, the sparsity prior mean β,
the noise variance σ2

y, the signal variances σf , σg,
and finally the dimensions-specific lengthscales
`f1, . . . , `fD; `g1, . . . , `gD of the Gaussian ARD ker-
nel.

4 GAUSSIAN PROCESS
NETWORK

The Gaussian Process Regression Networks (GPRN)
framework by Wilson et al. (2012) is an efficient
model for multi-target regression problems, where
each individual output is a linear but non-stationary
combination of shared latent functions. Formally, a
vector-valued output function y(x) ∈ RP with P
outputs is modeled using vector-valued latent func-
tions f(x) ∈ RQ with Q latent values and mixing
weights W (x) ∈ RP×Q as

y(x) = W (x)[f(x) + ε] + ε, (36)

where for all q = 1, . . . , Q and p = 1, . . . , P we as-
sume GP priors and additive zero-mean noises,

fq(x) ∼ GP(0,Kf (x,x′)) (37)

Wqp(x) ∼ GP(0,Kw(x,x′)) (38)

εq ∼ N (0, σ2
f ) (39)

εp ∼ N (0, σ2
y). (40)

The subscripts are used to denote individual compo-
nents of f and W with p and q indicating pth output
dimension and qth latent dimension, respectively.
We assume shared latent and output noise variances
σ2
f , σ

2
y without loss of generality. The distributions

of both functions f and W have been inferred ei-
ther with variational EM (Wilson et al., 2012) or by
variational mean-field approximation with diagonal-
ized latent and mixing functions (Nguyen & Bonilla,
2013).

4.1 STOCHASTIC VARIATIONAL
INFERENCE

Variational inference for GPRN has been proposed
earlier with diagonalized mean-field approximation
by (Nguyen & Bonilla, 2013). Further, stochastic
variational inference by introducing inducing vari-
ables has been proposed for GPRN (Nguyen et al.,
2014). In this section we rederive the SVI bound
for standard GPRN for completeness and then pro-
pose the novel sparse GPRN model, and solve its
SVI bounds as well, in the following section.

We begin by introducing the inducing variable aug-
mentation technique for latent functions f(x) and

mixing weights W (x) with uf , zf = {ufq , zfq}Qq=1

and uw, zw = {uwqp , zwqp}Q,Pq,p=1:

p(y, f ,W,uf ,uw) (41)

= p(y|f ,W )p(f |uf )p(W |uw)p(uf )p(uw)

p(f |uf ) =

Q∏

q=1

N (fq|Qfqufq , K̃fq ) (42)

p(W |uw) =

Q,P∏

q,p=1

N (wqp|Qwqpuwqp , K̃wqp) (43)

p(uf ) =

Q∏

q=1

N (ufq |0,Kfq,mm) (44)

p(uw) =

Q,P∏

q,p=1

N (uwqp |0,Kwqp,mm), (45)

where we have separate kernels K and extrapolation
matrices Q for each component of W (x) and f(x)
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that are of the same form as in equations (17–20).
The w is a vectorised form of W . The variational
approximation is then

q(f ,W,uf ,uw) = p(f |uf )p(W |uw)q(uf )q(uw)

(46)

q(ufq ) =

Q∏

q=1

N (ufq |mfq ,Sfq ) (47)

q(uwqp) =

Q,P∏

q,p=1

N (uwqp |mwqp ,Swqp), (48)

where uwqp and ufq indicate the inducing points for
the functions Wqp(x) and fq(x), respectively. The
ELBO can be now stated as

log p(y) ≥ Eq(f ,W ) log p(y|f ,W ) (49)

−KL[q(uf ,uw)||p(uf ,uw)],

where the variational distributions decompose as
q(f ,W ) = q(f)q(W ) with marginals of the same form
as in equations (28–31),

q(f) =

∫
q(f |uf )q(uf )duf = N (f |µf ,Σf ) (50)

q(W ) =

∫
q(W |uw)q(uw)duw = N (w|µw,Σw).

(51)

Since the noise term ε is assumed to be isotropic
Gaussian, the density p(y|W, f) factorises across all
target observations and dimensions. The expecta-
tion term in equation (49) then reduces to solving
the following integral for the ith observation and pth

target dimension,

N,P∑

i,p=1

∫∫
logN (yp,i|wT

p,ifi, σ
2
y)q(fi,wp,i)dwp,idfi.

(52)

The above integral has a closed form solution result-
ing in the final ELBO as (See Supplements)

Lgprn =
N∑

i=1

{
P∑

p=1

logN
(
yp,i|

Q∑

q=1

µwqp,iµfq,i, σ
2
y

)

− 1

2σ2
y

Q,P∑

q,p=1

(
µ2
wqp,iσ

2
fq,i + µ2

fq,iσ
2
wqp,i + σ2

wqp,iσ
2
fq,i

)}

−
Q,P∑

q,p

KL[q(uwqp ,ufq )||p(uwqp ,ufq )], (53)

where µfq,i is the i’th element of µfq and σ2
fq,i

is

the i’th diagonal element of Σfq (similarly for the
Wqp’s).

5 SPARSE GAUSSIAN PROCESS
NETWORK

In this section we demonstrate how zero-inflated
GPs can be used as plug-in components in other
standard models. In particular, we propose a sig-
nificant modification to GPRN by adding sparsity
to the mixing matrix components. This corresponds
to each of the p outputs being a sparse mixture of
the latent Q functions, i.e. they can effectively use
any subset of the Q latent dimensions by having ze-
ros for the rest in the mixing functions. This makes
the mixture more easily interpretable, and induces
a variable number of latent functions to explain the
output of each input x. The latent function f can
also be sparsified, with a derivation analogous to the
derivation below.

We extend the GPRN with probit sparsity for the
mixing matrix W , resulting in a joint model

p(y, f ,W,g) = p(y|f ,W )p(f)p(W |g)p(g), (54)

where all individual components of the latent func-
tion f and mixing matrix W are given GP priors.
We encode the sparsity terms g for all the Q × P
mixing functions Wqp(x) as

p(Wqp|gqp) = N (wqp|0,Φ(gqp)Φ(gqp)
T ◦Kw).

(55)

To introduce variational inference, the joint model
is augmented with three sets of inducing variables
for f , W and g. After marginalizing out the induc-
ing variables as in equations (25–27), the marginal
likelihood can be written as

log p(y) ≥ Eq(f ,W,g) log p(y|f ,W ) (56)

−KL[q(uf ,uw,ug)||p(uf ,uw,ug)].

The joint distribution in the variational expecta-
tion factorizes as q(f ,W,g) = q(f)q(W |g)q(g). Also,
with a Gaussian noise assumption, the expectation
term factories across all the observations and tar-
get dimensions. The key step reduces to solving the
following integrals:

N,P∑

i,p=1

∫∫∫
logN (yp,i|(wp,i ◦ gp,i)T fi, σ2

y) (57)

· q(fi,wp,i,gp,i)dwp,idfidgp,i.
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The above integral has a tractable solution leading
to the final sparse GPRN evidence lower bound (See
Supplements)

Lsgprn =

N∑

i=1

{
P∑

p=1

logN
(
yp,i|

Q∑

q=1

µwqp,iµgqp,iµfq,i, σ
2
y

)

− 1

2σ2
y

Q,P∑

q,p=1

(
(µ2
gqp,i + σ2

gqp,i) (58)

· (µ2
wqp,iσ

2
fq,i + µ2

fq,iσ
2
wqp,i + σ2

wqp,iσ
2
fq,i)

)

− 1

2σ2
y

Q,P∑

q,p=1

(
σ2
gqp,iµ

2
fq,iµ

2
wqp,i

)}

−
Q,P∑

q,p

KL[q(ufq ,uwqp ,ugqp)||p(ufq ,uwqp ,ugqp)],

where µfq,i, µwqp,i are the variational expectation
means for f(·),W (·) as in equations (28, 29), µgqp,i is
the variational expectation mean of g(·) as in equa-
tion (33), and analogously for the variances.

6 EXPERIMENTS

First we demonstrate how the proposed method can
be used for regression problems with zero-inflated
targets. We do that both on a simulated dataset
and for real-world climate modeling scenarios on
a Finnish rain precipitation dataset with approx-
imately 90% zeros. Finally, we demonstrate the
GPRN model and how it improves both the inter-
pretability and predictive performance in the JURA
geological dataset.

We use the squared exponential kernel with ARD in
all experiments. All the parameters including in-
ducing locations, values and variances and kernel
parameters were learned through stochastic Adam
optimization (Kingma & Ba, 2014) on the Tensor-
Flow (Abadi et al., 2016) platform.

We compare our approach ZiGP to baseline Zero
voting, to conventional Gaussian process regression
(GPr) and classification (GPc) with SVI approxi-
mations from the GPflow package (Matthews et al.,
2017). Finally, we also compare to first classifying
the non-zeros, and successively applying regression
either to all data points (GPcr), or to only pre-
dicted non-zeros (GPcr6=0, hurdle model).

We record the predictive performance by consider-
ing mean squared error and mean absolute error. We
also compare the models’ ability to predict true ze-
ros with F1, accuracy, precision, and recall of the
optimal models.

Figure 3: ZiGP model fit on the precipitation
dataset. Sample of the actual data (a) against the
sparse rain function estimate (b), with the probit
support function (c) showing the rain progress.

6.1 SPATIO-TEMPORAL DATASET

Zero-inflated cases are commonly found in clima-
tology and ecology domains. In this experiment
we demonstrate the proposed method by model-
ing precipitation in Finland4. The dataset consists
of hourly quantitative non-negative observations of
precipitation amount across 105 observatory loca-
tions in Finland for the month of July 2018. The
dataset contains 113015 datapoints with approxi-
mately 90% zero precipitation observations. The
data inputs are three-dimensional: latitude, longi-
tude and time. Due to the size of the data, this ex-
periment illustrates the scalability of the variational
inference.

We randomly split 80% of the data for training and
the rest 20% for testing purposes. We split across
time only, such that at a single measurement time,
all locations are simultaneously either in the training
set, or in the test set.

4Data can be found at http://en.
ilmatieteenlaitos.fi/
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Table 1: Results for the precipitation dataset over
baseline (Zero; majority voting), four competing
methods and the proposed method ZiGP on test
data. The columns list both quantitative and qual-
itative performance criteria, best performance is
boldfaced.

Model RMSE MAE F1 Acc. Prec. Recall
Zero 0.615 0.104 0.000 0.898 0.000 0.000
GPc - - 0.367 0.911 0.675 0.252
GPr 0.569 0.159 0.401 0.750 0.266 0.817
GPcr 0.589 0.102 0.366 0.911 0.679 0.251
GPcr6=0 0.575 0.101 0.358 0.912 0.712 0.240
ZiGP 0.561 0.121 0.448 0.861 0.381 0.558

We further utilize the underlying spatio-temporal
grid structure of the data to perform inference in an
efficient manner by Kronecker techniques (Saatchi,
2011). All the kernels for latent processes are as-
sumed to factorise as K = Kspace ⊗ Ktime which
allows placing inducing points independently on spa-
tial and temporal grids.

Figure 4: The distribution of errors with the rain
dataset with the ZiGP and the GPr. The zero-
inflated GP achieves much higher number of perfect
(zero) predictions.

Figure 3 depicts the components of the zero-inflated
GP model on the precipitation dataset. As shown
in panel (c), the latent support function models the
presence or absence of rainfall. It smoothly follows
the change in rain patterns across hourly observa-
tions. The amount of precipitation is modeled by
the other latent process and the combination of these
two results in sparse predictions. Figure 4 shows
that the absolute error distribution is remarkably
better with the ZiGP model due to it identifying
the absence of rain exactly. While both models fit
the high rainfall regions well, for zero and near-zero
regions GPr does not refine its small errors. Table
1 indicates that the ZiGP model achieves the lowest
mean square error, while also achieving the highest
F1 score that takes into account the class imbalance,

Figure 5: The sparse GPRN model fit on the Jura
dataset with 11 inducing points. The Q = 2 (dense)
latent functions (a) are combined with the 3 × 2
sparse mixing functions (b) into the P = 3 output
predictions (c). The real data are shown in (d).
The white mixing regions are estimated ‘off’.

which biases the elementary accuracy, precision and
recall quantities towards the majority class.

6.2 MULTI-OUTPUT PREDICTION -
JURA

In this experiment we model the multi-response Jura
dataset with the sparse Gaussian process regression
network sGPRN model and compare it with stan-
dard GPRN as baseline. Jura contains concentra-
tion measurements of cadmium, nickel and zinc met-
als in the region of Swiss Jura. We follow the ex-
perimental procedure of Wilson et al. (2012) and
Nguyen & Bonilla (2013). The training set consists
of n = 259 observations across D = 2 dimensional
geo-spatial locations, and the test set consists of 100
separate locations. For both models we use Q = 2
latent functions with the stochastic variational in-
ference techniques proposed in this paper. Sparse
GPRN uses a sparsity inducing kernel in the mix-
ing weights. The locations of inducing points for the
weights W (x) and the support g(x) are shared. The
kernel length-scales are given a gamma prior with
the shape parameter α = 0.3 and rate parameter
β = 1.0 to induce smoothness. We train both the
models 30 times with random initialization.

Table 2 shows that our model performs better than
the state-of-the-art SVI-GPRN, both with m = 5
and m = 10 inducing points. Figure 5 visualises
the optimized sparse GPRN model, while Figure 6
indicates the sparsity pattern in the mixing weights.
The weights have considerable smooth ‘on’ regions
(black) and ‘off’ regions (white). The ‘off’ regions
indicate that for certain locations, only one of the
two latent functions is adaptively utilised.
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Figure 6: The sparse probit support (a) and latent
functions (b) of the weight function W (x) of the
optimized sparse GPRN model. The black regions
of (a) show regional activations, while the white re-
gions show where the latent functions are ‘off’. The
elementwise product of the support and weight func-
tions is indicated in the Figure 5b).

Table 2: Results for the Jura dataset for sparse
GPRN and vanilla GPRN models with test data.
Best performance is with boldface. We do not report
RMSE and MAE values GPc, since its a classifica-
tion method.

Cadmium Nickel Zinc
Model m RMSE MAE RMSE MAE RMSE MAE

GPRN
5 0.724 0.566 6.469 4.958 33.729 21.959
10 0.736 0.574 6.626 5.109 34.923 22.544
15 0.749 0.590 6.526 5.033 35.033 22.670

sGPRN
5 0.719 0.565 6.553 5.054 33.475 21.774
10 0.727 0.567 6.520 5.062 34.225 22.114
15 0.725 0.569 6.479 5.033 34.308 22.288

6.3 MULTI-OUTPUT PREDICTION -
SARCOS

In this experiment we tackle the problem of learn-
ing inverse dynamics for seven degrees of freedom of
SARCOS anthropomorphic robot arm (Vijayakumar
et al., 2005). The dataset consists of 48,933 observa-
tions with an input space of 21 dimensions (7 joints
positions, 7 joint velocities, 7 joint accelerations).
The multi-output prediction task is to learn a map-
ping from these input variables to the corresponding
7 joint torques of the robot. Multi-output GP has
been previously used for inverse dynamics modeling
(Williams et al., 2009), but in a different model set-
ting and on a smaller dataset. GPRN with stochas-
tic inference framework has also been explored to
model SARCOS dataset (Nguyen et al., 2014), how-
ever, they use a different experimental setting and
consider 2 of the 7 joint torques as multi-outptut
targets.

Table 3: Normalized MSE results on the SARCOS
test data for sparse GPRN and standard GPRN
models. Best performance is mentioned with bold-
face.

Model m = 50 m = 100 m = 150

GPRN
Q = 2 0.0167 0.0145 0.0127
Q = 3 0.0146 0.0121 0.0108

sGPRN
Q = 2 0.0159 0.0131 0.0125
Q = 3 0.0140 0.0117 0.0096

We consider 80%+20% random split of the full
dataset for training and testing respectively. Both
GPRN and SGPRN model are trained with m =
50, 100 and 150 inducing points and Q = 2 and
3 latent functions. We repeat the experiment 20
times and report normalized-MSE in Table 3. Sparse
GPRN gives better results than standard GPRN
in all our experimental settings. Moreover, sparse
model (nMSE= 0.0096) gives gives 12% improve-
ment over the standard model (nMSE= 0.0108) for
the best test performance with Q = 3 latent func-
tions and m = 150.

7 DISCUSSION

We proposed a novel paradigm of zero-inflated Gaus-
sian processes with a novel sparse kernel. The spar-
sity in the kernel is modeled with smooth probit
filtering of the covariance rows and columns. This
model induces zeros in the prediction function out-
puts, which is highly useful for zero-inflated datasets
with excess of zero observations. Furthermore, we
showed how the zero-inflated GP can be used to
model sparse mixtures of latent signals with the pro-
posed sparse Gaussian process network. The latent
mixture model with sparse mixing coefficients leads
to locally using only a subset of the latent functions,
which improves interpretability and reduces model
complexity. We demonstrated tractable solutions to
stochastic variational inference of the sparse probit
kernel for the zero-inflated GP, conventional GPRN,
and sparse GPRN models, which lends to efficient
exploration of the parameter space of the model.
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Abstract

We present KBLRN, a framework for end-to-
end learning of knowledge base representa-
tions from latent, relational, and numerical fea-
tures. KBLRN integrates feature types with
a novel combination of neural representation
learning and probabilistic product of experts
models. To the best of our knowledge, KBLRN
is the first approach that learns representa-
tions of knowledge bases by integrating la-
tent, relational, and numerical features. We
show that instances of KBLRN outperform ex-
isting methods on a range of knowledge base
completion tasks. We contribute a novel data
set enriching commonly used knowledge base
completion benchmarks with numerical fea-
tures. The data sets are available under a per-
missive BSD-3 license1. We also investigate
the impact numerical features have on the KB
completion performance of KBLRN.

1 INTRODUCTION

The importance of knowledge bases (KBs) for AI sys-
tems has been demonstrated in numerous application do-
mains. KBs provide ways to organize, manage, and re-
trieve structured data and allow AI system to perform
reasoning. In recent years, KBs have been playing an in-
creasingly crucial role in AI applications. Purely logical
representations of knowledge bases have a long history
in AI [27]. However, they suffer from being inefficient
and brittle. Inefficient because the computational com-
plexity of reasoning is exponential in the worst case and,
therefore, the time required by a reasoner highly unpre-
dictable. Brittle because a purely logical KB requires
a large set of logical rules that are handcrafted and/or

1https://github.com/nle-ml/mmkb
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Figure 1: A small part of a knowledge base.

mined. These problems are even more pressing in appli-
cations whose environments are changing over time.

Motivated by these shortcomings, there has been a flurry
of work on combining logical and statistical approaches
to build systems capable of reasoning over and learn-
ing from incomplete structured data. Most notably, the
statistical relational learning community has proposed
numerous formalisms that combine logic and probabil-
ity [24]. These formalisms are able to address the learn-
ing problem and make the resulting AI systems more ro-
bust to missing data and missing rules. Intuitively, logi-
cal formulas act as relational features and the probability
of a possible world is determined by a sufficient statis-
tic for the values of these features. These approaches,
however, are in in most cases even less efficient because
logical inference is substituted with probabilistic infer-
ence.

More recently, the research community has focused on
efficient machine learning models that perform well on
restricted tasks such as link prediction in KBs. Exam-
ples are knowledge base factorization and embedding
approaches [3, 21, 11, 20] and random-walk based ML
models [15, 7]. The former learn latent features for the
entities and relations in the knowledge base and use those
to perform link prediction. The latter explore specific re-
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lational features such as path types between two entities
and train a machine learning model for link prediction.

With this work, we propose KBLRN, a novel approach to
combining relational, latent (learned), and numerical fea-
tures, that is, features that can take on a large or infinite
number of real values. The combination of various fea-
tures types is achieved by integrating embedding-based
learning with probabilistic models in two ways. First,
we show that modeling numerical features with radial
basis functions is beneficial and can be integrated in an
end-to-end differentiable learning system. Second, we
propose a probabilistic product of experts (PoE) [13] ap-
proach to combine the feature types. Instead of training
the PoE with contrastive divergence, we approximate the
partition function with a negative sampling strategy. The
PoE approach has the advantage of being able to train the
model jointly and end-to-end.

The paper is organized as follows. First, we discuss rela-
tional, latent, and numerical features. Second, we de-
scribe KBLRN. Third, we present empirical evidence
that instances of KBLRN outperform state of the art
methods for KB completion. We also investigate in detail
under what conditions numerical features are beneficial.

2 RELATIONAL, LATENT, AND
NUMERICAL FEATURES

We assume that the facts of a knowledge base (KB) are
given as a set of triples of the form (h, r, t) where h and
t are the head and tail entities and r is a relation type.
Figure 1 depicts a small fragment of a KB with relations
and numerical features. KB completion is the problem of
answering queries of the form (?, r, t) or (h, r, ?). While
the proposed approach can be generalized to more com-
plex queries, we focus on completion queries for the sake
of simplicity. We now discuss the three feature types
used in KBLRN and motivate their utility for knowledge
base completion. How exactly we extract features from
a given KB is described in the experimental section.

2.1 Relational Features

Each relational feature is given as a logical formula
which is evaluated in the KB to determine the feature’s
value. For instance, the formula ∃x (A, bornIn, x) ∧
(x, capitalOf, B) corresponds to a binary feature which
is 1 if there exists a path of that type from entity A to en-
tity B, and 0 otherwise. These features are often used in
relational models [30, 22] and random-walk based mod-
els such as PRA and SFE [15, 7]. In this work, we use
relational paths of length one and two and use the rule
mining approach AMIE+ [5]. We detail the generation of

the relational features in the experimental section. For a
pair of entities (h, t), we denote the feature vector com-
puted based on a set of relational features by r(h,t).

2.2 Latent Features

Numerous embedding methods for KBs have been pro-
posed in recent years [21, 3, 11, 20]. Embedding meth-
ods provide fixed-size vector representations (embed-
dings) for all entities in the KB. In the simplest of cases,
relations are modeled as translations in the entity embed-
ding space [3]. We incorporate typical embedding learn-
ing objectives into KBLRN and write eh and et to refer
to an embedding of a head entity and a tail entity, respec-
tively. The advantages of latent feature models are their
computational efficiency and their ability to learn latent
entity types suitable for downstream ML tasks without
hand-crafted or mined logical rules.

2.3 Numerical Features

Numerical features are entity features whose values can
take on a very large or infinite number of real values.
To the best of our knowledge, there does not exists a
principled approach that integrates numerical features
into a relational ML model for KB completion. This
is surprising, considering that numerical data is avail-
able in almost all existing large-scale KBs. The assump-
tion that numerical data is helpful for KB completion
tasks is reasonable. For several relations types the dif-
ferences between the head and tail are characteristic of
the relation itself. For example, while the mean dif-
ference of birth years is 0.4 for the Freebase relation
/people/marriage/spouse, it is 32.4 for the re-
lation /person/children. These observations mo-
tivate specifically the use of differences of numerical fea-
ture values. Taking the difference has the advantage that
even if a numerical feature is not distributed according
to a normal distribution (e.g., birth years in a KB), the
difference is often normally distributed. This is impor-
tant as we need to fit simple parametric distributions to
the sparse numerical data. We detail the fully automated
extraction and generation of the numerical features in the
experimental section.

3 KBLRN: LEARNING END-TO-END
JOINT REPRESENTATIONS FOR
KNOWLEDGE BASES

With KBLRN we aim to provide a framework for end-
to-end learning of KB representations. Since we want
to combine different feature types (relational, latent
or learned, and numerical) we need to find a suitable
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Figure 2: An illustration of an instance of KBLRN implemented with standard deep learning framework components.
For every relation type, there is a separate expert for each of the different feature types. The entities t′ and t′′ are
two of N randomly sampled entities. The scores of the various submodels are added and normalized with a softmax
function. A categorical cross-entropy loss is applied to the normalized scores.

method for integrating the respective submodels, one per
feature type. We propose a product of experts (PoE)
approach where one expert is trained for each (relation
type, feature type) pair. We extend the product of experts
approach in two novel ways. First, we create dependen-
cies between the experts by sharing the parameters of the
entity embedding model across relation types. By doing
this, we combine a probabilistic model with a model that
learns vector representations from discrete and numeri-
cal data. Second, while product of experts are commonly
trained with contrastive divergence [13], we train it with
negative sampling and a cross-entropy loss.

In general, a PoE’s probability distribution is

p(d | θ1, ..., θn) =
∏
m fm(d | θm)∑

c

∏
m fm(c | θm)

,

where d is a data vector in a discrete space, θm are the
parameters of individual model m, fm(d | φm) is the
value of d under model m, and the c’s index all possible
vectors in the data space. The PoE model is now trained
to assign high probability to observed data vectors.

In the KB context, the data vector d is always a triple
d = (h, r, t) and the objective is to learn a PoE that
assigns high probability to true triples and low probabili-
ties to triples assumed to be false. If (h, r, t) holds in the
KB, the pair’s vector representations are used as positive
training examples. Let d = (h, r, t). We can now define
one individual expert f(r,F)(d | φ(r,F)) for each (relation
type r, feature type F) pair.

The specific experts we utilize here are based on simple
linear models and the DistMult embedding method.

f(r,L)(d | θ(r,L)) = exp((eh ∗ et) ·wr)

f(r,R)(d | θ(r,R)) = exp
(
r(h,t) ·wr

rel

)

f(r,N)(d | θ(r,N)) = exp
(
φ
(
n(h,t)

)
·wr

num

)
and

f(r′,F)(d | θ(r′,F)) = 1 for all r′ 6= r and F ∈ {L, R, N},

where ∗ is the element-wise product, · is the dot product,
wr,wr

rel,w
r
num are the parameter vectors for the latent,

relational, and numerical features corresponding to the
relation r, and φ is the radial basis function (RBF) ap-
plied element-wise to n(h,t). f(r,L)(d | θ(r,L)) is equiv-
alent to the exponential of the DISTMULT [35] scoring
function but with KBLRN we can use any of the existing
KB embedding scoring functions.

The probability for triple d = (h, r, t) of the PoE model
is now

p(d | θ1, ..., θn) =
∏

F∈{R,L,N} f(r,F)(d | θ(r,F))∑
c

∏
F∈{R,L,N} f(r,F)(c | θ(r,F)))

,

where c indexes all possible triples.

For numerical features, an activation function should fire
when the difference of values is in a specific range. For
example, we want the activation to be high when the
difference of the birth years between a parent and its
child is close to 32.4 years. Commonly used activa-
tion functions such as sigmoid or tanh are not suitable
here, since they saturate whenever they exceed a cer-
tain threshold. For each relation r and the dn corre-
sponding relevant numerical features, therefore, we ap-
ply a radial basis function over the differences of values
φ(n(h,t)) = [φ(n

(1)
(h,t)), . . . , φ(n

(dn)
(h,t))], where

φ
(
n
(i)
(h,t)

)
= exp


−||n

(i)
(h,t) − ci||22
σ2
i


 .

This results in the RBF kernel being activated whenever
the difference of values is close to the expected value
ci. We discuss and evaluate several alternative strategies
for incorporating numerical features in the experimental
section.
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3.1 Learning

Product of experts are usually trained with contrastive di-
vergence (CD) [13] which relies on an approximation of
the gradient of the log-likelihood using a short Markov
chain started at the current seen example. The advantage
of CD is that the partition function, that is, the denomina-
tor of the probability p, which is intractable to compute,
does not need to be approximated. Due to the parame-
terization of the PoE we have defined here, however, it
is not possible to perform CD since there is no way to
sample a hidden state given a triple d. Hence, instead
of using CD, we approximate the partition function by
performing negative sampling.

The logarithmic loss for the given training triples T is
defined as

L = −
∑

t∈T
log p(t | θ1, ..., θn).

To fit the PoE to the training triples, we follow the deriva-
tive of the log likelihood of each observed triple d ∈ T
under the PoE

∂ log p(d | θ1, ..., θn)
∂θm

=
∂ log fm(d | θm)

∂θm

−∂ log
∑

c

∏
m fm(c | θm)

∂θm

Now, to approximate the intractable second term of the
right hand side of the above equation, we generate for
each triple d = (h, r, t) a set E consisting of N triples
(h, r, t′) by sampling exactly N entities t′ uniformly at
random from the set of all entities. The term

∂ log
∑

c

∏
m fm(c | θm)

∂θm

is then approximated by the term

∂ log
∑

c∈E
∏
m fm(c | θm)

∂θm
.

Analogously for the head of the triple. This is often re-
ferred to as negative sampling. Figure 2 illustrates the
KBLRN framework.

4 RELATED WORK

A combination of latent and relational features has been
explored by Toutanova et al. [30, 31]. There, a weighted
combination of two independently learned models, a
latent feature model [35] and a model fed with a bi-
nary vector reflecting the presence of paths of length
one between the head and tail, is proposed. These
simple relational features aim at capturing association

strengths between pairs of relationships (e.g. contains
and contained by). Riedel et al. [25] proposed a method
that learns implicit associations between pairs of rela-
tions in addition to a latent feature model in the con-
text of relation extraction. Gardner et al. [8] modifies
the path ranking algorithm (PRA) [15] to incorporate la-
tent representations into models based on random walks
in KBs. Gardner et al. [7] extracted relational features
other than paths to better capture entity type informa-
tion. There are a number of recent approaches that com-
bine relational and latent representations by incorporat-
ing known logical rules into the embedding learning for-
mulation [26, 10, 18]. Despite its simplicity, KBLRN’s
combination of relational and latent representations sig-
nificantly outperforms all these approaches.

There exists additional work on combining various types
of KB features. Nickel et al. [19] proposed a modi-
fication of the well-known tensor factorization method
RESCAL [21], called ARE, which adds a learnable ma-
trix that weighs a set of metrics (e.g. Common Neigh-
bors) between pairs of entities; Garcia-Duran et al. [6]
proposed a combination of latent features, aiming to take
advantage of the different interaction patterns between
the elements of a triple. The integration of different fea-
ture types into relational machine learning models has
been previously addressed [1] [17], but not in the context
of link prediction in multi-relational graphs.

KBLRN is different to these approaches in that (i) we in-
corporate numerical features for KB completion, (ii) we
propose a unifying end-to-end learning framework that
integrates arbitrary relational, latent, and numerical fea-
tures.

More recent work [23] combines numerical, visual, and
textual features by learning feature type specific en-
coders and using the vector representations in an off-the-
shelf scoring function such as DISTMULT. In contrast to
this approach, KBLRN combines experts that are special-
ized to a specific feature type with a product of expert ap-
proach. Moreover, by taking the difference between nu-
merical features and explicitly modeling relational fea-
tures that hold between head and tail entities, KBLRN in-
corporates dependencies between modalities of the head
and tail entities. These dependencies cannot be captured
with a model that only includes modalities of either the
head or the tail entity but not both at the same time.

5 EXPERIMENTS

We conducted experiments on six different knowledge
base completion data sets. Primarily, we wanted to un-
derstand for what type of relations numerical features are
helpful and what input representation of numerical fea-
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Data set FB15k FB15k-num FB15k-237 FB15k-237-num WN18 FB122
Entities 14,951 14,951 14,541 14,541 40,943 9,738
Relation types 1,345 1,345 237 237 18 122
Training triples 483,142 483,142 272,115 272,115 141,442 91,638
Validation triples 50,000 5,156 17,535 1,058 5,000 9,595
Test triples 59,071 6,012 20, 466 1,215 5,000 11,243
Relational features 90,318 90,318 7,834 7,834 14 47

Table 1: Statistics of the data sets.

tures achieves the best results. An additional objective
was the comparison to state of the art methods.

5.1 Datasets

We conducted experiments on six different data sets:
FB15k, FB15k-237, FB15k-num, FB15k-237-num,
WN18, and FB122. FB15k [3] and Wordnet (WN) [2]
are knowledge base completion data sets commonly used
in the literature. The FB15k data set is a representative
subset of the Freebase knowledge base. WN18 repre-
sents lexical relations between word senses. The two
data sets are being increasingly criticized for the frequent
occurrence of reverse relations causing simple relational
baselines to outperform most embedding-based meth-
ods [30]. For these reasons, we also conducted experi-
ments with FB15k-237 a variant of FB15k where reverse
relations have been removed [30]. FB122 is a subset of
FB15k focusing on relations pertaining to the topics of
“people”, “location”, and “sports.” In previous work, a
set of 47 logical rules was created for FB122 and subse-
quently used in experiments for methods that take logical
rules into account [10, 18].

The main objective of this paper is to investigate the im-
pact of incorporating numerical features. Hence, we cre-
ated two additional data set by removing those triples
from FB15k’s and FB15k-237’s validation and test sets
where numerical features are never used for the triples’
relation type. Hence, the remaining test and validation
triples lead to completion queries where the numerical
features under consideration are potentially used. We re-
fer to these new data sets as FB15k-num and FB15k-237-
num. A similar methodology can be followed to evaluate
the performance on a different set of numerical features.

We extracted numerical data from the 1.9 billion triple
Freebase RDF dump by mining triples that associate en-
tities to literals of some numerical type. For example,
the relation /location/geocode/latitudemaps
entities to their latitude. We performed these extractions
for all entities in FB15k but only kept a numerical fea-
ture if at least 5 entities had values for it. This resulted in
116 different numerical features and 12,826 entities for
which at least one of the numerical features had a value.
On average each entity had 2.3 numerical features with a

n(h,t) MR MRR Hits@1 Hits@10
sign 231 29.7 20.1 50.1
RBF 121 31.4 21.2 52.3

Table 2: KBLRN for two possible input representations
of numerical features for FB15k-237-num.

value. Since numerical data is not available for Wordnet,
we do not perform experiments with numerical features
for variants of this KB.

Each data set contains a set of triples that are known to
be true (usually referred to as positive triples). Statis-
tics of the data sets are provided in Table 1. Since the
identifiers for entities and relations have been changed in
FB13 [29], we could not extract numerical features for
the data set and excluded it from the experiments.

5.2 General Set-up

We evaluated the different methods by their ability to
answer completion queries of the form (h, r, ?) and
(?, r, t). For queries of the form (h, r, ?), we replaced
the tail by each of the KB’s entities in turn, sorted the
triples based on the scores or probabilities returned by
the different methods, and computed the rank of the cor-
rect entity. We repeated the same process for the queries
of type (?, r, t). We follow the filtered setting described
in [3] which removes correct triples that are different to
the target triple from the ranked list. The mean of all
computed ranks is the Mean Rank (lower is better) and
the fraction of correct entities ranked in the top n is called
hits@n (higher is better). We also computer the Mean
Reciprocal Rank (higher is better) which is an evaluation
measure for rankings that is less susceptible to outliers.

We conduct experiments with the scoring function of
DISTMULT [35] which is an application of parallel fac-
tor analysis to multi-relational graphs. For a review on
parallel factor analysis we refer the reader to [12]. We
validated the embedding size of KBLRN from the values
{100, 200} for all experiments. These values are used in
most of the literature on KB embedding methods. For all
other embedding methods, we report the original results
from the literature or run the authors’ original implemen-
tation. For FB15k and FB15k-237, the results for Dist-
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FB15k FB15k-237
MR MRR Hits@1 Hits@10 MR MRR Hits@1 Hits@10

TRANSE 51 44.3 25.1 76.3 214 25.1 14.5 46.3
DISTMULT - 65.4 54.6 82.4 - 19.1 10.6 37.6
COMPLEX - 69.2 59.9 84.0 - 20.1 11.2 38.8
NODE+LINKFEAT - 82.2 - 87.0 - 23.7 - 36.0
R-GCN+ - 69.6 60.1 84.2 - 24.8 15.3 41.7
CONVE 64 74.5 67.0 87.3 330 30.1 22.0 45.8

without numerical features
KBL 69 77.4 71.2 87.6 231 30.1 21.4 47.5
KBR 628 78.7 75.6 84.3 2518 18.0 12.8 28.5
KBLR 45 79.0 74.2 87.3 231 30.6 22.0 48.2

with numerical features
KBLN 66 78.3 72.6 87.8 229 30.4 22.0 47.0
KBRN 598 78.7 75.6 84.2 3303 18.2 13.0 28.7
KBLRN 44 79.4 74.8 87.5 209 30.9 21.9 49.3

Table 3: Results (filtered setting) for KBLRN and state of the art approaches.

FB15k-num FB15k-237-num
MR MRR Hits@1 Hits@10 MR MRR Hits@1 Hits@10

TRANSE 25 34.7 5.5 79.9 158 21.8 10.41 45.6
DISTMULT 39 72.6 62.1 89.7 195 26.4 16.4 47.3

without numerical features
KBL 39 72.6 62.1 89.7 195 26.4 16.4 47.3
KBR 399 84.7 81.6 90.1 3595 23.6 17.8 36.1
KBLR 28 85.3 80.3 92.4 232 29.3 19.7 49.2

with numerical features
KBLN 32 73.6 63.0 90.7 122 28.6 17.9 51.6
KBRN 68 84.0 80.6 90.0 600 26.1 19.3 39.7
KBLRN 25 85.9 81.0 92.9 121 31.4 21.2 52.3

Table 4: Results (filtered) on the data sets where the test and validation sets are com-
prised of those triples whose type could potentially benefit from numerical features.

WN18+rules[10] FB122-all[10]
MR MRR Hits@3 Hits@5 Hits@10 MR MRR Hits@3 Hits@5 Hits@10

TRANSE - 45.3 79.1 89.1 93.6 - 48.0 58.9 64.2 70.2
TRANSH - 56.0 80.0 86.1 90.0 - 46.0 53.7 59.1 66.0
TRANSR - 51.4 69.7 77.5 84.3 - 40.1 46.4 52.4 59.3
KALE-PRE - 53.2 86.4 91.9 94.4 - 52.3 61.7 66.2 71.8
KALE-JOINT - 66.2 85.5 90.1 93.0 - 52.3 61.2 66.4 72.8
COMPLEX - 94.2 94.7 95.0 95.1 - 64.1 67.3 69.5 71.9
ASR-COMPLEX - 94.2 94.7 95.0 95.1 - 69.8 71.7 73.6 75.7
KBL 537 80.8 92.5 93.7 94.7 117 69.5 74.6 77.2 80.0
KBR 7113 72.0 72.1 72.1 72.1 2018 54.7 54.7 54.7 54.7
KBLR 588 93.6 94.5 94.8 95.1 113 70.2 74.0 77.0 79.7

Table 5: Results (filtered setting) for KB completion benchmarks where logical rules are provided.

Mult, Complex, and R-GCN+ are taken from [28]; re-
sults for the relational baseline Node+LinkFeat are taken
from [30]; results for ConvE are taken from [4] and re-
sults for TransE were obtained by running the authors’
implementation. For WN18-rules and FB122-all, the re-
sults for TransE, TransH, TransR, and KALE are taken
from [10], and results for ComplEx and ASR-ComplEx
are taken from [18]. All methods were tuned for each of
the respective data sets.

For KBLRN we used ADAM [14] for parameter learning
in a mini-batch setting with a learning rate of 0.001, the
categorical cross-entropy as loss function and the number
of epochs was set to 100. We validated every 5 epochs
and stopped learning whenever the MRR (Mean Recip-
rocal Rank) values on the validation set decreased. The
batch size was set to 512 and the number N of nega-
tive samples to 500 for all experiments. We use the ab-
breviations KBsuffix to refer to the different instances of
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KBLRN. suffix is a combination of the letters L (Latent),
R (Relational) and N (Numerical) to indicate the inclusion
of each of the three feature types.

5.3 Automated Generation of Relational and
Numerical Features

For the data sets FB15k, FB15k-237, and their numeri-
cal versions, we used all relational paths of length one
and two found in the training data as relational features.
These correspond to the formula types (h, r, t) (1-hop)
and ∃x (h, r1, x) ∧ (x, r2, t) (2-hops). We computed
these relational paths with AMIE+ [5], a highly efficient
system for mining logical rules from knowledge bases.
We used the standard settings of AMIE+ with the excep-
tion that the minimal head support was set to 1. With
these settings, AMIE+ returns horn rules of the form
body ⇒ (x, r, y) that are present for at least 1% of the
triples of the form (x, r, y). For each relation r, we used
the body of those rules where r occurs in the head as r’s
relational path features. For instance, given a rule such
as (x, r1, z), (z, r2, y) ⇒ (x, r, y), we introduce the re-
lational feature ∃x (h, r1, x) ∧ (x, r2, t) for the relation
r. Table 7 lists a sample of relational features that con-
tributed positively to the performance of KBLRN for spe-
cific relation types. For the data sets WN18 and FB122,
we used the set of logical formulas previously used in the
literature [10]. Using the same set of relational features
allows us to compare KBLRN with existing approaches
that incorporate logical rules into the embedding learning
objective [10, 18].

For each relation r we only included a numerical fea-
ture if, in at least τ = 90% of training triples, both the
head and the tail had a value for it. This increases the
likelihood that the feature is usable during test time. For
τ = 90% there were 105 relations in FB15k for which at
least one numerical feature was included during learning,
and 33 relations in FB15k-237. With the exception of the
RBF parameters, all network weights are initialized fol-
lowing [9]. The parameters of KBLRN’s RBF kernels
are initialized and fixed to ci = 1

|T|
∑

(h,r,t)∈T n
(i)
(h,t),

where T is the set of training triples (h, r, t) for the re-
lation r for which both n

(i)
h and n

(i)
t have a value; and

σi =
√

1
|T|
∑

(h,r,t)∈T(n
(i)
(h,t) − ci)2.

5.4 Representations of Numerical Features

We experimented with different strategies for incorpo-
rating raw numerical features. For the difference of fea-
ture values the simplest method is the application of the
sign function. For a numerical attribute i, the activa-
tion is either 1 or −1 depending on whether the differ-
ence n

(i)
h − n

(i)
t is positive or negative. For a more

KBLR KBLRN
Relation MRR H@10 MRR H@10
capital of 5.7 13.6 14.6 18.2
spouse of 4.4 0.0 7.9 0.0
influenced by 7.3 20.9 9.9 26.8

Table 6: MRR and hits@10 results (filtered) for KBLRN
with and without numerical features in FB15k-237. Re-
sults improve for relations where the difference of the
relevant features is approximately normal (see Figure 3).

−10 0 10
Diff. of latitude

capital of

−30 0 30
Diff. of birth year

spouse

−400 0 400
Diff. of birth year

influenced by

Figure 3: Histograms and fitted RBFs for three repre-
sentative relations and numerical features.

nuanced representation of differences of numerical fea-
tures, a layer of RBF kernels is a suitable choice since
the activation is here highest in a particular range of in-
put values. The RBF kernel might not be appropriate,
however, in cases where the underlying distribution is not
normal.

To evaluate different input representations, we conducted
experiments with KBLRN on the FB15k-237-num data
set. Table 2 depicts the KB completion performance of
two representation strategies for the difference of head
and tail values. Each row corresponds to one evaluated
strategy. “sign” stands for applying the sign function to
the difference of numerical feature values. RBF stands
for using an RBF kernel layer for the differences of nu-
merical feature values. All results are for the FB15k-
237-num test triples.

The RBF kernels outperform the sign functions signifi-
cantly. This indicates that the difference of feature val-
ues is often distributed normally and that having a region
of activation is beneficial. Given these results, we use
the RBF input layer for n(h,t) for the remainder of the
experiments.

5.5 Comparison to State of the Art

For the standard benchmark data sets FB15k and FB15k-
237, we compare KBLRN with TRANSE, DISTMULT,
COMPLEX [32], R-GCN+ [28], and ConvE [4].

Table 3 lists the KB completion results. KBLRN is com-
petitive with state of the art knowledge base comple-
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Relational Feature Triple (h, r, t)
∃x (h, containedby, x) ∧ (t, locations in this time zone, x) (h,time zone,t)

∃x (t, prequel, x) ∧ (x, character, h) (h,character in film,t)
∃x (x, cause of death, h) ∧ (x, cause of death, t) (h,includes causes of death,t)

Table 7: Relational features found by AMIE+ that positively contributed to the performance of KBLRN for the
particular relation type holding between a head entity h and tail entity t.

MR MRR
ONE MANY ONE MANY

KBLR 42 201 74.9 21.0
KBLRN 60 135 74.2 22.8

Table 8: MR and MRR results (filtered) on FB15k-237-
num based on the cardinality of the test queries.

tion methods on FB15k and significantly outperforms all
other methods on the more challenging FB15k-237 data
set. Since the fraction of triples that can potentially ben-
efit from numerical features is very small for FB15k, the
inclusion of numerical features is only slightly benefi-
cial. For FB15k-237, however, the numerical features
significantly improve the results.

For the numerical versions of FB15k and FB15k-237, we
compared KBLRN to TransE and DistMult. Table 4 lists
the results for the KB completion task on these data sets.
KBLRN significantly outperforms the KB embedding ap-
proaches. The positive impact of including the numerical
features is significant.

For the data sets WN18-rules and FB122-all we com-
pared KBLRN to KB embedding methods TransE,
TransR [16], TransH [34], and ComplEx [32] as well as
state of the are approaches for incorporating logical rules
into the learning process. The experimental set-up is con-
sistent with that of previous work. Table 5 lists the results
for the KB completion task on these data sets. KBLRN
combining relational and latent representations signifi-
cantly outperforms existing approaches on FB122 with
exactly the same set of rules. This provides evidence
that KBLRN’s strategy to combine latent and relational
features is effective despite its simplicity relative to ex-
isting approaches. For WN18+rules, KBLRN is compet-
itive with ComplEx, the best performing method on this
data set. In addition, KBLRN’s performance improves
significantly when relational and latent representations
are combined. In contrast, ASR-COMPLEX is not able
to improve the results of ComplEx, its underlying latent
representation.

5.6 The Impact of Numerical Features

The integration of numerical features improves
KBLRN’s performance significantly. We performed

AUC-PR MR MRR
TRANSE 0.837 231 26.5
KBLR 0.913 94 66.8
KBLRN 0.958 43 70.8

Table 9: AUC-PR, MR, and MRR results for the com-
pletion query (USA, /location/contains, ?).

several additional experiments so as to gain a deeper
understanding of the impact numerical features have.

Table 6 compares KBLRN’s performance with and
without integrating numerical features on three rela-
tions. The performance of the model with numerical
features is clearly superior for all three relationships
(capital of, spouse and influenced by). Fig-
ure 3 shows the normalized histograms for the values
n(h,t) for these relations. We observe the differences of
feature values are approximately normal.

Following previous work [3], we have classified each test
query of FB15k-237-num as either ONE or MANY, de-
pending on the whether one or many entities can com-
plete that query. For the queries labeled ONE the model
without numerical features shows a slightly worse per-
formance with respect to the model that makes use of
them, whereas for the queries labeled MANY, KBLRN
significantly outperforms KBLR in both MR and MRR.

A well-known finding is the lack of completeness of
FB15k and FB15k-237. This results in numerous cases
where the correct entity for a completion query is not
contained in the ground truth (neither in the training, nor
test, nor validation data set). This is especially problem-
atic for queries where a large number of entities are cor-
rect completions. To investigate the actual benefits of
the numerical features we carried out the following ex-
periment: We manually determined all correct comple-
tions for the query (USA, /location/contains, ?).
We ended up with 1619 entities that correctly complete
the query. FB15k-237 contains only 954 of these correct
completions. With a complete ground truth, we can now
use the precision-recall area under the curve (PR-AUC)
metric to evaluate KB completion methods [21, 19, 6]. A
high PR-AUC represents both high recall and high pre-
cision. Table 9 lists the results for the different methods.
KBLRN with numerical features consistently and signif-
icantly outperformed all other approaches.
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6 CONCLUSIONS

We introduced KBLRN, a class of machine learning
models that, to the best of our knowledge, is the first pro-
posal aiming at integrating relational, latent, and contin-
uous features of head and tail entities in KBs into a sin-
gle end-to-end differentiable framework. KBLRN out-
performs state of the art KB completion methods on a
range of data sets. We show that the inclusion of numer-
ical features is beneficial for KB completion tasks.

Future work will primarily study instances of experts that
can combine different numerical features such as life
expectancy and latitude. Furthermore, combinations of
multiple different embedding methods, which was shown
to be beneficial in recent work [33], is also possible with
our PoE approach.
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Abstract

In zero-shot learning (ZSL), a classifier is
trained to recognize visual classes without any
image samples. Instead, it is given seman-
tic information about the class, like a textual
description or a set of attributes. Learning
from attributes could benefit from explicitly
modeling structure of the attribute space. Un-
fortunately, learning of general structure from
empirical samples is hard with typical dataset
sizes.

Here we describe LAGO1, a probabilistic
model designed to capture natural soft and-
or relations across groups of attributes. We
show how this model can be learned end-to-
end with a deep attribute-detection model. The
soft group structure can be learned from data
jointly as part of the model, and can also read-
ily incorporate prior knowledge about groups
if available. The soft and-or structure suc-
ceeds to capture meaningful and predictive
structures, improving the accuracy of zero-shot
learning on two of three benchmarks.

Finally, LAGO reveals a unified formulation
over two ZSL approaches: DAP (Lampert
et al., 2009) and ESZSL (Romera-Paredes &
Torr, 2015). Interestingly, taking only one sin-
gleton group for each attribute, introduces a
new soft-relaxation of DAP, that outperforms
DAP by ∼40%.

1 A video of the highlights, and code is available at: http:
//chechiklab.biu.ac.il/˜yuvval/LAGO/

Figure 1: Classifying a bird species based on attributes from
(Wah et al., 2011). The Mourning Warbler can be distin-
guished from other species by a combination of a grey head
and olive-green underparts. Both human raters and machine
learning models may confuse semantically-similar attributes
like olive or green wings. These attribute naturally cluster
into ”OR” groups, where we aim to recognize this species
if the wing is labeled as either green or olive. The LAGO
model (Eq. 4) weighs attributes detection, inferring classes
based on within-group soft-OR and across-groups soft-AND.
In general, OR-groups include alternative choices of a property
(wing color:{red, olive, green}) and soft-OR allows to weigh
down class-irrelevant attributes (here, wing:red).

1 INTRODUCTION

People can easily learn to recognize visual entities based
on a handful of semantic attributes. For example, we can
recognize a bird based by its visual features (long beak,
red crown), or find a location based on a language de-
scription (a 2-stories brick town house). Unfortunately,
when training models that use such semantic features, it
is typically very hard to leverage semantic information
effectively. With semantic features, the input space has
rich and complex structure, due to nontrivial interactions
and logical relations among attributes. For example, the
color of petals may be red or blue but rarely both, while
the size of a bird is often not indicative of its color.

Taking into account the semantics of features or at-
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tributes becomes crucial when no training samples are
available. This learning setup, called zero-shot learning
(ZSL) is the task of learning to recognize objects from
classes wihtout any image samples to train on. (Lam-
pert et al., 2009; Farhadi et al., 2009; Palatucci et al.,
2009; Xian et al., 2017b). Instead, learning is based
on semantic knowledge about the classes (Socher et al.,
2013; Elhoseiny et al., 2013; Berg et al., 2010), like in
the case of attribute sharing (Lampert et al., 2009, 2014).
Here, the training and test classes are accompanied by a
set of predefined attributes, like ”A Zebra is striped” or
”A Hummingbird has a long bill”, provided by human
experts. Then, a classifier is trained to detect these at-
tributes in images (Ferrari & Zisserman, 2008), and test
images are classified by detecting attributes and mapping
to test classes based on the expert knowledge.

Broadly speaking, approaches to ZSL with attributes
can be viewed as learning a compatibility func-
tion f(Attr(image), Attr(class)) between an attribute-
based representation of an image and an attribute-based
representation of classes (Romera-Paredes & Torr, 2015;
Akata et al., 2016; Frome et al., 2013; Akata et al., 2015).
Here, the attributes of a class are provided by (possibly
several) experts, the image attributes are automatically
detected, and one aims to learn a scoring function that
can find the class whose attributes are most compatible
with an image. Most ZSL approaches represent attributes
as embedded in a “flat” space, Euclidean or Simplex, but
flat embedding may miss important semantic structures.
Other studies aimed to learn a structured scoring func-
tion, for example using a structured graphical model over
the attributes (Wang & Ji, 2013). Unfortunately, learning
complex structures of probabilistic models from data re-
quires large datasets, which are rarely available.

Here we put forward an intermediate approach: We
use training classes to learn a simple structure that can
capture simple (soft) and-or logical relations among at-
tributes. More concretely, after mapping an image to at-
tributes, we aggregate attributes into groups using a soft
OR (weighted-sum), and then score a class by taking a
soft AND (product of probabilities) over group activa-
tions (Figure 2). While the attributes are predefined and
provided by experts, the soft groups are learned from the
training data.

The motivation for learning the and-or structure becomes
clear when observing how attributes tend to cluster natu-
rally into semantically-related groups. For example, de-
scriptions of bird species in the CUB dataset include at-
tributes like {wing-color:green, wing-color:olive, wing-
color:red} (Wah et al., 2011). As another exam-
ple, animal attributes in (Lampert et al., 2009) include
{texture:hairless, texture:tough-skin}. In these two ex-

amples, the attributes are semantically related, and raters
(or a classifier) may mistakenly interchange them, as ev-
ident by how Wikipedia describes the Mourning War-
bler (Figure 1) as having “olive-green underparts”. In
such cases, it is natural to model attribute structure as a
soft OR relation over attributes (“olive” or “green”) in a
group (“underparts”). It is also natural to apply a soft
AND relation across groups, since a class is often recog-
nized by a set of necessary properties.

We describe LAGO, ”Learning Attribute Grouping for 0-
shot learning”, a new zero-shot probabilistic model that
leverages and-or semantic structure in attribute space.
LAGO achieves new state-of-the-art result on CUB and
AWA2(Lampert et al., 2009), and competitive perfor-
mance on SUN (Patterson & Hays, 2012). Interestingly,
when considering two extremes of attribute grouping,
LAGO becomes closely related to two important ZSL
approaches. First, in the case of a single group (all OR),
LAGO is closely related to ESZSL (Romera-Paredes &
Torr, 2015). At the opposite extreme where each attribute
forms a singleton group, (all AND), LAGO is closely re-
lated to DAP (Lampert et al., 2009). LAGO therefore re-
veals an interesting unified formulation over seemingly
unrelated ZSL approaches.

Our paper makes the following novel contributions. We
develop a new probabilistic model that captures soft log-
ical relations over semantic attributes, and can be trained
end-to-end jointly with deep attribute detectors. The
model learns attribute grouping from data, and can effec-
tively use domain knowledge about semantic grouping of
attributes. We further show that it outperforms compet-
ing methods on two ZSL benchmarks, CUB and AWA2,
and obtain comparable performance on another bench-
mark (SUN). Finally, LAGO provides a unified proba-
bilistic framework, where two previous important ZSL
methods approximate extreme cases of LAGO.

2 RELATED WORK

Zero-shot-learning with attributes attracted significant
interest recently (Xian et al., 2017b; Fu et al., 2017).
One influential early works is Direct Attribute Prediction
(DAP), which takes a Bayesian approach to predict un-
seen classes from binary attributes (Lampert et al., 2009).
In DAP, a class is predicted by the product of attribute-
classifier scores, using a hard-threshold over the seman-
tic information of attribute-to-class mapping. DAP is re-
lated in an interesting way to LAGO. We show below
that DAP can be viewed as a hard-threshold special case
of LAGO where each group consists of a single attribute.

Going beyond a flat representation of attributes, several
studies modeled structure among attributes. Wang & Ji
(2013) learned a Bayesian network over attribute space
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that captures object-dependent and object-independent
relationships. Jiang et al. (2017) learned latent attributes
that preserve semantics and also provide discriminative
combinations of given semantic attributes. Structure in
attribute space was also used to improve attribute predic-
tion: Jayaraman et al. (2014) leveraged side information
about semantic relatedness of attributes in given groups
and proposed a multi-task learning framework, where
same-group attributes are encouraged to share low-level
features. In Park & Zhu (2015); Park et al. (2017),
the authors propose an AND-OR grammar model (Zhu
& Mumford, 2006), to jointly represent both the object
parts and their semantic attributes within a unified com-
positional hierarchy. For that, they decompose an object
to its constituent parts with a parse tree. In their model,
the tree nodes (the parts) constitute an AND relation, and
each OR-node points to alternative sub-configurations

Our approach resonates with Markov Logic Networks
(MLN), (Richardson & Domingos, 2006) and Proba-
bilistic Soft Logic (PSL), (Kimmig et al., 2012; Bach
et al., 2017). It shares the idea of modeling domain
knowledge using soft logical relations. Yet, LAGO for-
mulation provides a complementary point of view: (1)
LAGO derivation reveals the probabilistic meaning of
every soft weight of the logical relation Eq. (3), and
offers a principled way to set priors when deriving the
soft logical expression. (2) The step-by-step derivation
reveals which approximations are taken when mapping
features to classes with soft logical relations. (3) Logical
relations are incorporated in LAGO as part of an end-to-
end deep network. PSL and MLN use Markov random
field with logical relations as constraints or potentials.

The study of ZSL goes beyond learning with attributes
(Changpinyo et al., 2016; Tsai et al., 2017b; Morgado &
Vasconcelos, 2017; Rohrbach et al., 2011; Al-Halah &
Stiefelhagen, 2015; Zhang et al., 2017; Ye & Guo, 2017;
Tsai et al., 2017a; Xu et al., 2017; Li et al., 2017; Zhang
& Koniusz, 2018). Recently, Zhang & Koniusz (2018)
described a kernel alignment approach, mapping images
to attribute space such that projected samples match the
distribution of attributes in terms of a nonlinear ker-
nel. Another popular approach to ZSL learns a bi-linear
compatibility function F (x, y;W ) = θ(x)>Wφ(y) to
match visual information θ(x) with semantic informa-
tion φ(y) (Romera-Paredes & Torr, 2015; Akata et al.,
2016; Frome et al., 2013; Akata et al., 2015). In this
context, most related to our work is ESZSL (Romera-
Paredes & Torr, 2015), which uses a one-hot encoding
of class labels to define a mean-squared-error loss func-
tion. This allows ESZSL to have a closed-form solution
where reaching the optimum is guaranteed. We show be-
low that ESZSL is closely related to a special case of
LAGO where all attributes are assigned to a single group.

Figure 2: LAGO network architecture (Sec 3). Image features
are extracted by a deep ConvNet and fed to a FC sigmoid layer
(σ) that outputs a prediction score p(am|x) for each binary at-
tribute am. Attribute scores are grouped into K soft groups,
and mapped to a set {gk,z} of K × |Z| binary classifiers, ac-
cording to a soft-OR Eq. (3). Finally, a class is computed by
the soft product of all group-scores for that class, approximat-
ing a conjunction (AND). In the diagram, each colored circle
represents a classifier score for a separate class.

The current work focuses on a new architecture for ZSL
with attributes. Other aspects of ZSL, including fea-
ture selection (Guo et al., 2018) and data augmentation
(Mishra et al., 2018; Arora et al., 2018; Xian et al., 2018),
can improve accuracy significantly, but are orthogonal to
the current work.

3 A PROBABILISTIC AND-OR MODEL

The Problem Setup: Following the notations of (Lam-
pert et al., 2009), we are given a set of labeled train-
ing images (xi ∈ X , zi ∈ Z) drawn from a distri-
bution D. Each image x is accompanied by a vec-
tor of binary attributes a ∈ {True, False}|A|, a =
(a1, . . . , am, . . . , a|A|), where am = True if the image
has attribute am. We are also given a set of class ”de-
scriptions” in the form class-conditioned attribute dis-
tribution p(a|z). In practice, the descriptions are of-
ten collected separately per attribute (m), and only the
marginals p(am|z), ∀m are available.

At training time, we aim to learn a classifier that predicts
a class z of an image x by first learning to predict the
attributes a, and then use p(am|z), ∀m to predict a class
z based on the attributes.

At inference time (the zero-shot phase), we are given im-
ages x from new unseen classes with labels y ∈ Y , and
together with their class descriptions p(am|y), ∀m. We
similarly predict the class y by first predicting attributes
a and then use p(am|z), ∀m to predict a class y based on
the attributes.

Model Overview: The LAGO model (Figures 1, 2)
learns a soft logical AND-OR structure over semantic
attributes. It can be viewed as a concatenation of three
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mapping steps X → A → G → Z . First, attribute pre-
dictions: an image x is mapped to a vector of attribute
detection probabilities f1W : X → A, A = [0, 1]|A|. The
mapping parameters W determine the weights of the at-
tribute detectors and are learned from labeled training
data. Second, weighted-OR group scores: Attribute
probabilities are mapped to K groups. Each group
calculates a class-dependent weighted-OR over the |Z|
classes f2U,V : A → G, G = [0, 1]K×|Z|. The map-
ping parameters U are the distributions p(a|z) provided
with each class; The mapping parameters V determine
how attributes are grouped and are learned from data.
Last, soft-AND group conjunction: Per-group scores
are mapped to class detection probabilities by a soft-
AND, approximating group conjunction. f3 : G → Z ,
Z = [0, 1]|Z|. The parameters W,V are learned jointly
to minimize a regularized loss with a regularizer R:

min
W,V

loss(f3(f2U,V (f1W (xi))), zi) +R(W,V ) . (1)

The key idea in the proposed approach is to define a layer
of binary classifiers gk,z , each evaluating a class z based
only on a subset Gk ⊂ A of attributes. For example,
for bird-species recognition, one classifier may detect
a Mourning Warbler based on wing colors and another
based on bill shapes. In this example, each of the clas-
sifiers output the probability p(gk,z = True|a) that the
image has a Mourning Warbler, but based on different
subsets of attributes. The partition of attributes to subsets
is shared across classes, hence with K subsets we have
K × |Z| binary classifiers. We also define ak to be the
vector of attributes detections for Gk, ak ∈ {T, F}|Gk|.
For clarity, we first derive the algorithm for groups that
are fixed (not learned) and hard (non-overlapping). Sec-
tion 3.1 then generalizes the derivation to soft learned
groups.

Consider now how we compute p(gk,z = T |x).
According to the Markov property, it equals∑

ak
p(gk,z|ak)p(ak|x), but computing this sum

raises several challenges. First, since the number of
possible patterns in a group grows exponentially with
its size, the summation becomes prohibitively large
when attribute groups are large. Second, estimating
p(gk,z|ak) from data may also be hard because the
number of samples is often limited. Finally, description
information is often available for the marginals only,
(z, am), rather than the full distribution (z,ak). We now
discuss a model that addresses these constraints.

The Within-Group Model A → G: We now show
how one can compute p(gk,z|x) efficiently by treating
attributes within group as obeying a soft OR relation.
As discussed above, OR relations are in good agreement
with how real-world classes are described using hard

semantic attributes, because a single property (a group
like beak-shape) may be mapped to several semantically-
similar attributes (pointy, long).

Formally, we first define a complementary attribute per
group, ãk =

(∪m∈Gk am)c, handling the case where no
attributes are detected or described, and accordingly de-
fine G′k = Gk∪ ãk. We then use the identity p(A) =
p(A,B) +p(A,Bc) to partition p(gk,z=T |x) to a union
(OR) of its contributions from each of its attributes.
Specifically, p(gk,z =T |x) = p(gk,z =T,∪m∈Gk am =
T |x) + p(gk,z = T, ãk = T |x) = p(∪m∈G′

k
(gk,z =

T, am = T )|x). Using this equality and approximating
attributes within a group as being mutually exclusive, we
have

p(gk,z=T |x) ≈
∑

m∈G′
k

p(gk,z=T, am = T |x). (2)

To rewrite this expression in terms of class descrip-
tions p(am|z) we take the following steps. First, the
Markov chain X → A → G gives p(gk,z = T, am|x)
= p(gk,z = T |am)p(am|x). Second, we note that by
the definition of gk,z , p(gk,z|ak) = p(z|ak), because
gk,z is the classifier of z based on ak. This yields
p(gk,z = T, am) = p(z, am) by marginalization. Ap-
plying Bayes to the last identity gives p(gk,z=T |am) =
p(am|z)p(gk,z=T )/p(am) (more details in Supplemen-
tary Material D.1). Finally, combining it with the ex-
pression for p(gk,z = T, am|x) and with Eq. (2) we can
express p(gk,z=T |x) as

p(gk,z=T |x) ≈

p(gk,z=T )
∑

m∈G′
k

p(am = T |z)
p(am = T )

p(am = T |x). (3)

Conjunction of Groups G → Z: Next, we derive
an expression of the conditional probability of classes
p(z|x) using soft-conjunction of group-class classifiers
gk,z . Using the Markov property X → A → G → Z ,
and denoting g1,z . . . gK,z by gz , we can write
p(z|x)=

∑
gz
p(z|gz)p(gz|x). We show on Supplemen-

tary D.2, that making a similar approximation as in DAP
(Lampert et al., 2009), for groups instead of attributes,
yields Eq. (A.10): p(z|x) ≈ p(z)

∏K
k=1

p(gk,z=T |x)
p(gk,z=T ) .

Combining it with Eq. (3), we conclude

p(z|x) ≈ p(z)
K∏

k=1

[∑

m∈G′
k

p(am=T |z)
p(am=T )

p(am=T |x)
]
.

(4)

3.1 SOFT GROUPS:

The above derivation treated attribute groups as hard: de-
terministic and non-overlapping. We now discuss the
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more general case where attributes are probabilistically
assigned to groups.

We introduce a soft group-membership variable Γm,k =
p(m ∈ G′k), yielding a soft version of Eq. (3)

p(gk,z=T |x) ≈

p(gk,z=T )

|A|∑

m=1

Γm,k
p(am = T |z)
p(am = T )

p(am = T |x), (5)

where each row of Γ represents a distribution over K
groups per attribute in the simplex ∆K . Hard grouping
is a special case of this model where all probability mass
is assigned to a single group for each row of Γ. The full
derivation is detailed in Supplementary Material (D.3).

3.2 LEARNING

LAGO has three sets of parameters learned from data.

First, a matrix W parametrizes the mapping f1W : x →
[0, 1]|A| from image features to attribute detection prob-
abilities p(am|x). This mapping is implemented as a
fully-connected layer with sigmoid activation over im-
age features extracted from ResNet-101.

Second, a matrix U , where its entry Um,z parametrizes
the class-level description p(am|z). When attribute rat-
ings are given per image, we estimate U using maximum
likelihood from co-occurrence data over attributes and
classes.

Third, a matrix V|A|×K parametrizes the soft group as-
signments Γ|A|×K , such that each row m maintains
Γ(m,:) = softmax(ζV(m,:)), where ζ ∈ R+ is a smooth-
ing coefficient. This parametrization allows taking arbi-
trary gradient steps over V , while guaranteeing that each
row of Γ corresponds to a probability distribution in the
simplex ∆K .

Since W and V are shared across all classes, they are
learned over the training classes and transferred to the
test classes at (zero-shot) inference time. They are
learned end-to-end by applying cross-entropy loss over
the outputs of Eq. (4) normalized by their sum across
classes (forcing a unit sum of class predictions). As in
(Romera-Paredes & Torr, 2015), the objective includes
two regularization terms overW : A standard L2 regular-
izer ||W ||2Fro and a term ||WU ||2Fro, which is equivalent
for an ellipsoid Gaussian prior for W . For the ”LAGO-
Semantic-Soft” learning-setup (Section 4) we introduce
an additional regularization term ||Γ(V )−Γ(VSEM )||2Fro,
pushing the solutions closer to known semantic hard-
grouping Γ(VSEM ). Finally, we optimize the loss:

L(W,U, V, Z,A,X) = CXEp(z|x;W,U,V )(X,Z)+

αBXEp(a|x;W )(X,A) + β||W ||2Fro + λ||WS||2Fro+
ψ||Γ(V ) − Γ(VSEM )||2Fro, (6)

where CXE is the categorical cross-entropy loss for
p(z|x), BXE is the binary cross-entropy loss for p(a|x),
X,Z and A denote the training samples, labels and
attribute-labels. Per-sample attribute labels are provided
as their empirical mean per class. In practice, we set
α = 0 (See Section 4.2) and cross-validate to select the
values of β, λ and ψ when relevant.

3.3 INFERENCE

At inference time, we are given images from new classes
y ∈ Y . As with the training data, we are given semantic
information about the classes in the form of the distri-
bution p(am|y). In practice, we are often not given that
distribution directly, but instead estimate it using maxi-
mum likelihood from a set of labeled attribute vectors.

To infer the class of a given test image x, we plug
p(am|y) estimates instead of p(am|z) in Eq. (4), and se-
lect the class y that maximizes Eq. (4).

3.4 DAP, ESZSL AS SPECIAL CASES OF LAGO

LAGO encapsulates similar versions of two other zero-
shot learning approaches as extreme cases: DAP (Lam-
pert et al., 2009), when having each attribute in its
own singleton group (K = |A|), and ESZSL (Romera-
Paredes & Torr, 2015), when having one big group over
all attributes (K = 1).

Assigning each single attribute am to its own singleton
group reduces Eq. (4) to Eq. (A.20) (details in Supple-
mentary D.4). This formulation is closely related to DAP.
When expert annotations p(am = T |z) are thresholded
to {0, 1} and denoted by azm, Eq. (A.20) become the DAP
posterior Eq. (A.22). This makes the singletons variant a
new soft relaxation of DAP.

At the second extreme (details in Supplementary D.4),
all attributes are assigned to a single group, K= 1. Tak-
ing a uniform prior for p(z) and p(am), and replacing
p(am =T |x) with the network model σ(x>W ), trans-
forms Eq. (4) to p(z|x)∝∑|A|m=1 σ(x>W )p(am=T |z).
Denoting Um,z =p(am=T |z), this formulation reveals
that at the extreme case of K= 1, LAGO can be viewed
as a non-linear variant that is closely related to ESZSL:
Score(z|x)=x>WU , with same entries Um,z .

4 EXPERIMENTS

Fair comparisons across ZSL studies tends to be tricky,
since not all papers use a unified evaluation protocol. To
guarantee an ”apple-to-apple” comparison, we follow the
protocol of a recent meta-analysis by Xian et al. (2017b)
and compare to the leading methods evaluated with that
protocol: DAP (Lampert et al., 2009), ESZSL (Romera-
Paredes & Torr, 2015), ALE (Akata et al., 2016), SYNC
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(Changpinyo et al., 2016), SJE (Akata et al., 2015), DE-
VISE (Frome et al., 2013), Zhang2018 (Zhang & Ko-
niusz, 2018). Recent work showed that data augmen-
tation and feature selection can be very useful for ZSL
(Mishra et al., 2018; Arora et al., 2018; Xian et al., 2018;
Guo et al., 2018). Since such augmentation are orthogo-
nal to the modelling part, which is the focus of this paper,
we do not use them here.

4.1 DATASETS

We tested LAGO on three datasets: CUB, AWA2 and
SUN. First, we tested LAGO in a fine-grained classifi-
cation task of bird-species recognition using CUB-2011
(Wah et al., 2011). CUB has 11,788 images of 200 bird
species and a vocabulary of 312 binary attributes (wing-
color:olive), derived from 28 attribute groups (wing-
color). Each image is annotated with attributes generated
by one rater. We used the class description p(am|z) pro-
vided in the data. The names of the CUB attributes pro-
vide a strong prior for grouping (wing-color:olive, wing-
color:red, . . .→ wing-color:{olive, red, . . . }).
The second dataset, Animals with Attributes2 (AWA2),
(Xian et al., 2017a) consists of 37,322 images of 50 ani-
mal classes with pre-extracted feature representations for
each image. Classes and attributes are aligned with the
class-attribute matrix of (Osherson et al., 1991; Kemp
et al., 2006).We use the class-attribute matrix as a proxy
for the class description p(am|z), since human subjects
in (Osherson et al., 1991) did not see any image samples
during the data-collection process. As a prior over at-
tribute groups, we used the 9 groups proposed by (Lam-
pert, 2011; Jayaraman et al., 2014) for 82 of 85 attributes,
like texture:{furry, hairless, . . . } and shape:{big, bul-
bus, . . .}. We added two groups for remaining attributes:
world:{new-world, old-world}, smelly:{smelly}.
As the third dataset, we used SUN (Patterson & Hays,
2012), a dataset of complex visual scenes, having 14,340
images from 717 scene types and 102 binary attributes
from four groups.

4.2 EXPERIMENTAL SETUP

We tested four variants of LAGO:
(1) LAGO-Singletons: The model of Eq. (4) for the ex-
treme case using K = |A| groups, where each attribute
forms its own hard group.
(2) LAGO-Semantic-Hard: The model of Eq. (4) with
hard groups determined by attribute names. As explained
in Section 4.1 .
(3) LAGO-K-Soft: The soft model of Eqs.
4-5, learningK soft group assignments with Γ initialized
uniformly up to a small random perturbation. K is a hy-
per parameter with a value between 1 and the number of
attributes. It is chosen by cross-validation.

Figure 3: Learning K soft-group assignments: Validation-set
accuracy for different number of groups (K) for the LAGO-
K-Soft variant and of the LAGO-Singletons baseline. Here,
no prior information is given about the groups, and the model
successfully learns groups assignments from data, and better
than the group-naive LAGO-Singletons baseline.

(4) LAGO-Semantic-Soft: The model as in LAGO-
K-Soft, but the soft groups Γ are initialized using the
dataset-specific semantic groups assignments. These are
also used as the prior ΓSEM in Eq. (6).

Importantly, to avoid implicit overfitting to the test set,
we used the validation set to select a single best variant,
so we can report only a single prediction accuracy for the
test set. For reference, we provide detailed test results of
all variants in the Supplementary Material, Table A.1 .

To learn the parameters W,V , we trained the weights
with cross entropy-loss over outputs (and regularization
terms) described in section 3.2. In the hard-group case,
we only trainW , while keeping V fixed. We sparsely ini-
tialize V with ones on every intersection of an attribute
and its hard-assigned group and choose a high constant
value for ζ (ζ = 10). Since the rows of Γ correspond to
attributes, it renders each row of Γ as a unit mass prob-
ability on a certain group. In the soft-group case, we
train W,V alternately per epoch, allowing us to choose
different learning rate for W and V . For LAGO-K-Soft,
V was initialized with uniform random weights in [0,
1e-3], inducing a uniform distribution over Γ up to a
small random perturbation. For LAGO-Semantic-Soft,
we initialized V as in the hard-group case, and we also
used this initialization for the prior VSEM Eq. (6).

Design decisions: (1) We use a uniform prior for p(z)
as in (Xian et al., 2017b; Lampert et al., 2009; Romera-
Paredes & Torr, 2015). p(am) can be estimated by
marginalizing over p(am, z), but as in ESZSL and DAP,
we found that uniform priors performed better empiri-
cally. (2) To approximate the complementary attribute
terms we used a De-Morgan based approximation for
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Figure 4: Validation accuracy (in %) of LAGO variants for
three ZSL benchmark datasets. (1) On all the datasets, us-
ing semantic grouping information improves the performance
relative to LAGO-K-Soft with K = number of semantic hard-
groups. (2) We used these results to select which variant to
use for the test set. Explicitly, when training the model on
train+validation data, we used the LAGO-Semantic-Soft variant
for CUB & AWA2, and LAGO-K-Soft variant for SUN.

p(ãk = T |z) ≈ ∏
m∈Gk\{ãk} p(a

c
m|z). For p(ãk =

T |x), we found that setting a constant value was em-
pirically better than using a De-Morgan based approxi-
mation. (3) Our model does not use an explicit super-
vision signal for learning the weights of the attributes-
prediction layer. Experiments showed that usage of ex-
plicit attributes supervision, by setting a non-zero value
for α in Eq. (6), results in deteriorated performance.

In Section 4.4, we demonstrate the above design decision
with ablation experiments on the validation sets of CUB
and AWA2.

Implementation and training details: The Supple-
mentary Material (A) describes the training protocol, in-
cluding the cross-validation procedure, optimization and
tuning of hyper parameters.

4.3 RESULTS

Our experiments first compare variants of LAGO, and
then compare the best variant to baseline methods. We
then study in more depth the properties of the learned
models.

Figure 3 shows validation-set accuracy of LAGO-K-Soft
variants as a function of the number of groups (K) and
for the LAGO-Singletons baseline. We used these results
to select the optimal number of groups K. In these ex-
periments, even-though no prior information is provided
about grouping, LAGO successfully learns group assign-
ments from data, performing better than the group-naive
LAGO-Singletons baseline. The performance degrades
largely when the number of groups is small.

Figure 4 shows validation-set accuracy for main vari-
ants of LAGO for three benchmark datasets. We used
these results to select the variant of LAGO applied to

CUB AWA2 SUN

DAP 40.0 46.2 39.9
ALE 54.9 62.5 58.1
ESZSL 53.9 58.6 54.5
SYNC 55.6 46.6 56.3
SJE 53.9 61.9 53.7
DEVISE 52.0 59.7 56.5
ZHANG2018* 48.7-57.1 58.3-70.5 57.8-61.7

LAGO (OURS) 57.8 64.8 57.5

Table 1: Test accuracy (in %) of LAGO and compared methods
on three ZSL benchmark datasets. We follow the protocol of a
meta-analysis by (Xian et al., 2017b) and compare to leading
methods evaluated with it. Only one LAGO variant is shown,
selected using a validation set. See Table A.1 in the supplemen-
tary for more results. LAGO outperforms previous baselines
on CUB and AWA2 by a significant margin. On SUN, LAGO
loses by a small margin. (*) Comparison with Zhang2018 is
inconclusive. Zhang & Koniusz (2018) report the results for 7
kernel types on the test set, but results on a validation set were
not published, hence taking the best kernel over the test set may
be optimistic.

the test split of each dataset. Specifcially, when train-
ing the model on train+validation data, we used LAGO-
Semantic-Soft for CUB & AWA2, and LAGO-K-Soft
(K = 40) for SUN. This demonstrates that LAGO is
useful even when the semantic-grouping prior is of low
quality as in SUN. Figure 4 also shows that semantic
grouping, significantly improves performance, relative to
LAGO-K-Soft with a similar number of groups.

We draw three conclusions from Figures 3-4. (1) The
prior grouping based on attribute semantics contains very
valuable information that LAGO can effectively use. (2)
LAGO succeeds even when no prior group information is
given, effectively learning group assignments from data.
(3) Using the semantic hard-groups as a prior, allows
us to soften the semantic hard-groups and optimize the
grouping structure from data.

Table 1 details the main empirical results, comparing test
accuracy of LAGO with the competing methods. Impor-
tantly, to guarantee ”apple-to-apple” comparison, evalu-
ations are made based on the standard evaluation proto-
col from Xian et al. (2017b), using the same underlying
image features, data splits and metrics. Results are aver-
aged over 5 random initializations (seeds) of the model
weights (W,V ). Standard-error-of-the-mean (S.E.M) is
∼0.4%. On CUB and AWA2, LAGO outperform all com-
peting approaches by a significant margin. On CUB,
reaching 57.8% versus 55.6% for SYNC (Changpinyo
et al., 2016). On AWA2, reaching 64.8% versus 62.5%
for ALE (Akata et al., 2016). On SUN, LAGO loses by
a small margin (57.5% versus 58.1%). Note that com-
parison with ”Zhang2018” (Zhang & Koniusz, 2018) is
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inconclusive. ”Zhang2018” reports the results for 7 ker-
nel types on the test set, but results on a validation set
were not published, hence taking the best kernel over the
test set may be optimistic.

LAGO-Singletons versus DAP: LAGO-Singletons is
a reminiscent of DAP, but unlike DAP, it applies a soft re-
laxation that balances between appearance of an attribute
and its negation. Interestingly, this minor change allows
LAGO-Singletons to outperform DAP by ∼40% on av-
erage over all three datasets, while keeping an appealing
simplicity as of DAP (Supplementary Table A.1).

LAGO with few groups: When the number of groups
is small, the accuracy of LAGO is poor (Fig 3, 4) This
happens because when groups have too many attributes,
the AND-OR structure of LAGO becomes too permis-
sive. For example, when all attributes are grouped into
a single group, an OR is applied over all attributes and
no AND, leading to many spurious matches when par-
tial attributes are observed. A similar effect is observed
when applying LAGO to SUN data which has only 4 se-
mantic hard groups for 102 attributes. Indeed applying
LAGO-Semantic-Hard to SUN performs poorly since it
is too permissive. Another interesting effect arises when
comparing the the poor performance of the single-group
case with ESZSL. ESZSL is convex and with a closed-
form solution, hence reaching the optimum is guaran-
teed. Single-group LAGO is non-convex (due to sig-
moidal activation) making it harder to find the opti-
mum. Indeed, we observed a worse training accuracy
for single-group LAGO compared with ESZSL (61% vs
84% on CUB), suggesting that single-group LAGO tends
to underfit the data.

Learned Soft Group Assignments Γ: We analyzed
the structure of learned soft group assignments (Γ) for
LAGO-K-Soft (details in Supplementary B). We found
two interesting observations: First, we find that the
learned Γ tends to be sparse: with 2.5% non-zero values
on SUN, 8.7% on AWA2 and 3.3% on CUB. Second, we
observed that the model tends to group anti-correlated
attributes. This is consistent with human-based group-
ing, whose attribute are also often anti correlated (red
foot, blue foot). In SUN, 45% of attribute-pairs that are
grouped together were anti-correlated, versus 23% of all
attribute-pairs. In AWA2, 38% vs 5% baseline, CUB
16% vs 10% baseline (p-value≤0.003, KS-test).

Qualitative Results: To gain insight into why and
when attribute grouping can reduce false positives and
false negatives, we discuss in more depth two examples
shown on Figure 5, predicted by LAGO-Semantic-Hard
on CUB. The analysis demonstrates an interpretable
quality of LAGO, allowing to ”look under the hood” and
explain class-predictions based on seen attributes.

The effect of within-group disjunction (OR): Im-
age 5a is correctly classified by LAGO as a Black-
billed Cuckoo, even-though a detector misses its brown
primary-color. In more detail, for this class, raters
disagreed whether the primary-color is mostly brown
(p(brown|z) = 0.6) or white (0.5), because this prop-
erty largely depends on the point-of view. Somewhat sur-
prisingly, the primary color in this photo was detected to
be mostly white (p(white|x) = 0.7), and hardly brown
(0.1), perhaps because of a brown branch that interferes
with segmenting out the bird. Missing the brown color
hurts any classifier that requires both brown and white,
like DAP. LAGO treats the detected primary color as a
good match because it takes a soft OR relation over the
two primary colors, hence avoids missing the right class.

The effect of group conjunction (AND): Image 5b.1
was correctly classified by LAGO as a White-Breasted
Nuthatch, even-though a detector incorrectly detects a
yellow primary color (p(yellow|x) = 0.6) together with
white and grey primary colors (0.7). As a comparison,
the perceived yellow primary color confused ESZSL to
mistake this image for a Cape-May Warbler, shown in
image (b.2). Since ESZSL treats attributes as ”flat”, it
does not use the fact that the breast pattern does not
match a Warbler, and adheres to other attributes that
produce a false positive detection of the Warbler. Yet,
LAGO successfully avoids being confused by the yel-
low primary color, since the Nuthatch is expected to
have a solid breast pattern, which is correctly detected
p(breast : solid|x) = 0.6. The Warbler is ranked
lower because it is expected to have a striped breast pat-
tern, which does not satisfy the AND condition because
stripes are not detected p(breast : striped|x) = 0.

4.4 ABLATION EXPERIMENTS

We carried empirical ablation experiments with the se-
mantic hard-grouping of LAGO. Specifically, we tested
three design decisions we made, as described above. (1)
Uniform relates to taking a uniform prior for p(am),
which is the average of the estimated p(am). “Per-
attribute” relates to using the estimated p(am) directly.
(2) Const relates to setting a constant value for the
approximation of the complementary attribute p(ãk|x).
“DeMorgan” relates to approximating it from predictions
of other attributes with De-Morgan’s rule. (3) Implicit
relates to setting a zero weight (α = 0) for the loss term
of the attribute supervision. I.e. attributes are learned
implicitly, because only class-level super vision is given.
“Explicit” related to setting a non-zero α respectively.

Table A.2 (in Supplementary) shows contributions of
each combination of the design decisions to prediction
accuracy, on the validation set of CUB and AWA2. The
results are consistent for both CUB and AWA2. The
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Figure 5: Qualitative examples. (a) LAGO correctly classifies a Black-billed Cuckoo, due to soft-OR of “brown or white” primary-
color, although a detector misses its brown primary-color. (b1) LAGO correctly classifies a White-Breasted Nuthatch: The soft-
intersection across groups prevents incorrect classification. ESZSL incorrectly classified Image (b1) as class of (b2), despite irrele-
vant attribute groups like its breast pattern (b2) A typical Cape-May Warbler. ESZSL mistakes (b1) image for this class

most major effect is contributed for the uniform prior of
p(am). All experiments that use the uniform prior yield
better accuracy. We observe that taking a uniform prior
also reduces variability due to the other approximations
we take. Specifically, on CUB there is ≈ 4.5% best-to-
worst gap with a uniform prior, vs ≈ 12.5% without (≈
11% vs ≈ 16% for AWA2 respectively). Next we ob-
serve that in the uniform case, approximating p(ãk|x)
by a constant, is superior to approximating it with De-
Morgan’s rule, and similarly, reduces the impact of the
variability of the implicit/explicit condition. Last, the
contribution of attributes supervision condition mostly
depends on selection of the previous two conditions.

5 DISCUSSION

Three interesting future research directions can be fol-
lowed. First, since LAGO is probabilistic, one can
plug measures for model uncertainty (Gal & Ghahra-
mani, 2016), to improve model prediction and increase
robustness to adversarial attacks. Second, descriptions
of fine-grained categories often provide richer logical ex-
pressions to describe and differentiate classes. It will
be interesting to study how LAGO may be extended
to incorporate richer relations that could be explicitly
discriminative (Vedantam et al., 2017). For example,
Wikipedia describes White-Breasted-Nuthatch to make
it distinct from other, commonly confused, Nuthatches

by: “Three other, significantly smaller, nuthatches have
ranges which overlap that of white-breasted, but none
has white plumage completely surrounding the eye. ”.

Third, when people describe classes, they often use a
handful of attributes instead of listing all values for the
full set of attributes. The complementary attribute used
in LAGO allows to model a “don’t-care” about a group,
when no description is provided for a group. Such an ap-
proach could enable to recognize visual entities based on
a handful and partial indication of semantic properties.

6 SUMMARY
We presented LAGO, a new probabilistic zero-shot-
learning approach that can be trained end-to-end. LAGO
approximates p(class= z|image=x) by capturing nat-
ural soft and-or logical relations among groups of at-
tributes, unlike most ZSL approaches that represent at-
tributes as embedded in a “flat” space. LAGO learns the
grouping structure from data, and can effectively incor-
porate prior domain knowledge about the grouping of at-
tributes when available. We find that LAGO achieves
new state-of-the-art result on CUB (Wah et al., 2011),
AWA2 (Lampert et al., 2009), and is competitive on SUN
(Patterson & Hays, 2012). Finally, LAGO reveals an
interesting unified formulation over seemingly-unrelated
ZSL approaches, DAP (Lampert et al., 2009) and ESZSL
(Romera-Paredes & Torr, 2015).
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Abstract

Variational inference relies on flexible ap-
proximate posterior distributions. Normaliz-
ing flows provide a general recipe to con-
struct flexible variational posteriors. We in-
troduce Sylvester normalizing flows, which
can be seen as a generalization of planar
flows. Sylvester normalizing flows remove the
well-known single-unit bottleneck from planar
flows, making a single transformation much
more flexible. We compare the performance
of Sylvester normalizing flows against pla-
nar flows and inverse autoregressive flows and
demonstrate that they compare favorably on
several datasets.

1 INTRODUCTION

Stochastic variational inference [Hoffman et al., 2013]
allows for posterior inference in increasingly large and
complex problems using stochastic gradient ascent. In
continuous latent variable models, variational inference
can be made particularly efficient through the amortized
inference, in which inference networks amortize the cost
of calculating the variational posterior for a data point
[Gershman and Goodman, 2014]. A particularly suc-
cessful class of models is the variational autoencoder
(VAE) in which both the generative model and the infer-
ence network are given by neural networks, and sampling
from the variational posterior is efficient through the non-
centered parameterization [Kingma and Welling, 2014],
also known as the reparameterization trick [Kingma and
Welling, 2013, Rezende et al., 2014].

∗Equal contribution
†Also affiliated with the Canadian Institute for Advanced

Research (CIFAR)

Despite its success, variational inference has drawbacks
compared to other inference methods such as MCMC.
Variational inference searches for the best posterior ap-
proximation within a parametric family of distributions.
Hence, the true posterior distribution can only be recov-
ered exactly if it happens to be in the chosen family.
In particular, with widely used simple variational fami-
lies such as diagonal covariance Gaussian distributions,
the variational approximation is likely to be insufficient.
More complex variational families enable better poste-
rior approximations, resulting in improved model perfor-
mance. Therefore, designing tractable and more expres-
sive variational families is an important problem in vari-
ational inference [Nalisnick et al., 2016, Salimans et al.,
2015, Tran et al., 2015].

Rezende and Mohamed [2015] introduced a general
framework for constructing more flexible variational dis-
tributions, called normalizing flows. Normalizing flows
transform a base density through a number of invert-
ible parametric transformations with tractable Jacobians
into more complicated distributions. They proposed two
classes of normalizing flows: planar flows and radial
flows. While effective for small problems, these can be
hard to train and often many transformations are required
to get good performance. For planar flows, Kingma
et al. [2016] argue that this is due to the fact that the
transformation used acts as a bottleneck, warping one
direction at a time. Having a large number of flows
makes the inference network very deep and harder to
train, empirically resulting in suboptimal performance.
Kingma et al. [2016] proposed inverse auto-regressive
flows (IAF), achieving state of the art results on dynami-
cally binarized MNIST at the time of publication. While
very successful, IAFs require a very large number of pa-
rameters. Due to the large number of parameters IAFs
cannot amortize all flow parameters. Instead amortiza-
tion is achieved through an additional context vector that
is fed into each flow step.
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Paper contribution In this paper, we use Sylvester’s
determinant identity to introduce Sylvester normalizing
flows (SNFs). This family of flows is a generalization
of planar flows, removing the bottleneck. We compare
a number of different variants of SNFs and show that
they compare favorably against planar flows and IAFs.
We show that one specific variant of SNFs is related to
IAFs, while requiring many fewer parameters due to di-
rect amortization of all flow parameters.

2 VARIATIONAL INFERENCE

Consider a probabilistic model with observations x and
continuous latent variables z and model parameters θ. In
generative modeling we are often interested in perform-
ing maximum (marginal) likelihood learning of the pa-
rameters θ of the latent-variable model pθ(x, z). This
requires marginalization over the unobserved latent vari-
ables z. Unfortunately, this integration is generally in-
tractable. Variational inference [Jordan et al., 1999] in-
stead introduces a variational approximation qφ(z|x) to
the posterior with learnable parameters φ, to construct a
lower bound on the log marginal likelihood:

log pθ(x) ≥ log pθ(x)− KL(qφ(z|x) || p(z|x)) (1)
= Eqφ [log pθ(x|z)]− KL(qφ(z|x) || p(z))

(2)

=: −F(θ, φ) (3)

This bound is known as the evidence lower bound
(ELBO) and F is referred to as the variational free en-
ergy. In equation (2), the first term represents the re-
construction error, and the second term is the Kullback-
Leibler (KL) divergence from the approximate posterior
to the prior distribution, which acts as a regularizer. In
this paper we consider variational autoencoders (VAEs),
where both pθ(x|z) and qφ(z|x) are distributions whose
parameters are given by neural networks. The param-
eters θ and φ of the generative model and inference
model, respectively, are trained jointly through stochastic
minimisation of F which can be made efficient through
the reparameterization trick [Kingma and Welling, 2013,
Rezende et al., 2014].

From equation (1) we see that the better the variational
approximation to the posterior the tighter the ELBO. The
simplest, but probably most widely used choice of vari-
ation distribution qφ(z|x) is diagonal-covariance Gaus-
sians of the form N (µµµ(x), σσσ2(x)) However, with such
simple variational distributions the ELBO will be fairly
loose, resulting in biased maximum likelihood estimates
of the model parameters θ (see Fig. 2) and harming gen-
erative performance. Thus, for variational inference to
work well, more flexible approximate posterior distribu-
tions are needed.

Figure 1: Since the ELBO is only a lower bound on the
log marginal likelihood, they do not share the same local
maxima. The looser the ELBO is the more this can bias
maximum likelihood estimates of the model parameters.

2.1 NORMALIZING FLOWS

Rezende and Mohamed [2015] propose a way to con-
struct more flexible posteriors by transforming a sim-
ple base distribution with a series of invertible transfor-
mations (known as normalizing flows) with easily com-
putable Jacobians. The resulting transformed density af-
ter one such transformation f is as follows [Tabak and
Turner, 2013, Tabak and Vanden-Eijnden, 2010]:

p1(z′) = p0(z)

∣∣∣∣det

(
∂f(z)

∂z

)∣∣∣∣
−1
, (4)

where z′ = f(z), z, z′ ∈ RD and f : RD 7→ RD is
an invertible function. In general the cost of computing
the Jacobian will be O(D3). However, it is possible to
design transformations with more efficiently computable
Jacobians.

This strategy is used in variational inference as fol-
lows: first, a stochastic variable is drawn from a simple
base posterior distribution such as a diagonal Gaussian
N (z0|µ(x),σ2(x)). The sample is then transformed
with a number of flows. After applying K flows, the
final latent stochastic variables are given by zK = fK ◦
. . . f2 ◦ f1(z0). The corresponding log-density is then
given by:

log qK(zK |x) = log q0(z0|x)

−
K∑

k=1

log

∣∣∣∣det

(
∂fk(zk−1;λk(x))

∂zk−1

)∣∣∣∣, (5)

where λk are the parameters of the k-th transforma-
tion. Given variational posterior qφ(z|x) = qK(z|x)
parametrized by a normalizing flow of length K, the vari-
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ational objective can be rewritten as:

F(θ, φ) = Eqφ [log qφ(z|x)− log pθ(x, z)] (6)
= Eq0 [log q0(z0|x)− log pθ(x, z)]

− Eq0

[
K∑

k=1

log

∣∣∣∣det

(
∂fk(zk−1;λk(x))

∂zk−1

)∣∣∣∣

]
.

(7)

Normalizing flows are normally used with amortized
variational inference. Instead of learning variational pa-
rameters for each data point, both µ and σ, as well as all
the flow parameters are outputs of a deep neural network
conditioned on x. This is referred to as the inference net-
work.

Rezende and Mohamed [2015] introduced a normalizing
flow, called planar flow, for which the Jacobian determi-
nant could be computed efficiently. A single transforma-
tion of the planar flow is given by:

z′ = z + uh(wT z + b). (8)

Here, u,w ∈ RD, b ∈ R and h is a suitable smooth ac-
tivation function. Rezende and Mohamed [2015] show
that for h = tanh, transformations of this kind are in-
vertible as long as uTw ≥ −1.

By the Matrix determinant lemma the Jacobian of this
transformation is given by:

det
∂z′

∂z
= det

(
I + uh′(wT z + b)wT

)

= 1 + uTh′(wT z + b)w, (9)

where h′ denotes the derivative of h and which can be
computed in O(D) time.

In practice, many planar flow transformations are re-
quired to transform a simple base distribution into a flex-
ible distribution, especially for high dimensional latent
spaces. Kingma et al. [2016] argue that this is related
to the term uh(wT z + b) in Eq. (8), which effectively
acts as a single-neuron MLP. In the next section we will
derive a generalization of planar flows, which does not
have a single-neuron bottleneck, while still maintaining
the property of an efficiently computable Jacobian deter-
minant.

3 SYLVESTER NORMALIZING
FLOWS

Consider the following more general transformation sim-
ilar to a single layer MLP with M hidden units and a
residual connection:

z′ = z + Ah(Bz + b), (10)

with A ∈ RD×M ,B ∈ RM×D, b ∈ RM , and M ≤ D.
The Jacobian determinant of this transformation can be
obtained using Sylvester’s determinant identity, which is
a generalization of the matrix determinant lemma.

Theorem 1 (Sylvester’s determinant identity). For all
A ∈ RD×M ,B ∈ RM×D,

det (ID + AB) = det (IM + BA) , (11)

where IM and ID are M and D-dimensional identity
matrices, respectively.

When M < D, the computation of the determinant of a
D ×D matrix is thus reduced to the computation of the
determinant of an M ×M matrix.

Using Sylvester’s determinant identity, the Jacobian de-
terminant of the transformation in Eq. (10) is given by:

det

(
∂z′

∂z

)
= det (IM + diag (h′(Bz + b)) BA) .

(12)
Since Sylvester’s determinant identity plays a crucial
role in the proposed family of normalizing flows, we will
refer to them as Sylvester normalizing flows.

3.1 PARAMETERIZATION OF A AND B

In general, the transformation in (10) will not be invert-
ible. Therefore, we propose the following special case of
the above transformation:

z′ = z + QRh(R̃QT z + b) = φ(z), (13)

where R and R̃ are upper triangular M ×M matrices,
and

Q = (q1 . . .qM )

with the columns qm ∈ RD forming an orthonormal set
of vectors. By theorem 1, the determinant of the Jacobian
J of this transformation reduces to:

det J = det
(
IM + diag

(
h′(R̃QT z + b)

)
R̃QTQR

)

= det
(
IM + diag

(
h′(R̃QT z + b)

)
R̃R

)
,

(14)

which can be computed in O(M), since R̃R is also up-
per triangular. The following theorem gives a sufficient
condition for this transformation to be invertible.

Theorem 2. Let R and R̃ be upper triangular matrices.
Let h : R −→ R be a smooth function with bounded,
positive derivative. Then, if the diagonal entries of R
and R̃ satisfy riir̃ii > −1/‖h′‖∞ and R̃ is invertible,
the transformation given by (13) is invertible.
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Proof. Case 1: R and R̃ diagonal

Recall that one-dimensional real functions with strictly
positive derivatives are invertible. The columns of
Q are orthonormal and span a subspace W =
span{q1, . . . ,qM} of RD. Let W⊥ denote its orthog-
onal complement. We can decompose z = z‖ + z⊥,
where z‖ ∈ W and z⊥ ∈ W⊥. Similarly we can decom-
pose z′ = z′‖ + z′⊥. Clearly, QRh(R̃QT z + b) ∈ W .
Hence φ only acts on z‖ and z⊥ = φ(z)⊥ = z′⊥. Thus,
it suffices to consider the effect of φ on z‖. Multiplying
(13) by QT from the left gives:

QT z′︸ ︷︷ ︸
v′

= QT z︸︷︷︸
v

+Rh(R̃ QT z︸︷︷︸
v

+b)

= (f1(v1), . . . , fM (vM ))T , (15)

where the vectors v and v′ are the respective coordi-
nates of z‖ and z′‖ w.r.t. q1, . . . ,qM . The dimen-
sions in (15) are completely independent and each di-
mension is transformed by a real function fi(v) = v +
riih(r̃iiv + bi). Consider a single dimension i of (15).
Since ‖h′‖∞riir̃ii > −1, we have f ′i(v) > 0 and thus
fi is invertible. Since all dimensions are independent and
the transformation is invertible in each dimension we can
find f−1 : W → W such that z‖ = f−1(z′‖). Hence we
can write the inverse of φ as:

φ−1(z′) = z′⊥︸︷︷︸
z⊥

+ f−1(z′‖)︸ ︷︷ ︸
z‖

= z, (16)

Case 2: R triangular, R̃ diagonal

Let us now consider the case when R is an upper triangu-
lar matrix. By the argument for the diagonal case above,
it suffices to consider the effect of the transformation in
W . Multiplying (13) by QT from the left gives:

QT z′︸ ︷︷ ︸
v′

= QT z︸︷︷︸
v

+Rh(R̃ QT z︸︷︷︸
v

+b) (17)

where the vectors v and v′ contain the respective coordi-
nates of z‖ and z′‖ w.r.t. q1, . . . ,qM . As in the diagonal
case consider the functions fi(v) = v + riih(r̃iiv + bi).
Since ‖h′‖∞riir̃ii > −1, we have f ′i(v) > 0 and thus fi
is invertible. Let us rewrite (17) in terms of fi:

v′1 = f1(v1) +

M∑

j=2

r1jh(r̃jjvj + bj) (18)

. . .

v′k = fk(vk) +

M∑

j=k+1

rkjh(r̃jjvj + bj) (19)

. . .

v′M = fM (vM ) (20)

Since fM is invertible we can write vM = f−1M (v′M ).
Now suppose we have expressed {vj ,∀j > k} in terms
of {v′j ,∀j > k}. Then

fk(vk) = v′k −
M∑

j=k+1

rkjh(r̃jjvj + bj)

︸ ︷︷ ︸
some function of {v′j ,∀j>k}

=: gk(v′k, v
′
k+1, . . . , v

′
M ) (21)

vk = f−1k (gk(v′k, v
′
k+1, . . . , v

′
M )).

Thus we have expressed {vj ,∀j ≥ k} in terms of
{v′j ,∀j ≥ k}. By induction, we can express {vj ,∀j}
in terms of {v′j ,∀j} and hence the transformation is in-
vertible.

Case 3: R and R̃ triangular

Now consider the general case when R̃ is triangular. As
before we only need to consider the effect of the trans-
formation inW .

QT z′︸ ︷︷ ︸
v′

= QT z︸︷︷︸
v

+Rh(R̃ QT z︸︷︷︸
v

+b) (22)

Let g be the function g(v) = R̃v. By assumption, g is
invertible with inverse g−1. Multiplying (22) by R̃ gives:

g(v′) = g(v) + R̃Rh(g(v) + b)︸ ︷︷ ︸
=:f(g(v))

(23)

Since R̃R is upper triangular with diagonal entries
r̃jjrjj , f is covered by case 2 considered before and is
invertible. Thus, v can be written as:

v = g−1(f−1(g(v′))). (24)

Hence the transformation in (22) is invertible.

3.2 PRESERVING ORTHOGONALITY OF Q

Orthogonality is a convenient property, mathematically,
but hard to achieve in practice. In this paper we consider
three different flows based on the theorem above and var-
ious ways to preserve the orthogonality of Q. The first
two use explicit differentiable constructions of orthogo-
nal matrices, while the third variant assumes a specific
fixed permutation matrix as the orthogonal matrix.

Orthogonal Sylvester flows. First, we consider a
Sylvester flow using matrices with M orthogonal
columns (O-SNF). In this flow we can choose M < D,
and thus introduce a flexible bottleneck. Similar to
[Hasenclever et al., 2017], we ensure orthogonality of
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Q by applying the following differentiable iterative pro-
cedure proposed by [Björck and Bowie, 1971, Kovarik,
1970]:

Q(k+1) = Q(k)

(
I +

1

2

(
I−Q(k)>Q(k)

))
. (25)

with a sufficient condition for convergence given by
‖Q(0)>Q(0) − I‖2 < 1. Here, the 2-norm of a matrix
X refers to ‖X‖2 = λmax(X), with λmax(X) repre-
senting the largest singular value of X. In our experi-
mental evaluations we ran the iterative procedure until
‖Q(k)>Q(k)−I‖F ≤ ε, with ‖X‖F the Frobenius norm,
and ε a small convergence threshold. We observed that
running this procedure up to 30 steps was sufficient to en-
sure convergence with respect to this threshold. To min-
imize the computational overhead introduced by orthog-
onalization we perform this orthogonalization in parallel
for all flows.

Since this orthogonalization procedure is differentiable,
it allows for the calculation of gradients with respect to
Q(0) by backpropagation, allowing for any standard op-
timization scheme such as stochastic gradient descent to
be used for updating the flow parameters.

Householder Sylvester flows. Second, we study
Householder Sylvester flows (H-SNF) where the orthog-
onal matrices are constructed by products of House-
holder reflections. Householder transformations are re-
flections about hyperplanes. Let v ∈ RD, then the re-
flection about the hyperplane orthogonal to v is given
by:

H(z) = z− vvT

‖v‖2 z (26)

It is worth noting that performing a single Householder
transformation is very cheap to compute, as it only re-
quires D parameters. Chaining together several House-
holder transformations results in more general orthog-
onal matrices, and it can be shown [Bischof and Sun,
1997, Sun and Bischof, 1995] that any M ×M orthogo-
nal matrix can be written as the product ofM−1 House-
holder transformations. In our Householder Sylvester
flow, the number of Householder transformations H is
a hyperparameter that trades off the number of parame-
ters and the generality of the orthogonal transformation.
Note that the use of Householder transformations forces
us to use M = D, since Householder transformation re-
sult in square matrices.

Triangular Sylvester flows. Third, we consider a tri-
angular Sylvester flow (T-SNF), in which all orthogo-
nal matrices Q alternate per transformation between the

identity matrix and the permutation matrix correspond-
ing to reversing the order of z. This is equivalent to al-
ternating between lower and upper triangular R̃ and R
for each flow.

3.3 AMORTIZING FLOW PARAMETERS

When using normalizing flows in an amortized inference
setting, the parameters of the base distribution as well as
the flow parameters can be functions of the data point x
[Rezende and Mohamed, 2015]. Figure 2 (left) shows a
diagram of one SNF step and the amortization procedure.
The inference network takes datapoints x as input, and
provides as an output the mean and variance of z0 such
that z0 ∼ N (z|µ0, σ0). Several SNF transformations are
then applied to z0 → z1 → . . . zK , producing a flexible
posterior distribution for zK . All of the flow parameters
(R, R̃ and Q for each transformation) are produced as
an output by the inference network, and are thus fully
amortized.

4 RELATED WORK

4.1 NORMALIZING FLOWS FOR
VARIATIONAL INFERENCE

A number of invertible transformations with tractable Ja-
cobians have been proposed in recent years. Rezende and
Mohamed [2015] first discussed such transformations in
the context of stochastic variation inference, coining the
term normalizing flows.

Rezende and Mohamed [2015] proposed two different
parametric families of transformations with tractable Ja-
cobians: planar and radial flows. While effective for
small problems, these transformations are hard to scale
to large latent spaces and often require a large number
of transformations. The transformation corresponding to
planar flows is given in Eq. (8).

More recently, a successful class of flows called Inverse
Autoregressive Flows was introduced in [Kingma et al.,
2016]. As the name suggests, one IAF transformation
can be seen as the inverse of an autoregressive transfor-
mation. Consider the following autoregressive transfor-
mation:

z0 = µ̄0 + σ̄0 · ε0
zi = µ̄i(z1:i−1) + σ̄i(z1:i−1) · εi, i = 1, . . . , D (27)

with ε ∼ N (0, I). This transformation models the dis-
tribution over the variable z with an autoregressive fac-
torization p(z) = p(z0)

∏D
i=1 p(zi|zi−1, . . . , z0). Since

the parameters of transformation for zi are dependent on
z1:i−1, this procedure requiresD sequential steps to sam-
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Figure 2: Different amortization strategies for Sylvester normalizing flows and Inverse Autoregressive Flows. Left:
our inference network produces amortized flow parameters. This strategy is also employed by planar flows. Right:
IAF has a large number of parameters, and introduces a measure of x dependence through a context h(x). This context
acts as an additional input for each transformation. The flow parameters themselves are independent of x.

ple a single vector z. This is undesirable for variational
inference, where sampling occurs for every forward pass.

However, the inverse transformation (which exists if
σ̄i > 0 ∀i) is easy to sample from:

εi =
zi − µ̄i(z1:i−1)

σ̄i(z1:i−1)
. (28)

For this inverse transformation, εi is no longer depen-
dent on the transformation of εj for j 6= i. Hence,
this transformation can be computed in parallel: ε =
(z − µ̄(z))/σ̄(z). Rewriting σi(z1:i−1) = 1/σ̄i(z1:i−1)
and µi(z1:i−1) = −µ̄(z1:i−1)/σ̄i(z1:i−1), yields the IAF
transformation:

zti = µti(z
t−1
1:i−1) + σti(z

t−1
1:i−1) · zt−1i , i = 1, ..., D.

(29)

Starting from z0 ∼ N (0, I), multiple IAF transforma-
tions can be stacked on top of each other to produce flex-
ible probability distributions.

If µt and σt depend on zt−1 linearly, IAF can model
full covariance Gaussian distributions. In order to move
away from Gaussian distributions to more flexible dis-
tributions, it is important that µt and σt are nonlinear
functions of zt−1.

In practice, wide MADEs [Germain et al., 2015] or deep
PixelCNN layers [van den Oord et al., 2016] are needed
to increase the flexibility of IAF transformations. This
results in transformations with a large number of pa-
rameters. As shown in Figure 2 (right), amortization is
achieved through a context h(x) that is fed into the au-
toregressive networks as an additional input at every IAF
step.

Our Triangular Sylvester flows are strongly related to
mean-only IAF transformations (σt = 1). As mentioned

in Kingma et al. [2016], between every IAF transforma-
tion the order of z is reversed, in order to ensure that on
average all dimensions get warped equally. In T-SNF, the
same effect is achieved by using the permutation matrix
that reverses the order of z in every other transforma-
tion as the orthogonal matrix. However, mean-only IAF
is a volume-preserving transformation, i.e. the determi-
nant of the Jacobian has absolute value one. T-SNF is
not volume preserving due to the nonzero elements on
the diagonals of R and R̃. Note, that in Kingma et al.
[2016] it was shown that the empirical difference in per-
formance between mean-only IAF and the general IAF
transformation is negligible.

The most important difference between IAF and T-SNF
is the way parameters are amortized. In T-SNF, R and R̃
are directly amortized functions of the input x (see Fig.
2). This is equivalent to amortizing the MADE parame-
ters in mean-only IAF. Having input dependent MADE
parameters allows for flexible transformations with fewer
parameters.

Householder Sylvester flows can also be seen as a
non-linear extension of Householder flows [Tomczak
and Welling, 2016]. Householder flows are volume-
preserving flows, which transform the variational pos-
terior with a diagonal covariance matrix to a full-
covariance posterior. Householder flows are a special
case of H-SNF if h(z) = z, R is the identity matrix,
and the residual connection in Eq. (13) is left out.

4.2 NORMALIZING FLOWS FOR DENSITY
ESTIMATION

A number of invertible transformations have been pro-
posed in the context of density estimation. Note that
density estimation requires the inverse of the flow to be
tractable. Having a provably invertible transformation is
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not the same as being able to compute the inverse.

For density estimation with normalizing flows, we are
interested maximizing the log-likelihood of the data:

log p(x) = log p0(f−1(x)) + log

∣∣∣∣det

(
∂f−1(x)

∂x

)∣∣∣∣ .
(30)

Thus, the goal is to transform a complicated data dis-
tribution back to a simple distribution. In general, both
directions of an invertible transformations need not be
tractable. Hence, methods developed for density estima-
tion are generally not directly applicable to variational
inference.

Non-linear independent component estimation (NICE,
Dinh et al. [2014]) and the related Real NVP [Dinh et al.,
2016], and Masked Autoregressive Flow (MAF, Papa-
makarios et al. [2017]) are recent examples of normal-
izing flows for density estimation.

In NICE, each transformation splits the variables into
two disjoint subsets zA, zB . One of the subsets is trans-
formed as z′A = zA + f(zB), while zB is left un-
changed. In the next transformation a different subset of
variables is transformed. This results in a transformation
which is trivially invertible and has a tractable Jacobian.
Real NVP uses the same fundamental idea. Appealingly,
because of the tractable inverse, NICE and real NVP
can generate data and estimate density with one forward
pass. However due to fact that only a subset of variables
is updated in each transformation many transformations
are needed in practice. Rezende and Mohamed [2015]
compared NICE to planar flows in the context of varia-
tional inference and found that planar flows empirically
perform better.

Finally, Papamakarios et al. [2017] showed that fitting an
MAF can be seen as fitting an implicit IAF from the data
distribution to the base distribution. However, generat-
ing data from an MAF density model requires D passes,
making it unappealing for variational inference.

5 NUMBER OF PARAMETERS

Here, we briefly compare the number of parameters
needed by planar flows, IAF and the three Sylvester nor-
malizing flows. We denote the size of the stochastic vari-
ables z with D, and the number of output units of the
inference network with E.

Planar flows use amortized parameters u,w ∈ RD and
b ∈ R for each flow transformation. Therefore, the num-
ber of parameters related to K flow transformations is
equal to 2EDK + EK.

For the implementation of IAF as described in Section 6,
the inference network needs to produce a context of size
C, where C denotes the width of the MADE layers. The
total number of flow related learnable parameters then
comes down to EC +K × (C2 + 3CD).

In the case of Orthogonal Sylvester flows with a bottle-
neck of size M , we require KE × (MD + 2M2 + M)
parameters. For Householder Sylvester flows with H
Householder reflections per flow transformation, KE ×
(HD + 2D2 + D) parameters are needed. Finally, for
triangular Sylvester flows KE × (2D2 +D) parameters
require optimization.

Planar flows require the smallest number of parameters
but generally result in worse results. IAFs on the other
hand require a number of parameters that is quadratic
in the width of the MADE layers. For good results this
has to be quite large. In contrast, for SNFs the number
of parameters is quadratic in the dimension of the latent
space and while large, this can still be amortized.

6 EXPERIMENTS

We perform empirical studies of the performance of
Sylvester flows on four datasets: statically binarized
MNIST, Freyfaces, Omniglot and Caltech 101 Silhou-
ettes. The baseline model is a plain VAE with a fully fac-
torized Gaussian distribution. We furthermore compare
against planar flows and Inverse Autoregressive Flows of
different sizes.

We use annealing to optimize the lower bound, where
the prefactor of the KL divergence is linearly increased
from 0 to 1 during 100 epochs as suggested by Bowman
et al. [2015] and Sønderby et al. [2016]. A learning rate
of 0.0005 was used in all experiments. In order to obtain
estimates for the negative log likelihood we used impor-
tance sampling (as proposed in [Rezende et al., 2014]).
Unless otherwise stated, 5000 importance samples were
used.

In order to assess the performance of the different flows
properly, we use the same base encoder and decoder ar-
chitecture for all models. We use gated convolutions and
transposed convolutions as base layers for the encoder
and decoder architecture respectively. The inference net-
work consists of several gated convolution layers that
produce a hidden unit vector. After being flattened, these
hidden units act as an input to two fully connected layers
that predict the mean and variance of z0.

For planar and Sylvester flows, the flattened hidden units
are passed to a separate linear layer that output the amor-
tized flow parameters. For IAF, the flattened hidden units
are also passed to a linear layer to produce the context
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vector hcontext(x). For details of the architecture see
Section A of the appendix. In all models the latent space
is of dimension 64.

4 8 16
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Figure 3: The negative evidence lower bound for static
MNIST. The results for H-SNF with 4 reflections per or-
thogonal matrix are left out for clarity, as they are very
similar to the results with 8 reflections. Each model is
evaluated 3 times. The shaded areas indicate± one stan-
dard deviation.

We use the following implementation for each IAF trans-
formation1: one IAF transformation first applies one
MADE Layer (denoted as MaskedLinear) followed by
a nonlinearity to the input z, upscaling it to a hidden
variable of size M . At this point the context vector
hcontext(x) is added to the hidden units, after which two
more masked layers are applied to produce the mean and
scale of the IAF transformation:

hz ← ELU(MaskedLinear(z))

h← hz + hcontext(x)

h← ELU(MaskedLinear(h))

µ← MaskedLinear(h), s← MaskedLinear(h)

z′ ← σ(s)� z + (1− σ(s))� µ. (31)

Here, σ( ) denotes the sigmoid activation function. In
Kingma et al. [2016] it was mentioned that the gated
form of IAF in Eq. (31) is more stable than the form
of Eq. (29). Note that the size of hcontext(x) scales with
the width of the MADE layers C.

1This implementation is based on the open source code for
IAF available at https://github.com/openai/iaf

Table 1: Negative log-likelihood and free energy (nega-
tive evidence lower bound) for static MNIST. Numbers
are produced with 3 runs per model with different ran-
dom initializations. Standard deviations over the 3 dif-
ferent runs are also shown.

Model -ELBO NLL

VAE 86.55± 0.06 82.14± 0.07
Planar 86.06± 0.31 81.91± 0.22
IAF 84.20± 0.17 80.79± 0.12
O-SNF 83.32± 0.06 80.22± 0.03
H-SNF 83.40± 0.01 80.29± 0.02
T-SNF 83.40± 0.10 80.28± 0.06

6.1 MNIST

Figure 3 shows the dependence of the negative evidence
lower bound (or free energy) on the number of flows and
the type of flow for static MNIST. The exact numbers
corresponding to the figure are shown in Section C in the
appendix.

For all models the performance improves as a functions
of the number of flows. For 4 flows the difference be-
tween the baseline VAE and planar flows is very small.
However, planar flows clearly benefit from more flow
transformations.

For IAF three different widths of the MADE layers were
used: C = 320, 640 and 1280. Surprisingly, for 4 flows
the widest IAF with 1280 hidden units is outperformed
by an IAF with 640 hidden units in the MADE layers.
We expect this to be due to the fact that this model has
more parameters and can therefore be harder to train, as
indicated by the larger standard deviation for this model.

All three Sylvester flows outperform IAF and planar
flows. For Orthogonal Sylvester flows, we show results
for M = 16 and M = 32 orthogonal vectors per or-
thogonal matrix, thus corresponding to bottlenecks of
size 16 and 32 respectively for a latent space of size
D = 64. Clearly, a larger bottleneck improves per-
formance. For Householder Sylvester flows we experi-
mented with H = 4 and H = 8 Householder reflections
per orthogonal matrix. Since the results were nearly in-
distinguishable between these two variants, we have left
out the curve for H = 4 to avoid clutter. O-SNF with
M = 32, H-SNF and T-SNF seem to perform on par.

In Table 1, the negative evidence lower bound and the
estimated negative log-likelihood are shown for the base-
line VAE, together with all flow models for 16 flows. The
reported result for IAF is for a MADE width of 1280.
The O-SNF model has a bottleneck of M = 32, and

400



Table 2: Results for Freyfaces, Omniglot and Caltech 101 Silhouettes datasets. For the Freyfaces dataset the results
are reported in bits per dim. For the other datasets the results are reported in nats. For each flow model 16 flows are
used. For IAF a MADE width of 1280 was used, and for O-SNF flow a bottleneck of M = 32 was used. For H-SNF 8
householder reflections were used to construct orthogonal matrices. For all datasets 3 runs per model were performed.

Model Freyfaces Omniglot Caltech 101
-ELBO NLL -ELBO NLL -ELBO NLL

VAE 4.53± 0.02 4.40± 0.03 104.28± 0.39 97.25± 0.23 110.80± 0.46 99.62± 0.74
Planar 4.40± 0.06 4.31± 0.06 102.65± 0.42 96.04± 0.28 109.66± 0.42 98.53± 0.68
IAF 4.47± 0.05 4.38± 0.04 102.41± 0.04 96.08± 0.16 111.58± 0.38 99.92± 0.30
O-SNF 4.51± 0.04 4.39± 0.05 99.00± 0.29 93.82± 0.21 106.08± 0.39 94.61± 0.83
H-SNF 4.46± 0.05 4.35± 0.05 99.00± 0.04 93.77± 0.03 104.62± 0.29 93.82± 0.62
T-SNF 4.45± 0.04 4.35± 0.04 99.33± 0.23 93.97± 0.13 105.29± 0.64 94.92± 0.73

H-SNF contains 8 Householder reflections per orthogo-
nal matrix. Again, all Sylvester flows outperform planar
flows and IAF, both in terms of the free energy and the
negative log-likelihood.

As discussed in Section 4, T-SNF is closely related to
mean-only IAF, but with the MADE parameters directly
amortized. The fact that T-SNF outperforms IAF indi-
cates that amortizing the parameters directly leads to a
more flexible transformation compared to taking a very
wide MADE with a data dependent context as an addi-
tional input.

6.2 FREYFACES, OMNIGLOT AND CALTECH
101 SILHOUETTES

We further assess the performance of the different mod-
els on Freyfaces, Omniglot and Caltech 101 Silhouettes.
The results are shown in Table 2. The model settings are
the same2 as those used for Table 1.

Freyfaces is a very small dataset of around 2000 faces.
All normalizing flows increase the performance, with
planar flows yielding the best result, closely followed by
Triangular and Householder Sylvester flows. We expect
planar flows to perform the best in this case since it is the
least sensitive to overfitting.

For Omniglot and Caltech 101 Silhouettes the results are
clearer, with the Sylvester normalizing flows family re-
sulting in the best performance. Both H-SNF and T-SNF
perform better than O-SNF. This could be attributed to
the fact that O-SNF has a bottleneck of M = 32 for a
latent space size of D = 64. The IAF scores for Cal-
tech 101 are surprisingly bad. We expect this could be
the case due to the large number of parameters that need
to be trained for IAF(1280). Therefore we also evaluated

2For Caltech 101 Silhouettes we used 2000 importance
samples for the estimation of the negative log-likelihood.

the result for MADEs of width 320 for 16 flows. The re-
sulting free energy and estimated negative log-likelihood
are 111.23 ± 0.45 and 99.74 ± 0.28 respectively, only
slightly improving on the results of 1280 wide IAFs.

7 CONCLUSION

We present a new family of normalizing flows: Sylvester
normalizing flows. These flows generalize planar flows,
while maintaining an efficiently computable Jacobian
determinant through the use of Sylvester’s determinant
identity. We ensure invertibility of the flows through
the use of orthogonal and triangular parameter matri-
ces. Three variants of Sylvester flows are investigated.
First, orthogonal Sylvester flows use an iterative pro-
cedure to maintain orthogonality of parameter matrices.
Second, Householder Sylvester flows use Householder
reflections to construct orthogonal matrices. Third, tri-
angular Sylvester flows alternate between fixed permu-
tation and identity matrices for the orthogonal matri-
ces. We show that the triangular Sylvester flows are
closely related to mean-only IAF, with directly amortized
MADE parameters. While performing comparably with
planar flows and IAF for the Freyfaces dataset, our pro-
posed family of flows improve significantly upon planar
flows and IAF on the three other datasets.
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Abstract

In this paper we introduce a novel holographic
memory model for the distributed storage of
complex association patterns and apply it to
knowledge graphs. In a knowledge graph, a la-
belled link connects a subject node with an ob-
ject node, jointly forming a subject-predicate-
objects triple. In the presented work, nodes
and links have initial random representations,
plus holistic representations derived from the
initial representations of nodes and links in
their local neighbourhoods. A memory trace
is represented in the same vector space as the
holistic representations themselves. To reduce
the interference between stored information,
it is required that the initial random vectors
should be pairwise quasi-orthogonal. We show
that pairwise quasi-orthogonality can be im-
proved by drawing vectors from heavy-tailed
distributions, e.g., a Cauchy distribution, and,
thus, memory capacity of holistic representa-
tions can significantly be improved. Further-
more, we show that, in combination with a
simple neural network, the presented holistic
representation approach is superior to other
methods for link predictions on knowledge
graphs.

1 INTRODUCTION

An associative memory is a key concept in artificial in-
telligence and cognitive neuroscience for learning and
memorizing relationships between entities and concepts.
Various computational models of associative memory
have been proposed, see, e.g., [Hopfield 1982; Gentner
1983]. One important family of associative memory

∗yunpu.ma@siemens.com

models is the holographic associative memory (HAM),
which was first proposed in [Gabor 1969]. HAMs can
store a large number of stimulus-response pairs as ad-
ditive superpositions of memory traces. It has been
suggested that this holographic storage is related to the
working principle of the human brain [Westlake 1970].

An important extension to the HAM is based on holo-
graphic reduced representations (HRR) [Plate 1995]. In
HRR, each entity or symbol is represented as a vector
defined in a continuous space. Associations between two
entities are compressed in the same vector space via a
vector binding operation; the resulting vector is a mem-
ory trace. Two associated entities are referred to as a
cue-filler pair, since a noisy version of the filler can be
recovered from the memory trace and the cue vector via
a decoding operation. Multiple cue-filler pairs can be
compressed in a single memory trace through superposi-
tion. Associations can be read out from this single trace,
however with large distortions. Thus, a clean-up mech-
anism was introduced into HRR, such that associations
can be retrieved with high probability.

The number of associations which can be compressed in
a single trace is referred to as memory capacity. It has
been shown in [Plate 1995] that the memory capacity of
the HRR depends on the degree of the pairwise orthogo-
nality of initial random vectors associated with the enti-
ties.

Quasi-orthogonality was put forward in [Diaconis et al.
1984; Hall et al. 2005]. They informally stated that
“most independent high-dimensional random vectors are
nearly orthogonal to each other”. A rigorous mathemat-
ical justification to this statement has only recently been
given in [Cai et al. 2012; Cai et al. 2013], where the den-
sity function of pairwise angles among a large number of
Gaussian random vectors was derived. To the best of our
knowledge, density functions for other distributions have
not been derived, so far. As a first contribution, we will
derive a significantly improved quasi-orthogonality, and
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we show that memory capacity of holographic represen-
tations can significantly be improved. Our result could
potentially have numerous applications, e.g., in sparse
random projections or random geometric graphs [Pen-
rose 2003].

After the HRR had been proposed, it had mainly been
tested on small toy datasets. Quasi-orthogonality be-
comes exceedingly important when a large amount of
entities needs to be initialized with random vectors, as
in applications involving large-scale knowledge graphs.

Modern knowledge graphs (KGs), such as FREE-
BASE [Bollacker et al. 2008], YAGO [Suchanek et al.
2007], and GDELT [Leetaru et al. 2013], are relational
knowledge bases, where nodes represent entities and di-
rected labelled links represent predicates. An existing
labelled link between a head node (or subject) and a tail
node (or object) is a triple and represents a fact, e.g. (Cal-
ifornia, locatedIn, USA).

As a second contribution, we demonstrate how the holo-
graphic representations can be applied to KGs. First, one
needs to define association pairs (or cue-filler pairs). We
propose that the representation of a subject should en-
code all predicate-object pairs, such that given the pred-
icate representation as a cue, the object should be recov-
ered or at least recognized. Similarly, the representation
of an object should encode all predicate-subject pairs,
such that the subject can be retrieved after decoding with
the predicate representation. We call those representa-
tions holistic, since they are inspired by the semantic
holism in the philosophy of language, in the sense that
an abstract entity can only be comprehended through its
relationships to other abstract entities.

So far we have discussed memory formation and mem-
ory retrieval. Another important function is the general-
ization of stored memory to novel facts. This has tech-
nical applications and there are interesting links to hu-
man memory. From a cognitive neuroscientist point of
view, the brain requires a dual learning system: one is
the hippocampus for rapid memorization, and the other
is the neocortex for gradual consolidation and compre-
hension. This hypothesis is the basis for the Complemen-
tary Learning System (CLS) which was first proposed in
[McClelland et al. 1995]. Connections between KGs and
long-term declarative memories has recently been stated
in [Tresp et al. 2017a; Ma et al. 2018; Tresp et al. 2017b].

As a third contribution of this paper, we propose a
model which not only memorizes patterns in the train-
ing datasets through holistic representations, but also is
able to infer missing links in the KG, by a simple neu-
ral network that uses the holistic representations as in-
put representations. Thus, our model realizes a form of

a complementary learning system. We compare our re-
sults on multiple datasets with other state-of-the-art link
prediction models, such as RESCAL [Nickel et al. 2011;
Nickel et al. 2012], DISTMULT [Yang et al. 2014], COM-
PLEX [Trouillon et al. 2016], and R-GCN [Schlichtkrull
et al. 2018].

The above mentioned learning-based methods model the
KGs by optimizing the latent representaions of entities
and predicates through minimizing the loss function. It
had been observed that latent embeddings are suitable for
capturing global connectivity patterns and generalization
[Nickel et al. 2016a; Toutanova et al. 2015], but are not
as good in memorizing unusual patterns, such as patterns
associated with locally and sparsely connected entities.
This motivates us to separate the memorization and in-
ference tasks. As we will show in our experiments, our
approach can, on the one hand, memorize local graph
structures, but, on the other hand, also generalizes well
to global connectivity patterns, as required by comple-
mentary learning systems.

Note, that in our approach holistic representations are
derived from random vectors and are not learned from
data via backpropagation, as in most learning-based
approaches to representation learning on knowledge
graphs. One might consider representations derived from
random vectors to be biologically more plausible, if com-
pared to representations which are learned via complex
gradient based update rules [Nickel et al. 2016a]. Thus,
in addition to its very competitive technical performance,
one of the interesting aspects of our approach is its bio-
logical plausibility.

In Section 2 we introduce notations for KGs and embed-
ding learning. In Section 3 we discuss improved quasi-
orthogonality by using heavy-tailed distributions. In Sec-
tion 4 we propose our own algorithm for holistic repre-
sentations, and test it on various datasets. We also dis-
cuss how the memory capacity can be improved. In Sec-
tion 5 we propose a model which can infer implicit links
on KGs through holistic representations. Section 6 con-
tains our conclusions.

2 REPRESENTATION LEARNING

In this section we provide a brief introduction to repre-
sentation learning in KGs, where we adapt the notation
of [Nickel et al. 2016b]. Let E denotes the set of entities,
and P the set of predicates. Let Ne be the number of
entities in E , and Np the number of predicates in P .

Given a predicate p ∈ P , the characteristic function φp :
E × E → {1, 0} indicates whether a triple (·, p, ·) is true
or false. Moreover, Rp denotes the set of all subject-
object pairs, such that φp = 1. The entire KG can be
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written as χ = {(i, j, k)}, with i = 1, · · · , Ne, j =
1, · · · , Np, and k = 1, · · · , Ne.
We assume that each entity and predicate has a unique
latent representation. Let aei , i = 1, · · · , Ne, be the
representations of entities, and api , i = 1, · · · , Np, be
the representations of predicates. Note that aei and api
could be real- or complex-valued vectors/matrices.

A probabilistic model for the KG χ is defined as
Pr(φp(s, o) = 1|A) = σ(ηspo) for all (s, p, o)-triples
in χ, where A = {aei}Nei ∪ {api}

Np
i denotes the collec-

tion of all embeddings; σ(·) denotes the sigmoid func-
tion; and ηspo is the a function of latent representations,
as, ap and ao. Given a labeled dataset containing both
true and false triples D = {(xi, yi)}mi=1, with xi ∈ χ,
and yi ∈ {1, 0}, latent representations can be learned.
Commonly, one minimizes a binary cross-entropy loss

− 1

m

m∑

i=1

(yi log(pi) + (1− yi) log(1− pi)) + λ||A||22,

(1)
where m is the number of training samples, and λ is the
regularization parameter; pi := σ(ηxi) with σ(·) being
the sigmoid function. ηspo is defined differently in vari-
ous models.

For instance, for RESCAL entities are represented as
r-dimensional vectors, aei ∈ Rr, i = 1, · · · , Ne, and
predicates are represented as matrices, api ∈ Rr×r, i =
1, · · · , Np. Moreover, one uses ηspo = aᵀsapao.

For DISTMULT, aei ,apj ∈ Rr, with i = 1, · · · , Ne, j =
1, · · · , Np; ηspo = 〈as,ap,ao〉, where 〈·, ·, ·〉 denotes
the tri-linear dot product.

For COMPLEX, aei ,apj ∈ Cr, with i = 1, · · · , Ne,
j = 1, · · · , Np; ηspo = <(〈as,ap, āo〉), where the bar
denotes complex conjugate, and < denotes the real part.

3 DERIVATION OF
ε-ORTHOGONALITY

As we have discussed in the introduction, quasi-
orthogonality of the random vectors representing the en-
tities and the predicates is required for low interference
memory retrieval. In this section we investigates the
asymptotic distribution of pairwise angles in a set of in-
dependently and identically drawn random vectors. In
particular, we study random vectors drawn from either a
Gaussian or a heavy-tailed Cauchy distribution distribu-
tion. A brief summary of notations is referred to the A.7.
First we define the term “ε-orthogonality”.
Definition 1. A set of n vectors x1, · · · ,xn is said to
be pairwise ε-orthogonal, if |〈xi,xj〉| < ε for i, j =
1, · · · , n, i 6= j.

Here, ε > 0 is a small positive number, and 〈·, ·〉 denotes
the inner product in the vector space.

3.1 ε-ORTHOGONALITY FOR A GAUSSIAN
DISTRIBUTION

In this section we revisit the empirical distribution
of pairwise angles among a set of random vec-
tors. More specifically, let X1, · · · ,Xn be indepen-
dent q-dimensional Gaussian variables with distribution
N (0, Iq). Denote with Θij the angle between Xi and
Xj , and ρij := cos Θij ∈ [−1, 1]. [Cai et al. 2012;
Muirhead 2009] derived the density function of ρij in
the following Lemma.

Lemma 1. Consider ρij as defined above. Then
{ρij |1 < i < j ≤ n} are pairwise i.i.d. random vari-
ables with the following asymptotic probability density
function

g(ρG) =
1√
π

Γ( q2 )

Γ( q−1
2 )

(1− ρ2
G)

q−3
2 , |ρG| < 1, (2)

with fixed dimensionality q.

[Cai et al. 2013] also derived the following Theorem 1.

Theorem 1. Let the empirical distribution µn of pair-
wise angles Θij , 1 ≤ i < j ≤ n be defined as µn :=

1

(n2)

∑
1≤i<j≤n

δΘij . With fixed dimension q, as n → ∞,

µn converges weakly to the distribution with density

h(θ) =
1√
π

Γ( q2 )

Γ( q−1
2 )

(sin θ)q−2, θ ∈ [0, π]. (3)

From the above distribution function we can derive the
upper bound of quasi-orthogonal random vectors with
pairwise ε-orthogonality in the Euclidean space Rq .
Corollary 1. Consider a set of independent q-
dimensional Gaussian random vectors which are pair-
wise ε-orthogonal with probability 1−ν, then the number
of such Gaussian random vectors is bounded by

N ≤ 4

√
π

2q
e
ε2q
4

[
log

(
1

1− ν

)] 1
2

. (4)

The derivation is given in A.1. Due to the symmetry of
density function g(ρG), we immediately have E[ρG] =
0, moreover, E[θ] = π

2 . However, for the later use, it is
important to consider the expected absolute value of ρG:

Corollary 2. Consider a set of n q-dimensional random
Gaussian vectors, we have

λG := E[|ρG|] =

√
2

πq
. (5)
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Figure 1: Empirical pairwise angle distribution in a set
of Gaussian random vectors (green) is compared with
theoretical prediction Eq. 2 (magenta); Empirical pair-
wise angle distribution in a set of Cauchy random vectors
(blue) is compared with prediction Eq. 6 (red)

Figure 2: Compare λG and λC from simulation and the-
ory, see Eq. 5 and Eq. 9.

Note, that the quantity π
2 − arccosE[|ρG|] has a clear

geometrical meaning: It indicates the expected deviation
from π

2 of pairwise angles. In fact, in the extreme case
when q → ∞, the deviation converges to 0 with the rate√
q.

3.2 ε-ORTHOGONALITY FOR A CAUCHY
DISTRIBUTION

In this subsection, we show that the set of random vectors
whose elements are initialized with a heavy-tailed distri-
bution, e.g., a Cauchy distribution C (0, 1), has improved
ε-orthogonality. The intuition is as follows: Consider a
set of q-dimensional random vectors initialized with a
heavy-tailed distribution. After normalization, each ran-
dom vector can be approximated by only the elements
which significantly deviate from zero and were drawn
from the heavy tails. If the number of those elements
is k with k � q, then there are at most

(
q
k

)
orthogonal

random vectors.

Moreover,
(
q
k

)
≈ qk

kΓ(k) could be much larger than

4

√
π
2q e

ε2q
4 from Eq. 4, when q is sufficiently large, k �

q, and ε → 0. In other words, under stricter quasi-
orthogonality condition with smaller ε, random vectors
drawn from a heavy-tailed distribution could have more
pairs satisfying the quasi-orthogonality condition.

Consider a set of q-dimensional Cauchy random vectors.
As q →∞ the approximate density function of ρij , with
1 ≤ i < j ≤ n is described in the following conjecture.

Conjecture 1. Let X1, · · · ,Xn be independent q-
dimensional random vectors whose elements are inde-
pendently and identically drawn from Cauchy a distribu-
tion C(0, 1). Moreover, consider the angle Θij between
Xi, and Xj . Then, as q →∞, ρij := cos Θij ∈ [−1, 1],
1 ≤ i < j ≤ n are pairwise i.i.d. with a density function
approximated by

g(ρC) = − 2

π2q2ρ3
C

· 1

z
3
2

[
e

1
πz Ei

(
− 1

πz

)]
, (6)

where z := 1
q2

(
1
ρ2C
− 1
)

, and the exponential integral

Ei(x) is defined as Ei(x) = −
∞∫
−x

e−t

t dt.

The intuition behind the conjecture is as follows. Sup-
pose X = (X1, · · · , Xq) and Y = (Y1, · · · , Yq) are
random vector variables, and assume that elements of X
and Y are independently Gaussian distributed. In order
to derive g(ρX,Y) in Lemma 1, [Cai et al. 2012; Muir-
head 2009] compute the distribution function for α

ᵀ·X
||X||

instead, where αᵀα = 1. In particular, they assume
that α = (1, 0, · · · , 0). The underlying reason for this
assumption is that the random vector X

||X|| is uniformly
distributed on the (q − 1)-dimensional sphere.

Here, elements of X and Y are independently Cauchy
distributed. We derive the approximation in Eq. 6 under
the same assumption by taking g(ρX,Y) ≈ X1√

X2
1+···+X2

q

.

Furthermore, we introduce a new variable zX,Y :=
1
q2

(
1

ρ2X,Y
− 1
)

= 1
q2
X2

2+···+X2
q

X2
1

, and derive the den-

sity function ĝ(zX,Y) by using the generalized central
limit theorem [Gnedenko et al. 1954] and properties of
quotient distributions of two independent random vari-
ables. g(ρX,Y) can be directly obtained from ĝ(zX,Y)
by a variable transform. More details and derivation are
referred to the A.2.

We turn to study the limiting behaviour of the density
function when ρ approaches zero. In this case, the vari-
able z defined in in Conjecture 1 can be approximated by
z ≈ 1

q2ρ2C
. Using properties of the exponential integral,

as q →∞, the density function in Eq. 6 can be approxi-
mated by its Laurent series,

g(ρC) ≈ 2

πqρ2
C

− 2

q3ρ4
C

+
4π

q5ρ6
C

+O
(

1

q7ρ8
C

)
(7)

In the following corollary we give the upper bound of the
number of pairwise ε-orthogonal Cauchy random vectors
using Eq. 6.
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Corollary 3. Consider a set of independent q-
dimensional Cauchy random vectors which are pairwise
ε-orthogonal with probability 1 − ν, then the number of
such Cauchy random vectors is bounded by

N ≤
√
πεq

4

[
log

(
1

1− ν

)] 1
2

. (8)

Let us compare the prefactor of this upper bound for two

distributions: That is 4

√
π
2q e

ε2q
4 for the Gaussian distri-

bution, and
√

πεq
4 for the Cauchy distribution. Under

strict quasi-orthogonal conditions with arbitrarily small

but fixed ε > 0, for the dimension q � 2 3

√
1
πε2 we have

that
√

πεq
4 � 4

√
π
2q e

ε2q
4 ≈ 4

√
π
2q . It implies that in suffi-

ciently high-dimensional spaces, random vectors which
are independently drawn from a Cauchy distribution are
more likely to satisfy the pairwise ε-orthogonality condi-
tion - particularly when ε� 1.

Remark 1. For the later use, we define λC as λC :=
E[|ρC|] for the case of Cauchy distribution. However, no
simple analytic form is known for this integral. Thus we
use the following numerically stable and non-divergent
equation to approximate λC,

λC ≈ −
4q

π2

∫ 1

0

ρ

[
e
q2ρ2

π Ei

(
−q

2ρ2

π

)]
dρ. (9)

This simpler form is derived from Eq. 6 using the approx-
imation z ≈ 1

q2ρ2 .

Fig. 1 shows the empirical distribution of ρG in a set of
Gaussian random vectors (green) compared with theo-
retical prediction in Eq.2 (magenta); and the empirical
distribution of ρC in a set of Cauchy random vectors
(blue) compared with theoretical prediction (red). In the
case of Cauchy random vectors, the leading orders of the
Laurent expansion of Eq. 6 are used, see Eq. 7. For the
empirical simulation, 10000 random vectors with dimen-
sionality q = 2000 were drawn independently from ei-
ther a Gaussian or a Cauchy distribution.

In addition, in Fig. 2 we plot λG and λC as a function of q
in comparison with the theoretical predictions from Eq. 5
and Eq. 9, respectively, under the same simulation condi-
tion. It is necessary to emphasize that λC(q) < λG(q) for
all the dimensions q; this fact will be used to explain the
relatively high memory capacity encoded from Cauchy
random vectors.

In the Appendix, see Remark A 2, the distribution of ele-
ments from the normalized random variable X

||X|| is also
considered. In particular, for normalized Cauchy random
vector most of its elements are nearly zero, and it realizes
a sparse representation.

4 HOLISTIC REPRESENTATIONS FOR
KGS

4.1 HRR MODEL

First, we briefly review HRR. Three operations are de-
fined in HRR to model associative memories: encoding,
decoding, and composition.

Let a, b, c, and d be random vectors representing dif-
ferent entities. The encoding phase stores the associa-
tion between a and b in a memory trace a ∗ b, where
∗ : Rq × Rq → Rq denotes circular convolution, which

is defined as [a ∗ b]k =
q−1∑
i=0

aib(k−i) mod q .

A noisy version of b can be retrieved from the memory
trace, using the item a as a cue, with: b ≈ a ? (a ∗ b),
where ? : Rq × Rq → Rq denotes the circular correla-

tion 1. It is defined as [a ? b]k =
q−1∑
i=0

aib(k+i) mod q . In

addition, several associations can be superimposed in a
single trace via the addition operation: (a ∗ b) + (c ∗
d) + · · · .

4.2 HOLISTIC MODEL

Initially, each entity and predicate in a KG is associ-
ated with a q-dimensional normalized random vector,
which is then normalized. We denote them as r

G/C
ei ,

i = 1, · · · , Ne, and r
G/C
pi , i = 1, · · · , Np, respectively.

The superscript indicates from which distribution vector
elements are independently drawn, either the Gaussian
or Cauchy distribution. If there is no confusion, we may
omit the superscript.

Consider an entity ei. Let Ss(ei) = {(p, o)|φp(ei, o) =
1} be the set of all predicate-object pairs for which triples
(ei, p, o) is true and where ei is the subject. We store
these multiple associations in a single memory trace via
circular correlation and superposition:

hsei =
∑

(p,o)∈Ss(ei)
[Norm(rp ? ro) + ξrei ] , (10)

where Norm : Rq → Rq represents the normalization
operation 2, which is defined as Norm(r) := r

||r|| . More-
over, the hyper-parameter ξ > 0 determines the contri-
bution of the individual initial representation r.

1It uses the fact that a ? a ≈ δ, where δ is the identity
operation of convolution.

2In other sections, we may obviate Norm operator in the
equation for the sake of simplicity, since it can be shown that
the circular correlation of two normalized high-dimensional
random vectors are almost normalized.
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Note, that the same entity ei could also play the
role of an object. For instance, the entity Califor-
nia could be the subject in the triple (California, lo-
catedIn, USA), or the object in another triple (Paul,
livesIn, California). Thus, it is necessary to have an-
other representation to specify its role in the triples.
Consider the set of subject-predicate pairs So(ei) =
{(s, p)|φp(s, ei) = 1} for which triples (s, p, ei) are
true. These pairs are stored in a single trace via
hoei =

∑
(s,p)∈So(ei)

[Norm(rp ? rs) + ξrei ], where hoei is

the representation of the entity ei when it acts as an ob-
ject.

For the later generalization task, the overall holistic rep-
resentation for the entity ei is defined as the summation
of both representations, namely

hei = hsei + hoei . (11)

In this way, the complete neighbourhood information of
an entity can be used for generalization.

Furthermore, given a predicate pi, the holistic represen-
tation hpi encodes all the subject-object pairs in the set
S(pi) = {(s, o)|φpi(s, o) = 1} via

hpi =
∑

(s,o)∈S(pi)

[Norm(rs ? ro) + ξrpi ] . (12)

After storing all the association pairs into holistic fea-
tures of entities and predicates, the initial randomly as-
signed representations are not required anymore and can
be deleted. These representations are then fixed and not
trainable unlike other embedding models.

After encoding, entity retrieval is performed via a circu-
lar convolution. Consider a concrete triple (e1, p1, e2)
with unknown e2. The identity of e2 could be revealed
with the holistic representation of p1 and the holistic rep-
resentation of e1 as a subject, namely hp1 and hse1 . Then
retrieval is performed as hp1 ∗ hse1 . The associations can
be retrieved from the holography memory with low fi-
delity due to interference. Therefore, after decoding, a
clean-up operation is employed, as in the HRR model.
Specifically, a nearest neighbour is determined using co-
sine similarity. The pseudo-code for encoding holistic
representations is provided in A.6.

4.3 EXPERIMENTS ON MEMORIZATION

We test the memorization of complex structure on dif-
ferent datasets and compare the performance of different
models. Recall that Rp is the set of all true triples with
respect to a given predicate p. Consider a possible triple
(s,p, o) ∈ Rp. The task is now to retrieve the object en-
tity from holistic vectors hs and hp, and to retrieve the
subject entity from holistic vectors hp and ho.

As discussed, in retrieval, the noisy vector r′o = hp ∗ hs

is compared to the holistic representations of all entities
using cosine similarity, according to which the entities
are then ranked. In general, multiple objects could be
connected to a single subject-predicate pair. Thus, we
employ the filtered mean rank introduced in [Bordes et
al. 2013] to evaluate the memorization task.

We have discussed that the number of pairwise quasi-
orthogonal vectors crucially depends on the random ini-
tialization. Now we analyse, if the memory capacity de-
pends on the quasi-orthogonality of the initial represen-
tation vectors, as well. We perform memorization task on
three different KGs, which are FB15k-237 [Toutanova et
al. 2015], YAGO3 [Mahdisoltani et al. 2013], and a sub-
set of GDELT [Leetaru et al. 2013]. The exact statistics
of the datasets are given in Table. 1.

Table 1: Statistics of KGs

#D Na Ne Np

GDELT 497, 605 ≈ 73 6786 231
FB15k-237 301, 080 ≈ 20 14505 237
YAGO3 1, 089, 000 ≈ 9 123143 37

Recall that Ne and Np denote the number of entities and
predicates, respectively. Moreover, #D denotes the total
number of triples in a KG, and Na is the average num-
ber of association pairs compressed into holistic feature
vectors of entities, which can be estimated as #D

Ne
. Af-

ter encoding triples in a dataset into holistic features, fil-
tered mean rank is evaluated by ranking retrieved sub-
jects and objects of all triples. Filtered mean ranks on
three datasets with holistic representations encoded from
Gaussian and Cauchy distributions are displayed in Fig. 3
(a)-(c).

Cauchy holistic representations outperform Gaussian
holistic representations significantly when the total num-
ber of entities is large (see, Fig. 3(c) for YAGO3), or
the average number of encoded associations is large
(see, Fig. 3(a) for GDELT). This implies that quasi-
orthogonality plays an important role in holographic
memory. Improved quasi-orthogonality allows for more
entities to be initialized with quasi-orthogonal represen-
tations, which is very important for memorizing huge
KGs. In addition, it reduces the interference between as-
sociations. Moreover, Cauchy holistic features are intrin-
sically very sparse, making them an attractive candidate
for modeling biologically plausible memory systems.

4.4 CORRELATION VERSUS CONVOLUTION

On of the main differences between holistic representa-
tion and the holographic reduced representation is the
binding operation. In HRR, two vectors are composed
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(a) (b) (c)

Figure 3: Filtered MR vs. the dimensionality of holistic representations evaluated on dataset: (a) GDELT, (b) FB15k-
237, and (c) YAGO3. Blues lines denote holistic representations encoded from Gaussian random vectors, and green
lines denote holistic representations encoded from Cauchy random vectors. Lower values are preferred.

Figure 4: Filtered MR vs. the dimensionality of holis-
tic representations evaluated on the GDELT dataset with
Gaussian initialization.

via circular convolution, while in holistic representation,
they are composed via circular correlation.

Binding with convolution and correlation is compared in
Fig. 4. We report the filtered MR scores on the GDELT
dataset versus the dimensionality of holistic representa-
tions. It can be seen that binding with circular correlation
is significantly superior to convolution. Therefore, a non-
commutative compositional operator is essential for stor-
ing the directed structures of KG into holographic mem-
ory. A theoretical explanation is given in the A.4, along
with experimental results on other datasets.

4.5 HYPER-PARAMETER ξ

In the experiments so far, the optimal hyper-parameter
ξ is found via grid search. However, it is possible
to roughly estimate the range of the optimal hyper-
parameter ξ. Indeed, ξ strongly depends on λG or λC

and the average number of encoded association pairsNa.

So far, the deep relation between holographic memory
capacity and quasi-orthogonality has not been discussed
in the literature. In the original work on HRR, mem-
ory capacity and information retrieval quality are esti-
mated from the distribution of elements in random vec-
tors. In this section we give a plausible explanation from
the point of view of the pairwise angle distribution.

Consider a subject s. The predicate-object pair (p, o)

is stored in the holistic representation hs along with the
other Na − 1 pairs, such that

hs = ξNars + rp ? ro +

Na∑

i=2

rpi ? roi .

Suppose we try to identify the object in the triple (s,p, ·)
via hs and hp. After decoding, the noisy vector r′o =
hp ∗ hs should be recalled with ho, which is the holistic
representation of o. Let θr′o,ho denote the angle between
r′o and ho. The cosine function of this angle is again
defined as ρr′o,ho

:= cos θr′o,ho
.

In order to recall the object successfully, the angle be-
tween r′o and ho should be smaller than the expected ab-
solute angle between two arbitrary vectors, namely

θr′o,ho
< E[|θG/C|], (13)

This inequality first implies that the optimal ξ should be
a positive number. Given the definition of λG/C in Eq. 5
and 9, equivalently, Eq. 13 requires

ρr′o,ho
> λG/C. (14)

After some manipulations, a sufficient condition to rec-
ognize the object correctly is given by (see A.5)

ρr′o,ho >

ξ2N2
a − (ξ3N3

a + 2ξ2N3
a − ξ2N2

a + ξN2
a + ξN3

a )λG/C

ξ2N2
a +Na + 2ξN2

aλG/C +Na(Na − 1)λG/C

> λG/C. (15)

In the following, we verify this condition on the FB15k-
237 dataset. We consider one of the experimental set-
tings employed in the memorization task. The dimen-
sion of holistic features is q = 5200, with λG = 0.0111
computed from Eq. 5, and λC = 0.00204 from Eq. 9. For
Gaussian initialization, the optimum is found at ξ = 0.14
via grid search, while for Cauchy initialization, the opti-
mum is found at ξ = 0.05.
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(a) (b)

Figure 5: Analysis of the hyper-parameter ξ on the FB15k-237 dataset. (a): Approximation of ρr′o,ho
for Gaussian

initialization. Curves with Na = 10 (blue), Na = 20 (magenta) and their intersections with the retrieval threshold λG

are displayed. The red vertical line denotes the experimentally determined optimal ξ. Insert shows the curves with
ξ ∈ [−3, 3]. (b): Approximation of ρr′o,ho

for Cauchy initialization with Na = 10 (blue), and Na = 20 (magenta).
Rest remains the same.

To verify these optima, Fig. 5 (a) and (b) display the ap-
proximation of ρr′o,ho

(ξ,Na) as a function of ξ. 3 Its
intersection with λG/C is marked with a black dot. In
FB15k-237,Na is estimated to be 20, while, in general, a
KG could be quite imbalanced. Thus, ρr′o,ho(ξ,Na) with
Na = 10, and 20 are shown together for comparison.

In Fig. 5 (a) for Gaussian initialization, experimentally
determined optimal ξ (red vertical line) is found close to
the intersection of ρr′o,ho

(ξ,Na = 10) and threshold λG,
meaning that Gaussian holistic features tend to memo-
rize fewer association pairs. They can only map sparsely
connected graph structures into meaningful representa-
tions.

In Fig. 5 (b) for Cauchy initialization, however, the opti-
mal ξ is close to the intersection of ρr′o,ho(ξ,Na = 20)
and λC. Thus, Cauchy holistic features are more suit-
able to memorize a larger chunk of associations, mean-
ing that they are capable of mapping densely connected
graph structures into meaningful representations. All op-
tima are found near the intersection points instead of the
local maximum with ξ > 0. It indicates that, to maxi-
mize the memory capacity, the holistic features can only
store information with very low fidelity.

Table 2: Filtered recall scores on FB15k-237

Hits

Methods MR MRR @10 @3 @1

RESCAL 996 0.221 0.363 0.237 0.156
DISTMULT 254 0.241 0.419 0.263 0.155
COMPLEX 339 0.247 0.428 0.275 0.158

R-GCN 4 - 0.248 0.414 0.258 0.153

HOLNNG
5 235 0.285 0.455 0.315 0.207

HOLNNC 228 0.295 0.465 0.320 0.212

3The approximation of ρr′o,ho is the second term of Eq. 15

5 INFERENCE ON KG

5.1 INFERENCE VIA HOLISTIC
REPRESENTATION

In this section, we describe the model for inferring the
missing links in the KG. Recall the scoring function ηspo
defined in Sec. 2. Our model uses holistic representations
as input and generalizes them to implicit facts, by a two-
layer neural network 6. Formally, the scoring function is
given as follow:

ηspo =〈ReLU(hsW
e
1)We

2, ReLU(hpW
p
1)Wp

2,

ReLU(hoW
e
1)We

2〉, (16)

where 〈·, ·, ·〉 denotes tri-linear dot product; hs, ho are
the holistic representations for entities defined in Eq. 11,
hp is defined in Eq. 12.

Suppose that the holistic representations are defined in
Rq . Then We

1 ∈ Rq×h1 and We
2 ∈ Rh1×h2 are shared

weights for entities; Wp
1 ∈ Rq×h1 and Wp

2 ∈ Rh1×h2

are shared weights for predicates. We refer Eq. 16 as
HOLNN, a combination of holistic representations and a
simple neural network.

As an example, for training on FB15k-237, we take
q = 3600, h1 = 64, and h2 = 256. Note that only
weight matrices in the neural network are trainable pa-
rameters, holistic representations are fixed after encod-
ing. Thus, the total number of trainable parameters in
HOLNN is 0.48M , which is much smaller than COM-

4see [Schlichtkrull et al. 2018]
5G stands for Gaussian holistic features, and C for Cauchy

holistic features.
6Further experimental details are referred to A.8
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PLEX with 5.9M parameters, by assuming that the di-
mension of embeddings in the COMPLEX is 200.

To evaluate the performance of HOLNN for missing
links prediction, we compare it to the state-of-the-art
models on two datasets: FB15k-237, and GDELT. They
were split randomly in training, validation, and test sets.
We implement all models with the identical loss function
Eq. 1, and minimize the loss on the training set using
Adam as the optimization method. Hyper-parameters,
e.g., the learning rate, and l2 regularization, are opti-
mized based on the validation set.

We use filtered MR, filtered mean reciprocal rank
(MRR), and filtered Hits at n (Hits@n) as evaluation
metrics [Bordes et al. 2013]. Table 2 and Table 3 report
different metrics on the FB15k-237, and GDELT dataset,
respectively. It can be seen that HOLNN is superior to all
the baseline methods on both datasets with considerably
less trainable parameters. Moreover, HOLNNC consis-
tently outperforms HOLNNG, indicating that the mem-
ory capacity of holistic representations is important for
generalization.

Table 3: Filtered recall scores on GDELT

Hits

Methods MR MRR @10 @3 @1

RESCAL 212 0.202 0.396 0.225 0.107
DISTMULT 181 0.232 0.451 0.268 0.124
COMPLEX 158 0.256 0.460 0.295 0.146

HOLNNG 105 0.284 0.457 0.301 0.198
HOLNNC 102 0.296 0.471 0.315 0.210

5.2 INFERENCE ON NEW ENTITIES

In additional experiments, we show that HOLNN is capa-
ble of inferring implicit facts on new entities without re-
training the neural network. Experiments are performed
on FB15k-237 as follows. We split the entire FB15k-
237 dataset D into Dold and Dnew. In Dnew, the subjects
of triples are new entities which do not show up in Dold,
while objects and predicates are already seen in theDold.
Suppose our task is to predict implicit links between new
entities (subjects in Dnew) and old entities (entities in
Dold). Thus, we further split Dnew into Dtrain

new , Dvalid
new ,

and Dtest
new sets.

For embedding models, e.g., COMPLEX, after training
on Dold, the most efficient way to solve this task is to
adapt the embeddings of new entities on Dtrain

new , with
fixed embeddings of old entities. On the other hand,
for the HOLNN model, new entities obtain their holistic
representations via triples in the Dtrain

new set. These holis-
tic features are then fed into the trained two-layer neural
network. Table 4 shows filtered recall scores for predict-

ing links between new entities and old entities on Dtest
new,

with the number of new entities in Dnew being 300, 600,
or 900. COMPLEX and HOLNN with Cauchy holistic
features are compared.

There are two settings for the HOLNNC model. New en-
tities could be encoded either from holistic features of
old entities, or from random initializations of old en-
tities 7. We denote these two cases as HOLNNC(h)
and HOLNNC(r), respectively. It can be seen that
HOLNNC(r) outperforms HOLNNC(h) only to some
degree. It indicates that HOLNNC is robust to the noise,
making it generalizes well.

Table 4: Inference of new entities on FB15k-237

Number of New Entities

300 600 900
Methods MR MRR MR MRR MR MRR

COMPLEX 262 0.291 265 0.266 286 0.243
HOLNNC(h) 345 0.274 415 0.242 510 0.222
HOLNNC(r) 252 0.315 302 0.281 395 0.265

6 CONCLUSION

We have introduces the holistic representation for the
distributed storage of complex association patterns and
have applied it to knowledge graphs. We have shown
that interference between stored information is reduced
with initial random vectors which are pairwise quasi-
orthogonal and that pairwise quasi-orthogonality can
be improved by drawing vectors from heavy-tailed dis-
tributions, e.g., a Cauchy distribution. The experi-
ments demonstrated excellent performance on memory
retrieval and competitive results on link prediction.

In our approach, latent representations are derived from
random vectors and are not learned from data, as in most
modern approaches to representation learning on knowl-
edge graphs. One might consider representations derived
from random vectors to be biologically more plausible, if
compared to representations which are learned via com-
plex gradient based update rules. Thus in addition to its
very competitive technical performance, one of the inter-
esting aspects of our approach is its biological plausibil-
ity.

Outlook: Potential applications could be applying the
holistic encoding algorithm to Lexical Functional for
modeling distributional semantics [Coecke et al. 2010],
or graph convolutional network [Kipf et al. 2017] for
semi-supervised learning using holistic representations
as feature vectors of nodes on a graph.

7Recall that random initializations are actually deleted after
encoding. Here we use them just for comparison.
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Abstract

We propose practical algorithms for entrywise
`p-norm low-rank approximation, for p = 1
or p = 1. The proposed framework, which
is non-convex and gradient-based, is easy to
implement and typically attains better approx-
imations, faster, than state of the art.

From a theoretical standpoint, we show that
the proposed scheme can attain (1 + ")-
OPT approximations. Our algorithms are not
hyperparameter-free: they achieve the desider-
ata only assuming algorithm’s hyperparame-
ters are known apriori—or are at least approx-
imable. I.e., our theory indicates what problem
quantities need to be known, in order to get
a good solution within polynomial time, and
does not contradict to recent inapproximabilty
results, as in [46].

1 INTRODUCTION

We focus on the following optimization problem:

min
U2Rm⇥r,V 2Rn⇥r

|M � UV >|p, p 2 {1,1}. (1)

Here, M 2 Rm⇥n is a given input matrix of arbitrary
rank, r  {m, n} is the target rank, (U, V ) represent
the variables such that rank(UV >)  r, and | · |p de-
notes the p-th, entrywise, matrix norm. In words, (1) is
described as “finding the factors of the best rank-r ap-
proximation of M , with respect to the `p-norm”. We de-
note such optimal factors U? and V ?, and their product
X? = U?V ?>. We focus on p 2 {1,1}, since these in-
stances are the most common found in practice, beyond
the classic p = 2 (Frobenius) norm; we will use the terms
“Frobenius” and “`2” norm, interchangeably.

There are numerous applications where `1- / `1-norm
low rank approximations are useful in practice. First, the
`1-norm is more robust than the `2-norm, and is suited in
problem settings where Gaussian assumptions for noise
models may not apply. `1-norm low rank applications
include robust PCA applications [56, 6, 31, 32, 24, 57],
computer vision tasks such as background subtraction
and motion detection [52, 1, 38], detection of brain acti-
vation patterns [44], and detection of anomalous behav-
ior in dynamic networks [44]. 1

For the `1-norm version of (1), the problem cases are
only a few. [43] considers the special case of m = n and
r = min{m, n}� 1 as the problem of distance to robust
non-singularity. [22, 23] use the notion of `1-norm low
rank approximation for the maximal-volume concept in
approximation, as well as for the skeleton approximation
of a matrix. Finally, [17] identifies that (1) with p = 1
can be used for the recovery of a low-rank matrix from a
quantized M .

Despite the utility of (1), its solution is not straight-
forward. While (1) with `2-norm has a closed-form
solution via the Singular Value Decomposition (SVD),
the same does not hold for p 2 {1,1}. Addi-
tionally, it has been proved that actually finding the
exact solution to (1) can be exponentially complex:

1Closely related to the `1-norm low-rank approximation
is the problem of `1-norm subspace recovery [30]. Briefly,
it is well-known that, for p = 2 in (1), the SVD so-
lution is also the solution to the dual problem: U? =
argmaxU2Rm⇥r |U>M |2, subject to U>U = I . V ? is then
set as V ? = U?>M ; this can be easily proved due to the or-
thogonality of U? [20]. Motivated by this dual formulation,
`1-norm subspace recovery is defined as

U? = argmax
U2Rm⇥r

|U>M |1, subject to U>U = I.

Algorithmic solutions to this criterion are usually greedy [30],
even combinatorial [36, 37]. However, in this case, U? does
not necessarily resemble with that of (1) with p = 1 (up to
orthogonal rotations).
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[19] show that `1-norm low rank matrix approxima-
tion is NP-hard, even for r = 1; further, under the
exponential time hypothesis for 3SAT problems, [46]
provide a

⇣
1 + 1

log1+�(max{m,n})

⌘
-inapproximability re-

sult for some hard instances M , where � > 0 is
an arbitrary small constant. [17] proves the NP-
completeness of (1) for p = 1, using a reduction from
not-all-equal-3SAT.

The above restrict research to only approximations
of (1). To the best of our knowledge only the
works in [9, 46] present polynomial and provably
good approximation schemes: [46] focuses mostly
on the case of `1-norm, and proves the existence
of a O(log(min{m, n}) · poly(r))-approximation
scheme with O(nnz(M) + (m + n)poly(r))
computational complexity. [9] extends the ideas in
[46] for `p-norms, where p 2 [1,1]: there, the
authors describe a poly(r)-approximation with
O (poly(m, n)(r log max{m, n})r) computational
complexity. Both approaches are based on numerical
linear algebra and sketching techniques.

Apart from the above provable schemes, there are nu-
merous heuristics proposed for (1), with no rigorous ap-
proximation guarantees. Starting with `1-norm, [38] pro-
pose a coordinate descent algorithm for (1), where a se-
quence of alternating scalar minimization sub-problems
are solved using a (weighted) median filter; see also [29].
Previously to that work, [26, 27] follow a similar ap-
proach, where each sub-problem is solved using linear
or quadratic programming2. Inspired by [55], [13] pro-
pose a `1-norm version of the Wiberg method; the re-
sulting algorithm involves several matrix-matrix multi-
plications (even of size greater than the input matrix),
and the solution of linear programming criteria, per iter-
ation. Cabral et al. use Augmented Lagrange Multipli-
ers (ALM) method and handle the weighted `1-norm low
rank approximation problem in [5]; however, no non-
asymptotic convergence guarantees are provided. We
note that most of the above heuristics are designed to
handle missing data in M or the case of weighted fac-
torization; we plan to consider such cases for our future
research directions. For the `1-norm case, we mention
the recent work of Gillis et al. [17] that proposes a block
coordinate descent method that operates in an alternating
minimization fashion over subsets of variables in (1).

Our approach and main contributions: Inspired by the
recent advances on smooth non-convex optimization for
matrix factorization [47, 58, 51, 4, 42, 16, 40, 41, 35, 34,

2In [26, 27], there are some convergence guarantees for the
alternating optimization scheme; however, there are no results
w.r.t. whether we converge to a saddle point or local minimum,
nor results on the convergence rate.

50, 54, 15, 33], we study the application of alternating
gradient descent in (1). Despite its NP-hardness, this pa-
per follows a more optimistic course and works towards
deciphering the components/quantities that, if known a
priori, could lead to a (1 + ")-approximation for (1).

Our approach is based on two techniques from opti-
mization theory: (i) the smoothing technique for non-
smooth convex optimization by Nesterov [39, 12] (Sec-
tion 4), and (ii) the recent theoretical results on finding
the global minimum of matrix factorization problems us-
ing non-convex smooth methods (Section 3); see also ref-
erences above. Our theory relies on provably bounding
the objective function in `1- or `1-norm by its smoothing
counterpart (Sections 4), using the provable performance
of the non-convex algorithm (Section 3), and properly
setting up the input parameters (Section 5). Our guaran-
tees assume that we can at least approximate the optimal
function value of (1), and that the optimal low-rank so-
lution of the smoothed problem is well-conditioned; the
latter assumption is required for a good initialization to
be easily found. The above are summarized as:

• Under assumptions, we provide a polynomial ap-
proximation algorithm for p = {1,1} in (1) that
achieves a (1 + ✏)-approximation guarantee.

• We experimentally show that our scheme outper-
forms in practice state-of-the-art approaches.

There are several questions that remain open and need
further investigation. In Section 7, we discuss what are
the advantages and disadvantages of our approach and
point to possible future research directions.

2 NOTATION AND ASSUMPTIONS

Notation. For matrices X,Y 2 Rm⇥n, hX, Y i =
TR
�
X>Y

�
represents their inner product and X � Y

their Hadamard product. We represent matrix norms
as follows: |X|2 =

qPm
i=1

Pn
j=1 |Xij |2 denotes the

Frobenius (or `2-) norm, |X|1 =
Pm

i=1

Pn
j=1 |Xij | de-

notes the entrywise `1-norm, and |X|1 = maxi,j |Xij |
denotes the entrywise `1-norm. For the spectral norm,
we use �1(X); this also denotes the largest singular
value of X . For vectors, we use kxk2 to denote its Eu-
clidean `2-norm. For a differentiable function f(X) with
X = UV >, the gradient of f w.r.t. U and V isrf(X)V
and rf(X)>U , respectively.

Assumptions. For our discussion, we will need two well-
known notions of convex analysis: (restricted) strong
convexity and (restricted) Lipschitz gradient continuity.

Definition 2.1. Let f : Rm⇥n ! R be a convex differen-
tiable function. Then, f is (resp. restricted) gradient Lip-
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schitz continuous with parameter L if 8X, Y 2 Rm⇥n

(resp. 8X, Y 2 Rm⇥n that are at most rank-r):

f(Y )  f(X)+hrf (X) , Y �Xi+ L
2 |Y �X|22 . (2)

Definition 2.2. Let f : Rm⇥n ! R be convex and differ-
entiable. Then, f is (resp. restricted) µ-strongly convex
if 8X, Y 2 Rm⇥n (resp. 8X, Y 2 Rm⇥n that are at
most rank-r):

f(Y ) � f(X)+hrf (X) , Y �Xi+ µ
2 |Y �X|22 . (3)

3 BFGD FOR SMOOTH OBJECTIVES

Let us first succinctly describe the Bi-Factored Gradient
Descent (BFGD) algorithm [41], upon which our pro-
posal is based. BFGD is a non-convex gradient descent
scheme for smooth problems such as:

min
U2Rm⇥r,V 2Rn⇥r

f(UV >), (4)

where f is assumed to be convex, differentiable, and at
least have Lipschitz continuous gradients. Observe that
while f is convex w.r.t. to any input 2 Rm⇥n, motions
over U and V jointly lead to non-convex optimization.
Such approaches have a long history and different vari-
ants have been proposed for (4).

For the rest of this section, we denote X = UV > as the
result of the factorization. Also, let bX? be the optimal
point of (4): if rank( bX?) = r, then bX? = bX?

r ; oth-
erwise, denote its best rank-r approximation (w.r.t. the
`2-norm) as bX?

r .

Algorithm 1 Bi-factored gradient descent (BFGD)

1: Input: r, T , � (e.g., 1
4
), C > 0 (e.g., C = 1), bL.

2: Compute X0 := 1/bL · (�rf(0m⇥n)).
3: Set U0 2 Rm⇥r, V0 2 Rn⇥r s.t. X0 = U0V

>
0 , via SVD.

4: for i = 0 to T � 1 do
5: Set ⌘ such that: ⌘  C

15bL
����
h
Ui Vi

i>����
2

2
+3|rf(UiV >

i )|
2

.

6: • If f satisfies Definition 2.1: Rule 1

Ui+1

Vi+1

�
=


Ui

Vi

�
� ⌘


rf(UiV

>
i ) · Vi

rf(UiV
>

i )> · Ui

�

• If f satisfies Definitions 2.1-2.2: Rule 2
h
Ui+1

Vi+1

i
=
h
Ui

Vi

i
� ⌘

h rf(UiV
>

i )Vi + �Ui(U
>
i Ui � V >

i Vi)

rf(UiV
>

i )>Ui � �Vi(U
>
i Ui � V >

i Vi)

i

7: end for
8: Output: bX = UT V >

T .

The pseudocode for BFGD is provided in Algorithm 1
and obeys the following motions: (i) given a proper ini-

tialization X0 = U0V
>
0 , and (ii) a proper step size ⌘,3

BFGD applies iteratively Rule 1 if f satisfies only Defini-
tion 2.1, or Rule 2 if f also satisfies Definition 2.2. The
algorithm assumes an approximation of L—say bL and
see [4]—and a good initialization point (U0, V0). For a
more complete discussion of initialization (U0, V0), we
refer the reader to [4, 41]; we briefly discuss this issue in
Section 5.

An important issue in optimizing f over (U, V ) is the ex-
istence of non-unique possible factorizations for a given
X . We need a notion of distance to the low-rank solutionbX?

r over the factors. Similar to [51, 41], we focus on the
set of “equally-footed” factorizations:

bX ?
r =

n⇣
bU?, bV ?

⌘
: bU? 2 Rm⇥r, bV ? 2 Rn⇥r, bU? bV ?> = bX?

r ,

�i(bU?) = �i(bV ?) = �i( bX?
r )1/2, 8i 2 [r]

o
. (5)

Given a pair (U, V ), we define the distance to bX?
r as:

DIST
⇣
U, V ; bX?

r

⌘
= min

(bU?,bV ?)2 bX?
r

�����


U
V

�
�
"
bU?

bV ?

#�����
2

.

Algorithm 1 has local convergence guarantees, when f is
µ-strongly convex and has L-Lipschitz continuous gradi-
ents, according to the following theorem:4

Theorem 3.1 (Theorem 4.4 in [41]). Let  = L/µ. If the
initial point X0 = U0V

>
0 , satisfies DIST(U0, V0; X

?
r ) p

2·�r(X?
r )1/2

10 , then BFGD converges with rate O(1/T ):

f(UT V >T )� f(bU? bV ?>)  10·DIST(U0,V0; bX?
r )2

⌘T

4 CHARBONNIER APPROXIMATION
AND THE logsumexp FUNCTION

A key assumption in BFGD is that f is at least
once differentiable and has Lipschitz continuous gradi-
ents.Therefore, to connect BFGD with our original ob-
jective in (1), we will first approximate both the `1 and
`1 entrywise matrix norms by smooth functions that
have derivatives at least in two degrees. For similar
approaches in optimization where non-smooth functions
are substituted by smooth ones, we refer to the seminal
paper of Nesterov [39] and follow-up works [12, 28].

3In this work, we do not focus on the most efficient step
size selections: e.g., the step size considered in this work varies
per iteration, and it is less efficient than a constant step size
selection as in [4, 41]. However, in all cases, we could bound
the varying step size with one that is constant.

4In this work, we will borrow only the sublinear rate results
in [41], since that result alone is sufficient to lead to polynomial
algorithms for (1). Using the linear convergence rate result in
[41] is left for the extension of this work.
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Figure 1: `1-norm and its Charbonnier smooth approximations. Left and middle: Function values vs. input variable.
Right: Gradient approximation.

Approximating the entrywise `1-norm. For the ap-
proximation of the `1-norm, we will use the Charbonnier
loss function [7, 3], parameterized as follows:

h(x, ⌧) = ⌧ ·
 r⇣x

⌧

⌘2

+ 1� 1

!
. (6)

To illustrate how a good approximation is (6) to the `1-
norm, see Figure 1.

We now discuss about the matrix form of (6) and its prop-
erties. With a slight overload of notation, we define the
matrix version of (6) as follows:

h(X, ⌧) =

mX

i=1

nX

j=1

h(Xij , ⌧)

:= ⌧ ·
mX

i=1

nX

j=1

0
@
s✓

Xij

⌧

◆2

+ 1� 1

1
A . (7)

The distinction between scalar and matrix h will be ap-
parent from the text. Gradient and Hessian information
of h satisfy the following lemma; the proof is deferred to
the supp. material:

Lemma 4.1. For any X 2 Rm⇥n:

• rh(X, ⌧) = 1
⌧X � S 2 Rm⇥n, where S 2 Rm⇥n

and Sij := 2p
(Xij/⌧)2+1

,

• r2h(X, ⌧) = 1
⌧ I � Q 2 Rmn⇥mn, where Q 2

Rmn⇥mn and Qij := 2

((Xij/⌧)2+1)
3/2 .

The above lead to the following lemma; the proof is pro-
vided in the supp. material:

Lemma 4.2. Function h is a convex continuously differ-
entiable function and it has Lipschitz continuous gradi-
ents with constant 2

⌧ . Moreover:

|X|1 �mn⌧  h(X, ⌧)  |X|1.

An alternative to the Charbonnier approximation is the
Huber loss function with parameter ⌧ [25]:

h(x, ⌧) =

(
x2/2⌧, if |x|  ⌧
|x|� ⌧/2, otherwise.

(8)

Huber loss combines a `2-norm measure for small val-
ues of x and a `1-norm like measure for large x. Observe
in (8) that it is only first-order differentiable; thus any
computations involving second order derivatives cannot
be applied. On the other hand, the Charbonnier loss
function, which is also known as the “pseudo-Huber loss
function”, is a smooth approximation of the Huber loss
that ensures that derivatives are continuous for all de-
grees. W.l.o.g., we focus on the Charbonnier function.

Approximating the entrywise `1-norm. Following
similar procedure for the entrywise matrix `1-norm, we
will use the logsumexp function, defined as follows:

�(X, ⌧) = ⌧ · log

 Pm
i=1

Pn
j=1 e

Xij/⌧ + e
� Xij/⌧

2mn

!
(9)

Define matrices P, N 2 Rm⇥n such that: Pij = e
Xij/⌧+

e�Xij/⌧ and Nij = e
Xij/⌧ �e�Xij/⌧ . Then, the following

lemma defines the gradient and Hessian information of
the logsumexp function; see also the supp. material:

Lemma 4.3. For any X 2 Rm⇥n:

• r�(X, ⌧) = 1
Tr(1·P ) · N 2 Rm⇥n,

• r2�(X, ⌧) =

✓
diag(vec(P ))� vec(N)vec(N)>

Tr(1·P )

◆

⌧ ·Tr(1·P )
2 Rmn⇥mn

where diag(·) : Rmn ! Rmn⇥mn turns the vector in-
put to a diagonal matrix output, vec(·) : Rm⇥n ! Rmn

turns a matrix to a vector by “stacking” its columns, and
1 denotes the all-ones matrix.

Similar to the Charbonnier approximation, we get the
following lemma; the proof is in the supp. material:

417



Lemma 4.4. The logsumexp function � is a convex
continuously differentiable function and it has Lipschitz
continuous gradients with constant 1

⌧ . Moreover:

|X|1 � ⌧ log(2mn)  �(X, ⌧)  |X|1.

5 AN APPROXIMATE SOLVER FOR
`p-NORM LOW RANK
APPROXIMATION

The proposed schemes are provided in Algorithms 2-3,
and are based on Algorithm 1 as a sub-solver. In or-
der to hope for a good initialization, we consider the
smooth versions of (1), as described in Section 4, with
the added twist that we regularize further the objective
with a strongly convex component. I.e., we approximate
(1) for p = 1 with:

min
U2Rm⇥r,V 2Rn⇥r

h(M � UV >, ⌧) +
�

2
|UV >|22, (10)

and the case p =1 with

min
U2Rm⇥r,V 2Rn⇥r

�(M � UV >, ⌧) +
�

2
|UV >|22. (11)

This modification asserts that both (10)-(11) are strongly
convex w.r.t. X with parameter �; see also the proof of
Lemma 4.2. Observe that the smaller the � parameter is,
the less the “drift” from the original problem. We remind
that the optimal factors of (1) are U? and V ?, and their
product is denoted as X? = U?V ?>.

Algorithm 2 `1-norm low rank approximation solver

1: Parameters: r, OPT, values of |X?|22 and �r( bX?),
" > 0.

2: Set ⌧ = "·OPT
3mn .

3: Set function T = O
⇣
�r( bX?

r )
"OPT

⌘
.

4: Set � = 2"·OPT
3|X?|22

5: Compute bL = ( 1
⌧ + �).

6: Set f(UV >) := h(M � UV >, ⌧) + �
2 |UV >|22.

7: Run Algorithm 1 (UT , VT ) = BFGD(r, T, 1
4 , 1, bL).

Let us first focus on the case of `1-norm and Algorithm 2.
The following theorem states that, under proper config-
uration of algorithm’s hyperparameters, one can achieve
(1 + ")-OPT approximation guarantee.

Theorem 5.1. Let bX = UT V >T 2 Rm⇥n be the solution
of Algorithm 2. Let the optimal function value of (1) for
p = 1 be denoted as OPT := minU,V |M � UV >|1
and assumed known, or at least be approximable. Also,
assume we know �r( bX?) and |X?|22. For user defined

parameter " > 0 and setting the Charbonnier parameter
⌧ = "·OPT

3mn , and the strong convexity parameter as � =
2"·OPT
3|X?|22

, the pair (UT , VT ) of Algorithm 2 satisfies:

|M � UT V >T |1  (1 + ") · OPT,

after T = O
⇣
�r( bX?

r )
⇣

mn
("OPT)2

+ 1
kX?k22

⌘⌘
iterations.

The proof is provided in the appendix. In the case where
OPT is only approximable, straightforward modifica-
tions lead to similar performance (where higher number
of iterations required).

Analytical complexity: Let us denote the time to com-
pute rf(·) as tgrad. The initialization complexity of
Algorithm 1, as well as its per iteration complexity, is
O(tgrad + mnr), where the last term is due to either
low-rank SVD calculation or matrix-matrix multiplica-

tion. Running Algorithm 1 for T = O
⇣
�r( bX?

r )
"OPT

⌘
iter-

ations leads to an overall O
⇣
�r( bX?

r )
"OPT · (tgrad + mnr)

⌘

time complexity.

Similarly for the case of p = 1, we use the
logsumexp function in Algorithm 3 to smooth the ob-
jective, and we obtain the following guarantees:

Algorithm 3 `1-norm low rank approximation solver

1: Parameters: r, OPT, values of |X?|22 and �r( bX?),
" > 0.

2: Set ⌧ = "·OPT
3 log(2mn) .

3: Set function T = O
⇣
�r( bX?

r )
"OPT

⌘
.

4: Set � = 2"·OPT
3|X?|22

5: Compute bL = ( 1
⌧ + �).

6: Set f(UV >) := �(M � UV >, ⌧) + �
2 |UV >|22.

7: Run Algorithm 1 (UT , VT ) = BFGD(r, T, 1
4 , 1, bL).

Corollary 5.2. Let bX = UT V >T 2 Rm⇥n be the solution
of Algorithm 2. Let the optimal function value of (1) for
p = 1 be denoted as OPT := minU,V |M � UV >|1,
and assumed known, or be at least approximable. Also,
assume we know �r( bX?) and |X?|22. For user de-
fined approximation parameter " > 0 and setting the
logsumexp parameter ⌧ = "·OPT

3 log(2mn) , and the strong
convexity parameter as � = 2"·OPT

3|X?|22
, the pair (UT , VT )

of Algorithm 2 satisfies:

|M � UT V >T |1  (1 + ") · OPT,

after T = O
⇣
�r( bX?

r )
⇣

log(mn)

("OPT)2
+ 1
kX?k22

⌘⌘
iterations.

Similar analytical complexity can be derived for Algo-
rithm 3 and is omitted due to lack of space.
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Results of similar flavor (and under similar assumptions)
can be found in [28] for the problem of maximum flow.
There, the authors consider non-Euclidean gradient de-
scent algorithms for the minimization of `1-norm over
vectors, where the gradient step takes into consideration
the geometry of the non-smooth objective with the use of
sharp operators. We applied a similar approach for both
p 2 {1,1} in our setting; however, the empirical per-
formance was prohibitive to consider a similar approach
here (despite the fact that one can still achieve (1 + ")-
optimal approximation guarantees).

Some remarks regarding the above results.

Remark 1. Both algorithms require the knowledge of
three quantities: OPT, |X?|22 and �r( bX?). While finding
these values could be as difficult as the original problem
(1), these values do not need to be known exactly: in par-
ticular, the algorithms imply that “for sufficiently small
⌧ and � parameters, and for a sufficiently large number
of iterations T , we can find a good approximation”.

Remark 2. While finding the exact value of OPT is dif-
ficult, there are problem cases where this value could
be easily upper bounded. E.g., consider the problem
of low-rank matrix approximation from quantization,
as noted in [17]: there, we know from structure that
|M �X?|1 = OPT  0.5.

Remark 3. Finding a good initialization is a key as-
sumption for Theorem 5.1 and its corollary. Such as-
sumptions are made also in other non-convex matrix fac-
torization results; see [47, 58, 51, 4, 42, 16, 40, 41, 35,
34, 54, 15]. From [41], it is known that we can easily
compute such an initialization as the best rank-r approx-
imation of M w.r.t. the `2-norm, via SVD. In particu-
lar, such an initialization satisfies DIST(U0, V0; bX?) p

2·�r( bX?)1/2

10
p


, as long as f is strongly convex with condi-

tion number   1 + �r( bX?)2

4608·| bX?
r |22

. While this condition is

not easily met in theory (i.e., since  =
1
⌧+�

� , this means
that ⌧ should be large enough compared to �), our ex-
periments show that such an initialization performs well.

Remark 4. As a continuation of the above remark, the
reason we use the regularizer �

2 |UV >|22 is to turn the
smooth approximations into strongly convex functions
(and thus borrow results for initialization). In practice,
the proposed schemes work as well without the addition
of the regularizer; and thus, knowing a priori the quan-
tity |X?|22 is not necessary in practice.

Remark 5. The approach we follow somewhat resem-
bles with the approach proposed in [27]. There, the au-
thors consider (1) for p = 1 and propose an alternating
minimization scheme. Despite the similarities, there are
differences with our approach: among which, we per-
form a single gradient descent step on U and V per itera-

tion, for a smoothed version of (1), instead of minimizing
a quadratic programming formulation per each column
of U and V . On the contrary, [27] handles empirically
missing values and weighted low-rank matrix factoriza-
tion cases; we leave this direction for future research.

6 EXPERIMENTS

Our experiments include synthesized applications, in or-
der to highlight the empirical performance of the pro-
posed framework. We compare the algorithms in Section
5 (i) with the algorithms for `p-low rank approximation
in [9], and (ii) with the recent heuristic in [17] for `1-
low rank approximation.

Similarly to [9, 17] and in order to guarantee fair com-
parison, we follow in practice the “folklore” advice for
getting an initial estimate for the `p-norm problem in (1)
by beginning with the optimum `2-norm solution (i.e.,
with the low-rank SVD solution).

6.1 `1-norm approximation

We perform experiments on both real and synthetic
datasets. At first, we generate data according to the re-
cent ICML paper [9]: We use 20 ⇥ 30 random matri-
ces M , where each entry is a uniformly random value
in [0, 1]. Such constructions lead to full rank matrices
with high-probability. We also construct matrices M of
the same size with {±1} entries, each selected with 0.5
probability. For real datasets, similar to [9], we use the
FIDAP dataset5 and a word frequency dataset from UC
Irvine6. The FIDAP matrix M is 27 ⇥ 27 with 279 real
asymmetric non-zero entries. The word frequency ma-
trix M is 3430⇥ 6906 with 353, 160 non-zero entries.

For the synthesized datasets, we perform 10 Monte Carlo
instantiations and take the median error reported. For all
datasets, we are interested in computing the best rank-r
approximation of each M above, w.r.t. the `1-norm and
for r 2 {1, . . . , 10}. To compare with [9], we use their
suggestion and run a simplified version of Algorithm 2 in
[9], where we repeatedly sample r columns, uniformly at
random. We then run the `p-projection (see Lemma 1 in
[9]) on each sampled set and finally select the solution
with the smallest `p-error. For a fair contrast between
the algorithms, we first run our algorithm and measure
the required time; for approximately the same amount of
time, we run [9].7 To perform the `p-projection, we use

5http://math.nist.gov/MatrixMarket/
data/SPARSKIT/fidap/fidap005.html

6https://archive.ics.uci.edu/ml/
datasets/Bag+of+Words

7In all our experiments, we make sure the algorithm in [9]
runs at least the same time with our scheme.
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Figure 2: Top row: function value performance |M � UV >|1; Bottom row: corresponding execution time. In all
settings, we set problem (1) for r = {1, . . . , 10}. First column: M 2 [0, 1]20⇥30 where each entry is randomly
and independently generated. Second column: M 2 {�1, 1}20⇥30 where each entry is randomly and independently
generated. Third column: M 2 R27⇥27 is the FIDAP matrix. Fourth column: M 2 R3430⇥6906 is the word-frequency
matrix. In the latter case, the sub-solver for `p-projection was not able to complete the task, and thus the algorithm in
[9] is omitted.

CVX package [14].8

In our algorithm, we set ⌧ = � = 10�3, and the maxi-
mum number of iterations as T = 4 · 104. As mentioned
above, we use the SVD initialization, and the step size is
set according to Algorithm 1.

The results are provided in Figure 2. Some remarks: (i)
for the synthetic cases (two leftmost columns), we ob-
serve that our approach attains a better objective func-
tion, faster, compared to [9]. Both our work and [9] is
much slower than plain SVD; however, the latter gives
a worse solution. (ii) for the real case (two rightmost
columns), our approach is overall better in terms of ob-
jective function values; however, this is not universal;
there are cases where [9] (or even SVD) gets to a better
result within the same time, especially when r increases.
For the large matrix case, [9] with CVX do not scale well;
thus omitted.

6.2 `1-norm approximation

In this experiment, we follow the experimental setting
in [17]. We generate matrices M 2 R100⇥75 as fol-
lows: We generate fM = UV > where U 2 R100⇥r and
V 2 R75⇥r. Each U and V is generated i.i.d. from
N(0, 1). Given fM , we compute the rounded version of

8We are not aware of another standardized package for `p-
regression. To accelerate the execution of SeDuMi, we use the
lowest precision set up in CVX.

fM such as M = round(fM). This procedure guarantees
that, given M , there is a low-rank matrix fM that satisfies
|M � fM |1  0.5 (since this is an hard problem, this
construction gives an idea how far/close we are to a good
solution).

We repeat the above procedure for r = {1, . . . , 10} and
for 10 Monte Carlo instances. We report the minimum,
mean and median values of the objective function at-
tained and the time required. We compare our algorithms
with plain SVD and the heuristics in [17].

The results are reported in Table 1. Our findings show
that both our work and the algorithm in [17] perform
much better (in terms of quality of solution) than plain
SVD (the full set of results can be found in the appendix).
Further, the algorithm in [17] has time comparable to the
implementation of SVD in Matlab, while our proposed
algorithm is much slower; accelerating our proposed al-
gorithm is considered future research direction. How-
ever, while our algorithm does not succeed to find solu-
tions with small objective value (see minimum value in
table and compare our work with [17]), the median value
of objective function values over 10 problem instances is
lower than that of [17]. I.e., the “typical” achieved ob-
jective value is lower than that of [17].9

9We ran the algorithm in [17] for more time (repeatedly
within allowed time) and picked the best minimum result.
However, this did not improve the results of [17].
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[17]
Time (sec.) Error

Rank r [min, mean, median]

1 [6.81e-02, 2.24e-01, 2.28e-01] [4.91e-01, 4.93e-01, 4.93e-01]
2 [1.55e-02, 2.75e-02, 2.31e-02] [5.33e-01, 6.00e-01, 5.96e-01]
3 [2.42e-02, 5.89e-02, 4.59e-02] [5.22e-01, 5.63e-01, 5.44e-01]
4 [2.69e-02, 4.61e-02, 4.04e-02] [5.24e-01, 5.66e-01, 5.42e-01]
5 [4.67e-02, 3.36e-01, 1.48e-01] [5.04e-01, 5.36e-01, 5.26e-01]
6 [6.72e-02, 6.24e-01, 1.34e-01] [4.98e-01, 5.20e-01, 5.22e-01]
7 [5.46e-02, 8.91e-01, 5.47e-01] [4.90e-01, 5.14e-01, 5.11e-01]
8 [1.36e-01, 1.66e+00, 5.39e-01] [4.81e-01, 5.15e-01, 5.02e-01]
9 [1.90e-01, 2.91e+00, 2.56e+00] [4.73e-01, 4.98e-01, 4.89e-01]
10 [2.30e-01, 9.60e+00, 4.25e+00] [4.59e-01, 4.97e-01, 4.79e-01]

This work
Time (sec.) Error

Rank r [min, mean, median]

1 [2.57e-02, 4.32e+01, 5.44e+01] [4.99e-01, 5.82e-01, 5.01e-01]
2 [2.60e-02, 4.95e+01, 5.44e+01] [5.04e-01, 5.49e-01, 5.07e-01]
3 [5.20e+01, 5.43e+01, 5.42e+01] [5.06e-01, 5.10e-01, 5.10e-01]
4 [1.55e-02, 3.67e+01, 5.15e+01] [5.05e-01, 5.90e-01, 5.10e-01]
5 [4.17e-02, 7.92e+01, 8.93e+01] [5.07e-01, 5.33e-01, 5.13e-01]
6 [7.27e+01, 8.03e+01, 7.76e+01] [5.02e-01, 5.08e-01, 5.09e-01]
7 [1.62e-02, 5.11e+01, 6.52e+01] [5.08e-01, 5.84e-01, 5.08e-01]
8 [5.51e+01, 6.55e+01, 6.73e+01] [4.95e-01, 5.09e-01, 5.02e-01]
9 [5.36e+01, 5.89e+01, 5.77e+01] [4.78e-01, 5.06e-01, 5.06e-01]

10 [1.69e-02, 3.86e+01, 5.23e+01] [4.69e-01, 5.94e-01, 4.75e-01]

Table 1: Attained objective function values and execution time. Table includes minimum, mean and median values for
10 Monte Carlo instances.

7 CONCLUSION AND FUTURE WORK

We consider the problem of low-rank matrix approxima-
tion, w.r.t. (entrywise) `p-norms, and proposed two algo-
rithms that lead to (1 + ")-OPT approximations. Our
schemes combine ideas from smoothing techniques in
convex optimization, as well as recent non-convex gradi-
ent descent algorithms. Key assumption is that problem-
related quantities are known or at least are approximable.
Our experiments show that our scheme performs (at
least) competitively with state of the art.

We have provided several possible extensions of this
work. A particularly interesting open problem is that of
weighted low-rank matrix approximation:

min
U2Rm⇥r,V 2Rn⇥r

|W �
�
M � UV >

�
|p, p 2 {1,1},

where different assumptions on W lead to different open
research questions.
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Abstract

The stochastic multi-armed bandit is a well-
studied abstraction of decision making in the face
of uncertainty. We consider the setting in which
the number of bandit arms is much larger than the
possible number of pulls, and can even be infinite.
With the aim of minimising regret with respect
to an optimal arm, existing methods for this set-
ting either assume some structure over the set
of arms (Kleinberg et al., 2008, Ray Chowdhury
and Gopalan, 2017), or some property of the re-
ward distribution (Wang et al., 2008). Invariably,
the validity of such assumptions—and therefore
the performance of the corresponding methods—
depends on instance-specific parameters, which
might not be known beforehand.

We propose a conceptually simple, parameter-free,
and practically effective alternative. Specifically
we introduce a notion of regret with respect to the
top quantile of a probability distribution over the
expected reward of randomly drawn arms. Our
main contribution is an algorithm that achieves
sublinear “quantile-regret”, both (1) when it is
specified a quantile, and (2) when the quantile can
be any (unknown) positive value. The algorithm
needs no side information about the arms or about
the structure of their reward distributions: it re-
lies on random sampling to reach arms in the top
quantile. Experiments show that our algorithm
outperforms several previous methods (in terms of
conventional regret) when the latter are not tuned
well, and often even when they are.

1 INTRODUCTION

The stochastic multi-armed bandit (Berry and Fristedt, 1985)
is a well-studied abstraction of on-line learning. Each bandit
arm represents a slot-machine with a fixed (but unknown)
real-valued reward distribution. An experimenter is allowed

to pull an arm at every time instant and observe its reward.
The experimenter aims to maximise the total expected re-
ward obtained over a horizon, or equivalently, to minimise
the regret with respect to a strategy that always plays an
optimal arm. Side information regarding the bandit instance
may or may not be available to the experimenter.

Regret minimisation algorithms have to achieve a bal-
ance between exploration (gathering information about
the reward distributions of arms) and exploitation (pulling
seemingly-good arms). For a K-armed bandit, the optimal
regret that can be achieved after T pulls is Ω(

√
KT ) (Auer

et al., 2003). To achieve a regret of O(
√
KT ) (Audibert

and Bubeck, 2009), algorithms invariably have to maintain
separate statistics for the pulls coming from each arm (since
any of them could be the sole optimal arm).

In many modern applications of bandits, the set of arms that
can be pulled is very large, often even infinite. Examples
include (1) sensor networks, in which a central controller
must learn to deploy the most accurate sensor from among a
large number of noisy sensors (Kadono and Fukuta, 2014);
(2) crowd-sourcing tasks, in which a periodic task should
ideally be assigned to the most skilled worker in a large
pool (Tran-Thanh et al., 2014); (3) on-line advertising, in
which a layout for an ad should be chosen from among a
large set so as to maximise the click-through rate (Tang
et al., 2013). Clearly, the Θ(

√
KT ) bound on the regret

is not helpful when K � T or K = ∞. Perhaps the
most common apprach to deal with infinitely-many armed
bandits is to utilise some sort of side information about the
arms: for example, to assume that the arms are embedded
in a metric space in which the reward function is Lipschitz
continuous (Kleinberg, 2005) or even linear (Auer, 2003,
Chu et al., 2011). Unfortunately such side information
is not always available; even if available, it is often not
accurate (Ghosh et al., 2017).

In this paper, we propose an approach for exploring the arms
of infinitely many-armed bandits with no recourse to side
information. Naturally, we cannot always guarantee sublin-
ear regret with respect to optimal arms (which may never
get pulled in any finite horizon). Instead, assuming that the

425



set of arms A is being accessed through a given sampling
distribution PA, we benchmark regret against quantiles of
the reward distribution induced by PA. By fixing the quan-
tile, PA will eventually sample “good enough” arms. Using
a doubling trick, we can also ensure that our algorithm
will eventually sample every arm whose expected reward is
bounded away from the optimal reward. Below we formalise
the notion of quantile regret and outline our contributions.

Problem Definition. A bandit instance B = (A,M) com-
prises a (possibly infinite) set of arms A, and a reward
function M that gives a bounded, real-valued, reward dis-
tribution M(a) for each arm a ∈ A. When pulled, arm a
produces a reward drawn i.i.d. from M(a). We denote the
expected reward from arm a as µa

def
= E[M(a)]. Without

loss of generality, we assume that all rewards lie in [0, 1].

An algorithm is a mapping from the set of histories (of
arms pulled and rewards obtained) to the set of probability
distributions over A: thus, given a history, an algorithm
specifies a probability for sampling each arm. Let µ∗ def

=
min{y ∈ [0, 1] : ∀a ∈ A, µa ≤ y}. Then, for a given
horizon of pulls T , the regret of an algorithm is

R∗T = Tµ∗ −
T∑

t=1

E[µat ], (1)

where at denotes the arm pulled by the algorithm at time t.
The expectation is taken over the random outcomes of pulls,
as well as random choices (if any) made by the algorithm.

For us, a problem instance I = (B, PA) contains a bandit
instance B with arms A, and a sampling distribution PA
to choose arms from A. We apply the concept of “(ε, ρ)-
optimality” introduced by Roy Chaudhuri and Kalyanakr-
ishnan (2017). For a quantile fraction ρ ∈ [0, 1] and a
tolerance ε ∈ [0, 1], an arm a ∈ A is said to be (ε, ρ)-
optimal if Pra′∼PA{µa ≥ µa′ − ε} ≥ 1 − ρ. Let T OPρ
be the set of all (0, ρ)-optimal arms. Also let µρ ∈ [0, 1]
be a quantity such that, ∀a′ ∈ A \ T OPρ, µρ > µa′ and
∀a ∈ T OPρ, µa ≥ µρ. In other words, if µ denotes the
mean of an arm drawn according to PA, then µρ is the
(1− ρ)-th quantile of the distribution of µ.

Figure 1 shows the example of an infinite set of arms A
whose means lie between 0.15 and 0.95. When sampled
according to P 1

A, the resulting probability density function
of the mean µ is D1(µ). If an algorithm is constrained to
access arms using P 1

A, it is only natural for us to evaluate
it against a baseline that is also constrained by P 1

A. For ex-
ample, we could aim for the algorithm to eventually surpass
q1, which is the 94-th percentile of the distribution induced
by P 1

A. Without additional information, such an algorithm
cannot hope to surpass q2, the 94-th percentile of a different
sampling distribution P 2

A. In general we expect that there
is some “natural” way to sample the unknown set of arms—
and this is given to us as PA. For example, if A is finite,
it is a reasonable choice to assign an equal probability to

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.479 0.6 0.8 0.902 1
0

1

2
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Figure 1: Two problem instances that share the same set
of arms A, varying continuously in [0, 1]. The top panel
shows the expected rewards µa of each arm a ∈ A, as well
as probability density functions P 1

A and P 2
A for sampling A.

The bottom panel shows the reward distributions D1
A and

D2
A induced by each of the sampling distributions, along

with 94-th percentiles q1 and q2, respectively.

sampling each arm. If A corresponds to a parameterised set,
PA could implement some distribution over the parameters.

We are now ready to define quantile-regret with respect to
a given quantile fraction ρ. If at is the arm drawn by an
algorithm in its tth pull, we define the (cumulative) quantile-
regret (or the “ρ-regret”) after T pulls as

RT (ρ) = Tµρ −
T∑

t=1

E[µat ]. (2)

Our aim is to devise algorithms to minimise RT (ρ) for a
given problem instance I . The quantile fraction ρ can either
be given as an input to the algorithm, or left unspecified, as
we describe next.

Contributions. We show that without any knowledge of
the reward distributions of the arms, or of side information
such as a distance metric over arms, it is still possible to
have strategies to maximise reward over time. We articulate
the problem as that of achieving sub-linear ρ-regret.

1. In Section 3.1, we present our first algorithm, QRM1,
which is given a quantile fraction ρ as input. We show
that for a sufficiently large horizon T , the algorithm
incurs RT (ρ) ∈ O(ρ−1 +

√
(T/ρ) log(ρT )). We also

provide a lower bound of Ω(
√
T/ρ), establishing tight-

ness up to a logarithmic factor with respect to T.

2. In Section 3.2, we present our second algorithm,
QRM2, which does not take ρ as an input. Re-
gardless, the algorithm achieves sub-linear ρ-reget
for every ρ > 0. Specifically, for every ρ > 0
and a sufficiently large horizon T , QRM2 achieves
RT (ρ) ∈ o(( 1

ρ log 1
ρ )2.89 + T 0.674).

3. In Section 3.3, we establish a connection between (con-
ventional) regret R∗T and RT (ρ). Interestingly, we
find that when run on instances satisfying a common
assumption made in the literature about reward distri-
butions (Herschkorn et al., 1996, Wang et al., 2017),
QRM2 also achieves sub-linear regret R∗T .
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4. In Section 4, we present extensive experimental results
comparing QRM2 with three separate categories of
algorithms: (1) those assuming that the arms lie in a
continuum (Kleinberg et al., 2008, Ray Chowdhury
and Gopalan, 2017); (2) those assuming that the mean
rewards come from a reservoir distribution (Wang et al.,
2008); and (3) algorithms that only retain a constant
number of arms in memory (Herschkorn et al., 1996,
Berry et al., 1997). In the first two cases we find ex-
isting approaches to be sensitive to parameter-tuning,
while our parameter-free approach shows robust perfor-
mance across a variety of problem instances. Except
when the arms’ means indeed come from a uniform
distribution (as assumed by some constant-memory al-
gorithms), QRM2 also outperforms algorithms from
the third category.

We survey the literature on regret minimisation in infinite-
armed bandits before presenting our algorithms.

2 RELATED WORK

There is a vast body of literature considering regret-
minimisation for infinitely many-armed bandits. Based on
the assumptions they make, we classify research efforts in
the area into three broad categories. We also provide brief
mentions of other related work.

1. Lipschitz-continuity of mean rewards over A. Ini-
tiated by Agrawal (1995), the “continuum-armed bandit”
models a bandit whose arms come from a segment of the
real line, and the rewards are a continuous function of the
arms. Generalising this setting, Kleinberg (2005) and Auer
et al. (2007) proposed algorithms assuming that the mean re-
ward function E[M(·)] = µ(·) is Lipschitz-continuous over
the set of arms A. Their approaches partition A into a finite
number of intervals, treating each interval (say pulled at its
middle arm (Kleinberg, 2005)) as an arm in a finite-armed
bandit. The partition is progressively refined at a rate that
ensures sub-linear regret. The ZOOMING algorithm pro-
posed by Kleinberg et al. (2008), which assumes that the
arms are embedded in a metric space with (known) covering
dimension d, achieves a regret of O(T

d+1
d+2 ), for a horizon

T . Their algorithm utilises the metric property to focus
exploration on intervals potentially containing optimal arms.
Understandably, the regret incurred by ZOOMING is sensi-
tive to the definition of metric in the arms’ space, and can
degrade with small misspecifications of d.

A contrasting line of work follows from the work of Srinivas
et al. (2010), who introduce a Gaussian Process-based algo-
rithm, GP-UCB, for regret minimisation on infinitely many-
armed bandits. Later Valko et al. (2013) proposed KER-
NELUCB, showing GP-UCB to be a special case. More
recently, Ray Chowdhury and Gopalan (2017) have pro-
posed two algorithms: Improved GP-UCB (IGP-UCB) and

GP-Thompson sampling (GP-TS). They assume Gaussian
likelihood models for the observed rewards, and Gaussian
Process models for the uncertainty over reward functions.
Although Ray Chowdhury and Gopalan (2017) show im-
proved regret bounds over previous work, their algorithms
are not easy to apply in practice. Foremost, the algorithms
themselves give no guidance on the number of arms to ex-
plore. Also, the algorithms need several parameters to be
tuned, including a confidence parameter δ, a free parameter
λ, and a schedule γt related to information gain.

2. Particular families of reward distributions. There is
a relatively large body of work that does not assume any
embedding of the arms (that is, no side information), but
still assumes that the distribution of mean rewards (induced
by PA) comes from a particular family. Among the earliest
efforts in this direction is that of Berry et al. (1997), who
propose several algorithms for infinitely-many armed ban-
dits in which the mean rewards of the arms are uniformly
distributed in [0, µ∗] for some 0 < µ∗ ≤ 1. An additional as-
sumption underlying their work is that for each arm a ∈ A,
the reward distribution M(a) is Bernoulli.

Wang et al. (2008) assume that a randomly-sampled arm’s
mean reward µ comes from a reservoir distribution L;
that is, ∃µ∗ ∈ (0, 1] and ν > 0, for which Prµ∼L{µ >
µ∗ − ε} = Θ (εν), for ε → 0. Under this assumption,
they present an algorithm that incurs (1) R∗T = Õ(T 1/2) if
µ∗ < 1 and ν ≤ 1, and (2) R∗T = Õ(T ν/(1+ν)) otherwise.
They have also derived lower bounds that match up to a
logarithmic factor. When each arm generates Bernoulli re-
wards and µ∗ = 1, Bonald and Proutiere (2013) provide an
algorithm that is optimal with the exact constant. In more
recent work, Li and Xia (2017) consider a related setting
in which the probability of a newly-pulled arm being near-
optimal arm depends on the ratio of its expected reward to
its expected cost, with arms having different random costs.

3. Constant-memory policies. A particular novelty of the
family of algorithms studied by Berry et al. (1997) is that
the algorithms maintain the reward statistics of at most one
or two arms at a time. When the arms’ reward distribution
is uniformly distributed in (0, 1), their algorithms are shown
to achieve sub-linear regret. No closed-form upper bounds
are provided when this condition does not hold. Also in the
constant-memory category, Herschkorn et al. (1996) present
two approaches for the problem of maximising the almost
sure average reward over an infinite horizon. Although they
assume that each arm generates i.i.d. Bernoulli rewards, they
make no assumption on the distribution of mean rewards.
They present two approaches, both of which repeatedly
pull an arm until it records a certain number of successive
failures. They do not provide an explicit bound on the regret.

4. Other related work. Recently, Wang et al. (2017) have
proposed CEMAB, a cross-entropy based algorithm for
many-armed bandit instances. Like us, they aim to focus
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exploration on a small subset of arms. However, they still
require the entire set of arms to be finite, which limits their
experimentation to instances with a few tens of arms. They
do not present any theoretical upper bounds on the regret.

The work we have discussed thus far in this section is all tar-
geted at minimising regret. By contrast, there has also been
some effort under the “pure exploration” regime to tackle
infinitely-many armed bandits. For example, Carpentier and
Valko (2015) aim to minimise simple regret, under the same
assumption of a mean reservoir distribution assumption as
Wang et al. (2008). Our own conception of quantile-regret
is motivated by the work of Goschin et al. (2012) and Roy
Chaudhuri and Kalyanakrishnan (2017), who study a PAC
formulation of identifying arms above a specified reward
quantile in infinitely many-armed bandits.

The primary motivation behind our work is to eliminate as-
sumptions regarding structure and side information. Such in-
ductive biases become counterproductive when they are not
near-perfect. In Section 4, we show that the algorithms pro-
posed by Kleinberg (2005), Ray Chowdhury and Gopalan
(2017), and Wang et al. (2008), all fare poorly when their
parameters are misspecified. Constant-memory algorithms,
while conceptually elegant, forego the obvious benefit of
retaining the statistics of multiple arms (say a few tens or
hundreds) in memory. Except in tailormade settings (i.i.d.
Bernoulli rewards, uniformly distributed mean rewards),
our approach performs significantly better. We proceed to
describe our algorithms.

3 MINIMISING QUANTILE-REGRET

At the heart of our approach for minimising quantile regret
on infinitely many-armed bandit instances is to first sample
out suitably-sized finite bandit instances and then to apply
conventional regret minimisation algorithms on the latter.
For ease of analysis, we choose the MOSS algorithm (Au-
dibert and Bubeck, 2009) for our inner loop, since it incurs
optimal (distribution-free) regret (up to a constant factor) on
finite bandit instances.

First, we consider the easy case: that is, when ρ is provided
as an input. Then we generalise this setting to one where ρ
is not specified, and the objective is to achieve sub-linear
ρ-regret for all ρ > 0. Our bounds will hold for sufficiently
large (but still finite) horizons T . On the other hand, for a
fixed horizon T , it is impossible to guarantee sub-linear ρ-
regret for all ρ > 0 for all problem instances. For example,
consider a problem instance with a fraction ρ < 1/T of
arms all being optimal, and the rest sub-optimal. T pulls
will not suffice even to stumble upon an optimal arm with
sufficiently high probability, let alone exploit it. The ρ-regret
on such an instance will have to be linear in T .

3.1 With quantile fraction specified

In order to minimise ρ-regret for a given quantile fraction
ρ ∈ (0, 1], our primitive operation is to sample a sufficiently
large number of arms using PA, and to minimise conven-
tional regret on this set of arms by applying MOSS. We
implement an “any time” algorithm by repeating this primi-
tive procedure with progressively larger horizons, as shown
in Algorithm 1.

Algorithm 1 QRM1 (with quantile fraction specified)
Require: I, ρ

for r = 1, 2, 3, · · · do
tr = 2r, nr =

⌈
1
ρ max{1, ln√ρtr}

⌉
.

Form a setKr by selecting additional nr−|Kr−1| arms
from A using PA, and adding them to Kr−1.
Run MOSS(Kr, tr).

end for

In each phase r, MOSS is called to run on a finite bandit
instance with some Kr arms, over a finite horizon tr. MOSS
is known to incur a regret of at most C

√
|Kr|tr for some

constant C (Audibert and Bubeck, 2009, Theorem 5). The
parameters Kr and tr are specifically chosen such that with
sufficiently high probability, at least one arm from T OPρ
is selected in Kr, and consequently the overall ρ-regret
remains sub-linear.

Our analysis assumes ρ ∈ (0, 1). The case of ρ = 1 is
trivial; RT (1) cannot exceed 0. For ρ = 0, sub-linear regret
can only be achieved under the additional assumption that
optimal arms have a positive probability under PA. In the
analysis that follows, we use log to denote the logarithm to
the base 2, and ln to denote the natural logarithm. We also
take the horizon T to be a power of 2—which only changes
our bounds by a constant factor.

Lemma 3.1. For ρ ∈ (0, 1) and for sufficiently large T ,

QRM1 achieves RT (ρ) = O
(

1
ρ +

√
T
ρ log(ρT )

)
.

Proof. Let us consider the event during phase r that no
arm from Kr is in T OPρ. Denote this event Er

def
=

{Kr ∩ T OPρ = ∅}. We upper-bound the ρ-regret accumu-
lated during phase r, which we denote Lr, by conditioning
separately on on Er and ¬Er.
In phase r, the probability of occurrence ofEr is Pr{Er} =
(1 − ρ)nr . Now, letting r∗ = log(e2/ρ), we notice that
for r ≥ r∗, tr ≥ e2/ρ, and hence we can upper bound
the probability of occurrence of Er as Pr{Er} ≤ (1 −
ρ)ρ
−1 ln(

√
ρtr) <

√
1/(ρtr). We simply take tr as an upper

bound on the phase’s contribution to the regret if Er has
occurred. If Er does not occur, then there exists at least
one arm from T OPρ in Kr. In this case, the regret is
upper-bounded by C

√
nrtr ≤ C

√
tr log(ρtr)/ρ, for some

constant C (Audibert and Bubeck, 2009). Therefore, for
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r ≥ r∗, the ρ-regret from phase r is upper-bounded as
Lr ≤ tr ·Pr{Er}+C ·

√
nrtr ≤

√
tr
ρ +C ·

√
tr
ρ log(ρtr) ≤

C1 ·
√

tr
ρ log(ρtr) for some constant C1.

For phases r < r∗, the ρ-regret is trivially upper-bounded
by tr. Hence summing over all phases, we get RT (ρ) ≤∑r∗−1
r=1 Lr+

∑log T
r=r∗ Lr ≤ 2r

∗
+
∑log T
r=r∗ C1 ·

√
tr
ρ log(ρtr),

which is ∈ O
(

1
ρ +

√
T
ρ log(ρT )

)
.

We show that this upper bound on the ρ-regret is optimal up
to a logarithmic factor in the horizon. Our proof is based on
a well-known lower bound for finite bandit instances (Auer
et al., 2003, see Theorem 5.1).

Theorem 3.2. [Lower bound] For every algorithm, there
exists a problem instance, along with ρ ∈ (0, 1) and T > 0,

such that RT (ρ) ≥ min
{

1
20

√
T
ρ , T

}
.

Proof. Let ALG be any algorithm for sampling infinitely
many-armed bandits. Naturally, we can also apply ALG
on finite bandit instances. Given any arbitrary K-armed
bandit instance, K < ∞, we can create a corresponding
problem instance ((A,M), PA) wherein (1) A is the finite
set of K arms, (2) M(a) is the reward function for a ∈ A,
and (3) PA samples each arm inA with an equal probability
of 1/K. Now, if we set ρ = 1/K, observe that T OPρ
can only contain optimal arms from A, and hence, the ρ-
regret incurred byALG on ((A,M), PA) is the same as the
conventional regret on the original finite instance.

Suppose, contrary to the statement of the theorem, ALG
is such that for all input problem instances, for all ρ ∈
(0, 1) and for all T > 0, its ρ-regret satisfies RT (ρ) <

min
{

1
20

√
T
ρ , T

}
. From the translation described above,

it follows that ALG incurs R∗T < min{ 1
20

√
KT, T} for

all finite K-armed bandit instances, K > 0 and horizons
T > 0. However, Auer et al. (2003, see Theorem 5.1) have
shown that no such algorithm exists for finite instances. Our
proof is complete.

3.2 With quantile fraction not specified

We can now drop the requirement that ρ is given to the
algorithm as an input. Rather, we iteratively optimise ρ-
regret for progressively decreasing values of ρ.

Algorithm 2 follows the same template as Algorithm 1,
except that the number of arms to sample in each phase
r is set to be a polynomial function of tr, with the power
α = 0.347 set to minimise the ρ-regret’s dependence on T .

Although QRM2, the algorithm specified above, does not
require any knowledge of ρ, we shall analyse its ρ-regret for
some fixed ρ > 0.

Algorithm 2 QRM2 (with quantile fraction not specified)
Require: I

Set α = 0.347 and K0 = ∅.
for r = 1, 2, 3, · · · do
tr = 2r, nr = dtαr e.
Form a setKr by selecting additional nr−|Kr−1| arms
from A using PA, and adding to Kr−1.
Run MOSS(Kr, tr).

end for

Theorem 3.3. [Sub-linear quantile-regret of QRM2] For
ρ ∈ (0, 1) and for sufficiently large T , QRM2 incurs

RT (ρ) ∈ o
((

1
ρ log 1

ρ

)2.89
+ T 0.674

)
.

Proof. Considering some fixed ρ ∈ (0, 1), we upper-
bound the ρ-regret in two parts: (1) when no arms from
T OPρ are chosen, and (2) when at least one arm is cho-
sen. To analyse the first part, we show that for r∗ def

=
d(1/α) log((1/ρ) log(1/ρ))e, if r ≥ r∗, then Kr is suffi-
ciently large to contain an arm from T OPρ with high prob-
ability. To show that, like before, we define the event that no
arm from T OPρ is in Kr as Er(ρ)

def
= {Kr ∩ T OPρ = ∅}.

It follows Pr{Er(ρ)} = (1− ρ)nr . Now, for r ≥ r∗, using
Lemma 5.1 (provided in Appendix A1), we get Pr{Er(ρ)}
≤ exp(−d(α(1 + γ)−1 · ln tlog e

r e) ≤ tr
−α log e/(1+γ).

Hence, if the algorithm runs for T pulls, then the regret
due to occurrence of Er(ρ) is upper bounded as

log T∑

r=1

tr Pr{Er(ρ)} ∈ O
(
tr∗ + T 1−α log e

1+γ

)
. (3)

Now we analyse the second part: that is, upper-bounding
the regret incurred if at least one from the T OPρ is in Kr
(the event ¬Er(ρ)). Let us assume that C is a constant such
that the regret incurred by MOSS in phase r (given ¬Er(ρ))
is at most C

√
nrtr = Ct

(1+α)/2
r . Therefore, assuming total

number of pulls as T , the total regret incurred on r∗-th phase
onward is upper bounded as

log T∑

r=r∗
C
√
nrtr ≤ C ′T (1+α)/2 (4)

for some constant C ′. The intermediate steps to ob-
tain (3) and (4) are shown in Appendix-A. Combining
(3) and (4), and substituting for tr∗ , we get RT (ρ) =

O

((
1
ρ log 1

ρ

) 1
α

+ T 1−α log e
1+γ + T (1+α)/2

)
. We conclude

by noticing that α = 0.5/(0.5 + log e/(1 + γ)) ≈ 0.3466
minimises RT (ρ) with respect to T .

1Appearing at the end of the extended version of this paper at
https://www.cse.iitb.ac.in/˜shivaram/papers/rk_uai_2018.pdf.
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The upper bound in Theorem 3.3 cannot be directly com-
pared with regret bounds in the literature (Kleinberg, 2005,
Wang et al., 2008) since our bound is on the ρ-regret. As yet,
we do not know if the dependence of ρ-regret on the horizon
T can be improved. Even so, the sub-linear upper bound
we have shown on RT (ρ) assumes a special significance in
the study of infinitely-many armed bandits. Observe that
the upper bound holds for every ρ > 0 and for every ban-
dit instance. By contrast, conventional regret-minimisation
(of R∗T ) cannot assure sub-linear regret unless the bandit
instance itself satisfies additional assumptions (of which
several have been made in the literature). By taking ρ > 0,
we have chosen to change our objective (albeit slightly),
rather than place demands on the input bandit instance.

Interestingly, we find that on bandit instances that do sat-
isfy a standard assumption made to achieve sub-linear R∗T ,
QRM2, too, achieves sub-linear R∗T , in spite of being de-
signed to minimise RT (ρ) for ρ > 0. We proceed to discuss
this connection between RT (ρ) and R∗T .

3.3 Quantile-regret and conventional regret

Given a problem instance ((A,M), PA), we first show that
minimising R∗T is sufficient to minimise RT (ρ) for all ρ > 0,
but the converse is not true.

Lemma 3.4. For any algorithm and input problem instance,
if R∗T ∈ o(T ), then it must hold that RT (ρ) ∈ o(T ), for all
ρ > 0. However, the converse is not true.

Proof. For the first part, (1) is written as R∗T = T · (µ∗ −
µρ)+T ·µρ−

∑T
t=1 E[µt] = T ·(µ∗−µρ)+RT (ρ). Hence,

R∗T ∈ o(T ) =⇒ RT (ρ) ∈ o(T ), for all ρ ∈ [0, 1].

The second part is obtained by considering an infinitely-
many armed bandit instance with finitely many optimal
arms. Formally, take |A| = ∞ and PA to be the uniform
distribution overA. Let S ⊂ A, such that ∀a ∈ S, µa = µ∗,
|S| < ∞, and ∀a ∈ A \ S: µa = µ̄ < µ∗. Now, S
being finite, with probability 1, no arm from S will be
picked by PA. Therefore, for ρ > 0, µρ = µ̄, and so
R∗T = T · (µ∗ − µ̄) + RT (ρ) ≥ T · (µ∗ − µ̄) ∈ Ω(T ).

Although in general, achieving sub-linear ρ-regret does not
imply achieving sub-linear regret, this turns out asymptot-
ically true for QRM2 on the family of bandit instances
considered by Wang et al. (2008), of which the family of in-
stances considered by Berry et al. (1997) is a subset. In these
instances, the distribution of the mean reward µ, denoted
D(µ), has the “reservoir” property, as detailed below.

Proposition 3.5 (Case Study). QRM2 achieves R∗T ∈ o(T )
as T → ∞, under the assumption that Prµ∼D(µ){µ >
µ∗− ε} = Θ (εν), for ε→ 0, where ν is a positive constant.

Proof. The assumption amounts to the existence ρ0 ∈ (0, 1]
such that for 0 < ρ < ρ0, cl(µ∗−µρ)ν ≤ ρ ≤ cu(µ∗−µρ)ν ,

where cu, cl are positive constants. Defining h(ρ)
def
= µ∗ −

µρ, we see that for ρ ∈ (0, ρ0]: h(ρ) ≤ (ρ/cl)
1/ν .

We know from Theorem 3.3 that for any given ρ > 0,
and for a sufficiently large horizon T , QRM2 achieves
RT (ρ) ∈ o(T ). Equivalently, for every sufficiently large T ,
there exists a ρ(T ) ∈ (0, 1] such that, for all ρ ≥ ρ(T ),
QRM2 achieves RT (ρ) ∈ o(T ) . We also notice that
ρ(T ) is a monotonic non-increasing sequence that con-
verges to 0. Hence, there exists a sufficiently large hori-
zon T0 such that for all T ≥ T0, ρ(T ) ≤ ρ0. In other
words, for horizon T > T0, h(ρ(T )) ≤ (ρ(T )/cl)

1/ν .
Since limT→∞(ρ(T )/cl)

1/ν = 0 and h(ρ(T )) ≥ 0, we get
limT→∞ h(ρ(T )) = 0. Since R∗T = T · h(ρ(T )) + RT (ρ),

we get limT→∞
R∗T
T = limT→∞

(
h(ρ(T )) + RT (ρ(T ))

T

)
=

0, which means that R∗T is asymptotically o(T ).

4 EXPERIMENTS AND RESULTS

In this section, we compare QRM2 with competing ap-
proaches for regret minimisation on infinitely many-armed
bandits. We consider representative algorithms from the cat-
egories described in Section 2, and investigate the efect of
their parameters, in tandem with a comparison with QRM2.
Although QRM2 is designed to minimise ρ-regret for pro-
gressively decreasing ρ values, we use conventional regret
as the evaluation metric in all our experiments. This choice
essentially amounts to evaluating the total reward accrued
over a given horizon, which is perhaps the most relevant
measure in practice. In all our experiments, the reward
distributions of arms are Bernoulli. Note that both ZOOM-
ING (Kleinberg et al., 2008) and QRM2 proceed through
phases, progressively doubling the phase length. To improve
sample efficiency, we retain the statistics of pulls from pre-
vious phases and correspondingly adjust the “budget” term
in the confidence bound.

4.1 Comparison with ZOOMING

The ZOOMING algorithm (Kleinberg et al., 2008) works on
a bandit instance comprising a set of arms A = [0, 1], with
the expected mean reward µ(·) being Lipschitz-continuous
over A. The metric defined on A is: for x, y ∈ A,
Ld(x, y) = |x − y|1/d, where d ≥ 1 is a known, user-
specified parameter. For a given horizon T , ZOOMING is
shown to incur a regret of Õ(T (d+1)/(d+2)). The algorithm
proceeds by maintaining confidence bounds on the mean
rewards of contiguous regions of A; a new region is created
whenever the existing ones fail to cover some portion of A.
In our implementation, a new region is created by picking
an uncovered region uniformly at random. Its “centre” is
picked uniformly at random from the points it contains.

We compare QRM2 with ZOOMING on four problem in-
stances, shown in Figure 2 and specified in Appendix-B. On
each instance we compare the cumulative regret of QRM2
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with that of ZOOMING for d ∈ {1, 2}. The results at differ-
ent horizons are presented in Figure 3. Foremost, observe
that the performance of ZOOMING is fairly sensitive to d:
on instances I-P and I-S, the variant with d = 1 performs
noticeably better; on instances I-N and I-W, the variant with
d = 2 is superior. On the instance I-N the better of these
two variants performs close to QRM2. On an unknown
problem instance, it is unrealistic to expect that the user will
be able to guess a good value for d beforehand.

0

1
I-P

0.5

1
I-N

0.5

1
I-W

0 0.2 0.4 0.6 0.8 1
0.5

1
I-S

Figure 2: Four problem instances (fully specified in
Appendix-B). In all four cases, A = [0, 1], as shown on
the x axis. The y axis shows the mean reward µa for a ∈ A.
QRM2 takes PA to be the uniform distribution over A.
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Figure 3: Cumulative regret (y axis) incurred by ZOOMING
and QRM2 on the instances in Figure 2. The x axis shows
the horizon / 105. Each plot is an average of 100 runs.

A second limitation in practice arises from the quality of
the features used to generalise across A, which effectively
determine the Lipschitz constant of the mean reward func-
tion. Instances I-W and I-S have exactly the same mean
distribution D—they only differ in the indexing of the arms,
which, in practice, would depend on the feature representa-
tion. The regret of ZOOMING on these instances (whether
with d = 1 or with d = 2) varies at least three-fold. By
ignoring the arm indices and the metric, QRM2 registers
exactly the same regret on both instances.

4.2 Comparison with Gaussian Process algorithms

In our next set of experiments, we compare QRM2 with
IGP-UCB and GP-TS (Ray Chowdhury and Gopalan,
2017). Our experiments are run on the light sensor data

set2, on which the authors have themselves benchmarked
their methods. We refer the reader to the original paper for
a description of the data set (Ray Chowdhury and Gopalan,
2017, see Section 6), which encodes bandit instances with
arms corresponding to sensors. We run IGP-UCB and
GP-TS with the same parameters used by the authors.

From Table 1, we find that GP-TS outperforms IGP-UCB,
exactly as reported by Ray Chowdhury and Gopalan (2017).
However, QRM2 outperforms both GP-TS and IGP-UCB
by a large margin. We posit as one reason for the efficiency
of QRM2 its use of MOSS as the underlying regret min-
imisation procedure. On the other hand, using Gaussian
Processes to generalise over the space of arms would only
work well if nearby arms indeed have similar mean rewards.
Without good generalisation, the confidence bounds result-
ing from Gaussian Processes are likely to be loose, and
therefore a poor guide for exploration.

Table 1: Cumulative regret after 106 pulls, averaged over
192 test instances, with one standard error.

Algorithm Average cumulative regret
GP-TS 2.58 ×104 ± 36.75 ×102

IGP-UCB 3.86 ×105 ± 18.05 ×104

QRM2 0.14 ×104 ± 0.13 ×102

4.3 Comparison with algorithm of Wang et al. (2008)

We compare QRM2 with the algorithm of Wang et al.
(2008) for unspecified horizons. Recall that the sub-linear
regret bounds shown by Wang et al. (2008) are based
on the assumption that the mean distribution is a “reser-
voir”: that is, Prµa∼PA{µa > µ∗ − ε} = Θ (εν), for
ε → 0. We notice that for µ∗ ∈ (0, 1] and ν > 0,
f(µ) = ν

µ∗ν (µ∗ − µ)ν−1 is a density function of some
reservoir distribution. This follows from the fact that CDF
of f(µ) is given by F (µ) = 1− 1

µ∗ν (µ∗ − µ)ν . Therefore
Prµ∼f(µ){µ > µ∗ − ε} = 1 − F (µ) ∈ Θ(εν). It is worth
noting that for ν = 1, f(µ) is the uniform distribution.

The any-time algorithm given by Wang et al. (2008) requires
three parameters: (1) an exploration rate ξt, for the t-th pull,
such that 2 ln(10 ln t) ≤ ξt ≤ ln t, (2) the shape param-
eter ν, and (3) whether µ∗ = 1. We refer the reader to
the original paper (Wang et al., 2008, see Section 2) for a
full specification. We test this algorithm along with QRM2
on four problem instances, shown in Table 2. In all cases,
A = [0, 1], and we take PA as the uniform distribution over
A. Each problem instance is such that its optimal mean µ∗

is either 1 or 0.6, and its reward distribution D(µ) is either
β(0.5, 2) or β(1, 1) (scaled to have support in [0, µ∗]). The
algorithm of Wang et al. (2008)’s needs to be supplied ν
such that the complementary cumulative distribution func-

2
www.cs.cmu.edu/˜guestrin/Class/10708-F08/projects/

lightsensor.zip
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tion (CCDF) of f(µ) will overestimate that of D(µ) beyond
some µ0 < µ∗. Also, as the algorithm needs to know
whether of not µ∗ = 1, we supply a representative value µ#

for µ∗. Table 2 explicitly shows the parameterisation used
for the different instances, and Figure 4 depicts the CCDF
of the corresponding D(µ), and that of f(µ) for different
values of ν. In practice, an experimenter might not have a
precise estimate of (ν, µ∗), and hence the values supplied
might not meet the above criteria. In Table 2, depending
on whether or not the values of ν, µ# respect the criteria,
the corresponding cells are marked by 3and 7, respectively.
Also, the values of ν, µ# (from our set) for which the CCDF
of f(µ) coincides with or fitsD(µ) most closely are marked
Exact and Closest, respectively.

Table 2: Summary of problem instances used in Section 4.3,
along with different parameterisations of the algorithm of
Wang et al. (2008). For explanations see Section 4.3.

Instances µ∗
D(µ) = β(a, b) µ# ν
a b 1.0 0.6 0.4 1 2

I-1 1 0.5 2 3 7 3 3 3Closest
I-2 1 1 1 3 7 3 3Exact 7

I-3 0.6 0.5 2 7 3 3 3 3Closest
I-4 0.6 1 1 7 3 3 3Exact 7

0 0.2 0.4 0.6 0.8 1
0

0.5

1

(0.5,2)

(1,1)

f( ) for  = 0.4

f( ) for  = 1

f( ) for  = 2

Figure 4: Complementary CDF (CCDF) values (y axis) for
various distributions. The CCDF for β(1, 1) coincides with
that of f(µ) for ν = 1.

For a horizon of 106, QRM2, which is parameter-free, ex-
plores a fixed number of arms (= 94). On the other hand,
Wang et al. ’s algorithm explores 104 arms for ν = 2. For
ν = 0.4 it explores 16 and 52 arms for µ# = 0.6 and
µ# = 1, respectively. Figure 5 shows that in spite of
providing values of (ν, µ#) that closely (or even exactly)
track D(µ), QRM2 outperforms Wang et al. ’s algorithm
by a significant margin. We note that optimistic values of
these parameters helps their result improve, but incorrect
parameterisation severely degrades performance. Another
non-trivial factor in the performance of their algorithm is
the exploration rate ξt. While varying ξt within their pre-
scribed range keeps the regret upper bound unaffected, in
practice it is observed to have a significant effect on regret.
In Algorithm 2, we set the α parameter of QRM2 to 0.347
to optimise a theoretical bound. In practice, tuning α for
different problem instances further improves QRM2’s per-
formance. In line with our intent to not depend on tuning,
we refrain from reporting these optimised results.
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Figure 5: Cumulative regret incurred by QRM2 and the
algorithm of Wang et al. (2008) after 106 pulls on the in-
stances in Table 2. Each bar is an average of 20 runs, and
shows one standard error bar. The accompanying parame-
ters are explained in Section 4.3.
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4.4 Comparison with constant-memory algorithms

Recall that the algorithms of Herschkorn et al. (1996) and
Berry et al. (1997) keep the statistics of only a single arm (or
two) in memory. They are specifically designed for bandit
instances that yield Bernoulli rewards. The “Non-stationary”
algorithm of Herschkorn et al. (1996) repeatedly pulls the
i-th arm, for i = 1, 2, . . . , until it produces i consecutive
failures—at which point a new arm is pulled. Berry et al.
(1997) propose three strategies for problem instances in
which the distribution of means is uniform over [0, µ∗] for
some µ∗ ∈ [0, 1]. These strategies assume that the horizon
T is given. For example, the “

√
T -run” switches out the

current arm upon a single failure, unless the arm produces√
T successes (in which case it is pulled for the remaining

horizon). If
√
T arms have been pulled and discarded, the

arm with the highest observed empirical mean thus far is
pulled for the remainder of the run. The “

√
T lnT -learning”

strategy and the “Nonrecalling
√
T -run” are variants built

around a similar theme; we refer the reader to the original
paper (Berry et al., 1997) for precise specifications. Ta-
ble 3 presents a comparison of incurred cumulative regret
on the instances I-1, I-2, I-3 and I-4. On I-1, QRM2 outper-
forms all the other strategies by a significant margin. This
result is not surprising, since (1) QRM2 uses additional
memory (94 arms for a horizon of 106), and (2) unlike the
strategies of Berry et al. (1997), it does not assume that
the mean rewards are uniformly distributed. On I-2, which
indeed has uniformly-distributed means, the Nonrecalling√
T -run strategy of Berry et al. performs marginally better

than QRM2. However, this win comes at the expense of in-
curring very high regret on I-1, in which near-optimal arms
are less likely to be encountered. Interestingly, on I-3 and
I-4, the Non-stationary policy of Herschkorn et al. (1996)
policy outperforms all three from Berry et al. (1997). Yet,
all these algorithms are outperformed by QRM2.

Table 3: Cumulative regret (/105) of QRM2 and strategies
proposed by Herschkorn et al. (1996) and Berry et al. (1997)
after 106 pulls, on instances I-1, I-2, I-3 and I-4. Each result
is the average of 20 runs, showing one standard error.

Algorithms I-1 I-2 I-3 I-4
Non-stationary Policy
(Herschkorn et al., 1996) 3.58 ±0.4 1.11 ±0.2 1.64 ± 0.2 0.79 ± 0.1
√
T -run

(Berry et al., 1997)
6.18 ±0.5 1.11 ±0.4 4.18 ± 0.3 2.03 ± 0.3

√
T lnT -learning

(Berry et al., 1997)
6.32 ±0.4 0.69 ±0.3 4.38 ± 0.2 2.15 ± 0.3

Nonrecalling
√
T -run

(Berry et al., 1997)
5.35 ±0.5 0.03 ±0.004 4.56 ± 0.001 2.55 ± 0.001

QRM2 1.71 ±0.2 0.15 ±0.02 0.98 ± 0.1 0.12 ± 0.01

5 CONCLUSION

In this paper, we present an approach to manage the explore-
exploit trade-off in bandit instances that contain many more
arms than the possible number of experiments. While most

existing approaches in this setting assume special properties
of the arms’ reward function or some structure over the set
of arms, we make no such assumptions. Rather, we refor-
mulate the problem by introducing the notion of quantile
regret (or ρ-regret), which is defined with respect to the
(1− ρ)-th quantile of the mean reward distribution—unlike
conventional regret, which is defined with respect to the
highest mean. We present sub-linear upper bounds on the
ρ-regret when (1) ρ is specified to the algorithm, and (2)
ρ is not specified to the algorithm. We also prove that our
QRM2 algorithm, although it is designed to minimise ρ-
regret for small ρ, indeed achieves sub-linear regret under
the assumption that the instance’s mean rewards come from
a reservoir distribution (Wang et al., 2008).

We provide extensive empirical justification for quantile-
regret minimisation. Our experiments show that the ZOOM-
ING algorithm (Kleinberg et al., 2008) is sensitive to the
given metric and the Lipschitz-continuity of the reward
function. With slight perturbations to its parameters, the
algorithm incurs a significantly higher regret. The GP-TS,
and IGP-UCB algorithms (Ray Chowdhury and Gopalan,
2017) do not explicitly specify the number of arms to ex-
plore. Both algorithms perform much worse than QRM2 on
the light sensor problem. We find that even when specified
the exact distributional parameter, the algorithm proposed
by Wang et al. (2008) can incur a higher regret than QRM2.
It is infeasible in practice to know the optimal parameter
setting for a given problem instance, and it is undesirable
to have to find the right parameters using techniques such
as cross-validation. The parameter-free approach taken by
QRM2 makes it especially appealing to implement as a
baseline across different domains and problem instances.

The constant-memory policies proposed by Herschkorn et al.
(1996) and Berry et al. (1997) are akin to QRM2 in being
simple and parameter-free. On the theoretical side, it seems
plausible that their dependence on uniformly-distributed re-
wards can be removed in lieu of providing a finite time upper
bound on the quantile-regret (rather than asymptotic guaran-
tees). Practically, it also seems appealing to generalise these
methods to work with larger, even if constant, memory sizes.
In future work, we plan to analyse constant-memory poli-
cies within the framework of quantile-regret minimisation.
We also aim to examine possible improvements to both the
upper and lower bounds presented in this paper.
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Jean-Yves Audibert and Sébastien Bubeck. Minimax
policies for adversarial and stochastic bandits. In
Proc. COLT 2009, pages 217–226, 2009. URL
https://hal-enpc.archives-ouvertes.
fr/hal-00834882/file/COLT09a.pdf.

Peter Auer. Using confidence bounds for exploitation-
exploration trade-offs. J. Mach. Learn. Res., 3:397–422,
2003.
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Abstract

Gaussian process survival analysis model (GP-
SAM) was recently proposed to address key
deficiencies of the Cox proportional hazard
model, namely the need to account for uncer-
tainty in the hazard function modeling while,
at the same time, relaxing the time-covariates
factorized assumption of the Cox model. How-
ever, the existing MCMC inference algorithms
for GPSAM have proven to be slow in prac-
tice. In this paper we propose novel and scal-
able variational inference algorithms for GP-
SAM that reduce the time complexity of the
sampling approaches and improve scalability
to large datasets. We accomplish this by em-
ploying two effective strategies in scalable GP:
i) using pseudo inputs and ii) approximation
via random feature expansions. In both setups,
we derive the full and partial likelihood formu-
lations, typically considered in survival analy-
sis settings. The proposed approaches are eval-
uated on two clinical and a divorce-marriage
benchmark datasets, where we demonstrate
improvements in prediction accuracy over the
existing survival analysis methods, while re-
ducing the complexity of inference compared
to the recent state-of-the-art MCMC-based al-
gorithms.

1 INTRODUCTION

Survival analysis studies statistical dependencies be-
tween the time to certain event and the covariates asso-
ciated with this event. This is an important problem in
statistics with applications ranging from medical progno-
sis in clinical studies (e.g., estimating the time of cancer

∗Also affiliated with Rutgers University.

recurrence or remission from leukemia based on demo-
graphic and individual medical record factors), to other
general areas where we seek to predict failure times of
a system (e.g., bankruptcy of a firm). The key task
in survival analysis is to estimate the conditional den-
sity function of the event time t given the covariates x,
from which one can immediately derive several impor-
tant prognostic measures. Two most common instances
of such measures are the survival function, defined as
P (T ≥ t|x), or the prognostic index u(x) that quantifies
the overall (anti) risk (i.e., higher index implies longer
survival, and vice versa) of a patient/system with covari-
ates x.

A typical data-driven setting for survival analysis as-
sumes availability of time-covariate pairs {(t,x)}, sug-
gesting standard regression problem framing. However,
a notable characteristic here is that some of the observed
times t are censored in the sense that we only know the
actual event time is no earlier than the observed t. In
clinical studies this typically happens when the patient
exits the study or the study terminates before the event
occurs1. Typically, the data provides the information as
to whether or not each instance is censored: the event
indicator variables δ = 1 for event, and 0 for censored
examples. Therefore, applying standard regression ap-
proaches by simply ignoring the censored samples can
result in suboptimal use of data.

Several approaches have been proposed to deal with the
censored instances. One way is to incorporate a cost-
sensitive loss within the regression or ranking framework
to learn the prognostic index function u(x) (Shivaswamy
et al., 2007; Khan & Zubek, 2008; Van Belle et al., 2009;
Van Belle et al., 2011). The main idea here is to impose

1This type of censoring is often referred to as the right-
censoring. Left-censoring applies to instances when the event
time is never greater than the observed time, while the interval-
censoring refers to the cases of observed events within an in-
terval. Most cases in practice deal with right-censoring, which
we restrict to in this paper.
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an asymmetric loss on the incorrect prediction for cen-
sored examples. That is, we penalize the over-estimates
(i.e., u(x) > t) less than the under-estimates (u(x) < t).
However, these approaches focus on the prognostic index
function directly and are, therefore, inherently unable to
provide a measure of uncertainty, namely the distribution
of the survival time t for a given input x.

The conditional density P (t|x) is most commonly
modeled using the Cox Proportional Hazard (CoxPH)
model (Cox, 1972). The model represents the distribu-
tion of the survival time as a first event arrival time in
a heterogeneous Poisson process. Unlike the standard
Poisson process models, the intensity function (often re-
ferred to as the hazard function) has a dependency on the
input covariates, denoted as λ(t|x). The CoxPH model
further factorizes the hazard function over t and x (see
(2) in Sec. 2), allowing simplicity in hazard modeling
by separating the input-dependent risk factors from the
time-varying effects.

Recent efforts have focused on extending the CoxPH
model to address its two drawbacks: i) the proportional
and non-crossing hazard rates across instances originat-
ing from the factorized form of the hazard function can
be too restrictive and oftentimes unlikely, and ii) the lack
of proper treatment of uncertainty in the hazard function.
(Dempsey et al., 2017) extended the model by introduc-
ing latent, continuous-time Markov dynamics to address
the former limitation. The latter issue can be resolved
by imposing Bayesian priors on the hazard function. Al-
though few approaches along this direction showed ini-
tial success (Hjort et al., 2010; Iorio et al., 2009; Mar-
tino et al., 2011), they either have practical limitations
(e.g., how to incorporate expert knowledge) or fail to
overcome the former assumption of the proportional haz-
ard rates. Another related method is the Random Sur-
vival Forest (Ishwaran et al., 2008), which can be seen
as a generalization of the Kaplan Meier method, the tra-
ditional nonparametric hazard function estimator. Re-
cently the Deep Survival Analysis (DSA) method was
proposed (Ranganath et al., 2016), which utilizes a deep
hierarchical Bayesian model for survival analysis.

To address those limitations, Gaussian process survival
analysis model (GPSAM) was proposed in (Fernández
et al., 2016). A GP-priored latent function on the joint
input space (t,x), coupled with a non-negative link func-
tion, introduces stochasticity and removes the factoriza-
tion assumption of CoxPH. The key advantage is that the
Gaussian process circumvents the difficulty of model-
ing the hazard dependent jointly on (t,x) through the
use of the covariance (kernel) function (Rasmussen &
Williams, 2006). In essence, the GPSAM supplements
the proportional hazard models with additional flexibil-

ity, while being able to account for uncertainty in the haz-
ard function.

Nevertheless, the inference in the GPSAM model is chal-
lenging because the likelihood depends on the latent
function values for an uncountable range of time inputs
t ∈ R+ (Sec. 2.2 for details), and not limited to only
those induced by data in standard GP models. Motivated
by the sophisticated MCMC inference algorithm for GP-
priored Poisson event models (Adams et al., 2009), the
authors in (Fernández et al., 2016) proposed a tractable
MCMC dynamics for the GPSAM by exploiting the
idea of thinning-based sampling with auxiliary variables.
However, the MCMC inference algorithm often exhibits
slow convergence. Despite adopting the random feature
kernel approximation strategy (Rahimi & Recht, 2008)
to circumvent the computationally intensive matrix in-
versions, the MCMC inference for GPSAM proposed
in (Fernández et al., 2016) incurs considerable compu-
tational issues when applied to real applications.

In this paper, we propose two novel variational infer-
ence algorithms for GPSAM, which address the com-
putational deficiencies of the MCMC approach. To
tackle the scalability of the GP nonparametric inference,
we incorporate two approximations: the pseudo-input
treatment (Titsias, 2009) and the random feature expan-
sion (Rahimi & Recht, 2008). The former approach is
similar to (Lloyd et al., 2015) variational inference in the
GP modulated Poisson process. However, our approach
is different in that we consider the GP latent function in
the joint input space within the survival analysis setup.
Solutions to variational inference in both approaches ad-
mit analytic forms aside from the fast univariate Monte-
Carlo estimation of expected log-likelihood. We empiri-
cally demonstrate superior performance of our proposed
methods over existing survival analysis approaches on
several synthetic and real benchmark datasets.

2 BACKGROUND

In this section we briefly review the CoxPH model with
two popular parameter estimation methods. Then we dis-
cuss the recent Gaussian process survival analysis model
(GPSAM) (Fernández et al., 2016) that addresses the
known drawbacks of the CoxPH model.

2.1 COX PROPORTIONAL HAZARD MODEL

The CoxPH model (Cox, 1972; Kleinbaum & Klein,
2005) represents the conditional density

P (t|x) = λ(t|x) · exp

(
−
∫ t

0

λ(τ |x) dτ

)
, (1)
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where t ∈ R+ is the time of the event (e.g., death or can-
cer recurrence), and x ∈ Rd is the d-dim covariates of the
subject (e.g, patient’s medical features). In (1), λ(t|x) is
referred to as the hazard function, and can be interpreted
as the probability of the immediate death at t given that
the survival time is at least t. The hazard function is the
intensity function of the (inhomogeneous) Poisson pro-
cess (Ross, 2006) with (1) being the first event time den-
sity, however, in survival analysis this intensity is dif-
ferent from subject to subject, determined by the input
covariates x.

In the CoxPH model, the hazard function is specifically
assumed to follow the factorized parametric form:

λ(t|x) = λ0(t) · exp
(
b>x

)
, (2)

where the model parameters are comprised of the weight
vector b ∈ Rd and the non-negative function λ0(·). The
latter is known as the base hazard function which is typ-
ically modeled by the Weibull or a piecewise constant
function. The consequence of the factorized form in (2)
is that the hazard ratio between two subjects (with x and
x′) is constant over time, solely dependent on the co-
variates (i.e., eb

>(x−x′)). Also, the hazard functions of
different subjects are non-crossing with each other.

Given the training data D = {(δn, tn,xn)}Nn=1 where
δn ∈ {0, 1} indicates whether the observation n is event
(δn = 1) or right-censored (δn = 0), the traditional max-
imum likelihood learning aims to maximize the data log-
likelihood

∑N
n=1 logFL(n) where

FL(n) = P (tn|xn)δn · P (T ≥ tn|xn)1−δn . (3)

Often we name it the full-likelihood to differentiate it
from the partial likelihood, discussed next.

Alternatively, also very popular in survival analysis, the
parameters can be learned by the partial likelihood max-
imization. The notion of the partial likelihood comes
from an alternative view of the data generation process.
Namely, at a given time t, we consider a random process
of selecting a subject x that will face an event at t, among
all survivors at that moment. The likelihood of this is
proportional to the hazard value λ(t|x). More specifi-
cally, for each event instance n (δn = 1), we can re-
gard (tn,xn) as the selected sample among the survivors
{(tj ,xj) : tj ≥ tn}, regardless of δj’s. The so-called
partial likelihood is then defined as:

PL(n) =
λ(tn|xn)∑

j:tj≥tn λ(tn|xj)
, (4)

and we maximize
∑N
n=1 δn logPL(n).

2.2 GAUSSIAN PROCESS SURVIVAL MODEL

Abbreviated as GPSAM, the model aims to address the
known drawbacks of the CoxPH model discussed in
Sec. 1 by endowing more flexibility and accounting for
uncertainty in the hazard function. This is done by im-
posing Gaussian process prior on the hazard function and
having the latent function dependent on both t and x.
More specifically,

λ(t|x) = λ0(t) · g(f(t,x)), f(·) ∼ GP(0, k(·, ·)). (5)

Here g(·) is a non-negative link function to prevent the
hazard from being negative. In (Fernández et al., 2016),
they used the sigmoid g(y) = 1/(1 + e−y), and the
Weibull for the base hazard, λ0(t) = c · tr−1 for c >
0, r ≥ 1, which subsumes the constant functions (r = 1).
Note that the kernel function operates on the joint input
space R+ × Rd. (Fernández et al., 2016) adopted the
composite kernel

k((t,x), (t′,x′)) =
d∑

j=1

x(j) x′(j) kj(t, t
′), (6)

where x(j) indicates the j-th element of x. The kernel
on time space, kj(t, t′) is typically chosen as the squared
exponential for j = 1, . . . , d,

kj(t, t
′) = s2j exp(−0.5(t− t′)2/l2j ), (7)

with the variance and length-scale parameters (s2j , l
2
j ).

The inference in the GPSAM model is in general difficult
mainly due to the form of the likelihood (1), in which
the latent function f(·) is involved with all τ ∈ [0, t].
In other words, infinitely many Gaussian latent variables
need to be dealt with in principle. In (Fernández et al.,
2016) they adopted the thinning-based MCMC sampling
strategy motivated from (Adams et al., 2009), where the
key idea is to sample2 from the (inhomogeneous) Poisson
process with intensity λ0(t) while keeping all the thinned
samples as auxiliary state variables in the inference of the
latent variables3. For the censored examples n, we can
do the same thing as if tn’s were exact, but remove all
terms related to tn from the likelihood function.

However, the MCMC algorithm is generally slow to
converge. Furthermore, each MCMC step requires the
kernel matrix inversion to sample from the conditional
Gaussian given both the data and the thinned samples.
As the number of thinned samples can be orders of mag-
nitude larger than the data size, they also had to resort

2This sampling must be easy since λ0(t) = c · tt−1 admits
a closed-form inverse cumulative function.

3Note that this thinning-based sampling is valid since they
used the sigmoid link g(·), namely λ0(t) is always an upper
bound of λ(t|x) in (5).
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to the random feature expansion trick (Rahimi & Recht,
2008) to circumvent the matrix inversion. Nevertheless,
the thinned samples can grow arbitrarily large, incurring
serious computational overhead. This motives our work
of variational inferences in the following section.

3 VARIATONAL INFERENCE

We begin with the full joint model of the GPSAM with
the observed data D = {(δn, tn,xn)}Nn=1:

Pθ(D, f) = Pθ0(D|f) · Pθk(f). (8)

Here θ = {θ0, θk} indicates the model parameters,
where θ0 = (c, r) is the parameters of the Weibull base
hazard λ0(t) = c · tr−1, and θk denotes all kernel param-
eters, specifically {(s2j , l2j )} in (7). The latter determines
the Gaussian process prior P (f).

The conditional data likelihood P (D|f) in (8) can have
either of two different forms. If we follow the full likeli-
hood (3), then the log-likelihood can be written as:

logP (D|f) =

N∑

n=1

[
δn·log λ(tn|xn)−

∫ tn

0

λ(τ |xn) dτ

]
,

(9)
with λ(t|x) from (5). See Appendix A in the supplemen-
tal material for the detailed derivations. If we adopt the
partial likelihood (4) instead, then logP (D|f) becomes:

N∑

n=1

δn ·
[

log λ(tn|xn)− log
∑

j:tj≥tn
λ(tn|xj)

]
. (10)

The posterior distribution of the latent function Pθ(f |D)
is analytically intractable, and we introduce a tractable
density family Qα(f) with the parameters α, and search
for α that makes Qα(f) as close as possible to the true
posterior. In defining the variational density family Q(·),
it should be noted that we have to deal with infinitely
many latent variables from f(·). To this end, we adopt
two recent scalable variational inference algorithms: the
pseudo-input approximation (Titsias, 2009) and the ran-
dom feature expansion (Rahimi & Recht, 2008). We
frame each of the approaches within GPSAM. They are
described in the following sections.

In addition, we use the square non-negative link function,
i.e., g(y) = y2 instead of the sigmoid, for its merit in an-
alytic derivation of the objective especially in Sec. 3.1,
similar in nature as (Lloyd et al., 2015). That is, the haz-
ard function given the latent function is determined as:

λ(t|x) = λ0(t) · f(t,x)2. (11)

3.1 APPROXIMATION WITH PSEUDO INPUTS

To address the intractability of dealing with f(·) at (τ,x)
for all time epochs τ in the domain, stemming from the
likelihood (1), we first adopt the scalable pseudo-input
approximation techniques recently introduced in (Titsias,
2009; Dezfouli & Bonilla, 2015; Lloyd et al., 2015). We
essentially assume that there are M pseudo inputs de-
noted by Z = {z1, . . . , zM} ⊂ R+ × Rd (denoting
zi = (ti,xi)), whereM is typically chosen to be small so
that the inversion of (M ×M) matrices can be done ef-
ficiently. The pseudo inputs can be thought of as the rep-
resentative points for the joint input space (Quiñonero-
Candela & Rasmussen, 2005). We choose the pseudo in-
puts by clustering the points in the pool that is formed by
Cartesian product of uniformly sampled times and ran-
domly sampled covariates from data, although they can
also be learned from the data itself.

We define the variational density for the posterior as:

Qα(f) =

∫
Qα(fZ)P (f |fZ) dfZ . (12)

Here we use the vector notation for the latent function:
for a set A = {(t̂i, x̂i)}pi=1 ⊂ R+ × R, we denote by
fA the p-dim vector of the function values on the inputs
(t̂i, x̂i) ∈ A. The central idea that enables scalability
and tractability in (12) is that we only model the low-
dimensional density Qα(fZ) while all the other function
values can be inferred using P (f |fZ), the conditional
density derived from the GP prior. We let Qα(fZ) be
a Gaussian with diagonal covariance, namely

Qα(fZ) = N (fZ ;µ,Σ), (13)

where α = {µ,Σ} with (M × 1) mean vector µ and the
(M ×M) diagonal covariance matrix Σ.

The variational parameters α can be found by minimiz-
ing the KL divergence between the true posterior and the
variational density (12):

KL
(
Qα(f)||Pθ(f |D)

)
= logPθ(D)−LPI(θ, α), (14)

where LPI(θ, α) is defined as:

LPI(θ, α) = EQ(f)

[
logP (D|f)

]
−KL

(
Q(fZ)||P (fZ)

)
.

(15)
Using the non-negativity of the KL divergence in (14),
the LPI becomes a lower bound of the log-evidence,

logPθ(D) ≥ LPI(θ, α). (16)

Increasing LPI(θ, α) wrt α renders the variational den-
sity closer to the true posterior, whereas improving it wrt
the model parameters θ can potentially4 improve the data

4Similarly as in other standard variational inferences, this
does not guarantee to improve the evidence logP (D) since the
inequality (16) is not tight.
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likelihood of the model. Hence, we maximize LPI(θ, α)
wrt all parameters to achieve both variational inference
and model selection simultaneously.

Next, we provide detailed derivations necessary to evalu-
ate the objective LPI . Since the second term in the right
hand side of (15) is the straightforward KL divergence
between two Gaussians, we focus on the expected condi-
tional likelihood term.

For the two forms of the likelihood, full in (9) and partial
in (10), we write the expectation as:

EQ(f)

[
logP (D|f)

]
=

N∑

n=1

(
An −Bn

)
, (17)

where An is the expectation of the log-hazard at data
point n,

An = δn ·
(

log λ0(tn) + EQ(fn(tn))

[
log fn(tn)2

])
,

(18)
with the abbreviation fn(t) = f(t,xn). Whereas An is
shared by both likelihoods, Bn is defined differently.

Bfn =

∫ tn

0

λ0(τ) · EQ(fn(τ))

[
fn(τ)2

]
dτ, (19)

is for the full likelihood, while the following is for the
partial likelihood:

Bpn = δn · EQ(f)

[
log

∑

j:tj≥tn
λ0(tn) · fj(tn)2

]
. (20)

Full likelihood. Note that in (18) and (19) the distri-
butions over which the expectations are taken are uni-
variate Gaussians, specifically from (12), Q(fn(t)) =
N (µ̃n(t), σ̃2

n(t)) where

µ̃n(t) = k(t,xn),ZK−1µ, (21)

σ̃2
n(t) = k(t,xn),(t,xn) − k(t,xn),ZK−1kZ,(t,xn) +

k(t,xn),ZK−1ΣK−1 kZ,(t,xn). (22)

For two time-covariates input setsA1 andA2, we denote
by kA1,A2

the (|A1| × |A2|) kernel matrix obtained by
applying k(·, ·) on (A1 × A2). Also, K = kZ,Z indi-
cates the (M ×M) kernel matrix on the pseudo inputs
Z . The expectation of the squared-log term in (18) can
be done by the Monte-Carlo estimation. For it is univari-
ate sampling, this does not incur any significant compu-
tational overhead. As we also need to compute gradi-
ents of An wrt the parameters of the sampling distribu-
tion Q(fn(tn)), we adopt the re-parametrized Gaussian
sampling technique (Kingma & Welling, 2014) to reduce
the variance of the estimate. More specifically, we ex-
press the random samples from Q(fn(tn)), denoted by

f
(s)
n (tn) for s = 1, . . . , S, as:

f (s)n (tn) = µ̃n(tn) + (σ̃2
n(tn))1/2ε(s)n , (23)

where ε(s)n ∼ N (0, 1). The expectation in An is then
estimated as:

1

S

S∑

s=1

log
(
µ̃n(tn) + (σ̃2

n(tn))1/2ε(s)n

)2
. (24)

We sample {ε(s)n } once, and fix them throughout the op-
timization, which empirically performed better with a
lower variance than re-sampled at each iteration. As we
separate randomness (ε(s)n ) from the parameters to be op-
timized, the gradient of (24) can be computed straightfor-
wardly while yielding an unbiased estimate of the gra-
dient of the original (18). Optionally, we can further
reduce the variance of the estimate by using the Rao-
Blackwellization technique (Casella & Robert, 1996).

For Bfn in (19), due to the square link function, the in-
ner expectation equals µ̃n(τ)2 + σ̃2

n(τ), which allows
the integral to be derived analytically for the compos-
ite squared exponential kernel (6) and (7) (c.f. (Lloyd
et al., 2015)). However, the analytic derivation has to re-
sort to certain confluent hyper-geometric function which
can be numerically unstable. In the experiments, we
rather adopt the numerical integration by having uni-
formly sampled grid points over the time horizon.

Partial likelihood. Looking into Bpn in (20), the key dif-
ference from the above full likelihood derivation stems
from the multiple latent variables (i.e., {fj(tn)}j:tj≥tn )
that are dependent on one another, preventing us from
taking advantage of the univariate sampling. Since the
number of these variables (i.e., |{j : tj ≥ tn}|) can be as
large as the entire data set, naively sampling from Q(f)
jointly can yield an estimate with large variance. Instead,
we consider the upper bound of Bpn (leading to a lower
bound on LPI ) using the Jensen’s inequality. Specifi-
cally, from (20),

Bpn ≤ δn ·log
∑

j:tj≥tn
λ0(tn)·EQ(fj(tn))

[
fj(tn)2

]
. (25)

The square link allows an analytical expression of the
expectation in B̃pn, µ̃j(tn)2 + σ̃2

j (tn), which can be eval-
uated easily using (21) and (22), likewise its gradients.
Note that (regardless of whether we use the upper bound
or not) the base hazard term log λ0(tn) cancels out with
that in (18) in the final objective (17), preventing one
from learning λ0(t). This is an inherent problem orig-
inating in the hazard form (5), where λ0(t) is shared
across examples. To this end, we simply borrow the esti-
mate of λ0(t) from the full-likelihood learning.
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3.2 RANDOM FEATURES APPROXIMATION

To deal with uncountably many random variables and
their matrix inversions brought about from the nonpara-
metric Bayesian Poisson process GPSAM, we consider
the random features expansion as an alternative approx-
imation strategy. The central idea of the random fea-
tures (Rahimi & Recht, 2008; Cho & Saul, 2009) is to
seek a finite dimensional feature vector representation
for input such that the inner product on this feature space
equals (in expectation) the kernel value. For the com-
posite kernel function (6), its GP-priored latent function
f(t,x) can be approximated by:

f̂(t,x) =
1

m

d∑

j=1

x(j)
(
a>j cos(ωjt) + b>j sin(ωjt)

)
,

(26)
where aj , bj , and ωj are all m-dim iid random vari-
ables (samples) with aj ,bj ∼ N (0, s2jIm) and ωj ∼
N (0, 1

l2j
Im) for j = 1, . . . , d. Here Im denotes the (m×

m) identity matrix. We let a = {aj}dj=1 and the others
similarly. It can be shown that Cov(f̂(t,x), f̂(t′,x′)) =
k((t,x), (t′,x′)), which implies that the finite dimen-
sional random variables {a,b,ω} are sufficient to repre-
sent the latent function f ∼ GP(0, k(·, ·)). The param-
eter m is the number of random samples to approximate
the kernel, which trades off: large m reduces the approx-
imation error at the cost of computational overhead.

In this treatment, we aim to infer the posterior distribu-
tion P (a,b,ω|D), and the variational inference reduces
to maximizing:

LRF (θ, β) = EQ(a,b,ω)

[
logP (D|f̂)

]
− KL(θ, β),

(27)
where we use the fully factorized variational density,
Q(a,b,ω) = Q(a)Q(b)Q(ω), each modeled as a Gaus-
sian, Q(a) =

∏d
j=1N (aj ;µ

a
j ,Σ

a
j ) and similarly for

the others. Here µaj and Σa
j are (m × 1) mean vec-

tor and (m × m) diagonal covariance matrix, respec-
tively, and β includes all these variational parameters.
The term KL(θ, β) denotes the sum of individual KL
terms for a, b, and ω; for instance, for a, we have:
KL(Q(a)||N (a; 0, s2jIm)). As before, these KL terms
all involve Gaussians, having analytic forms, easy to
evaluate and take derivatives.

Similarly to Sec. 3.1, the expected log-likelihood term
in (27) has two variations, full or partial likelihood,
and we decompose it into two parts exactly the same
way as (17). For concreteness, with the abbreviation
f̂n(t) = f̂(t,xn), we approximate the expected log-
likelihood term in (27) using the re-parametrized Monte-
Carlo estimate. That is, after sampling εaj

(s), εbj
(s) and

εωj
(s) independently fromN (0, Im) for j = 1, . . . , d and

s = 1, . . . , S, the sampled version of the random weight
vector aj is formed as (b(s)

j and ω(s)
j similarly):

a
(s)
j = µaj + (Σa

j )1/2εaj
(s), (28)

Then the posterior samples f̂ (s)n (t) can be written as:

d∑

j=1

xn(j)

m

((
a
(s)
j

)>
cos(ω

(s)
j t) +

(
b
(s)
j

)>
sin(ω

(s)
j t)

)
,

(29)

With these sampled functions, one can basically obtain
the estimate of the objective (27) that can be decomposed
into forms similar to (18), (19), and (20), which we de-
note by Ân, B̂fn, and B̂pn, respectively. Although evalu-
ating Ân and B̂pn (and their gradients) can be done simi-
larly as in Sec. 3.1 with no additional difficulty, working
on B̂fn introduces a new computational challenge. Unlike
the pseudo-input approximation where we were able to
express EQ

[
fn(τ)2

]
as an analytic form µ̃n(τ)2+σ̃2

n(τ),
we can only estimate the expectation numerically us-
ing the samples (29) from Q(·). However, we have an
outer integration of this expectation over τ ∈ [0, tn],
and the (grid-based) numerical integration would incur
computational explosion as we need (d ·m · S ·G) sam-
ples/numbers involved in, where G is the number of grid
points over [0, tn] (typically, S and G are several thou-
sands, and d ≈ 10).

To address this difficulty, we propose an alternative esti-
mation strategy for B̂fn. We regard λ0(τ) = c · τ r−1 in
the integration as an unnormalized density, more specif-
ically, λ0(τ) = ρn · pn(τ) where pn(τ) is the density
having the support [0, tn] and ρn =

∫ tn
0
λ0(τ)dτ = c

r t
r
n

is the normalizer. Thus pn(τ) = r τ
r−1

trn
over [0, tn]. Then

B̂fn = ρn · Epn(τ)
[
EQ
[
fn(τ)2

]]
. (30)

This allows us to sample τ (s)n ∼ pn(τ) for s = 1, . . . , S
independently with the random features/weights in (28),
and estimate B̂fn as:

ρn ·
1

S

S∑

s=1

f̂ (s)n (τ (s))2. (31)

Note that sampling from pn(τ) can be done using the
inverse transform sampling: for its CDF is Fn(τ) =

(τ/tn)r, the samples τ (s)n can be expressed as:

τ (s)n = F−1n (u(s)) = tn · (u(s))1/r, (32)

where u(s) are uniform samples from [0, 1]. We further
reduce the variance of the estimate by using the same re-
parametrization trick, namely plugging (32) into (31) to
separate the randomness from the parameters.

440



4 EMPIRICAL EVALUATIONS

The performance of the proposed variational inference
methods is demonstrated on both synthetic and real
datasets. Our approaches are denoted as follows: VIfPI
and VIpPI are the approximations based on pseudo inputs
in Sec. 3.1 with full and partial likelihood, respectively,
while VIfRF and VIpRF indicate the variational inference
with random feature expansions described in Sec. 3.2.
The competing approaches are summarized, with abbre-
viations, as:

• MCMC: The MCMC-based inference method for
GPSAM (Fernández et al., 2016), where we used
hyperparameters similar to theirs.

• CoxPHf and CoxPHp: The full and partial likeli-
hood maximization learning of the CoxPH model.

• SVCR: The support vector censored regression ap-
proach (Shivaswamy et al., 2007) with no cost im-
posed for the over-estimation of the censored sam-
ples.

• SVRC: Another regression-based approach (Khan
& Zubek, 2008) that adopts asymmetric costs for
over-estimation depending on the violation types.

• MINLIP: The ranking-based prognostic function
estimation method (Van Belle et al., 2009), which
enforces the correct ordering of the prognostic in-
dices for time-comparable pairs of samples. The
method further aims to preserve the relative time
differences in the prognostic indices.

• Model2: The hybrid approach that attempts to
combine the ranking constraints and the cost-
sensitive loss in estimating the prognostic func-
tion (Van Belle et al., 2011).

For the performance measures, we focus on the accu-
racy of the estimated prognostic index function u(x).
Whereas the approaches based on regression and/or
ranking directly estimate u(x), for the CoxPH-based
methods we derive it naturally by u(x) = −b>x from
the learned CoxPH models. For GPSAM, where the haz-
ard function is not factorized, we estimate the expected
event time E[t|x] as the survival index. Two performance
measures popular in survival analysis are considered: i)
Concordance index – the proportion of the pairs
of samples whose predicted survival times are correctly
ordered (i.e., (u(xi) − u(xj))(ti − tj) ≥ 0), and ii)
Log-rank-χ2 statistics – the statistical test score mea-
suring the difference between two risk groups formed by
thresholding the prognostic indices by their median. For
both measures, higher scores are better.

For our variational inference methods, we vary the fol-
lowing hyperparameters: the number of pseudo inputs
(M ) for the VIPI and the number of random features
(m) for the VIRF . We use the best set obtained by cross
validation on the held-out portion of the training data,
where the concordance index is used as the selection cri-
terion. The optimal parameters are, consistently across
all datasets, M = 20 for the VIPI and m = 50 for the
VIRF . In the latter part of the section and in the sup-
plemental material (Appendix B), we also compare the
performances and running times of the other parameter
settings. The number of samples for the Monte-Carlo es-
timation in our variational inference is fixed as 3000. The
MCMC approach for GPSAM model (Fernández et al.,
2016) used m = 50 random features, and the number of
MCMC iterations is chosen as 5000 with the first 1000
samples dropped out. The hyperparameters of the other
competing models (e.g., the regularization parameters in
the regressions) are also determined by cross validation.

4.1 SYNTHETIC DATASETS

To judge the effectiveness and flexibility of the proposed
variational inference methods for GPSAM, we consider a
synthetic scenario where the data samples are generated
from a non-proportional hazard model. In particular, we
consider a stratified CoxPH model, which can be seen as
a conditional mixture of several CoxPH models. More
specifically, the hazard function is defined as λ(t|x) =
λs(x)(t) · exp(b>s(x)x) where s(x) ∈ {1, . . . ,K} is
a gating function among K component CoxPH mod-
els. The base hazard function λs(t) for each compo-
nent model s = 1, . . . ,K, is defined to be the Weibull
function cs · trs−1 with different parameters (cs, rs) for
each s. The gating function follows a piecewise linear
form, s(x) = arg max1≤s≤K w>s x, where we choose
ws’s randomly. We set the number of base models as
K = 3. The input covariates x are sampled randomly
from N (0, I).

To mimic the censoring process, for each generated sam-
ple, we randomly turn it into a censored one with prob-
ability p. The observed time t for the censored sample
is then uniformly sampled from [0, t∗] where t∗ is the
original value before censoring. We choose p = 0.3.
After generating 100 samples, we perform 10-fold cross
validation where the averaged test scores with standard
deviations are depicted in Table 1. For each measure,
the best performing method in terms of the average value
is boldfaced. To measure the statistical significance,
we also conducted the Wilcoxon signed-rank tests, pair-
wisely against the (boldfaced) best performing method.
With the null hypothesis that two approaches result in
statistically indistinguishable performance, the p-values
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Table 1: (Synthetic dataset) Average test prediction per-
formance. Our variational approximation approaches,
VIPI and VIRF , adopt M = 20 pseudo inputs and
m = 50 random features, respectively. Best average
score method is boldfaced. Parentheses indicate the p-
values from the Wilcoxon signed rank test against the
best (boldfaced) approaches.

Methods C-Index (%) Log-Rank-χ2

VIfPI 83.04± 1.91 (−−) 13.88± 2.85 (−−)
VIpPI 79.68± 2.50 (0.002) 10.71± 4.73 (0.125)

VIfRF 81.55± 2.20 (0.049) 10.55± 5.66 (0.250)

VIpRF 81.28± 2.54 (0.049) 10.73± 5.38 (0.250)

MCMC 77.20± 3.66 (0.002) 10.81± 6.00 (0.193)

CoxPHf 73.43± 5.51 (0.002) 8.70± 2.88 (0.232)

CoxPHp 73.27± 4.99 (0.002) 9.14± 3.37 (0.160)

SVCR 68.32± 6.51 (0.002) 5.55± 3.48 (0.027)

SVRC 73.05± 4.37 (0.002) 7.81± 3.20 (0.084)

MINLIP 65.75± 4.34 (0.002) 3.40± 2.20 (0.004)

Model2 71.32± 3.04 (0.002) 5.63± 2.24 (0.027)

are shown in the tables.

The proposed variational inference approaches, both
VIPI and VIRF , exhibit superior generalization perfor-
mance compared to all contrasted methods. Specif-
ically, the pseudo-input approximation optimizing the
full-likelihood (VIfPI ) performs the best in both mea-
sures. With regard to the concordance index, it is sig-
nificantly better than all other models (p-values < 0.05),
but leads to marginal improvements in the log-rank-
χ2 measure. The CoxPH-based models (CoxPHf and
CoxPHp) are mostly outperformed by the GPSAM mod-
els due to the substantial mismatch with the true data pro-
cess (simplified modeling assumption of non-crossing
hazard functions across instances). Compared to the
MCMC approach (Fernández et al., 2016), our proposed
VI methods yield higher prediction accuracies, related
to improved hazard function estimation. In contrast,
the MCMC potentially suffers from computational over-
head, preventing convergence to the target distribution.

To investigate the computational benefits of the pro-
posed approaches over the MCMC algorithm, we mea-
sure the actual inference times (for our variational in-
ference, we record the entire running time until conver-
gence). Implemented in MATLAB and run on 2.4GHz
Intel Xeon CPU, the running times are: 571.7 seconds
for VIfPI , 1165.1 seconds for VIfRF , and 8121.2 seconds
for the MCMC, indicating significant computational ad-
vantage of our VI approaches. The log-likelihood scores
logP (D∗) of GPSAM evaluated on the test data D∗ are
also summarized in Table 3. Although the scores are
mostly comparable, the MCMC attains the highest likeli-
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Figure 1: The inference times of three methods: MCMC,
VIfPI , and VIfRF on the MLC dataset.

hood. However, it should be noted that we only compute
lower bounds of the log-likelihoods (i.e., LPI in (15) and
LRf in (27)) for our variational learning.

4.2 REAL DATASETS

Next we test the performance of the proposed methods on
two clinical and one non-clinical datasets: i) (VLC) Vet-
eran’s lung cancer dataset (Prentice, 1974; Kalbfleisch &
Prentice, 2002) contains records of 137 patients with 6
covariates such as age, weight, treatment, cell type, and
disease history, ii) (MLC) Mayo lung cancer dataset (Th-
erneau & Grambsch, 2000) having 167 patients with sim-
ilar 7 covariates, and iii) (Divorce) dataset (Lillard &
Panis, 2000) which records the divorce years since mar-
riage for 3771 couples, among which we use a fifth of
the samples randomly chosen. The proportions of the
censored samples are: 7% for VLC, 28% for MLC, and
70% for Divorce, where the study involved in the latter
dataset often fails to track the status of many of the cou-
ples, which leads to the large proportion of the censored
samples. The Divorce dataset originally provides three
categorical features for each sample: the husband educa-
tion years (categorized into three levels of less than 12
yrs, more than 15, and between two), whether the hus-
band is African American or not, and whether the eth-
nicity of the couple is different or not. We also intro-
duce additional nonlinear features of pairwise and triple
products, yielding 7-dim covariates. Other experimental
settings follow the synthetic experiment.

We performed 10-fold cross validation where the test re-
sults are shown in Table 2. The best methods, boldfaced
with p-values from the statistical test against other meth-
ods, are mostly our variational inference methods (four
out of six). Our approaches estimate the posterior of the
latent function more accurately than the MCMC while
enjoying the benefits of the GP to account for uncertainty
in the hazard modeling and relaxing the time-covariates
factorized assumption of the CoxPH model.
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Table 2: (Real datasets) Average test prediction performance. Our variational approximation approaches, VIPI and
VIRF , adopt the number of pseudo inputs M = 20 and random features m = 50, respectively. Best method in terms
of the average value is boldfaced. Figures in parentheses indicate the p-values from the Wilcoxon signed rank test
against the best (boldfaced) approaches.

Datasets VLC MLC Divorce

Methods C-Index (%) Log-Rank-χ2 C-Index (%) Log-Rank-χ2 C-Index (%) Log-Rank-χ2

VIfPI
71.99± 3.67 3.89± 2.74 72.68± 3.00 2.74± 2.07 63.60± 3.17 2.27± 1.70

(0.0020) (0.3750) (−−) (0.6250) (1.0000) (1.0000)

VIpPI
70.87± 4.75 3.61± 2.82 69.44± 6.48 2.35± 2.27 62.89± 3.92 2.25± 1.97

(0.0039) (0.2754) (0.0273) (0.4316) (0.1934) (0.7695)

VIfRF
76.79± 4.08 5.13± 4.17 68.08± 4.98 1.64± 1.94 63.73± 2.67 2.07± 1.50

(−−) (1.0000) (0.0098) (0.1934) (0.0703) (0.7695)

VIpRF
76.49± 4.51 5.81± 4.27 67.00± 5.35 1.32± 1.92 64.56± 3.47 2.24± 1.33

(0.6875) (−−) (0.0098) (0.1309) (−−) (1.0000)

MCMC
68.48± 2.57 2.34± 1.54 66.46± 6.38 2.15± 2.72 63.81± 3.15 2.35± 2.68

(0.0098) (0.0840) (0.0039) (0.4316) (1.0000) (−−)

CoxPHf
69.28± 6.05 3.12± 3.75 66.89± 11.05 3.25± 2.53 63.33± 2.71 1.67± 1.38

(0.0098) (0.0547) (0.3223) (1.0000) (0.4922) (0.5566)

CoxPHp
69.10± 5.88 2.64± 3.86 68.25± 11.14 3.65± 3.04 63.33± 2.71 1.67± 1.38

(0.0098) (0.0078) (0.1934) (−−) (0.4922) (0.5566)

SVCR
55.41± 9.31 1.10± 1.68 56.42± 17.89 2.52± 2.71 54.38± 11.21 0.87± 0.72

(0.0020) (0.0020) (0.0039) (0.1602) (0.0098) (0.3750)

SVRC
55.36± 9.66 1.10± 1.68 54.93± 17.65 2.61± 2.74 54.43± 10.88 1.14± 1.19

(0.0020) (0.0020) (0.0039) (0.2324) (0.0059) (0.3223)

MINLIP
65.64± 9.79 2.59± 3.23 68.60± 9.28 3.18± 3.03 51.75± 5.38 0.60± 0.96

(0.0098) (0.1309) (0.2754) (0.8457) (0.0039) (0.1602)

Model2
57.40± 10.82 1.59± 2.07 68.81± 8.06 3.19± 3.02 55.83± 10.45 0.69± 0.74

(0.0039) (0.0020) (0.1934) (0.6953) (0.0195) (0.2324)

Next we compare running times. To see the effect of the
approximation model complexity on the inference time,
we vary the parameters in model learning. Specifically,
M is chosen from {10, 20, 40, 60, 80} for VIPI and m
is from {5, 10, 20, 30, 50} for VIfRF and also the MCMC
method (Fernández et al., 2016) that employs the random
feature approximation. All methods are implemented in
MATLAB run on 2.4GHz Intel Xeon CPU. The results
on the MLC dataset are visualized in Fig. 1. Results
demonstrate that our variational methods are an order of
magnitude faster than the MCMC while achieving com-
parable or often superior prediction performance. For
other datasets, refer to Appendix B in the supplemental
material. Finally, the test log-likelihood scores of the at-
tained models are depicted in Table 3. Considering we
report lower VI bounds of the log-likelihoods, all pro-
posed methods exhibit comparable, or superior, general-
ization performance to that of the MCMC.

5 CONCLUSION

We have proposed a family of novel and highly scalable
variational inference methods for the Gaussian process

Table 3: Average test log-likelihood scores attained by
VIPI (M = 20), VIRF (m = 50), and the MCMC.

Datasets Synthetic VLC MLC Divorce

VIfPI −36.40 −31.50 −40.00 −80.31
VIpPI −41.13 −35.00 −41.78 −84.10
VIfRF −35.18 −25.87 −45.48 −86.75
VIpRF −36.33 −26.05 −45.47 −86.75

MCMC −34.01 −30.70 −38.61 −105.53

survival analysis model. Our approaches can estimate the
posterior of the GP latent function in this flexible non-
proportional hazard model more accurately, with running
times an order of magnitude faster than the state-of-the-
art MCMC algorithm.

Acknowledgments

MK is supported by National Research Foundation of
Korea (NRF-2016R1A1A1A05921948).

443



References

Adams, R. P., Murray, I., & MacKay, D. J. (2009).
Tractable nonparametric Bayesian inference in Pois-
son processes with Gaussian process intensities. Inter-
national Conference on Machine Learning.

Casella, G., & Robert, C. P. (1996). Rao-
Blackwellisation of sampling schemes. Biometrika,
83, 81–94.

Cho, Y., & Saul, L. K. (2009). Kernel methods for deep
learning. In Advances in Neural Information Process-
ing Systems.

Cox, D. (1972). Regression models and life-tables (with
discussion). Journal of the Royal Statistical Society,
Series B, 34, 187–220.

Dempsey, W. H., Moreno, A., Scott, C. K., Dennis,
M. L., Gustafson, D. H., Murphy, S. A., & Rehg, J. M.
(2017). iSurvive: An Interpretable, Event-time Pre-
diction Model for mHealth. International Conference
on Machine Learning.

Dezfouli, A., & Bonilla, E. V. (2015). Scalable infer-
ence for Gaussian process models with black-box like-
lihoods. In Advances in Neural Information Process-
ing Systems.

Fernández, T., Rivera, N., & Teh, Y. W. (2016). Gaussian
processes for survival analysis. In Advances in Neural
Information Processing Systems.

Hjort, N. L., Holmes, C., Mller, P., & Walker, S. G.
(2010). Bayesian nonparametrics. Cambridge Uni-
versity Press.

Iorio, M. D., Johnson, W. O., Mller, P., & Rosner, G. L.
(2009). Bayesian nonparametric nonproportional haz-
ards survival modeling. Biometrics, 65, 762–771.

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., &
Lauer, M. S. (2008). Random survival forests. The
annals of applied statistics, 2, 841–860.

Kalbfleisch, J., & Prentice, R. (2002). The statistical
analysis of failure time data. Wiley Series in Prob-
ability and Statistics, New York.

Khan, F., & Zubek, V. (2008). Support vector regression
for censored data (SVRc): A novel tool for survival
analysis. In Proceedings of the Eighth IEEE Interna-
tional Conference on Data Mining (ICDM).

Kingma, D. P., & Welling, M. (2014). Auto-encoding
variational Bayes. In Proceedings of the Second Inter-
national Conference on Learning Representations.

Kleinbaum, D. G., & Klein, M. (2005). Survival anal-
ysis: A self-learning text (statistics for biology and
health). Springer.

Lillard, & Panis (2000). aml multilevel multiprocess sta-
tistical software. Release 1.0, EconWare, LA, Califor-
nia.

Lloyd, C., Gunter, T., Osborne, M. A., & Roberts, S. J.
(2015). Variational inference for Gaussian process
modulated Poisson processes. International Confer-
ence on Machine Learning.

Martino, S., Akerkar, R., & Rue, H. (2011). Approxi-
mate Bayesian inference for survival models. Scandi-
navian Journal of Statistics, 38, 514–528.

Prentice, R. L. (1974). A log gamma model and its maxi-
mum likelihood estimation. Biometrika, 61, 539–544.
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Abstract

We propose a cost-effective framework for
preference elicitation and aggregation under
the Plackett-Luce model with features. Given
a budget, our framework iteratively computes
the most cost-effective elicitation questions in
order to help the agents make a better group
decision.

We illustrate the viability of the framework
with experiments on Amazon Mechanical
Turk, which we use to estimate the cost of
answering different types of elicitation ques-
tions. We compare the prediction accuracy of
our framework when adopting various infor-
mation criteria that evaluate the expected infor-
mation gain from a question. Our experiments
show carefully designed information criteria
are much more efficient, i.e., they arrive at the
correct answer using fewer queries, than ran-
domly asking questions given the budget con-
straint.

1 INTRODUCTION

Consider the hiring decision problem [Bhattacharjya and
Kephart, 2014]. With the aid of an intelligent system,
a group of people (the key group) faces a hiring deci-
sion about many candidates who are characterized by at-
tributes, such as experiences, technical skills, commu-
nication skills, etc. The goal is to help the key group
make a group decision without directly eliciting their full
preferences over all candidates, which is often infeasi-
ble given the vast number of candidates. Instead, the in-
telligent system may ask fellow employees (the regular
group) about their preferences in order to learn about the
key group’s preferences. How can the intelligent system
decide which member in the regular group to ask and

which questions to ask? Note that we discuss the pres-
ence of two groups but our framework is applicable when
there is only one group of decision makers as well.

This example illustrates the preference elicitation prob-
lem, which has been widely studied in the field of recom-
mender systems [Loepp et al., 2014], healthcare [Cha-
jewska et al., 2000, Weernink et al., 2014, Erdem and
Campbell, 2017], marketing [Huang and Luo, 2016], sta-
ble matching [Drummond and Boutilier, 2014, Raste-
gari et al., 2016], combinatorial auctions [Sandholm and
Boutilier, 2006], etc. Most previous works studied a spe-
cial case of the aforementioned scenario, in which the
regular group is the key group. The objective of pref-
erence elicitation is to achieve some goal using as few
samples (data) as possible. A common approach is to
adaptively ask questions that maximize expected infor-
mation gain, measured by some information criteria.

Moreover, most previous work focused on specific types
of elicitation questions, e.g. pairwise comparisons. In
this paper, we consider a more general framework that
asks a variety of elicitation questions and can accom-
modate one or more groups. The diversity of elicita-
tion questions enables us to query cost-effectively. In-
tuitively, an agent’s preference order over 10 alternatives
tells us more about her preference in general than just
her top choice among the 10; however, it may take her
longer to do so. The key question we want to answer in
this paper is:

How can we compute the most cost-effective questions
for preference elicitation under resource constraints?

1.1 OUR CONTRIBUTIONS

We propose a flexible cost-effective preference elici-
tation and aggregation framework to predict a single
agent’s preference or help make a group decision. The
main inputs include a budget W , a set of designs
(i.e. questions to ask)H, a cost functionw, a randomized
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voting rule and an information criterion. We model non-
deterministic preferences using the Plackett-Luce model
with features.

Cost-effectiveness. We propose a flexible, cost-effective
preference elicitation framework that accommodates all
randomized voting rules, ranking models, and informa-
tion criteria. This iterative framework leverages the op-
timal design technique. In each iteration, we choose the
question that provides the most information per unit cost.
The response is then recorded as a data point, leading to
an update of the posterior distribution of the parameter,
which is treated as the prior for the next iteration. In any
iteration, the posterior estimate of the parameter can be
used to compute a winner distribution using a random-
ized voting rule. This procedure is illustrated in Figure 1.

Figure 1: Illustration of the proposed framework.

Randomized Voting Rules. We use randomized voting
rules to compute the winning alternatives of a group deci-
sion, which outputs the distribution of winners (see Sec-
tion 4 for details). The probability for each alternative
to be the winner is proportional to its score based on the
voting rule. These probability estimates are more infor-
mative than only recommending a winner as it provides
a distribution over the candidates as well.

We prove that when people have non-deterministic pref-
erences, the probability of an alternative to be the winner
is proportional to the total expected score of this alterna-
tive for all agents (Theorem 1). This means the random-
ized counterpart of any scoring rule can be used in our
framework as long as the expected score of each alterna-
tive for a single agent is easy to compute. Then we prove
that under the Plackett-Luce model, the winner distri-
butions of probabilistic plurality and probabilistic Borda
are easy to compute (Corollary 1 and Theorem 2).

Information Criteria. An information criterion plays a
key role in determining the next elicitation question by
measuring the information in the distribution of a pa-
rameter. We propose the minimum pairwise certainty

(MPC) criterion, extended from the information crite-
rion by Azari Soufiani et al. [2013], which maximizes
the improvement of the least certain pairwise compari-
son. Other commonly-used information criteria include
D-optimality [Wald, 1943, Mood et al., 1946] and E-
optimality [Ehrenfeld, 1955], as well as asking a ques-
tion uniformly at random. All these information crite-
ria are based on the information of the posterior distri-
bution of the model parameter, which is approximated
by its asymptotic distribution, a multivariate Gaussian
computed based on the composite marginal likelihood
method [Pauli et al., 2011].

Empirical Studies & Experiments. We carry out Ama-
zon Mechanical Turk experiments to estimate the cost
of answering various types of questions for a target do-
main of ranking hotels. We compare the performances
of MPC, D-optimality and E-optimality with simulations
and observe that these criteria have similar performance
in terms of prediction accuracy, and we observe that all of
them significantly outperform random elicitation ques-
tions.

1.2 RELATED WORK AND DISCUSSIONS

Our work is related to cost-effective experimental de-
signs, which were investigated by Wright et al. [2010],
Volkov [2014] in the context of aquatic toxicology and
drug development, respectively. Volkov [2014] mod-
eled cost-effectiveness as different types of optimization
problems, e.g., minimize cost under information con-
straints. We take a greedy approach, similar to an algo-
rithm proposed by Wright et al. [2010], and choose the
design (elicitation question) that maximizes the expected
information gain per unit cost. Our cost varies depend-
ing on the type of questions and is estimated empirically,
similar to the idea in Volkov [2014]. To our best knowl-
edge, this paper is the first work to apply cost-effective
experimental design to preference elicitation.

The greedy approach is also called one-step-lookahead
policy, which can be arbitrarily worse than optimal t-
step-lookahead (t-step myopic active search) policies for
t ≥ 2 [Garnett et al., 2012]. Arbitrary t-step myopic ac-
tive search is hard to compute, as was shown by Jiang
et al. [2017], which also proved that nonmyopic active
search is computationally hard even to approximate and
proposed an efficient searching algorithm. This algo-
rithm is potentially useful in the preference elicitation
context and is an interesting future direction.

Most previous works in preference elicitation assumed
that people’s preferences are deterministic. For exam-
ple, Bhattacharjya and Kephart [2014] proposed an even
swap algorithm to reveal a single decision maker’s most
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preferred alternative; Lu and Boutilier [2011a], Kalech
et al. [2011] elicited preferences from a group of people
in order to make a group decision under a (deterministic)
voting rule. In contrast, we consider non-deterministic
preferences of people, which is often the case in real-
world. Moreover, we use randomized voting rules, which
output the probability of each alternative to be the win-
ner. These probabilities, which can be viewed as normal-
ized scores over all alternatives, provide a quantitative
measure of the quality of each alternative. For example,
an alternative that wins with probability 0.8 can be seen
as being much better than other alternatives.

Non-deterministic preferences were modeled by general
random utility models by Azari Soufiani et al. [2013].
They proposed a preference elicitation framework for
personalized choice and social choice (aggregated pref-
erence). We use the Plackett-Luce model with features,
which is a special case of general random utility mod-
els but has easy-to-compute probabilities. More impor-
tantly, we use randomized voting rules for aggregation,
which is very different from parametric modeling of so-
cial choices employed by [Azari Soufiani et al., 2013].

Pairwise elicitation questions may be the most widely ex-
plored in the literature due to their simplicity [Branke
et al., 2017, Eric et al., 2008, Houlsby et al., 2012, Lu
and Boutilier, 2011a, Pfeiffer et al., 2012]. In contrast,
Azari Soufiani et al. [2013] focused on elicitation of full
rankings, though their proposed framework also allows
for partial orders. Drummond and Boutilier [2014], Lu
and Boutilier [2011b] studied a larger set of queries,
which includes asking a person to rank her top k choices
over all alternatives. In this paper, we consider an even
broader set of queries, asking an agent to rank her top
k choices over a subset of l alternatives (k < l). This
enables us to elicit preferences in a more cost-effective
manner.

As a key role in preference elicitation, information cri-
teria have been widely investigated for different ap-
plications. Standard information criteria include D-
optimality (used in [Houlsby et al., 2011, 2012, Pfeiffer
et al., 2012]) and E-optimality. Drummond and Boutilier
[2014] and Lu and Boutilier [2011a] use minimax-regret-
based criterion for stable matching and aggregation re-
spectively. Azari Soufiani et al. [2013] proposed yet an-
other criterion, defined on the certainty of the least cer-
tain pairwise comparison over the intrinsic utilities (part
of the parameter of their general random utility models)
of all alternatives. Our MPC criterion extends the crite-
rion by Azari Soufiani et al. [2013]. To predict a single
agent’s top k preference, we search over a subset of all
pairwise comparisons (see Section 3.3). To help make a
group decision, we search over all pairwise comparisons

of all agents in the key group to find the least certain
pairwise comparison (Equation (3)).

2 PRELIMINARIES

Let A = {a1, a2, . . . , am} denote a set of m alternatives
and {1, . . . , n1, n1 + 1, . . . , n1 + n2} denote n1 + n2

agents, where the first n1 agents belong to the key group,
who will be making a group decision. The remaining n2

agents belong to the regular group. For all i = 1, . . . ,m,
ai is characterized by a real-valued column vector of K
attributes ~zi. For all j = 1, . . . , n1 + n2, agent j is char-
acterized by a real-valued column vector of L attributes
~xj . A full ranking R is often denoted by ai1 � ai2 �
. . . � aim , where “�” means “is preferred over”. We
denote the budget by W , where the money is used to pay
the agents for answering elicitation questions.

For n1 = 1, we want to predict the single key agent’s
full or top k ranking with as much certainty as possible
given a budget W . For n1 ≥ 2, the goal is to predict the
winning alternative of the key group by eliciting prefer-
ences from the regular group in the most cost-effective
way. More concretely, given W , we want to output a
distribution of winning alternatives, w.r.t. a randomized
voting rule, which will be defined in Section 4.

2.1 THE PLACKETT-LUCE MODEL WITH
FEATURES

Let the parameter B = [bκι]K×L be a matrix of real-
valued coefficients, transforming features to utilities.
Each value bκι corresponds to the κ-th attribute from an
alternative and ι-th attribute from an agent. The param-
eter space Θ is a set of all real-valued K × L matrices.
Then the utility of an alternative ai to an agent j is

uji = ~x>j B~zi. (1)

For any agent j and any full ranking Rj = ai1 � ai2 �
. . . � aim , the probability of Rj is

Pr(Rj) =
exp(uji1)∑m
q=1 exp(ujiq )

× exp(uji2)∑m
q=2 exp(ujiq )

×

· · · × exp(ujim−1)

exp(ujim−1
) + exp(ujim)

.

Given the Plackett-Luce model with features, the prob-
ability of alternative ai1 to be ranked at the top among
{ai1 , . . . , ail} by agent j is exp(uji1 )∑l

q=1 exp(ujiq )
. Specifically,

for any two alternatives a1 and a2, the probability of
a1 � a2 by agent j is exp(uj1)

exp(uj1)+exp(uj2) .
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2.2 ONE-STEP BAYESIAN EXPERIMENTAL
DESIGN

Given any probabilistic model parameterized by B ∈ Θ
and any prior distribution π(B), a one-step Bayesian ex-
perimental design consists of two parts: (i) a set of de-
signs H, where each h ∈ H is composed of an agent
and a question; (ii) an information measure G(·), which
maps any distribution ofB over Θ to a real-valued scalar:
a measure of information in this distribution.

For any design h ∈ H, the distribution of responses
can be computed using the ground truth parameter B∗.
We use D to denote the set of all possible responses.
Given a ground truth parameter B∗, the probability of
any data d ∈ D can be computed as Pr(d|h). Fur-
ther, we can compute the posterior distribution of pa-
rameter π(B|d, h) over the parameter space Θ and the
corresponding information criterion G(π(B|d, h)). The
expected information is

E[G(π(B|h))] =
∑

d∈D
G(π(B|d, h)) Pr(d|h),

where the expectation is taken over all possible re-
sponses. The goal is to find the design h that maximize
the expected information gain, which is E[G(π(B|h)]−
G(π(B)), per unit cost. Let w(h) denote the cost func-
tion, which maps the 2-tuple (agent, question) to a posi-
tive cost. Given the cost function w(h), we can compute
the optimal design h∗ that maximizes the expected infor-
mation gain per unit cost by

h∗ = arg max
h

E[G(π(B|h))]−G(π(B))

w(h)
. (2)

3 COST-EFFECTIVE PREFERENCE
ELICITATION

In our proposed framework, we iteratively adapt the one-
step experimental design by querying the most cost-
effective question in each iteration. At any iteration t,
the prior distribution of B is the posterior distribution
given data Dt, i.e. π(Bt|Dt). Given this posterior, we
find the most cost-effective design ht, which consists of
one agent and one question, and query ht. The response
is combined with Dt to form Dt+1. Then the budget
W and the set of designs H are updated before going to
the next iteration. Finally, when n1 = 1, we compute
the predicted preference of this agent; when n1 ≥ 2, we
compute the distribution of winners based on a random-
ized voting rule. This framework is formally illustrated
in Algorithm 1.

For the rest of this section, we will explain how to ap-
proximate the posterior distribution π(Bt|Dt) and how
G(π(B)) is computed.

Algorithm 1 Cost-Effective Preference Elicitation
Input: BudgetW , randomize voting rule r, cost function
w(h), information criterion G(π(B)), the set of designs
H where for any h ∈ H, w(h) ≤W .
Output: A predicted preference when n1 = 1 or a dis-
tribution of winning alternatives for group decision when
n1 ≥ 2.
Initialization: Randomly initialize data D1.

whileH is not empty do
Compute/approximate π(Bt|Dt);
Compute ht ∈ H using (2);
Implement ht (query an agent a question). Let Rt

denote her answer. ThenDt+1 ← Dt∪{Rt},H ←
H− ht, W ←W − wt;
Remove all h′’s fromH where w(h′) > W .

end while
Compute the predicted preference when n1 = 1 or
a distribution of winning alternatives according to the
voting rule r when n1 ≥ 2.

3.1 APPROXIMATION OF POSTERIOR
DISTRIBUTION

For any prior π(B) and data D, the posterior distribu-
tion is given by π(B|D) = Pr(D|B)π(B)∫

Θ
Pr(D|B)π(B)dB

accord-
ing to Bayes’ rule. This posterior is often hard to com-
pute. A commonly-used approach is to approximate it by
its asymptotic distribution, which is a multivariate Gaus-
sian distribution characterized by the composite marginal
likelihood (CML) method [Pauli et al., 2011].

For convenience we vectorize B as a column vector, de-
noted by ~β = vec(B). The composite marginal like-
lihood method [Lindsay, 1988, Zhao and Xia, 2018]
computes the estimate of the ground truth parameter
from marginal events, e.g., pairwise comparisons. Let
{E1, . . . , Eq} denote q selected marginal events. Then
the composite marginal likelihood method computes the
estimate ~βCML by

~βCML = arg max
~β∈Θ

CLL(~β) = arg max
~β∈Θ

q∑

λ=1

ln Pr(Eλ|~β),

where CLL(~β) denotes the composite log-likelihood
function. Under our Plackett-Luce model with features,
CLL(~β) is twice differentiable for all ~β ∈ Θ, i.e. J(~β) =

−∇2
~β
CLL(~β) exists. From Pauli et al. [2011], asymp-

totically, π(~β|D) is a multivariate Gaussian distribution,
whose mean is ~βCML and covariance matrix is J−1(~β).

Computing J(~β) requires computation of second order
partial derivatives of ln Pr(Eλ|~β) for all λ. We will show
the close-form second order partial derivative formula for
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any response from an agent.

3.2 THE SET OF DESIGNS

Each design h ∈ H is a combination of an agent and a
question about her preferences. The agent can be anyone
from {1, . . . , n1 + n2}. In this paper, for simplicity, we
consider the case where only the agents from the regular
group {n1 + 1, . . . , n1 + n2} are queried. For any inte-
gers k < l ≤ m, we may ask an agent to rank her top
k alternatives over a subset of l alternatives. When k =
1, l = 2, the question is a pairwise comparison; when
k = 1, l > 2, the question is to query an agent’s top al-
ternative among a subset of alternatives; when k = l−1,
we are asking a full ranking over a subset of alternatives.
The advantage of this type of questions is that the prob-
abilities of responses of these questions are easy to com-
pute, as well as their partial derivatives. W.l.o.g. letRj =
a1 � a2 � . . . � ak � others be the answer from agent
j. Then we have Pr(Rj |B) =

∏k
p=1

exp(ujp)∑l
i=p exp(uji)

, and

ln Pr(Rj |B) =
∑k
p=1(ujp − ln

∑l
i=p exp(uji)).

For any 1 ≤ κ ≤ K and 1 ≤ ι ≤ L, let bκι be the (κ, ι)
entry of B. We have

∂ ln Pr(Rj |B)

∂bκι
=

k∑

p=1

(
∂ujp
∂bκι

−
∑l
i=p exp(uji)

∂uji
∂bκι∑l

i=p exp(ujp)
),

where ∂ujp
∂bκι

and ∂uji
∂bκι

are constants (products of an
agent’s attribute and an alternative’s attribute) by defi-
nition. Therefore, for diagonal entries, the second order
partial derivatives are given by

∂2 ln Prj(R|B)

∂b2κι
=

k∑

p=1

((

∑l
i=p exp(uji)

∂uji
∂bκι∑l

i=p exp(uji)
)2

−
∑l
i=p exp(uji)(

∂ujp
∂bkl

)2

∑l
p=1 exp(ujp)

),

and for non-diagonal entries, we have

∂2 ln Prj(R|B)

∂bκ1ι1∂bκ2ι2

=
k∑

p=1

(
(
∑l
i=p exp(uji)

∂uji
∂bκ1ι1

)(
∑l
i=p exp(uji)

∂uji
∂bκ2ι2

)

(
∑m′

i=p e
uji)2

−
∑l
i=p expuji(

∂uji
∂bκ1ι1

)(
∂uji
∂bκ2ι2

)
∑l
i=p exp(uji)

).

3.3 INFORMATION CRITERIA

An information criterion maps the distribution of a pa-
rameter to a real-valued quality. Standard information

criteria are mostly directly computed from the covari-
ance matrix J−1(~β) or its inverse J(~β). For example,
D-optimality [Wald, 1943, Mood et al., 1946] computes
the determinant of J(~β); E-optimality [Ehrenfeld, 1955]
computes the minimum eigenvalue of J(~β). We pro-
pose the following minimum pairwise certainty (MPC)
criterion by extending the criterion from [Azari Soufiani
et al., 2013] to our domain.

MPC for Case n1 = 1. We consider two types of pur-
poses: predicting the agent’s (unordered) top k alterna-
tives and predicting the agent’s ranked top k alternatives.
We note that the criterion by Azari Soufiani et al. [2013]
only applies to full rankings, which is a special case of
our ranked top k. The intuition of this criterion is to max-
imize the certainty of the least certain pairwise compari-
son among a subset of pairwise comparisons. Formally,
let Ak denote the set of predicted top k alternatives for
this key agent.

• Unordered top-k where 1 ≤ k < m:

G(π(~β)) = min
i1∈Ak,i2 6∈Ak

|mean(u1i1 − u1i2)|
std(u1i1 − u1i2)

.

• Ranked top-k where 1 < k < m:

G(π(~β)) = min
i1∈Ak,i2 6=i1

|mean(u1i1 − u1i2)|
std(u1i1 − u1i2)

.

In the above equations, mean(uji1 − uji2) is computed
using ~βCML and std(uji1 − uji2) is computed using the
approximated covariance matrix J−1(~β) as follows.

Because uji1 − uji2 is linear with ~β (see Equa-
tion (1) and recall that ~β is the vectorization of B),
we write it as uji1 − uji2 =

∑
κ,ι cκιbκι, where

cκι’s are constants computed from attributes of ai1 , ai2
and agent j. Then we have std(uji1 − uji2) =√∑

(κ1,ι1),(κ2,ι2) cκ1ι1cκ2ι2Cov(bκ1,ι1 , bκ2,ι2). When

κ1 = κ2 = κ and ι1 = ι2 = ι, Cov(bκ1,ι1 , bκ2,ι2) re-
duces to Var(bκι). Both Cov(bκ1,ι1 , bκ2,ι2) and Var(bκι)
are entries of J−1(~β).

MPC for Case n1 ≥ 2. Our MPC for this case is differ-
ent from the criterion by Azari Soufiani et al. [2013] in
that we find the least certain pairwise comparison across
all agents in the key group. Formally, our MPC for
n1 ≥ 2 is

G(π(~β)) = min
j∈{1,...,n1},i2 6=i1

|mean(uji1 − uji2)|
std(uji1 − uji2)

, (3)

where the computation of mean(uji1 − uji2) and
std(uji1 − uji2) are similar to the n1 = 1 case.
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4 RANDOMIZED VOTING RULES

We use randomized voting rules to aggregate the key
group’s preferences. A randomized voting rule com-
putes the distribution of winners given the preferences of
the agents from the key group. Under non-deterministic
preferences, this distribution can be computed from the
parameter of the model. This section shows that under
the Plackett-Luce model with features, probabilistic plu-
rality and probabilistic Borda are easy to compute.

A randomized voting rule assigns a probability for each
alternative to be the winner according to the data, usu-
ally based on a scoring function. For example, the prob-
abilistic plurality rule, which is equivalent to random
dictatorship [Gibbard, 1977], samples a winner from a
distribution where the probability of each alternative be-
ing the winner is proportional to the plurality score of
this alternative. Other randomized voting rules can be
defined similarly, including probabilistic Borda [Heckel-
man, 2003]. The voting rule must have scores associated
with it, but this is a very mild restriction because many
commonly-studied voting rules including all positional
scoring rules, Copeland, range voting, and approval vot-
ing, have randomized counterparts.

Recall that n1 agents are making a group decision among
m alternatives. Let P denote the preference profile that
consists of n1 full rankings over m alternatives from the
key group. Let sr(ai, P ) denote the score of alterna-
tive ai under voting rule r and Prr(ai|P ) be the prob-
ability for ai to win under the randomized analogy of r
given P . Then Prr(ai|P ) is computed by Prr(ai|P ) =

sr(ai,P )∑m
i=1 sr(ai,P ) .

Example 1 Suppose the set of alternatives is
{a1, a2, a3} and the votes are {a1 � a2 � a3, a1 �
a3 � a2, a2 � a1 � a3}. The plurality and Borda
scores are shown in Table 1. Under probabilistic plural-
ity rule, a1 wins with probability 2/3 and a2 wins with
probability 1/3. Under probabilistic Borda, a1, a2, a3

win with probabilities 5/9, 3/9, 1/9 respectively.

a1 a2 a3

plurality 2 1 0
Borda 5 3 1

Table 1: Scores under plurality and Borda

We consider non-deterministic preferences from agents,
where the preferences from the key agents are indepen-
dent of each other. Because each agent has m! possible
rankings, there are (m!)n1 possible preference profiles.
Then we have Prr(ai) =

∑(m!)n1

q=1 Pr(Pq) Prr(ai|Pq),

where Pq denotes the q-th possible preference profile.

Given a voting rule r, let Xji be the score of ai for agent
j. Xji is a random variable due to the uncertainty of
agent j’s preference. The following theorem shows that
the probability of ai being the winner is proportional to
the sum of expected score of ai for each agent.

Theorem 1 For any 1 ≤ i ≤ m, Prr(ai) ∝
∑n1

j EXji.

Proof: It suffices to prove Prr(a1) ∝∑n1

j EXj1.

By definition, Prr(a1) =
∑(m!)n1

q=1 Pr(Pq) Prr(a1|Pq).
Let S denote the score of a1 under rule r. Then S is
a random variable defined over the (m!)n1 cases. Let sq
denote the value that S takes for case q. In any case q, we
have Prr(a1|Pq) ∝ sq by the definition of randomized
voting rules. We re-write it as Prr(a1|Pq) =

sq
M , where

M is the normalization factor. Observe that across all
the (m!)n1 cases, M does not change because the voting
rule r and the set of agents does not change. So we have

Prr(a1) =

∑(m!)n1

q=1 Pr(Pq)sq

M

∝
(m!)n1∑

q=1

Pr(Pq)sq = ES. (4)

Since S =
∑n1

j=1Xj1, due to linearity of expectation,
we have ES = E[

∑n1

j=1Xj1] =
∑n1

j EXj1. By (4),
we have Prr(a1) ∝∑n1

j EXj1. �

For probabilistic plurality, the expected score of ai for
agent j is exactly the probability of ai being ranked at
the top by agent j. So we have the following corollary:

Corollary 1 Let paij be the probability of ai being
ranked at the top by agent j. For any 1 ≤ i ≤ m,
Prplurality(ai) = 1

n1

∑n1

j paij .

Theorem 2 Let pai�ai′j denote the probability for agent
j to prefer alternative ai over ai′ . Then for any 1 ≤ i ≤
m, PrBorda(ai) ∝

∑n1

j

∑
i′ 6=i p

ai�ai′
j .

Proof: For any i ∈ {1, . . . ,m}, we have PrBorda(ai) ∝∑n1

j EXji by Theorem 1, where Xji here denotes the
score of ai for agent j under Borda. We only need to
prove EXji =

∑
i′ 6=i p

ai�ai′
j . This is a known result,

but we were not able to find a formal proof in literature,
except a proof for three alternatives by Chen and Heck-
elman [2005], which is easy to be extended for arbitrary
number of alternatives. For completeness we provide a
short proof.

By definition of Borda, we have EXji =
∑m−1
k=1 (m −

k)
∑
R:ai at kth position ofR Prj(R), where R is any full
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ranking over the m alternatives and Prj(R) is the proba-
bility ofR by agent j. Imaginem−1 bins, each of which
is labeled with ai � ai′ for all the remainingm−1 ai′ ’s.
Observe that there are m − k copies of Prj(R) for all
R where ai beats exactly m − k other alternatives. We
can distribute the m− k copies to the m− k bins (one in
each) for all ai′ ’s that are ranked after ai. We do this for
all possible rankings and in the end, each bin labeled by
ai � ai′ gets the probabilities of all rankings compatible
with ai � ai′ . This finishes the proof. �

We note that for the Plackett-Luce model, paij ’s and
p
ai�ai′
j ’s are easy to compute (see Section 2.1).

5 EXPERIMENTS

We first introduce an example of empirically estimating
the cost of asking different types of questions on MTurk.
Then, we show the result of a simulation of cost-effective
preference elicitation using synthetic data.

Figure 3: The user interface for a Turker to submit her
ranked top 4 over 10 alternatives. The attributes are av-
erage ratings, prices per night, time to Times Square, and
time to the nearest airport.

5.1 ESTIMATING w(h)

We recall that a question is defined by a pair of parame-
ters (k, l), where l is the number of alternatives that are
presented to an agent and k is the number of alternatives
that the agent is asked to rank at the top k positions.

In order to map the question types to the time to an-
swer them, we run 2 experiments with multiple tasks
on MTurk. Each task required MTurk workers to report
their preferences over a set of hotels. We recorded the
time they spent on each task, in order to learn such map-
ping in the following two cases:
• k, l ∈ [2, 10], k = l − 1: full rankings;
• k ∈ [1, 10], l = 10: ranked top k alternatives over 10.

Experiment Setting. For the first case, we looked for
information on the first 54 Hotels in New York City in
alphabetical order. We split the 54 randomly into 9 sets,
each containing 2, 3, ..., 10 hotels. We then showed the
9 sets to MTurk workers, randomizing the order of the
9 sets as well as the initial display order of alternatives
within each set, and asked them to rearrange by drag-
and-dropping the alternatives according to their prefer-
ences. The alternatives were anonymous and represented
by 4 attributes: average guest rating on a popular travel
website, price per night, time to Times Square and time
to the nearest airport.

For the second case, a separate experiment is run with
another 10 sets of NYC hotels, drawn randomly again
from the first 100 hotels in NYC in alphabetical order.
In each task, we placed a horizontal green bar under-
neath the alternative above which are the k alternatives
of interest. We instructed the MTurk workers before the
experiment started that only the alternatives above the
green bar would count, i.e. only needed to rank-order
top-k. All of these were done with goal of minimizing
the overhead time for workers to understand the instruc-
tion so that the recorded time accurately reflect the time
of decision-making. An example of the UI is show in
Figure 3, where we asked Turkers to rank-order her top-
4 favorite hotels over a set of 10.

The following analysis is made possible by responses
from 408 MTurk workers (202 for the first case and 206
for the second).

Experiment Results. Although Volkov [2014] consid-
ered both linear and quadratic cost function and argued
for the superiority of the latter, for simplicity, we per-
form a linear regression on the dataset to obtain a linear
cost function. We regress the time to rearrange the al-
ternatives and submit a full ranking on the number of
alternatives in the set. We find that, on average, the time
a Turker spent on rank-ordering a full ranking over l al-
ternatives is tfull−l = 5.33l (Figure 2 left), and that on
rank-ordering her top-k alternatives over 10 alternatives
is ttop-k = 1.38k + 32.25 (Figure 2 right). In addition,
the 408 workers spent an average of 341.5 seconds on the
tasks and were each paid $0.3. Therefore, the monetary
cost of elicitation on average is w = 0.00088t, which
correspond to an hourly wage of $3.16.
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Figure 2: The left subfigure shows the average time a user spent to submit a full ranking over 2, . . . , 10 alternatives; the
right subfigure shows the average time a user spent to give her ranked top 1, . . . , 10 alternatives when 10 alternatives
were proposed.

Combining these two functions with the hourly wage, we
propose the following cost functions, which estimates
the cost (in USD) of elicitation about hotel preferences
given 4 alternative attributes: wfull−l = 0.0047l and
wtop−k = 0.0012k + 0.028. We observe that the time
a user spent is not very sensitive to k. This is sensible, as
when a MTurk worker ranks her top k choices, she may
follow the following procedure: 1. read the descriptions
of all hotels, 2. form their preferences, and 3 choose top
k. Step 1 and 2 do not depend on k and dominates the
time for step 3, as illustrated in the right figure of Fig-
ure 2. This suggests that when a fixed number of alter-
natives is proposed to an agent, it’s likely that the most
cost-effective question to ask is a full ranking, as we will
see in the next subsection.

5.2 COST-EFFECTIVE PREFERENCE
ELICITATION

We demonstrate the viability of our cost-effective frame-
work and compare performances of different information
criteria on synthetic data.

Synthetic Data. We randomly generated 10 alterna-
tives, each of which has 3 attributes, independently nor-
mally distributed N(0, 1). We then randomly generated
5 agents that forms the key group and 20 the regular
group. Each agent also has 3 attributes, independently
normally distributed N(0, 1). B was generated from
Dirichlet distribution Dir(~1). The result is averaged over
400 trials.

To echo the motivating example from the beginning of
this paper, we simulated the process of eliciting key
group’s preference by asking agents in the regular group
questions. For simplicity, we consider 3 types of ques-

tions, represented in (k, l): (1, 2), (1, 10) and (9, 10).
We run Algorithm 1 using 3 different information crite-
ria: D-Optimality, E-Optimality, and the proposed MPC.
The three elicitation processes utilized the cost function
estimated in Section 5.1. They were initialized with the
same set of 50 randomly generated pairwise comparisons
and was given a $0.9 budget. Agents’ answers to the elic-
itation questions are generated from the Plackett-Luce
model.

Metrics. We use total variation distance to measure the
difference between the winner distributions computed
from the ground truth parameter and the estimates, de-
noted by ψ∗ and ψ respectively. The total variance dis-
tance is defined as δ(ψ∗, ψ) = 1

2

∑m
i=1 |ψ∗(ai)−ψ(ai)|.

To plot the results, at each cost w, we used the data point
that is beloww but closest tow in each trial. These points
were averaged over all trials.

Observations. We observe that for both probabilistic
plurality and probabilistic Borda, the performances of
MPC, D-optimality, and E-optimality are similar, all of
which significantly outperforms random elicitation ques-
tions (see Figures 4). For example, for probabilistic plu-
rality and probabilistic Borda, at the budget of 0.85 dol-
lars, MPC achieves 15% less total variation distance than
that of random elicitation questions. As another exam-
ple, to achieve the total variation distance of 0.064 under
randomized plurality (respectively, randomized Borda),
MPC uses 20% (23.5%) less money than that of random
elicitation questions.

We also observe that D-optimality almost always choose
a full ranking as the most cost-effective question, while
MPC tends to choose more full rankings than pairwise
comparisons at early stages (see Figure 5). Due to the
budget limit, many trials finish after 19 iterations because
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Figure 4: Total variation distance for probabilistic plurality (left) and probabilistic Borda (right).

Figure 5: Types of questions chosen by the MPC (left) and D-optimality (right). The legend “Full Ranking”, “Top
Choice”, and “Pairwise” correspond to (k = 9, l = 10), (k = 1, l = 10) and (k = 1, l = 2) respectively.

they only query full rankings. Others finish at different
iterations. The distribution of types of questions for E-
optimality is similar to MPC. Under all criteria except
random, l = 10, k = 1 questions were rarely asked.

Discussions. The meaning of cost-effectiveness in this
paper is twofold: (1) in the preference elicitation pro-
cedure, we ask elicitation questions that is expected to
provide more information per unit cost; and (2) the pres-
ence of regular group gives us a belief on the key group’s
preferences inexpensively. As we have seen in our ex-
periments, a budget of $0.9 gives us a reasonably good
estimate of the key group’s preferences by querying the
regular group.

6 CONCLUSIONS AND FUTURE
WORK

We proposed a flexible and cost-effective framework for
preference elicitation that can be adapted for any ranking

model, any information criterion, and any set of ques-
tions. We used randomized voting rules to help make
group decisions and proposed MPC for both prediction
of one agent’s preference and aggregation of a group
of agents’ preferences. Experiments show that MPC
and other commonly-used information criteria work bet-
ter than asking random elicitation questions. For fu-
ture work we will explore better information criteria for
group decisions. We also plan to extend this framework
to multiple types of resource constraints.
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Abstract

In learning-to-learn the goal is to infer a
learning algorithm that works well on a class
of tasks sampled from an unknown meta-
distribution. In contrast to previous work on
batch learning-to-learn, we consider a scenario
where tasks are presented sequentially and the
algorithm needs to adapt incrementally to im-
prove its performance on future tasks. Key to
this setting is for the algorithm to rapidly in-
corporate new observations into the model as
they arrive, without keeping them in memory.
We focus on the case where the underlying al-
gorithm is Ridge Regression parametrised by
a symmetric positive semidefinite matrix. We
propose to learn this matrix by applying a
stochastic strategy to minimize the empirical
error incurred by Ridge Regression on future
tasks sampled from the meta-distribution. We
study the statistical properties of the proposed
algorithm and prove non-asymptotic bounds
on its excess transfer risk, that is, the gener-
alization performance on new tasks from the
same meta-distribution. We compare our on-
line learning-to-learn approach with a state-of-
the-art batch method, both theoretically and
empirically.

1 INTRODUCTION

Learning-to-learn (LTL) or meta-learning aims at find-
ing an algorithm that is best suited to address a class of
learning problems (tasks). These tasks are sampled from
an unknown meta-distribution and are only partially ob-
served via a finite collection of training examples, see
(Baxter, 2000; Maurer, 2005; Thrun & Pratt, 1998) and
references therein. This problem plays a large role in ar-
tificial intelligence in that it can improve the efficiency

of learning from human supervision. In particular, sub-
stantial improvement over “learning in isolation” (also
known as independent task learning, ITL) is to be ex-
pected when the sample size per task is small, a set-
ting which naturally arises in many applications, see e.g.
(Camoriano et al., 2017; Rebuffi et al., 2017; Rohrbach
et al., 2013).

LTL is particularly appealing when considered from an
online or incremental perspective. In this setting, which
is sometimes referred to as lifelong learning, see e.g.
(Ruvolo & Eaton, 2013), the tasks are observed sequen-
tially – via corresponding sets of training examples –
from a common environment and we aim to improve the
learning ability of the underlying algorithm on future yet-
to-be-seen tasks from the same environment. Practical
scenarios of lifelong learning are wide ranging, including
computer vision (Rebuffi et al., 2017), robotics (Camori-
ano et al., 2017), user modelling and many more.

Although LTL is naturally suited for the incremental
setting, surprisingly, theoretical investigations are lack-
ing. Previous studies, starting from the seminal paper
(Baxter, 2000) and (Maurer, 2009; Maurer et al., 2013;
2016; Pentina & Lampert, 2014), have almost exclu-
sively considered the setting in which the tasks are given
in one batch, that is, the meta-algorithm processes multi-
ple datasets from the environment jointly and only once
as opposed to sequentially and indefinitely.

The papers (Balcan et al., 2015; Herbster et al., 2016)
present results in an online framework which applies
to a finite number of tasks using different performance
measures. Perhaps most related to our work is (Alquier
et al., 2017), where the authors consider a general PAC-
Bayesian approach to lifelong learning based on the ex-
ponentially weighted aggregation procedure. Unfortu-
nately, this approach is not efficient for large scale appli-
cations as it entails storing the entire sequence of datasets
during the meta-learning process.

LTL also bears strong similarity to multi-task learning
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(MTL), see e.g. (Caruana, 1997), and much work has
been done on the theoretical study of both batch (Ando &
Zhang, 2005; Maurer et al., 2013) and online (Cavallanti
et al., 2010) multi-task learning algorithms. However
multi-task learning aims to solve the different problem
of learning well on a prescribed set of tasks (the learned
model is tested on the same tasks used during training)
whereas LTL aims to extrapolate to new tasks.

The principal contribution of this paper is to propose an
incremental approach to learning-to-learn and to analyse
its statistical guarantees. This incremental approach is
appealing in that it efficiently processes one dataset at
the time, without the need to store previously encoun-
tered datasets. We study in detail the case of linear repre-
sentation learning, in which an underlying learning algo-
rithm receives in input a sequence of datasets and incre-
mentally updates the data representation so as to better
learn future tasks. Following previous work on LTL, e.g.
(Baxter, 2000; Maurer, 2009), we measure the perfor-
mance of the incremental meta-algorithm by the trans-
fer risk, namely the average error obtained by running
the underlying algorithm with the learned representation,
over tasks sampled from the meta-distribution.

Specifically, in this work we choose the underlying algo-
rithm to be Ridge Regression parametrised by a symmet-
ric positive semidefinite matrix. The incremental LTL
approach we propose aims at optimizing the future em-
pirical error (Maurer, 2009; Maurer et al., 2016) in-
curred by Ridge Regression over a class of linear rep-
resentations. For this purpose, we propose to apply
Projected Stochastic Subgradient Algorithm (PSSA). We
show that the objective function of the resulting meta-
algorithm is convex and we give a non-asymptotic con-
vergence rate for the algorithm in high probability. A
remarkable feature of our learning bound is that it is
comparable to previous bounds for batch LTL. Our proof
technique leverages previous work on learning-to-learn
(Maurer, 2009) with tools from online convex optimiza-
tion, see (Cesa-Bianchi et al., 2004; Hazan, 2016) and
references therein.

The paper is organized as follows. In Sec. 2, we review
the LTL problem and describe in detail the case of linear
feature learning with Ridge Regression. In Sec. 3, we
present our incremental meta-algorithm for linear feature
learning. Sec. 4 contains our bound on the excess transfer
risk for the proposed algorithm and in Sec. 5 we compare
the bound to a previous bound for the batch setting. In
Sec. 6, we report preliminary numerical experiments for
the proposed algorithm and, finally, Sec. 7 summarizes
the paper and highlight directions of future research. The
detailed proofs of the statements in the paper are reported
in the appendix.

2 PROBLEM FORMULATION

In the standard independent task learning setting the goal
is to learn a functional relation between an input space
X and an output space Y from a finite number of train-
ing examples. More precisely, given a loss function
` : Y × Y → R measuring prediction errors and given
a distribution µ on the joint data space Z = X × Y , the
goal is to find a function f : X → Y minimizing the
expected risk

Rµ(f) = Ez∼µ `(f, z) (1)

where, with some abuse of notation, for any z = (x, y) ∈
Z we denoted `(f, z) = `(f(x), y). In most prac-
tical situations the underlying distribution is unknown
and the learner is only provided with a finite set Z =
(zi)

n
i=1 ∈ Zn of observations independently sampled

from µ. The goal of a learning algorithm is therefore,
given such a training dataset Z to return a “good” es-
timator A(Z) = fZ whose expected risk is small and
tends to the minimum of Eq. (1) as n increases.

A well-established approach to tackle the learning prob-
lem is offered by regularized empirical risk minimiza-
tion. This corresponds to the family of algorithms Aφ
such that, for any Z ∈ Zn,

Aφ(Z) = argmin
f∈Fφ

RZ(f) + λ‖f‖2Fφ (2)

where φ : X → Fφ is a feature map, Fφ is the Hilbert
space of functions f : X → Y such that f(x) =
〈f, φ(x)〉Fφ for any x ∈ X and

RZ(f) =
1

n

n∑

i=1

`(f, zi)

denotes the empirical risk of function f on the set Z.

2.1 LINEAR FEATURE LEARNING

In this work we will focus on the case that Y ⊆ R,
X ⊆ Rd, ` is the square loss and φ : Rd → Rm is a lin-
ear feature map (also known as a representation), corre-
sponding to the action φ(x) = Φx of a matrix Φ ∈ Rm×d
on the input space. It is well known, see e.g. (Argyriou
et al., 2008), that, settingD = 1

λΦ>Φ ∈ Rd×d, any prob-
lem of the form in Eq. (2) can be equivalently formulated
as

AD(Z) = argmin
w∈Ran(D)

RZ(w) + w>D†w (3)

where, with some abuse of notation, we denoted with
RZ(w) the empirical risk of the linear function x 7→
w>x, for any x ∈ X . Here, D† denotes the pseu-
doinverse of D, which is symmetric positive semidefi-
nite (PSD) but not necessarily invertible; when it is not
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invertible the constraint requiring w to be in the range
Ran(D) ⊆ Rd of D is needed to grant the equivalence
with Eq. (2). Since for any linear feature map φ there
exists a symmetric PSD matrix D such that Eq. (2) and
Eq. (3) are equivalent, in the following we will refer to
D as the representation used by algorithm AD.

2.2 LEARNING TO LEARN D

A natural question is how to choose a good representa-
tion D for a given family of related learning problems.
In this work we consider the approach of learning it from
data. In particular, following the seminal work of (Bax-
ter, 2000), we consider a setting where we are provided
with an increasing number of tasks and our goal is to
find a joint representation D such that the corresponding
algorithm AD is suited to address all such learning prob-
lems. The underlying assumption is that all the tasks that
we observe share a common structure that algorithm AD
can leverage in order to achieve better prediction perfor-
mance.

More formally, we assume that the tasks we observe are
independently sampled from a meta-distribution ρ on the
set of probability measures on Z . According to the liter-
ature on the topic, see e.g. (Baxter, 2000; Maurer, 2005),
we refer to the meta-distribution ρ as the environment and
we identify each task sampled from ρ by its correspond-
ing distribution µ, from which we are provided with a
training dataset Z ∼ µn of n points sampled indepen-
dently from µ. While it is possible to consider a more
general setting, for simplicity in this work we study the
case where for each task we sample the same fixed num-
ber n of training points. In line with the independent
task learning setting, the goal of a “learning-to-learn” al-
gorithm is therefore to find the best parameter D mini-
mizing the so-called transfer risk

E(D) = Eµ∼ρEZ∼µn Rµ
(
AD(Z)

)
(4)

over a set D of candidate representations. The term E(D)
is the expected risk that the corresponding algorithmAD,
when trained on the dataset Z, would incur on average
with respect to the distribution of tasks µ induced by ρ.
That is, to compute the transfer risk, we first draw a task
µ ∼ ρ and a corresponding n-sample Z ∈ Zn from
µn, we then apply the learning algorithm to obtain an
estimator AD(Z) and finally we measure the risk of this
estimator on the distribution µ.

The problem of minimizing the transfer risk in Eq. (4)
given a finite number T of training datasets Z1, . . . , ZT
sampled from the corresponding tasks µ1, . . . , µT , has
been subject of thorough analysis in literature, see e.g.
(Baxter, 2000; Maurer, 2005; Maurer et al., 2016). Most
work has been focused on the so-called “batch” setting,

where all such training datasets are provided at once.
However, by its nature, LTL is an ongoing (possibly
never ending) process, with training datasets observed a
few at the time. In such a scenario the meta-algorithm
should allow for an evolving representation D, which
improves over time as new datasets are observed. In the
following we propose a meta-algorithm to learn D on-
line with respect to the tasks, allowing us to transfer past
experience about the environment in an efficient man-
ner, without requiring the memorization of training data,
which could be prohibitive in large scale applications.
We will study the statistical guarantees of the proposed
algorithm and compare it to its batch counterpart in terms
of both theoretical and empirical performance.

2.3 CONNECTION WITH MULTI-TASK
LEARNING

LTL is strongly related to multi-task learning (MTL) and
in fact, as we will see later for the algorithm in Eq. (3),
approaches developed for MTL can be used as inspira-
tion to design algorithms for LTL. In multi-task learning
a fixed number of tasks µ1, . . . , µT is provided up front
and, given T datasets Z1, . . . , ZT , each sampled from
its corresponding distribution, the goal is to find a joint
representation D incurring a small average expected risk
1
T

∑T
t=1Rµt(AD(Zt)). In this sense, the main differ-

ence between LTL and MTL is that the former aims to
guarantee good prediction performance on future tasks,
while the latter aims to guarantee good prediction per-
formance on the same tasks used to train D.

A well-established approach to MTL is multi-task feature
learning (Argyriou et al., 2008). This method consists in
solving the optimization problem

min
D∈Dλ

1

T

T∑

t=1

min
w∈Ran(D)

RZt(wt) + w>t D
†wt

over the set

Dλ =
{
D ∈ Sd+ | tr(D) ≤ 1/λ

}
(5)

where Sd+ denotes the set of d×d symmetric PSD matri-
ces, tr(D) is the trace of D and λ is a positive parameter
which controls the degree of regularization. In the sub-
sequent analysis the parameter λ must be intended as a
fixed hyper-parameter, which will be chosen by cross-
validation in the experiments. This choice for Dλ is mo-
tivated by the following variational form, see e.g. (Ar-
gyriou et al., 2008, Prop. 4.2), of the square trace norm
of W = [w1, . . . , wT ] ∈ Rd×T

‖W‖21 =
1

λ
inf

D∈Int(Dλ)

T∑

t=1

w>t D
−1wt
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where Int(Dλ) is the interior of Dλ, namely the set of
the symmetric PSD invertible matrices with trace strictly
smaller than 1/λ. This leads to the equivalent problem

min
W∈Rd×T

1

T

T∑

t=1

RZt(wt) + γ‖W‖21 (6)

with γ = λ/T . The trace norm of a matrix is defined as
the sum (`1-norm) of its singular values, and it is known
to induce low-rank solutions for Problem (6). Intuitively,
this means that tasks are encouraged to share a common
set of features (or representation). In this paper, we adopt
this perspective to design our online LTL approach for
linear feature learning.

3 ONLINE LEARNING-TO-LEARN

Motivated by the above connection with multi-task learn-
ing, we propose an online LTL approach to approximate
the solution of the learning problem

min
D∈Dλ

E(D)

over the set Dλ introduced in Eq. (5). We consider the
setting in which we are provided with a stream of inde-
pendent datasets Z1, . . . , ZT , . . . , each sampled from an
individual task distribution µ1, . . . , µT , . . . coming from
the environment ρ and our goal is to find an estimator
in Dλ that improves incrementally as the number of ob-
served tasks T increases.

3.1 MINIMIZING THE EMPIRICAL
TRANSFER RISK

A key observation motivating the online procedure pro-
posed in this work, is that in the independent task learn-
ing setting, standard results from learning theory, see e.g.
(Shalev-Shwartz & Ben-David, 2014), allow one to con-
trol the statistical performance of regularized empirical
risk minimization, providing bounds on the generaliza-
tion error of AD as

EZ ∼ µn |Rµ
(
AD(Z)

)
−RZ

(
AD(Z)

)
| ≤ G(D,n) (7)

whereG(·, n) is a decreasing function converging to 0 as
n → +∞, while G(D, ·) is a measure of complexity of
D, which is large for more “expressive” representations
and smaller otherwise.

Eq. (7) suggests us to use the empirical risk RZ as a
proxy for the expected risk Rµ. Therefore, we intro-
duce the so-called future empirical risk (Maurer, 2009;
Maurer et al., 2016),

Ê(D) = Eµ∼ρEZ∼µn RZ
(
AD(Z)

)

Algorithm 1 PSSA applied to Ê

Input: T number of tasks, λ > 0 hyper-parameter,
{γt}t∈N step sizes.
Initialization: D(1) ∈ Dλ

For t = 1 to T :
Sample µt ∼ ρ, Zt ∼ µnt .
Choose Ut ∈ ∂LZt(D(t))
Update D(t+1) = projDλ

(D(t) − γtUt)

Return D̄T =
1

T

T∑

t=1

D(t)

and consider the related problem

min
D∈Dλ

Ê(D), (8)

which in the sequel, introducing the shorthand notation
LZ(D) = RZ(AD(Z)) for any D ∈ Sd+, will be rewrit-
ten as

min
D∈Dλ

Eµ∼ρEZ∼µn LZ(D) (9)

to highlight the dependency on Z.

Problem (9) can be approached with stochastic optimiza-
tion strategies. Such methods proceed by sequentially
sampling a point (dataset in this case) Z and perform-
ing an update step. In recent years, stochastic optimiza-
tion, finding its origin in the Stochastic Approximation
method by (Robbins & Monro, 1951), has been effec-
tively used to deal with large scale applications. We refer
to (Nemirovski et al., 2009) for a more comprehensive
discussion about this topic. We therefore propose to ap-
ply Projected Stochastic Subgradient Algorithm (PSSA)
(Shamir & Zhang, 2013), to solve the optimization prob-
lem in Eq. (9). The candidate representation coincides
in this case with the mean after T iterations D̄T and
it is known as Polyak-Ruppert averaging scheme (Ne-
mirovskii & Yudin, 1985; Polyak & Juditsky, 1992) in
the optimization literature. Alg. 1 reports the application
of PSSA to Ê when LZ is convex on the set Sd+. It re-
quires iteratively: i) sampling a datasetZ, ii) performing
a step in the direction of a subgradient of LZ at the cur-
rent point, and iii) projecting onto the set Dλ (which can
be done in a finite number of iterations, see Lemma 16
in App. E). Note that in this case, since the function LZ
is convex, there is no ambiguity in the definition of the
subdifferential ∂LZ , see e.g. (Bertsekas et al., 2003), and
we can rely on the convergence of Alg. 1 to a global min-
imum of Ê over Dλ for a suitable choice of step-sizes, as
discussed in Sec. 4.
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3.2 LTL WITH RIDGE REGRESSION

In this work, we focus on the case that the loss function
` : Y × Y → R corresponds to the square loss, namely
`(y, y′) = (y − y′)2 for any y, y′ ∈ Y ⊆ R. In this set-
ting, given a datasetZ ∈ Zn, algorithmAD is equivalent
to perform the following variant to Ridge Regression

min
w∈Ran(D)

1

n
‖y −Xw‖2 + w>D†w (10)

where X ∈ Rn×d is the matrix with rows corresponding
to the input points xi ∈ Rd in the dataset Z and y ∈ Rn
the vector with entries equal to the corresponding output
points yi ∈ R. The solution to Eq. (10) can be obtained
in closed form, in particular, see e.g. (Argyriou et al.,
2008; Maurer, 2009),

AD(Z) = DX>
(
XDX> + nI

)−1
y. (11)

Plugging this solution in the definition of LZ(D), a di-
rect computation yields that

LZ(D) = n
∥∥(XDX> + nI)−1y

∥∥ 2. (12)

The following result characterizes some key properties
of the function LZ in Eq. (12), which will be useful in
our subsequent analysis. We denote by Br ⊆ Rd the ball
of radius r > 0 centered at 0.

Proposition 1 (Properties of LZ for the Square Loss).
Let X ⊆ B1, Y ⊆ [0, 1] and ` be the square loss. Then,
for any dataset Z ∈ Zn the following properties hold:

1. LZ is convex on the set Sd+.

2. LZ is C∞ and, for every D ∈ Sd+,

∇LZ(D) = −nX>M(D)−1S(D)M(D)−1X

where

M(D) = XDX> + nI

S(D) = yy>M(D)−1 +M(D)−1yy>.

3. LZ is 2-Lipschitz w.r.t. the Frobenius norm.

4. ∇LZ is 6-Lipschitz w.r.t. the Frobenius norm.

5. LZ(D) ∈ [0, 1], for any D ∈ Sd+.

The proposition above establishes the convexity of Prob-
lem (8) for the case of the square loss. This fact is impor-
tant in that it guarantees no ambiguity in applying Alg. 1
to our setting and moreover, since LZ is differentiable,
Alg. 1 becomes a Projected Stochastic Gradient Algo-
rithm.

4 THEORETICAL ANALYSIS

In this section, we study the statistical properties of
Alg. 1 for the case of the square loss. Below we re-
port the main result of this work, which characterizes
the non-asymptotic behavior of the estimator D̄T pro-
duced by Alg. 1 with respect to a minimizer D∗ ∈
argminD∈Dλ

E(D). To present our results we introduce
the d× d matrix Cρ = Eµ∼ρE(x,y)∼µ[xx>] denoting the
covariance of the input data, obtained by averaging over
all input marginals sampled from ρ. We also denote with
‖Cρ‖∞ the operator norm of Cρ, which corresponds to
the largest eigen-value.
Theorem 2 (Online LTL Bound). Let X ⊆ B1, Y ⊆
[0, 1] and ` be the square loss. Let µ1, . . . , µT be inde-
pendently sampled from ρ and Zt sampled from µnt for
t ∈ {1, . . . , T}. Let D̄T be the output of Alg. 1 with step
sizes γt = (λ

√
2t)−1. Then, for any δ ∈ (0, 1]

E(D̄T )− E(D∗) ≤
4
√

2π‖Cρ‖1/2∞√
n

1 +
√
λ

λ

+
4
√

2

λ
√
T

+

√
8 log

(
2/δ
)

T

with probability at least 1 − δ with respect to the inde-
pendent sampling of the tasks µt ∼ ρ and training sets
Zt ∼ µnt for any t ∈ {1, . . . , T}.

In Sec. 5, we will compare Thm. 2 with the statistical
bound available for a state-of-the-art LTL batch proce-
dure. We will see that the statistical behaviour of these
two approaches is essentially equivalent, with the online
LTL approach being more appealing given the lower re-
quirements in terms of both number of computations and
memory. In the rest of this section we give a sketch of
the proof for Thm. 2. Proofs of intermediate results are
reported in the appendix.

4.1 ERROR DECOMPOSITION

The statistical analysis of Alg. 1 hinges upon the follow-
ing decomposition for the excess transfer risk of the esti-
mator D̄T :

E(D̄T )− E(D∗) (13)

= E(D̄T )± Ê(D̄T )± Ê(D∗)− E(D∗)

≤ 2 sup
D∈Dλ

|E(D)− Ê(D)|+ Ê(D̄T )− Ê(D∗)

≤ 2 sup
D∈Dλ

|E(D)− Ê(D)|
︸ ︷︷ ︸

Uniform generalization
error

+ Ê(D̄T )− Ê(D̂∗)

︸ ︷︷ ︸
Excess future
empirical risk

where the matrix D̂∗ denotes a minimizer of the future
transfer risk over Dλ, that is, D̂∗ ∈ argminD∈Dλ

Ê(D).
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Eq. (13) decomposes E(D̄T )− E(D∗) in a uniform gen-
eralization error, implicitly encoding the complexity of
the class of algorithms parametrised by D and an excess
future empirical risk, measuring the discrepancy between
the estimator D̄T and the minimizer D̂∗ of Ê . In the fol-
lowing we describe how to bound these two terms.

4.2 BOUNDING THE UNIFORM
GENERALIZATION ERROR

Results providing generalization bounds for the class of
regularized empirical risk minimization algorithms AD
considered in this work are well known. The following
result, which is taken from (Maurer, 2009), leverages an
explicit estimate of the generalization boundG(D,n) in-
troduced in Sec. 3.1 for independent task learning, see
Eq. (7), to obtain a uniform bound over the class of algo-
rithms parametrized by Dλ.

Proposition 3 (Uniform Generalization Error Bound).
Let X ⊆ B1, Y ⊆ [0, 1] and let ` be the square loss,
then

sup
D∈Dλ

|E(D)− Ê(D)| ≤ 2
√

2π‖Cρ‖1/2∞√
n

1 +
√
λ

λ
.

For completeness, we report the proof of this proposition
in App. B.3.

4.3 BOUNDING THE EXCESS FUTURE
EMPIRICAL RISK

Providing bounds for the excess future empirical risk in-
troduced in Eq. (13) consists in studying the convergence
rates of Alg. 1 to the minimum of Ê over Dλ in high
probability with respect to the sample of T tasks µt from
ρ and datasets Zt from µnt for any t ∈ {1, . . . , T}.
To this end, we leverage classical results from the online
learning literature (Hazan, 2016). In online learning, the
performance of an online algorithm returning a sequence
{D(t)}Tt=1 over T trials is measured in terms of its regret,
which in the context of this work corresponds to

RT =
1

T

T∑

t=1

LZt(D(t))− min
D∈Dλ

1

T

T∑

t=1

LZt(D).

Differently from the statistical setting considered in this
work, in the online setting no assumption is made about
the data generation process of Z1, . . . , ZT , which could
be even adversely generated. Therefore, an algorithm
that is able to solve the online problem (i.e. if its re-
gret vanishes as T → ∞) can be also expected to solve
the corresponding problem in the statistical setting. This
is indeed the case for Alg. 1, for which the following
lemma provides a non-asymptotic regret bound.

Lemma 4 (Regret Bound for Alg. 1). Let X ⊆ B1, Y ⊆
[0, 1] and ` be the square loss. Then the regret of Alg. 1
with step-sizes γt = (λ

√
2t)−1 is such that

RT ≤
4
√

2

λ
√
T
.

The above lemma is a corollary of Prop. 1 combined
with classical results on regret bounds for Projected On-
line Subgradient Algorithm (Hazan, 2016). We refer the
reader to App. D.1 for a more in-depth discussion and for
a detailed proof.

In our setting, the datasets Z1, . . . , ZT are assumed to
be independently sampled from the underlying environ-
ment. Combining this assumption with the regret bound
in Lemma 4, we can control the excess future empirical
risk by means of so-called online-to-batch conversion re-
sults (Cesa-Bianchi et al., 2004; Hazan, 2016), leading to
the following proposition.
Proposition 5 (Excess Future Empirical Risk Bound for
Alg. 1). Let X ⊆ B1, Y ⊆ [0, 1] and let ` be the square
loss. Let µ1, . . . , µT be independently sampled from ρ
and Zt sampled from µnt for t ∈ {1, . . . , T}. Let D̄T

be the output of Alg. 1 with step sizes γt = (λ
√

2t)−1.
Then, for any δ ∈ (0, 1]

Ê(D̄T )− Ê(D̂∗) ≤
4
√

2

λ
√
T

+

√
8 log(2/δ)

T

with probability at least 1 − δ with respect to the inde-
pendent sampling of the tasks µt ∼ ρ and training sets
Zt ∼ µnt for any t ∈ {1, . . . , T}.

The result above follows by combining Prop. 1 with
online-to-batch results, see e.g. (Hazan, 2016, Thm. 9.3)
and (Cesa-Bianchi et al., 2004). In App. D.2 we provide
the complete proof of this statement together with a more
detailed discussion about this topic. At this point we are
ready to give the proof of Thm. 2.

Proof of Thm. 2. The claim follows by combining
Prop. 3 and Prop. 5 in the decomposition of the error
E(D̄T )− E(D∗) given in Eq. (13).

5 ONLINE LTL VERSUS BATCH LTL

In this section, we compare the statistical guarantees ob-
tained for our online meta-algorithm with a state-of-the-
art batch LTL method for linear feature learning. We also
comment on the computational cost of both procedures.

5.1 STATISTICAL COMPARISON

Given a finite collection Z = {Z1, . . . , ZT } of datasets,
a standard approach to approximate a minimizer of the
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future empirical risk Ê is to take a representation D̂T

minimizing the multi-task empirical risk

ÊZ(D) =
1

T

T∑

t=1

RZt(AD(Zt)) (14)

over the set Dλ. Such a choice has been extensively stud-
ied in the LTL literature (Baxter, 2000; Maurer, 2009;
Maurer et al., 2013; 2016). Here we report a result anal-
ogous to Thm. 2, characterizing the discrepancy between
the transfer risks of D̂T and D∗.

Theorem 6 (Batch LTL Bound). LetX ⊆ B1, Y ⊆ [0, 1]
and let ` be the square loss. Let tasks µ1, . . . , µT be
independently sampled from ρ and Zt sampled from µnt
for t ∈ {1, . . . , T}. Let D̂T be a minimizer of the multi-
task empirical risk in Eq. (14) over the set Dλ. Then, for
any δ ∈ (0, 1]

E(D̂T )− E(D∗) ≤
4
√

2π‖Cρ‖1/2∞√
n

1 +
√
λ

λ

+
2
√

2π

λ
√
T

+

√
2 log

(
2/δ
)

T

with probability at least 1 − δ with respect to the inde-
pendent sampling of the tasks µt ∼ ρ and training sets
Zt ∼ µnt for any t ∈ {1, . . . , T}.

The result above is obtained by further decomposing
the error E(D̂T ) − E(D∗) as done in Eq. (13). In par-
ticular, since the multi-task empirical error provides an
estimate for the future empirical risk, it is possible to
control the overall error by further bounding the term
|Ê(D)−ÊZ(D)| uniformly with respect toD ∈ Dλ. This
last result was originally presented in (Maurer, 2009); in
App. C we report the complete analysis of such decom-
position, leading to the bound in Thm. 6.

5.2 STATISTICAL CONSIDERATIONS

For a fixed value of λ, we can now compare the bounds
on the excess transfer risk for the representations result-
ing from the application of the online procedure (see
Thm. 2) and the batch one (see Thm. 6). Since the ap-
proximation error due to the choice of λ will be the same
for both approaches, this comparison provides a first in-
dication of their statistical behavior. However, it should
be kept in mind that we are comparing upper bounds,
hence our considerations are not conclusive and further
analysis by means of lower bounds for both algorithms
would be valuable.

Thm. 2 and Thm. 6 are both composed of three terms.
The first term is exactly the same for both procedures
and this is obvious looking at the decompositions used

to deduce both results. This term can be interpreted as a
within-task-estimation error, that depends on the number
of points n used to train the underlying learning algo-
rithm (in our case Ridge Regression with a linear feature
map). This term, similarly to the MTL setting, highlights
the advantage of exploiting the relatedness of the tasks in
the learning process in comparison to independent task
learning (ITL). Indeed, if the inputs are distributed on a
high dimensional manifold, then ‖Cρ‖∞ � 1, while up-
per bounds for ITL have a leading constant of 1. In par-
ticular, ‖Cρ‖∞ = 1/d if the marginal distributions of the
tasks are uniform on the d − 1 dimensional unit sphere;
see (Maurer, 2009; Maurer et al., 2016) for a more de-
tailed discussion about this point. The last term in the
bounds expresses the dependency on the confidence pa-
rameter δ and it is again approximately the same for the
batch and the online case. It follows that the main role
in the comparison between the online and batch bounds
is driven by the middle term, which expresses the depen-
dency of the bound on the number of tasks T . This term
originates in different ways: in the batch approach it is
derived from the application of uniform bounds and it
can be interpreted as an inter-task estimation error, while
in the online approach, it plays the role of an optimiza-
tion error. Despite the different derivations, we can as-
certain from the explicit formula of the bounds that this
term is approximately the same for both procedures. This
is remarkable since it implies that the representation re-
sulting from our online procedure enjoys the same sta-
tistical guarantees than the batch one, despite its more
parsimonious memory and computational requirements.

5.3 COMPUTATIONAL CONSIDERATIONS

After discussing the theoretical comparison between the
online and the batch LTL approach, in this section we
point out some key aspects regarding the computational
costs of both procedures.

Memory. The batch LTL estimator corresponds to a
minimizer of the multi-task empirical risk in Eq. (14)
over all tasks observed so far. The corresponding ap-
proach therefore requires storing in memory all training
datasets as they arrive in order to perform the optimiza-
tion. This is clearly not sustainable in the incremental
setting, since tasks are observed sequentially and, possi-
bly indefinitely, inevitably leading to a memory overflow.
On the contrary, in line with stochastic methods, online
LTL has a small memory footprint, since it requires to
store only one dataset at the time, allowing to “forget” it
as soon as one gradient step is performed.

Time. Online LTL is also advantageous in terms of the
number of iterations performed whenever a new task is
observed. Indeed, for every new task, online LTL per-
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forms only one step of gradient descent for a total of
T steps after T tasks. On the contrary, batch LTL re-
quires finding a minimizer for Eq. (14), which cannot
be obtained in closed form but requires adopting an it-
erative method such as Projected Gradient Descent, see
e.g. (Combettes & Wajs, 2005). These methods typi-
cally require k iterations to achieve an error of the order
of O(1/k) from the optimum (better rates are possible
adopting accelerated schemes). However, since for any
new task batch LTL needs to find a minimizer for the
multi-task empirical error from scratch, this leads to a
total of Tk iterations after T tasks. Noting that every
such iteration requires to compute T gradients of LZ in
contrast to the single one of PSSA, this shows that on-
line LTL requires much less operations. In the batch
case, a “warm-restart” strategy can be adopted to ini-
tialize the Projected Gradient Descent with the represen-
tation learned during the previous step, however, as we
empirically observed in Sec. 6, online LTL is still signif-
icantly faster than batch.

6 EXPERIMENTS

In this section, we report preliminary empirical evalua-
tions of the online LTL strategy proposed in this work;
the Python implementation of our algorithm is available
at https://github.com/dstamos. In particular we compare
our method with its batch (or offline) counterpart and in-
dependent task learning (ITL), i.e. standard Ridge Re-
gression, which does not leverage any shared structure
among the tasks.

In all experiments, we obtain the online and batch esti-
mators D̄λ,Ttr

and D̂λ,Ttr
by learning them on a dataset

Ztr of Ttr training tasks, each comprising n input-output
pairs (x, y) ∈ X ×Y . Below to simplify our notation we
omit the subscript Ttr in these estimators. We perform
this training for different values of λ ∈ {λ1, . . . , λp}
and select the best estimator based on the prediction error
measured on a separate set Zva of Tva validation tasks.
Once such optimal λ value has been selected, we report
the generalization performance of the corresponding es-
timator on a set Zte of Tte test tasks. Note that the tasks
in the test and validation sets Zte and Zva are all pro-
vided with both a training and test datasets Z,Z ′ ∈ Zn.
Indeed, in order to evaluate the performance of a rep-
resentation D, we need to first train the corresponding
algorithm AD on Z, and then test its performance on
Z ′ (sampled from the same distribution), by computing
the empirical riskRZ′(AD(Z)). For all methods consid-
ered in this setting, we perform parameter selection over
p = 30 candidate values of λ over the range [10−6, 103]
with logarithmic spacing. In the online setting the train-
ing datasets arrive one at the time, therefore model se-

Figure 1: Relative improvement (in %) of our online LTL al-
gorithm over the ITL baseline for a varying range of training
tasks Ttr and number of samples n per task, during 30 trials.

lection is performed online: the system keeps track of
all candidate representation matrices D̄λ1

, . . . , D̄λm and
whenever a new training task is presented, these matrices
are all updated by incorporating the corresponding new
observations. The best representation is then returned at
each iteration, based on its performance on the validation
set Zva. Finally, in the subsequent experiments, we set
the step sizes of the online LTL method in Alg. 1 equal
to γt = c/

√
t, for some constant c > 0 chosen by model

selection. Moreover, we computed the batch LTL esti-
mator by classical Projected Gradient Descent method
up to convergence, within 10−6 relative descent of the
objective function.

Synthetic Data. We considered a regression problem on
X ⊆ Rd with d = 50 and a variable number of train-
ing tasks Ttr and training points n. We also generated
Tte = 300 test tasks and we sampled a number Tva of
validation tasks equal to 50% of Ttr. For each task, the
corresponding dataset (xi, yi)

n
i=1 was generated accord-

ing to the linear regression equation y = w>x + ε, with
x sampled uniformly on the unit sphere in Rd and ε sam-
pled from a Normal distribution, ε ∼ N (0, 0.2). The
tasks predictors w were generated as Pw̃ with the com-
ponents of w̃ ∈ Rd/2 sampled from N (0, 1) and then w̃
normalized to have unit norm, with P ∈ Rd×d/2 a matrix
with orthonormal rows. In this way, the tasks reflect the
assumption of sharing a low dimensional representation,
which needs to be inferred by the LTL algorithm.

Fig. 1 reports the comparison between the baseline ITL
and the proposed online LTL approach in terms of the
relative difference of the prediction error on test tasks
for the two methods. More precisely, given the mean
squared errors (MSE) RoLTL of online LTL and RITL

of ITL averaged across the test tasks, we report the ra-
tio (RITL−RoLTL)/RITL as a percentage improvement.
Results are reported across a range of Ttr and n. We note
that the regime considered for these experiments is par-
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Table 1: Time (in seconds) for computing online and batch LTL
for Ttr training tasks and n of samples per task.

Ttr 50 100 150
n 20 50 20 50 20 50

Batch 85 227 246 617 428 2003
Online 36 86 108 273 227 776

ticularly favorable to LTL, almost always outperforming
ITL. However, when the number of training points per
task is small, the LTL algorithm, as expected, is unable
to capture the underlying representation, unless several
tasks are used in training.

To provide further evidence of the performance of on-
line LTL, Fig. 2 (Top) compares the prediction error of
online LTL, batch LTL, and ITL as the number of train-
ing tasks Ttr increases one at the time and the different
methods update their corresponding representation ac-
cordingly. In this case, the number of samples per task
is fixed to n = 40. We also added to the comparison the
multi-task algorithm (MTL) described in Sec. 2.3, per-
forming trace norm regularization on the test set. As ex-
pected, the performance of both ITL and MTL does not
depend on the number of training tasks. Consistently to
what observed before, ITL is outperformed by both LTL
methods, which tend to converge to the MTL method as
more training tasks are provided. In general, when, as
in this case, the number of test tasks is large enough,
the MTL method is expected to outperform LTL, since
MTL optimizes the representation directly on the test
tasks. Concerning the LTL methods, consistently with
the theory presented in Sec. 4, the performance of the on-
line method is equivalent to that of its batch counterpart,
which is, as already stressed in Sec. 5.3, less appealing
from the computational point of view. To confirm this
aspect, we report in Tab. 1 the computational times re-
quired on average by online LTL and batch LTL as Ttr
and n vary. Online LTL is faster than batch LTL.

Schools Dataset. We evaluated online LTL on the
Schools dataset, consisting of examination records from
139 schools, see (Argyriou et al., 2008). Each school is
associated to a regression task, individual students corre-
spond to the input and their exam score to the output. In
this case, the sample size n varies across the tasks and the
features belong to an input space X ⊆ Rd, with d = 26.
We randomly sampled 25% and 50% of the 139 tasks
for LTL training and validation respectively and the re-
maining tasks were used as test set. Fig. 2 (Bottom) re-
ports the performance of online LTL, batch LTL, ITL and
MTL. Performance is reported in terms of the Explained
Variance on the tasks (Argyriou et al., 2008), higher val-
ues correspond to better performance. Results are con-
sistent with synthetic experiments; in particular, online

Figure 2: Performance of online LTL, batch LTL, ITL and MTL
(on the test set) during 30 trials on the synthetic dataset (Top)
and the Schools dataset (Bottom) as the number of training
tasks increases incrementally.

and batch LTL are comparable.

7 CONCLUSION AND FUTURE WORK

We proposed an on-line (incremental) approach to LTL
for linear data representation learning. Compared with
its batch counterpart, this approach is computationally
more efficient both in terms of memory and number of
operations, while enjoying the same generalization prop-
erties. Preliminary experiments have highlighted the fa-
vorable learning capability of the proposed LTL strat-
egy. Our analysis opens several future research direc-
tions. First, it would be valuable to investigate whether
the same statistical guarantees hold for a projection-free
meta-algorithm which does not require the computation
of the entire SVD (e.g. certain variants of Frank Wolfe
algorithm (Hazan & Kale, 2012), which do not require
memorizing the sequence of datasets). Second, from
a modeling perspective, we could take inspiration from
the vast MTL literature to design new LTL methods in
order to deal with tasks that are not necessarily span-
ning a low-rank subspace but are for instance organized
into clusters (Jacob et al., 2009) or share a sparse set of
relations (Ciliberto et al., 2015a;b). Finally, extending
our analysis to non-convex settings would allow one to
tackle more general families of learning algorithms as
well as recent empirical meta-learning approaches (e.g.
Franceschi et al., 2018) which implicitly attempt to di-
rectly minimize the transfer risk.
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Rémy Degenne
LPSM, CNRS, Sorbonne Université,
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Abstract

We consider the classical stochastic multi-
armed bandit but where, from time to time and
roughly with frequency ε, an extra observation
is gathered by the agent for free. We prove that,
no matter how small ε is the agent can ensure
a regret uniformly bounded in time.

More precisely, we construct an algorithm with
a regret smaller than

∑
i

log(1/ε)
∆i

, up to multi-
plicative constant and log log terms. We also
prove a matching lower-bound, stating that
no reasonable algorithm can outperform this
quantity.

1 INTRODUCTION

We consider the celebrated multi-armed bandit frame-
work (sometimes also called online learning), a repeated
decision problem where an agent (or an algorithm, a ma-
chine, a player, etc.) takes sequentially decisions from
a finite set. Each decision gives a stochastic reward to
the agent of fixed expectation. The main objective is to
derive an algorithm maximizing the cumulative reward
or minimizing its normalized version, the so-called “re-
gret”. The latter is simply the difference between the cu-
mulative expected reward of an agent knowing in hind-
sight the optimal decision, and the cumulative reward of
the algorithm.

Online learning can be traced back to the 30’s, when
Thompson analysed random clinical trial using an anal-
ogy with finding the best slot-machine in a casino by
pulling sequentially their arms in order to minimize the
total loss. During the 20th century, many improvements
have been made, at least on the asymptotic version of the
problem. The quantity of theoretical studies and practi-
cal applications of bandits have exploded since the early

2000. There are several reasons for that. First of all,
a simple yet almost optimal algorithm called UCB has
been developed. Its simple structure allows to adapt it to
many different settings. As a consequence, many pos-
sible applications of online learning have been devel-
oped. Amongst them, we can mention the routing prob-
lem: given a network with congested edges, one must
find the quickest way from some origin to a destination
(this setting incorporates a combinatorial structure); this
can be used to send packets in a network, as well as find-
ing the quickest itinerary from a point A to a point B.
Online advertising is another application: given a pos-
sible set of ads, one must find the ad with the highest
probability of click. The last application we mention is
concerned with wireless network and/or cognitive radio,
where either a radio can change from an available chan-
nel to other channels to improve its reception or emission
quality, or alternatively a wireless source, in a relay se-
lection problem where multiple relays are available, can
explore those nodes to achieve better transmissions rates.
One of the typical and crucial assumption of all these
models is that the agent only observes the outcome of his
decisions, but not what the other decisions would have
given him. For instance, using a slot machine only gives
you a feedback on the performance of that very machine,
displaying an ad only gives information of the probabil-
ity of clicks on that specific ad, etc. This assumption is
actually called “bandit feedback”. At the other end of
the spectrum, the dual assumption (mostly used in non-
stationary environment that we are not concerned with in
that paper) is the “full information feedback”, where all
the outcomes of all decisions are observed at all stages.
However, none of our motivating examples satisfies this
strong assumption.

However, we argue that the bandit feedback is also too
strong and that in many cases more informations are
available to the agent. Typically, the agent will always
observe the outcome of his own decision, but with some
small probability he might also get one (or several, but
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that is irrelevant to our setting) extra “free” information.
For instance, consider the original multi-armed bandit
problem. A gambler is in a casino and wants to find out
which slot machine is the best one. From time to time, he
might observe other gamblers playing nearby machines.
Even if this does not cost him anything, he gets feed-
back on the other machines. This effect also appears in
other settings. In wireless network, a source with an allo-
cated transmission capacity (because of a power-saving
allocation protocol for instance) sends data through a re-
lay and may have the opportunity to send another custom
packet (so that the energy needed to send this packet is
less than the available energy) through another relay in
order to estimate transmissions rates. In online advertise-
ment (and actually many other industrial markets), com-
panies are willing to spend a small fraction of their data,
say with probability ε as in the celebrated ε-greedy al-
gorithm, just to acquire new information. An algorithm
is only evaluated on the remaining (of proportion 1 − ε)
fraction of the data treated. In a multi-armed bandit set-
ting, this means that with probability ε, the next decision
is “free”. Finally, we can also think that in the congested
network problem, an algorithm can from time to time
send “fake”, but free, packets to test the congestion; con-
versely, an app trying to minimize the congestion time of
its users might be able to use free information if it no-
tices that a bucket of users (for instance, those that are
registered) might explore new road willingly, i.e., with-
out uninstalling the app.

We therefore focus on the classical multi-armed bandits
but where some extra and free information is available
from time to time. Clearly, if the probability ε that it
happens is arbitrarily close to 0, the improvement will be
negligible. But we aim at constructing “optimal” algo-
rithm, i.e., whose regret is small and in a multiplicative
constant of the best regret achievable regret by “mean-
ingful” algorithms. All these concepts are explained in
details in the remaining of the paper that is organized as
follows.

The model is introduced in Section 2, where we provide
a very naı̈ve algorithm achieving bounded regret (uni-
formly in time). We exhibit in Section 3 non-trivial lower
bounds (we emphasize here that traditional bandit lower
bounds are void in our setting). Algorithms are described
and analysed in Section 4. Finally, Section 5 is dedicated
to experiments illustrating the different guarantees and
dependencies in the parameters of the models.

1.1 RELATED WORKS

This paper is not the first one to consider additional, free
informations, available to the agents while optimizing.
There are many different ways of modelling this idea,

but our paper is the first one (to our knowledge) that also
focus on strategical aspects of obtaining these free in-
formations to reduce regret, especially in the stochastic
case.

There exists models where when a specific decision is
taken, automatically (resp. with some probability), the
performance of some other decision are observed [Alon
et al., 2015, Chen et al., 2016, Caron et al., 2012].
Those models assume that there exists a directed (resp.
weighted) graph whose set of nodes is the set of deci-
sions. When the agent takes a decision, he also observes
the outcome of any node linked (resp. with a probability
proportional to the weight of the edge) to the current de-
cision node. Our passive model could be recast as a spe-
cific case of that setting, but our results are much finer
than the ones available for the general case.

In [Yu and Mannor, 2009] the rewards are stochastic but
their means change at unknown time points. Free addi-
tional informations are queried by the algorithm in order
to detect these change points. They however are not used
to decrease the regret of the base bandit algorithm.

Another trend of literature of additional free informa-
tion in multi-armed bandit studies the “adversarial” case,
where no stationary assumption is made on the sequence
of rewards (namely, there are not i.i.d.)[Audibert and
Bubeck, 2010, Cesa-Bianchi et al., 2006, Mannor and
Shamir, 2011]. However the rate of convergence in the
two extreme cases (bandit and full information) have the
same dependency in T , the total number of stages. To
be precise, the regret is either of the order of

√
KT (in

the bandit case) or
√

log(K)T (in the full information
case), where K is the number of decisions. Intermediate
settings (where 1 +M observations are available at each
stage) interpolate between those two cases.

In the stochastic case though, regret is uniformly
bounded with full information and grows logarithmically
in the bandit case. As a consequence, even the rate of
convergence will depend on the size of free informations.

2 MULTI-ARMED BANDITS, REGRET
MINIMIZATION AND FEEDBACKS

In that section, we describe precisely the stochastic
multi-armed bandit problem and its objective, the min-
imization of regret.

2.1 STOCHASTIC MULTI-ARMED BANDITS

2.1.1 Bandit vs Full-Information

At each successive stage t ∈ N∗, an agent takes a deci-
sion (or pulls an arm using the multi-armed bandit lingo)
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it in the finite set [K] := {1, . . . ,K}. After pulling this
arm, the agent receives the reward X

(it)
t ∈ R, which

is sampled from a real reward distribution ν(it) of ex-
pectation µ(it). As a consequence, the stochastic ban-
dit problem is parametrised by the vector of distribution,
(ν(1), . . . , ν(K)), or alternatively in the non-parametric
case, by the vector of expected rewards (µ(1), . . . , µ(K)).
Throughout the paper, the results are stated using the ar-
bitrary ordering µ(1) > µ(2) ≥ . . . ≥ µ(K). Obviously,
those vectors are unknown to the agent, who is aiming at
optimizing her cumulative expected reward

∑T
t=1 µ

(it).
Actually, instead of this cumulative reward, the objective
is normalized into cumulative regret minimization.

The cumulative regret (or simply regret) of an algorithm
at stage T is defined as

RT = T max
i∈[K]

µ(i) −
T∑

t=1

µ(it) ,

i.e., it is the difference between the maximal possible
cumulative reward up to stage T and the expectation
of the reward gained by the successive choices of arms
i1, . . . , iT . Following the classical notations, we define
µ? = maxi∈[K] µ

(i) and the gaps ∆i = µ?−µ(i). In the
non-parametric case, these gaps are the relevant quanti-
ties characterising the complexity of a bandit problem.

There are different standard assumption on the feedbacks
available to the agent before taking a new decision. In
the bandit setting, she observes only her reward X

(it)
t

(and, specifically, not the other X(k)
t ) at the end of stage

t ∈ N∗. In the full information setting, she observes the
full vector of rewards (X

(1)
t , . . . , X

(K)
t ) ∈ RK . With

full information, the Follow The Leader (FTL) algo-
rithm that selects the arg max of the empirical average
X

(i)

t := 1
t

∑t
s=1X

(i)
s attains a uniformly bounded re-

gret (with respect to T ). In the bandit setting, FTL gets a
linear regret, yet the logarithmic optimal dependency in
T is achieved by many algorithms. One of the most pop-
ular, called Upper Confidence Bound (UCB), selects the
argmax of the empirical average augmented of an error

term µ̂
(i)
t +

√
6 log(t)
Ni(t)

where Ni(t) is the number of pulls

of arm i up to stage t, while µ̂(i)
t := 1

Ni(t)

∑
s:is=i

X
(is)
s .

Many other algorithms are variants of UCB, by modify-
ing the error term, changing some parameters, specifying
it for a given class of parametric distributions, etc.

2.1.2 Additional Informations

As specified and motivated in the Introduction, we aim at
analysing intermediate settings between bandit and full
information, in which a subset of the reward vector might

be observed. More precisely, at some stages, the agent
not only observes an arm by pulling it but might also ob-
serve a second arm for free, i.e., without getting a reward
(and without incurring any regret). We consider several
ways in which these free observations can be obtained:
they can be deterministically available periodically (for
instance every 1/ε rounds) or arrive randomly (at each
stage with probability ε); the agent can also be a pas-
sive observer if she can not choose from which arm she
gets an extra information (the environment chooses it for
her, in a manner to be specified latter on), or she can be
an active observer if she can choose the arm to observe
freely.

We end this section with some notations. In the random
time arrival of free information, we assume that at each
stage t ∈ N∗ a Bernoulli random variable Zt with ex-
pectation εt (whose law is denoted by Ber(εt)) is sam-
pled and a free observation is available if Zt = 1. The
particular setting in which εt is constant will be called
static random. We will denote by it the arm pulled and
by ft the arm chosen to be observed using the free in-
formation (if available). The total number of pulls of
arm i up to stage t is Ni(t), the number of free observa-
tions Fi(t) and the total number of observation of arm i
is Oi(t) = Ni(t) + Fi(t).

2.2 A FINITE REGRET SETTING

It is not really difficult to devise a naı̈ve algorithm with
a (uniformly) bounded regret at least in the determinis-
tic case, when a free observation is obtained every 1/ε
round. We consider for simplicity the case of K = 2
arms in this section as it gives all the intuitions. Con-
sider the following (heavily sub-optimal) strategy, which
we denote by FTL-robin: pull the leading arm (the one
with the highest empirical average µ̂(i)

t ) and when a free
sample is available, observe arms in a round-robin fash-
ion.

After a period of 1/ε stages, both arms have their ob-
servation counters increased by at least one. As a conse-
quence, this simple algorithm FTL-robin can be seen as a
full-information algorithm which would take 1/ε stages
to get the observations. To simplify intuitions
Lemma 1. The regret of the FTL-robin algorithm on the
deterministic setting with K = 2 satisfies

ERT ≤
c

ε

1

∆
, where ∆ = |µ(1) − µ(2)|,

and there exist distributions (ν(1), ν(2)) such that

c

ε

1

∆
≤ ERT ,

where c, c > 0 are universal constants that do not involve
any parameter of the problem.
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This lemma shows that even the simplest algorithm gets
a finite regret in this setting. The proof is almost trivial
and omitted. To provide some insights, just assume that
ν(1) = N (∆, 1) and ν(2) = δ0. Then the regret of FTL-
robin is equal to the ∆/ε times the number of times that

X
(1)

t is smaller than 0. Basic computations show that
this number is of order 1

∆2 .

The relevant question is then not the asymptotic regime,
but what is the precise optimal dependency on ε. Indeed,
when ε < 1

log T , this bound gets larger than the O(log T )
regret of another naive approach, which is to use an algo-
rithm for bandits and discard the additional information.

This free information problem is characterized by a tran-
sition from ”small” ε, where the amount of additional
information is not enough to improve the performance of
bandit algorithm, to ”big” ε, where the regret is finite and
the setting is closer to full-information.

We answer the question of what ”small” and ”big”
mean in this context and where the transition occurs and
we display algorithms enjoying both logarithmic regret
when ε is small and finite regret when it is big.

3 LOWER BOUNDS

We first consider the definition of optimality of an al-
gorithm, that is, what is the minimal regret achievable
by any ”reasonable” algorithm, in a sense we will make
precise. Our lower bounds will highlight a transition
from logarithmic (with respect to the horizon T ) to finite
regimes when ε gets big enough.

There are now quite standard techniques to devise lower
bounds for stochastic bandits problems, but surprisingly
these techniques are inadequate in our case, due to the
finiteness of the optimal regret. As a finite regret is pos-
sible, a traditional, asymptotic lower bound for ERT

log T [Lai
and Robbins, 1985] could only be 0 and hence would not
be informative. We can obtain a finite time version of
this type of bound as in [Garivier et al., 2016] by im-
posing that our algorithm should perform better than a
reference algorithm.

Definition 1. An algorithm is said to be sub-logarithmic
with constants C, C0 if on all bandit problems it verifies
for all stages T ∈ N∗,

ERT ≤ C
K∑

i=1

log T

∆i
+ C0

K∑

i=2

∆i .

There exists sub-logarithmic algorithms (UCB for exam-
ple, with constants C = 8, C0 = (1 + π2/3) [Auer
et al., 2002]). A sub-logarithmic algorithm is perform-
ing at least as good as the UCB baseline. This finite time

constraint on the performance of the algorithm translates
into a lower bound: to perform relatively well on all ban-
dit problems, an algorithm cannot outperform the lower
bound guarantee on any of them.

3.1 PASSIVE OBSERVER

When the observer is passive (i.e., she does not choose
the arm ft to observe freely), we assume that ft is equal
to i ∈ [K] with probability p

(i)
t chosen by the envi-

ronment. Consider the static setting in which for all t,
Zt ∼ Ber(ε) and the probabilities p(i)

t do not depend on
the stage t (we will thereafter omit the subscript t).

Standard lower bound techniques proceed as follows: at
stage T , the expected number of pulls of an arm is linked
to the Kullback-Leibler divergence between the bandit
problem studied and a related alternative, in which this
arm would be the best one (roughly speaking, in order
to be able to “test” that the problem is not the alternative
one, a minimum number of samples of that arm must be
gathered in the original problem).

A bound on this divergence gives a constraint of the
form EOi(T ) ≥ hi(t)/∆

2
i for some function hi(T ) =

O(log T ). Then a lower bound for the regret is the min-
imal value of

∑K
i=2 ∆i ENi(t) respecting all these con-

straints, that can be computed through some linear pro-
gram. With this proof technique, we obtain lemma 2 .

Lemma 2. The regret of a sub-logarithmic algorithm
with constants C, C0 must verify

E1RT ≥
K∑

i=2

max

{
0,
hi(T )

2∆i
− εp(i)T∆i)

}
.

where hi(T ) = O(log T ) (see appendix for a detailed
definition).

As mentioned above, this lower bound is void as it
reaches 0 as soon as T is big enough, bigger than
1
ε maxj≥2

hj(T )

2p(j)∆2
j

.

We want to explain why this lower bound fails to provide
relevant informations as our algorithm (see Section 4) are
somehow inspired by this. Recall that the lower bound
only states that any reasonable algorithm must have gath-
ered, for each sub-optimal arm, a given number of ob-
servations, namely hi(T )

2∆2
i

. However, hi(T ) grows sub-
linearly, while the number of free observations grows
linearly. So if T is large enough, there will be in to-
tal enough free observations to allocate hi(T )

2∆2
i

of them to
arm i and an optimal algorithm should somehow have
used only free information to explore.

However, this is only possible if the εT free observa-
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tions were gathered at the beginning of the problem and
not scarcely with time! Indeed, in the traditional lower
bounds techniques, the fact that arm i is observed at the
beginning or at the end of time is irrelevant (since the
cost of one pull is constant throughout time). They to-
tally discard the fact that the quantities ENi(t) and ERt
must be non-decreasing. Tighter, relevant lower bounds
can be recovered using this monotonicity.
Theorem 1. The regret of a sub-logarithmic algorithm
with constants C, C0 must verify

ERT ≥
K∑

i=2

1

2∆i
r

(i)
T

where

r
(i)
T = log(

T∆2
i

2C log T
∑
j 6=i

∆i

∆i+∆j

)+ηi(T )−2εp(i)∆2
iT

if T ≤ 1/(2εp(i)∆2
i ) and otherwise

r
(i)
T =

[
log

(
1

ε

1

4Cp(i)
∑
j 6=i

∆i

∆i+∆j

)

− log log(
1

2εp(i)∆2
i

) + ηi(
1

2εp(i)∆2
i

)− 1

]
.

The function ηi(T ) goes to zero in O(1/ log T ). See ap-
pendix for details.

Theorem 1 correctly reports a lower bound increasing
with the horizon. It shows a transition from a O(log T )
optimal regret for T � 1/(2εp(i)∆2

i ) to a finite regret
function of ε when T gets bigger. According to The-
orem 1, the correct dependency in ε in the regret should
be inO(log(1/ε)), notO(1/ε) as seen for the naive FTL-
robin algorithm.

We can also wonder what is the most favorable passive
setting. Simple computations show that free observa-
tions should be drawn according to the probability vector
(p

(1)
? , . . . , p

(K)
? ) where p(i)

? is proportional to 1
∆i

(here,
we actually ignore the log log and η terms of Theorem 1),
leading to a lowest lower bound

E1RT ≥
K∑

i=2

1

2∆i
log

(
1

ε

∑K
j=2

1
∆j

4C
∑
j 6=i

1
∆i+∆j

)
+ α

≥
K∑

i=2

1

2∆i
log

(
1

4Cε

)
+ α ,

where α regroups the log log and η terms in theorem 1.
This lower bound shows in particular that when all sub-
optimal arms have the same gap, the optimal sample
distribution is uniform and the lower bound is of order
K
∆ log( 1

ε ) .

3.2 ACTIVE OBSERVER

An active observer has the possibility to chose the
weights p(i)

t at each stage t ≤ T , potentially achieving
a much better distribution of the free observations up to
stage T than any static distribution. As before, standard
techniques give the following lower bound.

Lemma 3. The regret of a sub-logarithmic algorithm
with constants C, C0 verifies

ERT ≥
k∑

i=2

hi(T )

2∆i
−∆k(εT −

∑

j>k

hj(T )

2∆2
j

) ,

where k = min{i ∈ {2, . . . ,K} :
∑
j>i

hj(T )

2∆2
j
≤ εT}.

The structure of the solution to the optimization prob-
lem in this case is again educational: an optimal algo-
rithm presented with a given amount of free observations
would spend them at the beginning, before costly pulls,
and will spend them on the worst arms. This intuition
drove the construction of algorithms for active observer
in section 4:

First gather free observations, ideally accordingly to the
proportion (p

(1)
? , . . . , p

(K)
? ) then discards arms for which

enough information were gathered, and use a standard
optimal bandit algorithm on the remaining ones.

As in the passive observer case, although this lower
bound can be meaningful for small horizon T , it becomes
void for larger horizons. A better lower bound using the
monotony of the number of pulls and of the regret is pro-
vided in the next theorem.

Theorem 2. For k ∈ {2,K − 1} let tk = max{t ≥
1 :

∑K
j=k+1

hj(t)

2∆2
j
> εt}. The regret of any active sub-

logarithmic algorithm with constants C, C0 verifies

ERT ≥ max
k:tk≤T

k∑

i=2

1

∆i

[
log(

1

ε

∑K
j=k+1

∆2
i

∆2
j

4C
∑
j 6=i

∆i

∆i+∆j

)

− log log(
1

ε

K∑

j=k+1

1

2∆2
j

) + η(
1

ε

K∑

j=k+1

1

2∆2
j

)

]
.

When all gaps are equal to the same value ∆ > 0, the
leading term of this lower bound is of the form

max
k:tk≤T

k − 1

∆
log(

1

ε

K − k
K

) .

In particular, this result states that as T goes to in-
finity, the regret is asymptotically lower bounded by
K−1

∆

[
log( 1

ε )− log log( eε )
]
.
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4 ALGORITHMS AND
UPPER-BOUNDS

In this section, we exhibit algorithms matching the lower
bounds derived in the previous section, up to log log(·)
terms, showing that they indeed represent accurately the
problem complexity.

4.1 PASSIVE OBSERVER

A passive observer does not get to choose the arms on
which free information is gained. As in the classical
stochastic multi-armed bandit, the only decision is there-
fore which arm to pull. It is then natural to extend known
algorithms by taking into account all observations from
both provenances.

As UCB pulls the arm with maximal index X
(i)

t +√
6 log t
Ni(t)

, we extend it by using all available observations
both in the empirical mean and exploration term. Algo-

rithm 1 pulls it = arg maxiX
(i)

t +
√

6 log t
Oi(t)

.

Algorithm 1 UCB with passive observations.
Pull each arm once.
loop: at stage t,

it = arg maxiX
(i)

t +
√

6 log t
Oi(t)

Pull arm it, observe X(i)
t .

If Zt = 1, sample ft and observe X(ft)
t .

UpdateXt, Ni(t), Fi(t), Oi(t) = Ni(t)+Fi(t).
end loop

Theorem 3. Consider the static passive observer case,
where ft follows the categorical distribution with pa-
rameters (p(1), . . . , p(K)) and the probability of getting
a free observation is ε ∈ (0, 1] for all stages t ≥ 1.

Then the regret of ucb verifies both

ERT ≤
K∑

i=2

24

∆i
log T ,

and

ERT ≤
K∑

i=2

24

∆i
log

50

εp(i)

+

K∑

i=2

24

∆i
max

{
log

1

e∆2
i

, log log
20

εp(i)

}
.

Hence UCB with passive observations recovers the
log( 1

ε ) dependency in ε, up to a doubly logarithmic term
when εp(i) is small compared to the squared gaps. When
the dominant term in this maximum is log 1

e∆2
i

, the regret

due to arm i has the form 1
∆i

log 1
εp(i)∆2

i
, which is sub-

optimal with respect to ∆i (see Theorem 1). This is due
to the sub-optimality of UCB itself: while the regret of
UCB on a bandit problem is O(

∑K
i=2

log T
∆i

), other algo-
rithms of the same family like UCB2 [Auer et al., 2002],
Improved-UCB, [Auer and Ortner, 2010] or MOSS [Au-
dibert and Bubeck, 2009, Degenne and Perchet, 2016]
get an improved regret of order O(

∑K
i=2

log(T∆2
i )

∆i
).

The dependency in log( 1
ε ) means that ε as small as 1

T
gives useful information to a learner. Obviously there is
no gain to be had if ε < 1

T , as there is in average less
than one additional observation before T , but few more
free observations are enough to improve the regret.

4.2 ACTIVE OBSERVER

While a uniform allocation of the free observations over
the arms gets the right log( 1

ε ) dependency in ε, having
the choice of the arm which will be observed allows an
algorithm to get the right dependency in the parameters
of the bandit problem. In the active setting, the algo-
rithm can choose freely which of the [K] arms will get
an additional observation, when such an observation is
available.

To devise an algorithm taking advantage of this possibil-
ity, we try to mimic the lower bound for fixed stage, as
in Lemma 3. A good algorithm should use the available
free observations first to discard the worse arms, before
using costly pulls only on the remaining arms.

We introduce an algorithm combining two subroutines:
an Explore-Then-Commit (ETC) [Even-Dar et al., 2006,
Perchet and Rigollet, 2013] algorithm on the free obser-
vations is used to narrow the set of arms which need to
be pulled and an algorithm of the UCB family is used
on this set. As we seek for optimality with respect to
the problem parameters we use OCUCB-n [Lattimore,
2016], which is the UCB-type algorithm closest to it.
ETC is described in Algorithm 3. OCUCB-n with pa-
rameters η > 1 and ρ ∈ [1/2, 1] pulls at stage t ∈ N∗ the
arm with maximal index

X
(i)

t +

√
2η logB

(i)
t−1

Ni(t)

where

B
(i)
t−1 = max

{
e, log(t),

t log t
∑K
i=1 min{Ni, Nρ

j N
1−ρ
i }

}

where Ni is a shorthand notation for Ni(t).

The main algorithm use a succession of epochs. In epoch
number m ∈ N, the ETC subroutine collects (free) in-
formation on all the arms in [K], while OCUCB-n pulls
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arms in an available subset of the arms Sm. At the end
of epoch m, the free observations gathered are used to
discard arms from [K] which are not optimal with high
enough confidence, forming Sm+1. There is a finite
mi ∈ N depending on ε and the gaps such that with high
probability, i /∈ Sm form > mi, hence arm i contributes
to the regret only up to epoch mi and the regret is finite.

Algorithm 2 Active Algorithm.
Require: parameters ρ ∈ [1/2, 1], α ≥ 1, η > 1.

Initialize S0 = [K].
loop: at epoch m, with duration dm = 22m ,

Pull arms according to OCUCB-n with parame-
ters η and ρ on Sm,

Use free observations according to ETC with pa-
rameter α and horizon T = d

3/2
m+1 log dm+1.

Set Sm+1 to the set returned by ETC.
end loop

Algorithm 3 Explore-Then-Commit
Require: parameter α ≥ 1, horizon T ∈ N∗.

Initialize s = 0, S = [K].
loop

Observe all arms in S.
Discard from S any arm i such that

µ̂
(i)
s +

√
2α
s log(Ts ) < maxj∈S µ̂

(j)
s −

√
2α
s log(Ts ) .

s← s+ 1.
end loop
return S.

In order to write a regret upper bound for our active algo-
rithm, we introduce quantities Hi,ρ for i ∈ {2, . . . ,K}
and ρ ∈ [1/2, 1],

Hi,ρ =
i

∆2
i

+
K∑

j=i+1

1

∆
2(1−ρ)
i ∆2ρ

j

.

These constants transcribe the difficulty of the problem.
A number of observations of order 1

εHi,1 will be neces-
sary for ETC to eliminate arm i with high confidence.

Theorem 4. The regret of the active algorithm 2 with
parameters ρ ∈ [1/2, 1] and α = 1 on problems with
rewards in [0, 1] is

ERT ≤ Cη
K∑

i=2

4

∆i
max

{
log(

1

ε
), log

√
Hi,ρ

}

+ 51K +O

(
K∑

i=2

1

∆i
(log log

Hi,1

ε
)2

)

with Cη a constant that depends only on η (see [Latti-
more, 2016] for details on Cη).

Our analysis of Explore-Then-Commit relies on a new
maximal concentration inequality which can be of inde-
pendent interest.
Lemma 4. Let Zt be a σ2-sub-Gaussian martingale dif-
ference sequence then, for every δ ∈ (0, 0.2] and every
integers T ∈ N∗,

P

{
∃t ≤ T,Zt ≥

√
2σ2

t
log(

T

δt
)

}
≤ 6δ

√
log(

1

δ
) .

Asymptotically, we obtain

lim sup
δ→0

P
{
∃t ≤ T,Zt ≥

√
2σ2

t log( Tδt )

}

δ
√

log( 1
δ )

≤
√
e/8.

This value is
√
e/8 ≈ 0.6.

4.2.1 Heuristics and Influence of ε

Besides the algorithm already discussed, we also exper-
imented on the following heuristic: choose a bandit al-
gorithm of the UCB family, which pulls the arm with a
maximal index; use it to pull the arm with maximal in-
dex and if an observation is available, observe the sec-
ond maximal arm. We provide no regret analysis for this
heuristic but study its performance in the experimental
section.

Concerning the dependency in ε, we can make the fol-
lowing interesting remark. To simplify notations, we
will assume that all arms have the same gap ∆ and we
remove constants for this analysis. With these simplifi-
cations, we proved that regret at stage T is of the order
of RT ' K

∆ log( 1
ε ). Obviously, if ε is almost equal to

0, this upper-bound is void and the algorithm should not
depend on the free observations. One might ask what is
the threshold at which free informations become relevant
at stage T .

Notice that standard information theory arguments yield
that if εT ≤ K

2∆2 , and even if the free observations were
gathered at the begining of the problem, only K

2 arms
could be removed (with high probability) from the set of
possible optimal arms. Hence these free information are
not useful for at least K/2 arms and regret will have to
scale as K

2∆ log( 2T∆2

K ), the optimal rate for the bandit
problem with K/2 arms with equal gaps ∆.

On the other hand, if εT ≥ K
2∆2 , then (up to multiplica-

tive constant), K
∆ log( 1

ε ) dominates K
∆ log(T∆2

K ). As a
consequence, the relevant threshold for the probability
of free observations after T stages is

ε∗ =
1

T

K

∆2
.
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5 EXPERIMENTS

All experiments are performed with Gaussian rewards
with unit variance.

Influence of ε. The goal of this first experiment is to
confirm the scaling of the regret with ε. That is to say,
the regret scales with

∑
i:∆i>0

1
∆i

log( 1
ε∆2

i
). The exper-

iment is performed with a passive observer with either
a uniform distribution or the optimal one, as defined in
Section 3.1. To do so, the experiment is performed in
the passive setting associated with a uniform distribution
and the optimal one, as defined in Section 4.1. Also,
when free observations are scarce, ε ∼ 1

T , the average
number of those is approximately 1 during the experi-
ence. Therefore, the regret is similar to the one suffered
by an UCB algorithm in a classic multi-armed bandit set-
ting, a behaviour captured by the function f . On Figure
1 and 2, experiments are run on four Gaussian arms with
expectations 2, 1.8, 0.5, 0.2, the error bars are quantile at
10% and 90%.
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Epsilon
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f
Regret

Regret

Figure 1: Dependence on ε of the regret of UCB as pas-
sive observer, with a uniform distribution of the free ob-
servations, averaged over 300 runs.

Passive Observer: optimal sampling distribution.
This second experiment illustrates the induced regret in
the passive setting with a probability distribution p(i) =
1

∆i
. This distribution is considered to be optimal be-

cause, as mentioned in Section 3.1, it achieves the lowest
lower bound. It also suggests a paradigm for algorithms
in the active setting i.e sampling freely as much as pos-
sible the arm with the lowest ∆i. A way to do so is to
run an UCB type algorithm to choose which arm to pull,
and use another UCB type algorithm on other arms to
determine which will be observed if a free observation is
available. The results of this type of policy is presented
in the next paragraph.
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Regret

Figure 2: Dependence on ε of the regret of UCB as pas-
sive observer, with the optimal distribution of the free
observations, averaged over 300 runs.

The experiment is run on the same set of arms as previ-
ously with a uniform distribution, the optimal distribu-
tion and a suboptimal one such that p(i) = 1

∆2
i

, referred
as SubOptimal in Figure 3. Color filled regions are 25%
and 75% quantiles.
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Regret

Figure 3: Regret averaged over 300 runs

Active Observer: comparison of algorithms. This
subsection is dedicated to the comparaison of algorithms
introduced earlier : UCB1-Double, ETC-OCUCB and
ETC-OCUCB-2.
UCB1-Double uses a UCB algorithm and select the free
observation as the second index maximising arm. The
optimal allocation in the passive setting samples bet-
ter arms more often, therefore we use the free observa-
tion to sample the arm next to optimal (according to its
UCB index). The second algorithm, referred to as ETC-
OCUCB, is the algorithm studied in the above section.
In particular, its ETC subroutine checks for potentially
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removable arms every C|S| pulls, with C a fixed pa-
rameter and S the set of currently active arm. Finally,
the algorithm referred to as ETC-OCUCB-2 is a variant
of ETC-OCUCB where elimination checks are made ev-
ery 2k stages, thus behaving less aggressively than ETC-
OCUCB. In addition, we introduced in this experiment
a parameter p so that the epoch length is dm = pp

m

in
ETC-OCUCB. This enables us to adapt the growth of
epochs to the horizon, here T = 104. Other parameters
are : α = 1, ρ = 1

2 , η = 2 and C = 10.
The experiments is run on five Gaussian arms with ex-
pectations 2, 1.8, 1.5, 1 and 0.5. Color filled regions are
25% and 75% quantiles.
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Figure 4: Regret for ε = 0.1 averaged over 100 runs

Figure 4 illustrates that:

• UCB1-Double reaches rapidly its final regret value
after a logarithmic exploration phase where infor-
mations are gathered so that the policy doesn’t pull
an other suboptimal arm after this phase.

• ETC-OCUCB and ETC-OCUCB-2 algorithms have
similar performances and the parameter p offers a
control how often the set of active arms is updated
which offers a slight performance increase for lower
p.

ETC-OCUCB and ETC-OCUCB-2 maintain two distinct
tracks of rewards, one for rewards obtained after pulling
an arm and the other for rewards after sampling freely an
arm. Therefore, it may be possible to increase their per-
formance by using both sources of information in both
subroutines. In the Figure below, these variants are re-
ferred as ETC-OCUCB-all-info and ETC-OCUCB-all-
info-2.

This simple modification provides a clear improvement
whether for the final regret or the speed at which this
value is reached.

0 2000 4000 6000 8000 10000
Time

0

20

40

60

80

100

120

Average regret for various policies with epsilon = 0.1
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Regret

Figure 5: Regret for ε = 0.1 averaged over 300 runs for
p = 2

6 CONCLUSION

We analysed the multi-armed bandit problem with just
a few extra free information. Interestingly, as the re-
gret is uniformly bounded in time, standard lower bounds
are void. However, a careful analysis allowed us to ex-
hibit non-trivial guarantee that no reasonable algorithm
can out-perform and we finally provided an optimal al-
gorithm, whose regret matches the lower bound up to
doubly logarithmic terms.

We would like to finally emphasize that our algorithm
can be used even if the εT observations are not free.
Since we used ETC on these observations, we get that our
algorithm has a regret smaller (discarding multiplicative
constants and log log terms) than

K∑

i=2

log(εT∆2
i )

∆i
+

K∑

i=2

log(1/ε)

∆i

where the first term is the guarantee of ETC on εT sam-
ples, and the second one is the guarantee of our algorithm
with “free” observations. As a consequence, no matter
the value of ε (as long as the log log terms do not become
dominant), its dependency vanishes, and we recover the
expected performance of ETC.
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Abstract

Empirical evidence suggests that heavy-tailed
degree distributions occurring in many real net-
works are well-approximated by power laws
with exponents η that may take values either
less than and greater than two. Models based
on various forms of exchangeability are able
to capture power laws with η < 2, and admit
tractable inference algorithms; we draw on pre-
vious results to show that η > 2 cannot be gen-
erated by the forms of exchangeability used in
existing random graph models. Preferential at-
tachment models generate power law exponents
greater than two, but have been of limited use as
statistical models due to the inherent difficulty
of performing inference in non-exchangeable
models. Motivated by this gap, we design and
implement inference algorithms for a recently
proposed class of models that generates η of all
possible values. We show that although they
are not exchangeable, these models have prob-
abilistic structure amenable to inference. Our
methods make a large class of previously in-
tractable models useful for statistical inference.

1 INTRODUCTION

Sparsity and heavy-tailed degree distributions are believed
to occur in many real networks (Newman, 2005; Clauset,
Shalizi, and Newman, 2009). Sparsity has been well-
studied and is an intuitive concept: The typical social
network user interacts with only a vanishing fraction of
all users as the network grows. Heavy-tailed degree distri-
butions and the mechanisms that generate them are not as
well understood. However, empirical evidence indicates
that heavy-tailed distributions are expressed in a wide
range of settings, including network degrees (Clauset,

Shalizi, and Newman, 2009). Power law degree distribu-
tions, in which the proportion of vertices with degree d is
∝ d−η, are often used as models for real degree distribu-
tions, and serve as a useful analytic tool for characterizing
the asymptotic properties of random network models.

Many statistical network models make the assumption of
exchangeability over vertices, appealing to the Aldous–
Hoover theorem (Hoover, 1979; Aldous, 1981) for theo-
retical justification. Noting that networks sampled from
these models cannot be sparse, Orbanz and Roy (2015)
posed a question paraphrased as, “Can a probabilistic
model for random graphs produce sparse networks and
have some useful notion of probabilistic symmetry?” A
generation of models answered in the affirmative by incor-
porating other notions of exchangeability: In an exchange-
able point process representation of a network (Caron and
Fox, 2017; Veitch and Roy, 2015; Borgs et al., 2016), or as
an exchangeable sequence of edges (Crane and Dempsey,
2017; Cai, Campbell, and Broderick, 2016; Williamson,
2016). Under certain parameterizations, these models gen-
erate sparse networks. They are able to generate asymp-
totic power law degree distributions, providing a better
fit to real network data than their vertex exchangeable
counterparts. However, the power law exponent of the
degree distribution in both model classes is constrained
to the interval η ∈ (1, 2). That interval is not an artifact
of particular model specifications. Rather, it is a basic
property resulting from the fact that the average vertex
degree is asymptotically unbounded; vertex degrees grow,
on average, linearly in the number of edges. For some
data, this property may be undesirable; such properties
ideally would be inferred from a model able to capture a
larger range of power law behavior.

In a largely disjoint literature, so-called preferential at-
tachment (PA) models have been studied primarily for
their ability to generate power law degree distributions
from a simple size-biased reinforcement mechanism, and
for their analytical tractability (e.g., Barabási and Albert,
1999; Berger et al., 2014; Peköz, Röllin, and Ross, 2017).
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PA models have power law exponents η > 2. As we
explain in Section 2, the exponent range is tied to PA
models’ non-exchangeability—a property that has made
them, until now, of limited use as statistical models. In
particular, if the history of the network is unobserved,
the order of the edges must be inferred or marginalized;
even for networks of modest size, such inference over
permutations is generally intractable.

Recently, Bloem-Reddy and Orbanz (2017) introduced a
class of models that can generate random graphs with
power law degree distributions of any exponent η ∈
(1,∞). For reasons discussed below, we propose naming
them Beta Neutral-to-the-Left (BNTL) models. BNTL
models generalize many known models that have a size-
biased reinforcement mechanism, including a sub-class
of edge exchangeable models based on the Pitman–Yor
process, and variations of the PA model. The cost of the
additional flexibility is exchangeability; BNTL models
depend on the times at which new vertices arrive and
are not exchangeable in any known sense. However, as
we show in Section 3, BNTL models have probabilistic
structure—namely, left-neutrality—that may be exploited
for efficient computation, making a large class of previ-
ously intractable models useful for statistical inference.

Bloem-Reddy and Orbanz (2017) established the asymp-
totic properties of BNTL models; statistical modeling and
inference were left unstudied. Our contributions are:

• We identify left-neutrality as the key property that
yields tractable inference schemes.

• We categorize and give solutions to the BNTL inference
problem based on what data are available: We design
schemes for maximum likelihood estimation when ver-
tex arrival times are observed, and for Bayesian infer-
ence when an unlabeled network is observed.

• We implement these schemes on real networks of var-
ious sizes, from modest (∼ 102 vertices) to massive
(∼ 106 vertices).

2 POWER LAWS IN RANDOM GRAPH
MODELS

This section provides some context, and collects and in-
terprets various results from random graph models with
asymptotic degree distributions exhibiting power law tails.
Although none of the results here are new, to our knowl-
edge they have not been coherently synthesized in the
literature. Technical details are omitted; they may be
found in the references given throughout the section. We
focus our attention on edge exchangeable and PA models
because they are most similar to the BNTL framework.

A graph G is a set of vertices, V(G), and of edges,1 E(G),
between them. A multigraph allows for multiple edges
between vertices; we consider each edge to be distinct,
rather than as one integer-valued edge. We consider only
multigraphs and henceforth refer to them as graphs. A
sequence of growing graphs G1, G2, . . . is a stochastic
process G, indexed by the number of edges, n. Hence,
Gn may be interpreted as Gn−1 with an additional edge,
either between two vertices in V(Gn−1), between to new
vertices, or between one old and one new vertex. We
assume that the edges are labeled according to the order
in which they appear, though this assumption is not nec-
essary for edge exchangeable models (discussed below).
As such, Gn may be viewed simply as a sequence of
edges En := (E1, . . . , En) or, even more simply, as a se-
quence of ends of edges, denoted Z2n = (Z1, . . . , Z2n).
We denote by G(Z2n) the labeled graph with n edges
constructed from Z2n. (For convenience, we will use
the subscript n for all sequences when there is no risk of
confusion.)

For a graph G(Zn), Kn := |V(G(Zn))| is the number
of vertices (i.e., the number of unique values in Zn);
the degree of vertex j, dj,n :=

∑n
i=1 1{Zi = j}, is

equal to the number of ends of edges connected to it. Let
mn(d) denote the number of vertices with degree d. The
asymptotic degree distribution of G1, G2, . . . is said to
have power law tail with exponent η > 1 if

pn(d) =
mn(d)

Kn

p−−−−→
n→∞

pd
d↑∞∼ L(d)d−η for large d ,

such that
∑
d≥1 pd = 1, for some slowly varying function

L(d): limx→∞ L(rx)/L(x) = 1 for all r > 0 (Bingham,
Goldie, and Teugels, 1989). For power law tails, we state
the following fact (see Appendix A).

Fact. As n → ∞, if the expected average degree is
unbounded, then η ∈ (1, 2); if it is bounded, η ∈ (2,∞).

Edge exchangeable models (Crane and Dempsey,
2017; Cai, Campbell, and Broderick, 2016). Let Gn
be specified by its sequence of edges En (not necessarily
ends of edges), which is assumed to be exchangeable: Its
distribution is invariant under all permutations of the order
of the edges for all n, i.e., the labels carry no information
about their distribution. As a consequence of the law of
large numbers for exchangeable sequences, the counts of
all non-zero multi-edges grow linearly in n and thus so do
the vertex degrees. That is, dj,n = Θ(n). Furthermore,
Kn = o(n). The average degree is unbounded, implying
that if the degree distribution tail follows a power law,
then η ∈ (1, 2).

1We treat all graphs as undirected; extension to directed
graphs is straightforward.
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As an example, consider sampling Z from the the Pitman–
Yor process (PYP) (Ishwaran and James, 2001) with
parameters τ ∈ (0, 1), θ > −τ ,

P[Zn+1 ∈ • |Zn] =
θ +Knτ

n+ θ
δKn+1( • ) (1)

+
n−Knτ

θ + n

Kn∑

j=1

dj,n − τ
n−Knτ

δj( • ) .

It can be shown that the asymptotic degree distribution
has power law tail (Pitman, 2006),

n−τmd(n)
a.s.−−−−→
n→∞

pd
d↑∞∼ d−(1+τ) ,

which implies that ητ = 1 + τ ∈ (1, 2).

The predictive rule (1) demonstrates why the expected
average degree is unbounded. The probability that Zn+1

corresponds to a new vertex is θ+Knτn+θ , which is arbitrarily
close to zero as n→∞. For large n, the expected interar-
rival time between new vertices becomes arbitrarily large,
and edges pile up on the existing vertices. Intuitively, ver-
tex j takes part in a constant fraction of all interactions as
n grows. This property is shared by all edge exchangeable
models; an analogous property holds for exchangeable
point process models (see Appendix B).

Preferential attachment models. Although the PYP
has the same size-biased reinforcement mechanism com-
mon to all PA models, typically it is not considered to be
part of the same class as the PA models in the probabil-
ity literature, of which Barabási and Albert (1999) pro-
vide the prototypical example. However, the difference
between them amounts to how frequently new vertices
appear (Bloem-Reddy and Orbanz, 2017). For our pur-
poses, this is best illustrated with a simple PA model, the
Yule–Simon (YS) model (Simon, 1955). For β ∈ (0, 1),
Z is generated via the predictive rule

P[Zn+1 ∈ • |Zn] = βδKn+1( • ) + (1− β)

Kn∑

j=1

dj,n
n
δj( • ).

(2)

The YS model is known to generate power law degree
distributions with ηβ = 1+ 1

1−β ∈ (2,∞) (Simon, 1955).
Different versions of PA exhibit a range of possible η’s,
but it is generally the case that ηPA > 2, and this is tied to
their lack of exchangeability. The average rate at which
new vertices arrive is constant in n; hence, Kn = Ω(n),
implying bounded expected average degree. The “edge
pileup” phenomenon of exchangeable models does not
occur: dj,n = o(n). In the YS model, dj,n = Θ(n1−β).

3 BETA NTL MODELS

BNTL models were introduced under the name (α, T )-
models by Bloem-Reddy and Orbanz (2017), who studied
their distributional and asymptotic properties. We briefly
review the definition of BNTL models and describe the
properties that make them amenable to inference.

In the predictive distributions (1)-(2), the probability that
Zn+1 is a new vertex is independent of the degrees dj,n,
which allows the sampling of Z to be separated into two
parts: A sequence T1 < T2 < . . . of arrival times of
new vertices, and size-biased reinforcement at all steps
not associated with an arrival time. As such, a BNTL
model is parameterized by a scalar “discount parameter”
α ∈ (−∞, 1) and a probability distribution Λ on strictly
increasing integer-valued sequences, which specifies the
law of the arrival times T1, T2, . . . . A sequence Z is said
to have law BNTL(α,Λ) if, for a random arrival time
sequence T = (T1, T2, . . . ) ∼ Λ, Z is sampled as

P[Zn+1 ∈ • |Zn,T] = 1{n+ 1 = TKn+1}δKn+1( • )

+ 1{n+ 1 < TKn+1}
Kn∑

j=1

dj,n − α
n−Knα

δj( • ) . (3)

In practice, it may be simpler to specify the distribution of
interarrival times ∆j = Tj − Tj−1, and use their partial
sums to construct T; we discuss this in more detail in
Section 4. The similarity of (3) to (1)-(2) is not coinci-
dental. The PYP and the YS model each correspond to
particular parameterizations of the BNTL model: The YS
model corresponds to i.i.d. ∆j ∼ Geom(β); the arrival
time distribution induced by the PYP in (1) also has
known form (see (11)).

For a given T, the probability of any G(Zn) is

P[G(Zn)|T] = P[G(Zn)|TKn+1,Kn] (4)

=
Γ(d1,n − α)

Γ(n−Knα)

Kn∏

j=2

Γ(Tj − jα)Γ(dj,n − α)

Γ(Tj − 1− (j − 1)α)Γ(1− α)
.

A crucial property that makes BNTL models amenable to
inference is that conditioned on T, the joint probability
(4) factorizes over the vertices; each term is expressed in
terms of its arrival time, Tj , and its degree, dj,n. Note that
given T, the degree sequence dKn := (d1,n, . . . , dKn,n)
is a sufficient statistic for α. Furthermore, the distribution
of the arrival times (and therefore Kn) is independent of
the degrees. The factorization becomes explicitly use-
ful in the Gibbs sampling updates and in the maximum
likelihood estimating equations in Section 4.

Sampling representation. Like their exchangeable coun-
terpart the PYP , BNTL models have a sampling repre-
sentation in terms of products of independent beta random
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variables: (3) is an urn sequence corresponding to the fol-
lowing (Bloem-Reddy and Orbanz, 2017):

• T ∼ Λ.
• Ψj |Tj ∼ Beta(1− α, Tj − 1− (j − 1)α) for j ≥ 1.

• Pj,Kn = Ψj

∏Kn
`=j+1(1−Ψ`)

• Zn ∼
{
δKn( • ) for n = TKn
Categorical(Pj,Kn) o.w.

(By convention, Beta(a, 0) is a point mass on 1, so Ψ1 =
1.) The last two items specify that when there are k
vertices in the graph, Zn is sampled from a categorical
distribution over those vertices, each with probability Pj,k.
After the subsequent arrival time, Tk+1, when there are
k + 1 vertices, the probability that Zn = j is

Pj,k+1 =

{
Pj,k(1−Ψk+1), j ∈ {1, . . . , k}
Ψk+1, j = k + 1

.

That is, the vector of probabilities Pk = (P1,k, . . . , Pk,k)
grows in length as each new vertex arrives, and each of
the previous entries is scaled by (1−Ψnew).

Neutrality. The recursive scaling of Pj,k is the essence
of a neutral-to-the-left (NTL) sequence. A random vector
X = (X1, . . . , Xk) ∈ Rk+, is NTL if the increments,

Rj :=
Xj∑j
i=1Xi

, (5)

form a sequence of mutually independent random vari-
ables; a non-decreasing stochastic process Z defined on R
is NTL if the vector of increments Z(tj)−Z(tj−1)

Z(tj)
is NTL

for any finite partition −∞ ≤ t1 < . . . < tk ≤ ∞ of R
(Doksum, 1974). A bit of algebra shows that Pk is NTL:
The corresponding sequence of increments is Rj = Ψj ,
for all k. Intuitively, this must be the case due to the recur-
sive scaling construction. Together with the beta random
variables in the sampling representation, left-neutrality
characterizes these models; hence the name.

Neutral-to-the-right (NTR) processes are better known
than NTL processes, and appear throughout the Bayesian
statistics literature, both explicitly (Walker and Muliere,
1997; James, 2006) and implicitly in the form of the stick-
breaking constructions of the Dirichlet Process and the
PYP (e.g., Ishwaran and James, 2001). The properties
of right- and left-neutrality are, as their names suggest,
symmetric opposites: A NTR vector in reverse order is
NTL, and vice versa.

The independence properties that make NTR stick-
breaking constructions useful for modeling and inference
purposes transfer in large part to NTL models. The Ψj’s
are conditionally independent given the Tj’s; along with

the parameters of the beta distribution, this independence
induces the factorized form in (4). In the exchangeable
random partitions literature, a model with joint probabil-
ity that factorizes over the blocks and the probability of
having Kn blocks is known as Gibbs-type (Gnedin and
Pitman, 2006).

Sparsity and power law tails in BNTL models. The
asymptotic behavior of BNTL models is controlled pri-
marily by the arrival times, T. In order to obtain sparse
graphs, Kn must be ω(n1/2). If T are the arrival times
from an exchangeable sequence Z, then Kn is at most
Θ(nδ), for some δ ∈ (0, 1), in which case η = 1 + δ
(Pitman, 2006); thus, sparse graphs generated this way
have η ∈ (3/2, 2). For the PYP , δ = τ . Alternatively,
for T sampled such that the mean interarrival time,

∆̄Kn :=
1

Kn − 1

Kn∑

j=2

∆j , (6)

converges to some finite µ, then Kn = Θ(n) and
η = 1 + µ−α

µ−1 > 2. Furthermore, vertex degrees grow

as dj,n = Θ(n
µ−1
µ−α ) (Bloem-Reddy and Orbanz, 2017).

Thus, depending on the specification of the arrival time
distribution, BNTL models can achieve any η ∈ (1,∞).

Microclustering in BNTL partitions. The sequence
Zn can be transformed into an arrival-ordered partition
Π(Zn) := {B1,n, . . . , BKn,n} of [n] := {1, . . . , n} by
grouping Zn into blocks Bj,n := {i ∈ [n] : Zi = j}.
There is a bijective mapping between Π(Zn) and G(Zn)
for all n (Bloem-Reddy and Orbanz, 2017), which puts
blocks of the partition in correspondence with vertices of
the graph. Hence, properties ofG(Zn) translate into prop-
erties of Π(Zn). In particular, the growth rate of vertex
degrees translates to the growth rate of blocks sizes. Re-
cent work (Betancourt et al., 2016; Di Benedetto, Caron,
and Teh, 2017) has explored the so-called microcluster-
ing property, which is defined as block sizes that grow
sub-linearly in n. The η > 2 range of BNTL models
corresponds precisely with this property. Although we
do not make explicit statements about partition-valued
data, statements about graphs are easily translated into
statements about partitions via the correspondence be-
tween blocks and vertices. In particular, the inference
algorithms in Section 4 are valid for partition-valued data.

4 INFERENCE

Although PA models exhibit a range of power laws not
captured by exchangeable models, they face a significant
barrier to use as statistical models due to their inherent
lack of exchangeability. At a high level, applying a non-
exchangeable model to data for which the order is un-
known requires inference over permutations of the data.
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This is, in general, a prohibitively difficult problem even
for modest n. However, using the probabilistic structure
of BNTL models, we design a Gibbs sampling algorithm
that overcomes this difficulty for networks with thousands
of vertices (Section 4.1). If the ordered edge sequence
is observed, maximum likelihood estimation scales to
networks with millions of vertices (Section 4.2).

Given the hierarchical nature of BNTL models, infer-
ence may be performed at a number of levels. In the
simplest case, suppose the data are a sequence of edge-
ends, Zn. From this sequence the arrival times and the
arrival-ordered graph can be perfectly reconstructed, and
inferring the parameters φ of the arrival distribution Λφ

and the parameters ΨKn := (Ψj)
Kn
j=1 is straightforward:

Simple maximum likelihood estimators exist for ΨKn

(see Appendix C), and for the parameters of many arrival
time distributions of interest, or equally simple MCMC
samplers may be constructed for Bayesian inference.

More challenging are the situations in which some aspect
of the data is not perfectly observed. For graph-valued
observations, the following table summarizes the range of
possibilities, in order of increasing difficulty of inference:

Observation Unobserved variables

End of edge sequence Zn α, φ,ΨKn

Vertex arrival-ordered graph α, φ,ΨKn ,TKn

Unlabeled graph α, φ,ΨKn ,TKn , σ[Kn]

The last row presents a significant challenge. In par-
ticular, the unobserved variables include a permutation
σ mapping the arrival-ordered sequence to some arbi-
trary ordering of the vertices (by which the vertices are
uniquely identified). For a graph with Kn vertices, there
are Kn! possible permutations. Conditioned on a se-
quence of arrival times, some permutations have zero
posterior probability, making the problem space both
high-dimensional and constrained. Despite these diffi-
culties, the inference problem is much simpler than that
of a generic non-exchangeable model for a sequence of
n data points: Even in sparse graphs, typically Kn � n
and thus the dimension of the problem is exponentially
smaller. Furthermore, the form of (4) yields simple condi-
tional distributions for Gibbs sampling.

4.1 GIBBS SAMPLING

In this section, we build from the simplest inference prob-
lem to the hardest, progressing through the table in the
previous section. The full sampler infers the posterior
distributions of the parameters ΨKn and α, of the arrival
times TKn , of the parameters of the arrival time distribu-
tion, and of the permutation of the vertices. In order to
maintain the structure of the factorization over vertices

in (4), we assume that the arrival time distribution has a
Markov factorization (with a slight abuse of notation):

Λφ(Tk) = δT1
(1)

k∏

j=2

Λφj (∆j |Tj−1) , (7)

with φ representing any parameters. Examples are i.i.d.
interarrivals such that Λφj (∆j |Tj−1) = pφ(∆j); and inter-
arrivals that depend on the previous interarrivals through
their sum and the number of previous arrivals, such as the
interarrival sequence generated by exchangeable Gibbs-
type sequences (De Blasi et al., 2015).

Suppose we observe a sequence of edge-ends Zn. Denote
the partial sums of the ordered degree sequence as d̄j,n =∑j
i=1 dj,n. For any fixed α and φ,

pα,φ(Zn,ΨKn) = (8)
Kn∏

j=2

Ψ
dj,n−α−1
j (1−Ψj)

d̄j−1,n−(j−1)α−1

B(1− α, Tj − 1− (j − 1)α)
Λφ(Tj | Tj−1)

× Λφ(TKn+1 > n | TKn) ,

where B(a, b) is the beta function, and
Λφ(TKn+1 > n | TKn) is the censored probability
of vertex Kn + 1’s unobserved arrival time. Note that
marginalizing ΨKn recovers (4).

Updates for ΨKn . From (8) it is clear that

Ψj | Zn,Ψ\j ∼ Beta(dj,n − α, d̄j−1,n − (j − 1)α) ,
(9)

where Ψ\j is shorthand for the sequence ΨKn with Ψj

excluded. That is, given the arrival-ordered block sizes,
the ΨKn are independent of each other and of the arrival
times, and the beta distribution is the conjugate prior for
the BNTL sampling process. To understand this, consider
a second scenario in which a graph is observed with ver-
tices labeled in order of arrival (though not their time of
arrival). The data consist of an ordered sequence of de-
grees, dKn = (d1, . . . , dKn), which corresponds to more
than one possible edge-end sequence Zn. The model
places equal probability on each sequence that gives rise
to the same arrival-ordered degree sequence dKn and the
same arrival times; summing over these sequences yields

pα,φ(dKn ,ΨKn | TKn ,Kn) (10)

=

Kn∏

j=2

Ψ
dj−α−1
j (1−Ψj)

d̄j−1−(j−1)α−1

B(1− α, Tj − 1− (j − 1)α)

(
d̄j − Tj
dj − 1

)
.

The binomial coefficients count the number of sequences
Zn that yield dKn , given TKn (Griffiths and Spanò,
2007). (10) is a product of binomial likelihoods with
beta priors. Hence, the conjugacy derived in (9).
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Updates for α. In both observation scenarios, generic
MCMC methods such as slice sampling (Neal, 2003) can
be used to sample from the full conditional distribution of
α. We use slice sampling in the experiments in Section 5.

Updates for φ. Many models of i.i.d. interarrival times
will yield conjugate updates for φ. For other models,
generic MCMC methods can be used. In the experiments
in Section 5, we consider three interarrival models: i.i.d.
Geom(β) and i.i.d. Pois+(λ), which is the Poisson distri-
bution shifted to the positive integers; and the interarrival
distribution induced by the PYP , which is (Griffiths and
Spanò, 2007)

Λθ,τj+1(∆j+1 = s | Tj) (11)

= (θ + jτ)
Γ(θ + Tj)Γ(Tj + s− 1− jτ)

Γ(θ + Tj + s)Γ(Tj − jτ)
.

In the former two cases, conjugate updates are performed
(conditioned on TKn); in the latter case, we perform
univariate slice sampling for each of θ and τ .

Updates for TKn . The assumed Markov structure of
the arrival times induces a simple conditional distribu-
tion for Tj that is supported on the set Sj = {Tj−1 +
1, . . . , Tj−1 + Mj}, where Mj = min{Tj+1 − Tj−1 −
1, d̄j−1 − Tj−1 + 1}. The support set enforces the con-
straints that d̄j−1 ≥ Tj − 1, and that Tj−1 < Tj < Tj+1.
Conditioning on Tj−1 and Tj+1, updating Tj is equivalent
to updating ∆j and ∆j+1; for j = 2, . . . ,Kn − 1,

pα,φ(∆j = s,∆j+1 = Tj+1 − Tj−1 − s | T\j ,dn)

∝
Λφj+1(Tj+1 − Tj−1 − s | Tj−1 + s)Λφj (s | Tj−1)

B(1− α, Tj−1 + s− 1− (j − 1)α)

×
(
d̄j − Tj−1 − s

dj − 1

)
.

For j = Kn,

pα,φ(∆Kn = s | T\Kn ,d)

∝ ΛφKn(s | TKn−1)

(
n− TKn−1 − s

dKn − 1

)

×
ΛφKn+1(∆Kn+1 > n− TKn−1 − s | TKn−1 − s)

B(1− α, TKn−1 + s− 1− (Kn − 1)α)
,

and MKn = min{n− TKn−1 − 1, d̄j−1 − Tj−1 + 1}.
For i.i.d. interarrivals with distribution pφ, the updates are
particularly easy to compute because

Λφj+1(Tj+1 − Tj−1 − s | Tj−1 − s)Λφj (s | Tj−1)

= pφ(Tj+1 − Tj−1 − s)pφ(s) . (12)

pφ(s) can be computed for each s ∈ {1, . . . ,Mj};
each term multiplied by the corresponding term in s ∈

{Mj , . . . , 1} yields (12). In the case of Geom(β) interar-
rivals, the distribution is uniform on s ∈ {1, . . . ,Mj}:

Λφj+1(Tj+1 − Tj−1 − s | Tj−1 − s)Λφj (s | Tj−1) (13)

= β(1− β)Tj+1−Tj−1−s−1β(1− β)s−1 ∝ 1 .

Updates for σ[Kn]. Given a sample of TKn , the order
of the vertices can be updated via a series of adjacent
swap proposals. Let σj be the identity of the j-th vertex
in the current sampling iteration. A sampling update of σ
proposes swapping σj ↔ σj+1 with probability propor-
tional to the value of (10), with ΨKn marginalized and
with dj and dj+1 swapped. Due to the factorization over
vertices, all but the j-th and j + 1-st terms are the same;
as a result, swap proposals are inexpensive to compute
(for compactness, ‘−’ indicates all other variables):

pα,φ(σj ↔ σj+1|−) ∝ Γ(d̄j−1 + dj+1 − Tj + 1)

Γ(d̄j+1 − dj − Tj+1 + 2)

pα,φ(σj 6↔ σj+1|−) ∝ Γ(d̄j−1 + dj − Tj + 1)

Γ(d̄j − Tj+1 + 2)
.

The simplicity of swap proposals enables many swaps
to be sampled in a short amount of computational time,
helping to overcome the high dimensionality of the sam-
ple space. We note that in general, local proposals of all
possible permutations of m > 1 consecutive vertices are
possible and m > 2 would likely enhance exploration of
the state space; here we consider only m = 2.

Computational complexity. The slice sampling updates
for α, which require evaluation of (4), are of complexity
O(Kn), as are the permutation swap proposals. Updates
for the arrival parameter(s) φ depend on the model, but
as they depend only on the Kn arrival times, they are at
most O(Kn). The most expensive update is that of TKn ,
which isO(n), though the constant hidden inO may vary
greatly across arrival models.

4.2 MAXIMUM LIKELIHOOD FOR
PARAMETERS IN EDGE SEQUENCES

Suppose the edge-end sequence Zn is observed. For ar-
rival time distribution Λφ, φ and α can be estimated by
maximum likelihood (ML). The likelihood admits the
factorization

pα,φ(Zn) = pα(Zn|TKn)Λφ(TKn) , (14)

with the practical implication that the estimating equations
for α and φ can be solved separately. In particular,

α̂ = arg max
α∈(−∞,1)

log pα(Zn|TKn) , (15)

where pα(Zn | TKn) is as in (4).
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Table 1: Results of Gibbs sampling experiments on synthetic data (α∗ = 0.75). The top four rows show results
from each of four different BNTL models fit to a synthetic graph with 500 edges generated by the coupled PYP
BNTL model; the bottom four rows show the same BNTL models fit to a synthetic graph with Geom(0.25)-distributed
interarrivals.

Gen. arrival distn. Kn Inference model |α̂− α∗| |Ŝ− S∗| Pred. log-lik. Runtime (sec.) ESS
PYP(1.0, 0.75) 260 (τ,PYP(θ, τ)) 0.046± 0.002 28.5± 0.7 -2637.0± 0.1 297.6± 0.2 0.80± 0.09
PYP(1.0, 0.75) 260 (α,PYP(θ, τ)) 0.045± 0.003 33.4± 1.0 -2638.4± 0.2 313.6± 0.4 0.77± 0.07
PYP(1.0, 0.75) 260 (α,Geom(β)) 0.049± 0.004 66.8± 1.2 -2660.5± 0.7 90.5± 0.1 0.78± 0.09
PYP(1.0, 0.75) 260 (α,Pois+(λ)) 0.054± 0.004 68.0± 0.7 -2902.5± 1.4 112.5± 0.1 0.79± 0.07

Geom(0.25) 251 (τ,PYP(θ, τ)) 0.086± 0.002 56.6± 1.3 -2386.8± 0.1 295.4± 0.6 0.83± 0.06
Geom(0.25) 251 (α,PYP(θ, τ)) 0.078± 0.003 54.2± 2.0 -2387.5± 0.5 312.7± 0.3 0.66± 0.09
Geom(0.25) 251 (α,Geom(β)) 0.043± 0.003 24.8± 0.8 -2382.6± 0.2 87.2± 0.1 0.92± 0.04
Geom(0.25) 251 (α,Pois+(λ)) 0.041± 0.003 21.0± 0.5 -2562.2± 0.2 109.5± 0.1 0.91± 0.05

Closed-form MLEs are known for many i.i.d. interarrival
distributions. For the Geom(β) and Pois+(λ) distribu-
tions used in Section 5, β̂ = Kn−1

n−Kn and λ̂ = n−Kn
Kn−1 .

MLEs for θ and τ in PYP-induced interarrivals can be
found by numerically optimizing the product over arrival
times of (11). See Appendix D for details. Maximum a
posteriori (MAP) estimates are straightforward to com-
pute by placing priors on the model parameters and in-
cluding the relevant prior probabilities in (14)-(15).

4.3 RELATED WORK

There is relatively little previous work on statistical in-
ference for non-exchangeable models of network data.
Bloem-Reddy and Orbanz (2018) develop sequential
Monte Carlo methods for non-exchangeable models;
those methods are feasible only for networks with hun-
dreds of vertices. See references therein for related ideas
based on importance sampling. Where BNTL models
overlap with edge exchangeable models, there exist in-
ference algorithms that do not account for arrival times.
Namely, if Zn is assumed to be an exchangeable sequence
of edge-ends, then the sampling and estimation algorithms
for Gibbs-type partitions can be used. For example, Gibbs
sampling methods for the PYP are derived in Ishwaran
and James (2001). Crane and Dempsey (2017) give maxi-
mum likelihood estimating equations. However, neither
method infers arrival times, and the inference techniques
do not extend to the wider class of non-exchangeable
BNTL models.

Wan et al. (2017) propose MLEs for the parameters of a
class of PA models when the edge sequence is observed.
A MLE of the parameter α in a slightly different PA
model was proposed by Gao and van der Vaart (2017) for
observed edge sequences. The PA model considered there
has random initial degrees, rather than random arrival
times, but the initial degrees play a similar role to the
arrival times. Those authors find that conditioned on

the initial degrees, the degree sequence at step n, dKn ,
is sufficient for α, and that the MLE is asymptotically
normal. Based on the similarities of the models and the
corresponding log-likelihoods, it is plausible that similar
properties hold for BNTL models.

5 EXPERIMENTS

We apply the inference methods developed in Section 4
to data. The first set of experiments is in the unlabeled
network setting, in which the posterior distribution over
vertex ordering must be inferred along with the model
parameters. In a second set of experiments, we consider
graphs with edges labeled in order of appearance, and
demonstrate that maximum likelihood and MAP estima-
tion scale to networks with millions of nodes.2

5.1 BAYESIAN INFERENCE

We first apply the Gibbs sampler from Section 4.1 to
synthetic data, which allows us to study the effects of
model misspecification on parameter estimation, and to
demonstrate the feasibility of inference over the vertex
order and the arrival times. We generated two synthetic
graphs, each with 1,000 edges: One from a PYP(θ, τ)
sequence (1) in which τ is forced to be equal to the BNTL
parameter α, which corresponds to the edge exchangeable
Hollywood model of Crane and Dempsey (2017); and
one from a BNTL model with i.i.d. Geom(β)-distributed
interarrival times. We set θ = 1.0, β = 0.25, and in both
cases, α = 0.75.

For each of the graphs, we held out the final 500 edges for
prediction, and we fit four different BNTL models to the
first 500 edges whose order we treated as unknown: One
with PYP(θ, τ)-induced arrivals and α = τ (the “cou-
pled PYP” model), which is the same as the generative

2Julia code is available at https://github.com/
emilemathieu/NTL.jl.
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Table 2: Scaling performance of the Gibbs sampler.

100 edges 1,000 edges 10,000 edges
|α̂− α∗| 0.12± 0.01 0.03± 0.00 0.01± 0.00

|β̂ − β∗| 0.02± 0.00 0.01± 0.00 0.00± 0.00

|Ŝ− S∗| 10.3± 0.4 33.9± 0.9 343± 1.6
ESS 0.90± 0.04 0.85± 0.05 0.75± 0.08
Runtime (s) 21± 0.0 213± 0.4 2267± 2

model of the first synthetic dataset; one with PYP(θ, τ)-
induced arrivals and α allowed to vary separately from
τ (the “uncoupled PYP” model); and two i.i.d. interar-
rival models, with Geom(β)- and Pois+(λ)-distributed
interarrivals. We ran 125,000 Gibbs sampling iterations,
including a burn-in of 25,000, and collected one in every
1,000 iterations for a total of 1,000 samples. To assess
performance, we calculated the average absolute error
(relative to the true value) of MCMC samples of α, and
of S := 1

Kn−1

∑
j>1(d̄j−1 − Tj). The latter statistic

captures how well the sampler recovers the vertex per-
mutation and the arrival times. We also calculated the
predictive log-likelihood of a further 500 edges. Average
runtimes3 and effective sample size (ESS) factors, based
on the log of the normalized L1 distance between the
sampled degree sequence and the true degree sequence,
are also shown.

Table 1 summarizes the results, averaged over 10 repeti-
tions. The top four rows show the results of fitting four
BNTL inference models to the coupled PYP dataset. Un-
surprisingly, the inference models with arrivals induced by
thePYP achieve the lowest errors in α and S, and highest
predictive log-likelihood. The bottom four rows show the
same four inference models fit to the Geom(0.25) BNTL
dataset; the i.i.d. interarrival models achieve lower errors,
and the Geom(β) inference model attains the highest pre-
dictive log-likelihood. Although the Pois+(λ) inference
model attains low errors in α and S, the low variance of
the Poisson distribution compared to the Geometric distri-
bution means that it attains low predictive probability due
to the relatively frequent occurrence of large interarrivals.

As discussed in Section 4.1, the most expensive Gibbs
update is that of the arrival time sequence. As such, the
Geom(β) interarrival inference model benefits greatly
from (13), which implies that computation of Λφj is not
required. The i.i.d. interarrival models each have con-
jugate updates for their parameters, whereas the PYP
interarrival models require slice sampling for φ = (θ, τ).
These differences are reflected in the runtimes shown in
Table 1. Finally, all four inference models exhibit good
ESS factors, indicating that the sampler is exploring per-

3All Gibbs sampling experiments were run on a quad-core
(3.1 GHz) Dell desktop running Linux.

mutation space beyond simply swapping vertices of the
same degree.

Scaling in n. In order to study how sampling and com-
putational efficiency scale with the size of the network,
we generated a single BNTL network of 10,000 edges
with i.i.d. Geom(0.25)-distributed arrival times, and per-
formed Gibbs sampling using the subgraphs formed by
the first n edges, with n ∈ {100, 1,000, 10,000}. Table 2
shows the results of 10 repetitions, each of 150,000 Gibbs
iterations; samples were collected once every 1,000 itera-
tions after a burn-in period of 75,000 iterations. Parameter
estimation is increasingly accurate for increasing n with-
out major decrease in ESS, indicating that the sampler is
taking advantage of the increased statistical signal in the
bigger network. Runtimes increase at a rate linear in n.

5.2 MAXIMUM LIKELIHOOD ESTIMATION
ON EDGE SEQUENCES

For observed edge sequences, maximum likelihood esti-
mation scales to networks with millions of vertices and
tens of millions of edges. To demonstrate, we compute
MLEs on a collection of temporal network datasets avail-
able from the Stanford Network Analysis Project (SNAP)
(Leskovec and Krevl, 2014).

For each of the datasets listed in Table 3, we fit MLEs
of α and of the parameters of three different interarrival
models: coupledPYP(θ, α); uncoupledPYP(θ, τ); and
Geom(β). Table 4 displays the MLEs of the model param-
eters and the plug-in estimates of the asymptotic power
law degree exponent, η. (The asymptotic degree distri-
bution of the uncoupled PYP model is unknown.) Note
that due to the factorization of the likelihood in (14), α̂ is
the same for any model in which α is not coupled to the
arrival distribution. In order to assess model fitness, we
fit MLEs for the same BNTL models to the first 80% of
the edges in each network and calculated the predictive
log-likelihood based on the MLEs of the remaining 20%;
this is also shown in Table 4. For context, the arrival time
sequence of each dataset is plotted in Figure 1. Unsurpris-
ingly, whether or not the arrival times are approximately
linear in n largely determines which BNTL model fits

Table 3: SNAP temporal network datasets.

Dataset # of vertices # of edges
Ask Ubuntu 159,316 964,437
UCI social network 1,899 20,296
EU email 986 332,334
Math Overflow 24,818 506,550
Stack Overflow 2,601,977 63,497,050
Super User 194,085 1,443,339
Wikipedia talk pages 1,140,149 7,833,140
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Table 4: MLEs on full datasets, and predictive log-likelihood for final 20% of edges based on MLEs fit to the first 80%,
for three different BNTL models. Note that the uncoupled PYP(θ, τ) and Geom(β) interarrival models have the same
α̂ due to the factorization in (14).

Dataset Coupled PYP(θ, α) Uncoupled PYP(θ, τ) Geom(β)

(θ̂, α̂) η̂ Pred. l-l. α̂ (θ̂, τ̂) Pred. l-l. β̂ η̂ Pred. l-l.
Ask Ubuntu (18080, 0.25) 1.25 -3.707e6 -2.54 (-0.99, 0.99) -3.678e6 0.083 2.32 -3.678e6
UCI social network (320.4, 4.4e-11) – -1.600e5 -4.98 (5.50, 0.52) -1.595e6 0.016 2.10 -1.596e5
EU email (113.6, 2.5e-14) – -8.06e5 -1.86 (113.6, 9.2e-10) -8.06e5 0.001 2.00 -8.07e5
Math Overflow (2575, 0.15) 1.15 -1.685e6 -6.62 (-0.97, 0.997) -1.670e6 0.025 2.19 -1.670e6
Stack Overflow (297600, 0.11) 1.11 -3.358e8 -8.94 (-1.0, 1.0) -3.333e8 0.020 2.21 -3.333e8
Super User (20640, 0.24) 1.24 -5.855e6 -4.19 (-0.996, 1.0) -5.775e6 0.067 2.37 -5.775e6
Wikipedia talk pages (14870, 0.54) 1.54 -3.074e7 -0.25 (-1.0, 1.0) -3.066e7 0.073 2.10 -3.066e7

best. The two densest networks, the EU email and UCI
social networks, exhibit arrival times that are sub-linear
in n; as such, the PYP models fit best. Note that the
coupled PYP model estimates α̂ ≈ 0, indicating the lack
of a power law tail in the degree distribution. In the rest
of the networks, the arrival times appear approximately
linear in n. The Geom(β) and uncoupled PYP model fit
best. However, we note that in these cases the MLEs for
the uncoupled PYP model are at the boundaries of the
parameter range (θ̂ ≈ −1, τ̂ ≈ 1). This illustrates that
although the uncoupled PYP model is more flexible than
the coupled version, the underlying arrival time model
cannot capture linear arrival time sequences without driv-
ing the parameters to the boundaries.

6 DISCUSSION

BNTL models are a useful tool to reason about asymptotic
properties of a network. For example, the exponent of the
asymptotic power law tail is a function of model param-
eters, which can be estimated from finite-size networks
without dealing with the large fluctuations of heavy-tailed
degree distributions in finite samples. Furthermore, the
ability to capture the full range of power law exponents
and sparsity levels within the same model class allows
for model fitness comparisons using the same set of tech-
niques, as in Section 5. We have designed a set of infer-
ence algorithms for these models; in doing so, we have
made a large class of previously intractable models useful
for statistical inference.

Future research directions. The full Gibbs sampler
scales reasonably well to networks with thousands of
vertices; in order to scale to larger networks, further
work is needed. One possible approach is via Metropolis–
Hastings with cheap joint proposals of the arrival times
and the permutation, which may be able to take larger
steps in sample space. A different direction is variational
inference, though permutations pose a significant chal-
lenge in that context; recent work (Linderman et al., 2018)
is a step in that direction.
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axis is number of vertices, Kn; horizontal axis is n.
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Abstract

Estimating the dynamic connectivity struc-
ture among a system of entities has gar-
nered much attention in recent years. While
usual methods are designed to take advantage
of temporal consistency to overcome noise,
they conflict with the detectability of anoma-
lies. We propose Clustered Fused Graphi-
cal Lasso (CFGL), a method using precom-
puted clustering information to improve the
signal detectability as compared to typical
Fused Graphical Lasso methods. We evaluate
our method in both simulated and real-world
datasets and conclude that, in many cases,
CFGL can significantly improve the sensitivity
to signals without a significant negative effect
on the temporal consistency.

1 INTRODUCTION

In recent years, undirected graph models have become
a popular topic in machine learning. In an undirected
graphical model, vertices represent entities in the sys-
tem, and edges represent bi-directional effects between
entities. The inverse covariance matrix is the preferred
estimator for such structures since it indicates partial cor-
relations, i.e., an off-diagonal entry is zero if and only if
the entities of the corresponding column and row are con-
ditionally independent given all the other entities. There-
fore, two adjacent vertices in an estimated network cor-
respond to a non-zero off-diagonal entry and a direct
dependency. One of the most popular methods for es-
timating the sparse precision matrix is Graphical Lasso
(Glasso) [Friedman et al., 2008], which assumes the con-
nectivity structure is static. However, this assumption is
not satisfied in many fields like functional MRI [Monti
et al., 2014], financial markets [Namaki et al., 2011], or

social network analysis [Ahmed and Xing, 2009]. In
such cases, data comes from a time series of collec-
tions, and the underlying structures are usually assumed
to be non-static across time. Consequently, estimating
dynamic networks at each time point becomes necessary
in order to better understand the complex systems.

Compared to the static case, fewer observations at each
time point are available in dynamic estimation. The lack
of samples leads to higher level of noise, and thus intro-
duces additional difficulty in estimation. Temporal con-
sistency is a natural assumption with time-varying net-
works, based on the idea that in most cases, only few
changes should occur between consecutive networks.
Given this assumption, one may like to place an addi-
tional penalty on the difference of neighboring networks.
Fused Graphical Lasso (Fused Glasso) achieves this us-
ing an element-wise l1 penalty, and it has become the
default choice for many studies in the structure estima-
tion field [Monti et al., 2014, Hallac et al., 2017, Danaher
et al., 2014, Ahmed and Xing, 2009].

Several Fused Glasso based algorithms have been pro-
posed in the literature on time varying network esti-
mation, and they all have some issues with change de-
tection. SINGLE [Monti et al., 2014] avoids accurate
change detection by assuming temporal homogeneity
(i.e., small and slow changes) on functional MRI data.
It uses Fused Glasso on sample covariance estimates,
which are smoothed using a Gaussian kernel, so that all
abrupt changes are transferred into trends. In another
study [Gibberd and Nelson, 2017], the ability to recover
change points is specifically targeted. Grouped Fused
Graphical Lasso (GFGL) uses a group l2,1 smoothing.
The drawback is that compared to Fused Glasso results,
GFGL has performance loss on static periods on a similar
scale as the performance gain at change points. Time-
Varying Graphical Lasso (TVGL) [Hallac et al., 2017]
proposes a general framework, allowing various penalty
functions to be applied to fit different situations. But
again, it is difficult for a single penalty function to satisfy
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both temporal consistency and temporal diversity. More
importantly, estimating dynamic functional structures is
an unsupervised task. Thus, it is usually impossible to
know the correct situation beforehand or to objectively
compare methods with different penalties.

In this work, we propose the Clustered Fused Graphi-
cal Lasso (CFGL) method, obtaining good detectability
of changing events and taking care of temporal consis-
tency. Motivated by the property that the thresholded hi-
erarchical clustering is closely related to the connected
components of Glasso estimated graphs [Mazumder and
Hastie, 2012], we make the key observation that this
clustering information indicates evidence of structure-
change events and can be a reasonable heuristic. We pro-
pose a clustering framework to enhance the evidence of
changes. CFGL incorporates the precomputed informa-
tion into the smooth penalty so that local structures are
free to detect change points.

Section 2 formulates the problem and briefly reviews
the related background on Graphical Lasso and Fused
Graphical Lasso estimation. Section 3 proposes the
CFGL method and clarifies the algorithm details. Section
4 compares CFGL to existing methods in three differ-
ent simulations. Section 5 evaluates CFGL in real cases.
Section 6 concludes the paper and talks about future ex-
tensions.

2 BACKGROUND

2.1 PROBLEM DEFINITION

Say there is a sequence of multivariate observations at
time points t1 ≤ · · · ≤ tT . At each time ti, ni ≥ 1
observation vectors form Xi = {x1

i , ..., x
ni
i } ∈ Rni×p

with xi ∼ N (0,Σi). We would like to infer the under-
lying connectivity structures across time. Based on the
aforementioned precision matrix properties, an equiva-
lent problem is to estimate the corresponding precision
matrices {Θi} = {Θ1, ...,ΘT }, one at each time point.

2.2 GRAPHICAL LASSO

We start from the static case, T = 1. An assumption
on the number of dependencies (i.e., sparsity) is usually
applied, so that only a subset with most dependencies is
chosen. This would require placing a prior on the pa-
rameters to induce additional zeros on the off-diagonal
entries of {Θi}.

arg min
Θ

−l(Θ) + λ1 ‖Θ‖1 (1)

The equation (1) is Graphical lasso [Friedman et al.,
2008], which is known to be one of the most effective

methods for this problem [Wang et al., 2012]. The em-
pirical covariance S is defined to be 1

n

∑n
i=1 xix

T
i , and

then the log likelihood l(Θ) is

l(Θi) = log det(Θi)− trace(SiΘi). (2)

Minimizing−l(Θ) would encourage Θ to be close to the
inverse covariance S−1 [Yuan and Lin, 2007]. The λ1 in
Equation (1) is a non-negative tuning parameter to trade
off the sparsity and likelihood. ‖Θ‖1 is defined to be the
element-wise l1 norm of Θ.

2.3 FUSED GRAPHICAL LASSO

In the case of T > 1, to estimate time series of graphs,
we seek to take advantage of neighborhood information
indicating temporal consistency, i.e., assume structures
are similar to their neighbors. Previous methods [Dana-
her et al., 2014, Monti et al., 2014, Yang et al., 2015,
Hallac et al., 2017] implement this assumption by adding
an additional penalty to encourage smoothness. In par-
ticular, SINGLE [Monti et al., 2014], and l1-penalized
TVGL [Hallac et al., 2017] define this penalty to be an
element-wise l1 norm of the difference between consec-
utive estimations:

arg min
{Θi}

T∑

i=1

−l(Θi)+λ1

T∑

i=1

||Θi||1+λ2

T∑

i=2

‖Θi−Θi−1‖1
(3)

Equation (3) is usually called Fused Graphical Lasso
(Fused Glasso), due to its relationship to its vector reg-
ularization analogue – Fused Lasso [Tibshirani et al.,
2005], for estimating a sparse time-varying vector.

The variational norm in Fused Lasso is effective for in-
troducing smoothness, but Qian and Jia [2012] prove
that Fused lasso can recover exact patterns only if there
are no consecutive change points on the timeline and all
changes keep switching directions. Many real-world sig-
nal patterns obviously do not satisfy these conditions. In
addition, even with the aforementioned conditions satis-
fied, simulated experiments on Fused Glasso show large
F1 score performance drop in the vicinity of the only
change point [Gibberd and Nelson, 2017]. In response,
we propose the CFGL to improve signal recovery.

3 CLUSTERED FUSED GRAPHICAL
LASSO

3.1 PROPOSED METHOD

Instead of assigning a uniform smoothing weight on all
the entries of all precision matrices, we explore methods
to distinguish between stable and non-stable connections
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in the network and only apply smooth penalties on stable
connections.

Mazumder and Hastie [2012] proves the close relation
between connected components of the thresholded sam-
ple covariance graph and connected components of the
Glasso-estimated graph. Tan et al. [2015] extends the
conclusion and proves the following theorem, which
states the relation between Glasso and clustering results.

Denote |S| as the matrix of element-wise absolute values
of S, i.e., |S|k,l = |Sk,l|, where S is the normalized p×p
covariance matrix.
Theorem 3.1. Let C1, . . . , CK denote the clusters that
result from performing Single Linkage Hierarchical
Clustering (SLC) using similarity matrix |S| and cutting
the resulting dendrogram at a height of 0 ≤ λ1 ≤ 1.
Let D1, ..., DR denote the connected components of the
graphical lasso solution with tuning parameter λ1. Then,
K = R, and there exists a permutation π such that
Ck = Dπ(k) for k = 1, ...,K.

Following Theorem 3.1, it is clear that the regularization
parameter λ1 is the threshold to define connected com-
ponents in the Glasso solution. We note that other clus-
tering algorithms like average linkage clustering (ALC)
are also used as alternative methods in Tan et al. [2015].
In the following sections, we will use clusters and con-
nected components interchangeably. We also assume that
λ1 is a good threshold resulting in clustering with reason-
able accuracy.

Define V = {v1, ..., vp} as the vertex set representing
the entities, and Ci = {C1

i , ..., C
K
i } as the clustering

result on |Si| with parameter λ1, where Ci(vk) is the
cluster label of vk. We construct an undirected graph
Gi = (Vi, Ei), where Ei is represented in a similar form
to adjacency matrix. Ek,li = 1 if and only if there is a
path between vk and vl, i.e.,

Ek,li = 1{Ci(vk)=Ci(vl)}, (4)

where 1 is the indicator function.

If Ek,li = 0, vk and vl have zero partial correlation at
time ti and thus Θk,l

i = 0. If Ek,li 6= 0, vk and vl have
non-zero partial correlation on intuition and thus Θk,l

i 6=
0.

Given consecutive clustering results Ci−1 and Ci, we
want to use the evidence of partial correlation change
on between Θi−1 and Θi, and define the weight matrix
Wi ∈ {0, 1}p×p to help decide whether to apply the l1
smooth penalty on each entry.

• If Ek,li−1 = Ek,li , vk and vl both have either zero or
non-zero partial correlation in time ti−1 and ti, and
we set W k,l

i = 1.

Figure 1: Vertex 4 detaches from the green cluster and
merges to the red cluster.

• If Ek,li−1 6= Ek,li , we want the partial correlation be-
tween vk and vl to change freely. Thus W k,l

i = 0.

A simple example is illustrated in Figure 1. At time ti−1

(left), E4,l
i−1 = 1 for l ∈ {1, 2, 3} and E4,l

i−1 = 0 for
l ∈ {5, 6}. At time ti, E

4,l
i = 0 for l ∈ {1, 2, 3} and

E4,l
i = 1 for l ∈ {5, 6}. Thus we set W 4,l

i = 0 for l ∈
{1, 2, 3, 5, 6} to allow vertex 4 to freely change clusters.

Assuming the clustering threshold λ1 is known, we pro-
pose the following steps:

1. Perform the chosen clustering method on each em-
pirical covariance matrix Si to obtain a sequence of
cluster sets C1, C2, ..., CT .

2. Let ⊕ denote the XOR logical operations, and de-
fine the weight matrix set {Wi} as

W k,l
i = 1− 1{Ek,li−1⊕E

k,l
i }

. (5)

3. Apply these predefined weights and solve the fol-
lowing CFGL optimization problem:

arg min
{Θi}

T∑

i=1

−l(Θi) + λ1

T∑

i=1

||Θi||1

+ λ2

T∑

i=2

||(Θi −Θi−1) ◦Wi||1,
(6)

where the ◦ denotes the element-wise Hadamard
product.

3.2 MORE STABLE CLUSTER CHANGES
ACROSS TIME

The previously defined procedure in section 3.1 is some-
times sensitive to the choice of parameter λ1. If λ1 is
small, clustering is sensitive to noise and very large clus-
ters are always formed; if λ1 is large, sparse clustering is
achieved, but vertex pairs with true partial correlation are
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likely to be overlooked. Even if λ1 is within an accept-
able range, the variations of values around the threshold
may lead to grouped and detached clusters, introducing
redundant switching. Therefore, no matter what value
λ1 is picked, the precomputed clustering change infor-
mation tends to be noisy.

Since SLC is more unstable with noise and usually has
undesirable chain structures [Hastie et al., 2009], Tan
et al. [2015] use ALC instead of SLC for clustering on
a single network. However, when merging individual
and small clusters, ALC is similar to SLC and still suf-
fers severely from noise. The frequent switching prob-
lem occurs on boundary values as well. We propose a
framework to increase the stability of clustering chang-
ing across time (Algorithm 1) and make it applicable to
most clustering algorithms.

The idea can be easily explained in the simplest case of
hierarchical clustering. Consider there are two vertices,
vk and vl, we propose to have two thresholds λ1 and λ∗1,
with λ∗1 smaller than λ1, i.e., λ1 = λ∗1 + γ and γ > 0.

• λ1 is used to judge whether vk and vl should be
grouped at time ti if not grouped at time ti−1.

• λ∗1 is used to judge whether they should be grouped
again if they are grouped at time ti−1.

In other words, we define the condition of vk and vl being
clustered together as

Cond
Ci(vk)=Ci(vl)

=

{
|S|k,li ≥ λ1, if i = 0 or Ek,li−1 = 0

|S|k,li ≥ λ∗1, if Ek,li−1 = 1

(7)

To generalize the idea to complex cases (e.g., merging
two clusters), Algorithm 1 is proposed. The input {Si}
is the sequence of similarity matrices (normalized em-
pirical covariance), γ can be understood as the gap or
stabilizing parameter, and f is the clustering algorithm
(i.e. represented as a function).

Algorithm 1 Stable Clustering Framework across Time

Input: {Si}, γ, f
Output: {Ci}, {Ei}

1: C1 = f(|S1|)
2: Construct E1 on C1 using Equation (4)
3: for i = 2 to T do
4: Ŝi = |Si−1|+ γEi−1

5: Ci = f(Ŝi)
6: Construct Ei on Ci using Equation (4)
7: end for

The choice of γ depends on the clustering algorithm f ,
and also on the level of noise e we define (to maintain

sparsity). Here we propose a heuristic choice for the hi-
erarchical clustering case. Under the assumption that the
previous clustering is accurate, there are two kinds of er-
rors related to γ:

1. |Si|k,l ≥ λ1 − γ with true Ek,li−1 = 1 ∧ Ek,li = 0.

2. |Si|k,l ≤ λ1 − γ with true Ek,li−1 = 1 ∧ Ek,li = 1.

Let n be the sample size of each estimated Si, the
standard error of correlation coefficient r = Sk,li is

se(r, n) =
√

1−r2
n−2 . If we assume normally distributed

error, the sampled correlation is r̄ ∼ N (r, se(r, n)2).

Let us assume the exact true correlation coefficient of all
the k, l pairs is λ1 if Ek,l = 1, and e if Ek,l = 0. Intu-
itively, we want λ1− γ to be as far as possible from both
λ1 and e on their standard error normalized distances.
Thus, we can heuristically estimate γ as:

γ =
se(λ1, n)(λ1 − e)
se(λ1, n) + se(e, n)

(8)

3.3 PARAMETER TUNING

All that remains is to tune the parameters λ1 and λ2. Fol-
lowing Hallac et al. [2017] and Monti et al. [2014], we
use Akaike Information Criteria (AIC) to tune these hy-
perparameters. For a given pair (λ1, λ2), we define the
AIC as:

AIC(λ1, λ2) = 2
T∑

i=1

−l(Θi) + 2K. (9)

where the estimated degree of freedom K is slightly dif-
ferent from the definition in Tibshirani et al. [2005], and
is given by:

K =
∑

k,l

T∑

i=2

1{(Θk,li 6=0 ⊕ Θk,li−1 6=0) ∧ (Θk,li 6=0 ∧ Wk,l
i 6=0)}

(10)

In equation (10), we do not penalize the changes unre-
lated to 0 since graphical lasso focuses more on the oc-
currence of edges. Term W k,l

i is added to avoid penaliz-
ing intentionally allowed changes.

Observe that a small λ1 may result in huge clusters and
W k,l
i 6= 0 everywhere, which makes CFGL equivalent to

Fused Glasso. In addition to a typical grid search with
AIC score, CFGL requires λ1 to be in a smaller pre-
decided range. Therefore, we need to first tune a series of
static graphical lasso (Static Glasso) with AIC to achieve
an appropriate range of λ1. Other methods can be used
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to predefine the range, as long as they distinguish CFGL
with typical Fused Glasso.

For a fixed sparse penalty λ1, the clustering threshold
can be either set to be λ1 or slightly higher in order to
compensate for the use of γ. The CFGL algorithm is
described in Algorithm 2.

Algorithm 2 CFGL and Parameter Tuning

Input: {Si}, f
Output: {Θi}

1: Tune λ∗1 on static graphical lasso using AIC score
2: Obtain a range of λ1 near the best λ∗1 from 1
3: for λ1 among choices do
4: for λ2 among choices do
5: Compute {Ei} using {Si}, f and λ1 via Algo-

rithm 1
6: Compute {Wi} using {Ei} and equation (5)
7: Obtain {Θi}λ1,λ2

that minimizes equation (6)
8: Compute AIC score of {Θi}
9: end for

10: end for
11: return {Θi}λ1,λ2

which minimizes the AIC score

3.4 OPTIMIZATION ALGORITHM

We use Alternating Directions Method of Multipliers
(ADMM) [Boyd et al., 2011] algorithm to solve the op-
timization problem. Firstly, define the problem as:

minimize
{Θi},{Zi}

T∑

i=1

−l(Θi) + λ1

T∑

i=1

‖Zi‖1

+ λ2

T∑

i=2

‖(Zi − Zi−1) ◦Wi‖1

subject to: Θi = Zi, for i = 1, 2, 3, . . . , T.

(11)

The augmented Lagrangian corresponding to equation
(11) is defined as:

Lρ({Θi}, {Zi}, {Ui}) =
T∑

i=1

−l(Θi)

+ λ1

T∑

i=1

‖Zi‖1 + λ2

T∑

i=2

‖(Zi − Zi−1) ◦Wi‖1

+
ρ

2

T∑

i=1

(
‖Θi − Zi + Ui‖22 − ‖Ui‖22

)
,

(12)

where {Ui} are scaled dual variables, and ρ is a constant
penalty parameter in ADMM which is usually set to one.
Consequently, we get the update rule for Ui, Θi for i =

1, . . . , T , and {Zi} in j + 1th iteration:

Θj+1
i = arg min

Θj+1
i

ρ

2
‖Θi − Zji + U ji ‖22 − l(Θi) (13)

{Zj+1
i } = arg min

{Zj+1
i }

Lρ({Θj+1
i }, {Zi}, {U ji }) (14)

U j+1
i = U ji + Θj+1

i − Zj+1
i (15)

Thus, the update step (13) is same in a typical fused
graphical lasso, and the solution is discussed in detail
by Monti et al. [2014] and Danaher et al. [2014]. For the
Z update step (14), since all of these are element-wise
operations, we can solve each {Zj+1

i }k,l separately.

arg min
{Zj+1

i }k,l

ρ

2

T∑

i=1

‖{Θj+1
i − Zi + U ji }k,l‖22

+λ1

T∑

i=1

‖Zk,li ‖1 + λ2

T∑

i=2

‖(Zk,li − Zk,li−1) ◦W k,l
i ‖1

Set yi = (Θj+1
i + U ji )k,l and βi = (Zi)

k,l. We get the
following equation:

f∗1,T (β) =
T∑

i=1

ρ

2
‖y − βi‖22 + λ1

T∑

i=1

‖βi‖1

+
T∑

i=2

λi,i−1‖βi − βi−1‖1,

where the λi,i−1 is defined to be λ2W
k,l
i .

Note that the nonzero value of λi,i−1 enforces βi and
βi−1 to be close, and a zero value in λi,i−1 splits the
above equation into several smaller pieces. If W k,l

i 6= 0
for all i, the equation is equivalent to a 1-dimensional
FLSA as shown below, whose solver has been well dis-
cussed by Friedman et al. [2007], Hoefling [2010]:

f1,T (β) =
T∑

i=1

ρ

2
‖y − β‖22 + λ1

T∑

i=1

‖βi‖1

+ λ2

T∑

i=2

‖βi − βi−1‖1.

If W k,l
i = 0 for i ∈ {m1, . . . ,mD}, m0 = 1,m1 ≥

2,mD ≤ T and mD+1 = T , solving the above problem
is equivalent to separately solving D + 1 independent 1-
dimensional FLSA. In other words, β becomes the con-
catenation of {β1, . . . , βD+1}, and

βd = arg min
β

fmd−1,md(β).

It is shown in the supplement that {Wi} does not intro-
duce any additional complexity. Also, the update steps
(13) and (14) can be easily parallelized, making the opti-
mization algorithm very scalable.
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4 SIMULATED EXPERIMENTS

To perform simulations, we first construct three groups
of signal patterns, outlined in Figure 2, ranging from
sudden stimuli to long-term switches. Group 1 has two
short-term changes lasting for three time points. Group 2
has three short stimuli happening in only one time point.
Signals in Group 3 have equal length and are sequentially
distributed across time.

4.1 EXPERIMENT SETUP

We generate the simulated data from an Erdős–Rényi
random graph G = {V,E} under the controlled spar-
sity |E| = 0.5 |V |. To form the precision matrix Θ̂i and
sampled observation data, we use the following method,
similar to Gibberd and Nelson [2017]

1. Set an empty |V | × |V | matrix and insert off-
diagonal terms based on edges inGwith values cho-
sen from Unif(0.6, 0.9).

2. Equally shift all the diagonal entries by a positive
value so that the smallest eigenvalue is 0.1 to ensure
positive semi-definiteness.

3. Normalize the matrix to have value 1 on diagonal.

4. Generate observation data Xi = {x1
1, . . . , x

ni
1 } and

xji ∼ N (0, Θ̂−1
i ).

For all the three simulations datasets, we set |V | = 25.
The generated precision matrices {Θ̂i} have off-diagonal
terms with values around 0.5. There are total 30 time
points, each with 25 observations, i.e., T = 30 and ni =
25 for all i.

We compare to four state-of-the-art baseline methods,
the static graphical lasso [Friedman et al., 2008], the
fused graphical lasso from SINGLE [Monti et al., 2014],
the l1 penalized TVGL [Hallac et al., 2017], and the
group fused graphical lasso (GFGL) [Gibberd and Nel-
son, 2017]. For Static Glasso, the graph at each time
ti is estimated independently. So we solve a total of T
Glasso (1) problems to get T separate graphs. The de-
gree of freedom K in Glasso is defined as the number
of none zero entries [Tibshirani et al., 2005]. Although
both SINGLE and l1-TVGL have exactly the same fused
graphical lasso objective in optimization, they use differ-
ent optimization solvers which often result in different
performance. We put both methods here as baselines and
denote them as FGL-SINGLE and FGL-TVGL accord-
ingly. Also, it is worth mentioning that CFGL shares a
similar optimization solver as FGL-SINGLE.

We use four different versions of CFGL to compare to
three baseline methods, listed in table 1. The Γ repre-

Table 1: Notation of CFGL Related Methods

Notation Clustering Method Threshold

CFGL-alc ALC λ1

CFGL-slc SLC λ1

CFGL-alc2 ALC λ1 + Γ/2
CFGL-slc2 SLC λ1 + Γ/2

sents a rough estimation by applying equation (8) on AIC
tuned Static Glasso λ1. CFGL related methods are tuned
using Algorithm 2. The four baseline methods are tuned
by a typical grid search to minimize their correspond-
ingly defined AIC score. Gibberd and Nelson [2017]
tentatively propose a BIC score to tune GFGL in unsu-
pervised tasks, but we find AIC generates slightly bet-
ter results in our simulations. To eliminate the potential
performance difference caused by tuning range, baseline
methods are also tuned by Algorithm 2, and the result
with better F1-score is chosen. We repeat the whole pro-
cess 10 times to reduce randomness, each time generat-
ing a new set of Erdős–Rényi graphs and observations.
The averaged performance results are shown in Table 2.

4.2 PERFORMANCE METRICS

We measure the performance of each method using three
metrics: F1-score, F1-ratio, and edge deviation ratio.

4.2.1 F1 Score

This measures how close the captured structures are to
the true graphs. The F1 Score shown in Table 2 is the
averaged F1 score across all the time points. Thus it pro-
vides an overview of performance for both static points
and signals.

4.2.2 F1 Ratio

We define F1 ratio to be the average ratio between F1

scores at the starting points of changing signals and the
overall averaged F1 score. F1 ratio indicates the perfor-
mance of accurate edge detection at change points.

4.2.3 Edge Deviation (ED) Ratio

We define ED Ratio to be the average ratio between edge
deviations (number of changing edges) at starting points
of changing signals and the overall averaged edge devi-
ations. Unlike F1 ratio which pays more attention to the
correctness, ED ratio focuses more on changing detect-
ing and provides an unsupervised measure.
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(a) Signal Group 1 (b) Signal Group 2 (c) Signal Group 3

Figure 2: Signal patterns with same numerical values have exactly same graph structure and ground truth precision
matrix. Signal patterns with same absolute values but opposite signs have the same graph structure but opposite signs
in the off diagonal values in precision matrix.

(a) F1 Score Group 1 (b) F1 Score Group 2 (c) F1 Score Group 3

Figure 3: Each point on the curve represents the averaged F1 score at that time point among 10 repetitions.

(a) Edge Changes Group 1 (b) Edge Changes Group 2 (c) Edge Changes Group 3

Figure 4: Each point on the curve represents the averaged number of changing edges between consecutive time points
among 10 repetitions.
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Table 2: Performance Comparison

Dataset Signal Group1 Signal Group2 Signal Group3
Metrics F1 Score F1 Ratio ED Ratio F1 Score F1 Ratio ED Ratio F1 Score F1 Ratio ED Ratio

GFGL 0.580 0.143 2.6 0.662 0.081 0 0.129 0.147 3.6
FGL-SINGLE 0.570 0.110 9 0.687 0.076 5.45 0.400 0.112 9.6
FGL-TVGL 0.593 0.164 2.15 0.672 0.085 1.37 0.438 0.797 2.53

Static Glasso 0.526 1.01 2.04 0.545 1.00 2.02 0.523 1.02 1.93
CFGL-alc 0.631 0.848 3.43 0.630 0.800 2.81 0.618 0.934 3.40
CFGL-slc 0.555 0.115 2.14 0.687 0.078 2.8 0.626 0.932 5.18

CFGL-alc2 0.633 0.775 3.87 0.676 0.724 3.61 0.618 0.927 3.94
CFGL-slc2 0.653 0.768 4.55 0.670 0.392 3.35 0.668 0.882 4.90

4.3 SIMULATION RESULTS

CFGL-alc2 and CFGL-alc have stably good performance
in all three metrics. The comparison between CFGL-
slc2 and CFGL-slc indicates that SLC based clustering
is more sensitive to the choice of thresholds.

Although Static Glasso always achieves good values on
F1 ratio and ED ratio, its low F1 score implies not
using neighborhood information. The performance of
FGL-SINGLE shows that it tends to choose parameters
which strongly highlight temporal consistency, resulting
in overlooking signals. FGL-TVGL performs slightly
better on signal detection, but both the metrics in Table
2 and the curves in Figures 3 and 4 show that it fails
to take care of temporal consistency and diversity at the
same time. For GFGL, although our simulation perfectly
satisfies their assumption that change time points tend to
group together and the other time points remain static,
GFGL estimated structures do not reflect the changing
periods properly. The static periods are also highly dis-
turbed by long changing periods in signal group 3. This
may be due to the difficulty finding good parameters for
GFGL in unsupervised scenarios, which was mentioned
by Gibberd and Nelson [2017] as well.

5 CASE STUDIES

In this section, we apply CFGL to more complicated real-
world datasets to show how the CFGL method can be
used to provide insights into real-world multivariate time
series datasets.

5.1 EEG EYE STATE

Electroencephalography (EEG) is a medical imaging
technique that reads scalp electrical activities generated
by brain structures, and EEG measurements are com-
monly used in medical and research areas to infer brain

activities [Teplan et al., 2002]. The dataset we use is
the EEG eye state dataset [Roesler, 2013] from the UC
Irvine repository. All data is from one continuous EEG
measurement with the Emotiv EEG Neuroheadset. The
eye state was detected via a camera during the measure-
ment and added later manually after analyzing the video
frames.

Table 3: Cross Validated Results on Estimated Structures

Notation Cross Validated Accuracy

Static Glasso 0.6625
FGL-TVGL 0.800
FGL-SINGLE 0.6875
CFGL-alc 0.8375
CFGL-alc2 0.8875

In this experiment, we pick the first 2000 observations,
and we group every 25 observations to form a time point,
which is roughly 0.2 seconds. All the methods use the
aforementioned tuning procedure. Considering there is
no ground truth graph structure in EEG data, we treat the
video captured eye state as a ground truth signal. We
use the estimated structures as transformed features (i.e.,
edges present or not) and train a linear SVM model to
predict the corresponding eye state. We observe that the
prediction performance is related to the feature sparsity,
and thus we tune the parameters so that all methods have
similar sparsity (about 25% edges present). The result of
10 fold cross-validation is shown in Table 3. In addition,
we provide an aligned comparison between the eye state
and edge changes. Considering the uncontrollable brain
activities and the latency between brains and eye states,
we smooth the edge-change signals by the Gaussian ker-
nel. As shown in Figure 5, CFGL performs very well for
capturing eye state switching events.
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Figure 5: Edge changes are smoothed by Gaussian ker-
nel. The yellow regions represent the period when sub-
ject closed his/her eyes.

5.2 STOCK MARKET

In this experiment, we apply CFGL to the financial data
in the stock market to explore the economic structures of
stocks. These structures can be used to provide high-
level understanding of company relations. In particu-
lar, the stock prices are natural multivariate time-series
datasets, and they are also good indicators of company
conditions. We assume each company’s stock price is de-
pendent on companies in the same or related fields, and is
more likely to be independent to companies in unrelated
fields. We pick 20 big companies, roughly 2 from each
category of OS, Internet Service, PC, Auto, Restaurant,
Finance, Energy, and Sales. Then we infer their struc-
ture changes during the global financial crisis of 20081.
We pick the dates starting from June 1st 2006 to August
4th 2009, total 800 days in the stock market, and use 20
days to form a time point so that each roughly represents
a month.

TED spread is defined as the difference between the in-
terest rates on interbank loans and on short-term U.S.
government debt. It is usually treated as the indicator
of perceived credit risk in the general economy [Boudt
et al., 2017]. Thus we use the TED spread’s changes
as the reference of financial events. Figure 6 shows
the comparison between the structural changes in esti-
mated stock networks, and the TED spread changes be-
tween consecutive periods. It can be observed that the
two curves follow similar patterns. There is a shift be-
tween the largest change of TED spread and stock mar-
ket structure. We further investigated and found that the
stock market started to drop in early September (around

1Data freely available online from
https://quantquote.com/historical-stock-data.

Figure 6: Edge Changes and TED Spread Changes

September 8th), which is exactly at the time of the blue
peak but one time point earlier than the red peak. This re-
sult may indicate that TED spread has some latency for
detecting stock market changes.

6 CONCLUSIONS AND FUTURE
WORK

We propose Clustered Fused Graphical Lasso (CFGL) to
improve the signal sensitivity of Fused Graphical Lasso
(FGL). CFGL applies clustering based heuristic infor-
mation on the smooth penalty so that temporal consis-
tency and temporal diversity are simultaneously consid-
ered. Our experimental results show that the clustering
information often makes CFGL more sensible for captur-
ing signal changes, and CFGL outperforms FGL meth-
ods on datasets with time-varying underlying structures.
The incorporated clustering information is independent
of the smooth penalties. Therefore, there are many pos-
sible extensions either applying this information to other
penalties, or setting up better methods for clustering.
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Abstract

We propose a framework for the completely
unsupervised learning of latent object prop-
erties from their interactions: the perception-
prediction network (PPN). Consisting of a per-
ception module that extracts representations of
latent object properties and a prediction module
that uses those extracted properties to simulate
system dynamics, the PPN can be trained in
an end-to-end fashion purely from samples of
object dynamics. The representations of latent
object properties learned by PPNs not only are
sufficient to accurately simulate the dynamics
of systems comprised of previously unseen ob-
jects, but also can be translated directly into
human-interpretable properties (e.g. mass, co-
efficient of restitution) in an entirely unsuper-
vised manner. Crucially, PPNs also generalize
to novel scenarios: their gradient-based training
can be applied to many dynamical systems and
their graph-based structure functions over sys-
tems comprised of different numbers of objects.
Our results demonstrate the efficacy of graph-
based neural architectures in object-centric in-
ference and prediction tasks, and our model has
the potential to discover relevant object proper-
ties in systems that are not yet well understood.

1 INTRODUCTION

The physical properties of objects, combined with the
laws of physics, govern the way in which objects move
and interact in our world. Assigning properties to ob-
jects we observe helps us summarize our understanding
of those objects and make better predictions of their future
behavior. Often, the discovery of such properties can be
performed with little supervision. For instance, by watch-
ing an archer shoot several arrows, we may conclude

that properties such as the tension of the bowstring, the
strength and direction of the wind, and the mass and drag
coefficient of the arrow affect the arrow’s ultimate trajec-
tory. Even when given observations from entirely novel
microworlds, humans are still able to learn the relevant
physical properties that characterize a system [1].

Our work utilizes recent advances in neural relation net-
works in order to learn latent physical properties of a
system in an unsupervised manner. In particular, the neu-
ral relation architectures [2, 3] have proven capable of
accurately simulating complex physical interactions in-
volving objects with known physical properties. Relation
networks have several characteristics that make them par-
ticularly suitable for our task: they are fully differentiable,
allowing them to be applied to a variety of different situa-
tions without the need for any architectural change; they
have a modular graph-based structure that generalizes
over differing numbers of objects; and their basic archi-
tecture can be easily applied to both dynamics prediction
and the learning of latent properties.

We use relation networks to construct the perception-
prediction network (PPN), a novel system that uses a
representation learning [4] paradigm to extract an encod-
ing of the properties of a physical system purely through
observation. Unlike previous neural relation architectures,
which only use relation networks to predict object states
with known property values, we use relation networks to
create both a perception network, which derives property
values from observations, and a prediction network, which
predicts object positions given property values. The PPN
is able to derive unsupervised representations of the la-
tent properties relevant to physical simulations purely by
observing the dynamics of systems comprised of objects
with different property values. These learned representa-
tions can be translated directly into human-interpretable
properties such as mass and coefficient of restitution.

One crucial aspect of our system is generalization, which
humans excel at when inferring latent properties of novel
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Figure 1: Model overview. The unsupervised object property discovery paradigm that the PPN follows extracts
property vectors from samples of object dynamics to accurately predict new trajectories of those same objects. Applying
unsupervised learning methods to the learned vectors allows for the extraction of human-interpretable object properties.

systems. Our proposed system is robust under several
forms of generalization, and we present experiments
demonstrating the ability of our unsupervised approach
to discern interpretable properties even when faced with
different numbers of objects during training and testing
as well as property values in previously unseen ranges.

We evaluate the PPN for two major functionalities: the
accuracy of dynamics prediction for unseen objects and
the interpretability of properties learned by the model. We
show that our model is capable of accurately simulating
the dynamics of complex multi-interaction systems with
unknown property values after only a short observational
period to infer those property values. Furthermore, we
demonstrate that the representations learned by our model
can be easily translated into relevant human-interpretable
properties using entirely unsupervised methods. Addi-
tionally, we use several experiments to show that both the
accuracy of dynamics prediction and interpretability of
properties generalize well to new scenarios with different
numbers and configurations of objects. Ultimately, the
PPN serves as a powerful and general framework for dis-
covering underlying properties of a physical system and
simulating its dynamics.

2 RELATED WORK

Previous methods of modeling intuitive physics have
largely fallen under two broad categories: top-down ap-
proaches, which infer physical parameters for an existing
symbolic physics engine [1, 5, 6, 7, 8, 9], and bottom-
up approaches, which directly predict physical quantities
or future motion given observations [10, 11, 12, 13, 14,
15, 16]. While top-down approaches are able to gener-
alize well to any situation supported by their underlying
physics engines (e.g. different numbers of objects, pre-
viously unseen property values, etc.), they are difficult
to adapt to situations not supported by their underlying
description languages, requiring manual modifications
to support new types of interactions. On the other hand,
bottom-up approaches are often capable of learning the
dynamics of formerly unseen situations without any fur-

ther modification, though they often lack the ability to
generalize in the same manner as top-down approaches.

Recently, a hybrid approach has used neural relation net-
works, a specific instance of the more general class of
graph-based neural networks [17, 18], to attain the gen-
eralization benefits of top-down approaches without re-
quiring an underlying physics engine. Relation networks
rely on the use of a commutative and associative opera-
tion (usually vector addition) to combine pairwise inter-
actions between object state vectors in order to predict
future object states [19]. These networks have demon-
strated success in simulating multiple object dynamics
under interactions including Coulomb charge, object col-
lision (with and without perfect elasticity), and spring
tension [2, 3, 20, 21]. Much like a top-down approach,
relation networks are able to generalize their predictions
of object position and velocity to different numbers of ob-
jects (training on 6 objects and testing on 9, for instance)
without any modification to the network weights; further-
more, they are fully differentiable architectures that can
be trained via gradient descent on a variety of interactions.
Our paper leverages the interaction network in a novel
way, demonstrating for the first time its efficacy as a per-
ception module and as a building block for unsupervised
representation learning.

Additional research has looked at the supervised and un-
supervised learning of latent object properties, attempting
to mirror the inference of object properties that humans
are able to perform in physical environments [1]. Wu et
al. [9] leverages a deep model alongside set physical laws
to estimate properties such as mass, volume, and material
from raw video input. Fraccaro et al. [22] uses a varia-
tional autoencoder to derive the latent state of a single
bouncing ball domain, which they then simulate using
Kalman filtering. Chang et al. [3] demonstrate that their
relation network based physics simulator is also capa-
ble of performing maximum-likelihood inference over a
discrete set of possible property values by comparing sim-
ulation output for each possibility to reality. Our paper
goes one step further by showing that physical proper-
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Figure 2: Model architecture. The PPN takes as input a sequence of observed states O1, . . . , OT as well an initial state
R0 to begin a new rollout. Code vectors C1, . . . , CT are derived from the observed states using interaction networks and
a final property vector Z is produced by the perception network. The property vector is then utilized by the prediction
network to recursively predict future object states R1, R2, . . . for a new rollout given initial state R0. We train the PPN
to minimize the L2 distance between the predicted rollout states and the ground truth states for those timesteps.

ties can be learned from no more than raw motion data
of multiple objects. Recently, Kipf et al. [23] has also
utilized relation networks to infer the identity of categori-
cal interactions between objects; in contrast, our paper is
concerned with the learning of object properties.

3 MODEL

3.1 PERCEPTION-PREDICTION NETWORK

The PPN observes the physical dynamics of objects with
unknown latent properties (e.g. mass, coefficient of resti-
tution) and learns to generate meaningful representations
of these object properties that can be used for later simula-
tions. An overview of the full network is shown in Figure
1. The PPN consists of the following two components:

• The perception network takes as input a sequence
of frames on the movements of objects over a short
observation window. It outputs a property vector for
each object in the scene that encodes relevant latent
physical properties for that object. Each input frame
is a set of state vectors, consisting of each object’s
position and instantaneous velocity. During training,
no direct supervision target is given for the property
vectors.

• The prediction network uses the property vectors
generated by the perception network to simulate the
objects from a different starting configuration. The
network takes as input the property vectors gener-
ated by the perception network and new initial state
vectors for all objects. Its output is a rollout of the
objects’ future states from their new starting state.
The training target for the prediction network is the
ground truth states of the rollout sequence.

We implement both the perception and prediction net-
works using interaction networks [2], a specific type of
neural relation network that is fully differentiable and
generalizes to arbitrary numbers of objects. This enables
us to train both networks end-to-end using gradient de-
scent with just the supervision signal of the prediction
network’s rollout target, as the property vectors output by
the perception network feed directly into the prediction
network.

3.2 INTERACTION NETWORK

An interaction network (IN) is a relation network that
serves as the building block for both the perception and
prediction networks. At a high level, interaction net-
works use multilayer perceptrons (MLPs) to implement
two modular functions, the relational model frel and the
object model fobj, which are used to transform a set of
object-specific input features {x(1), . . . , x(N)} into a set
of object-specific output features {y(1), . . . , y(N)}, where
N is the number of objects in a system. Given input fea-
tures for two objects i and j, frel calculates the “effect”
vector of object j on object i as e(i,j) = frel(x

(i), x(j)).
The net effect on object i, e(i), is the vector sum of all pair-
wise effects

∑
j 6=i e

(i,j) on object i. Finally, the output for
object i is given by y(i) = fobj(x

(i), e(i)). Importantly,
fobj and frel are shared functions that are applied over
all objects and object-object interactions, allowing the
network to generalize across variable numbers of objects.

Interaction networks are capable of learning state-to-state
transition functions for systems with complex physical
dynamics. More generally, however, interaction networks
can be used to model functions where input and output
features are specific to particular objects and the relation-
ship between input and output is the same for each object.
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While our prediction network uses an interaction network
to simulate state transitions, our perception network uses
an interaction network to make incremental updates on the
values of object latent properties from observed evidence.

3.3 PERCEPTION NETWORK

The perception network produces object-specific property
vectors, Z, from a sequence of observed states O. As
shown in Figure 2, our perception network is a recurrent
neural network that uses an interaction network as its core
recurrent unit. The perception network begins with object-
specific code vectors, C1, initialized to zero vectors, with
some fixed size LC for each object. At each step t, the IN
takes in the previous code vectors, Ct−1, as well as the
last two observed states,Ot−1 andOt, to produce updated
code vectors, Ct, also of size LC . After processing all TO
observation frames, the perception network feeds the final
code vectors CTO into a single code-to-property MLP that
converts each object’s code vector into an “uncentered”
property vector of size LZ per object. We denote the final
collection of uncentered property vectors as Zu.

In many physical systems, it may be impossible or un-
desirable to measure the latent properties of objects on
an absolute scale. For example, in a system where two
balls collide elastically, a collision can only inform us
on the mass of each object relative to the other object,
not their absolute mass values. In order to allow for the
inference of absolute property values, we let the first ob-
ject of every system serve as a reference object and take
on the same property values in each system. In doing
so, we can infer the absolute property values of all other
objects by observing their value relative to the reference
object. To enforce inference relative to the reference ob-
ject, we “center” the property vectors by subtracting the
reference object’s uncentered property vector from each
object’s uncentered property vector, producing the final
property vectors Z. Note that this ensures that the ref-
erence object’s property vector is always a zero vector,
agreeing with the fact that its properties are known to be
constant. We can summarize the perception network with
the following formulas:

C1 = 0 (1)
Ct = INpe(Ct−1‖Ot−1‖Ot), for t = 2, . . . , TO (2)

Z(i)
u = MLPpe

(
C

(i)
TO

)
, for i = 1, . . . , N (3)

Z(i) = Z(i)
u − Z(1)

u , for i = 1, . . . , N (4)

where ‖ is the object-wise concatenation operator, INpe is
the perception interaction network, MLPpe is the code-to-
property MLP, and Z(1)

u is the reference object’s uncen-
tered property vector.

3.4 PREDICTION NETWORK

The prediction network performs state-to-state rollouts of
the system from a new initial state, R0, using the property
vectors produced by the perception network. Like the
perception network, the prediction network is a recurrent
neural network with an Interaction Network core. At step
t, the IN takes in the previous state vectors, Rt−1, and the
property vectors, Z, and outputs a prediction of the next
state vectors, Rt. In other words,

Rt = INpr(Rt−1‖Z), for t = 1, ..., TR (5)

where INpr is the prediction interaction network and TR
is the number of rollout frames.

The prediction loss for the model is the total MSE between
the predicted and true values of {Rt}t=1...TR .

4 EXPERIMENTS

4.1 PHYSICAL SYSTEMS

For our experiments, we focus on 2-D domains where
both the latent property inference task and the subsequent
dynamics prediction task are challenging. In all systems,
the first object serves as the reference object and has fixed
properties. All other objects’ properties can be inferred
relative to the reference object’s properties. We evaluate
the PPN on the following domains (see Fig. 5):

• Springs Balls of equal mass have a fictitious prop-
erty called “spring charge” and interact as if all pairs
of objects were connected by springs governed by
Hooke’s law∗. The reference object has a spring
charge of 1, while all other objects have spring
charges selected independently at random from the
log-uniform† distribution over [0.25, 4]. The spring
constant of the spring connecting any given pair of
objects is the product of the spring charges of the two
objects, and the equilibrium distance for all springs
is a fixed constant.
• Perfectly Elastic Bouncing Balls Balls of fixed ra-

dius bounce off each other elastically in a closed box.
The reference object has a mass of 1. Each other ball
has a mass selected independently at random from
the log-uniform distribution over [0.25, 4]. The four
walls surrounding the balls have infinite mass and
do not move.

∗Two objects connected by a spring governed by Hooke’s
law are subject to a force F = −k(x − x0), where k is the
spring constant of the spring, x is the distance between the two
objects, and x0 is the spring’s equilibrium distance. The force
is directed along the line connecting the two objects but varies
in sign: it is attractive if x > x0 and repulsive if x < x0.
†We use the phrase log-uniform distribution over [A,B] to

indicate the distribution of exp(x), where x is drawn uniformly
at random over the interval [logA, logB].
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• Inelastic Bouncing Balls Building off the previ-
ous domain, we introduce additional complexity by
adding coefficient of restitution (COR) as another
varying latent property of each object. The COR
of a collision is the ratio of the final to initial rela-
tive velocity between the two colliding objects along
the axis perpendicular to the contact plane. In a
perfectly elastic domain, for example, all collisions
would have a COR of 1. In our new domain, each
object has a random COR selected uniformly from
[0.5, 1]. The reference object has a COR of 0.75.
The COR used to compute the dynamics in a colli-
sion between two balls is defined as the maximum
of the two colliding objects’ CORs. When a ball
collides with a wall, the ball’s COR is used for the
collision.

For each domain, we train the PPN on a 6-object dataset
with 106 samples and validate on a 6-object dataset with
105 samples. Each sample consists of 50 observation
frames used as input into the perception network and 24
rollout frames used as targets by the prediction network.
We evaluated our model on 3-object, 6-object, and 9-
object test sets, each with 105 samples.

In addition, we also wish to demonstrate the PPN’s ability
to generalize to new objects whose latent properties are
outside of the range of values seen during training. For
this experiment, we test our model on a new 2-object
perfectly elastic balls dataset with 105 samples. The mass
of the first ball remains fixed at 1, while the mass of the
second ball is selected from 11 values ranging from 32−1

to 32, spaced evenly on a log scale. We perform a similar
experiment on the springs domain, using the same 11
values as the spring charge of the second object.

We use matter-js‡, a general-purpose rigid-body physics
engine, to generate ground truth data. In all simulations,
balls are contained in a 512 px× 512 px closed box. Each
ball has a 50 px radius and randomly initialized positions
such that no ball overlaps. In the springs domain, initial
x- and y-velocity components are selected uniformly at
random from the range [−15, 15] px/sec, the equilibrium
displacement for each spring is 150, and the mass of all
balls is 104. In the perfectly elastic balls domain, initial
velocity components are selected from the range [−9, 9]
px/sec. In the inelastic balls domain, they are selected
from the range [−13, 13] px/sec. Each dataset’s frames
are sampled at 120 fps.

In the creation of our bouncing ball datasets, we use re-
jection sampling to filter out simulations in which some
object latent properties cannot be inferred from the obser-
vation frames. In both bouncing ball domains, we must

‡http://brm.io/matter-js/

be able to infer the mass of every object. In order to
guarantee this, each object must collide directly with the
reference object or be linked indirectly to it through a
sequence of collisions. For the inelastic domain, we must
ensure that each object’s COR can be inferred as well. In
a ball-ball collision, only the higher object COR is used
in determining collision dynamics, and so only the higher
object COR can be inferred from the collision. For this
reason, every ball must either collide with a ball of lower
COR or a wall.

4.2 MODEL ARCHITECTURE

We use a single model architecture for all of our exper-
iments. We set LC , the size of each code vector, to 25
and LZ , the size of each property vector, to 15. All MLPs
in the model, including those in the interaction networks,
use linear hidden layers with ReLU activation and a linear
output layer.

Following the overall structure of Battaglia et al. [2],
the perception network’s IN core consists of a 4-layer
relation-centric MLP with sizes [75, 75, 75, 50] and a 3-
layer object-centric MLP with sizes [50, 50, 25]. The final
code vectors output by the IN feed into another object-
centric MLP of size [15, 15, 15] to produce the final latent
property vectors of size 15. The prediction network’s IN
core consists of a 5-layer relation-centric MLP with sizes
[100, 100, 100, 100, 50] and a 3-layer object-centric MLP
with sizes [50, 50, 4] used to predict each object’s next
position and velocity.

The perception network and prediction network are
trained end-to-end using a single training loss, which
we call the prediction loss. The prediction loss is the
unweighted sum of the MSE of the predicted vs actual
state vectors of all objects during the 24 rollout timesteps.
In addition, we apply L2 regularization on the “effects”
layer of both the perception and prediction networks. This
regularization encourages minimal information exchange
during interactions and proves to be a crucial component
to generalization to different numbers of objects. We se-
lected the penalty factor for each regularization term via
grid search. We also experimented with the use of β-VAE
regularization [24, 25] on property vectors to encourage
the learning of interpretable and factorized properties.

In order to improve stability when simulating long roll-
outs, we added a small amount of Gaussian noise to
each state vector during rollout, forcing the model to
self-correct for errors. Empirically, we found that setting
the noise std. dev. equal to 0.001× the std. dev. of each
state vector element’s values across the dataset stabilized
rollout positions without affecting loss.

We trained the model for 150 epochs and optimized the
parameters using Adam [26] with mini-batch size 256.
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Springs Perfectly Elastic Balls Inelastic Balls

Component # EVR R2 w/ log charge EVR R2 w/ log mass EVR R2 w/ log mass R2 w/ COR

1 0.94 0.95 0.99 0.94 0.73 0.90 0.02
2 0.06 0.02 0.006 0 0.27 0.02 0.81
3 0 0 0 0 0.006 0 0
4 0 0 0 0 0 0 0

Table 1: Principal component analysis. Applying PCA on the property vectors yields principal components that are
highly correlated with human-interpretable latent properties such as COR and the log of mass. We compute statistics on
the first four principal components of the property vectors for each training set. Explained variance ratio or EVR is
the explained variance of the principal component as a fraction of overall variance, and R2 is the squared in-sample
correlation between the principal component and a particular ground truth property. Values less than 10−3 round to 0.

# Training Data # Test Objects Springs Perfectly Elastic Balls Inelastic Balls

R2 w/ log charge R2 w/ log mass R2 w/ log mass R2 w/ COR

105 6 0.60 0.91 0.55 0.03
2× 105 6 0.95 0.96 0.95 0.65
5× 105 6 0.94 0.94 0.91 0.77

106 6 0.95 0.94 0.90 0.80

106 3 0.90 0.97 0.92 0.86
9 0.87 0.92 0.90 0.68

Table 2: Data-efficiency and number of objects generalization. The PPN learns to capture physical properties with
105 training data points and converges when given 2× 105 instances. Its predictions generalize well to out-of-sample
test sets with varying numbers of objects. We train the PPN on a 6-object dataset and test it on entirely new datasets
comprised of 6, 3, and 9 objects. Above, we report the R2 when using the property vector’s first principal component to
predict log mass and the second principal component to predict COR (for the inelastic balls case). Note that even in the
3 and 9 object cases the PPN is able to extract mass and coefficient of restitution with high R2.

We used a waterfall schedule that began with a learning
rate of 5 × 10−4 and downscaled by 0.8 each time the
validation error, estimated over a window of 10 epochs,
stopped decreasing.

5 RESULTS

5.1 EXTRACTING LATENT PROPERTIES

Our results show that the physical properties of objects
are successfully encoded in the property vectors output
by the perception network. In fact, we can extract the
human-interpretable notions of spring charge, mass, and
COR by applying principal component analysis (PCA) to
the property vectors generated by the perception network
during training. We find that the first principal component
of each property vector is highly correlated with the log of
spring charge in the spring domain and the log of object
mass in both bouncing ball domains. In the inelastic balls
domain, we also find that the second principal component
of the property vector is highly correlated with COR. Ta-
ble 1 shows the explained variance ratio (EVR) of each
of the first 4 principal components of the learned property
vectors in all three domains, along with the R2 when each
component is used to predict ground truth object prop-

erties§. Since PCA is an unsupervised technique, these
scalar quantities can be discovered without prior notions
of mass and COR, and we can use the order-of-magnitude
difference between certain principal components’ EVR
to identify which components represent meaningful prop-
erties and which merely capture noise.

We also find that each learned property vector only con-
tains information about its associated object and not any
other objects. We test this hypothesis by using linear least
squares to calculate the in-sample R2 between the ground
truth latent properties of each object and the concatena-
tion of the property vectors of all other objects. This R2

is less than 5% for each of the three domains and their
relevant latent properties.

In order to test the generalization properties of our per-
ception network, we calculate the out-of-sample R2 when
using the perception network (trained on 6 object dynam-
ics) and PCA to predict property values for test sets with
varying number of objects, as shown in Table 2. The table

§By default, the property values produced by PCA will not
be in the same scale as our ground truth values. For the purposes
of correlation analysis, we linearly scale predictions to match
the mean and std. dev. of the ground truth latent values.
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Figure 3: Mass prediction vs. reference distance. Out-of-sample R2 on the two 6-object bouncing balls datasets for
predicting log mass at different reference distances. The PPN must combine a sequence of intermediate mass inferences
to accurately infer the mass of an object with large reference distance.

also shows how PPN performs when given a different
number of training instances. In all bouncing balls test
sets, for our model trained on 106 data points, the OOS
R2 for log mass is above 90%, the OOS R2 for COR is
above 68%, and the OOS R2 for log spring charge in the
springs domain is above 87%.

We also compare the PPN against a LSTM-PPN base-
line. The LSTM-PPN replaces each of the perception
and prediction networks in the PPN with stacked LSTMs.
Unlike an interaction network, an LSTM does not factor-
ize input and output by object. Instead, state vectors for
each object are concatenated and processed together, and
a single property vector is learned for all objects. Table
3 shows that the LSTM-PPN does not learn meaningful
latent properties. In each scenario, the linear least squares
in-sample R2 between true object properties and property
vectors is less than 2%. We also experiment with different
values of β in the regularization term of the property vec-
tors Z as in β-VAE [25]. The value of β does not impact
the PPN’s performance on learning object properties.

For the two bouncing balls domains, the relative masses of
objects are inferred through collisions, but not all objects
collide directly with the reference object. We define the
reference distance of an object to be the minimum number
of collisions needed during observation to relate the ob-
ject’s mass to that of the reference object. Inference on an
object with reference distance of 3, for example, depends
on the inference of the mass of two intermediate objects.
Figure 3 shows the relation between the PPN’s prediction
R2 and reference distance for each of the 6-object test
sets. While there is a decay in R2 as reference distance
increases due to compounding errors during inference,
the PPN clearly demonstrates the ability to use transitivity
to infer the mass of objects with large reference distance.

5.2 ROLLOUT PREDICTIONS

Although the PPN’s primary objective is the unsupervised
learning of latent physical properties, the network can

Methods Springs Elastic Balls Inelastic Balls

log charge log mass log mass COR

LSTM 0.02 0.03 0.02 0.03
PPN (β = 0) 0.95 0.94 0.90 0.80
PPN (β = 0.01) 0.95 0.93 0.93 0.79
PPN (β = 1) 0.92 0.94 0.93 0.65

Table 3: Comparing with baseline methods. Varying
the value of β in the regularization term as in β-VAE does
not change the PPN’s performance significantly. The PPN
consistently outperforms the baseline LSTM.

also be used to simulate object dynamics. To evaluate
the PPN’s prediction performance, we use the mean Eu-
clidean prediction error, or the mean Euclidean norm
between the ground truth and predicted rollout positions,
averaged over all samples and objects. We compare the
PPN’s performance against two benchmarks. The Mean
Properties Perfect Rollout (MPPR) baseline outputs a
perfect rollout from the starting state, but incorrectly as-
sumes that all object masses and spring charges are 1. For
the inelastic balls domain, it also assumes that all object
CORs are 0.75. The Ground Truth Properties Interac-
tion Network (GPIN) benchmark is an IN with the same
architecture as the PPN’s prediction network. Unlike the
PPN, it has direct access to ground truth latent values as
input, though it is still only trained on 6-object datasets.
Figure 4 lists the three models’ mean Euclidean prediction
errors for various scenes and shows how the prediction
errors vary for different rollout steps. The PPN’s mean
Euclidean prediction error is significantly better than the
MPPR baseline and comes reasonably close to the GPIN
model, especially for the springs and perfectly elastic
balls datasets.

Finally, Figure 5 shows visualizations of the PPN’s rollout
trajectories. Randomly selected simulations can be found
at http://ppn.csail.mit.edu. Like the original
IN, the PPN’s rollouts are sensitive to small prediction
errors in early timesteps, but remain visually convincing.
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Springs Perfectly Elastic Balls Inelastic Balls

Model 6 balls 3 balls 9 balls 6 balls 3 balls 9 balls 6 balls 3 balls 9 balls

PPN 0.020 0.078 0.057 0.025 0.017 0.032 0.048 0.041 0.054
MPPR 0.124 0.082 0.139 0.038 0.027 0.046 0.062 0.045 0.073
GPIN 0.005 0.068 0.043 0.019 0.015 0.027 0.029 0.021 0.039
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Figure 4: Mean Euclidean prediction error. Top: Mean Euclidean prediction error over all timesteps and samples
for each test set measured as fraction of framewidth. For each domain, the PPN and GPIN are trained on 6-object
systems and tested on new systems with 6, 3, and 9 objects. Bottom: Mean Euclidean prediction error at different rollout
timesteps for each of the 6-object scenarios. Plots for the 3-object and 9-object scenarios exhibit similar behavior.
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Figure 5: Rollout trajectories. Sample rollout trajectories (over 24 timesteps) from each of the six test sets. Each
domain’s model was trained on 6-object samples and tested on 6-, 3-, and 9-object samples.

5.3 GENERALIZING TO NEW OBJECTS

Our experiments also explore generalizations to objects
whose property values are outside the range found in the
training set. We test the PPN framework on a 2-object per-
fectly elastic test set where the second ball’s mass varies
from 32−1 to 32. Mass values in the range [0.25, 4] are
found within the training set, while mass values outside
this range require the PPN to extrapolate its understanding
of mass to values it has not previously been exposed to.
We perform a similar experiment on the springs domain,
in which the second object’s spring charge varies from
32−1 to 32. Figure 6 plots the relationship between true

and predicted property values for the second ball in the
two domains, using the same PCA technique described in
Section 5.1 to make predictions.

In the perfectly elastic balls domain, the PPN continues
to offer accurate predictions of mass even when the true
value lies far outside training range, despite an overall
tendency to underestimate large mass values and overesti-
mate small mass values. In the springs domain, the PPN
is able to predict objects with large spring charge rela-
tively well but performs poorly on objects with low spring
charge. This is likely due to the fact that objects with low
spring charge tend to feel very little spring force overall,
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Figure 6: Property value generalization. Predicted property values vs. true property values of the second object in
the 2-object test sets for both the springs and perfectly elastic balls domains. The true property values range from 32−1

to 32, and the green region, 4−1 to 4, indicates property values which appear to the PPN during training. Error bars
show 95% confidence intervals. On the whole, the PPN continues to make reasonable predictions on mass and spring
charge values well outside the training set, though the prediction of objects with lower spring charge than previously
encountered is noticeably worse.

making the difference between charges of 32−1 and 16−1

much less noticeable than the difference between charges
of 16 and 32.

6 DISCUSSION

We have presented the PPN, a model that is capable of
discovering latent object properties in an entirely unsuper-
vised manner from samples of object dynamics. Through
our experiments, we showed not only that the representa-
tions of object properties learned by the PPN are sufficient
to accurately simulate the dynamics of new systems under
the same laws; but also that these learned representa-
tions can be readily transformed into relevant, human-
interpretable properties such as mass and coefficient of
restitution via principal component analysis.

The PPN demonstrates robustness by generalizing to
novel scenarios with little loss in the accuracy of dynam-
ical predictions or latent property inference. By using
interaction networks as the basic building block of both
our perception and prediction modules, we enabled our
model to scale to arbitrary numbers of objects and in-
teractions without architectural change. Our perception
network architecture, in particular, is a simple but effec-
tive combination of relation and recurrent networks that
may be useful in other time series inference tasks involv-
ing interacting objects. We also established the PPN’s
ability to infer latent properties outside the range of val-
ues seen during training, further boosting its potential in
discovering the relevant latent properties of new systems.

Several extensions would further improve the applica-
bility of our model to the general discovery of latent
object properties. In particular, there are a few general
classes of problems that which interaction network–based
architectures haven’t been able to solve: collision detec-

tion between rigid bodies of an arbitrary shape, dense
fluid simulation, etc. Extending interaction networks to
particle-based object representations is a promising future
research direction [27].

While the interaction network framework is generally ex-
tensible to arbitrary numbers of objects, the computational
time required to process all objects scales quadratically
with the number of objects due to the presence of in-
teraction terms between all pairs of objects, making it
impractical for very large systems. One way to improve
the computational efficiency of both the perception and
prediction modules is to only consider interactions from
objects in the neighborhood of target objects (with the
interpretation that most interactions are only strong on
shorter length scales), similar to Chang et al. [3]. A
smaller, global interaction net could still be used to model
longer range interactions.

The PPN provides a promising method for deriving the un-
derlying properties governing the dynamics of systems, in
addition to being a more general learnable physics engine
capable of reasoning about potentially unknown object
properties. The entirely unsupervised manner of its oper-
ation and its many generalization characteristics make the
PPN suitable for application to a variety of systems, and
it may even be able to discover relevant latent properties
in domains that are yet to be well understood.

7 ACKNOWLEDGMENTS

We thank Michael Chang for his important insights and
the anonymous reviewers for their useful suggestions.
This work was supported by ONR MURI N00014-16-1-
2007, the Center for Brain, Minds and Machines (NSF
#1231216), Facebook, and the Toyota Research Institute.

505



References
[1] Tomer Ullman, Andreas Stuhlmüller, Noah Good-

man, and Joshua B Tenenbaum. Learning physics
from dynamical scenes. In Annual Conference of
the Cognitive Science Society, 2014.

[2] Peter Battaglia, Razvan Pascanu, Matthew Lai,
Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In
Advances in Neural Information Processing Systems,
2016.

[3] Michael B Chang, Tomer Ullman, Antonio Torralba,
and Joshua B Tenenbaum. A compositional object-
based approach to learning physical dynamics. In
International Conference on Learning Representa-
tions, 2017.

[4] Yoshua Bengio, Aaron Courville, and Pascal Vin-
cent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis
and machine intelligence, 35(8):1798–1828, 2013.

[5] Peter W Battaglia, Jessica B Hamrick, and Joshua B
Tenenbaum. Simulation as an engine of physical
scene understanding. Proceedings of the National
Academy of Sciences, 110(45):18327–18332, 2013.

[6] Christopher Bates, Peter Battaglia, Ilker Yildirim,
and Joshua B Tenenbaum. Humans predict liquid
dynamics using probabilistic simulation. In Annual
Conference of the Cognitive Science Society, 2015.

[7] Jessica Hamrick, Peter Battaglia, and Joshua B
Tenenbaum. Internal physics models guide proba-
bilistic judgments about object dynamics. In Annual
Conference of the Cognitive Science Society, 2011.

[8] Jiajun Wu, Ilker Yildirim, Joseph J Lim, Bill Free-
man, and Josh Tenenbaum. Galileo: Perceiving
physical object properties by integrating a physics
engine with deep learning. In Advances in Neural
Information Processing Systems, 2015.

[9] Jiajun Wu, Joseph J Lim, Hongyi Zhang, Joshua B
Tenenbaum, and William T Freeman. Physics 101:
Learning physical object properties from unlabeled
videos. In British Machine Vision Conference, 2016.

[10] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jiten-
dra Malik, and Sergey Levine. Learning to poke by
poking: Experiential learning of intuitive physics. In
Advances in Neural Information Processing Systems,
2016.

[11] Sebastien Ehrhardt, Aron Monszpart, Niloy J Mitra,
and Andrea Vedaldi. Learning a physical long-term
predictor. arXiv preprint arXiv:1703.00247, 2017.

[12] Katerina Fragkiadaki, Pulkit Agrawal, Sergey
Levine, and Jitendra Malik. Learning visual pre-
dictive models of physics for playing billiards. In
International Conference on Learning Representa-
tions, 2016.

[13] Adam Lerer, Sam Gross, and Rob Fergus. Learn-
ing physical intuition of block towers by example.
In International Conference on Machine Learning,
2016.

[14] Roozbeh Mottaghi, Hessam Bagherinezhad, Mo-
hammad Rastegari, and Ali Farhadi. Newtonian
scene understanding: Unfolding the dynamics of
objects in static images. In IEEE Conference on
Computer Vision and Pattern Recognition, 2016.

[15] Roozbeh Mottaghi, Mohammad Rastegari, Abhinav
Gupta, and Ali Farhadi. what happens if... learning
to predict the effect of forces in images. In European
Conference on Computer Vision, 2016.

[16] Ilya Sutskever, Geoffrey E Hinton, and Graham W
Taylor. The recurrent temporal restricted boltzmann
machine. In Advances in Neural Information Pro-
cessing Systems, 2009.

[17] Franco Scarselli, Marco Gori, Ah Chung Tsoi,
Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transac-
tions on Neural Networks, 20(1):61–80, 2009.

[18] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard Zemel. Gated graph sequence neural net-
works. In International Conference on Learning
Representations, 2016.

[19] David Raposo, Adam Santoro, David Barrett, Raz-
van Pascanu, Timothy Lillicrap, and Peter Battaglia.
Discovering objects and their relations from en-
tangled scene representations. In ICLR Workshop,
2017.

[20] Nicholas Watters, Andrea Tacchetti, Theophane We-
ber, Razvan Pascanu, Peter Battaglia, and Daniel
Zoran. Visual interaction networks. In Advances in
Neural Information Processing Systems, 2017.

[21] Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman,
and Josh Tenenbaum. Learning to see physics via
visual de-animation. In Advances in Neural Infor-
mation Processing Systems, 2017.

[22] Marco Fraccaro, Simon Kamronn, Ulrich Paquet,
and Ole Winther. A disentangled recognition and
nonlinear dynamics model for unsupervised learn-
ing. In Advances in Neural Information Processing
Systems, 2017.

506



[23] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang,
Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In International
Conference on Machine Learning, 2018.

[24] Diederik P Kingma and Max Welling. Auto-
encoding variational bayes. In International Confer-
ence on Learning Representations, 2014.

[25] Irina Higgins, Loic Matthey, Arka Pal, Christo-
pher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae:
Learning basic visual concepts with a constrained
variational framework. In International Conference
on Learning Representations, 2017.

[26] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations, 2015.

[27] Damian Mrowca, Chengxu Zhuang, Elias Wang,
Nick Haber, Li Fei-Fei, Joshua B Tenenbaum,
and Daniel LK Yamins. Flexible neural repre-
sentation for physics prediction. arXiv preprint
arXiv:1806.08047, 2018.

507



Subsampled Stochastic Variance-Reduced Gradient Langevin Dynamics

Difan Zou∗
Department of Computer Science

University of California
Los Angeles, CA 90095, USA

Pan Xu∗
Department of Computer Science

University of California
Los Angeles, CA 90095, USA

Quanquan Gu
Department of Computer Science

University of California
Los Angeles, CA 90095, USA

Abstract

Stochastic variance-reduced gradient Langevin
dynamics (SVRG-LD) was recently proposed
to improve the performance of stochastic gra-
dient Langevin dynamics (SGLD) by reduc-
ing the variance of the stochastic gradient. In
this paper, we propose a variant of SVRG-LD,
namely SVRG-LD+, which replaces the full
gradient in each epoch with a subsampled one.
We provide a nonasymptotic analysis of the
convergence of SVRG-LD+ in 2-Wasserstein
distance, and show that SVRG-LD+ enjoys a
lower gradient complexity1 than SVRG-LD,
when the sample size is large or the target ac-
curacy requirement is moderate. Our analysis
directly implies a sharper convergence rate for
SVRG-LD, which improves the existing con-
vergence rate by a factor of κ1/6n1/6, where
κ is the condition number of the log-density
function and n is the sample size. Experiments
on both synthetic and real-world datasets vali-
date our theoretical results.

1 INTRODUCTION

Markov chain Monte Carlo (MCMC) methods used for
posterior sampling have achieved great successes in
Bayesian machine learning and Bayesian statistics. Re-
cently, a family of gradient-based MCMC algorithms de-
rived from Langevin dynamics (Parisi, 1981) has become
a research hotspot in both Bayesian sampling (Welling &
Teh, 2011; Ahn et al., 2012; Wang et al., 2013; Dalalyan,
2014) and optimization (Raginsky et al., 2017; Zhang
et al., 2017; Xu et al., 2017). The Langevin dynamics

∗Equal contribution
1Gradient complexity is defined as the required number of

stochastic gradient evaluations to reach a target accuracy.

is defined by the following stochastic differential equa-
tion (SDE)

dXt = −∇f(Xt)dt+
√

2dBt, (1.1)

where Xt ∈ Rd is a d-dimensional stochastic process,
Bt ∈ Rd represents the standard d-dimensional Brown-
ian motion and −∇f(x) is called the drift coefficient. It
can be shown that the Langevin dynamics converges to
an invariant stationary distribution π ∝ exp(−f) (Chi-
ang et al., 1987). Based on this observation, various
Langevin dynamics based numerical algorithms (Roberts
& Tweedie, 1996; Mattingly et al., 2002) have been de-
signed to sample from the target distribution π. Di-
rectly applying Euler-Maruyama discretization (Kloeden
& Platen, 1992) to SDE (1.1) gives rise to

xk+1 = xk −∇f(xk)η +
√

2ηεk, (1.2)

where η denotes the step size, and εk ∼ N(0, Id×d) is
a d-dimensional standard Gaussian random vector. The
sampling algorithm using (1.2) as its update formula is
typically known as the Langevin Monte Carlo (LMC) al-
gorithm, which has been extensively studied when the
target distribution is both log-smooth and strongly log-
concave, or even log-Hessian-Lipschitz (Dalalyan, 2014;
Durmus & Moulines, 2016; Dalalyan, 2017; Dalalyan &
Karagulyan, 2017).

On the other hand, modern machine learning problems
often involve an extremely large amount of data. Sup-
pose the dataset consists of n observations, it is often
assumed that the function f in the drift term of (1.1) can
be written as an average of n finite component functions,
i.e.,

f(x) =
1

n

n∑

i=1

fi(x), (1.3)

where each fi is smooth and f is strongly convex. When
n is very large, the LMC algorithm can be inefficient
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since the gradient evaluation is computationally very ex-
pensive. Following the same idea in stochastic optimiza-
tion, Welling & Teh (2011) proposed the stochastic gra-
dient Langevin dynamics (SGLD) algorithm by replac-
ing the full gradient in (1.2) with a stochastic gradient
computed only on a minibatch of data. The SGLD al-
gorithm has been successfully applied to Bayesian learn-
ing (Welling & Teh, 2011; Ahn et al., 2012) and training
deep neural networks (Chaudhari et al., 2016; Ye et al.,
2017), because it can dramatically decrease the number
of stochastic gradient evaluations and save a lot compu-
tation in practice. Nevertheless, the convergence rate of
SGLD is much slower than LMC, which may lead to a
worse runtime complexity in certain regime. Regard-
ing the true computational cost of SGLD, Nagapetyan
et al. (2017) argued that SGLD is at most better by a
constant factor relative to an Euler discretization with
full gradients, and raised questions about the good per-
formance of SGLD under the big-data setting. In order
to fairly evaluate the performances of stochastic algo-
rithms, one often uses gradient complexity to indicate
the efficiency of a sampling algorithm in large scale ma-
chine learning problems. When f is smooth, strongly
convex and Hessian Lipschitz, Dalalyan & Karagulyan
(2017) proved that the gradient complexity of LMC to
converge to the stationary distribution π in 2-Wasserstein
distance is Õ(nκ2d1/2/ε), where ε represents the target
accuracy and κ is the condition number of f . In compar-
ison, the gradient complexity of SGLD is Õ(κ2dσ2/ε2)
(Dalalyan, 2017; Dalalyan & Karagulyan, 2017), which
is slower than LMC when n . d1/2σ2/ε, where dσ2 is
an upper bound on the variance of the stochastic gradient.

In order to achieve the best of both worlds, i.e., save the
gradient computation of LMC as well as boost the con-
vergence rate of SGLD, Dubey et al. (2016) proposed
stochastic variance-reduced gradient Langevin dynamics
(SVRG-LD) and stochastic average gradient Langevin
dynamics (SAGA-LD), which adapts the idea of vari-
ance reduction in stochastic optimization such as SVRG
(Johnson & Zhang, 2013; Allen-Zhu & Hazan, 2016;
Reddi et al., 2016) and SAGA (Defazio et al., 2014) to
gradient-based Monte Carlo methods. However, Dubey
et al. (2016) only investigated the performance of both al-
gorithms in terms of mean square error (MSE) of the av-
eraged sample path. Baker et al. (2017) applied zero vari-
ance control variates to stochastic MCMC method, and
showed that such technique is able to reduce the com-
putational cost of stochastic gradient Langevin dynam-
ics to O(1). Recently, Chatterji et al. (2018) analyzed
the convergence rates of SVRG-LD and SAGA-LD to
the stationary distribution in 2-Wasserstein distance, and
showed that SAGA-LD has a lower gradient complexity
compared with SVRG-LD. However, they also observed

that when considering low target accuracy regime or the
samples size is very large, both of these variance reduc-
tion based LMC algorithms perform worse than SGLD,
which can converge even within a single data pass. How-
ever, their theoretical results suggest that SAGA-LD at-
tains a faster convergence rate than SVRG-LD, which is
not consistent with the convergence analyses of SAGA
and SVRG for optimization, where both methods have
been proved to have the same gradient complexity (John-
son & Zhang, 2013; Defazio et al., 2014). Therefore,
Chatterji et al. (2018) raised a question that whether
SVRG is less suited than SAGA to work with sampling
methods.

In this paper, in order to overcome the shortcomings
of SVRG-LD and SAGA-LD, we propose a variant of
SVRG-LD, namely SVRG-LD+, by replacing the full
gradient computation in the outer loop of SVRG-LD with
a subsampled one. The idea of using subsampled gradi-
ent instead of full gradient in variance reduction algo-
rithms is originated from the recent work on variance
reduction for stochastic optimization (Harikandeh et al.,
2015; Lei & Jordan, 2016; Lei et al., 2017), and has also
been adopted to Langevin based algorithm by Chen et al.
(2017). It is worthy noting that the algorithm proposed
in Chen et al. (2017), namely practical vrSG-MCMC,
is similar to our algorithm. Nevertheless, the practical
SVRG-LD algorithm needs to output all the iterates be-
cause its theoretical guarantee is on the sample path. In
contrast, our algorithm only needs to output the last iter-
ate, because our theory holds for the last iterate.

1.1 OUR CONTRIBUTIONS

We highlight the major contributions of our work as fol-
lows.

• We propose the SVRG-LD+ algorithm and ana-
lyze its convergence rate to the target distribution
in Wasserstein distance. Specifically, we prove
that the SVRG-LD+ algorithm requires Õ

(
(n +

κ3/2n1/2d1/2/ε) ∧ κ2dσ2/ε2
)

stochastic gradient
evaluations to converge to the target distribution in
2-Wasserstein distance within ε-accuracy. Our re-
sult suggests that when the sample size n is large or
the target accuracy ε is moderate, the gradient com-
plexity of SVRG-LD+ is better than that of SVRG-
LD and SAGA-LD (Chatterji et al., 2018). In ad-
dition, the gradient complexity of SVRG-LD+ is
never worse than that of SGLD.

• Since SVRG-LD is a special case of SVRG-LD+

when the subsampled gradient is chosen to be the
full gradient, our analysis of SVRG-LD+ directly
implies a sharp convergence rate of SVRG-LD,
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which improves the recent result in Chatterji et al.
(2018) by a factor of κ1/6n1/6, and matches the
convergence rate of SAGA-LD (Chatterji et al.,
2018). This suggests that both SVRG and SAGA
are equally suited to work with sampling methods,
and therefore answers the question raised in (Chat-
terji et al., 2018). Our experiments on both synthetic
and real data also show that SVRG-LD and SAGA-
LD have comparable performance, which verifies
our theory.

We summarize the gradient complexities of existing
LMC methods in Table 1, from which we can see that
SVRG-LD+ achieves the lowest gradient complexity
among all methods. Detailed discussions will be pro-
vided in the main theory section.

1.2 ADDITIONAL RELATED WORK

Another line of research that is related to LMC is Hamil-
tonian Monte Carlo (HMC) method (Neal, 2011), which
is based on Hamiltonian dynamics by introducing ficti-
tious momentum variables. Recently, the HMC method
has been widely studied and developed both experi-
mentally and theoretically. Specifically, Chen et al.
(2014) proposed a stochastic gradient HMC (SG-HMC)
algorithm and demonstrated its better performance than
SGLD in learning Bayesian neural networks. Chen et al.
(2015) conducted a comprehensive analysis for a family
of SG-MCMC algorithms including SG-HMC in terms
of MSE, and showed that SG-HMC attains a better per-
formance than SGLD if adopting an appropriate dis-
cretization method. Ma et al. (2015) proposed a gen-
eral framework to design samplers from the target dis-
tribution, and generated a new state-adaptive sampler
on the Riemannian manifold. The nonasymptotic con-
vergence analysis of HMC and SG-HMC was provided
in Cheng et al. (2017), where the authors analyzed an
underdamped Langevin MCMC algorithm and proved
the convergence guarantees in 2-Wasserstein distance.
Zou et al. (2018) proposed a stochastic variance-reduced
HMC algorithm and proved its convergence rate in 2-
Wasserstein distance. Li et al. (2018) analyzed the mean
square error of the HMC based algorithm for different
discretization schemes. Our work is focused on LMC
and is complementary to this line of research.

2The convergence of SGLD does not require the Hessian
Lipschitz condition. However, Dalalyan & Karagulyan (2017)
proved that the convergence rate of SGLD remains the same
even with additional Hessian Lipschitz condition.

1.3 NOTATION

We use [n] to denote the index set {1, . . . , n}. For a ran-
dom vector xk ∈ Rd, we denote its probability distri-
bution function by P (xk). The 2-Wasserstein distance
between two probability measures u and v is defined as
follows,

W2(u, v)

=

(
inf

ζ∈Γ(u,v)

∫

Rd×Rd
‖Xu −Xv‖22dζ(Xu,Xv)

)1/2

,

where the infimum is over all joint distributions ζ. We
use an = O(bn) to denote that an ≤ Cbn for some
constant C > 0 independent of n, and use an = Õ(bn)
to hide the logarithmic terms of bn. We also make use of
the notation an . bn (an & bn) if an is less than (larger
than) bn up to a constant. We use a∧b and a∨b to denote
min{a, b} and max{a, b} respectively .

2 ALGORITHM

In this section, we present our SVRG-LD+ algorithm,
which is displayed in Algorithm 1.

The algorithm contains multiple epochs. At the begin-
ning of the j-th epoch, we uniformly choose B samples
from all training data and obtain a gradient estimator:

g̃j = ∇fIj (x̃j) =
1

|Ij |
∑

i∈Ij
∇fi(x̃j), (2.1)

where |Ij | = B. At the l-th iteration in the j-th
epoch, we define the semi-stochastic gradient as gk =
∇fĨk(xk) − ∇fĨk(x̃j) + g̃j , where k = jm + l is the
total iteration of the algorithm, m is the length of each
epoch, and ∇fĨk(x) = 1/|Ĩk|

∑
i∈Ĩk ∇fi(x). Then we

perform the following update

xk+1 = xk − ηgk +
√

2ηεk,

where η is the step size and εk ∼ N(0, Id×d) is a Gaus-
sian random vector.

xk+1 = xk − ηgk +
√

2ηεk,

where η is the step size and εk ∼ N(0, Id×d) is a Gaus-
sian random vector.

It is worth noting that the major difference between
SVRG-LD+ and SVRG-LD (Dubey et al., 2016) is that
we replace the full gradient computation in the beginning
of each epoch with a subsampled one. On one hand,
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Table 1: Gradient complexity of gradient-based Monte Carlo algorithms in 2-Wasserstein distance for sampling from
log-smooth, log-Hessian-Lipschitz and strongly log-concave distributions. For the ease of comparison, we follow
Chatterji et al. (2018) that assumes n . dσ2/(µ2ε2) and treats 1/M and µ as constants of order O(1).

METHOD GRADIENT COMPLEXITY HESSIAN LIPSCHITZ
LMC (Dalalyan & Karagulyan, 2017) Õ

(
nκ2d1/2

ε

)
Yes

SGLD (Dalalyan, 2017) Õ
(
κ2dσ2

ε2

)
No2

SAGA-LD (Chatterji et al., 2018)3 Õ
(
n+ κ3/2n1/2d1/2

ε

)
Yes

SVRG-LD (Chatterji et al., 2018) Õ
(
n+ κ5/3n2/3d1/2

ε

)
Yes

SVRG-LD (this paper) Õ
(
n+ κ3/2n1/2d1/2

ε

)
Yes

SVRG-LD+ (this paper) Õ
((
n+ κ3/2n1/2d1/2

ε

)
∧ κ2dσ2

ε2

)
Yes

this leads to the consequence that the stochastic gradi-
ent gk is not an unbiased estimator of the true gradi-
ent∇f(x), which introduces extra error that poses addi-
tional challenge in the analysis. On the other hand, com-
pared with SVRG-LD, it saves gradient computations es-
pecially when the sample size n is large. Therefore, the
crucial idea of SVRG-LD+ is to make an appropriate
trade-off between extra error and saving gradient com-
putation, and the batch size B is a vital parameter which
should be carefully designed.

Algorithm 1 SVRG-LD+

1: input: initial point x0, step size η, batch size B,
mini-batch size b, epoch length m

2: initialization: x̃0 = x0

3: for j = 0, . . . , dK/me
4: Uniformly sample Ij ⊆ [n] with |Ij | = B
5: g̃j = ∇fIj (x̃j)
6: for l = 0, . . . ,m− 1
7: k = jm+ l
8: Uniformly sample Ĩk ⊆ [n] where |Ĩk| = b
9: gk = ∇fĨk(xk)−∇fĨk(x̃j) + g̃j

10: xk+1 = xk − ηgk +
√

2ηεk
11: end for
12: x̃j+1 = x(j+1)m−1

13: end for
14: output: xK

3 MAIN THEORY

In this section, we are going to present our main theo-
retical results on the convergence rate of Algorithm 1 in

3Different from the definition in (1.3), the finite-sum func-
tion f is defined as f =

∑n
i=1 fi(x) in Chatterji et al. (2018),

which leads to a difference in the results by a factor of n. To
make a fair comparison, we translate their results with the same
definition in (1.3).

2-Wasserstein distance. We will first establish the con-
vergence guarantees of Algorithm 1. Then, we will show
that SVRG-LD+ reduces to SVRG-LD when choosing
B = n, and our analysis leads to a sharp convergence
result of SVRG-LD that improves the recent result in
Chaudhari et al. (2016).

For the target distribution π ∝ e−f , we first lay down
the following assumptions on function f(x), which are
required in our analysis.

Assumption 3.1 (Smoothness). There exists a positive
constantM such that for each component function fi(x),
the following holds for all x,y ∈ Rd,

‖∇fi(x)−∇fi(y)‖2 ≤M‖x− y‖2.

Note that Assumption 3.1 immediately implies that the
function f is alsoM -smooth, and consequently the target
distribution π is M -log-smooth.

Assumption 3.2 (Strong convexity). There exists a pos-
itive constant µ such that for function f , the following
holds for all x,y ∈ Rd,

f(x) ≥ f(y) + 〈∇f(y),x− y〉+
µ

2
‖x− y‖22.

The above assumption states that function f is strongly
convex, which indicates that the distribution π ∝ e−f is
strongly log-concave.

Assumption 3.3 (Hessian Lipschitz). There exists a pos-
itive constant L such that for function f , the following
holds for all x,y ∈ Rd,

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2.

This assumption is essential and useful for proving a
faster convergence rate of Langevin Monte Carlo meth-
ods (Dalalyan & Karagulyan, 2017; Chatterji et al.,
2018).
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Assumption 3.4 (Bounded Variance). There exists a
constant σ, such that the following holds for all x ∈ Rd,

Ei[‖∇fi(x)−∇f(x)‖22] ≤ dσ2.

Assumption 3.4 is necessary and widely made in stochas-
tic Langevin dynamics based methods such as SGLD
(Dalalyan, 2017; Dalalyan & Karagulyan, 2017) and
SGHMC (Cheng et al., 2017). However, it should be
noted that this assumption is only required for the anal-
ysis of the SVRG-LD+ algorithm but not required for
SVRG-LD.

In what follows, we will present the convergence results
of Algorithm 1. Following the literature (Dalalyan, 2017;
Dalalyan & Karagulyan, 2017; Cheng & Bartlett, 2017;
Zou et al., 2018; Chatterji et al., 2018), we will focus
on the 2-Wasserstein distance between the target distri-
bution π ∝ e−f and the distribution of the k-th iterate in
Algorithm 1. Specifically, we have the following theo-
rem for SVRG-LD+.
Theorem 3.5. Under Assumptions 3.1-3.4, let P (xk)
denote the distribution of the k-th iterate xk in Algorithm
1. Set the step size η to satisfy

η ≤ min

{(
bµ

24M4m2

)1/3

,
1

6m(σ2/B +M)

}
.

The 2-Wasserstein distance between P (xk) and π is
bounded by

W2

(
P (xk), π

)

≤ (1− ηµ/4)kW2(P (x0), π) +
3σd1/2

µB1/2
1(B ≤ n)

+
2η(Ld+M3/2d1/2)

µ

+
4ηM(md)1/2 ∧ 3η1/2d1/2σ

(bµ)1/2
.

It is worth noting that the mini-batch size b and the batch
size B are two independent parameters in the algorithm
that can be chosen separately. In practice, one typically
chooses b � B (see for example, Harikandeh et al.
(2015); Lei & Jordan (2016); Chen et al. (2017) in or-
der to obtain a good convergence result. If we inten-
tionally choose b > B in the algorithm, the evaluation
of the semi-stochastic gradient will be even more ex-
pensive than that of the subsampled/full gradient in the
outer loop, which makes variance reduction techniques
no longer effective. The optimal choices of b and B in
two different regimes of sample size n will be specified
in the following corollaries.

Theorem 3.5 implies that in order to achieve ε accuracy
in 2-Wasserstein distance, the step size η should be set to

be sufficiently small, and the batch size B should be suf-
ficiently large. To address these requirements, we present
the following corollaries to show the optimal selections
of η and B, and compute the gradient complexity of
SVRG-LD+ under different regimes.

We first consider the regime where n & dσ2/(µ2ε2).

Corollary 3.6. Under the same assumptions as in The-
orem 3.5, suppose the sample size satisfies n &
dσ2/(µ2ε2), if we set B = O(dσ2µ−2ε−2), b = O(1),
m = O(B) and η = O(µε2/

(
dσ2)

)
, Algorithm 1

achieves ε accuracy in 2-Wasserstein distance after

T = Õ

(
dσ2

µ2ε2

)
(3.1)

stochastic gradient evaluations.

Remark 3.7. According to Corollary 3.6, if
n & dσ2/(µ2ε2), then the gradient complexity of
SVRG-LD+ in (3.1) matches that of SGLD (Dalalyan,
2017; Dalalyan & Karagulyan, 2017). Note that the gra-
dient complexities of LMC, SAGA-LD and SVRG-LD
are at least Õ(n) due to the use of full gradients, which
indicates that SVRG-LD+ achieves lower gradient
complexity than LMC, SAGA-LD and SVRG-LD in this
regime.

When the sample size satisfies n . dσ2/(µ2ε2), we
choose the batch sizeB to be n, i.e., compute the full gra-
dient in the beginning of each epoch in Algorithm 1. In
this regime, Algorithm 1 reduces to SVRG-LD (Dubey
et al., 2016), and its gradient complexity is characterized
by the following corollary.

Corollary 3.8. Under the same assumptions as in The-
orem 3.5, suppose the sample size satisfies n .
dσ2/(µ2ε2), if we set b = 1 and

η = min

{
µε

Ld+M2/3d1/2
,

µ1/2ε

Md1/2n1/2

}
,

SVRG-LD+ achieves ε-accuracy in 2-Wasserstein dis-
tance after

T = Õ

(
n+

Ld+M3/2d1/2

µ2ε
+
Md1/2n1/2

µ3/2ε

)
(3.2)

stochastic gradient evaluations.

Remark 3.9. According to Corollary 3.6, if n .
dσ2/(µ2ε2), following Chatterji et al. (2018), if we fur-
ther assume n & L2d/(M2µ) + κ, and treat 1/M and µ
as constants of order O(1), then the complexity in (3.2)
can be simplified as

T = Õ

(
n+

κ3/2d1/2n1/2

ε

)
.
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It is worth noting that in this regime, Algorithm 1 does
not need Assumption 3.4. Moreover, combining the re-
sults in Corollaries 3.6 and 3.8, the gradient complexity
of SVRG-LD+ can be derived as follows

Õ

((
n+

κ3/2n1/2d1/2

ε

)
∧ κ

2dσ2

ε2

)
, (3.3)

where O(1/µ2) = O(κ2/M2) = O(κ2) as 1/M =
O(1).
Remark 3.10. Corollary 3.8 essentially provides the
gradient complexity for SVRG-LD, which is lower than
that proved in Chatterji et al. (2018). Recall that their
target distribution takes the form

π ∝ exp

(
−

n∑

i=1

fi(x)

)
, exp

(
− F (x)

)
,

where the exponent term is different from our defini-
tion of f in (1.3) by a factor of 1/n. In order to make
their result comparable to ours, we translate their result
to the same definition of f in (1.3), which gives rise to
Õ
(
n + κ5/3n2/3d1/2/ε

)
gradient complexity of SVRG-

LD (Chatterji et al., 2018). It is evident that our result
improves the gradient complexity of SVRG-LD by a fac-
tor of (κn)1/6. Last but not the least, our proved gradi-
ent complexity of SVRG-LD matches that of SAGA-LD
(Chatterji et al., 2018), which suggests that SVRG-LD
and SAGA-LD enjoy the same performance.

4 PROOF OF THE MAIN THEORY

In this section we provide the proof for our main the-
ory. We first define an operator L derived from the
Langevin dynamics. Specifically, let x0 be any starting
position, and we denote by Ltx0 the random position
of the Markov process generated by Langevin dynam-
ics (1.1) after time t. Let xπ denote the random vari-
able that satisfies the stationary distribution π ∝ e−f . In
addition, we define ∆k = Lkηxπ − xk, where Lkη =

Lη ◦ Lη ◦ · · · ◦ Lη = Lkη due to the Markov property of
L. Then the following holds trivially

∆k+1 = Lk+1
η xπ − xk+1

= Lkηxπ − xk + Lk+1
η xπ − Lkηxπ − (xk+1 − xk).

Consider two synchronously coupled Markov processes
Lkηxπ and xk which have shared Brownian motion term
in updatesLkηxπ → Lk+1

η xπ and xk → xk+1, we further
have

∆k+1 = ∆k + ηgk −
∫ η

0

∇f(Lkη+txπ)dt

= ∆k + η
(
gk −∇f(xk)

)
− η(∇f(Lkηxπ)−∇f(xk))

−
∫ η

0

(
∇f(Lkη+txπ)−∇f(Lkηxπ)

)
dt

= ∆k + ηΦk − ηUk − Sk − Vk, (4.1)

where we define

Φk = gk −∇f(xk),

Uk = ∇f(Lkηxπ)−∇f(xk),

Sk =
√

2

∫ η

0

∫ t

0

∇2f(Lkη+sx
π)dBsdt,

Vk =

∫ η

0

(
∇f(Lkη+tx

π)−∇f(Lkηxπ)
)
dt− Sk.

Note that in Algorithm 1, the semi-stochastic gradient gk
has the following property

E[gk|x̃j ] = E[∇fĨk(xk)−∇fĨk(x̃j) +∇fIj (x̃j)|x̃j ]
= E[∇f(xk)−∇f(x̃j) +∇fIj (x̃j)].

Then we can decompose Φk as follows

Φk = gk −∇f(xk)

= ∇fĨk(xk)−∇fĨk(x̃j)−
(
∇f(xk)−∇f(x̃j)

)
︸ ︷︷ ︸

Ψk

+
(
∇fIj (x̃j)−∇f(x̃j)︸ ︷︷ ︸

ej

)
. (4.2)

Submitting the above equation into (4.1) yields

∆k+1 = ∆k − ηUk + ηΨk + ηej − Sk − Vk. (4.3)

Now, we have already obtained the recursive update of
∆k. In what follows, we will upper bound the `2-norm
of each term on the R.H.S of (4.3). To begin with, we
provide the following technical lemmas.
Lemma 4.1. (Dalalyan & Karagulyan, 2017) Under As-
sumptions 3.1 and 3.2, we have

E[‖∆k − ηUk‖22] ≤ (1− ηµ)2E[‖∆k‖22],

where η denotes the step size, µ is the strongly convex
parameter on function f(x).
Lemma 4.2. Under Assumptions 3.1 and 3.2, we have
the following upper bound on ‖Ψk‖22.

E[‖Ψk‖22]

≤ 4dσ2

b
∧ M

2

b

(
6m2η2M2E[‖∆jm‖22] +Gj

)
e2m2M2η2 ,

(4.4)

where

Gj = 6m2η2(E[‖ej‖22] +Md) + 2mdη.

Lemma 4.3. Under Assumption 3.4, ‖ej‖2 is bounded
as follows,

E[‖ej‖22] = E[‖∇fIj (x̃j)−∇f(x̃j)‖22] ≤ dσ2

B
.

In addition, if B = n, E[‖ej‖22] = 0.
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Lemma 4.4. (Dalalyan, 2017) Under Assumptions 3.1
and 3.3, regarding to terms Sk and Vk in (4.3), we have
the following uniformly upper bound on their `2-norms

E[‖Vk‖22] ≤ η4

2
(L2d2 +M3d),

E[‖Sk‖22] ≤ η3M2d

3
,

where M and L denotes the smoothness and Hessian
Lipschitz parameters respectively.

Now, we are ready to present the proof for Theorem 3.5.

Proof of Theorem 3.5. Note that

E[Ψk|xk,Lkηxπ,Lk+1
η xπ] = 0,

which immediately implies

E[‖∆k+1‖22]

= E[‖∆k − ηUk + ηej − Sk − Vk‖22] + η2E[‖Ψk‖22]

≤ (1 + α)E[‖∆k − ηUk − Sk‖22]

+ (1 + 1/α)E[‖ηej − Vk‖22] + η2E[‖Ψk‖22]

= (1 + α)E[‖∆k − ηUk‖22 + ‖Sk‖22]

+ (1 + 1/α)E[‖ηej − Vk‖22] + η2E[‖Ψk‖22],

≤ (1 + α)E[‖∆k − ηUk‖22 + ‖Sk‖22]

+ 2(1 + 1/α)E[η2‖ej‖22 + ‖Vk‖22] + η2E[‖Ψk‖22],

whereα > 0 is an arbitrary chosen parameter, the first in-
equality is by Young’s inequality, and the second equal-
ity follows from the fact E[Sk|∆k,Uk] = 0. Applying
Lemmas 4.1 and 4.2, we have

E[‖∆k+1‖22]

≤ (1 + α)(1− ηµ)2E[‖∆k‖22] + (1 + α)E[‖Sk‖22]

+ 2(1 + 1/α)E[η2‖ej‖22 + ‖Vk‖22] + η2E[‖Ψk‖22

≤
[
(1 + α)(1− ηµ)2 +

6η4M4m2

b
e2η2m2M2

]

×max
{
E[‖∆k‖22],E[‖∆jm‖22]

}
+ Ω1 + Ω2,

(4.5)

where

Ω1 = (1 + α)E[‖Sk‖22]

+ 2(1 + 1/α)E[η2‖ej‖22 + ‖Vk‖22],

Ω2 =
4dσ2η2

b
∧ M

2η2Gj
b

e2m2M2η2 . (4.6)

Note that the step size η satisfies η ≤
min

{
(bµ/(24M4m2))1/3, 1/(6mσ2/B +

6mM)
}

, we have exp(2m2M2η2) ≤ 2 and

6η4M4m2 exp(2m2M2η2)/b ≤ ηµ/2. We choose
α = ηµ, which implies (1 + α)(1 − ηµ)2 ≤ 1 − ηµ.
Thus, (4.5) can be further rewritten as follows,

E[‖∆k+1‖22] ≤ (1− ηµ/2) max
{
E[‖∆k‖22],E[‖∆jm‖22]

}

+ Ω1 + Ω2. (4.7)

In order to obtain the upper bound of E[‖∆k‖22], we need
to recursively call (4.7). Note that since jm ≤ k, the
number of calls to (4.7) must be smaller than k, thus we
have

E[‖∆k‖22] ≤ (1− ηµ/2)kE[‖∆0‖22‖] +
Ω1 + Ω2

ηµ/2
.

(4.8)

In what follows, we are going to upper bound Ω1 and Ω2.
Note that m ≥ 1 and M ≥ µ, we have ηµ ≤ 1. Then by
the application of Lemmas 4.3 and 4.4, we have

Ω1 ≤
(1 + α)η3M2d

3
+ 2(1 + 1/α)

×
(
η2dσ2

B
1(B < n) +

η4(L2d2 +M3d)

2

)

≤ 2η3M2d

3
+

4ηdσ2

Bµ
+

2η3(L2d2 +M3d)

µ
,

Ω2 ≤
4dσ2η2

b
∧ 6M2mdη3

b
.

Then we substitute the above upper bounds of Ω1 and Ω2

into (4.8), and obtain

E[‖∆k‖22]

≤ (1− ηµ/2)kE[‖∆0‖22‖] +
Ω1 + Ω2

ηµ/2

≤ (1− ηµ/2)kE[‖∆0‖22‖] +
8dσ2

Bµ2
1(B < n)

+
4η2(L2d2 +M3d)

µ2
+

14η2mM2d

bµ
∧ 8dσ2η

bµ
.

Based on the definition of 2-Wasserstein distance, we
have W2

2

(
P (xk), π

)
≤ E[‖∆k‖22]. Applying the in-

equality that x2 + y2 + z2 ≤ (|x| + |y| + |z|)2 for all
x, y, z ∈ R, we complete the proof of Theorem 3.5.

5 EXPERIMENTS

In this section, we are going to verify our theoretical re-
sults and evaluate the performances of different Langevin
based algorithms on both synthetic and real datasets.

5.1 SIMULATION ON SYNTHETIC DATA

We first validate our theoretical results based on synthetic
data. In this simulation, we consider function f(x) =
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Figure 1: Comparison of different algorithms, where y-axis represents the 2-Wasserstein distance computed based on
synthetic data, and x-axis is the number of data passes. (a) - (d) represent different sample sizes n.
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Figure 2: Comparison of SVRG-LD+ with different
batch size B, where y-axis represents the 2-Wasserstein
distance computed based on synthetic data, and x-axis is
the number of data passes. (a) and (b) represent different
sample sizes n.

1/n
∑n
i=1 fi(x) = 1/n

∑n
i=1(x − θi)>Σ(x − θi)/2,

where Σ is a symmetric matrix having largest eigenvalue
M = 2 and smallest eigenvalue µ = 1/2, and θi is
drawn from standard multivariate Gaussian distribution.

We first compare the convergence rates of four differ-
ent algorithms (i.e., SGLD, SVRG-LD, SAGA-LD and
SVRG-LD+) to the target distribution in 2-Wasserstein
distance, which are reported in Figure 1. It can be seen
that there is no obvious difference between the conver-
gence rates of SAGA-LD and SVRG-LD, which verifies
our theoretical result of SVRG-LD. Moreover, Figures
1(a) and 1(b) demonstrate that the best choice of B is
B = n when the sample size n is small, while Figures
1(c) and 1(d) show that using subsampled gradient g̃ in
SVRG-LD+ (i.e., B < n) is able to improve the perfor-
mance of SVRG-LD when n is relatively large. This is
well aligned with our theoretical analysis that the optimal
batch size B is in the order of O(dσ2/(εµ)2 ∧ n).

In Figure 2, we further compare different choices of
batch size B in SVRG-LD+ when n is large. Note that
since the optimal batch size B = n when the sample
size is small, we only perform this experiment on the
synthetic datasets with big sample size n = 20000 and
n = 50000. It can be inferred from Figure 2 that if we
set ε = 10−2, the optimal B in SVRG-LD+ for datasets

with sample sizes n = 20000 and n = 50000 are both
B = 20000/2 = 50000/5 = 10000. This phenomenon
agrees with our theory that for a large n & dσ2/(εµ)2,
the optimal batch size B = O(dσ2/(εµ)2) is indepen-
dent of n.

5.2 BAYESIAN LOGISTIC REGRESSION

We also collaborate our theoretical results with Bayesian
logistic regression. Suppose we are given a dataset with
n examples {Xi,yi}i=1,2,...,n, where Xi ∈ Rd de-
notes the d-dimensional feature of the i-th sample, and
yi ∈ {−1, 1} denotes the corresponding binary label. In
Bayesian logistic regression, we assume that the input
examples are independent, then the probability distribu-
tion of yi given features Xi and regression coefficients
β ∈ Rd has the following form

p(yi|Xi,β) =
1

1 + e−yiβ>Xi
.

Moreover, the prior of β is typically modelled as a
Gaussian distribution with zero mean (Dubey et al.,
2016; Chatterji et al., 2018), i.e., β ∼ N(0, λId×d).
Then we apply the Langevin based method to sample
from the posterior distribution of β, i.e., p(β|X,y) ∝
p(β)

∏n
i=1 p(yi|Xi,β), which implies that the compo-

nent function fi(β) can be written as

fi(β) = n log
(
1 + e−yiβXi

)
+
‖β‖22
λ

.

We apply the Langevin based algorithm to four datasets:
pima, mushroom, a9a and ijcnn1, which are available at
UCI repository4 and Libsvm website5. It is worth not-
ing that pima and mushroom do not have test datasets
like a9a and ijcnn1, thus we manually partition them
into train and test datasets. The basic information of all
the datasets is summarized in Table 2. Again, we evalu-
ate the performance of four different algorithms: SGLD,

4https://archive.ics.uci.edu/ml/
5https://www.csie.ntu.edu.tw/˜cjlin/

libsvmtools/datasets/
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Figure 3: Comparison of different algorithms for Bayesian logistic regression, where y axis shows the negative log-
likelihood on the test data, and x axis is the number of data passes. (a)-(d) correspond to 4 datasets.
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Figure 4: Bayesian Logistic regression results of SVRG-LD+ using different batch size B, where y axis shows the
negative log-likelihood on the test data, and x axis is the number of data passes. (a)-(d) correspond to 4 datasets.

SVRG-LD, SAGA-LD and SVRG-LD+, and perform
sample path average to estimate the optimal β, where
the minibatch size for each algorithm is set to be 1.

Figure 3 shows the negative log-likelihood of the test ex-
amples on these 4 datasets, where each algorithm has
been run 10 times to calculate the averaged result. It
can be seen that there exists a lag of one data pass for
SAGA-LD and SVRG-LD, since they need to scan the
entire dataset to compute a full gradient in the beginning.
As we can see from the results in Figure 3, SVRG-LD+

converges faster than the other methods, which vali-
dates the superior performance of SVRG-LD+. In detail,
SVRG-LD+ has a similar convergence rate as SAGA-LD
and SVRG-LD when n is small, e.g. datasets pima, and
performs close to SGLD for relatively large datasets, e.g.,
a9a and ijcnn1. This is also consistent with our theoret-
ical results, since the convergence rate of SVRG-LD+

matches that of SGLD when n & dσ2/(εµ)2.

Table 2: Summary of datasets for Bayesian logistic re-
gression.

Dataset pima mushroom a9a ijcnn1
# training 600 6000 32561 49990
# test 168 2124 16281 91701
d 8 112 123 22

Next, we evaluate the performance of SVRG-LD+ al-

gorithms when choosing different batch sizes B, which
are reported in Figure 4. It can be observed that when
the batch size is chosen appropriately, SVRG-LD+ con-
verges faster than SVRG-LD, but leading to a slightly
higher error. Based on these observations, we can con-
clude that for Bayesian logistic regression, SVRG-LD+

is more suitable than SVRG-LD when the dataset size is
relatively large, and the required accuracy is moderate.

6 CONCLUSIONS

We propose the SVRG-LD+ algorithm and analyze its
convergence rate in 2-Wasserstein distance when the tar-
get distribution is log-smooth, strongly log-concave and
log-Hessian-Lipschitz. Our result implies a sharper con-
vergence analysis of SVRG-LD that improves the state-
of-the-art. Experiments on synthetic and real data back
up the theoretical results of this paper.
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Abstract

We study finite-state controllers (FSCs) for par-
tially observable Markov decision processes
(POMDPs) that are provably correct with re-
spect to given specifications. The key in-
sight is that computing (randomised) FSCs
on POMDPs is equivalent to—and compu-
tationally as hard as—synthesis for paramet-
ric Markov chains (pMCs). This correspon-
dence allows to use tools for synthesis in pMCs
to compute correct-by-construction FSCs on
POMDPs for a variety of specifications. Our
experimental evaluation shows comparable per-
formance to well-known POMDP solvers.

1 INTRODUCTION

Partially Observable MDPs. We intend to provide guar-
antees for planning scenarios given by dynamical systems
with uncertainties. In particular, we want to synthesise
a strategy for an agent that ensures certain desired be-
haviour (Howard, 1960). A popular formal model for
planning subject to stochastic behaviour are Markov de-
cision processes (MDPs) (Puterman, 1994). An MDP
is a nondeterministic model in which the agent chooses
to perform an action under full knowledge of the envi-
ronment it is operating in. The outcome of the action is
a probability distribution over the system states. Many
applications, however, allow only partial observability
of the current system state (Kaelbling et al., 1998; Thrun
et al., 2005; Wongpiromsarn and Frazzoli, 2012; Russell
and Norvig, 2010). For such applications, MDPs are ex-
tended to partially observable Markov decision processes
(POMDPs). While the agent acts within the environment,
it encounters certain observations, according to which it

*Supported by the DFG RTG 2236 “UnRAVeL”.

can infer the likelihood of the system being in a certain
state. This likelihood is called the belief state. Executing
an action leads to an update of the belief state according
to new observations. The belief state together with an
update function form a (typically uncountably infinite)
MDP, referred to as the belief MDP (Shani et al., 2013).

The POMDP Synthesis Problem. For (PO)MDPs, a
randomised strategy is a function that resolves the non-
determinism by providing a probability distribution over
actions at each time step. In general, strategies depend on
the full history of the current evolution of the (PO)MDP. If
a strategy depends only on the current state of the system,
it is called memoryless. For MDPs, memoryless strategies
suffice to induce optimal values according to our mea-
sures of interest (Puterman, 1994). Contrarily, POMDPs
require strategies taking the full observation history into
account (Ross, 1983), e. g. in case of infinite-horizon ob-
jectives. Moreover, strategies inducing optimal values are
computed by assessing the entire belief MDP (Madani
et al., 1999; Braziunas, 2003; Szer and Charpillet, 2005;
Norman et al., 2017), rendering the problem undecid-
able (Chatterjee et al., 2016c).

POMDP strategies can be represented by infinite-state
controllers. For computational tractability, strategies are
often restricted to finite memory; this amounts to us-
ing randomised finite-state controllers (FSCs) (Meuleau
et al., 1999). We often refer to strategies as FSCs. Al-
ready the computation of a memoryless strategy adher-
ing to a specification is NP-hard, SQRT-SUM-hard, and
in PSPACE (Vlassis et al., 2012). While optimal val-
ues cannot be guaranteed, small memory in combination
with randomisation may superseed large memory in many
cases (Chatterjee et al., 2004; Amato et al., 2010).

Correct-by-Construction Strategy Computation. In
this paper, we synthesise FSCs for POMDPs. We re-
quire these FSCs to be provably correct for specifications
such as indefinite-horizon properties like expected reward
or reach-avoid probabilities. State-of-the-art POMDP
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Table 1: Correspondence
POMDP under FSC pMC

states × memory states
same observation same parameter
strategy parameter instantiation

solvers mainly consider expected discounted reward mea-
sures (Walraven and Spaan, 2017), which are a subclass
of indefinite horizon properties (Kolobov et al., 2012).

Our key observation is that for a POMDP the set of all
FSCs with a fixed memory bound can be succinctly rep-
resented by a parametric Markov chain (pMC) (Daws,
2004). Transitions of pMCs are given by functions over
a finite set of parameters rather than constant probabil-
ities. The parameter synthesis problem for pMCs is to
determine parameter instantiations that satisfy (or refute)
a given specification. We show that the pMC parame-
ter synthesis problem and the POMDP strategy synthesis
problem are equally hard. This correspondence not only
yields complexity results (Hutschenreiter et al., 2017), but
particularly enables using a plethora of methods for pa-
rameter synthesis implemented in sophisticated and opti-
mised parameter synthesis tools like PARAM (Hahn et al.,
2010), PRISM (Kwiatkowska et al., 2011), and PROPh-
ESY (Dehnert et al., 2015). They turn out to be competi-
tive alternatives to dedicated POMDP solvers. Moreover,
as we are solving slightly different problems, our methods
are orthogonal to, e. g., PRISM-POMDP (Norman et al.,
2017) and solve-POMDP (Walraven and Spaan, 2017).

We detail our contributions and the structure of the paper,
which starts with necessary formalisms in Sect. 2. A
longer version of the paper (Junges et al., 2017) contains
some additional material.

Section 3: We establish the correspondence of POMDPs
and pMCs, see Tab. 1. The product of a POMDP and an
FSC yields a POMDP with state-memory pairs, which
we map to states in the pMC. If POMDP states share
observations, the corresponding pMC states share param-
eters at emanating transitions. A strategy of the POMDP
corresponds to a parameter instantiation in the pMC.
Section 4: We show the opposite direction, namely a
transformation from pMCs to POMDPs. This result es-
tablishes that the synthesis problems for POMDPs and
pMCs are equally hard. Technically, we identify the prac-
tically relevant class of simple pMCs, which coincides
with POMDPs under memoryless strategies.
Section 5: Typical restrictions on parameter instantia-
tions concern whether parameters may be assigned the
probability zero. We discuss effects of such restrictions
to the resulting POMDP strategies.
Section 6: We evaluate the computation of correct-by-

construction FSCs using pMC synthesis techniques. To
that end, we explain how particular parameter synthesis
approaches deliver optimal or near-optimal FSCs. Then,
we evaluate the approach on a range of typical POMDP
benchmarks. We observe that often a small amount of
memory suffices. Our approach is competitive to state-of-
the-art POMDP solvers and is able to synthesise small,
almost-optimal FSCs.

Related Work. In addition to the cited works, (Meuleau
et al., 1999) uses a branch-&-bound method to find opti-
mal FSCs for POMDPs. A SAT-based approach computes
FSCs for qualitative properties (Chatterjee et al., 2016a).
For a survey of decidability results and algorithms for
broader classes of properties refer to (Chatterjee et al.,
2016c,b). Work on parameter synthesis (Hutschenreiter
et al., 2017; Filieri et al., 2011) might contain additions
to the methods considered here.

2 PRELIMINARIES

A probability distribution over a finite or countably in-
finite set 𝑋 is a function 𝜇 : 𝑋 → [0, 1] ⊆ R with∑︀
𝑥∈𝑋 𝜇(𝑥) = 𝜇(𝑋) = 1. The set of all distributions

on 𝑋 is Distr(𝑋). The support of a distribution 𝜇 is
supp(𝜇) = {𝑥 ∈ 𝑋 |𝜇(𝑥) > 0}. A distribution is Dirac
if |supp(𝜇)| = 1.

Let 𝑉 = {𝑝1, . . . , 𝑝𝑛} be a finite set of parameters over
the domain R and let Q[𝑉 ] be the set of multivariate
polynomials over 𝑉 . An instantiation for 𝑉 is a function
𝑢 : 𝑉 → R. Replacing each parameter 𝑝 in a polynomial
𝑓 ∈ Q[𝑉 ] by 𝑢(𝑝) yields 𝑓 [𝑢] ∈ R.

Decision problems can be considered as languages de-
scribing all positive instances. A language 𝐿1 ⊆ {0, 1}*
is polynomial (many-one or Karp) reducible to 𝐿2 ⊆
{0, 1}*, written 𝐿1 6𝑃 𝐿2, if there exists a polynomial-
time computable function 𝑓 : {0, 1}* → {0, 1}* such that
for all 𝑤 ∈ {0, 1}*, 𝑤 ∈ 𝐿1 ⇐⇒ 𝑓(𝑤) ∈ 𝐿2. Polyno-
mial reductions are essential to define complexity classes,
cf. (Papadimitriou, 1994).

2.1 PARAMETRIC MARKOV MODELS

Definition 1 (pMDP) A parametric Markov decision pro-
cess (pMDP) 𝑀 is a tuple 𝑀 = (𝑆, 𝑠I,Act , 𝑉,𝒫) with
a finite (or countably infinite) set 𝑆 of states, initial state
𝑠I ∈ 𝑆, a finite set Act of actions, a finite set 𝑉 of param-
eters, and a transition function 𝒫 : 𝑆×Act ×𝑆 → Q[𝑉 ].

The available actions in 𝑠 ∈ 𝑆 are A(𝑠) = {𝑎 ∈ Act |
∃𝑠′ ∈ 𝑆 : 𝒫(𝑠, 𝑎, 𝑠′) ̸= 0}. W. l. o. g. we assume ∀𝑠, 𝑠′ ∈
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𝑆. ∀𝑎 ∈ Act . 𝑃 (𝑠, 𝑎, 𝑠′) ̸= 0∧𝑃 (𝑠, 𝑎, 𝑠′) ̸= 1⇒ ∃𝑠′′ ̸=
𝑠′. 𝑃 (𝑠, 𝑎, 𝑠′′) ̸= 0. We assume that pMDP 𝑀 contains
no deadlock states, i. e. A(𝑠) ̸= ∅ for all 𝑠 ∈ 𝑆. A path
of a pMDP 𝑀 is an (in)finite sequence 𝜋 = 𝑠0

𝑎0−→
𝑠1

𝑎1−→ · · · , where 𝑠0 = 𝑠I, 𝑠𝑖 ∈ 𝑆, 𝑎𝑖 ∈ A(𝑠𝑖), and
𝒫(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1) ̸= 0 for all 𝑖 ∈ N. For finite 𝜋, last(𝜋)
denotes the last state of 𝜋. The set of (in)finite paths of
𝑀 is Paths𝑀fin (Paths𝑀 ).

Definition 2 (MDP) A Markov decision process (MDP)
is a pMDP where 𝒫 : 𝑆 ×Act × 𝑆 → [0, 1] ⊆ R and for
all 𝑠 ∈ 𝑆 and 𝑎 ∈ A(𝑠),

∑︀
𝑠′∈𝑆 𝒫(𝑠, 𝑎, 𝑠′) = 1.

A (parametric) discrete-time Markov chain ((p)MC) is
a (p)MDP with |A(𝑠)| = 1 for all 𝑠 ∈ 𝑆. For a
(p)MC 𝐷, we may omit the actions and use the nota-
tion 𝐷 = (𝑆, 𝑠I, 𝑉, 𝑃 ) with a transition function 𝑃 of the
form 𝑃 : 𝑆 × 𝑆 → Q[𝑉 ].

Applying an instantiation 𝑢 : 𝑉 → R to a pMDP or pMC
𝑀 , denoted 𝑀 [𝑢], replaces each polynomial 𝑓 in 𝑀 by
𝑓 [𝑢]. 𝑀 [𝑢] is also called the instantiation of 𝑀 at 𝑢.
Instantiation 𝑢 is well-defined for 𝑀 if the replacement
yields probability distributions, i. e. if 𝑀 [𝑢] is an MDP or
an MC, respectively.

Strategies. To resolve the nondeterministic action
choices in MDPs, so-called strategies determine at each
state a distribution over actions to take. This decision may
be based on the history of the current path.

Definition 3 (Strategy) A strategy 𝜎 for (p)MDP 𝑀 is a
function 𝜎 : Paths𝑀fin → Distr(Act) s. t. supp

(︀
𝜎(𝜋)

)︀
⊆

Act
(︀
last(𝜋)

)︀
for all 𝜋 ∈ Paths𝑀fin . The set of all strate-

gies of 𝑀 is Σ𝑀 .

A strategy 𝜎 is memoryless if last(𝜋) = last(𝜋′) implies
𝜎(𝜋) = 𝜎(𝜋′) for all 𝜋, 𝜋′ ∈ Paths𝑀fin . It is deterministic
if 𝜎(𝜋) is a Dirac distribution for all 𝜋 ∈ Paths𝑀fin . A
strategy that is not deterministic is randomised.

A strategy 𝜎 for an MDP 𝑀 resolves all nondeterministic
choices, yielding an induced Markov chain𝑀𝜎 , for which
a probability measure over infinite paths is defined by the
cylinder set construction (Baier and Katoen, 2008).

Definition 4 (Induced Markov Chain) For an MDP
𝑀 = (𝑆, 𝑠I,Act ,𝒫) and a strategy 𝜎 ∈ Σ𝑀 , the MC
induced by𝑀 and 𝜎 is given by𝑀𝜎 = (Paths𝑀fin , 𝑠I, 𝑃

𝜎)
where:

𝑃𝜎(𝜋, 𝜋′) =

{︃
𝒫(last(𝜋), 𝑎, 𝑠′) · 𝜎(𝜋)(𝑎) if 𝜋′ = 𝜋𝑎𝑠′,
0 otherwise.

2.2 PARTIAL OBSERVABILITY

Definition 5 (POMDP) A partially observable MDP
(POMDP) is a tuple ℳ = (𝑀,𝑍,𝑂), with 𝑀 =
(𝑆, 𝑠I,Act ,𝒫) the underlying MDP ofℳ, 𝑍 a finite set
of observations and 𝑂 : 𝑆 → 𝑍 the observation function.

We require that states with the same observations have the
same set of enabled actions, i. e. 𝑂(𝑠) = 𝑂(𝑠′) implies
A(𝑠) = A(𝑠′) for all 𝑠, 𝑠′ ∈ 𝑆. We define A(𝑧) = A(𝑠)
if 𝑂(𝑠) = 𝑧. More general observation functions (Roy
et al., 2005; Shani et al., 2013) take the last action into
account and provide a distribution over 𝑍. There is a
transformation of the general case to the POMDP defi-
nition used here that blows up the state space polynomi-
ally (Chatterjee et al., 2016b). In Fig. 1(a), a fragment
of the underlying MDP of a POMDP has two different
observations, indicated by the state colouring.

We lift the observation function to paths: For 𝜋 = 𝑠0
𝑎0−→

𝑠1
𝑎1−→ · · · 𝑠𝑛 ∈ Paths𝑀fin , the associated observation

sequence is 𝑂(𝜋) = 𝑂(𝑠0)
𝑎0−→ 𝑂(𝑠1)

𝑎1−→ · · ·𝑂(𝑠𝑛).
Several paths in the underlying MDP may yield the same
observation sequence. Strategies have to take this re-
stricted observability into account.

Definition 6 An observation-based strategy 𝜎 for a
POMDP ℳ is a strategy for the underlying MDP 𝑀
such that 𝜎(𝜋) = 𝜎(𝜋′) for all 𝜋, 𝜋′ ∈ Paths𝑀fin with
𝑂(𝜋) = 𝑂(𝜋′). Σℳ is the set of observation-based
strategies forℳ.

An observation-based strategy selects actions based on ob-
servations along a path and the past actions. Applying the
strategy to a POMDP yields an induced MC as in Def. 4,
resolving all nondeterminism and partial observability. To
represent observation-based strategies with finite memory,
we define finite-state controllers (FSCs). A randomised
observation-based strategy for a POMDPℳ with (finite)
𝑘 memory is represented by an FSC 𝒜 with 𝑘 memory
nodes. If 𝑘 = 1, the FSC describes a memoryless strategy.
We often refer to observation-based strategies as FSCs.

Definition 7 (FSC) A finite-state controller (FSC) for a
POMDPℳ is a tuple 𝒜 = (𝑁,𝑛I, 𝛾, 𝛿), where 𝑁 is a
finite set of memory nodes, 𝑛I ∈ 𝑁 is the initial memory
node, 𝛾 is the action mapping 𝛾 : 𝑁 × 𝑍 → Distr(Act),
and 𝛿 is the memory update 𝛿 : 𝑁×𝑍×Act → Distr(𝑁).
The set FSCℳ𝑘 denotes the set of FSCs with 𝑘 mem-
ory nodes, called 𝑘-FSCs. Let 𝜎𝒜 ∈ Σℳ denote the
observation-based strategy represented by 𝒜.

From a node 𝑛 and the observation 𝑧 in the current state
of the POMDP, the next action 𝑎 is chosen from A(𝑧)
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⟨𝑠3, 𝑛1⟩

⟨𝑠3, 𝑛2⟩

⟨𝑠5, 𝑛1⟩

⟨𝑠5, 𝑛2⟩
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0.15
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0.1
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(c) Induced MCℳ𝜎𝒜

Figure 1: (a) The POMDPℳ with observations𝑂(𝑠1) =
𝑂(𝑠3) = 𝑧0 (white) and 𝑂(𝑠2) = 𝑂(𝑠4) = 𝑂(𝑠5) = 𝑧1
(red). (b) The associated (partial) FSC𝒜 has two memory
nodes. (c) A part of MCℳ𝜎𝒜 induced byℳ and 𝒜.

randomly as given by 𝛾(𝑛, 𝑧). Then, the successor node
of the FSC is determined randomly via 𝛿(𝑛, 𝑧, 𝑎).

Example 1 Fig. 1(b) shows an excerpt of an FSC 𝒜 with
two memory nodes. From node 𝑛1, the action mapping
distinguishes observations 𝑧0 and 𝑧1. The solid dots in-
dicate a probability distribution from Distr(Act). For
readability, all distributions are uniform and we omit the
action mapping for node 𝑛2.

Now recall the POMDP ℳ from Fig. 1(a). The in-
duced MC ℳ𝜎𝒜 is shown in Fig. 1(c). Assume ℳ is
in state 𝑠1 and 𝒜 in node 𝑛1. Based on the observa-
tion 𝑧0 := 𝑂(𝑠1), 𝜎𝒜 chooses action 𝑎1 with probability
𝛿(𝑛1, 𝑧0)(𝑎1) = 0.5 leading to the probabilistic branch-
ing in the POMDP. With probability 0.6,ℳ evolves to
state 𝑠2. Next, the FSC 𝒜 updates its memory node;
with probability 𝛿(𝑛1, 𝑧0, 𝑎1)(𝑛1) = 0.5, 𝒜 stays in 𝑛1.
The corresponding transition from ⟨𝑠1, 𝑛1⟩ to ⟨𝑠2, 𝑛1⟩ in
ℳ𝜎𝒜 has probability 0.5 · 0.6 · 0.5 = 0.15.

2.3 SPECIFICATIONS

For a POMDP ℳ, a set 𝐺 ⊆ 𝑆 of goal states, a set
𝐵 ⊆ 𝑆 of bad states, and a threshold 𝜆 ∈ [0, 1), we
consider quantitative reach-avoid specifications 𝜙 =
P>𝜆(¬𝐵 U 𝐺). The specification 𝜙 is satisfied for a
strategy 𝜎 ∈ Σℳ if the probability Prℳ

𝜎

(¬𝐵 U 𝐺) of
reaching a goal state inℳ𝜎 without entering a bad state
in between exceeds 𝜆, denoted byℳ𝜎 |= 𝜙. The task is
to compute such a strategy provided that one exists. For
an MDP 𝑀 , there is a memoryless deterministic strategy
inducing the maximal probability Pr𝑀max(¬𝐵 U 𝐺) (Con-
don, 1992). For a POMDP ℳ, however, observation-
based strategies with infinite memory as in Def. 6 are

⟨𝑠1, 𝑛1⟩
𝑝

0.6

0.4

⟨𝑠2, 𝑛1⟩

⟨𝑠2, 𝑛2⟩

⟨𝑠3, 𝑛1⟩

⟨𝑠3, 𝑛2⟩

𝑞1

1−𝑞1

𝑞1

1−𝑞1

(a) Induced pMC

Act 𝒫 Node Result

𝑎1 : 𝑝
0.6 𝑛1 : 𝑞1 0.6 · 𝑝 · 𝑞1

𝑛2 : 1− 𝑞1 0.6 · 𝑝 · (1− 𝑞1)
0.4 𝑛1 : 𝑞1 0.4 · 𝑝 · 𝑞1

𝑛2 : 1− 𝑞1 0.4 · 𝑝 · (1− 𝑞1)

𝑎2 : 1− 𝑝
0.7 𝑛1 : 𝑞2 0.7 · (1− 𝑝) · 𝑞2

𝑛2 : 1− 𝑞2 0.7 · (1− 𝑝) · (1− 𝑞2)
0.3 𝑛1 : 𝑞2 0.3 · (1− 𝑝) · 𝑞2

𝑛2 : 1− 𝑞2 0.3 · (1− 𝑝) · (1− 𝑞2)

(b) Parameterised transition probabilities

Figure 2: Induced parametric Markov chain for FSCs.

necessary (Ross, 1983) to attain Prℳmax(¬𝐵 U 𝐺). The
problem of proving the satisfaction of 𝜙 is therefore un-
decidable (Chatterjee et al., 2016c). In our experiments,
we also use undiscounted expected reachability reward
properties (Baier and Katoen, 2008).

3 FROM POMDPS TO PMCS

Our goal is to make pMC synthesis methods available
for POMDPs. In this section we provide a transforma-
tion from a POMDPℳ to a pMC 𝐷. We consider the
following decision problems.

Problem 1 (∃k-FSC ) Given a POMDPℳ, a specifica-
tion 𝜙, and a (unary encoded) memory bound 𝑘 > 0, is
there a 𝑘-FSC 𝒜 withℳ𝜎𝒜 |= 𝜙?

Problem 2 (∃INST ) For a pMC𝐷 and a specification 𝜙,
does a well-defined instantiation 𝑢 exist s.t. 𝐷[𝑢] |= 𝜙?

Theorem 1 ∃𝑘-FSC 6𝑃 ∃INST.

The remainder of the section outlines the proof, the
converse direction is addressed in Sect. 4. Consider a
POMDP ℳ, a specification 𝜙, and a memory bound
𝑘 > 0 for which ∃𝑘-FSC is to be solved. The degrees
of freedom to select a 𝑘-FSC are given by the possible
choices for 𝛾 and 𝛿. For each 𝛾 and 𝛿, we get a different
induced MC, but these MCs are structurally similar and
can be represented by a single pMC.

Example 2 Recall Fig. 1 and Ex. 1. The action map-
ping 𝛾 and the memory update 𝛿 have arbitrary but fixed
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probability distributions. For 𝑎1, we represent the prob-
ability 𝛾(𝑛1, 𝑧0)(𝑎1) =: 𝑝 by 𝑝 ∈ [0, 1]. The mem-
ory update yields 𝛿(𝑛1, 𝑧0, 𝑎1)(𝑛1) =: 𝑞1 ∈ [0, 1] and
𝛿(𝑛1, 𝑧0, 𝑎1)(𝑛2) =: 1−𝑞1, respectively. Fig. 2(a) shows
the induced pMC for action choice 𝑎1. For instance, the
transition from ⟨𝑠1, 𝑛1⟩ to ⟨𝑠2, 𝑛1⟩ is labelled with poly-
nomial 𝑝 · 0.6 · 𝑞1.
We collect all polynomials for observation 𝑧0 in Fig. 2(b).
The result column describes a parameterised distribution
over tuples of states and memory nodes. Thus, instantia-
tions for these polynomials need to sum up to one.

As the next step, we define the pMC that results from
combining a 𝑘-FSC with a POMDP. The idea is to assign
parameters as arbitrary probabilities to action choices.
Each observation has one remaining action given by a
mapping Remain : 𝑍 → Act . Remain(𝑧) ∈ A(𝑧) is the
action to which, after choosing probabilities for all other
actions in A(𝑧), the remaining probability is assigned. A
similar principle holds for the remaining memory node.

Definition 8 (Induced pMC for a 𝑘-FSC on POMDPs)
Let ℳ = (𝑀,𝑍,𝑂) be a POMDP with
𝑀 = (𝑆, 𝑠I,Act ,𝒫) and let 𝑘 > 0 be a memory bound.
The induced pMC 𝐷ℳ,𝑘 = (𝑆ℳ,𝑘, 𝑠I,ℳ,𝑘, 𝑉ℳ,𝑘, 𝑃ℳ,𝑘)
is defined by:

∙ 𝑆ℳ,𝑘 = 𝑆 × {0, . . . , 𝑘 − 1}, 𝑠I,ℳ,𝑘 = ⟨𝑠I, 0⟩,
∙ 𝑉ℳ,𝑘 =

{︀
𝑝𝑧,𝑛𝑎

⃒⃒
𝑧 ∈ 𝑍, 𝑛 ∈ {0, . . . , 𝑘 − 1},

𝑎 ∈ A(𝑧), 𝑎 ̸= Remain(𝑧)
}︀

∪
{︀
𝑞𝑧,𝑛𝑎,𝑛′

⃒⃒
𝑧 ∈ 𝑍, 𝑛, 𝑛′ ∈ {0, . . . , 𝑘 − 1},

𝑛′ ̸= 𝑘 − 1, 𝑎 ∈ A(𝑧)
}︀

,
∙ 𝑃ℳ,𝑘(𝑠, 𝑠′) =

∑︀
𝑎∈A(𝑠)𝐻(𝑠, 𝑠′, 𝑎) for all 𝑠, 𝑠′ ∈

𝑆′,

where 𝐻 : 𝑆ℳ,𝑘 × 𝑆ℳ,𝑘 × Act → R is for 𝑧 = 𝑂(𝑠)
defined by 𝐻

(︀
⟨𝑠, 𝑛⟩, ⟨𝑠′, 𝑛′⟩, 𝑎

)︀
=

𝒫(𝑠, 𝑎, 𝑠′) ·
{︃

𝑝𝑧,𝑛𝑎 , if 𝑎 ̸= Remain
(︀
𝑧
)︀

1− ∑︀
𝑏 ̸=𝑎

𝑝𝑧,𝑛𝑏 , if 𝑎 = Remain
(︀
𝑧
)︀
}︃

·
{︃

𝑞𝑧,𝑛𝑎,𝑛′ , if 𝑛′ ̸= 𝑘−1

1− ∑︀
�̄� ̸=𝑛′

𝑞𝑧,𝑛𝑎,�̄�, if 𝑛′ = 𝑘−1

}︃

.

Intuitively, 𝐻(𝑠, 𝑠′, 𝑎) describes the probability mass
from 𝑠 to 𝑠′ in the induced pMC that is contributed by
action 𝑎. The three terms correspond to the terms as seen
in the first three columns of Tab. 2(b).

Example 3 Consider the POMDP in Fig. 3(a) and let
𝑘 = 1. The induced pMC is given in Fig. 3(b). The three
actions from 𝑠0 have probability 𝑝1, 𝑝2, and 1−𝑝1−𝑝2 for
the remaining action 𝑎3. From the indistinguishable states
𝑠1, 𝑠3, actions have probability 𝑞 and 1−𝑞, respectively.

𝑠0 𝑠2
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𝑠3

𝑎1
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1
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1

1
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𝑠0 𝑠2
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𝑠3

𝑝1 · 1

𝑝2 · 0.5

𝑝2 · 0.5 +
(1− 𝑝1 − 𝑝2) · 1

𝑞

1− 𝑞

0.5 · 𝑞
1− 0.5 · 𝑞

1

(b) Induced pMC 𝐷ℳ,1

Figure 3: From POMDPs to pMCs (𝑘 = 1)

By construction, the induced pMC describes the set of all
induced MCs:

Theorem 2 (Correspondence Theorem) For POMDP
ℳ, memory bound 𝑘, and the induced pMC 𝐷ℳ,𝑘:
{︀
𝐷ℳ,𝑘[𝑢]

⃒⃒
𝑢 well-defined

}︀
=
{︀
ℳ𝜎𝒜

⃒⃒
𝒜 ∈ FSCℳ𝑘

}︀
.

In particular, every well-defined instantiation 𝑢 describes
an FSC 𝒜𝑢 ∈ FSCℳ𝑘 .

By the correspondence, we can thus evaluate an instan-
tiation of the induced pMC to assess whether the corre-
sponding 𝑘-FSC satisfies a given specification.

Corollary 1 Given an induced pMC 𝐷ℳ,𝑘 and a specifi-
cation 𝜙: For every well-defined instantiation 𝑢 of 𝐷ℳ,𝑘

and the corresponding 𝑘-FSC 𝒜𝑢 we have:
ℳ𝜎𝒜𝑢 |= 𝜙 ⇐⇒ 𝐷ℳ,𝑘[𝑢] |= 𝜙.

The number of parameters in the induced pMC 𝐷ℳ,𝑘 is
given by 𝒪

(︀
|𝑍| · 𝑘2 ·max𝑧∈𝑍 |A(𝑧)|

)︀
.

4 FROM PMCS TO POMDPS
(AND BACK AGAIN)

In the previous section we have shown that ∃k-FSC is
at least as hard as ∃INST. We now discuss whether both
problems are equally hard: The open question is whether
we can reduce ∃INST to ∃k-FSC.

A straightforward reduction maintains the states of the
pMC in the POMDP, or even yields a POMDP with the
same graph structure (the topology) as the pMC. The next
example shows that this naive reduction is impossible.

Example 4 In the pMC in Fig. 4 the parameter 𝑝 occurs
in two different distributions (at 𝑠0 and 𝑠2). For defining
a reduction where the resulting POMDP has the same
set of states, there are two options for the observation
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Figure 4: Non-simple pMC

function at the states 𝑠0 and 𝑠2: Either𝑂(𝑠0) = 𝑂(𝑠2) or
𝑂(𝑠0) ̸= 𝑂(𝑠2). The intuition is that every (parametric)
transition in the pMC corresponds to an action choice
in a POMDP. Then 𝑂(𝑠0) = 𝑂(𝑠2) is impossible as 𝑠0
and 𝑠2 have a different number of outgoing transitions
(outdegree). Adding a self-loop to 𝑠2 does not alleviate
the problem. Moreover, 𝑂(𝑠0) ̸= 𝑂(𝑠2) is impossible, as
a strategy could distinguish 𝑠0 and 𝑠2 and assign different
probabilities to 𝑝.

The pMC in the example is problematic as the parameters
occur at the outgoing transitions of states in different com-
binations. We restrict ourselves to an important subclass1

of pMCs which we call simple pMCs. A pMC is simple
if for all states 𝑠, 𝑠′, 𝑃 (𝑠, 𝑠′) ∈ Q ∪ {𝑝, 1 − 𝑝 | 𝑝 ∈ 𝑉 }.
Consequently, we can map states to parameters, and use
this map to define the observations. Then, the transfor-
mation from a POMDP to a pMC is the reverse of the
transformation from Def. 8. In the remainder, we detail
this correspondence. The correspondence also establishes
a construction to compute 𝑘-FSCs via parameter synthesis
on simple pMCs. Current tool-support (cf. Sect. 6) for
simple pMCs is more mature than for the more general
pMCs obtained via Def. 8.

Let simple-∃INST be the restriction of ∃INST to simple
pMCs. Similarly, let simple-∃1-FSC be a variant of ∃1-
FSC that only considers simple POMDPs.

Definition 9 (Binary/Simple POMDP) A POMDP is
binary, if |A(𝑠)| ≤ 2 for all 𝑠 ∈ 𝑆. A binary POMDP is
simple, if for all 𝑠 ∈ 𝑆

|A(𝑠)| = 2 =⇒ ∀𝑎 ∈ A(𝑠) ∃𝑠′ ∈ 𝑆 : 𝑃 (𝑠, 𝑎, 𝑠′) = 1.

We establish the following relation between the POMDP
and pMC synthesis problems, which asserts that the prob-
lems are equivalently hard.

Theorem 3 For any 𝐿1, 𝐿2 ∈ { ∃k-FSC, ∃1-FSC,
simple-∃1-FSC, simple-∃INST }, 𝐿1 6𝑃 𝐿2.

The proof is a direct consequence of the Lemmas 1-4
below, as well as the facts that every 1-FSC is a 𝑘-FSC,
and every simple POMDP is a POMDP.

1All pMC benchmarks from the PARAM webpage (PARAM
Website, 2015) are simple pMCs.
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(c) Binary POMDP
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(d) Simple POMDP
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(e) Simple pMC

Figure 5: POMDP↔ simple pMC

The induced pMC 𝐷ℳ,1 of a simple POMDPℳ is also
simple. Consequently, Sect. 3 yields:

Lemma 1 simple-∃1-FSC 6𝑃 simple-∃INST.

4.1 FROM SIMPLE PMCS TO POMDPS

Theorem 4 Every simple pMC𝐷 with 𝑛 states and𝑚 pa-
rameters is isomorphic to𝐷ℳ,1 for some simple POMDP
ℳ with 𝑛 states and 𝑚 observations.

We refrain from a formal proof: The construction is the
reverse of Def. 8, with observations {𝑧𝑝 | 𝑝 ∈ 𝑉𝐷}. In a
simple pMC, the outgoing transitions are either all param-
eter free, or of the form 𝑝, 1−𝑝. The parameter-free case
is transformed into a POMDP state with a single action
(and any observation). The parametric case is transformed
into a state with two actions with Dirac-distributions at-
tached. As observation we use 𝑧𝑝.

Lemma 2 simple-∃INST 6𝑃 simple-∃1-FSC.

4.2 MAKING POMDPS SIMPLE

We present a reduction from ∃1-FSC to simple-∃1-FSC
by translating a (possibly not simple) POMDP into a
binary POMDP and subsequently into a simple POMDP.
Examples are given in Fig. 5(a–e). We emphasise that our
construction only preserves the expressiveness of 1-FSCs.
Details are given in (Junges et al., 2017).

Lemma 3 ∃1-FSC 6𝑃 simple-∃1-FSC.
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𝑠0 𝑠1 𝑠2

(a) POMDP

𝑠0 𝑠1 𝑠2

𝑠0 𝑠1 𝑠2

(b) 2-Unfolding

Figure 6: Unfolding a POMDP for two memory states

4.3 FROM 𝐾-FSCS TO 1-FSCS

For a POMDPℳ and memory bound 𝑘>1, we construct
a POMDP ℳ𝑘 such that ℳ satisfies a specification 𝜙
under some 𝑘-FSC iffℳ𝑘 satisfies 𝜙 under some 1-FSC.

Definition 10 (𝑘-Unfolding) Letℳ = (𝑀,𝑍,𝑂) be a
POMDP with 𝑀 = (𝑆, 𝑠I,Act ,𝒫), and 𝑘 > 1. The
𝑘-unfolding ofℳ is the POMDPℳ𝑘 = (𝑀𝑘, 𝑍𝑘, 𝑂𝑘)
with 𝑀𝑘 = (𝑆𝑘, 𝑠I,𝑘,Act𝑘,𝒫𝑘) defined by:

∙ 𝑆𝑘 = 𝑆 × {0, . . . 𝑘−1}, 𝑠I,𝑘 = ⟨𝑠I, 0⟩,
∙ Act𝑘 = Act × {0, . . . , 𝑘−1}

∙ 𝒫𝑘
(︀
⟨𝑠, 𝑛⟩, ⟨𝑎, �̄�⟩, ⟨𝑠′, 𝑛′⟩

)︀
=

{︃
𝒫(𝑠, 𝑎, 𝑠′) 𝑛′ = �̄�,

0 else.

and 𝑍𝑘 = 𝑍 × {0, . . . , 𝑘−1}, 𝑂𝑘
(︀
⟨𝑠, 𝑛⟩

)︀
=
⟨︀
𝑂(𝑠), 𝑛

⟩︀
.

Intuitively,ℳ𝑘 stores the current memory node into its
state space. At state ⟨𝑠, 𝑛⟩ ofℳ𝑘, a 1-FSC can not only
choose between the available actions A(𝑠) inℳ but also
between different successor memory nodes.

Fig. 6 shows this process for 𝑘 = 2. All states of the
POMDP are copied once. Different observations allow to
determine in which copy of a state – and therefore, which
memory cell – we currently are. Additionally, all actions
are duplicated to model the option for a strategy to switch
the memory cell.

The induced pMC 𝐷ℳ𝑘,1 of the 𝑘-unfolding ofℳ has
the same topology as the induced pMC 𝐷ℳ,𝑘 ofℳ with
memory bound 𝑘. In fact, both pMCs have the same
instantiations.

Proposition 1 For POMDPℳ and memory bound 𝑘:

{𝐷ℳ𝑘,1[𝑢] | 𝑢 well-def.} = {𝐷ℳ,𝑘[𝑢] | 𝑢 well-def.}.

The intuition is that in both pMCs the parameter instanti-
ations reflect arbitrary probability distributions over the
same set of successor states. In the transition probability
function of the induced pMC 𝐷ℳ,𝑘 ofℳ we can also
substitute the multiplications of parameters 𝑝𝑧,𝑛𝑎 and 𝑞𝑧,𝑛𝑎,𝑛′

𝑠0 𝑠1
𝑎1𝑎2

Figure 7: MDPℳ

by single parameters. This transformation yields a substi-
tuted induced pMC which is isomorphic to the induced
pMC 𝐷ℳ𝑘,1 of the 𝑘-unfolding ofℳ. Details are given
in (Junges et al., 2017).

Proposition 1 and Thm. 2 imply that induced MCs ofℳ
under 𝑘-FSCs coincide with induced MCs ofℳ𝑘 under 1-
FSCs: {ℳ𝜎𝒜 | 𝒜 ∈ FSCℳ𝑘 } = {ℳ𝜎𝒜

𝑘 | 𝒜 ∈ FSCℳ1 }.

Lemma 4 ∃k-FSC 6𝑃 ∃1-FSC.

5 STRATEGY RESTRICTIONS

Two simplifying restrictions on the parameters are usually
made in parameter synthesis for pMCs:

∙ Each transition is assigned a strictly positive proba-
bility (graph-preserving).
∙ Each transition is assigned at least probability 𝜀 > 0

(𝜀-preserving).

For simple pMCs, the restrictions correspond to parame-
ters instantiations over (0, 1) or [𝜀, 1− 𝜀], respectively.

Accordingly, we define restrictions to POMDP strategies
that correspond to such restricted parameter instantiations.

Definition 11 (Non-zero Strategies) A strategy 𝜎 is
non-zero if 𝜎(𝜋)(𝑎) > 0 for all 𝜋 ∈ Paths𝑀fin , 𝑎 ∈
A(last(𝜋)), and min-𝜀 if additionally 𝜎(𝜋)(𝑎) ≥ 𝜀 > 0.

Non-zero strategies enforce supp(𝜎(𝑠)) = A(𝑠). Exam-
ple 5 shows the impact on reachability probabilities.

Example 5 The MDP 𝑀 in Fig. 7 has a choice between
actions 𝑎1 and 𝑎2 at state 𝑠0. If action 𝑎1 is chosen
with probability zero, the probability to reach 𝑠1 from 𝑠0
becomes zero, and the corresponding parameter instanti-
ation is not graph-preserving. Contrarily, if 𝑎1 is chosen
with any positive probability, as would be enforced by a
non-zero strategy, the probability to reach 𝑠1 is one.

Proposition 2 Letℳ be a POMDP. An instantiation 𝑢
on 𝐷ℳ,1 is graph-preserving (𝜀-preserving), iff 𝜎𝒜𝑢 is
non-zero (min-𝜀).

Still, for the considered specifications, we can, w. l. o. g.,
restrict ourselves to FSCs that induce non-zero strategies.
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Theorem 5 Letℳ be a POMDP, 𝑘 a memory bound and
𝜙 = P>𝜆(¬𝐵 U 𝐺). Either ∀𝒜 ∈ 𝑘-FSC : ℳ𝜎𝒜 ̸|= 𝜙
or ∃𝒜′ ∈ 𝑘-FSC :ℳ𝜎𝒜′ |= 𝜙 with 𝜎𝒜′ non-zero.

The statement is shown in (Junges et al., 2017) by consid-
ering the corresponding pMC.

6 EMPIRICAL EVALUATION

We established the correspondence between the synthesis
problems for POMDPs and pMCs. Now, we discuss the
available methods for pMC parameter synthesis, and how
they may be exploited or adapted to synthesise FSCs. We
distinguish three key problems:

1. Find a correct-by-construction strategy for a
POMDP and a specification. To construct such a strategy,
one needs to find a parameter valuation for the pMC that
provably satisfies the specification. Most solution tech-
niques focused on pMCs with a few parameters, rendering
the problem at hand infeasible. Recently, efficient ap-
proaches emerged that are either based on particle swarm
optimisation (PSO) (Chen et al., 2013) or on convex opti-
misation (Amato et al., 2010; Cubuktepe et al., 2017), in
particular using quadratically-constrained quadratic pro-
gramming (QCQP) (Cubuktepe et al., 2018). We employ
PSO and QCQP for our evaluation.

2. Prove that no FSC exists for a POMDP and a spec-
ification. Proving the absence of an FSC with the given
memory bound allows us to show 𝜀-optimality of a pre-
viously synthesised strategy. Two approaches exist: An
approximative technique called parameter lifting (Quat-
mann et al., 2016) and a method based on SAT-modulo-
theories (SMT) solving (de Moura and Bjørner, 2008).

3. Provide a closed-form solution for the underlying
measure of a specification in form of a function over the
induced parameters of an FSC. The function may be used
for further analysis, e. g. of the sensitivity of decisions or
parameter values, respectively. To compute this function,
all of the parameter synthesis tools PARAM (Hahn et al.,
2010), PRISM (Kwiatkowska et al., 2011), Storm (Dehn-
ert et al., 2017), and PROPhESY (Dehnert et al., 2015)
employ a technique called state elimination (Daws, 2004).

Implementation and Setup. We extended the tool
Storm (Dehnert et al., 2017) to parse and store POMDPs,
and implemented several transformation options to pMCs.
Most notably, Storm supports 𝑘-unfolding, the product
with several restricted FSCs such as counters that can be
incremented at will, and several types of transformation
to (simple) pMCs.

We evaluate on a HP BL685C G7 with 48 2 GHz
cores, a 16 GB memory limit, and 1800 seconds time

Table 2: Benchmarks
POMDPℳ PRISM-POMDP SolvePOMDP MDP

Id Name Tp. States Bran. Obs. Result Time Result Time Res
1 NRP (8) P 125 161 41 [.125, .24] 20 TO 1.0
2 Grid (4) E 17 62 3 [3.97, 4.13] 1038 4.13 0.4 3.2
3 Netw (3,4,8) E 2729 4937 361 TO TO 0.83
4 Crypt (5) P 4885 11733 890 MO TO 1.0
5 Maze (2) E 16 58 8 [5.11, 5.23] 3.9 5.23 16 4.0
6 Load (8) E 16 28 5 [10.5, 10.5] 1356 10.5 7.6 10.5
7 Slippery (4) P 17 59 4 TO 0.93 95 1.0

limit. The compared methods are single-threaded.
We took the POMDPs from PRISM-POMDP (Norman
et al., 2017), and additional maze, load/unload examples
from (Meuleau et al., 1999), and a slippery gridworld
with traps inspired by (Russell and Norvig, 2010). Ta-
ble 2 gives details. The specifications (Tp.) are either the
minimisation of expected costs from an initial state until
reaching a specified target set (E), or the maximisation
the probability of reaching from an initial state a target set
without hitting a bad state before (P). We list the number
of states, branches (

∑︀ |𝐴(𝑠)|), and observations in each
POMDP. As a baseline, we provide the results and run
time of the model-checking tool PRISM-POMDP, and the
point-based solver SolvePOMDP (Walraven and Spaan,
2017), obtained with default settings. Both tools compute
optimal memory-unbounded strategies and are prototypes.
The last column contains the result on the underlying,
fully observable MDP. The experiments contain minimal
expected rewards, which are analysed by a straightfor-
ward extension of maximal reachability probabilities. All
pMCs computed are simple pMCs, as PROPhESY typi-
cally benefits from the simpler structure. PROPhESY has
been invoked with the default set-up.

6.1 FINDING STRATEGIES

We evaluate how quickly a strategy that satisfies the spec-
ification is synthesised. We vary the threshold used in the
specification, as well as the structure of the FSC.

Results. We summarise the obtained results in Tab. 3.
For each instance (Id), we define three thresholds (Ts), or-
dered from challenging (i. e. close to the optimum) to less
challenging. For different types of FSCs (FSC, F=full,
C=counter) and memory bounds (𝑘), we obtain pMCs
with the given number of states, transitions and param-
eters. Full-FSCs are fully connected, in counter-FSCs
memory state 𝑚 is succeeded by either 𝑚 or 𝑚+ 1. For
each threshold (T1, T2, T3), we report the run time of the
two methods PSO and QCQP, respectively. T1 is chosen
to be nearly optimal for all benchmarks. A dash indicates
a combination of memory and threshold that is not realis-
able according to the results in Sect. 6.2. TO/MO denote
violations of the time/memory limit, respectively.
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Table 3: Synthesing strategies
Id Ts FSC/𝑘 States Trans Pars T1 T2 T3

pso qcqp pso qcqp pso qcqp

1 .124/.11/.09

F/1 75 118 8 <1 <1 <1 <1 <1 <1
F/2 205 420 47 2 <1 2 <1 2 <1
F/4 921 1864 215 9 2 9 2 10 2
F/8 3889 7824 911 43 15 42 14 42 14

2 4.15/4.5/5.5

F/1 47 106 3 – – – – Err <1
F/2 183 390 15 7.4 11 4 9 2 <1
F/4 719 1486 63 TO 64 39 91 14 8
F/8 2845 5788 255 TO 700 TO 946 254 69

3 9/10/15

F/1 3268 13094 276 TO TO TO 43 22 4
F/2 16004 46153 1783 TO TO TO 877 152 28
C/2 11270 36171 1168 TO TO TO 358 100 62
C/4 27183 82145 2940 TO MO TO MO 476 MO

4 .249/.2/.15 F/1 3366 6534 364 18 25 18 15 18 12
F/2 25713 51608 3907 330 MO 350 MO 326 MO

5 5.2/15/25

F/1 30 64 8 – – TO TO <1 TO
F/2 137 294 49 TO TO 14 TO 2 TO
F/4 587 1214 219 93 TO TO TO 26 TO
F/8 2421 4924 919 TO TO 1034 TO 115 TO
C/2 99 212 33 TO TO 3.7 TO <1 TO
C/4 231 476 81 7 TO 6 TO 3 TO

6 10.6/10.9/82.5
F/1 16 33 1 – – – – <1 TO
F/2 77 160 11 9 TO 6 TO <1 TO
F/4 354 721 63 20 TO 21 63 3 TO

7 .929/.928/.927

F/1 87 184 3 TO TO <1 1 <1 <1
F/2 285 592 15 4 TO 4 20 3 22
F/4 1017 2080 63 76 767 71 205 67 187
F/8 3825 7744 255 TO TO TO TO TO TO

Evaluation. Strategies for thresholds which are subopti-
mal (T3) are synthesised faster. If the memory bound is
increased, the number of parameters quickly grows and
the performance of the methods degrades. Additional
experiments showed that the number of states has only a
minor effect on the performance. The simpler FSC topol-
ogy for a counter alleviates the blow-up of the pMC and is
successfully utilised to find strategies for larger instances.

Trivially, a 𝑘-FSC is also a valid (𝑘+𝑖)-FSC for some
𝑖 ∈ N. Yet, the larger number of parameters make search-
ing for (𝑘+𝑖)-FSCs significantly more difficult. We fur-
thermore observe that the performance of PSO and QCQP
is incomparable, and both methods have their merits.

Summarising, many of the POMDPs in the benchmarks
allow good performance via FSCs with small memory.
We find nearly-optimal, and small, FSCs for POMDP
benchmarks with thousands of states within seconds.

6.2 PROVING 𝜀-OPTIMALITY

We now focus on evaluating how fast pMC techniques
prove the absence of a strategy satisfying the specifica-
tion. In particular, we consider proving that for a specific
threshold, no strategy induces a better value. Such a proof
allows us to draw conclusions about the (𝜀-)optimality of
a strategy synthesised in Sect. 6.1.

Results. Table 4(a) shows the run times to prove that for
the POMDP in column Id, there exists no strategy of type
FSC with 𝑘 memory that performs better than threshold
𝑇 . The row indicated by * was obtained with SMT. All

Table 4: 𝜀-optimality and closed-form computation
(a) Proving absence
Id FSC/k T time
2 F/1 5 <1
3 F/1 5 8
3 F/4 5 183
4 F/1 0.25 2*

5 F/1 10 3
5 F/2 5 TO
6 F/1 82 <1
6 F/8 10.5 1
7 F/1 0.94 5

(b) Closed-form sol.
Id FSC/k time
1 F/1 <1
1 F/2 97
2 F/1 155
3 F/1 464
4 F/1 <1
5 F/1 116
6 F/1 <1
7 F/1 TO

other results were obtained with parameter lifting.

Evaluation. The methods generally prove tight bounds
for 𝑘=1. For 𝑘>1, the high number of parameters yields
a mixed impression, the performance depends on the
benchmark. We find proofs for non-trivial bounds up
to 𝑘=8, even if the pMC has hundreds of parameters.

6.3 CLOSED-FORM SOLUTIONS

Results. Table 4(b) indicates running times to compute
a closed-form solution, i. e. a rational function that maps
𝑘-FSCs to the induced probability.

Evaluation. Closed form computation is limited to small
memory bounds. The rational functions obtained vary
wildly in their structure. For (4), the result is a constant
function which is trivial to analyse, while for (3), we ob-
tained rational functions with roughly one million terms,
rendering further evaluation expensive.

7 CONCLUSION

This paper connects two active research areas, namely ver-
ification and synthesis for POMDPs and parameter syn-
thesis for Markov models. We see benefits for both areas.
On the one hand, the rich application area for POMDPs
in, e. g. robotics, yields new challenging benchmarks for
parameter synthesis and can drive the development of
more efficient methods. On the other hand, parameter
synthesis tools and techniques extend the state-of-the-art
approaches for POMDP analysis. Future work will also
concern a thorough investigation of permissive schedulers,
that correspond to regions of parameter instantiations, in
concrete motion planning scenarios.
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Abstract

Unlike classical causal inference, where the
goal is to estimate average causal effects
within a population, in settings such as per-
sonalized medicine, the goal is to map a unit’s
characteristics to a treatment tailored to maxi-
mize the expected outcome for that unit. Ob-
taining high-quality mappings of this type is
the goal of the dynamic treatment regime liter-
ature. In healthcare settings, optimizing poli-
cies with respect to a particular causal pathway
is often of interest as well. In the context of
average treatment effects, estimation of effects
associated with causal pathways is considered
in the mediation analysis literature.

In this paper, we combine mediation analy-
sis and dynamic treatment regime ideas and
consider how unit characteristics may be used
to tailor a treatment strategy that maximizes
an effect along specified sets of causal path-
ways. In particular, we define counterfactual
responses to such policies, give a general iden-
tification algorithm for these counterfactuals,
and prove completeness of the algorithm for
unrestricted policies. A corollary of our re-
sults is that the identification algorithm for re-
sponses to policies given in [16] is complete
for arbitrary policies.

1 INTRODUCTION

Establishing causal relationships between actions and
outcomes is fundamental to rational decision-making.
The gold standard for establishing causal relationships
is the randomized controlled trial (RCT), which may be
used to establish average causal effects within a popula-
tion. Causal inference is a branch of statistics that seeks

to predict effects of RCTs from observational data, where
treatment assignment is not randomized. Such data is of-
ten gathered from observational studies, surveys given
to patients during follow up, and in-hospital electronic
medical records.

While average treatment effects reported from imple-
mented RCTs, or hypothetical RCTs emulated by causal
inference methods using observational data establish
whether a particular action is helpful on average, opti-
mal decision making must tailor decisions to specific sit-
uations. In the context of causal inference this involves
finding a map between characteristics of an experimental
unit, such as baseline features, to an action that optimizes
some outcome for that unit. Methods for finding such
maps are studied in the dynamic treatment regime litera-
ture [3], and in off-policy reinforcement learning [2].

If an action is known to have a beneficial effect on some
outcome, it is often desirable to understand the causal
mechanism behind this effect. A popular type of mech-
anism analysis is mediation analysis, which seeks to de-
compose average treatment effects into direct and indi-
rect components, or more generally into components as-
sociated with specific causal pathways. These compo-
nents of the average causal effect are known as direct,
indirect, and path-specific effects, and are also defined as
population averages [1, 8, 12].

In this paper, we define counterfactual outcomes neces-
sary to personalize effects associated with causal path-
ways, give an algorithm for non-parametric identification
of these outcomes and prove that it is complete for arbi-
trary policies. We consider estimation methods for iden-
tified outcomes of this type in a companion paper [7].

Why Personalize Effects Along Causal Pathways?

It often makes sense to structure decision-making such
that the overall effect of an action on the outcome is max-
imized for a given unit. However, in some cases it is ap-
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propriate to choose an action such that only a part of the
effect of an action on the outcome is maximized. Con-
sider management of HIV patients’ care. Since HIV is
a chronic disease, care for HIV patients involves design-
ing a long-term treatment plan to minimize the chance
of viral failure (an undesirable outcome). In designing
such a plan, an important choice is when to initiate pri-
mary therapy, and when to switch to a second line ther-
apy. Initiating or switching too early risks unneeded side
effects and ”wasting” treatment efficacy, while initiating
or switching too late risks viral failure [4].

In the context of HIV, however, treatment adherence is an
important component of the overall effect of the drug on
the outcome. Patients who do not take prescribed doses
compromise the efficacy of the drug, and different drugs
may have different levels of adherence. Thus, for HIV
patients, the overall effect of the drug can be viewed as
a combination of the chemical effect and the adherence
effect [6]. Therefore, choosing an action that maximizes
the overall effect of HIV treatment on viral failure en-
tangles these two very different causal mechanisms. One
approach to tailoring treatments to patients in a way that
disentangles these mechanisms is to find a policy that
optimizes a part of the effect, say the chemical (direct)
effect of the drug, while hypothetically keeping the ad-
herence levels to some reference level. Finding such a
policy yields information on how best to assign drugs to
maximize their chemical efficacy in settings where ad-
herence levels can be controlled to that of a reference
treatment – even if the only data available is one where
patients have differential adherence.

2 PRELIMINARIES

We proceed as follows. We first give graph theoretic
preliminaries, and define graphical causal models that
equate counterfactual responses to interventions (setting
variables to values, contrary to fact) with truncated fac-
torizations of the observed data distribution [11]. Next,
we describe the more general edge intervention that sets
variables to different values for different outgoing edges
in a graph. Edge interventions are used to formulate di-
rect, indirect, and path-specific effects in mediation anal-
ysis. Then, we define counterfactual responses to poli-
cies that set variables not to constant values but to values
that potentially depend on other sets of variables. Ex-
tending these notions, we describe counterfactuals that
generalize both responses to edge interventions, and re-
sponses to policies, namely responses to edge-specific
policies. We briefly describe identification theory for
these counterfactuals in causal models with no hidden
variables, and note this theory is based on variations of a
truncated factorization known as the g-formula [11].

We next consider identification theory for all counter-
factuals we described in hidden variable causal models.
This theory is more complex, and is based on the ID
algorithm [14, 17]. We rephrase the algorithm and its
necessary variations in a single line formula based on
the fixing operator described in [10]. This reformula-
tion allows us to express any functional corresponding to
a counterfactual distribution identifiable in a hidden vari-
able causal model as a single truncated factorization for-
mula, just as identifiable counterfactual distributions in
fully observed models are expressed via the g-formula.
Finally, we describe a completeness result for the iden-
tification algorithm for responses to unrestricted edge-
specific policies in hidden variable causal models.

While our primary contributions lie in the presentation
of counterfactuals and identification theory for edge-
specific policies, we include some discussion of prior
theory to build up to our result, and show how identifi-
cation theory of edge-specific policies generalizes iden-
tification theory for edge-specific effects and policy in-
terventions.

Graph Theory

We will define statistical and causal models as sets of dis-
tributions defined by restrictions associated with graphs.
We will use vertices and variables interchangeably – cap-
ital letters for a vertex or variable (V ), bold capital letter
for a set (V), lowercase letters for values (v), and bold
lowercase letters for sets of values (v). By convention,
each graph is defined on a vertex set V.

For a set of values a of A, and a subset A† ⊆ A, define
aA† to be a restriction of a to elements in A†. The state
space of A will be denoted by XA, and the (Cartesian
product) state space of A will be denoted by XA.

For a graph mixed graph G with directed and bidirected
edges, and any V ∈ V, we define the following ge-
nealogic sets: parents, children, ancestors, descendants,
and districts as: paG(V ) ≡ {W ∈ V | W → V },
chG(V ) ≡ {W ∈ V | V → W}, anG(V ) ≡ {W ∈
V | W → . . . → V }, deG(V ) ≡ {W ∈ V | V →
. . . → W}, disG(V ) ≡ {W ∈ V | V ↔ . . . ↔ W}.
By convention, anG(V ) ∩ deG(V ) ∩ disG(V ) = {V }.
These sets generalize to V† ⊆ V disjunctively. For ex-
ample, paG(V

†) ≡ ⋃V ∈V† paG(V ). For A ⊆ V, define
pasG(A) ≡ paG(A) \A, the parents of a set A.

The non-descendants of V are denoted ndG(V ) ≡ V \
deG(V ). The set of districts forms a partition of vertices
in G and is denoted D(G). Finally, given a graph G and
A ⊆ V, the subgraph of G containing only vertices in A
and edges between these vertices is denoted GA.
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Statistical And Causal Models Of A Dag

A directed acyclic graph (DAG), or Bayesian network, is
a graph G with vertex set V connected by directed edges
and such that there are no directed cycles in the graph
(i.e. no sequences of edges and vertices V → . . .W
and edge W → V ). A statistical model of a DAG
G is the set of distributions p(V) such that p(V) =∏
V ∈V p(V |paG(V )). Such a p(V) is said to be Markov

relative to G.

Causal models of a DAG are also sets of distributions, but
on counterfactual random variables. Given Y ∈ V and
A ⊆ V \ {Y }, a counterfactual variable, or ‘potential
outcome’, written as Y (a), represents the value of Y in
a hypothetical situation where A were set to values a
by an intervention operation [9]. Given a set Y, define
Y(a) ≡ {Y}(a) ≡ {Y (a) | Y ∈ Y}. The distribution
p(Y(a)) is sometimes written as p(Y|do(a)) [9].

Causal models of a DAG G consist of distributions de-
fined on counterfactual random variables of the form
V (a) where a are values of paG(V ). In this paper we
assume Pearl’s functional model for a DAG G with ver-
tices V which is the set containing any joint distribution
over all potential outcome random variables where the
sets of variables

{{V (aV ) | aV ∈ XpaG(V )} | V ∈ V}

are mutually independent [9]. The atomic counterfac-
tuals in the above set model the relationship between
paG(V ), representing direct causes of V , and V itself.
From these, all other counterfactuals may be defined us-
ing recursive substitution. For any A ⊆ V \ {V },

V (a) ≡ V (apaG(V )∩A, {paG(V ) \A}(a)). (1)

For example, in the DAG in Fig. 1 (a), Y (a) is defined
to be Y (a,M(a,W ),W ).

A causal parameter is said to be identified in a causal
model if it is a function of the observed data distribu-
tion p(V). Otherwise the parameter is said to be non-
identified. In all causal models of a DAG G, all interven-
tional distributions p({V \A}(a)) are identified by the
g-formula [11]:

p({V \A}(a)) =
∏

V ∈V\A
p(V | paG(V ))

∣∣
A=a

(2)

Not all interventional distributions are identified when
there are hidden variables present in the causal model.
We discuss identification theory in hidden variable DAGs
later in this paper.

Edge Interventions

A more general type of intervention in a graphical causal
model is the edge intervention [15], which maps a set

of directed edges in G to values of their source vertices.
Edge interventions have a natural interpretation in cases
where a treatment variable has multiple components that
a) influence the outcome in different ways, b) occur or do
not occur together in observed data, and c) may in prin-
ciple be intervened on separately. For instance, smoking
leads to poor health outcomes due to two components:
smoke inhalation and exposure to nicotine. A smoker
would be exposed to both of these components, while
a non-smoker to neither. However, one might imagine
exposing someone selectively only to nicotine but not
smoke inhalation (via a nicotine patch), or only smoke
inhalation but not nicotine (via smoking plant matter not
derived from tobacco leaves). These types of hypothet-
ical experiments correspond precisely to edge interven-
tions, and have been used to conceptualize direct and in-
direct effects [8, 12], often on the mean difference scale.

Formally, we will write the mapping of a set of edges to
values of their source vertices using the following short-
hand: (a1W1)→, (a2W2)→, . . . , (akWk)→ to mean that
edge (A1W1)→ is assigned to value a1, (A2W2)→ is
assigned to value a2, and so on until (AkWk)→ is as-
signed to value ak. Alternatively, we will write aα to
mean edges in α are mapped to values in the multiset a
(since multiple edges may share the same source vertex,
and be assigned to different values). For a subset β ⊆ α,
and an assignment aα denote aβ to be a restriction of aα
to edges in β.

We will write counterfactual responses to edge in-
terventions as Y (aα) or, for simple cases, as:
Y ((aY )→, (a′M)→) meaning the response to Y where
A is set to value a for the purposes of the edge (AY )→
and to a′ for the purposes of the edge (AM)→. An edge
intervention that sets a set of edges α to values in the
multiset a is defined via the following generalization of
recursive substitution (1):

Y (aα) ≡ Y (a{(ZY )→∈α}, {paᾱG(Y )}(aα)), (3)

where paᾱG(Y ) ≡ {W | (WY )→ 6∈ α}. For example, in
the DAG in Fig. 1 (a), Y ((a′Y )→, (aM)→) is defined as
Y (a′,M(a,W ),W ).

For simplicity of presentation, we will restrict attention
to edge interventions with the property that if (AW )→ ∈
α, then for any V ∈ chG(A), (AV )→ ∈ α. These types
of edge interventions set values for all causal pathways
for a set of treatment variables. This is the convention in
the majority of existing mediation literature as these in-
terventions are most relevant in practical mediation anal-
ysis problems. Specifically, in our HIV example, we are
interested in the effect of a drug along all pathways that
start with a particular edge, while the effect of the drug
via pathways that begin with other edges is kept to a ref-
erence level. This assumption may be relaxed, at the
price of complicating the theory [15].
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Edge interventions are used to define direct and indirect
effects. For example, in the model given by the DAG
in Fig 1 (a), the direct effect of A on Y is defined as
E[Y ((aY )→, (aM)→)] − E[Y ((a′Y )→, (aM)→)]
which is equal to E[Y (a)] − E[Y (a′,M(a))].
The indirect effect may be defined similarly as
E[Y ((a′Y )→, (aM)→)] − E[Y ((a′Y )→, (a′M)→)],
which is equal to E[Y (a′,M(a))] − E[Y (a′)]. The
direct and indirect effects add up to the ACE.

Note that while direct, indirect, and path-specific effects
may be defined directly as nested counterfactuals [8, 13],
this notation quickly becomes unreadable for compli-
cated interventions applied at multiple time points. The
edge intervention notation may be viewed as a general-
ization of the do(.) operator notation of Pearl to media-
tion problems, which avoids having to specify the entire
nested counterfactual, and instead directly ties interven-
tions and sets of causal pathways to which these inter-
ventions apply (as represented by the first edge shared
by all pathways in the set).

Identification of edge interventions in graphical causal
models without hidden variables corresponds quite
closely with identification of regular (node) interven-
tions, as follows. Let Aα ≡ {A | (AB)→ ∈ α}.
Consider an edge intervention given by the mapping
aα. Then, under the functional model of a DAG G,
the joint distribution of counterfactual responses p({V \
Aα}(aα)) is identified via the the following generaliza-
tion of (2) called the edge g-formula:

∏

V ∈V\Aα

p(V |a{(ZV )→∈α}, pa
ᾱ
G(V )). (4)

For example, in Fig 1 (a), p(Y ((aY )→, (a′M)→)) =∑
W,M p(Y |a,M,W )p(M |a′,W )p(W ), which is ob-

tained by marginalizing W,M from the edge g-formula.

Edge interventions represent a special case of the more
general notion of a path intervention [15]. Responses
to both of these interventions are used to define path-
specific effects [8], however responses to edge interven-
tions are precisely those that are always identified under
the functional model of a DAG, via (3). Responses to
path interventions that cannot be rephrased as responses
to edge interventions are not identified even in a DAG
model, including the functional model, due to the pres-
ence of recanting witnesses [1]. For this reason, in this
paper we restrict attention only to edge interventions and
responses to edge-specific policies.

Responses To Treatment Policies

In personalized medicine settings, counterfactual re-
sponses to conditional interventions that set treatment
values in response to other variables via a known func-
tion are of interest. As an example, assume the graph

in Fig. 1 (b) represents an observational study of can-
cer patients where W0 represents baseline patient met-
rics, A1 is the primary therapy, W1 is the measured in-
termediate response to the primary therapy, A2 is a de-
cision to either continue primary therapy or switch to
a secondary therapy in the event of a poor response to
A1, and W2 is the outcome of interest. In this setting,
we might be interested in evaluating policies in the set
{fA1

: XW0
7→ XA1

, fA2
: X{W0,W1} 7→ XA2

} that
map patient characteristics to decisions about therapies
A1 and A2. We evaluate the efficacy of these policies
via the counterfactual variable W2(fA1 , fA2), represent-
ing patient outcomes had treatment decisions been made
according to those policies.

These types of variables are defined via a generaliza-
tion of (1), where instead of setting values of parents in
A1, A2 to values fixed by the intervention, values of par-
ents in A are instead set according to fA1

and fA2
. In

particular, W2(fA1
, fA2

) is defined as

W2[fA2
(W1[fA1

(W0),W0],W0),W1[fA1
(W0),W0], fA1

(W0),W0].

(5)

The distribution of this variable is identified under the
functional model via the natural generalization of (2) as

∑

W0,W1

p(W2|W0, fA1(W0),W1, fA2(W0,W1))×

p(W1|W0, fA1(W0))p(W0). (6)

More generally, given a DAG G, a topological ordering
≺, and a set A ⊆ V, for each A ∈ A, define WA to be
some subset of predecessors of A according to ≺. Then,
given a set of functions fA of the form fA : XWA

7→ XA,
define Y (fA), the counterfactual response Y ∈ V to A
being intervened on via fA ≡ {fA | A ∈ A}, as

Y ({fA(WA(fA))|A ∈ paG(Y ) ∩A}, {paG(Y ) \A}(fA)).
(7)

In a functional model of a DAG G, the effect of fA on the
set of variables not being intervened upon, V \A, repre-
sented by the distribution p({V \A)}(fA)), is identified
by the following modification of (2) [16]:

∏

V ∈V\A
p(V |{fA(WA)|A∈A∩paG(V )}, paG(V )\A). (8)

3 EDGE-SPECIFIC POLICIES

We now give a general definition of counterfactual re-
sponses to edge-specific policies that generalize both re-
sponses to edge interventions (where a variable is set to
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Figure 1: (a) A simple causal DAG, with a treatment A,
an outcome Y , a vector W of baseline variables, and a
mediator M . (b) A more complex causal DAG with two
treatments A1, A2, an intermediate outcome W1, and the
final outcome W2. H is a hidden common cause of the
W variables. (c) A graph where p(Y (a,M(a′))) is iden-
tified, but p(Y (fA(W ),M(a))) is not.

different constants for different outgoing edges) and re-
sponses to policies, where a variable is set according to a
single known function for all causal pathways at once.

As an example, we can view Fig. 1 (a) as representing
a cross-sectional study of HIV patients of the kind de-
scribed in [6], where W is a set of baseline character-
istics, A is one of a set of possible antiretroviral treat-
ments, M is adherence to treatment, and Y is a binary
outcome variable signifying viral failure. In this type
of study, we may wish to find fA(W ) that maximizes
the expected outcome Y had A been set according to
fA(W ) for the purposes of the direct effect of A on Y ,
and A were set to some reference level a for the pur-
poses of the effect of A on M . In other words, we
may wish to find fA(W ) to maximize the counterfactual
mean E[Y (fA(W ),M(a,W ),W )]. This would corre-
spond to finding a treatment policy that maximizes the
direct (chemical) effect, if it were possible to keep ad-
herence to a level M(a) as if a reference (easy to adhere
to) treatment a were given.

We now give a general definition for responses to such
edge-specific policies. Fix a set of directed edges α, and
define Aα ≡ {A | (AB)→ ∈ α}. As before, we assume
if (AW )→ ∈ α, then for all V ∈ chG(A), (AV )→ ∈ α.
Define fα ≡ {f (AW )→

A : XWA
7→ XA | (AW )→ ∈ α}

as the set of policies associated with edges inα. Note that
fα may contain multiple policies for a given treatment
variable A.

Define Y (fα), the counterfactual response of Y to the set
of edge-specific policies fα, as the following generaliza-
tion of (3) and (7):

Y ({f (AY )→
A (WA(fα))|(AY )→ ∈ α}, {paᾱG(Y )}(fα)) (9)

In our earlier example, if f{(AY )→,(AM)→} ≡
{f (AY )→
A (W ), f̃

(AM)→
A }, where f̃A assigns A to

a constant value a, then Y (f{(AY )→,(AM)→}) ≡
Y (fA(W ),M(a,W ),W ).

The joint counterfactual distribution for responses to
edge-specific policies, p({V (fα)|V ∈ V\Aα}), is iden-
tified under the functional model, and generalizes (4) and
(6) as follows:
∏

V ∈V\Aα

p(V |{f (AV )→
A (WA)|(AV )→∈α},paᾱG(V )). (10)

This is a consequence of the fact that (4) holds
regardless of how edge interventions are set. In
Fig. 1 (a), for example, p(Y (fA(W ),M(a,W ),W )) =∑
W,M p(Y |fA(W ),M,W )p(M |a,W )p(W ).

4 IDENTIFICATION IN HIDDEN
VARIABLE DAG MODELS

In a causal model of a DAG where some variables are
hidden, not every causal parameter is a function of the
observed data distribution. It is well known, however,
that any two hidden variable DAGs which share a special
mixed graph called a latent projection [9] share identifi-
cation theory (see [10] for a proof).

Given a DAG G(V ∪H), where V are observed and H
are hidden variables, define a latent projection G(V) to
be an acyclic directed mixed graph (ADMG) with the
vertex set V and → and ↔ edges. An edge A → B
exists in G(V) if there is a directed path from A to B in
G(V∪H) with all intermediate vertices in H. Similarly,
an edge A↔ B exists in G(V) if there is a path without
consecutive edges → ◦ ← from A to B with the first
edge on the path of the form A ← and the last edge on
the path of the form→ B, and all intermediate vertices
on the path in H. For example, the graph in Fig. 2 (b) is
the latent projection of Fig. 2 (a).

We will describe identification results on latent projec-
tions directly. General algorithms for identification of
interventional distributions were given in [14, 17], for
responses to edge interventions in [13], and for policies
in [16]. Here we reformulate these results as one line
formulas using the fixing operator described in [10]. We
do so to explicate the connection between these earlier
results, and our new identification algorithm.

Reformulation Of The ID Algorithm

A complete algorithm, called the ID algorithm, for
identifying interventional distributions of the form
p(Y|do(a)), or p(Y(a)), for Y ⊆ V \ A was given
in [17] and simplified in [14]. We now illustrate how
this algorithm may be further simplified into a one line
formula, which can be viewed as a generalization of the
g-formula from the fully observed DAG to the hidden
variable DAG case. We then show how this formula may
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be generalized appropriately to yield identification algo-
rithms for edge interventions, and edge-specific policies
in hidden variable causal models, just as g-formula was
generalized to these cases in fully observed DAGs.

The version of the ID algorithm in [14], shown in
Fig. 1 in the Appendix, proceeds as follows. Lines
2 and 3 reformulate the original query p(Y(a)) as∑

Y∗\Y p(Y∗(a∗)), where Y∗,A∗ partition anG(Y),
and Y∗ ≡ anGV\A(Y). In line 4, the distribution
p(Y∗(a∗)) is factorized into terms corresponding to dis-
tricts D in the subgraph GY∗ , with the ID algorithm
called recursively on each term. These terms corre-
spond to interventional distributions p(D | do(V \D =
cV\D)), where cV\D is any set of values of V \D con-
sistent with a. In subsequent recursive calls, lines 2, 6
and 7 are iterated for each term until it is identified, or
the failure condition is reached. Here line 2 corresponds
to marginalizing out irrelevant variables, and lines 6 and
7 correspond to identifying a part of the set of intervened
on variables in V \D via the g-formula.

Consider Fig. 2 (b), where A represents a binary treat-
ment, Y an outcome of interest, W0 a vector of baseline
confounding factors, and M,W1 variables mediating the
causal effect of A on Y . We are interested in identify-
ing the counterfactual distribution p(Y (a)) as a function
of the observed data distribution p(W0, A,M,W1, Y ).
Here anG(Y ) = {Y,M,W1,W0, A} is partitioned into
Y∗ ≡ {Y,M,W1,W0} and A∗ ≡ {A}, with GY∗
shown in Fig. 2 (c). There are three districts in this
graph, {W0,M}, {W1}, and {Y }. Thus, the ID
algorithm attempts to identify p(W0,M |do(w1, y, a)),
p(W1|do(w0,m, y, a)) and p(Y |do(w0,m,w1, a)).

A

W0 M

W1

Y

(a)

A

W0 M

W1

Y

(b)

W1

MW0

Y

(c)

a

W0 M
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Figure 2: (a) A causal model with a treatment A and
outcome Y . (b) A latent projection of the DAG in
(a). (c) The graph derived from (b) corresponding to
GY∗ = G{Y,M,W0,W1}. (d) A CADMG corresponding
to p(M,W0|do(a)).

As an example, identifying p(W0,M |do(w1, y, a)) en-
tails the following steps. First, Y and W1, as irrelevant
variables that do not cause W0 and M , are marginal-
ized out via line 2, leading to a subproblem where
p(W0,M |do(a)) is identified from p(W0, A,M) with
the subgraph corresponding to this subproblem shown in
Fig. 2 (d). In this subproblem, p(W0,M |do(a)) is iden-

tified as p(M |a,W0)p(W0) via the g-formula in line 6.
The recursion alternates steps that marginalize and apply
the g-formula can be unified via a fixing operator applied
to graphs and distributions that arise in the intermediate
steps of the ID algorithm. We now define these graphs
and distributions formally.

CADMGs And Kernels

A kernel qV(V|W) is a mapping from XW to normal-
ized densities over V. Conditioning and marginalization
are defined in kernels in the usual way:

qV(A|W)≡
∑

V\A
qV(V|W); qV(V\A|A∪W)≡ qV(V|W)

qV(A|W)
,

for A ⊆ V. A conditional distribution is one type
of kernel, but others are possible. The functional
p(M |a,W0)p(W0) = p(W0,M |do(a)) in the previous
example is a kernel, q(M,W0|a), that is not in general
equal to the conditional distribution p(M,W0|a).
A conditional ADMG (CADMG) G(V,W) is a type of
ADMG where nodes are partitioned into two sets. The
set W corresponds to fixed constants, and the set V cor-
responds to random variables. A CADMG has the prop-
erty that no edges with an arrowhead into an element of
W may exist. Intuitively, a CADMG represents a situa-
tion where some variables have already been intervened
on. Pearl introduced a similar concept called the ‘mu-
tilated graph’ in [9]. For example, the graph in Fig. 2
(d) is a CADMG G({W0,M}, {A}) corresponding to
the situation where W0,M are random variables and A
is fixed to a constant. Just as a distribution may be as-
sociated with a DAG via factorization, so may a kernel
be associated with a CADMG in a particular way [10].
For example, the CADMG in Fig. 2 (d) may be associ-
ated with p(W0,M |do(a)) = p(M |a,W0)p(W0). Ge-
nealogic definitions, such as paG(.), carry over identi-
cally to CADMGs. Districts in a CADMG are defined as
subsets of V.

The Fixing Operator And The ID Algorithm

Given a CADMG G(V,W), a variable V ∈ V is fixable
if deG(V ) ∩ disG(V ) = ∅. For example, in Fig. 2 (b),
M is fixable, while W0 is not. Intuitively, V is fixable in
a CADMG G(V,W) if, in a causal graph representing
a hypothetical situation p(V|do(w)), where variables in
W were already intervened on, p(V \ {V }|do(w, v))
is identified by the application of the g-formula to
p(V|do(w)). Whenever a variable V is fixable, a fix-
ing operator may be applied to both the CADMG and
the kernel to yield a new causal graph and a new kernel
representing the situation where V is also intervened on.
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Given V ∈ V fixable in a CADMG G(V,W), the
fixing operator φV (G) yields a new CADMG G̃(V \
{V },W ∪ {V }), where all vertices and edges in
G(V,W) are kept, except V is viewed as fixed, and
all edges with arrowheads into V are removed. Given
V ∈ V fixable in a CADMG G(V,W), and a ker-
nel qV(V|W) associated with G, the fixing operator
φV (qV;G) yields a new kernel q̃V\{V }(V \ {V }|W ∪
{V }) ≡ qV(V|W)/qV(V |W ∪ ndG(V )), where the
denominator is defined as above by marginalization and
conditioning within the kernel qV. If chG(V ) = ∅, di-
vision by qV(V |ndG(V )) is equivalent to marginalizing
V from qV. In this way, the fixing operator unifies appli-
cations of the g-formula in lines 6 and 7 of the ID algo-
rithm, and marginalization of irrelevant variables in line
2 of the ID algorithm, and the recursive operation of the
ID algorithm can be expressed concisely as repeated in-
vocations of the operator. This allows us to concisely ex-
press functionals returned by ID algorithm and its vari-
ations, including our new algorithm for identifying re-
sponses to edge-specific policies, as one line formulas.

A set V† ⊆ V is said to be fixable in a latent projec-
tion G(V) if there is a valid sequence 〈V1, V2, . . . , Vk〉 of
variables in V† such that V1 is fixable in G, V2 is fixable
in φV1(G), and so on. If V† is fixable, V \V† is called
a reachable set. If p(V) is a marginal of a distribution
p(V ∪ H) Markov relative to a DAG G(V ∪ H), and
G(V) is a latent projection, then CADMG/kernel pairs
obtained from G(V) and p(V) by any valid sequence in
V† is the same [10, 17]. As a result, for any fixable set
V† in G, writing φV†(G) or φV†(qV;G) is well-defined,
and means “apply the fixing operator to elements of V†

in some valid sequence,” with the understanding that any
such sequence will yield the same result.

The existence of a valid fixing sequence for each district
in GY∗ implies corresponding terms may be identified
via lines 2, 6, and 7 of the ID algorithm, and the overall
algorithm can be rephrased as:

p(Y|do(a)) =
∑

Y∗\Y

∏

D∈D(GY∗ )

p(D|do(V \D))|A=a (11)

=
∑

Y∗\Y

∏

D∈D(GY∗ )

φV\D(p(V);G(V))|A=a,

which yields the following identifying formula for
p(Y |do(a)) in our example in Fig. 2 (a):

p(Y (a)) =
∑

W0,A,M,W1

p(W1|M,A = a,W0)×

(12)

p(M |A = a,W0)p(W0)
∑

W0,A

p(Y |W1,M,A,W0)p(W0, A).

We omit the full derivation in the interest of space. See
the section on identification of edge-specific policy inter-

ventions and the appendix for a complete example. Ob-
serve that this equation is a generalized version of Pearl’s
front-door formula [9].

Whenever V \D for every D is fixable, the formula (11)
yields the correct expression for p(Y|do(a)) in terms of
the observed data. If some V \ D is not fixable, the
algorithm fails, and p(Y|do(a)) is not identified. See
[10] for a detailed proof.

Edge Interventions

Identification of path-specific effects where each path is
associated with one of two possible value sets a,a′ was
given a general characterization in [13] via the recant-
ing district criterion. Here, we reformulate this result
in terms of the fixing operator in a way that generalizes
(11), and applies to the response of any edge interven-
tion, including those that set edges to multiple values
rather than two. This result can also be viewed as a gen-
eralization of node consistency of edge interventions in
DAG models, found in [15].

Given Aα ≡ {A | (AB)→ ∈ α}, and an edge
intervention given by the mapping aα, define Y∗ ≡
anGV\Aα (Y). The joint distribution of the counterfac-
tual response p({V \ Aα}(aα)) is identified if p({V \
Aα}(a)) is identified via (11), and for every D ∈
D(GY∗), for every A ∈ Aα, aα has the same value as-
signment for every directed edge out of A into D. Under
these assumptions, we have the following result.

Theorem 1 p(Y(aα)) is identified and equal to
∑

Y∗\Y

∏

D∈D(GY∗ )

φV\D(p(V);G)
∣∣
a{(AD)→∈α|D∈D,A∈Aα}

(13)

Proof: This follows directly from results in [13] and
[10]. Identifying edge interventions entails identifying∏

D∈D(GY∗ ) p(D|do(aD)), where aD is an assignment
for pasG(D), and aD possibly assigns different values to
elements of A with respect to different districts. The fact
that this identification algorithm can be rephrased as (13)
follows directly by Theorem 60 in [10]. �

Consider again the example in Fig. 2 (a). Now assume
we set A = a for the edge (AM)→ and A = a′
for the edge (AW1)→. The identifying functional for
p(Y ((aW1)→, (a′M)→)) has the same form as (12), but
some terms are evaluated at A = a, and some at A = a′:

∑

W0,A,M,W1

p(W1|M,A = a,W0)

(14)

p(M |A = a′,W0)p(W0)
∑

W0,A

p(Y |W0, A,M,W1)p(W0, A)
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Policy Interventions (Dynamic Treatment Regimes)

A general algorithm for identification of responses to a
set of policies fA was given in [16]. We again reformu-
late this algorithm in terms of the fixing operator. Define
a graph GfA to be a graph obtained from G by removing
all edges into A, and adding for any A ∈ A, directed
edges from WA toA. By definition of WA, GfA is guar-
anteed to be acyclic. Define Y∗ ≡ anGfA (Y) \A. As-
sume p(Y∗(a)) is identified in G. Then, under the above
assumptions, we have the following result.

Theorem 2 p(Y(fA)) is identified in G. Moreover, the
identification formula is

∑

(Y∗∪A)\Y

∏

D∈D(GY∗ )

φV\D(p(V);G)
∣∣
ãpasG(D)∩A

(15)

where ãpasG(D)∩A is defined as

{
{A = fA(WA) | A ∈ paG(D) ∩A} paG(D) ∩A 6= ∅
∅ otherwise

Proof: This follows from the fact that identification
of p(Y(fA)) can be rephrased as identification of
p(Y∗(a)), with values a set according to {WA|A ∈ A},
where all WA in the set are subsets of Y∗. Identification
of p(Y∗(a)) may be rephrased as (15) follows by Theo-
rem 60 in [10]. �

The outer sum over A in (15) is vacuous if fA is a set of
deterministic policies. To illustrate (15), in our example
in Fig. 2 (b), p(Y (A = fA(W0))) is identified as

∑

W0,A,M,W1

p(W1|M,A=f(W0),W0)

(16)

p(M |A=f(W0),W0)p(W0)
∑

W0,A

p(Y |W1,M,A,W0)p(W0,A)

Identification Of Edge-Specific Policies

Having reformulated existing identification results on re-
sponses to policies (15) and responses to edge interven-
tions arising in mediation analysis (13) in terms of the
fixing operator, we generalize these results for identifica-
tion of responses to edge-specific policies.

Given Aα ≡ {A|(AB)→ ∈ α}, and a set of edge-
specific policies given by the set of mappings fα, define
the graph Gfα to be one where all edges with arrowheads
into Aα are removed, and directed edges from any vertex
in WA to A ∈ Aα added. Fix a set Y of outcomes of
interest, and define Y∗ equal anGfα (Y) \Aα. We have
the following result.

Theorem 3 p(Y(fα)) is identified if p(Y∗(a)) is identi-
fied, and for every D ∈ D((Gfα)Y∗), fα yields the same
policy assignment for every edge from A ∈ Aα to D.
Moreover, the identifying formula is

∑

(Y∗∪Aα)\Y

∏

D∈D(GY∗ )

φV\D(p(V);G)|ãpasG(D)∩Aα (17)

where ãpasG(D)∩Aα
is defined to be {A = fA(WA) ∈

fα | A ∈ paG(D) ∩Aα}, if paG(D) ∩Aα 6= ∅, and is
defined to be the ∅ otherwise.

Proof: This is a straightforward generalization of the
proofs of Theorems 1 and 2. �

Responses to edge-specific policies are identified in
strictly fewer cases compared to responses to edge in-
terventions. This is because Y∗ is a larger set in the for-
mer case. As an example, consider the graph in Fig. 1
(c), where we are interested either in the counterfactual
p(Y (a,M(a′))), used to define pure direct effects, or the
counterfactual p(Y (fA(W ),M(a′))).

For the former counterfactual, we have Y∗ = {Y,M},
and p(Y (a,M(a′))) equal to

∑

m

(∑
w p(Y,m|a,w)p(w)∑
w p(m | a,w)p(w)

)∑

w

p(m | a′, w)p(w)

We omit the detailed derivation in the interest of space.
For the latter counterfactual, however, the set Y∗ =
{Y,M,W} forms a single district in GY∗ , and the edge-
specific policy set f{(AM)→,(AY )→} sets edges from A to
this district to different policies. As a result, Theorem 3
is insufficient to conclude identification.

Generalizations of the example in Fig. 1 (b) are the
most relevant in practice, as their causal structure cor-
responds to longitudinal observational studies, of the
kind considered in [11], and many other papers. How-
ever, we illustrate complications that may arise in iden-
tifiability of responses to edge-specific policies with
our running example in Fig. 2 (b), where we are in-
terested in the response of Y to edge-specific policies
f{(AM)→,(AW1)→} = {f (AM)→

A (W0), f
(AW1)→
A (W0)}.

Theorem 3 yields the following identifying formula:

∑

W0,A,M,W1

[[
p(W1|M,A = f

(AM)→
A (W0),W0)

]
(18)

×
[
p(M |A = f

(AW1)→
A (W0),W0)p(W0)

]

×
[ ∑

W0,A

p(Y |W1,M,A,W0)p(W0, A)
]]
.

Note that (18) generalizes both (14), which setsA to dif-
ferent constants in different terms, and (16), which setsA
to the output of a function that depends on W0. We give
a detailed derivation of this functional in the appendix.
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5 ON COMPLETENESS

An identification algorithm for a class of parameters is
said to be complete relative to a class of causal models
if, whenever the algorithm fails to identify a parameter
within a model class, the parameter is in fact not identi-
fied within that class.

The ID algorithm is known to be complete for the class
of interventional distributions in the class of functional
models [5, 14]. We restate this result here, and give a se-
quence of increasingly general completeness results for
the identification algorithms described so far. Complete-
ness results on policies and edge-specific policies are
new. For completeness results pertaining to policies, we
assume a completely unrestricted class of policies. If the
set of policies of interest, fA or fα is restricted, or alter-
natively if the causal model has parametric restrictions,
completeness results we present may no longer hold.

Theorem 4 Given disjoint subsets Y,A of V in an
ADMG G, define Y∗ ≡ anGV\A(Y). Then p(Y(a)) is
not identified if there exists D ∈ D(GY∗) that is not a
reachable set in G.

Corollary 1 The algorithm for identification of
p(Y(a)), as phrased in (11), is complete.

Theorem 5 Given Aα ≡ {A | (AB)→ ∈ α}, and
an edge intervention given by the mapping aα, define
Y∗ ≡ anGV\Aα (Y). The joint distribution of the coun-
terfactual response p({V \Aα}(aα)) is not identified if
p({V \ Aα}(a)) is not identified, or there exists D ∈
D(GY∗) and A ∈ Aα, such that aα has the different
value assignments for a pair of directed edges out of A
into D.

Corollary 2 The algorithm for identification of
p(Y(aα)), as phrased in (13), is complete.

Theorem 6 Define GfA to be a graph obtained from G by
removing all edges into A, and adding for any A ∈ A,
directed edges from WA toA. Define Y∗ ≡ anGfA (Y)\
A. Then if p(Y∗(a)) is not identified in G, p(Y(fA))
is not identified in G if fA is the unrestricted class of
policies.

Corollary 3 The algorithm for identification of
p(Y(fA)), as phrased in (15), is complete for unre-
stricted policies.

Theorem 7 Define the graph Gfα to be one where all
edges with arrowheads into Aα are removed, and di-
rected edges from any vertex in WA to A ∈ Aα added.
Fix a set Y of outcomes of interest, and define Y∗ equal
anGfα (Y) \ Aα. Then if p(Y∗(a)) is not identified, or

there exists D ∈ D((Gfα)Y∗), such that fα yields differ-
ent policy assignments for two edges fromA ∈ Aα to D,
p(Y(fα)) is not identified.

Corollary 4 The algorithm for identification of
p(Y(fα)), as phrased in (17), is complete for unre-
stricted policies.

Detailed proofs of these results are in the Appendix.
Corollaries are immediate consequences of the preced-
ing Theorems.

6 CONCLUSION

In this paper, we defined counterfactual responses to
policies that set treatment values in such a way that they
affect outcomes with respect to certain causal pathways
only. Such counterfactuals arise when we wish to per-
sonalize only some portion of the causal effect of a treat-
ment, while keeping other portions set to some reference
values. An example might be optimizing the chemical
effect of a drug, while keeping drug adherence to a ref-
erence value.

We gave a general algorithm for identifying these re-
sponses from data, which generalizes similar algorithms
due to [16, 13] for dynamic treatment regimes, and edge-
specific effects, respectively. Further, we showed that
given an unrestricted class of policies the algorithm is
complete. As a corollary, this established that the identi-
fication algorithm for dynamic treatment regimes in [16]
is complete for unrestricted policies.

Given a fixed set of policies associated with a set of
causal pathways, and assuming (17) yields a functional
containing only conditional densities, as is the case in
the functional (18), the counterfactual mean under those
policies E[Y (fα)] may be estimated using the maximum
likelihood plug-in estimator. Such an estimator can be
viewed as a generalization of the parametric g-formula
[11] to edge-specific policies. More general estimation
strategies, and approaches to learning the optimal set of
policies are the subject of our companion paper [7].
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Abstract

We propose scalable methods to execute count-
ing queries in machine learning applications.
To achieve memory and computational effi-
ciency, we abstract counting queries and their
context such that the counts can be aggregated
as a stream. We demonstrate performance and
scalability of the resulting approach on random
queries, and through extensive experimentation
using Bayesian networks learning and associ-
ation rule mining. Our methods significantly
outperform commonly used ADtrees and hash
tables, and are practical alternatives for process-
ing large-scale data.

1 INTRODUCTION

Counting data records with instances that support some
specific configuration of the selected variables is one of
the basic operations utilized by machine learning (ML) al-
gorithms. For example, when learning Bayesian network
structure from data counting is necessary to evaluate a
scoring function, or to assess constraints (e.g., via mutual
information) [1]. In association rule mining, counting
over binary data representing transactions is required to
assess support and confidence for a given association
rule [2]. Other examples include problems ranging from
classification [3, 4] through deep learning [5, 6] to infor-
mation retrieval [7].

While counting is typically viewed as a black-box proce-
dure, and implemented using simple and not necessarily
efficient strategies, e.g., contingency tables, in many prac-
tical applications it accounts for over 90% of the total
execution time (we show several practical cases in Sec. 4).
Consequently, improving performance of counting can
directly translate into better performance of these applica-
tions. At the same time, popular specialized approaches

based on data indexes, such as ADtrees [8], have lim-
ited applicability due to the significant preprocessing and
memory overheads, which easily exceed the capability of
current computational servers. This holds true for a broad
spectrum of problem sizes and applications, with cases in-
volving anywhere from tens to hundreds of variables, and
thousands to millions of instances. As the size of the data
analyzed by ML codes increases, there is a clear need for
easy-to-adopt, efficient and scalable counting strategies.

In this paper, we address the above challenge by designing
simple, yet fast and memory efficient counting strategies.
Our methods are derived from the standard techniques
like bitmap set representation and radix sorting, which
can be efficiently implemented in a software. We de-
scribe an intuitive and convenient programming interface
that leverages properties of the operators used in ML to
separate the counting process from how the counts are
utilized. This interface enables us to aggregate counts in
a stream-like fashion. We encapsulate our methods in an
open source software, and demonstrate its performance
on random queries, Bayesian networks learning and asso-
ciation rule mining. Through extensive experiments on
multiple popular benchmark data, we show that our strate-
gies are orders of magnitude faster than the commonly
used methods, such as ADtrees and hash tables.

2 PRELIMINARIES

Consider a set of n categorical random variables X =
{X1, X2, . . . , Xn}, where the domain of variable Xi is
represented by states [xi1, . . . , xiri ]. Alternatively, we
can think of Xi as a symbolic feature with arity ri,
and for convenience we can represent its states by in-
tegers [1, . . . , ri]. Let D = [D1, D2, . . . , Dn] be a com-
plete database of instances of X , where Di, |Di| = m,
records observed states of Xi. Given D, and a set of
input variables {Xi, Xj , . . .} ⊆ X , the counting query
Count((Xi = xi)∧ (Xj = xj)∧ . . .) returns the size of
the support in D for the specific assignment [xi, xj , . . .]
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of variables [Xi, Xj , . . .]. For example, for the database
in Fig. 1, the queryCount((X1 = 3)∧(X2 = 2)∧(X3 =
1)) would return 2, as there are 2 instances matching the
query condition. We note that the above formulation of
counting is a special and simple case of the general count-
ing problem in conjunctive queries, known from database
theory [9] (we provide more details in Section 5).

Counting queries are the basic operations performed when
learning statistical models from data. In some ML ap-
plications, such as association rule mining or learning
probabilistic graphical models, they may account for over
90% of the total execution time. In the most basic form,
the queries can be issued without shared context. For ex-
ample, to estimate joint probability p(Xi = xi, Xj = xj)
from D, we could use just one query: p̂(xi, xj |D) =
Count((Xi=xi)∧(Xj=xj))

m . However, in the most common
use scenarios, a group of consecutive queries is executed
over the same set of variables (i.e., the queries share
context). For instance, consider log-likelihood score fre-
quently used in Bayesian networks learning [10]:

L(Xi|Pa(Xi)) =

qi∑

j=1

ri∑

k=1

Nijk log

(
Nijk
Nij

)
, (1)

where Pa(Xi) ⊆ X −{Xi} is a set of predictor variables
for Xi, j enumerates all possible qi =

∏
Xj∈Pa(Xi) rj

states of variables in Pa(Xi), and Nij and Nijk are re-
spectively the counts of instances in D such that variables
in Pa(Xi) are in state j, and the counts of instances such
that variables in Pa(Xi) are in state j and Xi is in state k.
To compute L we require multiple counting queries over
the same group of variables Pa(Xi)∪{Xi}, testing differ-
ent configurations of their states. Moreover, we care only
about queries that return non-zero counts Nijk (note that
non-zero Nijk implies non-zero Nij), since only those
contribute to the final sum.

The standard approach to handle queries that share context
is to either directly scan the databaseD to construct ri×qi
contingency table of counts (or its high-dimensional vari-
ant such as data cube [11]), or to first create an ADtree
index to cache all sufficient statistics from D, and then
to materialize contingency table on demand. Here mate-
rialization is done by retrieving the required counts via
fast traversal over the index [8, 12]. However, both these
approaches have significant limitations.

To use a contingency table we have to either maintain a
lookup table with ri ·qi entries, or to use a dictionary (e.g.,
hash table) with keys over the states of Pa(Xi) and values
being vectors of counts for the corresponding states of Xi.
While lookup table may offer very fast memory accesses
during construction and querying phases, it becomes com-
putationally impractical, since usually it is very sparse.
This is because even for large m, most of the time D will

not contain all qi possible configurations for the majority
of sets Pa(Xi). Consequently, lookup tables become a
feasible choice only when we are dealing with a small
number of variables, each with very small arity. Dictio-
naries address the problem of sparsity, as they store only
configurations that are observed in D. However, they im-
pose non-trivial overheads owing to the cost of hashing in
a hash table dictionary or traversing scattered memory in
a search tree dictionary. Moreover, when large number of
high-arity variables are considered, a dictionary quickly
becomes memory intensive easily exceeding capacity of
a typical cache memory.

The alternative approach is to use one of many published
variants of the ADtree index, e.g., [8, 12, 13, 14]. Here
the idea is to first invest (significant) time and memory to
enumerate and cache counts of all configurations found
in D, and then reference those counts to answer subse-
quent queries. However, even with various optimizations,
the space complexity of ADtrees is exponential in the
number of variables, and even for modestly sized D it
may exceed the available main memory. Moreover, by
caching all counts indiscriminately, ADtrees often store
entries that are never referenced in a given application,
creating unnecessary memoization and searching over-
head. Finally, ADtrees still require that a contingency
table is materialized to deliver retrieved counts, and hence
they pose a significant challenge in balancing memory
and computations.

3 PROPOSED APPROACH

Given the database D, our goal is to provide memory and
computationally efficient mechanism to answer counting
queries with shared context. The memory efficiency is
critical, since many ML algorithms, especially in classifi-
cation and probabilistic graphical modeling, already have
significant memory constraints (see for example [15]). If
the memory has to be devoted to handling queries instead
of being used by the actual algorithm, it would clearly
constrain the applicability of the algorithm. At this point
it is worth noting that ML applications fall into a gray
zone in terms of the size of the input data on which they
typically operate. On the one hand, the size of the input
is too small to benefit from many excellent optimizations
known from database theory (some we review in Sec. 5),
as those are targeting cases in which volume of the data
necessitates concurrent use of both persistent and main
memory. On the other hand, the data is too large to war-
rant efficient execution using direct techniques like simple
contingency tables.

To address this situation, we first define an intuitive pro-
gramming interface to abstract the query context, includ-
ing how counts are utilized by the target application. Then,
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we overlay the interface on top of two simple, yet very effi-
cient, query execution strategies, where instead of storing
counts we consume them in a stream-like fashion.

3.1 Programming Interface

In a typical application, counts provided by queries with
shared context are iteratively aggregated via some associa-
tive and commutative operator. One simple example with
the summation operator is given in Eq. (1). A more com-
plex example could be Dirichlet priors with the product of
gamma functions [16]. From the computational point of
view, this assumption is very helpful as it provides ample
opportunities for optimization. We note also that while it
may look very narrow, it actually accurately captures sur-
prisingly many ML applications, which primarily involve
estimating conditional probabilities. Examples include
classifiers and regression, feature extraction, different
variants of probabilistic graphical models, etc..

Following notation in Sec. 2, let us consider a set of vari-
ables (Pa(Xi) ∪ {Xi}) ⊆ X and their corresponding
counts Nij and Nijk, for some specific configuration j of
Pa(Xi) and k ofXi. Here we are distinguishing between
counts for (Pa(Xi)∪{Xi}) and Pa(Xi) to simplify com-
puting conditional probabilities while maintaining gener-
ality – by passing Pa(Xi) = ∅ we can execute queries
over single variable Xi, and by considering only Nijk we
get joint queries Pa(Xi) ∪ {Xi}. The key observation is
that we can leverage associativity and commutativity, and
instead of first gathering all counts and then performing
aggregation, we can create a stream of counts correspond-
ing to all unique and relevant configurations found in D,
and perform the aggregation directly on the stream. This
enables us to push computations to data, mitigating mem-
ory overheads due to counts caching. To achieve this, we
abstract the computations via a function object (a con-
cept supported by all modern programming languages),
which is then repeatedly invoked over the stream. The
example function object corresponding to Eq. (1) is given
in Fig. 2. In the essence, the object receives Nijk and
Nij via the function call operator (line 3), performs the
required intermediate computations, and then aggregates
the result into internal state. This internal state can be
then inspected (line 7) to retrieve the final result of the
aggregation. From the user perspective, the function call
operator acts as an interface, and is directly invoked by
a routine responsible for enumerating, and emitting, all
unique configurations for the variables of interest (see
parameter F in Algs. 1 and 2 in the following sections).
Thus the interface provides a convenient encapsulation,
and the end-user who defines the function object (e.g.,
implementing a scoring function in BN learning) can fo-
cus solely on expressing computations (i.e., high-level

logic and correctness), and does not have to worry about
potentially complex logic of low-level details (e.g., how
counts are enumerated). Additionally, because function
object behaves like a function, but has the advantage of
possessing an internal state, it is a convenient mechanism
to express even the most demanding computations.

While the proposed interface stems from a relatively sim-
ple observation, it has several immediate advantages.
First, by separating functionality (i.e., data traversing
from computations) we gain flexibility to rapidly investi-
gate different data traversal schemes to extract counts, or
even alternate between different strategies depending on
the query context (e.g., how many variables are involved,
their domain, etc.). Second, since counts are aggregated
into an isolated state represented by a function object,
and multiple objects can coexist independently, multiple
groups of queries, each group with individual context,
can be executed concurrently and in parallel, e.g., by
different threads. Collectively, this makes the proposed
design extremely flexible, efficient and easy to use, as we
demonstrate in the experimental results section.

3.2 Bitmap Strategy

For the specific Xi and Pa(Xi) our task now is to enu-
merate counts Nij and Nijk for all configurations j and k
found in D, and then pass the counts to a function object
for aggregation. The idea behind the Bitmap strategy is
to represent each variable Xi via a set of ri bitmaps of
size m, where each bitmap indicates instances for which
Xi is in the corresponding state (see Fig. 1a). Then, the
entire process of enumerating counts can be reduced to
performing logical AND on bitmaps, equivalent of set in-
tersection, and to bit counting, equivalent of computing
set cardinality. This is summarized in Alg. 1, with exam-
ple in Fig. 1b (for convenience, in the algorithm we use
set notation instead of directly representing bitmaps).

Algorithm 1 QUERY(Xi, Pa, F, b)

1 if |Pa| = 0 then
2 Nij ← |b|
3 for v ∈ [1, . . . , ri] do
4 bv ← {p |Di[ p ] = v}
5 Nijk ← |b ∩ bv|
6 if Nijk > 0 then
7 F (Nijk, Nij) C emit new configuration
8 else
9 Xh ← HEAD(Pa)

10 for v ∈ [1, . . . , rh] do
11 bv ← {p |Dh[ p ] = v}
12 if |b ∩ bv| > 0 then
13 QUERY(Xi, TAIL(Pa), F, b ∩ bv)

To execute counting queries for Xi and Pa(Xi) (abbre-
viated to Pa), and function object F , we perform Depth
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Figure 1: (a) Database D with three variables, and the corresponding bitmap representation of X1. (b) Example of
executing Query(X2, {X1, X3}) over D using Bitmap strategy, and (c) Radix strategy.

1 class L {
2 public:
3 void operator()(int Nijk, int Nij) {
4 double p = 1.0 ∗ Nijk / Nij;
5 score_ += (Nijk ∗ log2(p));
6 }
7 double score() const { return score_; }
8 private:
9 double score_ = 0.0;

10 };

Figure 2: Example C++ code packaging Eq. (1) into our
programming interface.

First Traversal (DFS) over the tree whose leaves rep-
resent all possible ri · qi states of interest (recall that
qi =

∏
Xj∈Pa(Xi) rj). The bottom layer of the tree is

induced by the states of Xi, and the top layers correspond
to variables in Pa. When moving down the tree (lines 9-
13), we compute intersection between the set of instances
supporting variables’ configurations seen thus far (in the
algorithm denoted by b, which initially consists of all
m instances), and the set of instances supporting current
configuration of the considered variable from Pa (in the
algorithm denoted by bv). We continue traversal only if
the size of the intersection is greater than zero, implying
non-zero count for given joint configuration of variables.
Once we reach a leaf of the tree (lines 1-7), we com-
pute the final counts Nijk and Nij for the corresponding
configurations j and k, and emit those via call to F .

The depth of the tree depends on the number of vari-
ables involved in the query, and the number of leaves is
bounded by O(min(qi,m)), with each step in the traver-
sal involving O(m) cost of computing intersection and
cardinality. While the tree could potentially involve ex-
ponential (in the number of query variables) number of

nodes, it is never explicitly stored in the memory, and
even for D with large number of instances many configu-
rations have zero count, allowing for their corresponding
sub-trees to be pruned. To further leverage this property,
we order Pa such that variables with lowest entropy esti-
mated from D are at the top of the tree. Since variables
with low entropy are likely to have configurations for
which there will be only few supporting instances, they
are more likely to trigger zero counts and hence lead to a
smaller tree to traverse. For example, consider executing
Query(X2, {X1, X3}) outlined in Fig. 1b. There are to-
tal of 7 configurations which we should enumerate, and if
we traverse the tree starting from variable X3, which has
lower entropy than X1, then we will have to consider 6
intermediate states. If we were to start with variable X1,
then this number would increase to 9. This optimization
performs extremely well in practice, and, as we show in
the experimental results section, for certain ranges of n
and m, Bitmap outperforms other strategies.

In the practical terms, the strategy can be efficiently im-
plemented using streaming extensions (SIMD) in current
processors. Bitmaps for individual variables can be pre-
computed and laid out in the memory instead of D, with
acceptable memory overhead (i.e., m · ri vs. m · log2(ri)
bits), and the relative ordering of variables in D, based on
their entropy, can be established beforehand as well.

3.3 Radix Strategy

While the Bitmap strategy is amenable to very efficient im-
plementation, its scalability may still suffer when datasets
with very large number of instances are exercised by
queries with many variables, or variables with high ar-
ity. This is because in such cases the DFS tree will have
fewer nodes to prune, and the advantage of fast bit-wise
operations will be offset by the poor asymptotic behav-
ior. To address these cases, we consider an alternative
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approach, which we refer to as Radix strategy. The strat-
egy is derived from the classic radix sort algorithm, and
it involves recursively partitioning instances in D such
that single partition at given level captures all instances
corresponding to one specific configuration of the query
variables. This approach is summarized in Algs. 2 and 3,
with example in Fig. 1c.

Algorithm 2 QUERY(Xi, Pa, F )

1 B ← [[1, . . . ,m]]
2 if |Pa| 6= 0 then
3 B ← BUCKETS(HEAD(Pa), TAIL(Pa), HEAD(B))
4 for b ∈ B do
5 Nij ← |b|
6 if Nij > 0 then
7 B′ ← BUCKETS(Xi, [], b)
8 for b′ ∈ B′ do
9 Nijk ← |b′|

10 if Nijk > 0 then
11 F (Nijk, Nij) C emit new configuration

Algorithm 3 BUCKETS(Xp, Pa, b)

1 B′ ← []
2 for q ∈ [1, . . . , |b|] do
3 xp ← Dp[b[q]]
4 B′[xp].APPEND(b[q])
5 if TAIL(Pa) = [] then
6 return B′

7 B′′← []
8 for b′ ∈ B′ do
9 B′′.APPEND(BUCKETS(HEAD(Pa), TAIL(Pa), b′))

10 return B′′

The algorithm follows the Most Significant Digit (MSD)
radix, with the left most digits being states of individual
variables in Pa, and the least significant digit representing
states of Xi (Alg. 2, line 3). At each level, the number
of newly created partitions is proportional to the arity of
the considered variable, and the size of the partition is the
support in D for the particular configuration. The order in
which variables from Pa are processed is not significant,
since the cost of identifying empty partitions does not
induce overheads. Because the actual instances in D
are not to be sorted, but only partitioned, it is sufficient
that we maintain a list (in algorithms denoted by B) of
partition descriptors containing indexes of the constituent
instances and partition size (Alg. 3, lines 1-4). As soon
as all partitions prescribed by Pa are identified we can
proceed to emitting counts (Alg. 2, lines 4-11), which
must be preceded by the final round of partitioning with
respect to Xi (Alg. 2, line 7).

The algorithm requires that for each variable Xp ∈ Pa
its corresponding data vector Dp is completely scanned,
leading to the overallO(|Pa| ·m) complexity. In practice,
the entire method is efficiently implemented by first orga-

nizing the database D in the column-major format, and
then maintaining a FIFO queue of partition descriptors,
withO(m) auxiliary space to keep track of the assignment
of indexes to partitions. Moreover, partitioning for indi-
vidual variables can be precomputed in advance, further
bootstrapping the first step of the algorithm.

To conclude the presentation, we note that both Bitmap
and Radix strategies can be further augmented such that
instead of enumerating all counts (i.e., executing queries
with shared context) they deliver counts just for the spe-
cific assignment of the query variables. To achieve this, it
is sufficient to process only a single path from the root to
the leaf with the target assignment in the DFS tree of the
Bitmap strategy, and to find the partition corresponding
to the assignment, instead of all partitions, in Radix.

4 EXPERIMENTAL VALIDATION

We implemented both proposed strategies as a C++ soft-
ware library, which we complemented with Python bind-
ings for the ease of use. At its core, the library uses
standard SSE SIMD intrinsics to implement basic bitmap
operations (i.e., logical AND, and bit counting), and it
exposes all functionality via the interface described in
Sec. 3.1. The resulting open source package, which we
call SABNAtk, is available from: https://gitlab.
com/SCoRe-Group/SABNAtk.

We deployed SABNAtk on a server with two Intel Xeon
E5-2650 2.30 GHz 10-core CPUs, and 64 GB of RAM.
To test the performance, we ran a series of experiments
using popular ML benchmark datasets (see data summary
in Tab. 1). For reference, we used hash table from the C++
standard library, and the sparse ADtree data index [8].
The hash table represented contingency table created by
directly scanning the input database, with keys encoding
specific assignment of variables in Pa(Xi), and values
representing vectors of counts for specific assignment
of Xi. To maximize cache memory usage, the strategy
operated on the database stored in the row-major order.
Finally, to make the comparison fair and avoid biases due
to the differences in programming languages, we devel-
oped an efficient ADtree implementation in C++. We note
that other available implementations, for example [17],
turned out to be substantially slower than our version.

In the following, we discuss in detail several key re-
sults obtained using the above setup. More exten-
sive results (including additional test cases), together
with the data that can be used to reproduce our ex-
periments, are available from: https://gitlab.com/
SCoRe-Group/SABNAtk-Benchmarks.

Before we proceed with the results discussion, we note
that in order to use ADtree, the input database has to be
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Table 1: Benchmark data used in experiments.

Dataset n Range of ri Average ri

Child 20 2-6 3
Insur(ance) 27 2-5 3.3
Mild(ew) 35 3-99 16.4
Alarm 37 2-4 2.83
Barley 46 3-67 9.02
Hail(finder) 56 2-11 3.98
Win95(pts) 74 2-2 2
Path(finder) 104 2-63 4.2

m Child n = 20 Alarm n = 37 Hail n = 56
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Figure 3: Comparison ADT, Hash, BMap and Rad strate-
gies on the stream of uniformly random queries. The plots
show the distribution of response time in microseconds,
computed from the same sample of 1,000 queries for
different number of instances m. Y-axis is in log10-scale.

first indexed. In all our experiments, we considered only
the query time with index already loaded into memory.
Moreover, ADtree provides a hyper-parameter ` to con-
figure the size of the leaf-lists [8]. We experimented with
several values of the parameter, to fine-tune the trade-off
between query performance and memory consumption,
and we settled with ` = 16, which we use throughout the
paper. The results obtained for other ADtree configura-
tions exhibited similar patterns to those reported in the
paper, and are available online.

4.1 Random Queries

In the first set of experiments we tested how ADtree
(ADT), HashTable (Hash), Bitmap (BMap), and Radix
(Rad) strategies respond to a stream of random queries.
The idea here is to understand average performance of
each strategy in case where we have no prior informa-
tion about specific query execution patterns. For each
benchmark database, we generated 100,000 queries of
the form Query(Xi, Pa(Xi)) as follows. First, the
size of Pa(Xi) was sampled uniformly from the range
[1, . . . , n − 1], and then variables were assigned to Xi

and Pa(Xi) by randomly sampling without replacement
from X . To measure time taken to execute the query, we
used a simple function object that consumes and imme-
diately discards the counts. In this way, the overhead of
performing computations on the counts was negligible,
and did not offset the actual time spent by each strategy
to enumerate the counts. Each query was executed five
times to obtain the average response time (with negligible
variance), and exactly the same stream of queries was
processed by each strategy. The results of this experiment
are summarized in Figs. 3 and 4. Here, we note that plots
are in log10 scale, and should be interpreted with care.

Figure 3 shows that depending on the number of input
variables n, and the number of instances m, different
strategies perform better in terms of the mean response
time. When the number of instances is relatively small,
Bitmap strategy significantly outperforms other methods.
This is explained by two factors: first, for small scale data,
Bitmap benefits from continuous memory accesses, and
acceleration via SIMD instructions, second, because in
small datasets many possible variable configurations are
unobserved, Bitmap is able to prune significant portions
of the DFS tree, taking advantage of the entropy-based
data reordering (see Sec. 3.2). However, as the number of
instances in the input database increases these advantages
diminish, to the extent where the average time taken by a
query becomes unacceptable (longer than several seconds,
a threshold we set to make experiments computationally
feasible). The Radix and HashTable strategies perform
steadily across all datasets, and are able to handle even the
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Figure 4: Comparison of ADT, Hash, BMap, and Rad for
different sizes of Pa (x-axis) in the sample of 1,000 uni-
formly random queries. The plot shows the average query
response time in microseconds. Y-axis is in log10-scale.

most demanding test cases. This is expected, since both
strategies involve similar data access pattern (i.e., scan-
ning selected columns of the input database). However,
Rad is on average 20 times faster than Hash (not captured
in the figure due to log-scale), as it does not require costly
hashing and scattered memory accesses.

The ADtree strategy exhibits the best mean response
for problems with few variables and large number of in-
stances, but it significantly underperforms in all remaining
test cases. In fact, as the number of variables increases,
ADtree fails to index the database and cannot be used
to answer the queries. This is because the exponential
growth of the number of configurations, which have to
be cached, leads to the exhaustion of the main memory.
Recall also that we do not include ADtree preprocessing
time, which for datasets with more than 100K instances
exceeds several hours, much longer than the time required
to answer all 100K queries.

To further dissect performance of random queries, in
Fig. 4 we show how the response time varies with the num-
ber of query variables, for an example database. When
processing small queries (|Pa| < 4), ADtree is generally
outperformed by BMap, and when handling large queries
(|Pa| > 10) it is slower than Rad. Moreover, the cost of
Radix strategy is linear with the query size, compared to
the exponential growth of ADtree.

Based on the tests with random queries, we conclude
that Bitmap and Radix strategies significantly outperform
ADtree and HashTable, except of a small set of scenarios
in which small queries are executed over databases with
few variables and millions of instances, if we exclude the
preprocessing time.

4.2 Queries in Bayesian Networks Learning

Counting queries with shared context are the key opera-
tions performed in score-based Bayesian networks struc-
ture learning and Markov blankets discovery [1]. Both
problems depend on the parent set assignment as a sub-
routine [18], and for given Xi can be solved exactly by
traversing a lattice with n levels formed by the partial
order set inclusion on the power set of X − {Xi}. For
given X and D, queries of the form Query(Xi, Pa, F )
are performed for each Xi, where Pa iterates over all
possible subsets of X − {Xi}, starting from empty set.
Hence, at level i = 0, . . . , n − 1 we have that |Pa| = i,
and there are total

(
n−1
i

)
queries to execute, creating inter-

esting pattern of queries that grow in size as computations
progress. The function object F implements decompos-
able scoring function, e.g., MDL [19], BDeu [16], etc.,
that evaluates the assignment of Pa as parents of Xi.

We used all tested strategies to implement count-
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Figure 5: The total execution time of the parent set assign-
ment solver with ADT, Hash, BMap and Rad strategies,
normalized with respect to the fastest method. The solver
was executed up to the level where |Pa| = 6.

ing queries in the open source parent set assignment
solver [20]. The solver uses MDL scoring function,
deploys several optimizations to eliminate some of the
queries based on the results seen thus far, and because it
effectively explores large combinatorial search space it
has significant memory requirements. It also leverages
OpenMP to execute multiple queries in parallel. As such,
it serves as a practical benchmark for the query strategies.
In our experiments, instead of considering all possible
parent set sizes, as required by the exact solver, we lim-
ited the solver to |Pa| ≤ 6, to make tests computationally
feasible. This corresponds to a heuristic in which we
make an assumption that no variable in the final Bayesian
network can have more than six parents.

Figure 5 shows the total execution time of the solver
for different input databases and query strategies. From
the plots, we can see that our proposed strategies sig-
nificantly outperform ADtree and HashTable, across all
benchmarks. In fact, for datasets with high-arity vari-
ables, i.e., Mildew and Barley, the Radix strategy is 100
times faster than ADtree. This is explained by very large
number of states that are to be expected in such datasets
(and are costly to manage by ADtree), and by the pat-
tern of how queries are generated by the solver. Because
the size of the queries and their number grow together,
there are only a few small queries that benefit ADtree,
and increasing number of queries that are easily handled
by the Radix strategy.

To illustrate how critical is the performance of counting
queries for parent sets assignment, in Tab. 2 we report
the total execution time of the solver, together with the
fraction of the time taken by the queries, when running
on databases with 100K instances. In all cases, the exe-
cution is dominated by database querying that accounts
for 90%-99% of the total time. Interestingly, this frac-
tion is smaller for ADtree than for other strategies, even
though ADtree is slower (we observed this pattern in all
test cases). We believe that this is because BMap and
Rad are memory friendly, and have minimal effect on

Table 2: Execution time of the parent set assignment.

Insur Mild Alarm Barley

ADT 35m20s – 119m –
90.2% 98.2%

Hash 26m26s 92m3s 190m47s 276m16s
98.2% 99.1% 99.4% 98.2%

BMap 17m28s 1107m57s 100m55s –
98.8% 99.8% 99.9%

Rad 4m41s 37m28s 43m4s 156m32s
99.9% 99.9% 99.9% 99.9%

memory utilization by the solver, thus minimizing cache
update overheads, which in turn could slow down the
solver. This is not the case for ADtree, which requires
gigabytes of memory to run, and hence influences perfor-
mance of the solver, affecting the ratio between the query
and the solver time.

4.3 Queries in Association Rule Mining

Association rule mining is the classic method for es-
tablishing implication rules between a set of items in
a database [2, 21]. Given a set of binary variables X ,
and a database of transactions D, where Di shows in
which transactions item represented by Xi was involved
(i.e., Xi is in state 1), we want to identify rules of the
form Pa(Xi) ⇒ Xi with support, i.e., how frequently
Pa(Xi) ∪ {Xi} are set together in D, and confidence,
i.e., how frequently the rule is true in D, above some pre-
defined thresholds. In the most direct form, the problem
can be solved by traversing the power set lattice over X ,
a query pattern similar to the one used by the parent set
assignment solver. However, compared to the parent set
assignment, the actual queries are simpler, since we only
require the counts of query variables being in state 1. For
example, to assess the rule {X1, X2} ⇒ X3 we would
perform queries Count(X1 = 1, X2 = 1, X3 = 1) and
Count(X1 = 1, X2 = 1). Consequently, instead of con-
sidering the query context, it is sufficient that our strate-
gies search for one specific configuration of the query
variables (as explained at the end of Sec. 3.3).

We used all four tested strategies to implement simple
association rule mining engine based on the bottom-up
search [21]. With the engine, we processed several large
databases to enumerate rules with the support above 0.2
and confidence above 0.3, but of size less than seven. We
selected these thresholds empirically to retrieve associa-
tion rules with more than four variables, which allowed us
to reliably measure the execution times (for smaller rules,
the solver ran extremely fast). Results of this experiment
are summarized in Fig. 6.

The figure shows that the Bitmap strategy significantly
outperforms other approaches across all tested databases.
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Figure 6: The total execution time of association rule
mining with ADT, Hash, BMap and Rad strategies, nor-
malized with respect to the fastest method. The solver
was executed up to the level where |Pa| = 6.

Since in the Bitmap, processing queries with specific
assignment amounts to a series of |Pa(Xi)|+ 1 bitmap
intersections, followed by bit counting, the cost of queries
becomes linear in the size of the query and the number
of instances in the database. Moreover, because all bit-
wise operations are implemented via SIMD extensions,
BMap becomes much faster than Rad, which has the
same asymptotic behavior but involves less cache friendly
operations. Finally, the overheads of traversing ADtree
and handling its MCV subtrees (see [12] for details) leads
to its poor overall performance. At this point we should
note that originally ADtree was designed for learning of
association rules, however the design did not account for
the memory and SIMD capabilities of modern processors.

5 RELATED WORK

As we mentioned through out the paper, counting queries
in machine learning applications are often handled via
some variant of the ADtree data index. The sparse
ADtree [8, 12], which we used in our experiments, pre-
computes and caches counts for all possible variable con-
figurations. The counts are organized into a tree of vary
nodes, encoding the choice of variables to facilitate fast
searching, and AD nodes that store the actual query counts.
To partially mitigate the excessive memory use, ADtrees
do not explicitly represent most commonly occurring
counts, and instead of creating AD nodes for counts lower
than certain threshold, they resort to on-demand counting
when such nodes are accessed. These base ideas have
been extended by multiple researchers to account for dy-
namic data (i.e., updates to the database) [22], and to
improve performance on high-arity data [13, 14]. How-
ever, as the core functionality in these data structures
remains exactly the same, they suffer from the same limi-
tations that we demonstrated in our experiments (expen-
sive preprocessing, large memory footprint, significant
traversing overheads).

Support for counting queries is a primary component in

any database management system. In such systems, the
query mechanism must support conjunctive queries over
multiple tables, and with a variety of possible query pred-
icates [9]. Moreover, the queries are typically executed
over tables that cannot be fully materialized in the main
memory. Our Bitmap strategy can be viewed as a prac-
tical realization of the Leapfrog Trie Join [23] with an
unary relation, under assumption that the entire database
resides in the main memory.

The idea of using bitmaps to represent sets and their op-
erations (e.g., intersection, cardinality, etc.) is frequent
in software and databases design. This is because it al-
lows to reduce memory, storage or network bandwidth,
while maintaining the basic sets functionality [24]. In
these applications, bitmaps are typically compressed fol-
lowing methods like for example RLE encoding or Roar-
ing [25, 26]. The compressed bitmaps are orthogonal to
our approach, and in fact we could use them to improve
memory profile of our Bitmap strategy. However, as the
compression induces computational overheads, and the
size of the databases we consider practical is relatively
small, currently we do not use compression.

6 CONCLUSIONS

In this paper, we describe efficient strategies for handling
counting queries in machine learning applications. By
combining convenient programming interface with mem-
ory efficient data traversing algorithms we are able to
scale to large data instances, which we confirm via ex-
tensive experiments. The proposed solutions outperform
and can substitute popular ADtree index. Moreover, to
maintain best possible performance across different data
instances, they can be selectively applied at the runtime
depending on the properties of the queries.

While our approach is presented as a method for static
databases, we note that it can be easily adopted to the
cases where the input database expands with new in-
stances during processing. This would amount to a simple
update to the bitmaps in the Bitmap strategy, and is auto-
matically handled in the Radix strategy.
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Abstract

This paper addresses the problem of formally
verifying desirable properties of neural net-
works, i.e., obtaining provable guarantees that
neural networks satisfy specifications relating
their inputs and outputs (robustness to bounded
norm adversarial perturbations, for example).
Most previous work on this topic was lim-
ited in its applicability by the size of the net-
work, network architecture and the complexity
of properties to be verified. In contrast, our
framework applies to a general class of activa-
tion functions and specifications on neural net-
work inputs and outputs. We formulate verifi-
cation as an optimization problem (seeking to
find the largest violation of the specification)
and solve a Lagrangian relaxation of the opti-
mization problem to obtain an upper bound on
the worst case violation of the specification be-
ing verified. Our approach is anytime i.e. it can
be stopped at any time and a valid bound on the
maximum violation can be obtained. We de-
velop specialized verification algorithms with
provable tightness guarantees under special as-
sumptions and demonstrate the practical sig-
nificance of our general verification approach
on a variety of verification tasks.

1 INTRODUCTION

Neural networks and deep learning have revolutionized
machine learning achieving state of the art performance
on a wide range of complex prediction tasks [Krizhevsky
et al., 2012, Goodfellow et al., 2016]. However, in re-
cent years, researchers have observed that even state of
the art networks can be easily fooled into changing their

∗dvij@cs.washington.edu

predictions by making small but carefully chosen modifi-
cations to the input data (known as adversarial perturba-
tions) [Szegedy et al., 2013, Kurakin et al., 2016, Carlini
and Wagner, 2017a, Goodfellow et al., 2014, Carlini and
Wagner, 2017b]. While modifications to neural network
training algorithms have been proposed to mitigate this
phenomenonMadry et al. [2018], a comprehensive so-
lution that is fully robust to adversarial attacks remains
elusive [Carlini and Wagner, 2017b, Uesato et al., 2018].

Neural networks are typically tested using the standard
machine learning paradigm: If the performance (accu-
racy) of the network is sufficiently high on a holdout
(test) set that the network did not have access to while
training, the network is deemed acceptable. This is justi-
fied by statistical arguments based on an i.i.d. assumption
on the data generating mechanism, that is each input out-
put pair is generated independently from the same (un-
known) data distribution. However, this evaluation pro-
tocol is not sufficient in domains with critical safety con-
straints [Marston and Baca, 2015]. In these cases, we
may require a stronger test: for example, we may require
that the network is robust against adversarial perturba-
tions within certain bounds.

Adversarial evaluation. In the context of adversarial
examples, a natural idea is to test neural networks by
checking if it is possible to generate an adversarial at-
tack to change the label predicted by the neural network
[Kurakin et al., 2016] and train them to be robust to these
examples Madry et al. [2018]. Generating adversarial ex-
amples is a challenging computational task itself, and the
attack generated by a specific attack algorithm may be far
from optimal. This may lead one to falsely conclude that
a given model is robust to attacks even though a stronger
adversary may have broken the robustness. Recent work
[Athalye et al., 2018, Uesato et al., 2018] has shown
that evaluating models against weak adversaries can lead
to incorrect conclusions regarding the robustness of the
model. Thus, there is a need to go beyond evaluation us-
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ing specific adversarial attacks and find approaches that
provide provable guarantees against attacks by any ad-
versary.

Towards verifiable models. Verification of neural net-
works has seen significant research interest in recent
years. In the formal verification community, Satisfia-
bility Modulo Theory (SMT) solvers have been adapted
for verification of neural networks [Ehlers, 2017, Huang
et al., 2017, Katz et al., 2017]. While SMT solvers have
been successfully applied to several domains, applying
them to large neural networks remains a challenge due to
the scale of the resulting SMT problem instances. Fur-
thermore, these approaches have been largely limited to
networks with piecewise linear activation functions since
most SMT solvers are unable to deal efficiently with
nonlinear arithmetic. More recently, researchers have
proposed a set of approaches that make use of branch
and bound algorithms either directly or via mixed-integer
programming solvers [Bunel et al., 2017, Cheng et al.,
2017, Tjeng and Tedrake, 2017]. While these approaches
achieve strong results on smaller networks, scaling them
to large networks remains an open challenge. These ap-
proaches also rely heavily on the piecewise linear struc-
ture of networks where the only nonlinearities are max-
pooling and ReLUs.

Towards scalable verification of general models. In
this paper, we develop a novel approach to neural net-
work verification based on optimization and duality. The
approach consists of formulating the verification prob-
lem as an optimization problem that tries to find the
largest violation of the property being verified. If the
largest violation is smaller than zero, we can conclude
that the property being verified is true. By using ideas
from duality in optimization, we can obtain bounds on
the optimal value of this problem in a computationally
tractable manner. Note that this approach is sound but
incomplete, in that there may be cases where the prop-
erty of interest is true, but the bound computed by our
algorithm is not tight enough to prove the property. This
strategy has been used in prior work as well [Kolter and
Wong, 2018, Raghunathan et al., 2018]. However, our
results improve upon prior work in the following ways:

1. Our verification approach applies to arbitrary feed-
forward neural networks with any architecture and
any activation function and our framework recovers
previous results [Ehlers, 2017] when applied to the
special case of piecewise linear activation functions.

2. We can handle verification of systems with discrete
inputs and combinatorial constraints on the input
space, including cardinality constraints.

3. The computation involved only requires solving an
unconstrained convex optimization problem (of size
linear in the number of neurons in the network),
which can be done using a subgradient method ef-
ficiently. Further, our approach is anytime, in the
sense that the computation can be stopped at any
time and a valid bound on the verification objective
can be obtained.

4. For the special case of single hidden layer networks,
we develop specialized verification algorithms with
provable tightness guarantees.

5. We attain state of the art verified bounds on ad-
versarial error rates on image classifiers trained on
MNIST and CIFAR-10 under adversarial perturba-
tions in the infinity norm.

2 Related Work

Certifiable training and verification of neural net-
works A separate but related thread of work is on cer-
tifiable training, ie, training neural networks so that they
are guaranteed to satisfy a desired property (for example,
robustness to adversarial examples within a certain ra-
dius) [Kolter and Wong, 2018, Raghunathan et al., 2018].
These approaches use ideas from convex optimization
and duality to construct bounds on an optimization for-
mulation of verification. However, these approaches are
limited to either a class of activation functions (piecewise
linear models) or architectures (single hidden layer, as in
Raghunathan et al. [2018]). Further, in Kolter and Wong
[2018], the dual problem starts with a constrained convex
formulation but is then converted into an unconstrained
but nonconvex optimization problem to allow for easy
optimization via a backprop-style algorithm. In contrast,
our formulation allows for an unconstrained dual convex
optimization problem so that for any choice of dual vari-
ables, we obtain a valid bound on the adversarial objec-
tive and this dual problem can be solved efficiently using
subgradient methods.

We also note that the ultimate goals of [Kolter and Wong,
2018, Raghunathan et al., 2018] are different from our
paper: they modify the training procedure of the neural
network so that the network is trained to be easily veri-
fiable. In contrast, our work focuses on extending veri-
fication algorithms to apply to a broader class of archi-
tectures, activation functions and - in this sense, we view
our work as complementary to [Kolter and Wong, 2018,
Raghunathan et al., 2018]. In fact, since the objective of
our dual optimization is differentiable with respect to the
network weights, we can extend our approach to training
verifiable networks easily by simultaneously optimizing
the network weights and dual variables to minimize the

551



dual objective. We leave the study of such an extension
for future work.

Theoretical analysis of robustness Another related
line of work has to do with theoretical analysis of ad-
versarial examples. It has been shown that feedfor-
ward ReLU networks cannot learn to distinguish be-
tween points on two concentric spheres without neces-
sarily being vulnerable to adversarial examples within
a small radius [Gilmer et al., 2018]. Under a different
set of assumptions, the existence of adversarial examples
with high probability is also established in Fawzi et al.
[2018]. In Wang et al. [2017], the authors study robust-
ness of nearest neighbor classifiers to adversarial exam-
ples. As opposed to these theoretical analyses, our ap-
proach searches computationally for proofs of existence
or non-existence of adversarial examples. The approach
does not say anything a-priori about the existence of ad-
versarial examples, but can be used to investigate their
existence for a given network and compare strategies to
guard against adversarial attacks.

3 VERIFICATION AS OPTIMIZATION

3.1 NOTATION

Our techniques apply to general feedforward architec-
tures and recurrent networks, but we focus on layered
architectures for the development in this paper. The in-
put layer is numbered 0, the hidden layers are numbered
1, . . . , L − 1 and the output layer is numbered L. The
size of layer l is denoted nl

We denote by xin the input to the neural network, by zl

the pre-activations of neurons at layer l before applica-
tion of the activation function and by xl the vector of neu-
ral activations after application of the activation function
(to zl−1). For convenience, we define x0 = xin. We use
xl(xin), zl(xin) to denote the activations at the l-th layer
as a function of the input xin. Upper and lower bounds
on the pre/post activations are denoted by xl, xl, zl, zl re-
spectively. The activation function at layer l is denote hl

and is assumed to be applied component-wise, ie,

[hl(zl)]k = hlk(z
l
k)

Note that max-pooling is an exception to this rule - we
discuss how max-pooling is handled separately in the
Appendix section 6.2.1. The weights of the network
at layer l are denoted W l and the bias is denoted bl,
zl =W lxl + bl.

3.2 VERIFICATION PROBLEM

As mentioned earlier, verification refers to the process
of checking that the output of the neural network sat-

isfies a certain desirable property for all choices of the
input within a certain set. Formally, this can be stated as
follows:

∀xin ∈ Sin (xnom) xL(xin) ∈ Sout (1)

where xin denotes the input to the network, xnom de-
notes a nominal input, Sin(xnom) defines the constrained
subset of inputs induced by the nominal input, and Sout
denotes the constraints on the output that we would like
to verify are true for all inputs in Sin(xnom). In the
case of adversarial perturbations in image classification,
xnom would refer to the nominal (unperturbed image),
Sin(xnom) would refer to all the images that can be ob-
tained by adding bounded perturbations to xnom, and xin

would refer to a perturbed image.

In this paper, we will assume that: Sout is always a de-
scribed by a finite set of linear constraints on the values
of final layer ie. Sout = ∩mi=1{xL :

(
ci
)T
xL + di ≤ 0},

and Sin (xnom) is any bounded set such that any linear
optimization problem of the form

max
xin∈Sin(xnom)

cTx

can be solved efficiently. This includes convex sets and
also sets describing combinatorial structures like span-
ning trees, cuts in a graph and cardinality constraints.

See the following examples for a concrete illustration of
the formulation of the problem:

Robustness to targeted adversarial attacks. Con-
sider an adversarial attack that seeks to perturb an input
xnom to an input xin subject to a constraint on the per-
turbation

∥∥xin − xnom
∥∥ ≤ ε to change the label from

the true label i to a target label j. We can map this to (1)
as follows:

Sin (xnom) = {xin :
∥∥xin − xnom

∥∥ ≤ ε}, (2a)

Sout = {z : cT z ≤ 0} (2b)

where c is a vector with cj = 1, ci = −1 and all other
components 0. Thus, Sout denotes the set of outputs
for which the true label i has a higher logit value than
the target label j (implying that the targeted adversarial
attack did not succeed).

Monotonic predictors. Consider a network with a sin-
gle real valued output and we are interested in ensuring
that the output is monotonically increasing wrt each di-
mension of the input xin. We can state this as a verifica-
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tion problem:

Sin (xnom) = {xin : xin ≥ xnom} (3a)

Sout = {xL : xL (xnom)− xL ≤ 0} (3b)

Thus, Sout denotes the set of outputs which are large than
the network output at xnom. If this is true for each value
of xnom, then the network is monotone.

Cardinality constraints. In several cases, it makes
sense to constrain a perturbation not just in norm but also
in terms of the number of dimensions of the input that
can be perturbed. We can state this as:

Sin (xnom) =

{xin :
∥∥xin − xnom

∥∥
0
≤ k,

∥∥xin − xnom
∥∥
∞ ≤ ε}

(4a)

Sout = {z : cT z ≤ 0} (4b)

where ‖x‖0 denotes the number of non-zero entries in
x. Thus, Sout denotes the set of outputs which are larger
than the network output at xnom. If this is true for each
value of xnom, then the network is monotone.

3.3 OPTIMIZATION PROBLEM FOR
VERIFICATION

Once we have a verification problem formulated in the
form (1), we can easily turn the verification procedure
into an optimization problem. This is similar to the opti-
mization based search for adversarial examples [Szegedy
et al., 2013] when the property being verified is ad-
versarial robustness. For brevity, we only consider the
case where Sout is defined by a single linear constraint
cT z + d ≤ 0. If there are multiple constraints, each one
can be verified separately.

max
z0,...,zL−1

x0,...,xL

cTxL + d (5a)

s.t xl+1 = hl
(
zl
)
, l = 0, 1, . . . , L− 1 (5b)

zl =W lxl + bl, l = 0, 1, . . . , L− 1 (5c)

x0 = xin, xin ∈ Sin (xnom) (5d)

If the optimal value of this problem is smaller than 0 (for
each c, d in the set of linear constraints defining Sout),
we have verified the property (1). This is a nonconvex
optimization problem and finding the global optimum
in general is NP-hard (see Appendix section 6.4.1 for a
proof). However, if we can compute upper bounds on the
value of the optimization problem and the upper bound
is smaller than 0, we have successfully verified the prop-
erty. In the following section, we describe our main ap-
proach for computing bounds on the optimal value of (5).

3.4 BOUNDING THE VALUE OF THE
OPTIMIZATION PROBLEM

We assume that bounds on the activations zl, xl, l =
0, . . . , L−1 are available. Section 6.1 discusses details of
how such bounds may be obtained given the constraints
on the input layer Sin (xnom). We can bound the op-
timal value of (5) using a Lagrangian relaxation of the
constraints:

max
z0,...,zL−1

x0,x1,...,xL−1

cT
(
hL−1

(
zL−1

))
+ d

+
L−1∑

l=0

(
µl
)T (

zl −W lxl − bl
)

+
L−2∑

l=0

(
λl
)T (

xl+1 − hl
(
zl
))

(6a)

s.t. zl ≤ zl ≤ zl , l = 0, 1, . . . , L− 1 (6b)

xl ≤ xl ≤ xl , l = 0, 1, . . . , L− 1 (6c)

x0 ∈ Sin (xnom) (6d)

Note that any feasible solution for the original prob-
lem (5) is feasible for the above problem, and for any
such solution, the terms involving λ, µ become 0 (since
the terms multiplying λ, µ are 0 for every feasible solu-
tion). Thus, for any choice of λ, µ, the above optimiza-
tion problem provides a valid upper bound on the opti-
mal value of (5) (this property is known as weak duality
[Vandenberghe and Boyd, 2004]).

We now look at solving the above optimization problem.
Since the objective and constraints are separable in the
layers, the variables in each layer can be optimized inde-
pendently. For l = 1, . . . , L− 1, we have

fl
(
λl−1, µl

)
=

max
xl∈[xl,xl]

(
λl−1 −

(
W l
)T
µl
)T
xl −

(
bl
)T
µl

which can be solved trivially by setting each compo-
nent of xl to its upper or lower bound depending on
whether the corresponding entry in λl−1 −

(
W l
)T
µl is

non-negative. Thus,

fl
(
λl−1, µl

)
=

[
λl−1 −

(
W l
)T
µl
]
+

T

xl

+
[
λl−1 −

(
W l
)T
µl
]
−

T

xl −
(
bl
)T
µl

where [x]+ = max(x, 0), [x]− = min(x, 0) denote the
positive and negative parts of x.
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Similarly, collecting the terms involving zl, we have, for
l = 0, . . . , L− 1

f̃l(λ
l, µl) = max

zl∈[zl,zl]
µl
T
zl −

(
λl
)T
hl
(
zl
)

where λL−1 = −c.
Since hl is a component-wise nonlinearity, each dimen-
sion of zl can be optimized independently. For the k-th
dimension, we obtain

f̃l,k
(
λlk, µ

l
k

)
= max
zlk∈[zlk,zlk]

µlkz
l
k − λlkhlk

(
zlk
)

This is a one-dimensional optimization problem and
can be solved easily- for common activation functions
(ReLU, tanh, sigmoid, maxpool), it can be solved ana-
lytically, as discussed in appendix section 6.2. Finally,
we need to solve

f0(µ
0) = max

x0∈Sin(xnom)

(
−
(
W 0
)T
µ0

)T
x0 −

(
b0
)T
µ0

which can also be solved easily given the assumption on
Sin. We work out some concrete cases in 6.3.

Once these problems are solved, we can construct the
dual optimization problem:

min
λ,µ

nL−1∑

k=0

f̃L−1,k
(
−ck, µlk

)
+

L−2∑

l=0

nl∑

k=0

f̃l,k
(
λlk, µ

l
k

)

+
L−1∑

l=1

fl(λ
l−1, µl) + f0

(
µ0
)
+ d (7)

This seeks to choose the values of λ, µ so as to minimize
the upper bound on the verification objective, thereby ob-
taining the tightest bound on the verification objective.

This optimization can be solved using a subgradient
method on λ, µ.

Theorem 1. For any values of λ, µ, the objective of (7)
is an upper bound on the optimal value of (5). Hence,
the optimal value of (7) is also an upper bound. Further,
(7) is a convex optimization problem in (λ, µ).

Proof. The upper bound property follows from weak du-
ality [Vandenberghe and Boyd, 2004]. The fact that (7) is
a convex optimization problem can be seen as each term
fl, f̃l,k is expressed as a maximum overa set of linear
functions of λ, µ [Vandenberghe and Boyd, 2004].

Theorem 2. If each h is a ReLU function, then (7) is
equivalent to the dual of the LP described in Ehlers
[2017].

Proof. See section 6.4.

The LP formulation from Ehlers [2017] is also used in
Kolter and Wong [2018]. The dual of the LP is derived
in Kolter and Wong [2018] - however this dual is differ-
ent from (7) and ends up with a constrained optimiza-
tion formulation for the dual (the details of this can be
found in appendix section 6.4.2). To allow for an un-
constrained formulation, this dual LP is transformed to a
backpropagation-like computation. While this allows for
folding the verification into training, it also introduces
nonconvexity in the verification optimization - our for-
mulation of the dual differs from Kolter and Wong [2018]
in that we directly solve an unconstrained dual formula-
tion, allowing us to circumvent the need to solve a non-
convex optimization for verification.

3.5 TOWARDS THEORETICAL GUARANTEES
FOR VERIFICATION

The bounds computed by solving (7) could be loose in
general, since (5) is an NP-hard optimization problem
(section 6.4.1). SMT solvers and MIP solvers are guaran-
teed to find the exact optimum for piecewise linear neu-
ral networks, however, they may take exponential time
to do so. Thus, an open question remains: Are there
cases where it is possible to perform exact verification
efficiently? If not, can we approximate the verification
objective to within a certain factor (known a-priori)? We
develop results answering these questions in the follow-
ing sections.

Prior work: For any linear classifier, the scores of
each label are a linear function of the inputs wTi x +
bi. Thus, the difference between the predictions of
two classes j (target class for an adversary) and class i
(true label) is (wi − wj)Tx. Maximizing this subject to∥∥x− x0

∥∥
2
≤ ε can be solved analytically to obtain the

value (wi − wj)Tx0 + ‖wi − wj‖2 ε. This observation
formed the basis for algorithms in [Raghunathan et al.,
2018] and [Hein and Andriushchenko, 2017]. However,
once we move to nonlinear classifiers, the situation is not
so simple and computing the worst case adversarial ex-
ample, even in the 2-norm case, becomes a challenging
task. In [Hein and Andriushchenko, 2017], the special
case of kernel methods and single hidden layer classi-
fiers are considered, but the approaches developed are
only upper bounds on the verification objective (just like
those computed by our dual relaxation approach). Sim-
ilarly, in Raghunathan et al. [2018], a semidefinite pro-
gramming approach is developed to compute bounds on
the verification objective for the special case of adversar-
ial perturbations on the infinity norm. However, none of
these approaches come with a-priori guarantees on the
quality of the bound, that is, before actually running the
verification algorithm, one cannot predict how tight the
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bound on the verification objective would be. In this sec-
tion, we develop novel theoretical results that quantify
when the verification problem (5) can be solved either
exactly or with a-priori approximation guarantees. Our
results require strong assumptions and do not immedi-
ately apply to most practical situations. However, we
believe that they shed some understanding on the con-
ditions under which exact verification can be performed
tractably and lead to specialized verification algorithms
that merit further study.

We assume the following for all results in this section:
1) We study networks with a single hidden layer, i.e. L =
2, with activation function h0 = h and a linear mapping
from the penultimate to the output layer x2 = h1

(
z1
)
=

z1 =W 1x1 + b1.
2) The network has a differentiable activation function h
with Lipschitz-continuous derivatives denoted h′ (tanh,
sigmoid, ELU, polynomials satisfy this requirement).
3) Sin (xnom) = {xin :

∥∥xin − xnom
∥∥
2
≤ ε}.

Since the output layer is a linear function of the penulti-
mate layer x1, we have

cTx2 =
((
W 1
)T
c
)T
x1 + cT b1

=
((
W 1
)T
c
)T
h0
(
z0
)
+ cT b1

For brevity, we simply denote
(
W 1
)T
c as c, drop the

constant term cT b1 and let W = W 0, b = b0, znom =
Wxnom + b and Wi denote the i-th row of W . Then, (5)
reduces to:

max
xin:‖xin−xnom‖2≤ε

∑

i

cihi
(
Wix

in + bi
)

(8)

Theorem 3. Suppose that h has a Lipschitz continuous
first derivative:

h′i(t)− h′i(t̃) ≤ γi|t− t̃|

Let

ν =
∥∥diag (c)WTh′ (znom)

∥∥
2

L = σmax

(
diag (c)WT

)
σmax (diag (γ)W )

Then ∀ ε ∈ (0, ν2L ), the iteration:

xk+1 ← xnom + ε

(
WT diag (c)h′(Wxk + b)

‖WT diag (c)h′(Wxk + b)‖2

)

starting at x0 = xnom converges to the global optimum

x? of (8) at the rate
∥∥xk − x?

∥∥ ≤
(

εL
ν−εL

)k

Proof. Section 6.4

Thus, when ε is small enough, a simple algorithm exists
to find the global optimum of the verification objective.
However, even when ε is larger, one can obtain a good
approximation of the verification objective. In order to
do this, consider the following quadratic approxiimation
of the objective from (8):

max
∑

i

ci (hi (z
nom
i ) + h′i (z

nom
i ) (Wiz))

+
∑

i

ci
2
h′′i (z

nom
i ) (Wiz)

2 (9a)

s.t. ‖z‖2 ≤ ε (9b)

This optimization problem corresponds to a trust region
problem that can be solved to global optimality using
semidefinite programming [Yakubovic, 1971]:

max
z,Z

∑

i

ci (hi (z
nom
i ) + h′i (z

nom
i ) (Wiz))

+
∑

i

ci
2
h′′i (z

nom
i ) tr

(
WT
i WiZ

)
(10a)

s.t. tr (Z) ≤ ε,
(
1 zT

z Z

)
� 0 (10b)

where X � 0 denotes that X is constrained to be a pos-
itive semidefinite matrix. While this can be solved using
general semidefinite programming solvers, several spe-
cial purpose algorithms exist for this trust region prob-
lem that can exploit its particular structure for efficient
solution, [Hazan and Koren, 2016]

Theorem 4. Suppose that h is thrice-differentiable with
a globally bounded third derivative. Let

ζi = ‖Wi‖2 , ηi = sup
t
|h′′′i (t)|, κ =

1

6

(∑

i

ηiciζ
3
i

)

For each ε > 0, the difference between the optimal values
of (10), (8) is at most κε3.

Proof. See Section 6.4

4 EXPERIMENTS

In this section, we present numerical studies validation
our approach on three sets of verification tasks:
Image classification on MNIST and CIFAR: We use our
approach to obtain guaranteed lower bounds on the accu-
racy of image classifers trained on MNIST and CIFAR-
10 under adversarial attack with varying sizes of the per-
turbation radius. We compare the bounds obtained by
our method with prior work (in cases where prior work
is applicable) and also with the best attacks found by var-
ious approaches.
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Classifier stability on GitHub data: We train networks
on sequences of commits on GitHub over a collection of
10K repositories - the prediction task consists of predict-
ing whether a given repository will reach more than 40
commits within 250 days given data observed until a cer-
tain day. Input features consist a value between 0 and 1
indicating the number of days left until the 250th day, as
well as another value indicating the progress of commits
towards the total of 40. As the features evolve, the pre-
diction of the classifier changes (for example, predictions
should become more accurate as we move closer to the
250th day). In this situation, it is desirable that the clas-
sifier provides consistent predictions and that the number
of times its prediction switches is as small as possible. It
is also desirable that this switching frequency cannot be
easily be changed by perturbing input features. We use
our verification approach combined with dynamic pro-
gramming to compute a bound on the maximum number
of switches in the classifier prediction over time.
Digit sum task: We consider a more complex verifica-
tion task here: Given a pair of MNIST digits, the goal
is to bound how much the sum of predictions of a clas-
sifier can differ from the true sum of those digits under
adversarial perturbation subject to a total budget on the
perturbation across the two digits.

4.1 IMAGE CLASSIFICATION: MNIST AND
CIFAR

We study adversarial attacks subject to an l∞ bound on
the input perturbation. An adversarial example (AE) is
a pertubation of an input of the neural network such that
the output of the neural network differs from the correct
label for that input. An AE is said to be within radius ε
if the `∞ norm of the difference between the AE and the
original input is smaller than ε. We are interested in the
adversarial error rate, that is,

# Test examples that have an AE within radius ε
Size of test set

Computing this quantity precisely requires solving the
NP-hard problem (5) for each test example, but we can
obtain upper bounds on it using our (and other) verifica-
tion methods and lower bounds using a fixed attack algo-
rithm (in this paper we use a bound constrained LBFGS
algorithm similar to [Carlini and Wagner, 2017b]). Since
theorem 2 shows that for the special case of piecewise
linear neural networks, our approach reduces to the ba-
sic LP relaxation from Ehlers [2017] (which also is the
basis for the algorithms in Bunel et al. [2017] and Kolter
and Wong [2018]), we focus on networks with smooth
nonlinearities like tanh and sigmoid. We compare our
approach with The SDP formulation from Raghunathan
et al. [2018] (note that this approach only works for sin-

gle hidden layer networks, so we just show it as produc-
ing vacuous bounds for other networks).

Each approach gets a budget of 300 s per verifiation prob-
lem (choice of test example and target label). Since the
SDP solver from [Raghunathan et al., 2018] only needs
to be run once per label pair (and not per test example),
its running time is amortized appropriately.

Results on smooth activation functions: Figures 1a,1b
show that our approach is able to compute nearly tight
bounds (bounds that match the upper bound) for small
perturbation radii (up to 2 pixel units) and our bounds
significantly outperform those from the SDP approach
[Raghunathan et al., 2018] ( which is only able to com-
pute nontrivial bounds for the smallest model with 20
hidden units).

Results on models trained adversarially: We use the ad-
versarial training approach of [Uesato et al., 2018] and
train models on MNIST and CIFAR that are robust to
perturbations from the LBFGS-style attack on the train-
ing set. We then apply our verification algorithm to these
robust models and obtain bounds on the adversarial er-
ror rate on the test set. These models are all multilayer
models, so the SDP approach from [Raghunathan et al.,
2018] does not apply and we do not plot it here. We sim-
ply plot the attack versus the bound from our approach.
The results for MNIST are plotted in figure 2b and for
CIFAR in figure 2a. On networks trained using a differ-
ent procedure, the approaches from Raghunathan et al.
[2018] and Kolter and Wong [2018] are able to achieve
stronger results for larger values of ε (they work with
ε = .1 in real units, which corresponds to ε = 26 in pixel
units we use here). However, we note that our verifica-
tion procedure is agnostic to the training procedure, and
can be used to obtain fairly tight bounds for any network
and any training procedure. In comparison, the results in
Kolter and Wong [2018] and Raghunathan et al. [2018]
rely on the training procedure optimizing the verification
bound. Since we do not rely on a particular adversar-
ial training procedure, we were also able to obtain the
first non-trivial verification bounds on CIFAR-10 (to the
best of our knowledge) shown in figure 2a. While the
model quality is rather poor, the results indicate that our
approach could scale to more complicated models.

4.2 GITHUB CLASSIFIER STABILITY

We allow the adversary to modify input features by up to
3% (at each timestep) and our goal is to bound the maxi-
mum number of prediction switches induced by each at-
tack over time. We can model this within our verifica-
tion framework as follows: Given a sequence of input
features, we compute the maximum number of switches
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(a) Sigmoid (b) Tanh

Figure 1: Figures show three curves per model - Dashed line: Lower bound from LBFGS attack. Solid line: Our
verified upper bound. Dash-dot line: SDP verified upper bound from [Raghunathan et al., 2018]. Each color represents
a different network. The dashed lines at the bottom are lower bounds on the error rate computed using the best attack
found using the LBFGS algorithm.

achievable by first computing the target classes that are
reachable through an adversarial attack at each timestep
(using (7)), and then running a dynamic program to com-
pute the choices of target classes over time (from within
the reachable target classes) to maximize the number of
switches over time.

Figure 3a shows how initially predictions are easily at-
tackable (as little information is available to make pre-
dictions), and also shows how the gap between our ap-
proach and the best attack found using the LBFGS algo-
rithm evolves over time.

4.3 COMPLEX VERIFICATION TASK: DIGIT
SUM

In order to test our approach on a more complex spec-
ification, we study the following task: Given a pair of
MNIST digits, we ask the question: Can an attacker per-
turb each image, subject to a constraint on the total per-
turbation across both digits, such that the sum of the dig-
its predicted by the classifier differs from the true sum
of those digits by as large an amount as possible? An-
swering this question requires solving the following op-
timization problem:

max
xina ,x

in
b

εa,εb

| argmax
(
xL
(
xina
))

+ argmax
(
xL
(
xinb
))
− s|

s.t.
∥∥xina − xnoma

∥∥ ≤ εa,
∥∥xinb − xnomb

∥∥ ≤ εb
εa + εb ≤ ε

where s is the true sum of the two digits. Thus, the adver-
sary has to decide on both the perturbation to each digit,

as well as the size of the perturbation. We can encode this
within our framework (we skip the details here). The up-
per bound on the maximum error in the predicted sum
from the verification and the lower bound on the maxi-
mum error computed from an attack for this problem (on
an adversarially trained two hidden layer sigmoid net-
work) is plotted in figure 3b. The results show that even
on this rather complex verification task, our approach is
able to compute tight bounds.

5 CONCLUSIONS

We have presented a novel framework for verification
of neural networks. Our approach extends the appli-
cability of verification algorithms to arbitrary feedfor-
ward networks with any architecture and activation func-
tion and to more general classes of input constraints
than those considered previously (like cardinality con-
straints). The verification procedure is both efficient
(given that it solves an unconstrained convex optimiza-
tion problem) and practically scalable (given its anytime
nature only required gradient like steps). We proved
the first known (to the best of our knowledge) theorems
showing that under special assumptions, nonlinear neu-
ral networks can be verified tractably. Numerical exper-
iments demonstrate the practical performance of our ap-
proach on several classes of verification tasks.
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Abstract

Measuring uncertainty is a promising technique
for detecting adversarial examples, crafted in-
puts on which the model predicts an incorrect
class with high confidence. There are various
measures of uncertainty, including predictive
entropy and mutual information, each capturing
distinct types of uncertainty. We study these
measures, and shed light on why mutual infor-
mation seems to be effective at the task of adver-
sarial example detection. We highlight failure
modes for MC dropout, a widely used approach
for estimating uncertainty in deep models. This
leads to an improved understanding of the draw-
backs of current methods, and a proposal to im-
prove the quality of uncertainty estimates using
probabilistic model ensembles. We give illustra-
tive experiments using MNIST to demonstrate
the intuition underlying the different measures
of uncertainty, as well as experiments on a real-
world Kaggle dogs vs cats classification dataset.

1 INTRODUCTION

Deep neural networks are state of the art models for rep-
resenting complex, high dimensional data such as nat-
ural images. However, neural networks are not robust:
there exist small perturbations to the input of the network
which produce erroneous and over-confident classifica-
tion results. These perturbed inputs, known as adversarial
examples (Szegedy et al., 2013), are a major hurdle for
the use of deep networks in safety-critical applications, or
those for which security is a concern.

One possible hypothesis for the existence of adversarial
examples is that such images lie off the manifold of nat-
ural images, occupying regions where the model makes
unconstrained extrapolations. If this hypothesis were to
hold true, then one could detect adversarial perturbation

by measuring the distance of the perturbed input to the
image manifold.

Hypothetically, such distances could be measured using
nearest neighbour approaches, or by assessing the proba-
bility of the input under a density model on image space.
However, approaches based on geometric distance are a
suboptimal choice for images, as pixel-wise distance is a
poor metric for perceptual similarity; similarly, density
modelling is difficult to scale to the high dimensional
spaces found in image recognition.

Instead, we may consider proxies to the distance from
the image manifold. For example, the model uncertainty
of a discriminative Bayesian classification model should

Figure 1: Uncertainty of a standard dropout network
trained on MNIST, as measured by mutual information,
visualized in the latent space obtained from a variational
autoencoder. Colours are classes for each encoded train-
ing image. The background shows uncertainty, calculated
by decoding each latent point into image space, and evalu-
ating the mutual information between the decoded image
and the model parameters. A lighter background corre-
sponds to higher uncertainty.
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be high for points far away from the training data, for
a high-capacity model such as a deep network. Under
the hypothesis that adversarial examples lie far from the
image manifold, i.e. the training data, such uncertainty
could be used to identify an input as adversarial.

The uncertainty of such models is not straightforward to
obtain. Numerical methods for integrating the posterior,
such as Markov Chain Monte Carlo, are difficult to scale
to large datasets (Gal, 2016). As a result, approximations
have been studied extensively. For example, approximate
inference in Bayesian neural networks using dropout is a
computationally tractable technique (Gal & Ghahramani,
2016) which has been widely used in the literature (Leibig
et al., 2017; Gal, 2016). Dropout based model uncertainty
can be used for the detection of adversarial examples,
with moderate success (Li & Gal, 2017; Feinman et al.,
2017; Rawat et al., 2017).

However, existing research has mostly overlooked the ef-
fect of the chosen measure for uncertainty quantification.
Many such measures exist, including mutual information,
predictive entropy and softmax variance. (Li & Gal, 2017)
for example use expected entropy, (Rawat et al., 2017)
use mutual information, whereas (Feinman et al., 2017)
estimate the variance of multiple draws from the predic-
tive distribution (obtained using dropout). Further, to date,
research for the identification of adversarial examples us-
ing model uncertainty has concentrated on toy problems
such as MNIST, and has not been shown to extend to
more realistic data distributions and larger models such
as ResNet (He et al., 2015).

In this paper we examine the differences between the vari-
ous measures of uncertainty used for adversarial example
detection, and in the process provide further evidence for
the hypothesis that model uncertainty could be used to
identify an input as adversarial. More specifically, we
illustrate the differences between the measures by project-
ing the uncertainty onto lower dimensional spaces (see for
example Fig. 1). We show that the softmax variance can
be seen as an approximation to the mutual information
(section 3.2), explaining the effectiveness of this rather
ad-hoc technique. We show that some measures of un-
certainty do not distinguish between non-adversarial off-
manifold images (for example image interpolations) and
adversarial inputs. We highlight ways in which dropout
fails to capture the full Bayesian uncertainty by visualiz-
ing gaps in model uncertainty in the latent space (Section
4.2), and use this insight to propose a simple extension
to dropout schemes to be studied in future research. We
finish by demonstrating the effectiveness of dropout on
the real-world ASIRRA (Elson et al., 2007) cats and dogs
classification dataset (Section 4.3). Code for the experi-

ments described in this paper is available online1.

2 BACKGROUND

2.1 BAYESIAN DEEP LEARNING

A deep neural network (with a given architecture) de-
fines a function f : X 7→ Y parametrised by a set of
weights and biases ω = {Wl,bl}Ll=1. These parame-
ters are generally chosen to minimize some loss function
E : Y × Y 7→ R on the model outputs and the target
outputs over some dataset D = {xi,yi}Ni=1 with x ∈ X
and y ∈ Y . Since neural networks are highly flexible
models with many degrees of freedom, a regulariser is
often added to the loss, giving

ω̂ = argmin
ω

∑

i

E(f(xi;ω), y) + λ
∑

l

||Wl||2 (1)

for the common choice of an L2 regulariser with weight
decay λ.

In Bayesian approaches, rather than thinking of the
weights as fixed parameters that are optimised over, we
treat them as random variables, and so we place a prior
distribution p(ω) over the weights of the network. If we
also have a likelihood function p(y | x, ω) that gives the
probability of y ∈ Y given the model parameters and an
input to the network, we can conduct inference given a
dataset by marginalizing the parameters. Such models are
known as Bayesian neural networks.

If the prior on the weights is a zero mean Gaussian with
diagonal covariance, and the loss of the network is the
negative log likelihood (so p(y | ω,x) = e−E(f(x),y))
then the optimised solution in equation 1 corresponds to
a mode of the posterior over the weights.

Ideally we would integrate out our uncertainty by tak-
ing the expectation of the predictions over the posterior,
rather than using this point estimate. For neural networks
this can only be done approximately. Here we discuss
one practical approximation, variational inference with
dropout approximating distributions.

2.2 VARIATIONAL INFERENCE

Variational inference is a general technique for approx-
imating complex probability distributions. The idea is
to approximate the intractable posterior p(ω | D) with a
simpler approximating distribution qθ(ω). By applying
Jensen’s inequality to the Kullback-Leibler divergence
between the approximating distribution and the true pos-

1https://github.com/lsgos/uncertainty-adversarial-paper
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terior, we obtain the log-evidence lower bound LV I
LV I :=

∫
qθ(ω) log p(D | ω)dω −DKL(qθ || p(ω)).

Since the model evidence is a constant independent of the
parameters of qθ, maximizing LV I with respect to θ will
minimize the KL divergence between q and the model
posterior. The key advantage of this from a computational
perspective is that we replace an integration problem with
an optimisation problem, maximising a parametrised func-
tion, which can be approached by standard gradient based
techniques.

For neural networks, a common approximating distribu-
tion is dropout (Srivastava et al., 2014) and it’s variants.
In the variational framework, this means the weights are
drawn from

Wl = Ml · diag([zl,j ]Klj=1)

where zl,j ∼ Bernoulli(pl), l = 1..L, j = 1..Kl−1

for a network with L layers, where the dimension of
each layer is Ki × Ki−1, and the parameters of q are
θ = {Ml, pl | l = [1..L]}. Informally, this corresponds
to randomly setting the outputs of units in the network to
zero (or zeroing the rows of the fixed matrix Ml). Often
the layer dropout probabilities pi are chosen as constant
and not varied as part of the variational framework, but
it is possible to learn these parameters as well (Gal et al.,
2017). Using variational inference, the expectation over
the posterior can be evaluated by replacing the true pos-
terior with the approximating distribution. The dropout
distribution is still challenging to marginalise, but it is
readily sampled from, so expectations can be approxi-
mated using the Monte Carlo estimator

Ep(ω|D)[f
ω(x)] =

∫
p(ω|D)fω(x)dω

'
∫
qθ(ω)f

ω(x)dω

' 1

T

T∑

i=1

fωi(x), ω1..T ∼ qθ(ω). (2)

2.3 ADVERSARIAL EXAMPLES

Works by (Szegedy et al., 2013) and others, demonstrating
that state-of-the-art deep image classifiers can be fooled
by small perturbations to input images, have initiated a
great deal of interest in both understanding the reasons
for why such adversarial examples occur, and devising
methods to resist and detect adversarial attacks. So far,
attacking has proven more successful than defence; a
recent survey of detection methods by (Carlini & Wag-

ner, 2017a) found that, with the partial exception of the
method based on dropout uncertainty analysed by (Fein-
man et al., 2017), all other investigated methods could be
defeated straightforwardly.

There is no precise definition of when an example quali-
fies as ‘adversarial’. The most common definition used
is of an input xadv which is close to a real data point x
as measured by some Lp norm, but is classified wrongly
by the network with high score. Speaking more loosely,
an adversarially perturbed input is one which a human
observer would assign a certain class, but for which the
network would predict a different class with a high score.

It is notable that there exists a second, related, type of im-
ages which have troubling implications for the robustness
of deep models, namely meaningless images which are
nevertheless classified confidently as belonging to a par-
ticular class (see, for example, Nguyen et al. (2015)). That
such images can be found reveals another shortcoming
of neural networks from the point of view of uncertainty,
since they are far from all training data by any reasonable
metric (based on either pixel-wise or perceptual distance).
We refer to these as ‘rubbish class examples’ or ‘fooling
images’ following (Nguyen et al., 2015) and (Goodfellow
et al., 2014).

Several possible explanations for the existence of ad-
versarial examples have been proposed in the literature
(Akhtar & Mian, 2018). These include the idea, proposed
in the original paper by (Szegedy et al., 2013), that the
set of adversarial examples are a dense, low probability
set like the rational numbers on R, with the discontinuous
boundary somehow due to the strong non-linearity of neu-
ral networks. Contrary to that, (Goodfellow et al., 2014)
proposed that adversarial examples are partially due of
the intrinsically linear response of neural network layers
to their inputs. (Tanay & Griffin, 2016) have proposed
that adversarial examples are possible when the decision
boundaries are strongly tilted with respect to the vector
separating the means of the class clusters.

Many of these ideas are consistent with the idea that
the training data of the model lies on a low dimensional
manifold in image space, the hypothesis we build upon in
this paper.

2.4 MEASURES OF UNCERTAINTY

There are two major sources of uncertainty a model may
have:

1. epistemic uncertainty is uncertainty due to our lack
of knowledge; we are uncertain because we lack
understanding. In terms of machine learning, this
corresponds to a situation where our model parame-
ters are poorly determined due to a lack of data, so
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our posterior over parameters is broad.

2. aleatoric uncertainty is due to genuine stochastic-
ity in the data. In this situation, an uncertain pre-
diction is the best possible prediction. This corre-
sponds to noisy data; no matter how much data the
model has seen, if there is inherent noise then the
best prediction possible may be a high entropy one
(for example, if we train a model to predict coin flips,
the best prediction is the max-entropy distribution
P (heads) = P (tails)).

In the classification setting, where the output of a model
is a conditional probability distribution P (y|x) over some
discrete set of outcomes Y , one straight-forward measure
of uncertainty is the entropy of the predictive distribution

H[P (y|x)] = −
∑

y∈Y
P (y|x) logP (y|x). (3)

However, the predictive entropy is not an entirely satisfac-
tory measure of uncertainty, since it does not distinguish
between epistemic and aleatoric uncertainties. However,
it may be of interest to do so; in particular, we want to
capture when an input lies in a region of data space where
the model is poorly constrained, and distinguish this from
inputs near the data distribution with noisy labels.

An attractive measure of uncertainty able to distinguish
epistemic from aleatoric examples is the information gain
between the model parameters and the data. Recall that
the mutual information (MI) between two random vari-
ables X and Y is given by

I(X,Y ) = H[P (X)]− EP (y)H[P (X | Y )]

= H[P (Y )]− EP (x)H[P (Y | X)].

The amount of information we would gain about the
model parameters if we were to receive a label y for
a new point x, given the dataset D is then given by
I(ω, y | D, x) = H[p(y | x,D)]− Ep(ω|D)H[p(y | x, ω)]

(4)
Being uncertain about an input point x implies that if we
knew the label at that point we would gain information.
Conversely, if the parameters at a point are already well
determined, then we would gain little information from
obtaining the label. Thus, the MI is a measurement of the
model’s epistemic uncertainty.

In the form presented above, it is also readily approxi-
mated using the Bayesian interpretation of dropout. The
first term we will refer to as the ‘predictive entropy’; this
is just the entropy of the predictive distribution, which we
have already discussed. The second term is the mean of
the entropy of the predictions given the parameters over
the posterior distribution p(ω | D), and we thus refer to it
as the expected entropy.

These quantities are not tractable analytically for deep

nets, but using dropout inference and equation (2), the
predictive distribution, entropy and the MI are readily
approximated; (Gal, 2016):

p(y | D,x) ' 1

T

T∑

i=1

p(y | ωi,x) (5)

:= pMC(y | x)
H[p(y | D,x)] ' H[pMC(y | D,x)] (6)
I(ω, y | D, x) ' H[pMC(y | D,x)] (7)

− 1

T

T∑

i=1

H[p(y | ωi,x)] (8)

where ωi ∼ q(ω | D) are samples from the dropout
distribution.

Other, measures of uncertainty include the empirical vari-
ance of the softmax probabilities p(y = c | ωi,x) (with
the variance calculated over i), and variation ratios (Gal,
2016), with the former commonly used in previous re-
search on adversarial examples.

3 UNCERTAINTY FOR ADVERSARIAL
EXAMPLE DETECTION

We start by explaining the type of uncertainty relevant for
adversarial example detection under the hypothesis that
adversarial images lie off the manifold of natural images,
occupying regions where the model makes unconstrained
extrapolations. We continue by relating the softmax vari-
ance measure of uncertainty to mutual information.

3.1 WHAT KIND OF UNCERTAINTY?

Both the MI and predictive entropy should increase on
inputs which lie far from the image manifold. Under our
hypothesis, we expect both to be effective in highlighting
such inputs. However, predictive entropy could also be
high near the image manifold, on inputs which have inher-
ent ambiguity. Such inputs could be ambiguous images,
such as an image that contains both a cat and a dog, or
more generally interpolations between classes, such as a
digit that could be either a 1 or a 7. Such inputs would
have high predictive probability for more than one class
even in the limit of infinite data, yielding high predictive
entropy (but low MI). Such inputs are clearly not adver-
sarial, but would falsely trigger a hypothetical automatic
detection system2. We demonstrate this experimentally in
the next section.

Algorithms to find adversarial examples seek to create
an example image with a different class to the original,
typically by either minimising the predicted probability of

2We speculate that previous research using predictive en-
tropy has not encountered this phenomenon due to insufficient
coverage of the test cases.
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the current class for an untargeted attack, or maximising
the predicted probability of a target class. This has the
side-effect of minimising the entropy of the predictions,
a simple consequence of the normalisation of the proba-
bility. It is interesting to highlight that this also affects
the uncertainty as measured by MI; since both the mutual
information and entropy are strictly positive, the mutual
information is bounded above by the predictive entropy
(see equation 4). Therefore, the model giving low entropy
predictions at a point is a sufficient condition for the mu-
tual information to be low as well. Equally, the mutual
information bounds the entropy from below; it is not pos-
sible for a model to give low entropy predictions when
the MI is high. It is important to realise that this means
that adversarial example algorithms implicitly seek low
uncertainty examples: detecting adversarial examples, at
least via model uncertainty, is not independent of being
able to fool the model without explicit detection methods.

3.2 MI AND SOFTMAX VARIANCE

Some works in the literature estimate the epistemic un-
certainty of a dropout model using the estimated variance
of the MC samples, rather than the mutual information
(Leibig et al., 2017; Feinman et al., 2017; Carlini & Wag-
ner, 2017a). This is somewhat arbitrary for classification,
but seems to work fairly well in practice. We suggest a
possible explanation of the effectiveness of this measure,
arguing that the softmax variance can be seen as a proxy
to the mutual information.

One way to see the relation between the two measures
of uncertainty is to observe that the variance is the lead-
ing term in the series expansion of the mutual informa-
tion. For brevity, we denote the sampled distributions
p(y | ωi,x) as pi and the mean predictive distribution
pMC(y | x) as p̂. These are in general distribution over
C classes, and we denote the probability of the jth class
as p̂j and pij for the mean and ith sampled distribution
respectively. The variance score is the mean variance
across the classes

σ̂2 =
1

C

C∑

j=1

1

T

T∑

i=1

(pij − p̂j)2 (9)

=
1

C




C∑

j=1

(
1

T

T∑

i=1

p2ij

)
− p̂2j




And the mutual information score is

Î = H(p̂)− 1

T

∑

i

H(pi)

=
∑

j

(
1

T

∑

i

pij log pij

)
− p̂j log p̂j

Using a Taylor expansion of the logarithm,

Î =
∑

j

(
1

T

∑

i

pij(pij − 1)

)
− p̂j(p̂j − 1) + ...

=
∑

j

(
1

T

∑

i

p2ij

)
− p̂2j −

(
1

T

∑

i

pij

)
+ p̂j + ...

=

C∑

j

(
1

T

T∑

i

p2ij

)
− p̂2j + ... (10)

we see that the first term in the series is identical up
to a multiplicative constant to the mean variance of the
samples.

This relation between the softmax variance and the mutual
information measure could explain the effectiveness of the
variance in detecting adversarial examples encountered
by (Feinman et al., 2017). MI increases on images far
from the image manifold and not on image interpolations
(on which the predictive variance increases as well), with
the variance following similar trends.

4 EMPIRICAL EVALUATION

In the next section we demonstrate the effectiveness of
various measures of uncertainty as proxies to distance
from the image manifold. We demonstrate the difference
in behaviour between the predictive entropy and mutual
information on image interpolations, for interpolations in
the latent space as well as interpolations in image space.
We continue by visualising the various measures of uncer-
tainty, highlighting the differences discussed above. This
is further developed by highlighting shortcomings with
current approaches for uncertainty estimation, to which
we suggest initial ideas on how to overcome and suggest
new ideas for attacks (to be explored further in future
research). We finish by assessing the ideas discussed in
this paper on a real world dataset of cats vs dogs image
classification.

4.1 UNCERTAINTY ON INTERPOLATIONS

We start by assessing the behaviour of the measures of
uncertainty on image interpolations, comparing interpo-
lations via convex combination (λx1 + (1 − λ)x2, λ ∈
[0, 1], xi ∈ D) in latent space to those in image space. A
convex combination in image space will clearly produce
off manifold images, while we assume that moving in
latent space approximates the manifold of the data fairly
closely. That model uncertainty can capture what we want
in practice is demonstrated in Figures 2 and 3. We see
that the MI distinguishes between these on-manifold and
off-manifold images, whereas the entropy fails to do so.
This is necessary for the hypothesis proposed in the in-
troduction; if we are able to accurately capture the MI,
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Figure 2: Entropy (middle) and the MI (bottom) vary
along a convex interpolation between two images in latent
space and image space (top). The entropy is high for
regions along both interpolations, wherever the class of
the image is ambiguous. In contrast, the MI is roughly
constant along the interpolation in latent space, since these
images have aleatoric uncertainty (they are ambiguous),
but the model has seen data that resembles them. On the
other hand, the MI has a clear peak as the pixel space
interpolation produces out-of-sample images between the
classes

Figure 3: The entropy (top) and mutual information (bot-
tom) of the interpolation halfway between 3000 random
points of different classes in the MNIST test set, showing
that the two modes of interpolation have very different
statistical properties with respect to the model uncertainty,
as shown for a single example in figure 2.

it would serve well as a proxy for whether an images
belongs to the learned manifold or not.

4.2 VISUALIZATION IN LATENT SPACE

We wish to gain intuition into how the different mea-
sures of uncertainty behave. In order to do so, we use
a variational autoencoder (Kingma & Welling, 2013) to
compress the MNIST latent space. We choose a latent
space of two dimensions so we can use this to visualise
the dataset. By decoding the image that corresponds to a
point in latent space, we can classify the decoded image

Figure 4: The predictive entropy of the same network as
in figure 1. Note the differences with the MI, which is low
everywhere close to the data in the centre of the plot, but
the entropy is high between the classes here. These points
correspond to images which resemble digits, but which
are inherently ambiguous. Note however that there are
large regions of latent space where the predictive entropy
is high and the MI low, despite being far from any training
data.

and evaluate the network uncertainty, thus providing a
two dimensional map of the input space. Figure 1 shows
the latent space with the uncertainty measured using the
MI, calculated using dropout. Similarly, Figure 4 shows
the predictive entropy. Note the differences in uncertainty
near the class cluster boundaries (corresponding to im-
age interpolations) – the MI has low uncertainty in these
regions, whereas the predictive entropy is high.

Another question of interest in this context is how well
the dropout approximation captures uncertainty. The ap-
proximating distribution is fairly crude, and variational
inference schemes are known to underestimate the uncer-
tainty of the posterior, tending to fit an approximation to
a local mode rather than capturing the full posterior3.

As seen from the figures, the network does a reasonable
job of capturing uncertainty close to the data. However,
the network’s uncertainty has ‘holes’– regions where the
predictions of the model are very confident, despite the
images generated by the decoder here being essentially
nonsense (see Figure 5). This suggests that, while the
uncertainty estimates generated by MC dropout are useful,

3There are two reasons for this behaviour: firstly, that the
approximating distribution q may not have sufficient capacity
to represent the full posterior, and secondly, the asymmetry of
the KL divergence, which penalizes q placing probability mass
where the support of p is small far more heavily than the reverse.
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Figure 5: A typical garbage class example from the ‘holes’
in latent space. This is classified as a 2 with high confi-
dence.

they do not capture the full posterior, instead capturing
local behaviour near one of its modes, since we would
expect the uncertainty to be high for a neural network
everywhere where it is not constrained by the training
data due to the high capacity of the model.

This may offer an explanation as to why MC dropout nets
are still vulnerable to adversarial attack; despite their treat-
ment of uncertainty, there are still large regions where they
are mistakenly overconfident due to the approximations
used, which adversarial attack algorithms can exploit. It
may be possible to deliberately find and exploit these
‘holes’ to create adversarial examples. This intuition sug-
gests a simple fix; since a single dropout model averages
over a single mode of the posterior, we can capture the
posterior using an ensemble of dropout models using dif-
ferent initializations, assuming that these will converge to
different local modes. We find that even a small ensemble
can qualitatively improve this behaviour (Figure 6).

Figure 6: The MI calculated using an ensemble of dropout
models, treating all of their predictions as Monte Carlo
samples from the posterior. This mitigates some of the
spuriously confident regions in latent space

It should be noted, though, that there is no guarantee that
an ensemble of dropout models is a better approximation
to the true posterior. It will approximate it well only if
the posterior is concentrated in many local modes, all
of roughly equal likelihood (since all the models in the
ensemble are weighted equally), and a randomly initial-
ized variational dropout net trained with some variant
of gradient descent will converge to all of these modes
with roughly equal probability4. Investigating possible
theoretical justification for this ensembling procedure for
variational models is a possible direction for future re-
search.

4.3 EVALUATION ON CATS AND DOGS
DATASET

It has been observed by (Carlini & Wagner, 2017a) that
many proposed defences against adversarial examples
fail to generalize from MNIST. Therefore, we also evalu-
ate the various uncertainty measures on a more realistic
dataset; the ASSIRA cats and dogs dataset (see Figure
7 for example images). The task is to distinguish pic-

4This description does coincide with common beliefs about
neural network loss surfaces, for which there is some justifi-
cation in the literature; see, for example, Choromanska et al.
(2015)

Figure 7: Example adversarial images generated by the
Momentum iterative method at ε = 10, with original
images on the left, adversarial images on the determin-
istic model in the second column, and those for the MC
dropout model in the fourth column. The difference be-
tween the adversarial image and the original is shown on
the right of each image.
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Table 1: The AUC for the adversarial discrimination task described in the experiments section. Fields marked with (S)
denote this quantity evaluated on a version of the dataset with unsuccessful adversarial examples (that do not change the
label) removed. The success rate of each attack in changing the label is given as a measure of each attacks effectiveness
on this dataset.

ENTROPY MI ENTROPY (S) MI (S) SUCCESS RATE

BIM ε = 5
DETERMINISTIC 0.322 N.A 0.293 N.A 0.757
MC 0.0712 0.728 0.0617 0.733 0.900
FGM ε = 5
DETERMINISTIC MODEL 0.439 N.A 0.490 N.A 0.517
MC MODEL 0.426 0.557 0.465 0.497 0.563
MIM ε = 5
DETERMINISTIC MODEL 0.347 N.A 0.319 N.A 0.743
MC MODEL 0.0476 0.657 0.0410 0.669 0.917
BIM ε = 10
DETERMINISTIC MODEL 0.302 N.A 0.285 N.A 0.753
MC MODEL 0.0686 0.708 0.0719 0.723 0.917
FGM ε = 10
DETERMINISTIC MODEL 0.502 N.A 0.550 N.A 0.487
MC MODEL 0.480 0.529 0.514 0.491 0.547
MIM ε = 10
DETERMINISTIC MODEL 0.350 N.A 0.319 N.A 0.763
MC MODEL 0.0527 0.661 0.0442 0.665 0.907

tures of cats and dogs. While this is not a state of the art
problem, these are realistic, high resolution images. We
finetune a ResNet model (He et al., 2015), pre-trained on
Imagenet, replacing the final layer with a dropout layer
followed by a new fully connected layer. We use 20 for-
ward passes for the Monte Carlo dropout estimates. We
use dropout only on the layers we retrain, treating the
pre-trained convolutions as deterministic.

We compare the receiver operating characteristic (ROC)
of the predictive entropy of the deterministic network,
the predictive entropy of the dropout network (equation
7), and the MI of the dropout network (the MI is always
zero if the model is deterministic; this corresponds to the
approximating distribution q being a delta function). Note
that we compare with the same set of weights (trained
with dropout) – the only difference is whether we use
dropout at test time. For each measure of uncertainty we
generate the ROC plot by thresholding the uncertainty at
different values, using the threshold to decide whether an
input is adversarial or not.

The receiver operating characteristic is evaluated on a
synthetic dataset consisting of images drawn at random
from the test set and images from the test set corrupted by
Gaussian noise, which comprise the negative examples,
as well as adversarial examples generated with the Basic
Iterative Method (Kurakin et al., 2016), Fast Gradient

method (Goodfellow et al., 2014), and Momentum Iter-
ative Method (Dong et al., 2017). We test with the final
attack because it is notably strong, winning the recent
NIPS adversarial attack competition, and is simpler to
adapt to stochastic models than the other strong attacks in
the literature, such as that of Carlini and Wagner (Carlini
& Wagner, 2017b).

We find that only the mutual information gets a useful
AUC on adversarial examples. In fact, most other mea-
sures of uncertainty seem to be worse than random guess-
ing; this suggests that this dataset has a lot of examples
the model considers to be ambiguous (high aleatoric un-
certainty), which mean that the entropy has a high false
positive rate. The fact the AUC of the entropy is low
suggests that the model is actually more confident about
adversarial examples than natural ones under this mea-
sure.

An interesting quirk of this particular model is that the ac-
curacy of using Monte Carlo estimation is lower than the
point estimates, even though the uncertainty estimates are
sensible. Possibly this is because the dropout probability
is quite high; only a subset of the features in the later lay-
ers of a convnet are relevant to cat and dog discrimination,
so this may be a relic of our transfer learning procedure;
dropout does not normally have an adverse effect on the
accuracy of fully trained models (Gal, 2016).
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Figure 8: BIM with ε = 5 Figure 9: FGM with ε = 5 Figure 10: MIM with ε = 5

Figure 11: BIM with ε = 10 Figure 12: FGM with ε = 10 Figure 13: MIM with ε = 10

Figure 14: ROC plots for adversarial example detection with different measures of uncertainty and different attacks.
From left to right: basic iterative method (BIM), fast gradient method (FGM), and momentum iterative method (MIM).
Top row uses ε of 5, bottom row uses ε of 10. All use infinity norm. (succ) denotes the quantity evaluated only for
successful adversarial examples. We suspect that the low FGM attack success rate is related to the difficulty we observe
in identifying these using model uncertainty, however further investigation is required.

5 DISCUSSION & CONCLUSION

We have examined various measures of uncertainty for
detecting adversarial examples, and provided both the-
oretical and experimental evidence that measuring the
epistemic uncertainty with the mutual information is the
most appropriate and effective for this task.

We do not claim, however, that using dropout provides a
very convincing defence against adversarial attack. Our
results (in agreement with previous literature on the sub-
ject) show that dropout networks are more difficult to
attack than their deterministic counterparts, but attacks
against them can still succeed while remaining impercep-
tible to the human eye, at least in the white-box setting
we investigated.

It is worth noting, however, that these techniques for quan-
tifying uncertainty can be derived without any explicit
reference to the adversarial setting, and no assumptions
are made about the distribution of adversarial examples.

By improving model robustness and dealing with uncer-
tainty more rigorously, models become harder to fool as
a side effect; model robustness and good uncertainty esti-
mates are not independent, as discussed in section 3. We
think the fact that dropout models can still be defeated
by adversarial attack is at least partly because dropout
is a fairly crude approximation that underestimates the
uncertainty significantly, as we have demonstrated here.
Looking for scalable ways to improve on the uncertainty
quality captured by dropout is an important avenue for
future research.
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Abstract

Causal discovery algorithms infer causal re-
lations from data based on several assump-
tions, including notably the absence of mea-
surement error. However, this assumption is
most likely violated in practical applications,
which may result in erroneous, irreproducible
results. In this work we show how to obtain an
upper bound for the variance of random mea-
surement error from the covariance matrix of
measured variables and how to use this up-
per bound as a correction for constraint-based
causal discovery. We demonstrate a practical
application of our approach on both simulated
data and real-world protein signaling data.

1 INTRODUCTION

The discovery of causal relations is a fundamental ob-
jective in science, and the interest in causal discovery
algorithms has increased rapidly since they were first es-
tablished in the 1990s [Pearl, 2000, Spirtes et al., 2000].
In practice, it may happen that their predictions are not
reproducible in independent experiments. In this article
we show that the presence of measurement error may be
a possible explanation for incorrect and inconsistent out-
put and we propose a solution aimed to mitigate its ram-
ifications.

The presence of measurement error complicates causal
discovery, because measured quantities are typically not
causes of one another, even when the variables that they
represent are. Consider the example in Figure 1, and sup-
pose that exercise E is a variable that can be controlled
in an experiment, weight loss W can be measured very
precisely, but the amount of burned calories C cannot be
observed directly. Suppose we do have a measured quan-
tity C̃ = C + MC with MC a measurement error. Even

though exercise and weight loss are independent condi-
tional on burned calories, they are not when we condition
on the measurement C̃. If MC is large, one might even
find that the measurements of the calories are indepen-
dent of exercise conditional on the weight loss. A re-
searcher who is unaware of the measurement error could
then draw incorrect conclusions (e.g. weight loss causes
the burning of calories).

E C W

C̃

Figure 1: Example of causal discovery in the presence
of measurement error. Gray shaded nodes are observed
variables, white nodes are latent variables.

The example in Figure 1 illustrates the crucial differ-
ence between measurement error and disturbance terms
that are usually considered in causal models. In partic-
ular, the fluctuations that are due to measurement error
do not propagate to effect variables (e.g. measurement
noise MC in C̃ cannot be seen in E), whereas the effects
of unmodeled causes do.

Following [Scheines and Ramsey, 2016, Zhang et al.,
2017, Pearl, 2010] and [Kuroki and Pearl, 2014], we fo-
cus on random measurement error, an independent ran-
dom variable that adds noise to the measurement of one
variable in a model. We present a method that identi-
fies an upper bound for the variance of random measure-
ment error. This result builds on previous work where
the identification of sets of variables that are d-separated
by a common latent variable using vanishing tetrad con-
straints is considered, see [Silva et al., 2006, Pearl, 2010,
Bollen, 1989, Sullivant et al., 2010]. Uncertainty regard-
ing the size of the measurement error can be propagated
to an uncertainty in the partial correlations of the latent
variables that are yet unperturbed by measurement error,
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see also [Harris and Drton, 2013]. This uncertainty can
then be taken into account when performing statistical
tests so that we have outputs: dependent, independent, or
unknown. Although these types of outputs for indepen-
dence tests have been already used in previous work, e.g.
[Triantafillou et al., 2017], in that case the thresholds for
the different decisions were hyperparameters of the algo-
rithm, while we provide an adaptive and more principled
way to set them. Similarly to previous work, our ap-
proach relies on strong faithfulness [Spirtes et al., 2000,
Kalisch and Bühlmann, 2007, Maathuis et al., 2010] but
crucially it does not require causal sufficiency, i.e. the ab-
sence of unmeasured confounders, as Zhang et al. [2017]
do.

In this work, we propose a practical correction method
for measurement error in the context of constraint-based
causal discovery. We demonstrate the effectiveness of
our approach in identifying causal structures using Local
Causal Discovery (LCD) [Cooper, 1997] both on sim-
ulated data and real-world protein signaling data. Al-
though we focus on one particular causal discovery algo-
rithm, our ideas can be applied to other constraint-based
causal discovery algorithms as well, but we consider this
to be outside of the scope of this paper.

2 PRELIMINARIES

For the remainder of this paper, variables will be denoted
by capital letters and sets of variables by bold capital let-
ters. We will assume that the data-generating processes
described here can be modeled by a causal graph G with
nodes V and directed and bidirected edges E, where
some of the variables in V may be latent. When there is
a directed edge from a variableX to a variable Y , we say
thatX is a direct cause of Y . When there is a sequence of
directed edges fromX to Y with all arrowheads pointing
towards Y we call it a directed path, and we say that X
is an ancestor of Y . Bidirected edges between two vari-
ablesX and Y are used to represent hidden confounders.
Conditional independence betweenX and Y while con-
trolling for variables in Z is denoted by X ⊥⊥ Y |Z. If
Z d-separatesX from Y , we denote this asX ⊥ Y |Z.

In the absence of measurement error, the following
commonly made assumptions allow us to relate condi-
tional (in)dependences between disjoint sets of variables
X,Y , and Z to d-separation in an underlying causal
graph G [Pearl, 2000, Spirtes et al., 2000]. Throughout
the remainder of this paper we will assume that the com-
mon assumptions hold.

Assumption 1 (Common Assumptions).

1. There are no directed cycles in the causal graph.

2. Causal Markov Property: For all disjoint sets of
variables X,Y ,Z: X ⊥ Y |Z =⇒ X ⊥⊥
Y |Z.

3. Causal Faithfulness: For all disjoint sets of vari-
ablesX,Y ,Z: X ⊥⊥ Y |Z =⇒ X ⊥ Y |Z.

4. No selection bias is present.

Local causal discovery The LCD (Local Causal Dis-
covery) algorithm is a straight-forward and efficient
search method to detect one specific causal structure
from experimental data using dependence relations be-
tween variables in V [Cooper, 1997].1 LCD uses both
(conditional) independences and background knowledge
to recover causal relations from data.

The LCD algorithm looks for triples of variables
(X,Y, Z) for which (a) X is not caused by any ob-
served variable and (b) the following (in)dependences
hold: X 6⊥⊥ Y , Y 6⊥⊥ Z, and X ⊥⊥ Z | Y . We hence-
forth call such triples LCD triples. Under the common
assumptions, the causal model that corresponds to this
independence pattern is shown in Figure 2.

X Y Z

Figure 2: An LCD triple has the above causal structure,
with at least one of the dashed arrows present.

Conditional (in)dependence testing In practice,
constraint-based causal discovery algorithms rely on a
statistical test to assess the (in)dependence relationships
between variables. For data that has a multivariate
Gaussian distribution, a (conditional) independence cor-
responds to a vanishing (partial) correlation coefficient.
For random variables (X1, . . . , XD) ∼ N (µ,Σ), the
Pearson partial correlation can be calculated from the
inverse covariance matrix, which we will denote by
Λ = Σ−1.

Conventionally, one calculates a p-value pT for the (con-
ditional) dependence between variables, so that depen-
dence relations can be determined by

{
X 6⊥⊥ Y | Z if pT < α

X ⊥⊥ Y | Z if pT > β,
. (1)

where α and β are thresholds for dependence and inde-
pendence respectively. The nature of the relation is unde-
cided when α ≤ pT ≤ β. Usually only a single threshold
α = β = 0.01 or α = β = 0.05 is used.

1Triantafillou et al. [2017] give an conservative variant of
LCD with an application to protein signaling data.
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3 CAUSAL DISCOVERY UNDER
MEASUREMENT ERROR

In this section we illustrate some possible negative ef-
fects of random measurement error on constraint-based
causal discovery. To that end, we analyze the behav-
ior of partial correlations for increasing measurement er-
ror in a simple model. We consider random measure-
ment error, which is a vector of independent noise vari-
ables M = (M1, . . . ,Mn). The measurements of the
random vector X = (X1, . . . , Xn) are then given by
X̃ = (X̃1, . . . X̃2) = X +M . This means that a mea-
surement node X̃i is always child-less and has precisely
two parents: Xi and the measurement error source Mi.

In many practical applications, it is reasonable to assume
that the measurement noise has a Gaussian distribution.
For instance, when the measurement noise is the sum
of many small independent sources of error, the mea-
surement error approximates a normal distribution be-
cause of the central limit theorem. In this article we
consider the case where the measurement error is Gaus-
sian so that the measurement noise variables are given
by M = (M1, . . . ,Mn) ∼ N (0,ΣM ), where ΣM is a
diagonal matrix.

3.1 MOTIVATIONAL EXAMPLE

We illustrate the effects of measurement error on the fol-
lowing structural causal model:

X1 = E1

X2 = β12X1 + E2

X3 = β23X2 + E3

X̃2 = X2 +M2

whereX1 andX3 are not affected by measurement error.
In this model E1, E2, and E3 are normally distributed
noise variables and M2 is a normally distributed random
measurement error. The observed variables are X1, X̃2,
and X3, where the second represents the corrupted mea-
surement of X2. The corresponding causal graph is dis-
played in Figure 3.

Note that in the random measurement error model,
(X1, X2, X3) has the causal structure of an LCD triple,
but (X1, X̃2, X3) does not. Therefore X1 ⊥⊥ X3 |X2

and the partial correlation for the latent unmeasured vari-
ables satisfies ρ13|2 = 0. Let Σ̃ be the covariance matrix
of (X1, X̃2, X3) and Λ̃ its inverse. Then we have that

ρ̃13|2 = − Λ̃13√
Λ̃11Λ̃33

=
−β12β23Σ̃11var(M2)

|Σ̃|
√

Λ̃11Λ̃33

6= 0,

for non-zero parameters, so that X1 6⊥⊥ X3 | X̃2.

X1

X2 X3

X̃2

E2 E3

M2

E1

β 1
2

β23

Figure 3: Causal graph of a model with random mea-
surement error on X2. Gray shaded nodes are observed
variables (the others are latent), and coefficients along-
side the arrows represent the coefficients in the model.

Remark 1. A statistical test with conventional thresh-
olds would conclude that X1 and X3 are conditionally
dependent conditional on the measurement X̃2, if the
measurement error is large enough. If we would incor-
rectly assume that there is no measurement error, so that
X2 = X̃2, then the Markov assumption would appear to
be violated.

3.2 EMPIRICAL STUDY

For a better understanding of the impact of measurement
error on causal discovery, we consider the effect of vary-
ing the measurement error variance var(M2) relative to
the total variance of the measurement X̃2 on the partial
correlations in the motivational example.

Figure 4 shows the effect of increasing relative ran-
dom measurement error on different partial correlations,
where the dotted lines represent the α = 0.05 thresh-
old at different sample sizes. It can be seen that for zero
measurement error (so that X̃2 = X2), only the yellow
line is below the red and black dotted lines. In that case
a conventional statistical test would indicate that all vari-
ables are marginally dependent and X1 ⊥⊥ X3 | X̃2, so
that (X1, X̃2, X3) is an LCD triple, and the directed edge
from X̃2 to X3 can be detected. For relative measure-
ment errors larger than ∼ 0.25 this conditional indepen-
dence is no longer detected (because the yellow line is
above the black-dotted line).

In Figure 4 we can also observe that for sample size 100
and a relative measurement error larger than ∼ 0.3, a
conventional statistical test would indicate that X1 ⊥⊥
X̃2 |X3 since the partial correlation ρ̃12|3 ≈ 0 (i.e. be-
low the red dotted line) and all other (partial) correlations
indicate a dependence (i.e. above the red dotted line).
Causal discovery algorithms cannot recover the correct
causal structure from these constraints. In fact, the LCD
algorithm would conclude that (X1, X3, X̃2) is an LCD
triple so that there must be a directed edge in the reversed
direction.
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Figure 4: Partial correlations in the random measurement
error model in Figure 3. The dotted lines represent the
critical values for the correlation at a significance level
of α = 5% for different sample sizes. The parameter
settings were β12 = 0.6, β23 = 1.2 and all noise vari-
ables had variance 1.0.

Remark 2. The results of constraint-based causal dis-
covery may depend on the sample size. This can be bet-
ter understood by observing that the dependences that
are identified by a statistical test, depend both on the size
of the measurement error and the sample size. This may
lead to inconsistent causal discoveries, which cannot be
reproduced on new datasets.

This example shows how measurement error interferes
with detecting the correct causal structures, which may
lead to edge deletions, insertions or reversals. Note that
although we focused on the LCD algorithm here, the con-
clusions that we draw are more generally applicable to
constraint-based causal discovery algorithms.
Remark 3. For relative measurement error of ∼ 0.25
a conflicting set of (in)dependences arises for n = 100.
Since both the yellow and purple line are below the red
dotted line, a statistical test would indicate that X1 ⊥⊥
X3 | X̃2 and X1 ⊥⊥ X̃2 |X3, while all variables are
marginally dependent. But there is no model that satis-
fies the common assumptions and these (in)dependences.

4 ERROR BOUND DETECTION

Recall that the true covariances ofD random variables Σ,
measurements Σ̃ and random measurement errors ΣM
are related as follows:

ΣM = Σ̃− Σ = diag(m1, . . . ,mD)

where m1, . . . ,mD > 0 are the variances of the random
measurement error associated with each variable. In this
section we show how, under certain conditions, an upper
bound for the variance of random measurement error can
be obtained from observational data with random mea-
surement error.

Remark 4. Given an (unbiased) estimate of ΣM , we can
simply adjust the covariance matrix Σ̃ as suggested by
Pearl [2010]. In practice such an estimate of the covari-
ance matrix of measurement error may not be available.

We consider latent random variables X1, . . . , X4 and
their corresponding measurements X̃1, . . . , X̃4 ∈ V
with true covariance matrices Σ and Σ̃ respectively. Our
upper bound result relies on Lemma 1 which is due to
Silva et al. [2006] and gives conditions2 under which
there exists a latent variable that d-separates the mea-
sured variables X̃1, . . . , X̃4.

Lemma 1. Let X1, . . . , X4 be variables in a linear-
Gaussian model and let X̃1, . . . , X̃4 be their measure-
ments with random measurement error. If the corre-
lations satisfy ρ̃ij 6= 0 for all i, j ∈ {1, . . . , 4} and
Σ̃12Σ̃34 = Σ̃13Σ̃24 = Σ̃14Σ̃23, then there exists a node
L in the true underlying DAG such that X̃i ⊥ X̃j |L for
all i 6= j ∈ {1, . . . , 4}.

Proof. The proof can be found in Silva et al. [2006].

When there exists a node L that d-separates X̃1, . . . , X̃4,
then the causal graph and latent structure are represented
by the causal graph in Figure 5. This follows from the
fact that the variables with measurement error X̃i can
only have incoming arrows from Xi and Mi and never
have any outgoing arrows. Because L d-separates all X̃i

there can be no collider at L.

Before we present our upper bound result, we introduce
an adjusted covariance matrix:

Σ̃(u, j) = Σ̃− u diag(ej),

where j ∈ {1, 2, 3, 4} and ej is a standard basis vector.
For all u such that Σ̃(u, j) is a valid covariance matrix,
the adjusted partial correlations ρ̃uik|j may be calculated

from Λ̃(u, j) = (Σ̃(u, j))−1 as follows:

ρ̃uik|j = − (Λ̃(u, j))ik√
(Λ̃(u, j))ii(Λ̃(u, j))kk

. (2)

Theorem 1 shows how the adjusted partial correlation is
related to the underlying causal graph in Figure 5. Corol-
lary 1 shows how we can use adjusted partial correlations
to find an upper bound for the measurement error on one
variable.

2These conditions are known as tetrad conditions in the lit-
erature, see Bollen [1989], Sullivant et al. [2010], Drton et al.
[2008], Sullivant et al. [2010]
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Figure 5: Causal graph of upper bound pattern for model
with random measurement error, where at least one of
the dashed edges is present. The indexes 1, . . . 4 can be
permuted. Noise variables E1, . . . , E4 may be present
but are not drawn. Measurement errors M1, . . . ,M4 are
present but not drawn.

Theorem 1. Let X1, . . . , X4, X̃1, . . . , X̃4 and ρ̃ij be as
in Lemma 1. The true underlying DAG is as in Figure 5 if
and only if there exists u > 0 such that ρ̃u13|2 = ρ̃u14|2 =
ρu34|2 = 0.

Proof. The proof can be obtained by explicitly calculat-
ing the adjusted partial correlations and applying Lemma
1. A complete proof can be found in the supplementary
material.

Corollary 1. Letm2 be the variance of the measurement
error on X2. If ρ̃u

∗
13|2 = ρ̃u

∗
14|2 = ρ̃u

∗
34|2 = 0 for some

u∗ > 0 then m2 ≤ u∗.

Proof. Follows from the proof of Theorem 1.

These results can also be applied in a practical, more gen-
eral setting. If data is generated from a random measure-
ment error model for variables V , we consider subsets
of four variables. If we can find an adjustment u∗ on the
covariance matrix of this subset of variables so that the
adjusted partial correlations in Theorem 1 vanish, then
Corollary 1 implicates that this adjustment is an upper
bound for the variance of random measurement error. To
ensure that the causal structure of these four variables is
as in Figure 5, we can test for the constraints in Lemma
1 (see [Bollen, 1989, Silva et al., 2006, Thoemmes et al.,
2018]). When all variables are measured in a similar
manner, it may be reasonable to assume that the variance
of the measurement error is the same for all variables.
Under this assumption, the upper bound for the measure-
ment error can be extended to an upper bound for the
measurement error variance on all variables.
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Figure 6: Simulation results for measurement error upper
bound detection.

Data simulations To empirically test the performance
of the upper bound, we simulated 10000 datapoints for
10000 random models with causal structures as in Fig-
ure 5 with parameters chosen uniformly from the inter-
val [−1, 1] and error variances chosen uniformly from
the interval [0.5, 1]. We added random measurement er-
ror to each variable (the same variance was used for all
variables) and minimized the sum of adjusted partial cor-
relations in Corollary 1 to obtain an upper bound. The
result in Figure 6 shows that this leads to a correct upper
bound on the variance of the measurement error.

5 STRONG FAITHFULNESS

In this section we prove that conditional independences
cannot be reliably detected in the presence of measure-
ment error. We then discuss the strong faithfulness as-
sumption and its repercussions. In the next section we
will present our error correction method, which relies
on an upper bound for measurement error and the strong
faithfulness assumption.

Lemma 2 shows that for two dependent (sets of) vari-
ables, a conditional independence between these vari-
ables can never be detected if the conditioning set is
subject to measurement error, unless the faithfulness as-
sumption is violated.

Lemma 2. Let X,Y and Z̃ be three sets of (disjoint)
variables. If Z̃ has measurement error with non-zero
variance, then the (in)dependences

X 6⊥⊥ Y X ⊥⊥ Y |Z̃,

must be due to a violation of the faithfulness assumption.

Proof. A faithfulness violation occurs whenX ⊥⊥ Y |Z̃
but Z̃ does not d-separate X and Y . Since X and Y
are dependent in the data there must be an open path be-
tween them by the Markov assumption. By definition
of random measurement error the variables in Z̃ are leaf
nodes. Therefore Z̃ cannot block the path between X
and Y , so thatX 6⊥ Y |Z̃.
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Under the assumption that all variables in the model have
the same measurement error variance (e.g. because they
are subject to the same source of measurement error), the
variance of the measurement error must be zero when-
ever a marginal dependence and a conditional indepen-
dence is detected, as shown in Proposition 1.
Proposition 1. Let X̃, Ỹ and Z̃ be three sets of (dis-
joint) variables with measurement errors that have equal
(possibly zero) variances. Under the faithfulness as-
sumption, if X̃ 6⊥⊥ Ỹ and X̃ ⊥⊥ Ỹ |Z̃, then the mea-
surement error on all variables has zero variance.

Proof. Follows directly from Lemma 2.

Since constraint-based causal discovery algorithms rely
both on the faithfulness assumption and on the results of
conditional independence tests, poor performance is to
be expected when variables are measured with error. In
this article, we consider the strong faithfulness assump-
tion [Spirtes et al., 2000] instead.
Assumption 2. (Strong faithfulness) We assume that
the data of the unobserved measurement-error-free vari-
ables is λ-strong faithful to the true underlying causal
graph that generated it. That is, for all disjoint sets of
variablesX,Y ,Z:

|ρX,Y |Z | < λ =⇒ X ⊥ Y |Z.

The example in Figure 4 illustrates how the strong
faitfhulness assumption may alleviate some of the nega-
tive effects of measurement error, but may aggravate the
risk of detecting wrong conditional independences. If the
data is λ-strong faitfhul, then it is also µ-strong faithful,
where 0 < µ ≤ λ, and µ can then be treated as a tuning
parameter. In Figure 4, for zero relative measurement
error, the data is µ-strong faithful for any µ up to λ ∼
0.25. For µ = 0.25 we find from the partial correla-
tions thatX1 ⊥⊥ X̃3 | X̃2 upto a relative measurement er-
ror of approximately 0.3, but for large enough measure-
ment error we may also wrongly detect that X1 ⊥⊥
X̃2 |X3.3

The tuning parameter thus represents a trade-off between
detecting as many as possible of the true conditional in-
dependences and wrongfully detecting conditional inde-
pendences. For the identification of LCD triples this
means that for small µ and data that is corrupted by mea-
surement error, we cannot detect the true LCD triples,
while for large µ we may detect false LCD triples, be-
cause we detect conditional independences between vari-
ables that are actually dependent.

3Small enough correlations correspond to d-separations in
the underlying graph by the strong faithfulness assumption.
By the causal Markov assumption, d-separations correspond to
conditional independences.

6 ERROR PROPAGATION

In this section we consider propagation of an error bound
on random measurement error to partial correlations. If
the strong faithfulness assumption holds, the effective-
ness of tuning the threshold parameter λ depends on
the size of the measurement error. By taking measure-
ment error into account, we aim to alleviate the adverse
effect of wrongfully detecting conditional independences
by including the possibility to adaptively assign ‘un-
kown’ to a statistical test result. In that case we could get
the best of both worlds: detect the correct conditional in-
dependences and assign ‘unknown’ or ‘dependent’ to the
conditional dependences.

We start by defining an adjusted covariance matrix for
three variables. Let m = (m1,m2,m3) be the vari-
ances of the random measurement errors (M1,M2,M3)
on the latent (unmeasured) variables (X1, X2, X3), and
suppose that u∗ = (u∗1, u

∗
2, u
∗
3) is an upper bound such

that m � u∗.4 Suppose that Σ̃ is the true covariance
matrix of the measured variables X̃1, X̃2, X̃3 ∈ V . The
adjusted covariance matrix is given by

Σ̃(u) = Σ̃− uT I, (3)

where I denotes the identity matrix, when Σ̃(u) has an
inverse, otherwise Σ̃(u) = Σ̃.

For 0 � u � u∗ we can find minimal and maximal
absolute values of partial correlations based on Λ̃(u) =
(Σ̃(u))−1. We define

ρ̃min
12|3 = arg min

0�u�u∗

∣∣∣∣∣∣
(Λ̃(u))12√

(Λ̃(u))11(Λ̃(u))22

∣∣∣∣∣∣
, (4)

ρ̃max
12|3 = arg max

0�u�u∗

∣∣∣∣∣∣
(Λ̃(u))12√

(Λ̃(u))11(Λ̃(u))22

∣∣∣∣∣∣
. (5)

Under the λ-strong faithfulness assumption, the condi-
tional (in)dependence relations can be determined as fol-
lows: {

X1 6⊥⊥ X2 |X3 if ρ̃min
12|3 > λ

X1 ⊥⊥ X2 |X3 if ρ̃max
12|3 < λ,

. (6)

The nature of the relation is undecided when ρ̃min
12|3 < λ

and ρ̃max
12|3 > λ.5

Although we consider a measurement error correction in
cases where only one variable is conditioned upon, our

4� is the component-wise inequality between two vectors.
5In practical applications the covariance matrix Σ̃ is esti-

mated from data. The added uncertainty can be taken into ac-
count by using bootstrapping to obtain confidence intervals for
ρ̃min
12|3 and ρ̃max

12|3.
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ideas can be trivially extended to accommodate larger
conditioning sets when an upper bound on the measure-
ment error is known for all variables involved6.

7 DATA SIMULATIONS

We now evaluate the effects of a measurement error cor-
rection on simulated data. For detailed descriptions of
the simulation settings, we refer to the supplementary
material.

7.1 CONDITIONAL INDEPENDENCE TESTING

To illustrate the effectiveness of the measurement er-
ror correction in identifying conditional (in)dependence
relations, we generated data for three variables
(X1, X2, X3) from linear-Gaussian acyclic causal struc-
tures, possibly with latent confounders. We only con-
sidered triples that satisfied the λ-strong faithfulness as-
sumption for λ = 0.1 and X1 6⊥⊥ X2 and X2 6⊥⊥ X3.

We simulated 2000 models where half of the models sat-
isfied X1 ⊥⊥ X3 |X2. From each model we generated
10000 samples and added normally distributed random
measurement error to each variable with varying vari-
ance. The conditional (in)dependence between X̃1 ⊥⊥
X̃3 | X̃2 was tested in various ways: using a threshold
on the p-value α = 0.05, using a threshold λ = 0.1 on
the partial correlation, and using the same threshold with
a measurement error correction with an upper bound on
the measurement error of t times the true variance. We
then calculated the error rate as the number of incorrect
classifications relative to the total number of tests. Note
that the amount of conditional (in)dependence relations
that are assigned ‘unknown’ increases with the size of the
measurement error and the tightness of the upper bound.
For an evaluation of the amount of ‘unknown’ classifica-
tions we refer to the supplementary material.

Figure 7a shows that the measurement error correction
slightly reduces the error rate for conditional depen-
dences, and 7b shows that the error rate of detecting in-
correct conditional dependences is greatly reduced.

7.2 APPLICATION TO LCD

Typically, when data is λ-strong faithful to the true un-
derlying causal graph, the value of λ is not known and
λ is therefore used as a tuning parameter instead. We
generated triples (X1, X2, X3) as in the previous simu-
lation, but only selected triples where X1 was not caused

6In that case one considers a larger adjusted covariance ma-
trix, and since the partial correlations are calculated from the
covariance matrix one can use the same scheme to find mini-
mal and maximal values for the absolute partial correlation.

by X2 and X3. We added measurement error with a
fixed variance. We then applied the LCD algorithm, test-
ing conditional independences as in the previous section.
We evaluated the results by checking whether the causal
structure of the triples was correctly identified. Figure
7c shows that the precision of the algorithm with the
measurement error corrected test results outperforms the
standard methods.

We also consider the more realistic case where multiple
variables are measured, the upper bound for the variance
of the measurement error is not known in advance, and
the data is not necessarily λ-strong faithful. To that end
we simulated 10000 datapoints from a random acyclic
model with 15 variables, where one variable was not
caused by any of the other variables. We added mea-
surement error to each variable with a fixed variance.

For the upper bound detection, we first tested whether the
tetrad constraints vanished using Wishart’s test [Wishart,
1928] at the 5% level, and then used the result in
Corollary 1 to obtain an upper bound for the measure-
ment error. When we found multiple upper bounds (for
multiple variables) we chose the median as an upper
bound for the measurement error on all variables. Fi-
nally we applied the LCD algorithm, testing marginal
(in)dependences with a t-test at the 5% level and con-
ditional (in)dependences as in the previous experiments
and using the detected upper bound. If we were not able
to detect an upper bound, we assigned ‘unknown’ to ev-
ery test result. We checked how often a correct causal
structure was identified. In 200 repetitions of the ex-
periment the upper bound was incorrect in only 3 cases
and no upper bound was detected in 39 cases. Figure 7d
shows that all methods score significantly better than the
random baseline and that the precision for detecting LCD
triples increases significantly when we use the measure-
ment error correction.

8 PROTEIN SIGNALING NETWORKS

We present an application of our ideas to real-world pro-
tein signaling data that could be corrupted by measure-
ment error. We used a dataset concerning the influence of
protein abundances on the properties of a protein signal-
ing network in human kidney cells [Lun et al., 2017], and
obtained an upper bound for the variance of random mea-
surement error from this data. In absence of a reliable
ground truth for this experiment, we validated the results
of a measurement error correction applied to the LCD
algorithm by comparing it to a baseline derived from in-
terventions in the data.

Data description For conditions j = 1, . . . , 20 the
abundance of a different protein labeled (GFP)j was
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(d) Upper bound detection and application to LCD.

Figure 7: Simulation results. Figures a and b show the error rate for detecting conditional dependences and indepen-
dences in the presence of measurement error for λ-strong faithful data. It is assumed that λ = 0.1 is known, and
α = 0.05. Figure c shows the precision-recall curve for detecting LCD triples from λ-strong faithful data subject to
measurement error with fixed variance and a given upper bound, where λ and α are used as tuning parameters. Figure
d shows the precision-recall curve for simulations of 15 variables, where we first apply the upper bound detection and
then the measurement error correction and α and λ are treated as tuning parameters. The baseline is at 0.016.

over-expressed and then measured [Lun et al., 2017].
The abundances of an additional 34 phosphorylated pro-
teins Pi were measured after stimulation of the network.
We relabeled conditions j so that over-expression of a
protein (GFP)j corresponds to the measured phosphory-
lated abundance Pj .

The abundance of an over-expressed protein typically
differed between cells and not every cell was affected
[Lun et al., 2017]. Because of the experimental design,
(GFP)j is not caused by the abundance or phosphoryla-
tion of the other proteins, which allowed us to treat the
abundance of (GFP)j as an intervention variable.

Typically ∼ 10000 single cells were measured for each
condition. We assume that the data-generating process
can be approximated by a linear-Gaussian model after
pre-processing. For details about data pre-processing we
refer to the supplementary material.

Upper bound detection We considered all proteins
under over-expression of the SRC protein, for which
strong signaling relations were present (see also [Lun
et al., 2017]). For all 4-tuples ((GFP)SRC, Pi, Pj , Pk)
that were all marginally dependent at the 1% level (us-
ing a t-test), we tested whether all three tetrads vanished
using Wishart’s test at the 5% level. We found that these

constraints were satisfied for the 4-tuple ((GFP)SRC,
pS6K, pMAPKAPK2, pMAP2K3).

This allowed us to apply the results presented in Sec-
tion 4 to obtain an upper bound. The upper bounds for
the variance of measurement error that we found were
0.10 for pS6K, 0.15 for pMAPKAPK2, and 0.14 for
pMAP2K3.7 Since all proteins were measured with the
same device, we assumed that the variance of the mea-
surement error is the same for each variable, so that 0.14
is a suitable upper bound for the measurement error on
any variable.

Although the detected upper bound was large for weak
signals, the proteins with stronger signals typically had
variances > 1, so that the relative amount of measure-
ment error for proteins with strong signaling relations
amounted to less than 10%.

Baseline To validate the results of LCD, we created a
baseline from the interventions (corresponding to over-
expression of certain proteins) in the dataset. A reason-
able assumption is that (GFP)j is a direct cause of Pj ,

7Each of the detected other bounds corresponds to adjusting
the corresponding variable, as in Corollary 1. Other triples that
satisfied the constraints gave similar or (much) higher upper
bounds for the measurement error.
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because the higher the abundance of a protein, the more it
can be phosphorylated. Under the assumption that over-
expression of a protein Pj does not alter the network
structure [Lun et al., 2017] and that (GFP)j does not di-
rectly cause any of the other proteins Pi, with i 6= j, we
have that Pj is a cause of Pk, whenever (GFP)j and Pk
are dependent.

We constructed a baseline for cause-effect pairs (Pj , Pk),
where we considered 7 phosphorylated proteins Pj that
were over-expressed in one of the conditions as cause
variables and all 34 phosphorylated proteins as effect
variables. The subset of proteins that was used to con-
struct the baseline follows the recommendations in Lun
et al. [2017]. We considered a pair (Pj , Pk) a causal pair,
if a t-test indicated that (GFP)j and Pk were dependent
at a level of 10−4. This resulted in 231 possible cause-
effect pairs, 71% of which were cause-effect pairs in the
baseline.

Methods and results We applied the LCD algorithm
to the data to identify causal pairs (Pj , Pk) by treat-
ing (GFP)i as an intervention variable for conditions
i ∈ {1, . . . , 20}, with i 6= j and i 6= k. Since central
proteins in the network were over-expressed, true causal
pairs were expected to appear under multiple conditions.
To make our results more robust, we only made a posi-
tive prediction if a causal pair was predicted for at least
2 conditions. We applied three methods of conditional
(in)dependence testing in combination with the LCD al-
gorithm: a threshold α on the p-value of t-tests, a thresh-
old λ on the absolute value of partial correlations, and a
threshold λ on partial correlations with a measurement
error correction using the upper bound u = 0.14.

By treating λ and α as tuning parameters and taking the
baseline as ground truth, we calculated a precision-recall
curve for each method of conditional (in)dependence
testing. The results are displayed in Figure 8, which
shows that α and λ − u have comparable pr-curves.
For this dataset there seems to exist a threshold α that
is already able to distinguish between conditional in-
dependences and dependences. We can see that both
λ − u and α significantly outperform random guessing,
but λ does not. Although the differences between the
methods are not significant, this seems to indicate that
a measurement-error correction improves the precision
at low recall for conditional independence testing with a
fixed threshold on (partial) correlations.

9 CONCLUSION

In this paper we demonstrated that measurement error,
when not taken into account, can fool causal discovery
methods into wrongfully inserting, deleting or reversing
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Figure 8: LCD applied to protein signaling data with α or
λ as tuning parameter and a measurement-error correc-
tion. The results are compared with the random baseline,
the gray-shaded areas represent one and two standard de-
viations from the random baseline.

edges in the predicted causal graph. We showed that reg-
ular statistical tests with conventional thresholds would
fail to detect conditional independences between the un-
corrupted variables from the measurement data when
measurement error is present. We also proposed a cor-
rection method aimed at mitigating the negative effects
of measurement error.

The key result that we presented in this work is that, un-
der certain conditions, we can find an upper bound for
the variance of the measurement error from data that has
been corrupted by measurement error. We show that this
uncertainty can be propagated into an uncertainty regard-
ing the partial correlations to correct for measurement er-
ror. We showed a successful application of our approach
on simulated data.

We also applied our ideas to a real-world protein sig-
naling dataset, and we found an upper bound for the
variance of the measurement error in this dataset. We
found that our approach gave significantly higher preci-
sion than a random baseline. However, also the conven-
tional method without correction for measurement error
seems to work well on this dataset. Nevertheless, it is
our belief that taking measurement error into account is
a promising step towards successful real-world applica-
tions of (constraint-based) causal discovery.
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Abstract

Advances in deep learning have led to substan-
tial increases in prediction accuracy but have
been accompanied by increases in the cost of
rendering predictions. We conjecture that for
a majority of real-world inputs, the recent ad-
vances in deep learning have created models
that effectively “over-think” on simple inputs.
In this paper we revisit the classic question of
building model cascades that primarily leverage
class asymmetry to reduce cost. We introduce
the “I Don’t Know” (IDK) prediction cascades
framework, a general framework to systemat-
ically compose a set of pre-trained models to
accelerate inference without a loss in predic-
tion accuracy. We propose two search based
methods for constructing cascades as well as
a new cost-aware objective within this frame-
work. The proposed IDK cascade framework
can be easily adopted in the existing model
serving systems without additional model re-
training. We evaluate the proposed techniques
on a range of benchmarks to demonstrate the
effectiveness of the proposed framework.

1 INTRODUCTION

Advances in deep learning have enabled substantial recent
progress on challenging machine learning benchmarks.
As a consequence, deep learning is being deployed in
real-world applications, ranging from automated video
surveillance, to voice-powered personal assistants, to self-
driving cars. In these applications, accurate predictions
must be delivered in real-time (e.g, under 200ms) under
heavy query load (e.g., processing millions of streams)
with limited resources (e.g., limited GPUs and power).

The need for accurate, low-latency, high-throughput, and

low-cost predictions has forced the machine learning
community to explore a complex trade-off space span-
ning model and system design. For example, several
researchers have investigated techniques for performing
deep learning model compression [1, 2, 3]. However,
model compression primarily reduces model memory re-
quirements so as to fit on mobile devices or in other
energy-bounded settings. There is a limit to how far
compression-based techniques can be pushed to reduce
latency at inference time while retaining state-of-the-art
accuracy across all inputs.

We conjecture that in the pursuit of improved classifica-
tion accuracy the machine learning community has devel-
oped models that effectively “overthink” on an increasing
fraction of queries. To support this conjecture we show
that while the cost of computing predictions has increased
by an order of magnitude over the past 5 years, the accu-
racy of predictions on a large fraction of the ImageNet
2012 validation images has remained constant (see Fig. 2).
This observation suggests that if we could distinguish be-
tween easy and challenging inputs (e.g., images) and only
apply more advanced models when necessary, we could
reduce computational costs without impacting accuracy.
In this paper we study the design of prediction cascades
as a mechanism to exploit this conjecture by combining
fast models with accurate models to increase throughput
and reduce mean latency without a loss in accuracy.

Though prediction cascades are well established in the
machine learning literature [4, 5, 6, 7], the classic ap-
proaches focus on detection tasks and developed cascades
for early rejection of negative object or region proposals –
leveraging the class asymmetry of detection tasks. In this
paper, we revisit the question of how to effectively build
model cascades with little training overhead to trade off
between prediction accuracy and cost, extending to any
multi-class classification task.

We introduce IDK prediction cascades, a general frame-
work to accelerate inference without reducing prediction

580



Input IDK IDK

P
re

d

P
re

d

P
re

dStages
More accurate

Figure 1: An IDK prediction cascade combines IDK classifiers of increasing accuracy and computational cost such that
each will either render a high-accuracy prediction or return IDK passing the input to the next model in the cascade for a
more accurate but higher cost prediction

accuracy by composing pre-trained models. IDK predic-
tion cascades (see Fig. 1) are composed of IDK classifiers
which are constructed by attaching an augmenting clas-
sifier to the existing classifiers, base models, enabling
the IDK classifiers to predict an auxiliary “I don’t know”
(IDK) class besides the original prediction classes. The
augmenting classifiers, which are light-weighted (the com-
putational cost is negligible compared to the cost of the
base models) and independent from the base model ar-
chitectures, measure the uncertainty of the base model
predictions. When an IDK classifier predicts the IDK
class the subsequent model in the cascade is invoked. The
process is repeated until either a model in the cascade
predicts a real class or the end of the cascade is reached
at which point the last model must render a prediction.
Furthermore, we can introduce a human expert as the last
model in an IDK cascade to achieve nearly perfect accu-
racy while minimizing the cost of human intervention.

The base models in the model cascades are treated as
black-boxes and thus the proposed framework can be ap-
plied to any existing model serving systems [8, 9] with
little modification. In addition, the proposed IDK cascade
framework model naturally fits the edge-cloud scenario
where the fast models can be deployed on edge devices
(e.g. Nvidia Drive PX2, Jetson TX2, etc.) while the expen-
sive models are stored in the cloud and are only triggered
when the fast model is not certain about a prediction.

To build such model cascade, we need to address the
following problems: (1) without retraining the base mod-
els or obtaining the base model architecture, what is the
best measure available to distinguish the easy and hard
examples in the workload? (2) to construct the IDK clas-
sifiers that can effectively decide the execution path for
the given input while not introducing additional computa-
tional overhead, what is the proper objective to balance
the computational cost and the overall prediction accuracy
of the model cascades?

In this work, we propose two search-based methods for
constructing IDK classifiers: cascading by probability
and cascading by entropy. Cascade by probability exam-
ines the confidence scores of a model directly to estimate
uncertainty. Cascade by entropy leverages well-calibrated
class conditional probabilities to estimate model uncer-
tainty. Both techniques then search to find the optimal
uncertainty threshold at which to predict the IDK class for
each model in the cascade. When the uncertainty in a pre-
dicted class exceeds this threshold, the model predicts the
IDK class instead. While both search-based methods pro-
duce reasonable prediction cascades, neither leverages the
cascade design when training the augmenting classifier.

As a third approach to constructing IDK classifiers we
cast the IDK cascade problem in the context of empiri-
cal risk minimization with an additional computational
cost term and describe how the objective can be easily
incorporated into gradient based learning procedures. The
empirical risk minimization based approach allows the
IDK classifier to trade-off between cascade accuracy and
computational cost when building the prediction cascade.

We apply all three techniques to the image classification
task on ImageNet2012 and CIFAR10 to demonstrate we
can reduce computation by 37%, resulting in a 1.6x in-
crease in throughput, while maintaining state-of-the-art
accuracy. We conduct a detailed study of the impact of
adding the computational-cost term to the objective and
show that it is critical for training the augmenting classi-
fiers. Compared to the cascades built with cost-oblivious
objectives which cannot usually achieve the desired ac-
curacy, the proposed cost-aware objective better serves
the goal of model cascading. Furthermore, we demon-
strate that in a real autonomous vehicle setting the IDK
cascades framework can be applied in conjunction with
human experts to achieve 95% accuracy on driving mo-
tion prediction task while requiring human intervention
less than 30% of the time.
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Figure 2: ImageNet Model Statistics: (a) Number of Multi-Adds of the top ImageNet models. flops is equivalent to
multi-adds in this work and will be used in the following sections. (b) The top one prediction accuracy of the top
ImageNet models.(c) Throughputs (query per second) of the top ImageNet models with batch size = 1. (d) The fraction
of images correctly labeled by at least K ∈ {1 . . . 6} of the benchmark models

2 RELATED WORK
Compression & Distillation. Much of the existing work
to accelerate predictions from deep neural networks has
focused on model compression [3, 2, 1, 10] and distil-
lation [11]. Denton et al. [2] applied low-rank approxi-
mations to exploit redundancy in convolution parameters
to achieve a factor of two speedup with only 1% reduc-
tion in accuracy. Han et al. [10] introduced quantization
and Huffman encoding methods to reduce network sizes
by orders of magnitude and reduce prediction cost by a
factor of 3 to 4. Our work on IDK prediction cascades
is complementary to the work on model compression
and focuses exclusively on decreasing computation costs.
In fact, by coupling model compression with IDK cas-
cades it may be possible to support more aggressive lossy
compression techniques. Alternatively, Hinton et al. [11]
proposed using soft-targets to transfer knowledge from a
costly ensemble to a single model while largely preserv-
ing prediction accuracy. Our approach does not require
retraining base models and instead focuses on accelerat-
ing inference by using more complex models only when
necessary. The existing model compression and distil-
lation techniques can be used to construct the fast base
models while our framework serves as a bridge to connect
models with different levels of complexity and accuracy.

Cascaded Predictions. Prediction cascades are a well
suited approach to improve prediction performance.
Much of the early work on prediction cascades was de-
veloped in the context of face detection. While Viola
and Jones [5] are credited with introducing the termi-
nology of prediction cascades, prior work by Rowley et
al. [4] explored cascading neural networks by combining
coarse candidate region detection with high accuracy face
detection. More recently, Angelova et al. [6] proposed
using deep network cascades and achieved real-time per-
formances on pedestrian detection tasks. Cai et al. [7] also
examined cascades for pedestrian detection, proposing a
complexity aware term to regularize the cascade objective.
While this approach has similarities to the loss function
we propose, Cai et al. leverage the cost aware risk to

choose an optimal ordering of cascade elements rather
than to train a specific classifier. These papers all focus on
using cascades for detection tasks, and only use the earlier
models in the cascade to reject negative region or object
proposals more cheaply. Positive detection (e.g. object
identification) can only be made by the final model in the
cascade, which is the only model that can predict the full
set of classes in the prediction task. Recently, Huang et
al. [12] applied the cascading concept by allowing early
exiting within the model. Instead of cascading features
of a single model, we aim to cascade the trained models
(one may not know the model structure or not be able to
retrain) in a practical scenario.

Uncertainty Classes. The introduction of an IDK class
to capture prediction uncertainty has also been studied un-
der other settings. [13, 14]. Trappenberg [13] introduced
an “I don’t know” (IDK) class to learn to identify input
spaces with high uncertainty. Khani et al. [14] introduced
a “don’t know” class to enable classifiers to achieve per-
fect precision when learning semantic mappings. In both
cases, the addition of an auxiliary uncertainty class is
used to improve prediction accuracy rather than perfor-
mance. We build on this work by using the IDK class in
the construction of cascades to improve performance.

3 A MOTIVATING EXAMPLE

In the pursuit of improved accuracy, deep learning models
are becoming increasingly expensive to evaluate. To illus-
trate this trend, in Fig. 2c we plot the throughput for six
benchmark models on the ImageNet 2012 datasets. We
observe that prediction throughput has decreased by more
than an order of magnitude. We expect the trend towards
more costly models to continue with improvements in
model design and increased adoption of ensemble meth-
ods [11]. In contrast, as Fig. 2b shows, the gains in predic-
tion accuracy have increased much more slowly. A result
of this trend is that even the cheaper and less advanced
models can correctly classify many of the examples.
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Easy Samples. For many prediction tasks, less accurate
models are adequate most of the time. For example, a
security camera may observe an empty street most of the
time and require a more sophisticated model only in the
infrequent events that people or objects enter the scene.
Even in the standard benchmarks, many of the examples
can be correctly classified by older, less advanced models.
In Fig. 2d we plot the percentage of images that were
correctly classified by an increasing fraction of models.
We observe that a large fraction (≈ 48%) of the images
are correctly classified by all six of the models, suggest-
ing that these images are perhaps inherently easier and
may not require the recent substantial increases in model
complexity and computational cost.

4 IDK PREDICTION CASCADES

We start describing the IDK prediction cascade framework
by examining simple two model cascades and then extend
these techniques to deeper cascades at the end of this
section. We start by formalizing two element cascades for
the multiclass prediction problem.

We consider the k class multiclass prediction problem in
which we are given two pre-trained models: (1) a fast but
less accurate model mfast and (2) an accurate but more
costly model macc. In addition, we assume that the fast
model estimates the class conditional probability:

mfast(x) = P̂(class label | x). (1)

Many multi-class estimators (e.g., DNNs trained using
cross entropy) provide class conditional probabilities. In
addition, we are given a dataset D = {(xi, yi)}n

i=1 con-
sisting of n labeled data points.

To develop IDK prediction cascades we introduce an ad-
ditional augmenting classifier:

hα(mfast(x))→ [0, 1], (2)

which evaluates the distributional output of mfast(x) and
returns a number between 0 and 1 encoding how uncertain
the fast model mfast(x) is about a given prediction. The
IDK classifier is composed of the base model and the
augmenting classifier. For simplicity, we will refer to
training the augmenting classifier as training the IDK
classifier. In this paper we consider several designs for
the IDK classifier:

hprb
α (mfast(x)) = I

[
max

j
mfast(x)j < α

]
(3)

hent
α (mfast(x)) = I

[
H
[
mfast(x)

]
> α

]
(4)

hcst
α (mfast(x)) = σ

(
α1 fα2

(
mfast(x)

)
+ α0

)
, (5)

where I is the indicator function, H is the entropy func-
tion:

H[mfast(x)] = −
k

∑
j=1

mfast(x)j · log mfast(x)j, (6)

and f is a feature representation of mfast(x).

While f can be any featurization of the prediction
mfast(x), in this work we focus on the entropy featur-
ization f = H as this is a natural measure of uncertainty.
When using the entropy featurization, the IDK classi-
fier hcst becomes a differentiable approximation of hent

enabling direct cost based optimization. In our exper-
imental evaluation, we also evaluate fα2(m

fast(x)) =
NNα2(m

fast(x)) which recovers a neural feature encod-
ing of x and allows us to assess a neural network based
IDK classifier in the context of the differentiable cost
based optimization.

Given an IDK classifier hα(·) we can define a two element
IDK prediction cascade as:

mcasc(x) =

{
mfast(x) if hα(mfast(x)) <= 0.5
macc(x) otherwise.

(7)

Thus, for a given choice of IDK classifier hα we only need
to determine the optimal value for parameter α to ensure
maximum accuracy while minimizing the fraction of ex-
amples for which the more expensive model is required.
In the following, we formalize this objective and describe
a set of techniques for choosing the optimal value of α.

Given the above definition of an IDK prediction cascade
we can define two quantities of interest. We define the
accuracy Acc(m) of a model m as the zero-one prediction
accuracy evaluated on our training data D:

Acc(m) =
1
n

n

∑
i=1

I

[
yi = arg max

j
m(xi)j

]
. (8)

We define the IDK rate IDKRate(h) of an IDK classifier
h as the fraction of training examples that are evaluated
by the next model in the cascade:

IDKRate(h) =
1
n

n

∑
i=1

I
[

hα(mfast(xi)) > 0.5
]

. (9)

Our goal in designing a prediction cascade is then to
maintain the accuracy of the more accurate model while
minimizing the IDK rate (i.e., the fraction of examples
that require the more costly macc model). We formalize
this goal as:

min
α

IDKRate(hα) (10)

s.t.: Acc(mcasc) ≥ (1− ε)Acc(macc). (11)

In the following we describe a set of search procedures for
achieving this goal for each of the IDK classifier designs.
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4.1 BASELINE UNCERTAINTY CASCADES

Similar to [15], as a baseline, we propose using the confi-
dence scores (i.e. probability over the predicted class) of
mfast(x) and follow the IDK classifier design ( Eq. 3). The
intuition is that if the prediction of mfast is insufficiently
confident then the more accurate classifier is invoked.

A more rigorous measure of prediction uncertainty is the
entropy of the class conditional probability. We therefore
propose an entropy based IDK classifier in Eq. 4. The en-
tropy based IDK classifier captures the overall uncertainty
as well as the certainty within the dominant class.

Due to the indicator functions neither the cascade by
probability (Eq. 3) nor the cascade by entropy functions
(Eq. 4) are differentiable. However, because the parameter
α is a single scalar, we can apply a simple grid to search
procedure to find the optimal value for the threshold α.

4.2 REGULARIZING FOR PREDICTION COST

The uncertainty based cascades described above adopt
a relatively simple IDK classifier formulation and rely
on grid search to select the optimal parameters. How-
ever, by reframing the cascade objective in the context of
regularized empirical risk minimization and defining a dif-
ferentiable regularized loss we can admit more complex
IDK classifiers.

In the framework of empirical risk minimization, we de-
fine the objective as the sum of the loss L(·, ·) plus the
computational cost C(·) of invoking the cascaded model:

J(α) =
1
n

n

∑
i=1

[L(yi, mcasc
α (xi)) + λ ·C(mcasc

α (xi))]

(12)
where λ is a hyper parameter which determines the trade-
off between the cascade accuracy and the computational
cost. Because we are not directly optimizing the fast or
accurate models we can adopt the zero-one loss which is
compatible with our earlier accuracy goal:

L(yi, mcasc
α (xi)) =

(
1− hα(mfast(x))

)
· I[yi, mfast(xi)]

+ hα(mfast(x)) · I[yi, macc(xi)],
(13)

where I[yi, m(xi)] is 1 if arg maxj m(xi)j 6= yi and
0 otherwise. The IDK classifier hα(mfast(x)) governs
which loss is incurred. It is worth noting that alterna-
tive loss formulations could be used to further fine-tune
the underlying fast and accurate model parameters in the
cascaded setting.

The cascaded prediction cost C(·) is defined as:

C(mcasc
α (xi)) = cfast + hα(mfast(x)) · cacc, (14)

where the computational cost of mfast and macc, are de-
noted by cfast and cacc respectively. In practice, the cost
of model mfast and macc could be measured in terms of
multi-adds, latency, or number of parameters. The formu-
lation of Eq. 14 captures the cascade formulation in which
the fast model is always evaluated and the accurate model
is evaluated conditioned on the IDK classifier decision.

Combining both prediction loss and computational cost
of the IDK cascade, we can now use this regularized loss
objective function to optimize the IDK prediction cascade
with stochastic gradient descent based algorithms. This
objective allows us to optimize both prediction precision
and overall computational cost in one pass and support
more complex parametric IDK classifiers.

4.3 BEYOND TWO ELEMENT CASCADES

We can extend the two element cascade to construct
deeper cascades by introducing additional IDK classifiers
between each model and then either optimizing the IDK
classifier parameters in a stage-wise fashion or by jointly
optimizing the IDK classifiers using the extended loss
function. More precisely, for an N-model cascade where
mj is the j-th model in the cascade, we define N − 1 IDK
classifiers hαj(m

j(x)). For non-differentiable IDK classi-
fiers with scalar parameters we can apply the grid search
procedure in a stage wise fashion starting with the least
accurate model. For more complex differentiable IDK
classifiers we can define an extended loss:

L(yi, mcasc
α (xi)) =

N

∑
j=1

j−1

∏
q=0

pq(1− pj)I[yi, mj(xi)]

(15)
where pj = hαj(m

j(x)) and p0 = pN = 1. The compu-
tational cost function C(·) is then generalized as

C(mcasc
α (xi)) =

N

∑
j=1

j−1

∏
q=0

pqcj (16)

5 EXPERIMENTS

In this section, we evaluate the proposed cascading meth-
ods in two scenarios: cascading machine learning models
with different computation budgets and collaboration be-
tween algorithms and human.

To study the prediction accuracy and cost trade-off under
each cascade design, we use standard image classification
benchmark tasks and models. We evaluate the cascaded
models on ImageNet 2012 [16] and CIFAR-10 [17]. We
assess whether the proposed IDK cascade approaches can
match the state-of-the-art accuracy while significantly re-
ducing the cost of rendering predictions. We also evaluate
the robustness of the proposed framework on CIFAR-10.
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Figure 3: ImageNet Two Model Cascades. Prob+Grid: cascade by probability with grid search. Entropy+Grid:
cascade by entropy with grid search. NN+Binary: Neural Network based IDK classifier trained with cost-oblivious
cross-entropy loss. Entropy+Binary: Entropy based IDK classifier trained with cost-oblivious cross-entropy loss.
Entropy+Cost: Entropy based IDK classifier with cost-aware objective. Oracle: Using ground truth correctness labels
as IDK classifier. The comparison of Prob+Grid, Entropy+Grid and Entropy+Cost demonstrates that the proposed
cost-aware objective is more effective in constructing model cascades with lower computational costs. The comparison
of NN+Binary, Entropy+Binary, Entropy+Cost shows that the vanilla cross-entropy loss commonly used for binary
classification leads to a model cascade with lower IDK rate but not achieving the desired accuracy

.

To assess how cascades can be used to augment models
with human intervention, we evaluate a motion predic-
tion task, a representative of autonomous vehicle work-
loads [18]. In this human-in-the-loop prediction task, the
human serves as the accurate model to further improve
the accuracy and safety of autonomous driving. The cas-
cade design is used to determine when the fast model can
no longer be trusted and human intervention is required
(e.g., by taking over steering).

We evaluate each cascade using a range of different met-
rics. The accuracy and IDK rate correspond to the ac-
curacy and IDK rate defined in Eq. 8 and Eq. 9 respec-
tively. In the multi-model cascade setting, we measure
IDK Rate at each level in the cascade. As a measure of
computational cost we compute the average flops which
is the average floating point arithmetic operations required
by the model cascade. Finally, as a relative measure
of runtime we compute the relative computational cost
which is computed as FLOPcasc/FLOPacc.

5.1 IMAGE CLASSIFICATION ON IMAGENET

We first demonstrate that the proposed IDK model cas-
cade framework can preserve the accuracy of the expen-

sive models without a loss while reducing the overall
computational cost.

5.1.1 Experimental Details

On the ImageNet 2012 dataset we study cascades assem-
bled from pre-trained models including AlexNet [19] and
residual networks of various depths including ResNet-18,
ResNet-34, ResNet-50, and ResNet-152 [20]. Detailed
statistics such as top-1 accuracy, FLOPs, etc of the models
are shown in Fig. 2. To train the IDK classifiers, we sam-
ple 25.6K training images randomly from the ImageNet
2012 training data and report the cascade accuracy on the
entire ImageNet 2012 validation data. In grid search for
cascade by probability and entropy, we evaluate 100 dif-
ferent settings of α and select the cascade which has the
lowest IDK rate while reaching the desired accuracy. Be-
cause 1% reduction in accuracy can translate to a nearly
30% reduction in computational cost on ImageNet (as
measured in flops), we set the desired accuracy to be the
same as the ResNet-152 (i.e., setting ε = 0 in Eq. 11).

For cascade by entropy via cost-aware objective, we set
the hyper-parameter λ = 0.04 across different model
combinations and use the actual FLOPs number of each
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Figure 4: Three Model Cascade Results. We consider three element cascades m1 → m2 → m3 where m2 and m3 are
chosen to be the optimal two element cascade consisting of ResNet-50 and ResNet-152 respectively and we evaluate
AlexNet, ResNet-18, and ResNet-34 as m1. We also evaluate each of the three IDK cascade designs and corresponding
fitting procedure. In all cases, the accuracy is set to match that of ResNet-152 and we therefore only present the
computational costs relative to the ResNet-152 model. In general we find that deeper cascades have diminishing returns
due to increased evaluation costs

model as the model cost in the objective. We also com-
pare against a cascade constructed using an oracle IDK
classifier as a cascade accuracy upper bound which op-
timally selects between the fast and accurate models. In
addition to proposed cascade designs, we include two
more IDK cascades constructed by supervised training
an IDK classifier of the form in Eq. 5 using the oracle
labels with cost-oblivious objectives. We discuss these
alternative baselines in more detail in the next section.

5.1.2 Computation Reduction

Detailed results are shown in Fig. 3. We find the best cas-
cade design employs the Entropy features and regularized
cost formulation to combine the ResNet-50 and ResNet-
152 models. This cascade is able to reduce prediction
costs by 37% while achieving the accuracy of the most
computationally expensive model. This is also close to
the oracle performance, though it assumes a perfect IDK
classifier (i.e. the IDK classifier can distinguish the pre-
diction correctness of the fast model with 100% accuracy
and only passing the incorrect predictions to the accurate
model). In general we find that our regularized cost based
formulation outperforms the other baseline techniques.

5.1.3 Effectiveness of Cost-Aware Objective

In Fig. 3 we also compare the proposed cost based IDK
cascade design with two IDK classifiers following the
form of Eq. 5 with cost-oblivious cross entropy loss. The
training labels are the correctness of the predictions of
the fast model evaluated on the ImageNet2012 dataset.
We consider two forms of the feature function f : entropy
based features identical to the cost based cascade and
neural network features. The neural network feature func-
tion fα2(m

fast(x)) consists of a 7-layer fully connected
network with 1024, 1024, 512, 512, 128, and 64 hid-
den units, ReLU activation functions, and trained using
stochastic gradient descent with momentum and batch

normalization. In general, we find that these sophisticated
baselines are unable to accurately predict the success of
the fast model and as a consequence are unable to match
the accuracy of the cost based cascade formulation. With
the cost-aware objective, the IDK cascades can meet the
desired accuracy which shows that the proposed objective
is more suitable for building model cascades.

5.1.4 Three Model Cascades

We also investigate three model cascades and the results
are shown in Fig. 4. Compared to the two models ResNet-
50 + ResNet-152 cascade, adding a faster model like
AlexNet, ResNet-18 or ResNet-34 actually increases com-
putational cost, because a reasonable fraction of examples
will need to pass through all three models in the cascade.
However, the three-model cascade tends to reduce the
computational cost relative to a two-model cascade in-
cluding a less accurate model than ResNet-50. Moreover,
adding more accurate models within a cascade consis-
tently improves the overall cascade performance.

Table 1: CIFAR Model Details

Model % Train Acc % Test Acc Flops (107)
VGG19 99.996 93.66 39.8

ResNet18 100.00 95.26 3.7
DLA-48-B-s 99.204 89.06 1.7

5.2 Robustness Analysis on CIFAR-10

To further analyze the robustness of the IDK prediction
cascades, we conduct a set of experiments on the CIFAR-
10 datasets. We consider three models: ResNet-18 [20],
VGG19 [21] and a recently proposed compact model
DLA-48-B-s [22]. Tab. 1 shows details of the models. As
we can see from the table, all models overfit the training
data with high accuracy close to 100%. We want to study
the robustness of the IDK prediction cascades under such
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Figure 5: Entropy Distribution. We plot the entropy of the class conditional probability distributions for VGG19 and
ResNet-18 on CIFAR-10 and ResNet-50 and ResNet-152 on ImageNet 2012. The VGG model severely overfits the
training data and thus can not be used as the base model in the IDK classifier

Table 2: CIFAR Model DLA-48-B-s + ResNet-18 Cascade Results

Type Desired Acc (%) Acc (%) IDK Rate (%) Avg Flops (×107) Relative Computational Cost
Prob + Grid 95.26 95.23 67.5 4.198 1.135

Entropy + Grid 95.26 95.23 51.7 3.613 0.977
Entropy + Cost 95.26 95.22 48.9 3.509 0.949
Entropy + Grid 95.16 95.16 40.1 3.184 0.861
Entropy + Cost 95.16 95.16 40.0 3.179 0.859

Prob + Grid 95.05 95.07 36.5 3.051 0.824
Entropy + Grid 95.05 95.06 33.7 2.947 0.796
Entropy + Cost 95.05 95.05 32.8 2.915 0.788

Prob + Grid 94.90 94.89 29.9 2.806 0.759
Entropy + Grid 94.90 94.91 30.6 2.832 0.766
Entropy + Cost 94.90 94.91 30.5 2.827 0.764

extreme case. In this experiment, since VGG19 is less
accurate and more costly than ResNet-18, we focus on
cascades constructed with DLA-48-B-s and ResNet-18.

We evaluate the model cascades with four different cas-
cade accuracy goals shown in Tab. 2. We observe cas-
cade by entropy via the cost-aware objective consistently
outperforms grid search methods. Also, by admitting a
small 0.03% reduction in accuracy, the IDK rate drops
substantially from 48.9% to 30.5%. Compared to the
single expensive model, the best model cascade reduces
computational costs by 24%.

5.2.1 Robustness analysis

The proposed IDK classifiers rely on various measures of
uncertainty in the class conditional probability distribu-
tion and are therefore sensitive to over confidence often as
a result of over-fitting. To assess this effect, we evaluate
the entropy distribution of the VGG19 and ResNet-18
models which have been trained to near perfect training
accuracy (see Tab. 1). We plot the entropy distribution
of these models in Figure 5a and 5b on both training and
held-out test data and observe that both models substan-
tially over-estimate their confidence on training data when
compared with test data. In contrast, the ResNet-50 and

ResNet-152 models are much better estimators of pre-
diction uncertainty as seen in Figures 5c and 5d. As a
consequence, in settings where the fast model is likely to
over-fit it is important to use separate held-out data when
training the IDK classifier.

5.3 DRIVING CONTROL PREDICTION
We evaluate IDK cascades for autonomous driving and
demonstrate that we can achieve nearly perfect accuracy
with less than 30% human intervention. In this experi-
ment, we apply the IDK model cascade framework on
Berkeley DeepDrive Video dataset, a large scale real driv-
ing video dataset [18] containing 2.6 million frames in
the training video and 384,599 frames for testing. The
driving dataset contains 4 discrete motion states: left turn,
right turn, forward and stop. The task is to predict the next
vehicle motion given previous video frames. Fig. 6 shows
some sample frames in the dataset. We use the Long-term
Recurrent Convolutional Networks (LRCN) [23] model
as mfast and experiment on a large scale driving video
dataset [18]. We consider a human-in-the-loop setting
where human serves as the macc with 100% accuracy.

We use the same training setting for the proposed cascade
approaches as the image classification task and report
the results in Tab. 3. The LRCN model has an accuracy
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Figure 6: Sample Frames from the Berkeley DeepDrive Video Dataset

of 84.5% 1 and we set the desired accuracy to 100%,
99% and 95%. We find that with only 28.88% human
intervention, the cascade model can achieve 95% accuracy
which is about 10% more accurate than the base LRCN
model. This experiment demonstrates that the model
cascade can be easily applied to real applications which
are in high demand of low latency and high accuracy.

Table 3: Driving Model LRCN + Human Expert Cascades

Type Desired Acc (%) Acc (%) IDK rate (%)
Prob + Grid 100.0 99.9 83.91
Ent + Grid 100.0 99.9 83.50
Ent + Cost 100.0 99.9 80.70
Prob + Grid 99.0 99.2 61.72
Ent + Grid 99.0 99.2 61.36
Ent + Cost 99.0 99.1 59.70
Prob + Grid 95.0 95.4 30.08
Ent + Grid 95.0 95.3 30.02
Ent + Cost 95.0 95.1 28.88

6 CONCLUSION AND FUTURE WORK

In this paper we revisited the classic idea of prediction
cascades to reduce prediction costs. We extended the
classic cascade framework focused on binary classifica-
tions to multi-class classification setting. We argue that
the current deep learning models are “over-thinking” sim-
ple inputs in the majority of the real-world applications.
Therefore, we aim to learn prediction cascades within the
framework of empirical risk minimization and propose
a new cost aware loss function, to leverage the accuracy
and reduced cost of the IDK cascades.

We focused on build simple cascade with the the pre-
trained base models with little training and negligible

1A slightly reduced accuracy early version was used.

computation overhead. We tried to answer two questions
in this paper: (1) what is a good measure to distinguish the
easy and hard examples in the workload without querying
much information about the mode itself? We found that
the entropy value of the model prediction distribution is
a good measure than the vanilla confidence score and
can be used as input data to train a light-weighted but
effective IDK classifier. (2) How to design the objective
function that balances the prediction accuracy and the
computation cost? We proposed in this work to use the
cost regularized objective which utilizes the actual FLOPs
of the base models as the cost measures. Incorporating the
cost factor in the objective, we found the model cascade
works more effectively than the model cascades with cost-
oblivious function.

We also proposed two search based methods cascade by
probability and cascade by entropy, which obtain reason-
able performance and require no additional training. We
evaluated these techniques on both benchmarks and real-
world datasets to show that our approach can successfully
identify hard examples in the problem, and substantially
reduce the number of invocations of the accurate model
with negligible loss in accuracy. We also found that the
cost based cascade formulation outperforms uncertainty
based techniques.

We believe this work is a first step towards learning to
compose models to reduce computational costs. Though
not studied in this work, the proposed framework can be
easily applied to the existing model serving systems and
fit the edge-cloud scenario naturally with little modifi-
cation. In the future, we would like to explore feature
reusing and joint training of the cascade models so that
different models can specialize in either easy or hard ex-
amples of the given workload.
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Abstract
We present a novel reinforcement learning (RL)
approach to learning a fast and highly scalable
solver for a two-stage stochastic integer pro-
gram in the large-scale data setting. Mixed inte-
ger programming solvers do not scale to large
datasets for this problem class. Additionally,
they solve each instance independently, without
any knowledge transfer across instances. We
address these limitations with a learnable local
search solver that jointly learns two policies,
one to generate an initial solution and another
to iteratively improve it with local moves. The
policies use contextual features for a problem
instance as input, which enables learning across
instances and generalization to new ones. We
also propose learning a policy to compute a
bound on the objective using dual decompo-
sition. Benchmark results show that on test
instances our approach rapidly achieves approx-
imately 30% to 2000% better objective value,
which a state of the art integer programming
solver (SCIP) requires more than an order of
magnitude more running time to match. Our
approach also achieves better solution quality
on seven out of eight benchmark problems than
standard baselines such as Tabu Search and Pro-
gressive Hedging.

1 INTRODUCTION
Stochastic integer programming (Birge and Louveaux
[1997], Shapiro et al. [2009]) arises in various applica-
tions that require combinatorial optimization under un-
certainty, such as electric grid optimization, finance, and
logistics. Many domains involve large-scale data for ran-
dom variables (e.g., weather, demand, etc.), and require
solving a set of related problem instances instead of only
one instance (e.g., solve instances periodically, each with
different weather and demand forecast distributions).

While powerful solvers exist for deterministic, single-
instance mixed integer programs (MIPs), this is not the
case for the stochastic, multi-instance setting. Traditional
solvers from the optimization literature are not able to
scale to high dimensional stochastic MIPs where several
thousands of samples are required to represent uncertainty,
and do not reuse experience on solving past optimization
problems to solve future problems.

In this paper we consider learning an approximate solver
with reinforcement learning (RL). We frame optimization
as a sequential decision problem where at each step the
solver “agent” proposes a solution, and the “environment”
evaluates the objective value and any constraint violations
to provide reward and observations. Contextual features
describing a problem instance are used as an input to the
solver so that its actions are adapted to that instance. The
parameters of such a contextual solver are learned offline
on a training set of instances. Once trained, the solver
is applied to a new instance from the same distribution.
We also learn a dual policy that computes a bound on the
optimal value to estimate how far the solution computed
by the contextual solver is from the global optimum for a
given instance.

The advantages of our approach are: a) it can scale to
a large set of problem instances, as well as a large set
of samples for the random variables in each instance,
and b) it can generalize to a new instance to achieve
better solution quality and/or time than a solver that treats
each instance independently. As the results show, our
approach is able to scale to much larger datasets and
achieve significant speedups compared to SCIP (Gleixner
et al. [2017]), the state-of-the-art open source MIP solver.

Two-stage stochastic integer programs: We focus on
an important class of stochastic programs called a two-
stage stochastic MIP (Birge and Louveaux [1997]). In
the first stage, a planning decision is optimized under
uncertainty, then the values of all random variables are
observed, and in the second stage a recourse decision is
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Figure 1: Local search for a two-stage stochastic MIP as an RL problem. The initialization and local move policies are
part of the “agent”, while the second stage optimization is part of the “environment.” Given a problem instance specified
by the context, the agent’s “action” is to propose a first stage solution at each step of local search. The environment
evaluates it on a minibatch of noise samples (denoted by ω in the text) by optimizing the second stage problem for each
sample using a MIP solver to compute the reward and observations.

deterministically optimized to adapt the plan in repsonse
to observations. The uncertainty is exogenous, so it is
independent of the first stage solution. This problem
structure arises in many applications, such as electric grid
day-ahead planning (Zheng et al. [2015]) and logistics
(Laporte et al. [1992]).

Local search solver: The contextual solver is structured
as a local search algorithm over the space of first stage
solutions. It consists of two learnable components: a) an
initialization policy that takes as input the context vector
and outputs an initial solution, and b) a local move policy
that takes the initial solution and applies a sequence of
local moves such that the final solution has high objective
value. Both of these policies are learned jointly.

Both during training and testing, evaluation of a first stage
solution requires solving several second stage optimiza-
tion problems to approximate the expected objective as
a sample average. Since each such problem is a deter-
ministic MIP, they are well-suited for solving with an
off-the-shelf MIP solver, so we use SCIP to solve them.
This provides another perspective of our work as a hybrid
approach that combines a learned contextual solver with
a MIP solver in the learning loop to efficiently optimize
stochastic two-stage MIPs.

Contributions: We develop an approach to learn 1) a
contextual local search solver with the initialization and
local move policies that computes a solution to the opti-
mization for a given problem instance, and 2) a contextual
dual policy that computes an upper bound on the optimal
value (achievable by any algorithm) for a given problem
instance. We benchmark our approach on a set of two-
stage stochastic MIPs and show that compared to SCIP it
achieves approximately 30% to 2000% better objective
value for the same running time and at least an order of
magnitude faster for the same objective value. It also

outperforms baseline algorithms such as Tabu Search and
Progressive Hedging on seven out of eight problems.

2 RELATED WORK
Learning solvers: Early examples of learning solvers
for combinatorial optimization problems include Zhang
and Dietterich [1995], Moll et al. [1999], and Boyan and
Moore [2001]. The first two use TD(λ) to learn a value
function over the solution space such that applying a lo-
cal search algorithm with that value function can find
a good solution and can generalize to new problem in-
stances. These approaches assume that an initial solution
is given (either randomly generated or by another algo-
rithm), whereas our approach learns to generate the initial
solution jointly with the local search policy. Boyan and
Moore proposed STAGE, an iterative algorithm that alter-
nates between learning a value function over the solution
space for one instance and using that function to find a
better solution for that instance. This work was primarily
focused on the single instance setting.

More recently Vinyals et al. [2015] used supervised learn-
ing with pointer networks to approximately solve trav-
elling salesman problems. Subsequent work improved
on it by using the same pointer network architecture, but
learned with RL (Bello et al. [2016]). Ignoring archi-
tectural differences, our initialization policy is similar to
Bello et al.’s approach, but we further improve the ini-
tial solution using a learned local move policy. As our
results show, this is a crucial difference for improving
performance. Khalil et al. [2017a] combine graph neu-
ral networks with RL to learn a greedy solver for graph
combinatorial optimization problems that incrementally
extends a partial solution till its complete. Again, our idea
of improving the complete solution further with a learned
local search policy can be applied here as well.
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Additionally, using the dual policy, we can compute a
bound on the objective function value even on new prob-
lem instances. This allows us to a) assess the quality of
the solution produced by the learned solver, and b) to
make a fairer comparison to approaches that provide both
a solution and a bound since proving the bound can be a
significant part of the solver running time.

Learning to improve solvers: Several works have fo-
cused on applying learning to improve the decisions made
by non-learning solvers, e.g., variable selection and node
selection decisions in a branch and bound solver. See Lodi
and Zarpellon [2017] for a survey. Khalil et al. [2016]
treat variable selection as a ranking problem and learn a
ranking function. Khalil et al. [2017b] use learning to pre-
dict on which nodes of the branch and bound search tree
various primal heuristics will succeed. Such approaches
can be used as building blocks for an end-to-end solution.

3 CONTEXTUAL TWO-STAGE
STOCHASTIC INTEGER PROGRAM

A contextual two-stage stochastic integer program is de-
fined as follows (for the case of maximization):

max
x

f(x; z) + EP (ω)

[
max

y∈Y (x,ω)
g(y;x, ω, z)

]
(1)

where

• ω ∈ Rd is a random variable representing the un-
certainty affecting the second stage objective func-
tion and constraints. ω is independent of the deci-
sion variables. We are given a set of I.I.D. samples
Dω = {ωi ∼ P (ω)}, i = 1, ..., Nω with which the
expectation in equation 1 is estimated as a sample
average.

• x ∈ {0, 1}n is the first stage decision variable, opti-
mized before observing ω. We assume that every x
is feasible.

• y ∈ {0, 1}m is the second stage decision vari-
able, optimized after observing ω, where Y (x, ω) ⊆
{0, 1}m is the feasible set defined by second stage
constraints. We assume Y (x, ω) 6= ∅ for all (x, ω)
(i.e., complete recourse).

• z ∈ Rc is the context feature vector describing
an instance of the optimization problem. A set of
instances is generated by drawing I.I.D. samples
Dz = {zj ∼ P (z)}, j = 1, ..., Nz .

f and g represent the first and second stage objective
functions, respectively. Unlike LP relaxation based ap-
proaches to solving MIPs, our approach can be applied to

nonlinear f , g, and constraints. However, in this work we
focus on the linear case to allow a direct comparison to
LP relaxation based approaches:

f(x; z) = cT1 (z)x

g(y;x, ω, z) = cT2 (x, ω, z)y

Y (x, ω) = {y ∈ {0, 1}m : B(ω, z)x+ C(ω, z)y ≤ d(ω, z)}

Sample Average Approximation: The primary ap-
proach in the optimization literature for solving equation
1 is the Sample Average Approximation (SAA) method
(Ahmed and Shapiro [2002]). It replaces the expectation
with a sample average and replicates the second stage
decision for each sample:

max
x

f(x; z) +
1

Nω

Nω∑

i

[
max

yi∈Y (x,ωi)
g(yi;x, ωi, z)

]
.

This converts the original problem into a deterministic
one which can be solved using a deterministic MIP solver
(assuming linear f , g, and constraints). The key disadvan-
tage is that the number of second stage decision variables
increases by a factor of the number of samples Nω. As
a result, the approach does not scale beyond a moderate
number of variables and samples. In practice this limita-
tion is overcome by domain experts carefully selecting
a small set of samples that they judge will likely affect
the solution. By being more scalable, our learning-based
approach makes such expert selection unnecessary.

4 RL APPROACH

We describe our Reinforcement Learning (RL) approach
for learning a solver for the optimization problem defined
in section 3.

4.1 MAIN IDEA

We formulate our approach as learning an iterative local
search algorithm over the space of first stage solutions
(see figure 1). It has two learnable components which are
optimized jointly:

• Initialization policy: Given an instance of the op-
timization problem, generate an initial first stage
solution x0 from which local search starts.

• Local move policy: At each iteration of local search,
select one of the neighbors of the current first stage
solution as the proposal for the next iteration.

The solution xK after a fixed number of iterations K is
the solver’s output. The objective function value rK at
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xK is approximated by:

rK = f(xK ; z) +
1

Nω

Nω∑

i=1

[
max

y∈Y (xK ,ωi)
g(y;xK , ωi, z)

]

(2)

where the expectation is approximated as a sample aver-
age. For a given x and ω, the second stage optimization
over y is deterministic. We assume that an efficient solver
is available (e.g., SCIP, or a fast heuristic) so that an accu-
rate approximation of the expectation can be computed
quickly. This allows us to leverage existing efficient tech-
niques for deterministic optimization to learn a solver for
stochastic optimization.

Limitations: 1) Our approach relies on offline learning
on a dataset of instances, and it is unlikely to be useful
in a setting where there is only one instance (or few)
to be solved. Our early experiments showed that in the
single-instance setting (i.e., treat z as a constant), our
approach’s running times tend to be much higher than
baseline algorithms to achieve similar solution quality. 2)
The solution found after K iterations is not guaranteed
to be optimal. But if learning is successful, it can be
expected to be a good solution, and the bound provided
by the dual policy indicates how close to optimal it is.

4.2 INITIALIZATION POLICY

The initialization policy is a distribution P (x|z) over
the first stage solution x given the context feature vec-
tor z. The initial solution is generated by sampling
x0 ∼ P (x|z). Reward is the expected objective func-
tion value achieved by the solution at the end of local
search. We use policy gradients to learn P (x|z).

Architecture: We explored two architectures: 1) a condi-
tional autoregressive generative model, and 2) a simpler,
fully connected feedforward neural network with a single
hidden layer. Results are better for the former, so we
describe it here. Autoregressive generative models pro-
vide a flexible neural network parameterization for high
dimensional distributions while still allowing tractable
exact evaluation of the log probability and its gradient
with respect to model parameters. Crucially, they do not
make any independence assumptions, thus capturing com-
plicated correlations in the vector x. Here we consider a
conditional version

Pθinit(x|z) =
∏

i

Pθinit(xi|x<i, z) (3)

where xi is the ith dimension of x, x<i is the set of first
i − 1 dimensions of x, and θinit denotes the model’s
parameters. Specifically, we use the Neural Autoregres-
sive Density Estimator (NADE) (Larochelle and Murray

[2011]). NADE is not specialized for a particular type
of data (e.g., images, time series), which makes our ap-
proach application agnostic. It uses weight sharing across
the conditional distributions in equation 3 to achieve a
compact parameterization. For details see Larochelle and
Murray [2011].

Training: The loss function for learning θinit is

L(θinit) = −EPθinit (x0|z)P (rK |x0,z)

[
rK
]
. (4)

θinit is learned with stochastic gradient descent using
the policy gradient method of REINFORCE (Williams
[1992]). The gradient is given by:

∇θinitL(θinit) =

− E
[
(rK − bw(z))∇θinit(logPθinit(x|z))

]

where bw(z) is a learned baseline function parame-
terized by w, and the expectation is with respect to
Pθinit(x

0|z)P (rK |x0, z). The baseline bw(z) is a single
hidden layer, fully connected feedforward neural network
with ReLU hidden units. Its weights w are learned jointly
with the initialization policy by stochastic gradient de-
scent to minimize (rK − bw(z))2.

4.3 LOCAL MOVE POLICY

We learn a policy that makes K local moves starting from
the initial solution x0 to produce xK . At an intermediate
step k, the local move policy takes the first stage solution
xk and selects one of its neighbors from a Hamming ball
of radius 1 as xk+1. This results in n + 1 possible ac-
tions per step: either toggle one of the dimensions of xk,
or a no-op. The policy outputs a categorical distribution
πθlm(ak|xk, sk, x0, z) over the actions, given state sk (de-
scribed below), initial solution x0, and context vector z,
parameterized by θlm. The reward at each iteration is the
change in objective value from the previous iteration. So
the policy is being learned to maximize the total expected
increase in objective value relative to the initial solution
in an episode. We use the Asynchronous Advantage Actor
Critic (A3C) algorithm (Mnih et al. [2016]) for learning.

Architecture: πθlm(ak|xk, sk, x0, z) is a two hidden
layer, fully connected feedforward neural network with
ReLU hidden units. The observations ok at step k consists
of:

• Constraint slacks: The difference between a second
stage constraint’s value and its upper/lower bounds
obtained for each sample ωi.

• Second stage solutions: The solutions yi obtained
for each sample ωi.
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We define state sk to be a fixed size time window of J
observations {ok−1, ..., ok−J}. The window size is a hy-
perparameter tuned based on validation set performance.
A3C also learns a value function Vθv (sk;x0, z) jointly
with the policy. Following standard practice, this function
shares with the policy all the hidden layers and corre-
sponding parameters, with unshared parameters only in
the output layers to compute the value and policy outputs.

Training: The reward at step k of an episode is given by

rklm = rk+1 − rk,

where rk is defined by equation 2. A3C defines its loss in
terms of the advantage function:

A(ak, sk;x0, z) =

L−1∑

l=0

γlrk+llm + γLVθv (sk+L;x0, z)

− Vθv (sk;x0, z),

where the first two terms on the RHS give an estimate of
the L-step return, and γ is the discount factor. The loss is
given by

L(θlm, θv) = −Eπθlm (ak|xk,sk,x0,z)

[
A(ak, sk;x0, z)

]
,

(5)

with the gradient with respect to θlm given by:

∇θlmL(θlm, θv) =

−E
[
A(ak, sk;x0, z)∇θinit(log πθlm(ak|xk, sk, x0, z)

]
.

The square of the advantage function is an additional loss
used to learn the value function parameters θv. We also
apply entropy regularization to encourage exploration by
preventing the policy from becoming deterministic. The
relative magnitude of these losses’ contribution to the total
loss are tuned as hyperparameters based on validation set
performance.

We use distributed TensorFlow with Nw parallel workers
executing episodes and computing gradients, and one cen-
tral learner asynchronously applying gradients to update
parameters. This setup is replicated for each of the Nh
randomly sampled hyperparameter settings for hyperpa-
rameter tuning. We use Nw = 20 and Nh = 25 for each
problem in our benchmark.

5 BOUNDS VIA LEARNED DUAL
POLICIES

An attractive feature of MIP solvers is that they provide
an upper bound on the optimal value of a maximization
problem, quantifying the objective value gap between a

solution and the global optimum. However, as explained
in section 3, directly applying a MIP solver to a two-stage
stochastic integer program with a large set of samples
is computationally infeasible. We use dual decomposi-
tion (Carøe and Schultz [1999]) to develop an alternative
approach.

The main idea is that if we are allowed to choose a differ-
ent x = xω for each sample ω, the optimization problem
(1) decomposes into independent subproblems for each
sample that can be solved in parallel. This constitutes
a relaxation of the optimization problem, and hence its
optimal value is an upper bound on the original prob-
lem. Solving the relaxation only requires a deterministic
MIP problem, which can be solved efficiently or bounded
using a further LP relaxation.

This bound can be tightened by adding Lagrangian multi-
pliers that encourage the scenario subproblems to agree
on a single x = xω . Since we are interested in large-scale
stochastic MIPs and in out-of-sample tests, it is not appro-
priate to compute an independent dual variable for each
scenario ω. Instead, we train a neural network that, given
features that depend on ω (the sample) and z (the context),
predict the dual variables for the problem. Given any such
policy, we can obtain a bound on the value of the 2-stage
stochastic MIP and further, we can evaluate this bound
out of sample (on samples that were unavailable during
training) to estimate the “generalization” of the bound.

5.1 DUAL DECOMPOSITION OF 2-STAGE
STOCHASTIC MIPs

Consider equation 1 in the linear case:

max
x∈{0,1}n

c1(z)Tx+
1

Nω

∑

ω∈Dω

[
max

y∈Y (x,ω,z)
c2(ωi, z)

T y

]
.

(6)

We now introduce independent copies xω for each sample
ω with constraints to enforce equality of xω:

max
x,{xω}

1

Nω

∑

ω∈Dω

[
max

y∈Y (xω,ω,z)
c1(z)Txω + c2(ω, z)T y

]
,

s.t xω = x ∀ω ∈ Ω.

We drop the constraints and add a Lagrangian term to
obtain a relaxation:

max
x,{xω}

1

Nω

∑

ω∈Dω


 max

y∈
Y (xω,ω,z)

cT1 xω + cT2 y + λTω (x− xω)


 ,

(7)

where λω for each ω is a dual variables, and we dropped
the dependence of c1, c2 on ω, z for brevity.
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From equation 7 we can derive the following dual problem
to optimize the upper bound (see supplementary material
for details):

min
{λω}

1

Nω

∑

ω∈Dω
h(ω, z, λω) + 1T max

(
1

Nω

∑

ω∈Dω
λω, 0

)
,

(8)

where

h(ω, z, λω) =

max
y∈Y (xω,ω,z)

c1(z)Txω + c2(ω, z)T y − λTωxω.

We use (8) to estimate a bound.

5.2 LEARNING DUAL POLICIES

There are three issues with applying the above dual de-
composition approach to large scale contextual stochastic
MIPs:

• Context ignored: If we directly apply dual decompo-
sition, even after solving the problem for thousands
of context vectors z, we would start from scratch for
a new context. This is wasteful particularly if the
solutions for the dual variables are simple functions
of z that can be learned.

• Generalization: The problem (8) only implies a
bound for the set of scenarios in the training set
Dω . However, this does not say anything about how
the bound generalizes to unseen samples.

• Computation: The problem (8) is expensive to solve
if the number of scenarios Dω is large, since one has
to solve an optimization problem (to compute h) for
each scenario ω simply to evaluate the objective and
compute gradients with respect to λω .

We address all three issues by learning a dual policy
λω = λθd (ω, z) that maps from the context z and sam-
ple features ω to the dual variables λω , parameterized by
θd. We train the policy to minimize the dual objective
averaged over samples Dω and context sample set Dz:

min
θ

1

Nz

∑

z∈Dz

1

Nω

∑

ω∈Dω
h (ω, z, λθd (ω, z)) (9a)

+ 1T max

(
1

Nω

∑

ω∈Dω
λθd (ω, z) , 0

)
.

(9b)

A major bottleneck in solving this problem is the need to
compute h (which itself involves solving a deterministic

MIP or an LP relaxation of it). Thus, it is desirable to
have an algorithm that does not compute h for each z, ω
at each iteration.

In our experiments we sample zs, ωs but also get predic-
tions of the neural network for each ω ∈ Dω to compute
σ =

∑
ω∈Dω λω(ω, zs; θ). Then, an unbiased estimate of

a (sub)-gradient of the objective is given by

gs =
∂h

∂λω
(ωs, zs)

∂λω(ωs, zs; θ)

∂θ

+ sign (σ)
∂λω(ωs, zs; θ)

∂θ
(10)

This only requires one backprop through the network and
Nω forward passes and computation of h for a single z, ω.

Architecture: We use a simple feedforward architecture
with a single hidden layer in all our experiments. The
architecture has fully connected layers with ReLU activa-
tions. We add a skip connection from the context vector z
to the hidden and output layer and a skip connection from
ω to the output layer. We tune the size of the hidden layer
and learning rate as hyperparameters (picked so that the
dual bound on a validation set is minimized).

6 EVALUATION

6.1 BENCHMARK

There is a dearth of standardized, large-scale benchmarks
for stochastic programming problems. As a first step, we
construct a benchmark using stochastic versions of two
standard optimization problems, knapsack and facility
location, with large-scale data. We plan to add more
problems in the future.

Knapsack (KS): The problem is to place a set of items
with various sizes and values into a knapsack of speci-
fied capacity so as to maximize the total knapsack value
without exceeding capacity. For a given problem instance
the item sizes are stochastic. In the first stage, the items
have to be selected without knowing their precise sizes.
After the sizes are revealed, the second stage decision
is to remove items selected in the first stage to satisfy
the capacity limit, but removal incurs a penalty. Context
specifies the values of the items, knapsack capacity, and
removal penalty.

Facility Location (FL): Adapted from Ntaimo and Sen
[2005], the problem is to place facilities at a set of
locations with varying costs such that profit is maxi-
mized. Customer demand and revenue at the locations
are stochastic. There is a linear penalty for not meeting
customer demand. In the first stage, locations have to be
selected without knowing precise demand and revenue.
After demand and revenue are revealed, the second stage
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decision is to assign customers to various facilities. Con-
text specifies the location costs, facility capacity, and the
linear penalty factor on unsatisfied demand.

Problem size: We define “problem size” to be the num-
ber of first stage binary decision varibles. We use the
following sizes: {25, 50, 100, 200}. The number of sec-
ond stage binary decision variables for KS is the same
as in the first stage, while for FL, it is the problem size
multiplied by the number of customers (set to 5 in our
experiments). In the SAA method the deterministic refor-
mulation multiplies the number of second stage variables
by the number of samples. So for problem size 200, even
with only 1000 samples, the number of variables already
exceeds 2× 105.

Data generation: We generate samples for the context
vectors and for the random variables within an instance
using a Mixture of Factor Analyzers (Ghahramani and
Hinton [1997]). The resulting distributions are structured
with dependencies among variables, and the mixture com-
ponents make them more complex than a Gaussian.

6.2 BASELINE SOLVERS
SCIP is an open source MIP solver that uses LP
relaxation-based branch and bound algorithm. We ap-
ply SCIP using the SAA method.

Tabu Search (Glover [1986]) is a local search algorithm
that makes moves in the space of the first stage decision
variable and maintains a tabu list of recently visited so-
lutions to avoid cycles. See supplementary material for
more details.

Progressive Hedging ([Watson and Woodruff, 2011]) is
based on the dual decomposition approach described in
section 5.1. It iteratively fixes the relaxation introduced
in the dual decomposition by adding penalty terms to pro-
mote consistency between xω and x. See supplementary
material for more details.

SCIP, Tabu Search, and Progressive Hedging do not sup-
port any transfer across problem instances as they are
originally formulated. We implement a simple way to
adapt Tabu Search and Progressive Hedging to the con-
textual setting. At training time, these optimizers solve
as many training instances as possible within the given
training budget. At test time, a test instance’s context
vector is used for nearest neighbor selection of a training
instance. The solution for the test instance is initialized
to the final solution of the nearest training instance by L1
distance.

6.3 EVALUATION PROTOCOL

Solvers that support contextual optimization are given
the same training budget of 500 CPU cores for 12 hours.

GPUs are not used to allow fair comparison to methods
that cannot use them. The training budget is used for
hyperparameter tuning and parameter learning. For Tabu
Search and Progressive Hedging, instead of parameter
learning, a set of training instances are solved for nearest
neighbor initialization at test time.

We use 1000 contexts and 105 samples for the random
variables in a problem for training, and 100 contexts and
1000 random variable samples each for validation and
testing. The context distribution is independent of the
distribution over random variables in a problem, so we can
sample each separately. The number of variable samples
is limited to 1000 only because SCIP becomes too slow
and uses excessive memory for some problem instances
with more samples. RL approaches can easily scale to
much larger number of samples. The solver performance
on the validation set is used to select the hyperparameters.

At test time we provide one CPU core per instance for all
solvers. Tabu Search and Progressive Hedging both make
the same number of second stage solver calls (which dom-
inates the running time) as the local search solver so that
all three have (approximately) the same computational
budget. SCIP’s computation cannot be easily character-
ized by the number of second stage solver calls. Instead
we set a maximum time limit and a 5% optimality gap,
and allow SCIP to run until whichever condition is satis-
fied first.

7 EXPERIMENTS

We present the following results: a) a comparison of
the local search solver to SCIP in terms of test solution
objective value vs. solver running time, b) a comparison
to the objective value achieved by the baselines, and c)
results for estimating a bound using the dual policy.

7.1 OBJECTIVE VALUE VS. RUNNING TIME

We run SCIP on 100 test problem instances with different
running time limits, from 1s to 104s. We then compare its
objective value to that achieved by the local search solver
on the same instances. The running time of the local
search solver is fixed to be the time needed to execute one
episode per instance and evaluate the solution at the end
of the episode.

Figure 2 summarizes the results. Each plot shows the
percent difference in SCIP’s objective value with respect
to that of the local search solver as a function of the run-
ning time ratio of SCIP to the local search solver. The
key observation is that SCIP gives significantly worse
objective value than the local search solver unless it is
given much more running time. For knapsack problems
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Figure 2: SCIP running time vs. objective value comparison between local search solver and SCIP on test problem
instances for the benchmark problems (KS = Knapsack, FL = Facility Location) of sizes {25, 50, 100, 200}. x-axis is
SCIP’s average running time as a factor of the local search (LS) solver’s average running time. y-axis is the percent
improvement in average objective value given by local search over SCIP. Positive values mean local search is better.

of different sizes, SCIP performs 30 to 70% worse when
given approximately the same running time. For problem
sizes 25, 50, and 100, SCIP needs more than an order of
magnitude more time to catch up with the local search
solver’s solution quality. For problem size 200, running
SCIP even 1000 times longer still results in more than
35% worse objective value. A similar result is seen in
the facility location problem as well, where the objective
value gaps are even bigger in favor of the local search
solver. For problem sizes 100 and 200, it appears that
SCIP needs more than 104 seconds to improve the objec-
tive value significantly, and therefore is not able to catch
up with the local search solver’s objective value in that
time.

These results show the speedup benefit of learning a con-
textual solver. Since the solver has already seen at training
time problem instances from the same distribution, gen-
eralization allows it to quickly find good solutions on
unseen problem instances at test time.

7.2 OBJECTIVE VALUE COMPARISON

We compare the objective value given by the local search
solver to that of Tabu Search, Progressive Hedging, and
SCIP. We set the running time of SCIP to be ten times that
of the local search solver to make it a stronger baseline.
We also evaluate the initialization policy and the local
move policy independently to get more insight into the
performance of the local search solver. For the former we
train only the initialization policy to generate a solution
directly, without local search. For the latter we train only a
local move policy that is initialized by selecting a solution
uniformly randomly.

Table 1 summarizes the results. For each (solver, problem,
size) triplet the mean of the objective values over a set of
100 test instances is shown. In all but one case the learned
local search solver computes the best solution among all
the algorithms tried, and in the remaining case it is within

5% of the best.

Both Tabu Search and Progressive Hedging perform
poorly on the larger problem sizes (100, 200), especially
for Facility Location. As we have already seen in the
previous section, SCIP requires significantly more time
to achieve comparable objective values.

A comparison among the different variants of the learned
solver shows that the best results are given by learning
both the initialization and local move policies jointly.
Learning a local move policy to start from a random solu-
tion performs the worst among the variants, especially for
larger problem sizes (KS200, FL100 and FL200). Learn-
ing an initialization policy alone performs better, but uni-
formly worse than learning both jointly.

The dual policy bounds computed by the approach from
section 5.2 also show that on most problems, our learning
based approach not only learns to produce good solutions
but is also able to prove that these solutions are within
20% of the optimum (5 of 8 problem instances).

7.3 INSIGHTS INTO SOLVER BEHAVIOR

Figure 3(a) shows examples of how the objective value
varies as a function of solver steps (here for KS100, other
problems show similar behavior). The objective value
typically improves rapidly for roughly the first one-third
of an episode, with smaller gains afterwards. Unlike a
greedy algorithm, the solver is not constrained to always
improve the objective value. Figure 3(b) shows an exam-
ple. The highlighted part of an episode shows that the
objective value can decrease by a large amount (> 10%)
for a significant duration (> 10%) of the episode before
it improves again. Approximately 7% of test instances
across problem types and sizes show non-greedy behavior.
The ability to learn a non-greedy policy explains how the
local search solver can outperform greedy methods like
Tabu Search.
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Solver KS 25 KS 50 KS 100 KS 200 FL 25 FL 50 FL 100 FL 200
SCIP @10x 0.5985 0.1681 2.731 1.1273 0.0 0.0 -7.0531 -13.8540

more runtime
Tabu Search 1.3150 1.4859 -3.0144 -0.0851 0.9781 0.3089 0.0 0.0

Progressive 1.4666 1.2584 2.9565 1.1983 0.9301 0.0003 0.0014 0.0
Hedging

RL-based solvers
Init. policy 1.2410 1.2977 0.1304 0.9275 0.8213 0.8148 1.1395 1.3337

only
Local move 1.1427 1.0631 1.2481 0.1846 1.1058 0.7403 -7.3248 -36.8738
policy only

Init. policy + 1.4807 1.4286 3.2920 1.3133 1.1352 1.2416 1.2729 1.8197
local move policy

Bounds from dual policy
Dual policy 1.5885 2.4486 3.4289 3.8304 1.2753 1.2903 1.6489 2.4702

Table 1: Comparison of average test set objective values achieved by various solvers across benchmark problems and
sizes. KS = Knapsack, FL = Facility Location. The last row shows the upper bounds computed by the dual policy.

(a)

Objective value decreases 
for many steps before 
increasing

(b)
Figure 3: Examples of local search behavior on test instances. (a) Objective value as a function of the number of local
search moves for 100-d Knapsack for several test instances. (Other problems show similar behavior.) Objective values
are normalized to [0,1] for display purposes. (b) Example of non-greedy behavior (highlighted) shown by the local
solver. Approximately 7% of test instances show this type of behavior.

Non-greediness can also potentially make the solution
worse than the initial solution. However, only 0.21% of
test instances show a decrease > 1% in objective value
relative to the initial solution, while 89.8% show an in-
crease > 10%. It appears that on some instances the
initial solution is already very good, and local search in-
troduces small changes which reduces the objective value
slightly.

8 CONCLUSIONS

We presented a learned contextual local search solver
that jointly learns both an initialization policy and a lo-
cal move policy. On benchmark problems of two-stage
stochastic knapsack and facility location of different sizes,
it achieves approximately 30% to 2000% better objective
value for the same running time and at least an order of

magnitude faster for the same objective value. It also
outperforms baseline algorithms such as Tabu Search and
Progressive Hedging on seven out of eight problems. Joint
learning is key as learning only one of the policies in isola-
tion results in worse performance. The dual policy is able
to compute bounds showing that the local search solver’s
objective value is within 20% of the optimum for 5 out of
8 problem instances.

Next directions include incorporating a more powerful
search procedure such as MCTS into the agent as a policy
improvement operator (Silver et al. [2017]).
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Abstract

We developed a novel statistical method to
identify structural differences between net-
works characterized by structural equation
models. We propose to reparameterize the
model to separate the differential structures
from common structures, and then design an
algorithm with calibration and construction
stages to identify these differential structures.
The calibration stage serves to obtain con-
sistent prediction by building the ℓ2 regular-
ized regression of each endogenous variables
against pre-screened exogenous variables, cor-
recting for potential endogeneity issue. The
construction stage consistently selects and es-
timates both common and differential effects
by undertaking ℓ1 regularized regression of
each endogenous variable against the predicts
of other endogenous variables as well as its an-
choring exogenous variables. Our method al-
lows easy parallel computation at each stage.
Theoretical results are obtained to establish
non-asymptotic error bounds of predictions
and estimates at both stages, as well as the con-
sistency of identified common and differential
effects. Our studies on synthetic data demon-
strated that our proposed method performed
much better than independently constructing
the networks. A real data set is analyzed to
illustrate the applicability of our method.

1 INTRODUCTION

It is of great importance and interest to detect sparse
structural differences or differential structures between
two cognate networks. For instance, the gene regulatory
networks of diseased and healthy individuals may differ

slightly from each other [West et al., 2012], and identify-
ing the subtle difference between them helps design spe-
cific drugs. Social networks evolve over times, and mon-
itoring their abrupt changes may serve as surveillance to
economic stability or disease epidemics [Pianese et al.,
2013, Berkman and Syme, 1979]. However, addressing
such practical problems demands differential analysis of
large networks, calling for development of efficient sta-
tistical method to infer and compare complex structures
from high dimensional data. In this paper, we focus on
differential analysis of directed acyclic or even cyclic
networks which can be described by structural equation
models (SEMs).

Many efforts have been made towards construction of a
single network via SEM. For example, both Xiong et al.
[2004] and Liu et al. [2008] employed a genetic algo-
rithm to search for the best SEM using different infor-
mation criteria. Most recently, Ni et al. [2017, 2018]
employed a hierarchical Bayes approach to construct the
SEM based networks. However, these approaches were
designed for small or medium scale networks. For large-
scale networks that the number of endogenous variables
p exceeds the sample size n, Cai et al. [2013] proposed
a regularization approach to fit a sparse model. Because
this method suffers from incapability of parallel compu-
tation, it may not be feasible for large networks. Logs-
don and Mezey [2010] proposed another penalization ap-
proach to fit the model in a node-wise fashion which al-
leviates the computational burden. Most recently, Lin
et al. [2015], Zhu [2018], and Chen et al. [2017] each pro-
posed a two-stage approach to construct SEMs, with dif-
ferent algorithms designed at different stages. As shown
by Chen et al. [2017], such a two-stage approach can
have superior performance compared to other methods.

To the best of our knowledge, no algorithm has been
proposed to conduct differential analysis of directed net-
works characterized by SEM. While a naive approach
would separately construct each individual network and
identify common and differential structures, this ap-
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proach fails to take advantage of the commonality as well
as sparse differential structures of the paired networks,
leading to higher false positive rate or lower power. In
this light, we introduce a novel statistical method, spe-
cially in the directed network regime, to conduct differ-
ential analysis of two networks via appropriate reparam-
eterization of the corresponding models. There are two
major features of our method. Firstly, we jointly model
the commonality and difference between two networks
explicitly. This helps us to gain dramatic performance
improvements over the naive construction method. Sec-
ondly, benefiting from the flexible framework of SEMs,
we are able to conduct differential analysis of directed
networks. Most importantly, our method allow for both
acyclic and cyclic networks. Compared to the other
methods, directionality and allowing for cyclicity are cru-
cial for many network studies, especially in construct-
ing gene regulatory networks. As far as we know, our
method is the first work on differential analysis of di-
rected networks that enjoys the two promising features.

The rest of this paper is organized as follows. We
first introduce the model and its identifiability condi-
tion in Section 2.1 and Section 2.2, respectively. Then,
we present our proposed method of Reparameterization-
based Differential analysis of directed Networks, termed
as ReDNet, in Section 2.3. The theoretical justification
of the proposed method is described in Section 2.4. Sec-
tion 3 includes our studies on synthetic data showing the
superior performance of our method, as well as an analy-
sis of the Genotype-Tissue Expression (GTEx) data sets.
We conclude our paper with brief discussion in Section 4.

2 METHODS

Here we first introduce the model and its identification
condition, and then describe our proposed ReDNet
method for identifying common and differential struc-
tures between two directed networks, followed with its
theoretical justification.

2.1 THE MODEL

We consider two networks, each describing the depen-
dencies among a common set of variables or nodes in a
unique population. For each node i ∈ {1, 2, . . . , p} in
network k ∈ {1, 2}, its regulation structure can be repre-
sented by the following equation,

Y
(k)
i︸︷︷︸

node i

= Y
(k)
−i γ

(k)
i︸ ︷︷ ︸

regulation by others

+ X(k)ϕ
(k)
i︸ ︷︷ ︸

anchoring regulation

+ ϵ
(k)
i︸︷︷︸

error

, (1)

where Y
(k)
i is the i-th column of Y(k) and Y

(k)
−i is

the submatrix of Y(k) by excluding Y
(k)
i , with Y(k) a

n(k) × p matrix. X(k) is a n(k) × q matrix with each col-
umn standardized to have ℓ2 norm

√
n(k). The vectors

γ
(k)
i and ϕ

(k)
i encode the inter-nodes and anchoring reg-

ulatory effects, respectively. The index set of non-zeros
of ϕ

(k)
i is known and denoted by A(k)

i , in other words,
A(k)
i = supp(ϕ

(k)
i ). The support set A(k)

i indexes the
direct causal effects for the i-th node, and can be pre-
specified based on the domain knowledge. However, the
size of nonzero effect ϕ

(k)
i is unknown and can be es-

timated. Further property of A(k)
i will be discussed in

Section 2.2. All elements of the error term are indepen-
dently distributed following a normal distribution with
mean zero and standard deviation σ(k)

i . We assume that
the matrix X(k) and the error term ϵ

(k)
i are independent

of each other. However Y
(k)
−i and ϵ

(k)
i may correlate with

each other. Y(k) and X(k) include observed endogenous
variables and exogenous variables, respectively.

By combining the p linear equations in (1), we can
rewrite the two sets of linear equations in a systematic
fashion as two structural equation models below,

{
Y(1) = Y(1)Γ(1) + X(1)Φ(1) + E(1),

Y(2) = Y(2)Γ(2) + X(2)Φ(2) + E(2),
(2)

where each matrix Γ(k) is p × p with zero diagonal ele-
ments and represents the inter-nodes regulatory effects in
the corresponding network. Specifically, excluding the i-
th element (which is zero) from the i-th column of Γ(k)

leads to γ
(k)
i . The q×p matrix Φ(k) contains the anchor-

ing regulatory effects and its i-th column is ϕ
(k)
i . Each

error term E(k) is n(k) × p and has the error term ϵ
(k)
i as

its i-th column.

Figure 1 gives an illustrative example of networks with
three nodes and one anchoring regulation per node for the
structural equations in (2). For example, with anchoring
regulation on node Y1, X1 has a direct effect on node Y1

but indirect effects on node Y2 and Y3 via Y1.

(a) Network I (b) Network II (c) Differential

Figure 1: An Illustrative Example of Differential Net-
work Between Two Directed Networks. The error term
for each node is not shown for simplicity.
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For each network k, its full model in (2) can be further
transformed into the reduced form as follows,

Y(k) = X(k)π(k) + ξ(k), (3)

where the q×p matrix π(k) = Φ(k)(I−Γ(k))−1 and the
transformed error term ξ(k) = E(k)(I − Γ(k))−1. The re-
duced model (3) reveals variables observed in X(k) as
instrumental variables which will be used later to cor-
rect for the endogeneity issue. Otherwise, directly apply-
ing any regularization based regression to equation (1)
will result in non-consistent or suboptimal estimation of
model parameters [Fan and Liao, 2014, Chen et al., 2017,
Lin et al., 2015, Zhu, 2018].

2.2 THE MODEL IDENTIFIABILITY

Here we introduce an identifiability assumption which
helps to infer an identifiable system (2) from available
data. We assume that each endogenous variable is di-
rectly regulated by a unique set of exogenous variables as
long as it regulates other endogenous variables. That is,
any regulatory node needs at least one anchoring exoge-
nous variable to distinguish the corresponding regulatory
effects from association. Explicitly let M(k)

i0 denote the
index set of endogenous variables which either directly
or indirectly regulate the i-th endogenous variable in the
k-th network. Thus, A(k)

i ⊆ M(k)
i0 . The model identifi-

cation condition can be stated in the below.

Assumption 1. For any i = 1, · · · , p, A(k)
i ̸= ∅ if there

exists j such that i ∈ M(k)
j0 . Furthermore, A(k)

i ∩A(k)
j =

∅ as long as i ̸= j.

This assumption is slightly less restrictive than the one
employed by Chen et al. [2017], and is a sufficient condi-
tion for model identifiability as it satisfies the rank condi-
tion in Schmidt [1976]. It can be further relaxed to allow
nonempty A(k)

i ∩ A(k)
j as long as each regulatory node

has its own unique anchoring exogenous variables.

The above identifiability assumption not only identifies
γ

(k)
i in model (1) from π(k) in model (3) but also helps

reveal regulatory directionality of the networks. As illus-
trated in Figure 2, we can not recover the directionality
between nodes Y1 and Y2 without the extra information
provided by the direct causal factors X1 and X2 because
all four sub-networks consisting of Y1 and Y2 (without
X1 and X2) will be Markov equivalent. The known set
A(k)
j serves as external prior knowledge which helps re-

cover the directionality. In our two-stage construction
of the differential network, the additional anchors X1

and X2 serve as instrumental variables in the calibration
stage, since both X1 and X2 are independent of the er-
ror terms. The present direct causal effects from X(k)

together with Assumption 1 differentiates our approach
from the classical graphical models [Meinshausen and
Bühlmann, 2006, Yuan and Lin, 2007] or the PC al-
gorithm approaches [Spirtes et al., 2000, Kalisch and
Bühlmann, 2007], since those methods either cannot re-
cover edge directions or do not allow for cyclic structures
due to lack of additional direct causal effects from X(k).

(a) (b) (c) (d)

Figure 2: An Illustrative Example of Networks Which
Are Not Markov Equivalent. However, without X1 and
X2, sub-networks consisting of only node Y1 and Y2 will
be Markov equivalent.

2.3 TWO-STAGE DIFFERENTIAL ANALYSIS
OF NETWORKS

Here we intend to develop a regularized version of the
two-stage least squares. We first screen for exogenous
variables and conduct ℓ2 regularized regression of each
endogenous variable against screened exogenous vari-
ables to obtain its good prediction which helps address
the endogeneity issue in the following stage. At the
second stage, we reparametrize the model to explicitly
model the common and differential regulatory effects
and identify them via the adaptive lasso method.

2.3.1 The Calibration Stage

To address the endogeneity issue, we aim for good predic-
tion of each endogenous variable following the reduced
model in (3). However, in the high-dimensional setting,
the dimension q of X(k) can be much larger than the
sample size n(k), and any direct prediction with all ex-
ogenous variables may not produce consistent prediction.
Note that both Lin et al. [2015] and Zhu [2018] proposed
to conduct variable selection with lasso or its variants and
predict with selected exogenous variables. We here in-
stead propose to first screen for exogenous variables with
ISIS [Fan and Lv, 2008], and then apply ridge regression
to predict the endogenous variables with screened exoge-
nous variables. While variable screening is more robust
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and provides higher coverage of true variables than vari-
able selection, its combination with ridge regression puts
less computational burden. Furthermore, as shown by
Chen et al. [2017], ridge regression performs well in pre-
dicting the endogenous variables.

Let M(k)
i denotes the selected index set for i-th node in

k-th network from the variable screening which reduces
the dimension from q to d = |M(k)

i |. The Sure Inde-
pendence Screening Property in Fan and Lv [2008] can
be directly applied in our case to guarantee that M(k)

i

covers the true set M(k)
i0 with a large probability.

Assumption 2. n(1) and n(2) are at the same order, i.e.,
nmin = min(n(1), n(2)) ≍ n(1) ≍ n(2), and p ≍ q.

Theorem 1. Assuming Conditions 1-4 in the supplemen-
tal materials which restrict positive τ̃ and κ̃, under As-
sumption 2, there exists some θ ∈ (0, 1 − 2κ̃ − τ̃) such
that, when d = |M(k)

i | = O((nmin)1−θ), we have, for
some constant C > 0,

P(M(k)
i0 ⊆ M(k)

i ) = 1−O
(

exp

{
−C(n(k))1−2κ̃

log(n(k))

})
.

Hereafter we assume that M(k)
i successfully covers the

true set M(k)
i0 for convenience of stating the following

assumptions and theorems. That is, the probability of
successful screening is not incorporated into our assump-
tions or theorems in the below.

For node i in network k, let X(k)

M(k)
i

denotes the submatrix

of X(k) with prescreened columns which are indexed by
M(k)

i . With π
(k)
i denoting the i-th column of π(k), the

subvector of π
(k)
i indexed by M(k)

i will be simply de-
noted by π

(k)

M(k)
i

without confusion. Such simplified nota-

tions will apply to other vectors and matrices in the rest
of this paper.

With d pre-screened exogenous variables, we can apply
ridge regression to the model

Y
(k)
i = X

(k)

M(k)
i

π
(k)

M(k)
i

+ ξ
(k)
i , (4)

to obtain the estimates π̂
(k)

M(k)
i

of π
(k)

M(k)
i

, and predict Y(k)
i

with Ŷ
(k)
i = X

(k)

M(k)
i

π̂
(k)

M(k)
i

.

2.3.2 The Construction Stage

With known A(k)
i , we can rewrite model (1) as,

Y
(k)
i = Y

(k)
−i γ

(k)
i + X

(k)

A(k)
i

ϕ
(k)

A(k)
i

+ ϵ
(k)
i . (5)

Before we use the predicted Y(k) to identify both com-
mon and differential regulatory effects across the two net-
works, we first reparametrize the model so as to define
differential regulatory effects explicitly,

β−
i =

γ
(1)
i − γ

(2)
i

2
, β+

i =
γ

(1)
i + γ

(2)
i

2
. (6)

Here β−
i represents the differential regulatory effects

between the two networks. We need compare β+
i with

β−
i to identify the common regulatory effects, that is,

effects of all regulations with nonzero values in β+
i but

zero values in β−
i .

Note that other differential analysis of networks may sug-
gest a different reparametrization to identify common
and differential regulatory effects. For example, in a
typical case-control study, we may expect few structures
in the case network mutated from the control network.
While we are interested in identifying differential struc-
tures in the case network, we may be also interested in
identifying baseline network structures in the control net-
work. Therefore we may reparametrize the model with
the regulatory effects in the control network, as well as
the differential regulatory effects defined as the differ-
ence of regulatory effects between case and control net-
works. We want to point out that the method described
here still applies and we can also derive similar theoreti-
cal results as follows.

Following the reparametrization in (6), we can rewrite
model (5) as follows,

(
Y

(1)
i

Y
(2)
i

)
=

(
Y

(1)
−i Y

(1)
−i

Y
(2)
−i −Y

(2)
−i

)(
β+
i

β−
i

)
+




X
(1)

A(1)
i

0

0 X
(2)

A(2)
i






ϕ
(1)

A(1)
i

ϕ
(2)

A(2)
i


+

(
ϵ
(1)
i

ϵ
(2)
i

)
. (7)

Denote

Yi =

(
Y

(1)
i

Y
(2)
i

)
, Z−i =

(
Y

(1)
−i Y

(1)
−i

Y
(2)
−i −Y

(2)
−i

)
,

βi =

(
β+
i

β−
i

)
, ϵi =

(
ϵ
(1)
i

ϵ
(2)
i

)
.

Further define the projection matrix for each network,

H
(k)
i = In(k) − X

(k)

A(k)
i

(
X

(k)T

A(k)
i

X
(k)

A(k)
i

)−1

X
(k)T

A(k)
i

.

Applying the projection matrix Hi = diag{H(1)
i ,H

(2)
i }

to both sides of model (7), we can remove the exogenous
variables from the model and obtain,

HiYi = HiZ−iβi + Hiϵi. (8)
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Algorithm 1 Reparameterization-Based Differential
Analysis of Network (ReDNet)

Input: For k ∈ {1, 2}, Y(k), X(k), index set A(k)
i for

each i ∈ {1, 2, . . . , p}. Set d = O(n1−θ
min ).

for i → 1 to p do
Stage 1.a. Screen for a submatrix X

(k)

M(k)
i

of X(k) for

Y(k)
i versus X(k) and set X(k)

M(k)
i

= X(k) if q ≤ n(k).

Stage 1.b. Apply ridge regression to regress Y(k)
i

against X(k)

M(k)
i

to obtain prediction Ŷ
(k)

i .

end for
for i → 1 to p do

Stage 2. Apply adaptive lasso to regress HiYi

against HiẐ−i to obtain coefficients estimate β̂i.
end for
Output: The common and differential regulatory ef-
fects in β̂1, . . . , β̂p.

To address the endogeneity issue, we predict Z−i by
replacing its component Y

(k)
−i with the predicted value

Ŷ
(k)
−i from the previous stage, and then regressing HiYi

against HiẐ−i with the adaptive lasso to consistently es-
timate βi. That is, an optimal βi can be obtained as,

β̂i = arg min
βi

{
1

n
||HiYi − HiẐ−iβi||22 + λiω

T
i |βi|1

}
,

where |βi|1 is a vector taking elementwise absolute val-
ues of βi, ωi is the adaptive weights whose components
are inversely proportional to the components of an initial
estimator of βi, and λi is the adaptive tuning parameter.

The two-stages algorithm is summarized in Algorithm 1.
With the estimator β̂i from the second stage, we can
accordingly obtain estimators γ̂

(1)
i = β̂

+

i + β̂
−
i and

γ̂
(2)
i = β̂

+

i − β̂
−
i .

2.4 THEORETICAL ANALYSIS

As shown in Theorem 1, a screening method like ISIS
[Fan and Lv, 2008] can identify M(k)

i with size d =

O(n1−θ
min ) which covers the true set M(k)

i0 with a suffi-
ciently large probability. For the sake of simplicity and
without loss of generality, in the following we assume
M(k)

i0 ⊆ M(k)
i .

We first investigate the consistency of predictions from
the first stage. The consistency properties will be char-
acterized by prespecified sequences f (k) = o(n(k)) but
f (k) → ∞ as n(k) → ∞. We also denote fmax =
f (1) ∨ f (2), i.e., max{f (1), f (2)}.

The following assumption is required for the consistency
properties.

Assumption 3. For each network k, the singular values
of I−Γ(k) are positively bounded from below, and there
exist some positive constants c(k)1 and c(k)2 such that, for
each node i, max||δ||2=1(n

(k))−1/2||X(k)

M(k)
i

δ||2 ≤ c
(k)
1

and min||δ||2=1(n
(k))−1/2||X(k)

M(k)
i

δ||2 ≥ c
(k)
2 . Further-

more, the ridge parameter λ(k)
i = o(nmin).

For the ease of exposition, we will omit the subscript
M(k)

i from X(k)

M(k)
i

henceforth, and accordingly use π
(k)
i

and π̂
(k)
i which include the zero components of excluded

predictors.

Denote X = diag{X(1),X(2)}, and

Z =

(
Y(1) Y(1)

Y(2) −Y(2)

)
, Π =

(
π(1) π(1)

π(2) −π(2)

)
.

We use Πj to denote the j-th column of the matrix Π

and π
(k)
j to denote the j-th column of the matrix π(k).

We also use Ẑ and Π̂ to denote the prediction of Z and
estimate of Π, respectively. Note that, with the ridge
parameter λ(k)

i for the ridge regression taken on node i
in network k, we have r(k)i = (λ

(k)
i )2||π(k)

i ||22/n(k) and
hence define rmax = max

1≤i≤p
[r

(1)
i ∨ r

(2)
i ]. Then the es-

timation and prediction losses at the first stage can be
summarized in the following theorem.

Theorem 2. Under Assumptions 1-3, for each j ∈
{1, 2, . . . , 2p}, there will exist some constant C1 and C2

such that, with probability at least 1 − e−f(1) − e−f(2)

,
1. ||Π̂j − Πj ||22 ≤ C1 (d ∨ rmax ∨ fmax)

/
nmin;

2. ||X(Π̂j − Πj)||22 ≤ C2 (d ∨ rmax ∨ fmax).

The proof is detailed in the supplemental materials.

Note that these two sets of losses can be controlled by the
same upper bounds across the two networks with proba-
bility at least 1 − e−f(1)+log (p) − e−f(2)+log (p). There-
fore, f (k) can be selected such that f (k) − log(p) → ∞,
which will provide a probability approaching one to have
the network-wide losses approaching zero.

Furthermore, the dimension p can be divergent up to an
exponential order, say p = en

c
min for some c ∈ (0, 1). We

can set f (1) = f (2) = n
(1+c)/2
min and, apparently, f (k) =

o(nmin) but f (k) − log(p) = n
(1+c)/2
min − ncmin → ∞.

Since the ridge parameter λ(k)
i = o(nmin), r(k)i =

||π(k)
i ||22×o(nmin). Therefore, when all ||π(k)

i ||2 are uni-
formly bounded, we have rmax = o(nmin). Otherwise,
the ridge parameter λ(k)

i should be adjusted accordingly
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to control both estimation and prediction losses.

Before we characterize the consistency of estimated reg-
ulatory effects on the second stage, we first introduce the
following concept of restricted eigenvalue which is used
to present an assumption.

Definition 2.1. The restricted eigenvalue of a matrix A
on an index set S is defined as

ϕre(A,S) = min
||δSc ||1≤3||δS ||1

||Aδ||2√
n||δS ||2

. (9)

For the i-th node, we use Si to denote the non-zero in-
dices of βi, i.e., Si = supp(βi). Further denote

Π−i =

(
π

(1)
−i π

(1)
−i

π
(2)
−i −π

(2)
−i

)
.

As in Bickel et al. [2009], we impose the following re-
stricted eigenvalue condition on the design matrix in (8).

Assumption 4. There exists a constant ϕ0 > 0 such that
ϕre(HiXΠ−i,Si) ≥ ϕ0.

Let n = n(1) + n(2), cmax = c
(1)
1 ∨ c

(2)
1 , and B =

[β1,β2, . . . ,βp]. The matrix norms || · ||1 and ∥ · ∥∞
are the maximum of column and row sums of absolute
values of the matrix, respectively. For a vector, we de-
fine ∥·∥∞ and ∥·∥−∞ to be the maximum and minimum
absolute values of its components. Then, we can derive
the following loss bounds for the estimation and predic-
tion at the second stage on the basis of Theorem 2.

Theorem 3. Suppose that, for node i, the adaptive
lasso at the second stage takes the tuning parameter
λi ≍ ∥ωi∥−1

−∞||B||1||Π||1
√

(d ∨ rmax ∨ fmax) log(p)
/
nmin,

and
√

(d ∨ rmax ∨ fmax)
/
n + cmax||Π||1 ≤

√
c2max||Π||21 + ϕ2

0/(64C2|Si|). Let hn = (||B||21 ∧ 1)
×
(
(n||Π||21/d) ∧ (d ∨ rmax ∨ fmax)

)
log(p). Un-

der Assumptions 1-4, there exist positive constants
C3 and C4 such that, with probability at least
1 − 3e−C3hn+log(4pq) − e−f(1)+log(p) − e−f(2)+log(p),
1. Estimation Loss:

||β̂i − βi||1 ≤ 8C4|Si|×
∥ωSi∥2

∞||B||1||Π||1
ϕ2

0∥ωi∥2
−∞

√
(d ∨ rmax ∨ fmax) log(p)

nmin
;

2. Prediction Loss:

1

n
||HiẐ−i(β̂i − βi)||22 ≤ C2

4 |Si|×
∥ωSi∥2

∞||B||21||Π||21
ϕ2

0∥ωi∥2
−∞

(d ∨ rmax ∨ fmax) log(p)

nmin
.

The main idea of the proof is to take advantage of the
commonly used restricted eigenvalue condition and ir-
representable condition for lasso-type estimator. How-
ever, the design matrix in our case includes predicted val-
ues instead of the original one, which complicates the
proof. We claim that the restricted eigenvalue and irrep-
resentable condition still hold for the predicted design
matrix as long as the estimation and prediction losses are
well controlled at the calibration stage. The proof is de-
tailed in the supplemental materials.

The available anchoring regulators as required by As-
sumption 1 implies that both ||B||1 > 0 and ||Π||1 > 0,
so hn/ log(p) → ∞. That is, these loss bounds hold with
a sufficient large probability with properly chosen f (k).

The two sets of losses in Theorem 3 can also be con-
trolled across the whole system by the same upper
bounds defined by replacing |Si| with smax = maxi |Si|,
with probability at least 1 − 3e−C3hn+log(4q)+2 log(p) −
e−f(1)+2 log(p) − e−f(2)+2 log(p). When both p and q
are divergent up to an exponential order, say p ≍ q ≍
en

c
min for some c ∈ (0, 1), we can set f (1) = f (2) =

n
(1+c)/2
min to guarantee the bounds at a sufficient large

probability. However, the bounds are determined by
(d ∨ rmax ∨ fmax) log(p) which is o(nmin) only when
c < min(1/3, θ). Therefore, if smax also diverges up to
nc̃min with c̃ < min(1/4, θ/2, 1 − θ), the losses can be
well controlled for c < min((1 − 4c̃)/3, θ − 2c̃).

Note that, with properly chosen f (1) and f (2), these
losses are well controlled at o(nmin), revealing the fact
that we need to have sufficient observations for each net-
work for consistent differential analysis of the two net-
works.

Let Wi = diag{ωi}. Denote Ii = 1
nΠT

−iX
THiXΠ−i

and Îi = 1
nΠ̂

T

−iX
THiXΠ̂−i. Let Ii,11 be a submatrix

of Ii with rows and columns both indexed by Si, and
Ii,21 be a submatrix of Ii with rows and columns indexed
by Sci and Si, respectively. Îi,11 and Îi,21 are similarly
defined from Îi. We further define the minimal signal
strength bi = max

j∈Si

|βij | and ψi = ||I−1
i,11WSi ||∞.

The following assumption, reminiscent of the adaptive ir-
representable condition in Huang et al. [2008], helps in-
vestigate the selection consistency of regulatory effects.

Assumption 5. (Weighted Irrepresentable Condi-
tion) There exists a constant τ ∈ (0, 1) such that
||W−1

Sc
i

I−1
i,21Ii,11WSi

||∞ < 1 − τ .

Theorem 4. (Variable Selection Consistency)
Denote Ŝ = {j : β̂ij ̸= 0, j ̸= i}. Sup-
pose that, for node i, Îi,11 is invertible,

bi > λiψi/(2−τ), and
√

(d ∨ rmax ∨ fmax)
/
n+cmax||Π||1 ≤
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√
c2max||Π||21 + min(ϕ2

0

/
64, τ(4 − τ)−1∥ωi∥−∞/ψi)

/
(C2|Si|).

Under Assumptions 1-5, there exists some constant
C5 > 0 such that Ŝi = Si with probability at least
1 − 3e−C5hn+log(4pq) − e−f(1)+log(p) − e−f(2)+log(p).

This theorem implies that our proposed method can iden-
tify both common and differential regulatory effects be-
tween the two networks with a sufficiently large proba-
bility. On the other hand, the assumed weighted irrepre-
sentable condition means that the true signal should not
correlate too much with irrelevant predictors so as to con-
duct a successful differential analysis. The correspond-
ing proof is detailed in the supplemental materials.

3 EXPERIMENTS

3.1 SYNTHETIC DATA EVALUATION

Here we report on experiments with synthetic data to
show the superior performance of our method. We com-
pare the method ReDNet to a naive differential analysis
which employs the 2SPLS method proposed by [Chen
et al., 2017] to construct each network separately. Note
that the 2SPLS method is modified here by applying ISIS
to screen exogenous variables before conducting ridge
regression to predict endogenous variables, making the
naive differential analysis comparable to ReDNet.

Synthetic data are generated from both acyclic and cyclic
networks involving 1000 endogenous variables, with the
sample size from 200 to 300. Each network includes a
subnetwork of 50 endogenous variables, whose shared
and differential structures will be investigated against its
pair. On average, each endogenous variable has one reg-
ulatory effect in a sparse subnetwork, and three regula-
tory effects in a dense network. While each pair of sub-
networks in comparison share many identical regulatory
effects, they also share five regulatory effects but with
opposite signs, and each network has five unique regula-
tory effects (so the total number of differential regulatory
effects is 15). The nonzero regulatory effects were inde-
pendently sampled from a uniform distribution over the
range [−0.8,−0.3]∪ [0.3, 8]. While assuming each node
is directly regulated by one exogenous variable, each ex-
ogenous variable was sampled from discrete values 0,1
and 2 with probabilities 0.25, 05 and 0.25, respectively.
All of the noise terms were independently sampled from
the normal distribution N(0, 0.12). We also conducted
differential analysis between two networks with both
X(1) ̸= X(2) and X(1) = X(2) as in practice the paired
networks may or may not share identically valued exoge-
nous variables.

We evaluate the the performance in terms of the false dis-
covery rate (FDR), power and Matthews correlation co-

efficient (MCC) [Matthews, 1975]. Let TP, TN, FP and
FN denote the numbers of true positives, true negatives,
false positives, and false negatives, respectively. MCC is
defined as,

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

Here we refer nonzero effects as positives and zero ef-
fects as negatives. The MCC varies from 0 to 1 with
larger values implying better variable selection.

In each differential analysis, the ridge regression em-
ployed the generalized cross validation [Golub et al.,
1979] to select the ridge parameter, and the adaptive
lasso used 10-fold cross-validation to choose its tuning
parameter. Following the recommendation by Fan and
Lv [2008], (n(k))0.9 variables are screened by ISIS.

For each type of networks, 100 synthetic data sets were
generated, and the differential analysis results are sum-
marized in Figure 3. Overall, both ReDNet and the naive
approach maintain high power in identifying both dif-
ferential and common regulatory effects. However, the
naive approach tends to report high FDR, especially over
80% false discoveries of differential regulatory effects.
Such a tendency to report false positives by the naive ap-
proach results in lower MCC, with dramatic decrease in
identifying differential regulatory effects.

While both methods performed stably across networks
with X(1) ̸= X(2) and X(1) = X(2), ReDNet per-
formed better in identifying both common and differen-
tial regulatory effects from dense networks than sparse
networks in terms of FDR and MCC. However, the naive
approach tends to report even higher FDR and so much
lower MCC when identifying differential regulatory ef-
fects from dense networks, although reporting lower
FDR and higher MCC when identifying common regu-
latory effects from dense networks.

We also calculated the standard errors (SE) of the re-
ported FDR, power, and MCC over 100 synthetic data
sets (the results are not shown). They are all small with
most at the scale of thousandth and others at the scale
of hundredth. Therefore, ReDNet performed robustly
in differential analysis of networks, and the 2SPLS ap-
proach by Chen et al. [2017] performed also robustly in
constructing single networks.

3.2 THE GENOTYPE-TISSUE EXPRESSION
DATA

We performed differential analysis of gene regulatory
networks on two sets of genetic genomics data from the
Genotype-Tissue Expression (GTEx) project [Carithers
et al., 2015], with one collected from human whole blood
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Figure 3: Performance of ReDNet Versus the Naive Approach (i.e. two networks are constructed independently). The
results average over 100 synthetic data sets for different types of networks, with letters A, C, S, D in the x-axis denoting
Acyclic, Cyclic, Sparse and Dense networks, respectively. “Diff” and “Common” summarize the performance on
differential and common regulatory effects, respectively. The sample size n(2) = n(2) is either 200 or 300.

(WB) and another one from human muscle skeletal (MS).
The WB and MS data included genome-wide genetic and
genotypic values from 350 and 367 healthy subjects, re-
spectively. Both data sets were preprocessed following
Carithers et al. [2015] and Stegle et al. [2010], resulting
in a total of 15,899 genes and 1,083,917 single nucleotide
polymorphisms (SNPs) being shared by WB and MS.

Expression quantitative trait loci (eQTL) mapping [Gilad
et al., 2008] was conducted and identified 9875 genes
with at least one marginally significant cis-eQTL (with
p-value< 0.05). For each gene, we further filtered its
set of cis-eQTL by controlling the pairwise correlation
under 0.9 and keeping up to three cis-eQTL which have
the strongest association with the corresponding gene ex-
pression. These cis-eQTL serve as anchoring exogenous
variables for the genes, and expression levels of differ-
ent genes are endogenous variables. At completion of
preprocessing data, we have 9,875 endogenous variables
and 23,920 exogenous variables.

We applied ReDNet to infer the differential gene regu-
lation on a set of eighty target genes, which had largest
changes on gene-gene correlation between the two tis-

sues. We identified a total of 711 common and 572 dif-
ferential regulations on the eighty target genes. To eval-
uate the significance of identified regulations, we boot-
strapped 100 data sets, and conducted differential analy-
sis on each bootstrap data set. As summarized in Table 1,
50, 43 and 34 differential regulatory effects were identi-
fied in over 70%, 80% and 90% of the bootstrap data sets,
respectively.

Table 1: Summary of Regulations Identified in Over
70%, 80%, 90% of the Bootstrap Data Sets by ReDNet
From GTEx Data. Shown under “Original” are for those
identified from the original data.

Original 70% 80% 90%
Common 711 116 108 93

Differential 572 50 43 34

The top four subnetworks bearing differential regulations
on some of the eighty target genes were shown in Fig-
ure 4. We also constructed the differential networks us-
ing the naive approach (the results are not shown), and
reported more regulations which cover the reported ones
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Figure 4: The Top Four Differential Subnetworks of Gene Regulation Identified by ReDNet From GTEx Data. The
dotted, dashed, and solid lines imply regulations constructed in over 70%, 80%, and 90% of the bootstrap data sets,
respectively. Highlighted in yellow are the target genes whose regulatory genes are focused in this study. The differ-
ential regulations are in red while common regulations are in black. The arrow head implies up regulation in both
networks or no regulation in at most one network; the circle head implies down regulation in the whole blood but up
regulation in muscle skeletal; and the diamond head implies up regulation in whole blood but down regulation muscle
skeletal.

by ReDNet. This concurs with our observation in the
synthetic data evaluation that the naive approach tends
to report higher false positives, especially for differential
regulatory effects.

4 CONCLUSION

We have developed a novel two-stage differential analy-
sis method named ReDNet. The first stage, i.e., the cal-
ibration stage, aims for good prediction of the endoge-
nous variables, and the second stage, i.e., the construc-
tion stage, identifies both common and differential net-
work structures in a node-wise fashion. The key idea of
ReDNet method is to appropriately reparametrize the in-
dependent models into a joint model so as to estimate
differential and common effects directly. This approach
can dramatically reduce the false discovery rate. In the
experiments with synthetic data, we demonstrated the ef-
fectiveness of our method, which outperformed the naive
approach with a large margin. Note that ReDNet allows
independently conducting all ℓ2 regularized regressions
at the same time at the first stage, and all ℓ1 regular-
ized regressions at the same time at the second stage.
Therefore, ReDNet not only permits parallel computa-

tion but also allows for fast subnetwork construction to
avoid potential huge computational demands from differ-
ential analysis of large networks.

There are some interesting directions for future
research. Firstly, it is worthwhile to explore
other re-parametrization approaches such as baseline
reparametrizaiton in a case-control study. Secondly,
while we only consider differential analysis of two
networks, it is possible to generalize our method to
compare multiple networks, demanding more com-
plex reparametrization. Finally, applying the proposed
method for fully differential analysis of 53 tissues in the
GTEx project still provides challenging computational
and methodological issues.

Acknowledgments

The Genotype-Tissue Expression (GTEx) Project was
supported by the Common Fund of the Office of the Di-
rector of the National Institutes of Health, and by NCI,
NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data
used for the analysis described in this paper were ob-
tained from dbGaP accession number phs000424.v7.p2
on 08/18/2017.

609



References
Lisa F Berkman and S Leonard Syme. Social networks,

host resistance, and mortality: a nine-year follow-up
study of alameda county residents. American Journal
of Epidemiology, 109(2):186–204, 1979.

Peter J Bickel, Yaacov Ritov, Alexandre B Tsybakov,
et al. Simultaneous analysis of lasso and dantzig selec-
tor. The Annals of Statistics, 37(4):1705–1732, 2009.

Xiaodong Cai, Juan Andrés Bazerque, and Georgios B
Giannakis. Inference of gene regulatory networks
with sparse structural equation models exploiting ge-
netic perturbations. PLoS Computational Biology, 9
(5):e1003068, 2013.

Latarsha J Carithers, Kristin Ardlie, Mary Barcus,
Philip A Branton, Angela Britton, Stephen A Buia,
Carolyn C Compton, David S DeLuca, Joanne Peter-
Demchok, Ellen T Gelfand, et al. A novel approach to
high-quality postmortem tissue procurement: the gtex
project. Biopreservation and Biobanking, 13(5):311–
319, 2015.

Chen Chen, Min Zhang, and Dabao Zhang. A two-
stage penalized least squares method for constructing
large systems of structural equations. arXiv preprint
arXiv:1511.00370v2, 2017.

Jianqing Fan and Yuan Liao. Endogeneity in high dimen-
sions. The Annals of Statistics, 42(3):872, 2014.

Jianqing Fan and Jinchi Lv. Sure independence screen-
ing for ultrahigh dimensional feature space. Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), 70(5):849–911, 2008.

Yoav Gilad, Scott A Rifkin, and Jonathan K Pritchard.
Revealing the architecture of gene regulation: the
promise of eqtl studies. Trends in Genetics, 24(8):408–
415, 2008.

Gene H Golub, Michael Heath, and Grace Wahba. Gen-
eralized cross-validation as a method for choosing a
good ridge parameter. Technometrics, 21(2):215–223,
1979.

Jian Huang, Shuangge Ma, and Cun-Hui Zhang. Adap-
tive lasso for sparse high-dimensional regression mod-
els. Statistica Sinica, pages 1603–1618, 2008.

Markus Kalisch and Peter Bühlmann. Estimating high-
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Abstract

We propose sparse-matrix belief propagation,
which executes loopy belief propagation in pair-
wise Markov random fields by replacing in-
dexing over graph neighborhoods with sparse-
matrix operations. This abstraction allows for
seamless integration with optimized sparse lin-
ear algebra libraries, including those that per-
form matrix and tensor operations on modern
hardware such as graphical processing units
(GPUs). The sparse-matrix abstraction allows
the implementation of belief propagation in a
high-level language (e.g., Python) that is also
able to leverage the power of GPU paralleliza-
tion. We demonstrate sparse-matrix belief prop-
agation by implementing it in a modern deep
learning framework (PyTorch), measuring the
resulting massive improvement in running time,
and facilitating future integration into deep
learning models.

1 INTRODUCTION

Belief propagation is a canonical inference algorithm for
graphical models such as Markov random fields (MRFs)
or Bayesian networks (Pearl, 2014; Wainwright et al.,
2008). In graphs with cycles, loopy belief propagation
performs approximate inference. Loopy belief propaga-
tion passes messages from the variable nodes to their
neighbors along the graph structure. These messages are
fused to estimate marginal probabilities, also referred to
as beliefs. After enough iterations of the algorithm, these
beliefs tend to represent a good approximate solution to
the actual marginal probabilities. In this paper, we con-
sider pairwise MRFs, which only have unary and pairwise
factors.

One drawback of loopy belief propagation is that, though

the algorithm is relatively simple, its implementation re-
quires management of often irregular graph structures.
This fact usually results in tedious indexing in software.
The algorithm’s message-passing routines can be com-
piled to be rather efficient, but when implemented in a
high-level language, such as those used by data scien-
tists, they can be prohibitively slow. Experts typically
resort to writing external software in lower-level, com-
piled languages such as C++. The implementation of
belief propagation (and its variants) as separate, compiled
libraries creates a barrier for its integration into high-level
data science workflows.

We instead derive loopy belief propagation for pairwise
MRFs as a sequence of matrix operations, resulting in
sparse-matrix belief propagation. In particular, we use
sparse-matrix products to represent the message-passing
indexing. The resulting algorithm can then be imple-
mented in a high-level language, and it can be executed
using highly optimized sparse and dense matrix opera-
tions. Since matrix operations are much more general
than loopy belief propagation, they are often built in as
primitives in high-level mathematical languages. More-
over, their generality provides access to interfaces that
implement matrix operations on modern hardware, such
as graphical processing units (GPUs).

In this paper, we describe sparse-matrix belief propaga-
tion and analyze its running time, showing that its running
time is asymptotically equivalent to loopy belief propaga-
tion. We also describe how the abstraction can be used
to implement other variations of belief propagation. We
then demonstrate its performance on a variety of tests. We
compare loopy belief propagation implemented in Python
and in C++ against sparse-matrix belief propagation using
scipy.sparse and PyTorch on CPUs and PyTorch on GPUs.
The results illustrate the advantages of the sparse-matrix
abstraction, and represent a first step toward full integra-
tion of belief propagation into modern machine learning
and deep learning workflows.
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1.1 RELATED WORK

Belief propagation is one of the canonical variational in-
ference methods for probabilistic graphical models (Pearl,
2014; Wainwright et al., 2008). Loopy belief propaga-
tion is naturally amenable to fine-grained parallelism, as
it involves sending messages across edges in a graph
in parallel. The algorithm is classical and well studied,
but because it involves tight loops and intricate index-
ing, it cannot be efficiently implemented in high-level or
mathematical programming languages. Instead, practi-
tioners rely on implementations in low-level languages
such as C++ (Schmidt, 2007; Andres et al., 2012). Spe-
cific variations for parallel computing have been proposed
(Schwing et al., 2011), and other variations have been im-
plemented in graph-based parallel-computing frameworks
(Low et al., 2014; Malewicz et al., 2010). Specialized
implementations have also been created for belief propa-
gation on GPUs (Zheng et al., 2012).

While loopy belief propagation is the canonical message-
passing inference algorithm, many variations have been
created to address some of its shortcomings. Some varia-
tions modify the inference objective to make belief prop-
agation a convex optimization, such as tree-reweighted
belief propagation (Wainwright et al., 2003) and con-
vexified belief propagation (Meshi et al., 2009). Other
variations compute the most likely variable state rather
than marginal probabilities, such as max-product belief
propagation (Wainwright et al., 2008) and max-product
linear programming (Globerson and Jaakkola, 2008).

Linearized belief propagation approximates the message
update formulas with linear operations (Gatterbauer et al.,
2015), which, like our approach, can benefit from highly
optimized linear algebra libraries and specialized hard-
ware. However, our approach aims to retain the exact
non-linear formulas of belief propagation (and variants),
while linearized belief propagation is an approximation.

Our approach of using sparse matrices as an abstraction
layer for implementing belief propagation relies on sparse
matrix operations being implemented in efficient, opti-
mized, compiled libraries. Special algorithms have been
developed to parallelize these operations on GPUs, en-
abling sparse-matrix computations to use the thousands
of cores typically available in such hardware (Bell and
Garland, 2008). Other libraries for sparse-matrix com-
putation, such as those built into MATLAB (Gilbert
et al., 1992) and scipy.sparse often seamlessly pro-
vide multi-core parallelism. Frameworks for large-scale,
distributed matrix computation, such as Apache Spark
(Bosagh Zadeh et al., 2016), can also be used as back-
ends for our approach. Finally, one of the more im-
portant recent advances in computing hardware, field-
programmable gate arrays (FPGAs), also support sparse-

matrix operations (Zhuo and Prasanna, 2005).

By formulating belief propagation as a series of matrix
and tensor operations, we make it fit into modern deep
learning software frameworks, such as PyTorch (Paszke
et al., 2017) and TensorFlow (Abadi et al., 2016). Since
these frameworks are designed to easily switch between
CPU and GPU computation, we use PyTorch for one
of our belief propagation implementations in our exper-
iments. The added advantage is that, once these frame-
works fully support back-propagation through sparse
matrix products, we will be able to immediately back-
propagate through belief propagation. Back-propagating
through inference has been shown to allow more robust
training of graphical model parameters (Domke, 2013).

2 BACKGROUND

In this section, we review belief propagation and some
common—but not often documented—simplifications.
Define a pairwise Markov random field (MRF) as a fac-
torized probability distribution such that the probability
of variable x ∈ X is

Pr(X = x) =
1

Z
exp


∑

i∈V
φi(xi) +

∑

(i,j)∈E
φ(xi, xj)


 ,

(1)
where the normalizing constant Z is

Z =
∑

X∈X
exp


∑

i∈V
φi(xi) +

∑

(i,j)∈E
φ(xi, xj)


 , (2)

and x represents the full state vector of all variables, xi ∈
Xi represents the state of the ith variable, andG = {V, E}
is a graph defining the structure of the MRF.

The goal of marginal inference is to compute or approxi-
mate the marginal probabilities of the variables

{Pr(x1), . . . ,Pr(xn)} (3)

and of other subsets of variables. In pairwise MRFs, the
marginal inference is often limited to the unary marginals
and the pairwise marginals along the edges.

2.1 LOOPY BELIEF PROPAGATION

Belief propagation is a dynamic programming algorithm
for computing marginal inference in tree-structured MRFs
that is often applied in practice on non-tree, i.e., loopy,
graphs. Loopy belief propagation is therefore a heuristic
approximation that works well in many practical scenar-
ios. The algorithm operates by passing messages among
variables along the edges of the MRF structure.
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The message sent from variable xi to variable xj is

mi→j [xj ] = log

(∑

xi

exp (axi)

)
, (4)

where (as shorthand to fit the page)

axi = φij(xi, xj) + φi(xi) +
∑

k∈Ni\j
mk→i[xi]− dij ;

(5)
Ni is the set of neighbors of variable i, i.e., Ni =
{k|(i, k) ∈ E}; and dij is any constant value that is even-
tually cancelled out by normalization (see Eq. (7)). The
message itself is a function of the receiving variable’s
state, which in a discrete setting can be represented by a
vector (hence the bracket notation mi→j [xj ] for indexing
by the state of the variable).

The estimated unary marginals, i.e., the beliefs, are com-
puted by fusing the incoming messages with the potential
function and normalizing:

Pr(xj) ≈ exp(bj [xj ]) =

exp


φj(xj) +

∑

i∈Nj
mi→j [xj ]− zj


 ,

(6)

where z is a normalizing constant

zj = log


∑

xj

exp


φj(xj) +

∑

i∈Nj
mi→j [xj ]




 .

(7)
For convenience and numerical stability, we will consider
the log-beliefs

bj [xj ] = φj(xj) +
∑

i∈Nj
mi→j [xj ]− zj . (8)

We again use bracket notation for indexing into the be-
liefs because, for discrete variables, the beliefs can most
naturally be stored in a lookup table, which can be viewed
as a vector.

2.2 SIMPLIFICATIONS

The message update in Eq. (4) contains an expression that
is nearly identical to the belief definition in Eq. (8). In the
message update, the exponent is

axi = φij(xi, xj) + φi(xi) +
∑

k∈Ni\j
mk→i[xi]− dij .

(9)
The only difference between this expression and the belief
update is that the belief uses the constant zj to ensure
normalization and the message update omits the message

from the receiving variable (j). For finite message values,
we can use the equivalence

φi(xi) +
∑

k∈Ni\j
mk→i[xi]− dij =

φi(xi) +
∑

k∈Ni
mj→i[xi]−mj→i[xi]− dij =

bi[xi]−mj→i[xi],

(10)

where the last equality sets dij = zi. The message and
belief updates can then be written as

bj [xj ] = φj(xj) +
∑

i∈Nj
mi→j [xj ]− zj ,

mi→j [xj ] =

log

(∑

xi

exp (φij(xi, xj) + bi[xi]−mj→i[xi])

)
.

(11)
These two update equations repeat for all variables and
edges, and when implemented in low-level languages
optimized by pipelining compilers, yield the fastest com-
puter programs that can run belief propagation. However,
the indexing requires reasoning about the graph structure,
making any code that implements such updates cumber-
some to maintain, prone to errors, and difficult to adapt to
new computing environments such as parallel computing
settings.

3 SPARSE-MATRIX BELIEF
PROPAGATION

In this section, we describe sparse-matrix belief propa-
gation and analyze its complexity. Instead of directly
implementing the updates, sparse-matrix belief propaga-
tion uses an abstraction layer of matrices and tensors.
This abstraction allows belief propagation to be written in
high-level languages such as Python and MATLAB, dele-
gating the majority of computation into highly optimized
linear algebra libraries.

3.1 TENSOR REPRESENTATIONS OF THE
MRF, BELIEFS, AND MESSAGES

We store a c by n belief matrix B, where n is the number
of variables and c is the maximum number of states of
any variable. For simplicity, assume all variables have the
cardinality c, i.e., |Xi|= c. This belief matrix is simply the
stacked belief vectors, such that Bij = bj [i]. Similarly,
we rearrange this matrix into an analogously shaped and
ordered unary potential function matrix Φ, where Φij =
φj(xj = i).

We store the pairwise potentials in a three-dimensional
tensor Γ of size c× c× |E|. Each kth slice of the tensor
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is a matrix representing the kth edge potential function as
a table, i.e., Γijk = φsktk(i, j).

Consider a view E of the edge set E in which each edge
appears in forward and reverse order, i.e., (i, j) ∈ E if
and only if (j, i) ∈ E. Let the edges also be indexed in
an arbitrary but fixed order

E = {(s1, t1), (s2, t2), . . . , (s|E|, t|E|)}, (12)

and define vectors s = [s1, . . . , s|E|]> and t =

[t1, . . . , t|E|]>. These variables encode a fixed ordering
for the messages. The particular order does not matter,
but to convert message passing into matrix operations, we
need the order to be fixed.

In addition to the fixed order, we also define a message
reversal order vector r where

E[ri] = (t, s) if E[i] = (s, t). (13)

We can represent this reversal vector as a sparse, |E|×|E|
permutation matrix R where Rij = 1 iff ri = j.

Define a c by |E| message matrix M whose ith column
is the ith message. In other words, Mij = msj→tj [i], or
equivalently, M is a horizontal stack of all messages:

M =
[
ms1→t1 , ms2→t2 , . . . ,ms|E|→t|E|

]
. (14)

Finally, we define a binary sparse matrix T (for to) with
|E| rows and n columns whose nonzero entries are as
follows:

Tij =

{
1.0 if ti = j

0 otherwise.
(15)

This matrix T maps the ordered messages to the variables
that receive the messages.

We define an analogous matrix F (for from), also binary
and sparse with |E| rows and n columns, whose nonzero
entries are as follows:

Fij =

{
1.0 if si = j

0 otherwise.
(16)

This matrix T maps the ordered messages to the variables
that send the messages.

3.1.1 The logsumexp operation

A common operation that occurs in various steps of com-
puting log-space belief propagation is the logsumexp
operation, which is defined as follows:

logsumexp(A) = log (exp (A) · 1) , (17)

where the log and exp operations are performed element-
wise, and we use the matrix-vector product with the ones

vector (1) as a compact notation for summing across the
rows of the exponentiated input matrix.1 The resulting
output is a column vector with the same number of rows
as the input matrix A.

3.1.2 Slice Indexing

To describe the message updates in a compact notation,
we use slice indexing, which is common in matrix and
tensor software because it can be implemented efficiently
in linear time and easy to parallelize. We borrow syn-
tax from numpy that is also reminiscent of the famous
MATLAB syntax, where

A[:, i] = [A[:, i1],A[:, i2], . . .] . (18)

This slice indexing allows the reordering, selection, or
repetition of the rows or columns of matrices or tensors.

3.2 BELIEF PROPAGATION AS TENSOR
OPERATIONS

Using these constructed matrices, the belief matrix is
updated with the operations

B̃← Φ + M>T

B← B̃− 1 logsumexp
(
B̃
)
,

(19)

where the last operation uses the logsumexp operation to
compute the normalizing constants of each belief column
vector and multiplies by the ones vector (1) to broadcast
it across all rows.2

The message matrix M is updated with the following
formula:

M← logsumexp(Γ + B[:, s]−M[:, r]). (20)

This expression uses two forms of shorthand that require
further explanation. First, the addition of the tensor Γ
and the matrix (B[:, s] − M[:, r]) requires broadcast-
ing. The tensor Γ is of size c × c × |E|, and the matrix
(B[:, s] −M[:, r]) is of size c × |E|. The broadcasting
copies the matrix c times and stacks them as rows to form
the same shape as Γ. Second, the logsumexp operation
sums across the columns of the summed tensor, outputting

1It is especially useful to form this abstraction because this
operation is notoriously unstable in real floating-point arithmetic.
Numerically stable implementations that adjust the exponent by
subtracting a constant and adding the constant back to the output
of the logarithm are possible. These stable implementations add
a linear-time overhead to the otherwise linear-time operation, so
they maintain the same asymptotic running time of the original
logsumexp operation.

2In numpy, this broadcasting is automatically inferred from
the size of the matrices being subtracted.
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a tensor of shape c× 1× |E|, which is then squeezed into
a matrix of size c× |E|.
The message matrix can equivalently be updated with this
formula:

M← logsumexp(Γ + BF> −MR). (21)

Here BF> −MR is once again c× |E|, and it is equiva-
lent to the slice-notation form above.

Belief propagation is then implemented by iteratively
running Eq. (19) and then either of the equivalent Eqs. (20)
and (21).

3.3 VARIATIONS OF BELIEF PROPAGATION

Many variations of belief propagation can similarly be
converted into a sparse-matrix format. We describe some
of these variations here.

3.3.1 Tree-Reweighted Belief Propagation

The tree-reweighted variation of belief propagation
(TRBP) computes messages corresponding to a convex
combination of spanning trees over the input graph. The
result is a procedure that optimizes a convex inference ob-
jective (Wainwright et al., 2003; Wainwright et al., 2008).
The belief and message updates for TRBP are adjusted
according to edge-appearance probabilities in a distribu-
tion of spanning trees over the MRF graph. These updates
can be implemented in matrix form by using a length |E|
vector ρ containing the appearance probabilities ordered
according to edge set E. The matrix-form updates for the
beliefs and messages are then

B̃← Φ + (ρ ◦M)>T

B← B̃− 1 logsumexp
(
B̃
)
,

M← logsumexp(Γ/ρ+ BF> −MR),

(22)

where element-wise product ◦ and element-wise division
/ are applied with appropriate broadcasting.

3.3.2 Convexified Belief Propagation

Another important variation of loopy belief propagation
uses counting numbers to adjust the weighting of terms
in the factorized entropy approximation. The resulting
message update formulas weight each marginal by these
counting numbers. Under certain conditions, such as
when all counting numbers are non-negative, the infer-
ence objective can be shown to be concave, so this method
is often referred to as convexified Bethe belief propagation
(Meshi et al., 2009). We can exactly mimic the message
and belief update formulas for convexified belief propa-
gation by instantiating a vector c containing the counting

numbers of each edge factor, resulting in the updates

B̃← Φ + M>T

B← B̃− 1 logsumexp
(
B̃
)
,

M← logsumexp(Γ + (BF> −MR)/c) ◦ c.

(23)

The counting numbers for unary factors can be used to
compute the inference objective, but they do not appear
in the message-passing updates.

3.3.3 Max-Product Belief Propagation

Finally, we illustrate that sparse tensor operations can
be used to conduct approximate maximum a posteriori
(MAP) inference. The max-product belief propagation
algorithm (Wainwright et al., 2008) is one method for
approximating MAP inference, and it can be implemented
with the following updates:

B← onehotmax(Φ + M>T)

M← logsumexp(Γ + BF> −MR),
(24)

where onehotmax is a function that returns an indica-
tor vector with 1 for entries that are the maximum of
each column and zeros everywhere else, e.g., the “one-
hot” encoding. Similar conversions are also possible for
variations of max-product, such as max-product linear
programming (Globerson and Jaakkola, 2008).

3.4 TIME-COMPLEXITY ANALYSIS

To analyze our sparse-matrix formulation of loopy belief
propagation, and to show that it requires an asymptotically
equivalent running time to normal loopy belief propaga-
tion, we first revisit the sizes of all matrices involved in
the update equations. The first step is the belief update
operation, Eq. (19), which updates the c by n belief ma-
trix B. The potential matrix Φ is also c by n; the message
matrix M> is c by |E|; and the sparse message-recipient
indexing matrix T is |E| by n.

The second step in Eq. (19) normalizes the beliefs. It
subtracts from B the product of 1, which is a c by 1

vector, and logsumexp
(
B̃
)

, which is 1 by n. Explicitly
writing the numerically stable logsumexp operation, the
right side of this line can be expanded to

B̃− 1 log (sum (exp (B−max (B))) + max (B)) .
(25)

We next examine the message update Eq. (21), which
updates M. The three-dimensional tensor Γ is of size
c× c× |E|; the sparse message-sender indexing matrix
F> is c by |E|; and the sparse reversal permutation matrix
R is |E|×|E|. The message matrix M is c by |E|.
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CPU computation These three update steps are the en-
tirety of each belief propagation iteration. From the first
line of Eq. (19), the main operation to analyze is the dense-
sparse matrix multiplication M>T. Considering an n×m
dense matrix A and a sparse matrix B of size m× p with
s nonzero entries (i.e., ‖B‖0 = s), the sparse dot product
has time complexityO(ms) in sequential computation, as
on a CPU. The time complexity of the sparse dot product
depends upon the number of rows m and the number of
sparse elements in the sparse matrix B. Every other com-
putation in Eq. (19) involves element-wise operations on
c by n matrices. Thus, Eq. (19) requires O(nc+ ‖T‖0c)
time. Since the sparse indexing matrix T is defined to
have a single nonzero entry per column, corresponding to
edges, the time complexity of this step is O(nc+ |E|c).

In the message-update step, Eq. (21), the outer
logsumexp operation and the additions involve element-
wise operations over c × c × |E| tensors. The matrix
multiplications are all dense-sparse dot products, so the
total cost of Eq. (21) isO(|E|c2+‖F‖0c+‖R‖c) (Gilbert
et al., 1992). Since both indexing matrices F and R have
one entry per edge, the total time complexity of the mes-
sage update is O(|E|c2 + |E|c).

The combined computational cost of both steps is
O(nc + |E|c + |E|c2). This iteration cost is the same
as traditional belief propagation.

GPU computation Since the matrix operations in our
method are simple, they are easily parallelized on GPUs.
Ignoring the overhead of transferring data to GPU mem-
ory, we focus on the time complexity of the message pass-
ing. First consider the dense-sparse matrix multiplication
mentioned previously, with a dense n by m matrix A and
sparse m by p matrix B with s nonzero entries. GPU
algorithms for sparse dot products use all available cores
to run threads of matrix operations (Bell and Garland,
2008). In this case, each thread can run the multiplication
operation of a single column in the sparse matrix B.

Given k cores/threads, we assume that there will be
two cases: (1) when the number of sparse columns
m is less than or equal to the number of cores k and
(2) when the number of sparse columns m is more
than the number of cores k. For either case, let si
be the number of nonzero entries in column i. The time
complexity of case (1) is O(max

i
si), which is the

time needed to process whichever column requires the
most multiplications. For case (2), the complexity is
O(
⌈
m
k

⌉
max
i
si), which is the time for each set of cores

to process k columns. In case (2), we are limited by our
largest columns, as the rest of our smaller columns will be
processed much sooner. Overall, the GPU time complex-

ity of this operation is O
(

max
(

max
i
si,
⌈
m
k

⌉
max
i
si

))
.

In our sparse indexing matrices, each column has at most
one element.

For the element-wise dense matrix operations, which have
time complexity O(nm) on the CPU, we can again multi-
thread each entry over the number of cores k in our GPU
such that the time complexity is O

(⌈
nm
k

⌉)
.

The running time of the belief propagation steps is then
O
(⌈

n
k

⌉
c+

⌈
|E|
k

⌉
c+

⌈
|E|c2
k

⌉)
.

Based on our parallelism analysis, we expect significantly
faster running times when running on the GPU, especially
in cases where we have a large number of cores k. While
we expect some time loss due to data-transfer overhead
to the GPU, this overhead may be negligible when con-
sidering the overall time cost for every iteration of the
message-passing matrix operations.

Finally, this analysis also applies to other shared-memory,
multi-core, multithreaded environments (e.g., on CPUs),
since in both CPU and GPU settings, matrix rows can be
independently processed.

4 EMPIRICAL EVALUATION

In this section, we describe our empirical evaluation of
sparse-matrix belief propagation. We measure the run-
ning time for belief propagation on a variety of MRFs
using different software implementations and hardware,
including optimized and compiled code for CPU-based
computation and sparse-matrix belief propagation in a
high-level language for both CPU- and GPU-based com-
putation.

4.1 EXPERIMENTAL SETUP

We generate grid MRFs of varying sizes. We randomly
generate potential functions for each MRF such that the
log potentials are independently normally distributed with
variance 1.0. We use MRFs with different variable cardi-
nalities c from the set {8, 16, 32, 64}. We run experiments
with MRFs structured as square, two-dimensional grids,
where the number of rows and columns in the grids are
{8, 16, 32, 64, 128, 256, 512}. In other words, the num-
ber of variables in models with these grid sizes are, respec-
tively, 64, 256, 1024, 4,096, 16,384, 64,536, and 262,144.
We run all implementations of belief propagation until the
total absolute change in the messages is less than 10−8.

We run our experiments on different hardware setups. We
use two different multi-core CPUs: a 2.4 Ghz Intel i7 with
4 cores and a 4 Ghz Intel i7 with 4 cores.

We also run sparse-matrix belief propagation on various

616



102 103 104 105

# of variables in grid

10−2

10−1

100

101

102

103

tim
e 

fo
r i

nf
er

en
ce

 (s
ec

on
ds

)
Belief Propagation Running Times (c = 8)

Loopy-CPU
OpenGM-CPU
PyTorch-CPU
Sparse-CPU
PyTorch-GPU

102 103 104

# of variables in grid

10−2

10−1

100

101

102

tim
e 

fo
r i

nf
er

en
ce

 (s
ec

on
ds

)

Belief Propagation Running Times (c = 16)
Loopy-CPU
OpenGM-CPU
PyTorch-CPU
Sparse-CPU
PyTorch-GPU

102 103 104

# of variables in grid

10−2

10−1

100

101

tim
e 

fo
r i

nf
er

en
ce

 (s
ec

on
ds

)

Belief Propagation Running Times (c = 32)
Loopy-CPU
OpenGM-CPU
PyTorch-CPU
Sparse-CPU
PyTorch-GPU

102 103

# of variables in grid

10−1

100

101

tim
e 

fo
r i

nf
er

en
ce

 (s
ec

on
ds

)

Belief Propagation Running Times (c = 64)
Loopy-CPU
OpenGM-CPU
PyTorch-CPU
Sparse-CPU
PyTorch-GPU

Figure 1: Log-log plots of belief propagation running times for four different implementations on the CPU. Each plot
shows the results for different variable cardinalities c. OpenGM refers to the compiled C++ library, Loopy refers to the
direct Python implementation. Sparse uses implements sparse-matrix belief propagation with scipy.sparse. And
PyTorch implements it with the PyTorch library. We also plot the running time using PyTorch on the least powerful
GPU we tested (Nvidia GTX780M) for comparison. The CPU runs plotted here use a 2.4 Ghz Intel i7.

GPUs. We run on an Nvidia GTX 780M (1,536 cores,
4 GB memory), an Nvidia GTX 1080 (2,560 cores, 8
GB), an Nvidia GTX 1080Ti (3,584 cores, 11 GB), and
an Nvidia Tesla P40 (3840 cores, 24 GB).

Additional experiments will be available in this paper’s
supplemental material.

4.2 IMPLEMENTATION DETAILS

We compare four different implementations of belief prop-
agation. First, we use the compiled and optimized C++ im-
plementation of belief propagation in the OpenGM library
(Andres et al., 2012). This software represents the low-
level implementation. Second, we use a direct implemen-
tation of simplified belief propagation (see Section 2.2)
in Python and numpy using Python loops and dictionar-
ies (hash maps) to manage indexing over graph structure.

Third, we use an implementation of sparse-matrix belief
propagation in Python using scipy.sparse. Fourth,
we use an implementation of sparse-matrix belief propa-
gation in Python using the deep learning library PyTorch,
which enables easily switching between CPU and GPU
computation.

4.3 RESULTS AND DISCUSSION

Considering the results for CPU-based belief propagation
in Fig. 1, the sparse-matrix belief propagation is faster
than any other CPU-based belief propagation for all MRF
sizes and all variable cardinalities. Similarly, the curves
show a clear linearity, with a slope suggesting that all
the CPU-based belief propagation algorithms increase
in time complexity at a linear rate. It is also evident
that the PyTorch implementation is consistently slower
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Figure 2: Log-log plots of PyTorch-GPU belief propagation running times for four different GPUs (780M, 1080, Tesla
P40, 1080Ti) and the fastest CPU method (Sparse-CPU) with different variable cardinalities c. The CPU is the 4Ghz
Intel i7.

than the scipy.sparse implementation, which is to be
expected because PyTorch operations incur an additional
overhead for their ability to integrate with deep learning
procedures (e.g., back-propagation and related tasks).

Notably, we can see that the direct Python loop-based
implementation is by far the slowest of these options.
However, when the variable cardinality increases to large
values, the Python implementation nearly matches the
speed of sparse-matrix belief propagation with PyTorch
on the CPU. While OpenGM’s belief propagation does
offer some benefits compared to Python initially at a lower
values of c, it actually results in the slowest running times
at c ≥ 32. We can conclude that despite the compiled and
optimized C++ code, the number of variables and states
can eventually overshadow any speedups initially seen at
lower values.

In Fig. 1, we also include the running times for sparse-
matrix belief propagation with PyTorch on the GPU—

shown with the dotted gray line. A direct comparison is
not exactly fair, since we are comparing across different
computing hardware, though these curves were measured
on the same physical computer. The comparison makes
clear that the GPU offers significant speed increases over
any CPU-based belief propagation, even that of the faster
scipy.sparse implementation. Interestingly, there is
a trend with the GPU runtimes that are sub-linear in the
log-log plots, representing the cases where the number of
sparse columns is not yet more than the number of cores
of the GPU.

Examining the results for GPU-based belief propagation
in Fig. 2, a majority of the GPUs are fairly close in run-
ning time between the three powerful Nvidia units: the
1080, the 1080Ti, and the P40. The 780M understand-
ably lags behind. As seen previously, until the cores are
saturated with operations, there appears to be a pseudo-
constant time cost. And once the cores are saturated, the
running times grow linearly. This trend is best seen at
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c = 16 for the first two or three points. We also include
the fastest CPU running time, using scipy.sparse
on an Intel 4 Ghz i7, to illustrate the drastic difference
in time between sparse-matrix belief propagation on the
CPU and GPU.

These results demonstrate that sparse-matrix belief propa-
gation enables the fastest running times for inference in
these grid MRFs on the CPU. And using different soft-
ware backends (scipy.sparse or PyTorch) for the
sparse-matrix operations leads to different behavior, with
PyTorch incurring some overhead resulting in slower com-
putation. Once ported to the GPU, the speedups are even
more drastic, resulting in running times that are many
factors faster than those seen on the CPU, easily out-
weighing the overhead cost of using software backends
like PyTorch that support seamless switching from CPU
to GPU computation.

5 CONCLUSION

We presented sparse-matrix belief propagation, which
exactly reformulates loopy belief propagation (and its
variants) as a series of matrix and tensor operations. This
reformulation creates an abstract interface between be-
lief propagation and a variety of highly optimized li-
braries for sparse-matrix and tensor operations. We
demonstrated how sparse-matrix belief propagation scales
as efficiently as low-level, compiled and optimized im-
plementations, yet it can be implemented in high-level
mathematical programming languages. We also demon-
strated how the abstraction layer allows easy portabil-
ity to advanced computing hardware by running sparse-
matrix belief propagation on GPUs. The immediately
resulting parallelization benefits required little effort once
the sparse-matrix abstraction was in place. Our soft-
ware library with these implementations is available at
https://bitbucket.org/berthuang/mrftools/.

Open Questions and Next Steps There are still a num-
ber of research directions that we would like to pursue.
We mainly focused on analyzing the benefits of sparse-
matrix belief propagation on grid-based MRFs, but there
are many different structures of MRFs used in important
applications (chain models, random graphs, graphs based
on structures of real networks). Similarly, applying our
approach to real-world examples would help confirm the
utility of it in current problems within machine learning.
Likewise, we focused on fairly sparse graphs that did
not have many non-zero entries per column. It would be
interesting to explore the difference between how sparse-
matrix belief propagation behaves on the dense and sparse
matrices on different hardware and whether fully dense
matrices would still result in notable speed improvements,

or if overhead from the sparse-matrix format would be-
come a bottleneck.

Our sparse-matrix formulation of belief propagation is
derived for pairwise MRFs, so it remains an open ques-
tion what modifications are necessary for higher-order
MRFs which may have arbitrarily large factors. Benefits
similar to those we measured on GPUs can arise from the
sparse-matrix abstraction for other computing backends,
such as the use of compute-cluster parallelism through li-
braries such as Apache Spark, or the computation of belief
propagation on FPGAs. Finally, the integration of belief
propagation into deep learning models is straightforward
with the matrix abstraction. Though many popular frame-
works do not yet support back-propagation through sparse
dot products, such support is forthcoming according to
their respective developer communities.
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Abstract

We provide the first study on online learn-
ing problems under stochastic constraints that
are “soft”, i.e., need to be satisfied with high
probability. These constraints are imposed
on all or some stages of the time horizon so
that the stage decisions probabilistically satisfy
some given safety conditions. The distribu-
tions that govern these conditions are learned
through the collected observations. Under a
Bayesian framework, we introduce a scheme
that provides statistical feasibility guarantees
through the time horizon, by using posterior
Monte Carlo samples to form sampled con-
straints which leverage the scenario generation
approach in chance-constrained programming.
We demonstrate how our scheme can be inte-
grated into Thompson sampling and illustrate
it with an application in online advertisement.

1 INTRODUCTION

Most of the literature in stochastic online learning fo-
cuses on performances measured by optimality achieve-
ment. Common examples include the minimization of
cumulative regret in the multi-arm bandit setting (e.g.,
Auer et al. (2002); Lai and Robbins (1985)), best arm
selection (e.g., Audibert and Bubeck (2010)) and the
closely related ranking and selection (e.g., Boesel et al.
(2003)) in the simulation literature. In many situations,
however, the uncertainty or the stochasticity appears not
only in the objective function, but also in the constraints
of the problem whose feasibility can be of utmost im-
portance. The focus of this paper is to design sequential
methodologies that maintain probabilistic feasibility re-
quirements with rigorous statistical guarantees.

Our study is motivated from a rich set of problems where

“budgets” or “resources” are limited for various opera-
tional or commercial reasons, and these constraints are
in a sense “soft”, i.e., the capacities placed on these con-
straints, while preferred to be satisfied, are allowed to
be violated with a small probability. Such considera-
tion is common among applications. For example, in
online advertisement problems encountered by our co-
authors when optimizing spending for large advertisers,
the task involves sequentially picking items (e.g., key-
words, targets) to maximize revenues, while adhering to
a specified marketing budget for a duration. The mar-
keter in general expects to meet the budget goals. How-
ever, if occasionally the budget is exceeded the campaign
is still acceptable as long as the revenue performance is
sustained. Other similar settings include clinical trials,
where the costs of competing treatments are substantial
and noisy, and over-budget is undesired but sometimes
allowable. Whereas past work in stochastic sequential
learning has focused on rewards (with hard constraints
if needed), this paper provides the first study on a class
of problems that not just include the rewards but also
stochastic constraints that need to be satisfied with high
probability.

Our framework can be viewed as a sequential prob-
lem under so-called probabilistic or chance constraints
(Prékopa, 2003), which has been widely used in stochas-
tic programming under limited and uncertain resources
(e.g., Shi et al. (2015); Lejeune and Ruszczynski (2007)).
A generic representation of a chance constraint is

P ((x, ξ) satisfies a given safety condition) ≥ 1−α (1)

where x is a decision variable and ξ denotes some ran-
domness distributed under P . Satisfying the safety con-
dition means that (x, ξ) lies in a desirable deterministic
region, which can be represented by, e.g., a set of in-
equalities. The given parameter α is the tolerance level
that represents the allowable probabilistic violation.

In the sequential setting, x would denote a sequence of
decisions. The safety condition could include individual
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requirements on all or some stages. In many applications
of interest, P needs to be learned as complete distribu-
tional knowledge on ξ is not available. Along the vein of
conventional online problems that focus on optimality, at
each stage we may observe some components of ξ so that
we can update our belief on P .

As our main methodological contribution, we analyze an
online strategy that provides guarantees on (1) with a
high confidence, under a statistical framework that we
shall describe. On a high level, it means we can guaran-
tee, with our proposed policy, that

P (P ((x, ξ) satisfies a given safety condition)

≥ 1− α) ≥ 1− β (2)

where the outer probability now refers to the randomness
of x induced by the sequential observations, and 1−β is a
confidence level (90% for instance). Our methodology is
based on a combination of two ideas. First is a Bayesian
extension of the so-called scenario generation or con-
straint sampling (Calafiore and Campi, 2005; De Farias
and Van Roy, 2004) approach in approximating chance-
constrained optimization problems. This approach re-
places the unknown or difficult chance constraint with a
collection of sampled constraints that come from data or
from numerical simulation. Viewing such an approach
in a Bayesian manner allows it to be blended naturally
into popularly used online learning algorithms such as
Thompson sampling (Agrawal and Goyal, 2012; Russo
and Van Roy, 2016) that also operates via Bayesian up-
dating. Second, by capitalizing results on scenario gener-
ation in the static setting, we can derive the precise num-
ber of samples required at each stage of the sequential
process such that (2) holds throughout the horizon. As
far as we know, our formulation and analysis of chance-
constraint guarantees in an online setting is new to the
literature.

After presenting our theoretical investigation on feasibil-
ity guarantees, we illustrate the integration of our scheme
into a variant of Thompson sampling in an online adver-
tisement setting. We then numerically demonstrate how
this chance-constrained Thompson sampling performs
competitively, in achieving feasibility but also maintain-
ing good objective values.

2 RELATED WORK

The earliest work in chance constraints dated back to
Charnes et al. (1958) and Miller and Wagner (1965). Ex-
act solution techniques for such problems are notoriously
difficult due to non-convexity, and are only available in
few instances even when P is known; e.g., Lagoa et al.
(2005). Several lines of approximation methodologies

have been proposed. A conventional method is to use
so-called safe convex approximation that replaces the
chance constraint with more conservative convex con-
straints (Ben-Tal and Nemirovski, 2000). Rossi et al.
(2011, 2015) used policy trees and confidence interval
construction to obtain the so-called (α, ϑ)-solution. Sce-
nario generation (Calafiore and Campi, 2006; Campi and
Garatti, 2008), which we leverage on in this work, uses
sampled constraints to populate the feasible region. This
approach has several extensions, such as sampling-and-
discarding (Campi and Garatti, 2011) and multi-phase
schemes (Carè et al., 2014; Calafiore, 2017; Chamanbaz
et al., 2016), and relates to sample average approxima-
tion (Luedtke et al., 2010). Other data-driven methods
include distributionally robust optimization (Calafiore
and El Ghaoui, 2006; Zymler et al., 2013) and data-
driven robust optimization (Bertsimas et al., 2013).

Our work focuses on chance-constrained problem in an
online fashion, under the broad umbrella of sequential
decision-making. In the later part of this paper, we
demonstrate our proposed strategy in a variant of the
stochastic multi-arm bandit problem (Auer et al., 2002)
used to address the well-known exploration-exploitation
tradeoff. In budgeted bandits, Ding et al. (2013) con-
sider the presence of random costs and an overall budget,
where learning and revenue accumulation stops when
the budget runs out. Xia et al. (2015) study Thomp-
son sampling for a similar setting; in this work we in-
tegrate our strategy into Thompson sampling, especially
the one considered in Ferreira et al. (2016) motivated
from network revenue management. Other related work
include those in the framework of “bandits with knap-
sacks” (Badanidiyuru et al., 2013; Tran-Thanh et al.,
2012; Besbes and Zeevi, 2012) that have been applied
in pricing and supply chain management (Wang et al.
(2014)) and healthcare (Villar et al. (2015)). The works
closest to our online advertisement example are Tran-
Thanh et al. (2014) and Amin et al. (2012) that study the
problem of item bidding under a budget, but they do not
consider probabilistic violation of the constraints that we
focus on.

3 CHANCE-CONSTRAINED ONLINE
LEARNING

Consider a sequence of decision variables xt ∈ Rd, t =
1, . . . , T , and a sequence of random variables ξt ∈
Ξt, t = 1, . . . , T assumed independent among the steps
t in a given horizon T . For convenience, denote ξ1:t =
(ξ1, . . . , ξt) and x1:t = (x1, . . . , xt) as the cumulative
randomness and decisions up to t. Consider a sequence
of safety conditions that we write as ft(x1:t, ξ1:t) ∈ At,
where each function ft maps to some space Yt such that
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At ⊂ Yt (for example, ft(x1:t, ξ1:t) ∈ At can be a
set of inequalities so that Yt = Rm for some m and
At = {y ∈ Rm : y ≤ 0}.
We are interested in a sequential problem with horizon
T :

max
x1,...,xT

h(x1, . . . , xT )

subject to P (ft(x1:t, ξ1:t) ∈ At|Ft−1) ≥ 1− α ∀t ∈ S,
(3)

where the decisions x1, . . . , xT are sequential, i.e., xt+1

depends on the past observations of ξ1:t and past deci-
sions x1:t, S ⊂ {1, . . . , T} is a given set, and h(·) is the
objective function. Note that the function ft and the set
At can depend on the time step t. For convenience, let
Ft = {ξ1:t, x1:t} be the information up to time t. In each
probability P in (3), the function ft(x1:t, ξ1:t) can be
expressed as ft(x1:(t−1), xt, ξ1:(t−1), ξt) where x1:(t−1)
and ξ1:(t−1) belong to the past information Ft−1.

Consistent with the introduction, α is a tolerance param-
eter on the violation of the safety condition. This param-
eter is assumed constant across t for convenience, but
our analysis can be easily adapted to the case where it
varies. Note that S determines how many chance con-
straints need to be maintained throughout the horizon.
For example, S = {1, . . . , T} means there is a budget
requirement for each step, and S = {T} means there
is only one overall budget requirement across the whole
horizon.

3.1 SCENARIO GENERATION FOR STATIC
PROBLEMS

We first discuss a well-studied approach to approximate
a static version of (3). Suppose T = 1. In this setting we
can simplify notation and write the formulation as

max
x

h(x)

subject to P (f(x, ξ) ∈ A) ≥ 1− α
(4)

Suppose we can simulate or collect data for ξ to obtain,
say, i.i.d. ξ1, . . . , ξN . We consider replacing the con-
straint in (4) by sampled constraints, so that the optimiza-
tion program becomes

max
x

h(x)

subject to f(x, ξn) ∈ A, ∀ n = 1, . . . , N
(5)

We call (5) a sampled program, which serves as a rea-
sonable approximation to (4) when N is large. However,
since ξn’s are randomly generated, the solution obtained
from (5) is subject to statistical noise and cannot be guar-
anteed feasible for (4). The following celebrated result
from (Calafiore and Campi, 2006; Campi and Garatti,

2008) gives the sample size needed to guarantee feasi-
bility for (4) with a certain confidence by solving (5).

Condition 1. An optimization program is said to be in
class R if: 1) It is feasible and the feasible region has a
non-empty interior; 2) Its optimal solution exists and is
unique.

Theorem 1. (Adopted from Theorem 2.4, Campi and
Garatti (2008)) Suppose for each ξ, f(x, ξ) ∈ A is a
convex set in x ∈ Rd, and h is concave. Suppose also
that any instance of (5) belongs to R. Fix real numbers
α, β ∈ [0, 1]. Then for N chosen such that

d−1∑

i=0

(
N

i

)
αi(1− α)N−i ≤ β

the optimal solution of the sampled stochastic program
(5) is feasible for (4) with probability no smaller than
1− β.

It is known that this result can be improved, e.g., by us-
ing sampling-and-discarding (Campi and Garatti, 2011)
and multi-stage or iterative schemes (Carè et al., 2014;
Calafiore, 2017; Chamanbaz et al., 2016). In this paper
we stick with the requirement in Theorem 1 to illustrate
our proposed strategies; improvements can be made ac-
cordingly by modifying the use of Theorem 1 to better
results available in the literature.

3.2 SCENARIO GENERATION UNDER
UNKNOWN DISTRIBUTION: A BAYESIAN
PERSPECTIVE

The scenario generation approach depicted in Theorem
1 requires direct observations on ξ or the capacity to ob-
tain Monte Carlo samples for ξ. In problems with learn-
ing, the distribution of ξ is not fully known, and Theo-
rem 1 does not apply directly. We shall adopt a Bayesian
perspective that naturally integrates to many online algo-
rithms (e.g., Thompson sampling). Suppose ξ follows a
parametric distribution G|µ with unknown parameter µ.
After specifying a prior distribution for µ and collecting
some data historically, we have a posterior distribution
for µ denoted by F . We seek to use Monte Carlo sam-
pling to conduct an analog of scenario generation so that
a posterior credibility guarantee

Pµ(Pξ|µ(f(x, ξ) ∈ A) ≥ 1− α) ≥ 1− β (6)

is achieved, where Pµ denotes the posterior probability
distribution on µ, and Pξ|µ denotes the distribution of ξ
given a parameter value of µ. In other words, we want
the chance constraint to hold with a posterior credibility
level 1 − β. Note that this is a natural Bayesian analog
of the frequentist result in Theorem 1. In the setting of
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Theorem 1, P is not known but data are available, so that
a 1 − β confidence is attained. In our current Bayesian
investigation, P is not known but subject to a posterior
belief summarized by the distribution of µ, and we want
this posterior credibility to be 1− β.

Directly sampling ξ using any particular value of µ does
not sufficiently capture the posterior uncertainty. To
blend the latter into a scenario generation, we can use
a two-level sampling, where in the first level we gener-
ate a posterior sample for µ, and in the second level we
generate ξ conditional on µ. This sampling procedure is
described in Algorithm 1.

Algorithm 1 Posterior Constraint Sample Generator
(PCSG)

1. Repeat N times:

(a) Generate µn ∼ F .
(b) Generate ξn ∼ G|µn.

2. Impose the constraints f(x, ξn) ∈ A, n =
1, . . . , N and solve the sampled program

max
x

h(x)

subject to f(x, ξn) ∈ A, ∀ n = 1, . . . , N
(7)

In PCSG we encounter two different sources of random-
ness. First is the statistical noise from the uncertainty of
µ, captured by the posterior credibility level 1 − β. The
second source is the Monte Carlo error, and we denote
by 1− δ the confidence level induced from this error. By
choosing a suitable sample size N in terms of α, β, δ,
PCSG turns out to achieve a guarantee below.

Theorem 2. Suppose f(x, ξ) ∈ A is a convex set in x ∈
Rd, and h(x) is concave. Suppose also that any instance
of (7) belongs to R. Fix real numbers δ, α, β ∈ [0, 1]
and choose

d−1∑

i=0

(
N

i

)
(αβ)i(1− αβ)N−i ≤ δ (8)

Consider a solution x obtained from the sampled pro-
gram in PCSG. Then,

1. x satisfies (6) with a Monte Carlo confidence 1 − δ,
i.e.,

PMC(Pµ(Pξ|µ(f(x, ξ) ∈ A) ≥ 1−α) ≥ 1−β) ≥ 1−δ
(9)

where the outermost PMC denotes the probability
with respect to the N Monte Carlo samples.

2. x satisfies

EMC [Pµ(Pξ|µ(f(x, ξ) ∈ A) ≥ 1−α)] ≥ (1−β)(1−δ)
(10)

where EMC [·] denotes the expectation with respect to
the N Monte Carlo samples.

Theorem 2 Part 1 stipulates that choosing N in (8)
achieves chance-constraint feasibility with a Bayesian
credibility 1− β, under a Monte Carlo confidence 1− δ.
Part 2 will be useful in generalizing to the multi-stage
setting presented next.

3.3 SEQUENTIAL POLICIES

We now move our analysis to the sequential problem de-
picted in (3). We generalize PCSG, with the posterior up-
date occurring at every step of the horizon and the sample
size required at each step modified in order to achieve a
chance constraint guarantee over the whole horizon. Let
Nt be the sample size used in step t, which depends on α
and also the confidence-level parameters βt and δt. We
denote F0 as the prior distribution of µ and Ft as the
posterior distribution of µ at step t. We denote Gt|µ as
the distribution of ξt given µ. Note that µ is a parameter
shared among the ξt at different steps so that information
can be learned over time. To distinguish the real data
from the Monte Carlo samples, we use ξ̃1:(t−1) to denote
the actual data of ξ coming from steps 1 to t− 1.

We have the following procedure:

Algorithm 2 Dynamic PCSG
Set F0 as the prior distribution of µ. For t = 1, . . . , T :
While t ∈ S , and given Ft and the realized x1:(t−1) and
ξ̃1:(t−1):

1. Repeat Nt times:

(a) Generate µn ∼ Ft.
(b) Generate ξn ∼ Gt|µn.

2. Impose the constraints

ft(x1:(t−1), xt, ξ̃1:(t−1), ξ
n) ∈ At, ∀ n = 1, . . . , Nt

(11)
at stage t.

It is understood that in the second step of Dynamic
PCSG, the constraints are imposed together with an ap-
propriate objective function (typically the cost-to-go in
formulation (3)) to form a stepwise optimization with de-
cision variable xt. The following result gives the choice
of Nt and the resulting guarantee:
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Theorem 3. Suppose the stepwise safety conditions are
all convex sets, the objective function at every step is con-
cave, and xt ∈ Rd. Suppose also that any instance of the
optimization resulted from imposing (11) belongs to R.
Suppose 0 ≤ βt, δt ≤ 1 are constants such that

d−1∑

i=0

(
Nt
i

)
(αβt)

i(1− αβt)Nt−i ≤ δt (12)

and ∑

t∈S
(βt + δt − βtδt) ≤ βλ (13)

Then the policy obtained from Dynamic PCSG is feasi-
ble for (3) under the updated posterior distribution with
probability at least 1−β, with overall Monte Carlo con-
fidence 1− λ, i.e.,

PMC(Pµ1:T
(Pξt|µt(ft(xt, ξt) ∈ At|Ft−1) ≥ 1− α

∀t ∈ S) ≥ 1− β) ≥ 1− λ (14)

where Pµ1:T
denotes the probability with respect to

µ1, . . . , µt, where each µt ∼ Ft, the posterior distri-
bution of µ at step t, and Pξt|µt denotes the probability
with respect to ξt given a realized parameter of µt.

Theorem 3 asserts that the round-specific statistical pa-
rameters, namely the posterior credibility 1− βt and the
Monte Carlo confidence level 1 − δt, which determine
the constraint sample size, can be chosen to satisfy a lo-
cal condition (12) and a global condition (13) to achieve
an overall statistical guarantee.

For convenience we can set βt = δt and both equal to
some constant, say γt. This γt can be set to be stage-
independent or dependent. The following subsection
shows two choices of γt.

3.4 TWO EXPLICIT STRATEGIES

We demonstrate two choices of {Nt} in terms of {γt}.
The first choice is a simple one that requires knowl-
edge of the horizon length T , by setting γt to be a con-
stant. The second choice uses a decaying γt, conse-
quently an increasing sample size Nt, which does not
require knowledge of T a priori. For convenience, we
denote |S| as the size of the set S. For the first strategy,
we have:

Proposition 1. Given a time horizon T , if we let βt =
δt = γ for all t ∈ S such that γ ≤ 1 −

√
1− βλ/|S|,

then (14) holds.

The following describes our second strategy that is stage-
dependent such that (14) holds without knowing the hori-
zon T or |S| a priori:

Proposition 2. If we let βt = δt = γt for all t ∈ S such
that γt = (1/ζ(t)ρ) ∧ η, where ρ > 1, 0 < η < 1, and
ζ(t) = ]{s ∈ S : s ≤ t} (i.e., ζ(t) is the “counter” of t
in S) such that

2η1−1/ρ +
2

ρ− 1

1

(1/η1/ρ − 1)ρ−1
− η2

η1/ρ + 1

− 1

2ρ− 1

1

(1/η1/ρ + 1)2ρ−1
≤ βλ (15)

then (14) holds regardless of |S|.

For example, if ρ is set to be 2, then (15) becomes 2
√
η+

2
√
η/(1−√η)−η2/(√η+1)−η3/2/(3(1+

√
η)3) ≤ βλ.

4 INTEGRATION INTO THOMPSON
SAMPLING

We illustrate the integration of our strategies with
Thompson sampling, which also operates via Bayesian
updating, by an example of revenue maximization in on-
line advertising (Pani et al., 2017). The advertiser is
interested in maximizing the expected revenue across a
portfolios of keywords or biddable ad units while ensur-
ing that the budget constraint is not violated. When the
advertiser selects a bid value for a keyword it results in
ad clicks, the volume of which is stochastic. The distri-
bution of clicks and the associated revenue is not initially
known to the decision-maker and needs to be learned
over time. Further, the cost associated with the choice
of a bid is also unknown and hence, there is uncertainty
regarding how the budget will be affected.

To be more concrete, consider a set of K bid values
{κ1, ..., κK}, for M items labeled {π1, ..., πM}, over
the campaign horizon T . Bidding value j on item
i will induce an average revenue rij and cost cij re-
spectively. These quantities are assumed to follow in-
dependent Poisson distributions with initially unknown
parameters (the Poisson assumptions come from the
click count nature). In each period t = 1, . . . , T , the
advertiser picks a bid value j from every item, ob-
serves the outcome, i.e., the realizations of rij , cij , i =

1, . . . ,M . She gains
∑M
i=1

∑K
j=1 rijxij and consumes∑M

i=1

∑K
j=1 cijxij from the budget, where xij is the al-

location portion for bid value j of item i (i.e., the fraction
of time or the probability in a randomized scheme that is
allocated to this particular bid value and item).

The advertiser’s goal is to maximize the total revenue
while maintain a budget constraint with high probabil-
ity. In other words, letting rij(t) and cij(t) be the re-
alized revenue and cost for a bid at time t, and xij(t)
be the corresponding allocation variables, she wants to
maximize E[

∑T
t=1

∑M
i=1

∑K
j=1 rij(t)xij(t)]. A typical
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budget constraint is a bound given by the remaining bud-
get averaged over the remaining horizon. Specifically,
let the overall budget be B. Denoting B(t − 1) =

B − ∑t−1
u=1

∑M
i=1

∑K
j=1 cij(u)xij(u) as the remaining

budget before epoch t ∈ S, the advertiser wants to keep
P (
∑t
u=1

∑M
i=1

∑K
j=1 cij(u)xij(u) ≤ B(t−1)/(T−t+

1)) ≥ 1 − α ∀t ∈ S . This type of dynamically updated
per-round budgets is common in practice and is argued
to be more effective than fixed per-round budgets. In the
following, we will concentrate on the particular choice
described above as the feasibility requirement.

4.1 A BUDGETED ALGORITHM

The setting of this problem resembles a recent study (Fer-
reira et al., 2016) on a network revenue management
problem. They developed a Thompson sampling algo-
rithm to sequentially assign a price vector to items under
resource constraints, where each step involves a knap-
sack optimization problem. Here we present a variant of
their algorithm to suit our setting (Algorithm 3). This ini-
tial algorithm does not take into account the possibility
of constraint violation; the idea is to later illustrate how
our Dynamic PCSG strategy can be integrated.

Denote by Xij(t − 1) the allocation units on bid value
j for item i cumulated in the first t − 1 rounds, and de-
note by W r

ij(t− 1) and W c
ij(t− 1) the total revenue and

cost generated by assigning bid value j to item i during
these periods respectively. In Algorithm 3, the advertiser
samples from the joint posterior distributions of θij , the
unknown Poisson rate of the revenue, and µij , the rate
of the cost, corresponding to bid value j for item i. We
put independent Gamma prior distributions for these pa-
rameters and hence the posterior distributions are also
independent. The posterior samples of these parameters
are then used in a linear program to decide the alloca-
tion. This algorithm follows quite intuitively from stan-
dard Thompson sampling, in which one generates poste-
rior samples for the unknown parameters, and use them
as “plug-in” to solve stage-wise optimization problems.

4.2 CHANCE-CONSTRAINED BUDGETED
THOMPSON SAMPLING

We want to ensureP (
∑t
u=1

∑M
i=1

∑K
j=1 cij(u)xij(u) ≤

B(t − 1)/(T − t + 1)) ≥ 1 − α ∀t ∈ S holds with
posterior credibility 1− β. To achieve this, we integrate
our Dynamic PCSG into Step 2 of Algorithm 3 by
restructuring the involved optimization program. Algo-
rithm 4 shows Dynamic PCSG in this particular setting.

The output of this procedure is a set of constraints,
which will be used in the linear program of the budgeted

Algorithm 3 Budgeted Thompson Sampling for deter-
ministically constrained problems adopted from Ferreira
et al. (2016)
Given a total budget B(0) = B. For t = 1, ..., T , do the
following:
1: For each bid value j and each item i, sample θij from
Gamma(W r

ij(t − 1) + 1, Xij(t − 1) + 1) and µij from
Gamma(W c

ij(t− 1) + 1, Xij(t− 1) + 1).
2: Solve the following linear program:

max
x

K∑

j=1

M∑

i=1

θijxij

subject to
K∑

j=1

M∑

i=1

µijxij ≤ B(t− 1)

T − t+ 1

K∑

j=1

xij ≤ 1, ∀ i = 1, . . . ,M

xij ≥ 0, ∀ i = 1, . . . ,M, j = 1, . . . ,K

to obtain (x∗ij(t))i=1,...,M,j=1,...,K .
3: The revenue, rij(t), and the cost, cij(t), generated by as-

signing bid value j on item i are revealed. We update
Xij(t) = Xij(t − 1) + x∗ij(t), W

r
ij(t) = Wij(t − 1) +

rij(t)x
∗
ij(t), W

c
ij(t) = W c

ij(t − 1) + cij(t)x
∗
ij(t) and

B(t) = B(t− 1)−∑K
j=1

∑M
i=1 cij(t)x

∗
ij(t).

4: If B(t) ≤ 0, the algorithm terminates.

Thompson sampling. Algorithm 5 shows how Dynamic
PCSG can be integrated into Algorithm 3. The following
is an immediate consequence of Theorem 3:

Corollary 4. Suppose that any instance of the sampled
program in (16) belongs to R. Suppose 0 ≤ βt, δt ≤ 1
are chosen to satisfy

KM−1∑

i=0

(
Nt
i

)
(αβt)

i(1− αβt)Nt−i ≤ δt

and ∑

t∈S
(βt + δt − βtδt) ≤ βλ

Consider a modification of Algorithm 5 such that at any
point of time, if the total budget B is fully depicted, we
refill the shortfall and add extra budget B (so that the
total remaining budget in the next step returns to the full
level B). Then the sequence of decisions obtained will
satisfy

Pµ

(
Pct|µt




t∑

u=1

M∑

i=1

K∑

j=1

cij(u)xij(u) ≤ B(t− 1)

T − t+ 1




≥ 1− α ∀t ∈ S
)
≥ 1− β

626



Algorithm 4 Dynamic PCSG for the Bidding Problem

1. Set Fij(0), i = 1, . . . ,M, j = 1, . . . ,K as the prior dis-
tribution of µij . For t = 1, . . . , T : Given B(t − 1) and
Fij(t− 1), the posterior distribution of µij given Ft−1,

(a) Repeat Nt times:
i. Generate µnij ∼ Fij(t − 1) independently for

each item i = 1, . . . ,M and bid value j =
1, . . . ,K.

ii. Generate ξnij ∼ Poisson(µnij) for each item
i = 1, . . . ,m and bid value j = 1, . . . ,K.

(b) Form the constraints

K∑

j=1

M∑

i=1

ξnijxij ≤
B(t− 1)

T − t+ 1
, ∀ n = 1, . . . , Nt

with Monte Carlo confidence level at least 1 − λ. Pµ
denotes the probability of {µt}t=1,...,T , where µt is the
collection (µij)i,j and each element is distributed inde-
pendently according to the posterior distribution Fij(t−
1), and Pct|µt denotes the probability with respect to the
collection (cij)i,j given the realization of (µij)i,j .

We mention that the “modification of Algorithm 5” intro-
duced in Corollary 4 is only a technicality that takes care
of the unusual situation when the entire available budget
is prematurely depleted. Since we divide the remaining
budget by the remaining horizon (a common practice to
set per-round budgets) to form our constraint at each step,
the scenario of total budget depletion before the last step
rarely happens.

4.3 NUMERICAL RESULTS

We examine the empirical performance of our proposed
strategy on a synthetic dataset with two items and three
bid values (M = 2, K = 3) over the time horizon
T = 100. The cost and revenue of each item-bid value
pair follow Poisson distributions with parameters taken
uniformly from an interval that is calibrated from a real
data set owned by a prominent tech firm (blinded for
peer-review purpose). We test with five different val-
ues of the overall budget B = (a

∑M
i=1 ρ̄i) × T where

a ∈ [0.5, 0.75, 1, 1.25, 1.5] and ρ̄i is the average cost of
item i over the K bid values. The choice of B roughly
matches the scale of the total cost over the time. The per-
round budget is defined as the remainder of the overall
budget divided by the remaining number of rounds.

To test our chance-constrained Thompson sampling
(CCTS) in Algorithm 5, we use three different settings
for S, i.e. S1 = {25, 50, 75}, S2 = {20, 40, 60, 80, 100}
and S3 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. We
enforce α = 0.1, β = λ = 0.3, and βt = δt = γ where

Algorithm 5 Chance-constrained Thompson Sampling
(CCTS)
Initialize α, βt, δt ∈ [0, 1] satisfying (13). Given a total budget
B(0) = B. For t = 1, ..., T , do the following:
1: For each bid value j and each item i, sample θij from
Gamma(W r

ij(t − 1) + 1, Xij(t − 1) + 1) and µij from
Gamma(W c

ij(t− 1) + 1, Xij(t− 1) + 1).
2: Run Dynamic PCSG using Nt samples to get the con-

straints

K∑

j=1

M∑

i=1

ξnijxij ≤
B(t− 1)

T − t+ 1
, ∀ n = 1, . . . , Nt

3: Solve the following linear program:

max
x

K∑

j=1

M∑

i=1

θijxij

subject to
K∑

j=1

M∑

i=1

ξnijxij ≤
B(t− 1)

T − t+ 1
, ∀ n = 1, . . . , Nt

K∑

j=1

xij ≤ 1, ∀ i = 1, . . . ,M

xij ≥ 0, ∀ i = 1, . . . ,M, j = 1, . . . ,K
(16)

to obtain (x∗ij(t))i=1,...,M,j=1,...,K .
4: The revenue, rij(t), and the cost, cij(t), generated by as-

signing bid value j on item i are revealed. We update
Xij(t) = Xij(t − 1) + x∗ij(t), W

r
ij(t) = Wij(t − 1) +

rij(t)x
∗
ij(t), W

c
ij(t) = W c

ij(t − 1) + cij(t)x
∗
ij(t) and

B(t) = B(t− 1)−∑K
j=1

∑M
i=1 cij(t)x

∗
ij(t).

5: If B(t) ≤ 0, the algorithm terminates.

γ is taken as the upper bound depicted in Proposition 1.
With these configurations, the number of constraints in
the involved linear programs are typically in the range
of thousands, which gives a run-time of a few minutes
in solving the decisions for the whole horizon using our
sever machine. Note that, if we consider our online prob-
lem a daily problem (common in practice) then this so-
lution time is quite acceptable as we have hours to solve
the problem at each stage. Moreover, the number of con-
straints and hence the run-time can be further reduced by
using more recent advances in the constraint sampling
literature as depicted at the end of Section 3.1.

For each considered setting, we conduct 500 simulation
runs. For each run, we estimate the proportion of viola-
tion of the decision using 100 inner repetitions of ξt, at
each step t ∈ S. Figure 1 depicts the box-plots show-
ing the distribution of the proportion of violation. For
all the tested budget levels and choices of S, CCTS was
able to maintain the proportion of budget violation well
below the 10% tolerance at the relevant steps. This im-
plies, moreover, that the overall violation (i.e., at least
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one violation at a step in S) is also below 10%.

Note that the theoretical guarantees studied in the previ-
ous sections focus on the feasibility in maintaining the
chance constraints. In practice, the objective value per-
formance is also important. To test this, we compare
the performance of CCTS, both regarding budget vio-
lation and revenue attainment, against the following al-
gorithms: 1) a hypothetical algorithm that assumes the
distributions of the costs and revenues are all known and
draws Monte Carlo samples from it, otherwise the same
as CCTS; 2) the deterministically constrained Thomp-
son sampling (DCTS) in Algorithm 3; 3) the algorithm
in Badanidiyuru et al. (2013) that uses reward-to-cost ra-
tios; and 4) Besbes and Zeevi (2012) that uses an ini-
tial learning phase (in our experiment we set the learning
phase to 50 steps). Figure 2 shows the distributions of
the proportion of violations at t ∈ S2 based on 500 sim-
ulation runs, for the five described budget levels. We see
that only CCTS and the hypothetical algorithm maintains
the proportion of violation to well below 10%, whereas
the other three algorithms fluctuate around 20-40%, as
they do not account for the chance constraint on the per-
round budget. On the other hand, Figure 3 shows the
average cumulative revenue achieved through the hori-
zon (the bar depicts one standard deviation around the
average). DCTS appears the best in terms of cumulative
rewards, and Badanidiyuru et al. (2013) and Besbes and
Zeevi (2012) perform similarly. CCTS achieves less re-
wards (around 15%), which can be viewed as the price
of maintaining the chance constraint. The hypothetical
algorithm performs better than CCTS, not surprisingly
given the full distributional knowledge. This behavior
persists for S1 and S3 as well as for several priors we
have tested (similar to plots Figures 2 and 3). Thus, in
view of achieving overall performances in terms of both
controlling violation proportions and attaining cumula-
tive rewards, our CCTS appears to be superior to all the
other considered methods.

The above experiments all used the budget violations cal-
culated using the true underlying distribution of the cost.
In Table 1, we compare with the calculation based on the
evolving posterior distributions, in terms of the average
of all the proportions of violations for t ∈ S1,S2 and
S3 at the five described budget levels. The average pro-
portion of violation based on the posterior distribution is
consistently lower than the one based on the true distri-
bution for all budget levels and S. This is expected since
our chance constraint is maintained under the posterior
distribution (as Theorem 3 states). However, the propor-
tion of violations is maintained below 10% under the true
distribution, thanks to the relatively robust performance
of our approach in abiding with the chance constraint.

Table 1: Comparison of the average proportions of vi-
olations based on the true distribution and the updated
posterior distributions over 500 simulation runs

Budget S1 S2 S3

B1
True Dist. 0.018 0.019 0.018
Posterior Dist. 0.011 0.012 0.009

B2
True Dist. 0.016 0.015 0.014
Posterior Dist. 0.01 0.01 0.008

B3
True Dist. 0.014 0.013 0.013
Posterior Dist. 0.008 0.009 0.007

B4
True Dist. 0.013 0.011 0.01
Posterior Dist. 0.009 0.007 0.005

B5
True Dist. 0.008 0.008 0.007
Posterior Dist. 0.006 0.005 0.004

Alternatively, we also investigated the amount of budget
violation at t ∈ S . Figure 4 depicts the distributions of
the total amounts of budget violation in S1,S2 and S3 for
the five budget levels over 500 simulation runs. Similar
to the proportion of budget constraint violations, the av-
erage amounts of violation for CCTS and DTS tend to be
much lower than the other three algorithms, with at most
25% of those of the other three algorithms in the same
setting. This suggests a strong dependence between the
proportion and the amount of violation which substanti-
ates the use of CCTS in maintaining over-spending even
in the monetary scale.

5 CONCLUSION

We studied sequential learning subject to constraints that
need to be satisfied with high probability. We investi-
gated a methodology to obtain posterior statistical guar-
antees for the feasibility of these constraints, by gen-
eralizing the constraint sampling approach in chance-
constraint programming to a two-level Monte Carlo pro-
cedure and analyzing the sample size needed in achiev-
ing overall feasibility through the learning horizon. We
further incorporated our scheme into Thompson sam-
pling using an online advertisement example, and numer-
ically demonstrated how it led to desirable performances
in both feasibility and optimality. As far as we know,
this work represents the first methodological investiga-
tion of “soft” stochastic constraints in sequential learn-
ing. In subsequent work, we will investigate the tighten-
ing of the requirements in sampled constraints, via for in-
stance analyzing the correlation among decisions at dif-
ferent stages, and will also study the scalability of this
approach to higher-dimensional problems.
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Figure 1: Estimated proportion of violation at each step in S, for S = S1,S2,S3 and five different budget levels, using
500 simulation runs under CCTS.

Figure 2: Estimated proportion of violation at each step in S2, with 500 simulation runs for different algorithms

Figure 3: Average cumulative revenue over T = 100 achieved by different algorithms under S2

Figure 4: Total Amount of budget violations occurred over S1,S2 and S3 for different algorithms

Acknowledgements

Support from the Adobe Faculty Research Award is
gratefully acknowledged.

References
Agrawal, S. and Goyal, N. (2012). Analysis of thomp-

son sampling for the multi-armed bandit problem. In

629



COLT, pages 39.1–39.26.

Amin, K., Kearns, M., Key, P., and Schwaighofer,
A. (2012). Budget optimization for sponsored
search: Censored learning in mdps. arXiv preprint
arXiv:1210.4847.

Audibert, J.-Y. and Bubeck, S. (2010). Best arm identifi-
cation in multi-armed bandits. In COLT, pages 41–53.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-
time analysis of the multiarmed bandit problem. Ma-
chine learning, 47(2-3):235–256.

Badanidiyuru, A., Kleinberg, R., and Slivkins, A. (2013).
Bandits with knapsacks. In Foundations of Computer
Science (FOCS), 2013 IEEE 54th Annual Symposium
on, pages 207–216. IEEE.

Ben-Tal, A. and Nemirovski, A. (2000). Robust solu-
tions of linear programming problems contaminated
with uncertain data. Mathematical programming,
88(3):411–424.

Bertsimas, D., Gupta, V., and Kallus, N. (2013).
Data-driven robust optimization. arXiv preprint
arXiv:1401.0212.

Besbes, O. and Zeevi, A. (2012). Blind network revenue
management. Operations Research, 60(6):1537–1550.

Boesel, J., Nelson, B. L., and Kim, S.-H. (2003). Us-
ing ranking and selection to clean up after simulation
optimization. Operations Research, 51(5):814–825.

Calafiore, G. and Campi, M. C. (2005). Uncertain con-
vex programs: randomized solutions and confidence
levels. Mathematical Programming, 102(1):25–46.

Calafiore, G. C. (2017). Repetitive scenario design. IEEE
Transactions on Automatic Control, 62(3):1125–1137.

Calafiore, G. C. and Campi, M. C. (2006). The scenario
approach to robust control design. IEEE Transactions
on Automatic Control, 51(5):742–753.

Calafiore, G. C. and El Ghaoui, L. (2006). On distri-
butionally robust chance-constrained linear programs.
Journal of Optimization Theory and Applications,
130(1):1–22.

Campi, M. C. and Garatti, S. (2008). The exact feasibil-
ity of randomized solutions of uncertain convex pro-
grams. SIAM Journal on Optimization, 19(3):1211–
1230.

Campi, M. C. and Garatti, S. (2011). A sampling-and-
discarding approach to chance-constrained optimiza-
tion: feasibility and optimality. Journal of Optimiza-
tion Theory and Applications, 148(2):257–280.
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Abstract

We present a new sampling scheme for approx-
imating hard to compute queries over graphical
models, such as computing the partition func-
tion. The scheme builds upon exact algorithms
that traverse a weighted directed state-space
graph representing a global function over a
graphical model (e.g., probability distribution).
With the aid of an abstraction function and ran-
domization, the state space can be compacted
(or trimmed) to facilitate tractable computa-
tion, yielding a Monte Carlo Estimate that is
unbiased. We present the general scheme and
analyze its properties analytically and empiri-
cally, investigating two specific ideas for pick-
ing abstractions - targeting reduction of vari-
ance or search space size.

1 INTRODUCTION

Imagine that we want to compute a function over a
weighted directed graph where the graph is given im-
plicitly, e.g., using a generative state-space search model
whose explicit state graph is enormous. We therefore
need to resort to approximations such as Monte-Carlo
schemes. We focus on weighted search trees over prob-
abilistic graphical models where nodes represent partial
variable assignments (or configurations) and arcs are as-
sociated with weights describing probabilistic quantities
from the model. The task is to compute the partition
function - sum cost of all paths in the tree. Some Monte
Carlo methods draw independent samples of full config-
urations (full paths) one variable at a time (e.g., Forward
sampling). The key idea of the scheme we propose is
that, guided by an abstraction function, each sample (or a
“probe”) is a sampled subtree representing multiple con-
figurations. We argue that, under some conditions over

the abstraction, such a sampled tree representing k con-
figurations can be a more accurate estimator than k inde-
pendent samples.

Our sampling scheme uses an abstraction function that
partitions the nodes at each level in the search tree into
subsets of abstract states under the intuition that nodes
in the same abstract state root similar subtrees and there-
fore a single member from each can represent all others.
Our Abstraction Sampling (AS) scheme brings together
ideas from statistics and search to exploit their respective
strengths. Search is a systematic process that can explore
all configurations in a structured manner, once. ”It does
not leave any stone unturned and does not turn any stone
more than once” [Pearl, 1984]. Sampling on the other
hand explores only a subset of the paths, that can stochas-
tically cover the whole search space. Abstraction Sam-
pling allows a transition between search and sampling
by generating and searching a subtree, and therefore a
corresponding subset of configurations, in a coordinated
manner that can overcome redundancy and some of the
variance associated with random independent samples.

From a search perspective abstraction can be viewed as
a license to merge nodes that root similar subtrees, sam-
pling one of the subtrees, thus creating a more compact
graph that can be searched more efficiently. From a sam-
pling perspective, an abstract state can be viewed as a
form of a ”strata” within a stratified sampling scheme
[Rubinstein and Kroese, 2007, Rizzo, 2007] where the
process of stratified sampling is applied layer by layer.
The variance reduction we hope to get rests on similar
principles of variance reduction in stratified sampling, as
we will elaborate more later.

Abstraction Sampling is inspired by the early work of
Knuth and Chen [Knuth, 1975, Chen, 1992] who pro-
posed a method for estimating quantities that can be ex-
pressed as aggregates (e.g., sum) of functions defined
over the nodes in the graph. Our work extends this work
to more general queries over graphical models such as
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the partition function and to weighted AND/OR trees.

Our Contributions. In this paper we present a new algo-
rithmic framework, Abstraction Sampling, that combines
search with stratified importance sampling for answering
summation queries (e.g., partition function) over graphi-
cal models. Using the notion of abstraction function we
can find a cost-effective balance betwen seach and sam-
pling, that is tuned to the problem instance and to time
and memory resources, using OR or AND/OR search al-
gorithms. We prove unbiasedness and discuss variance
reduction properties, and carry out an extensive empir-
ical evaluation over multiple challenging benchmarks.
Our results show that two classes of context-based ab-
stractions (deterministic and randomized) can often sig-
nificantly improve performance over the baseline of im-
portance sampling, for both OR and AND/OR trees. We
also show that our scheme is competitive by comparing it
with two state-of-the-art importance sampling schemes.

2 BACKGROUND

A graphical model, such as a Bayesian or a Markov net-
work [Pearl, 1988, Darwiche, 2009, Dechter, 2013] can
be defined by a 3-tuple M = (X,D,F), where X =
{Xi : i ∈ V } is a set of variables indexed by a set V
and D = {Di : i ∈ D} is the set of finite domains of
values for each Xi. Each function ψα ∈ F is defined
over a subset of the variables called its scope, Xα, where
α ⊆ V are the indices of variables in its scope and Dα

denotes the Cartesian product of their domains, so that
ψα : Dα → R≥0. The primal graph of a graphical
model associates each variable with a node, while arcs
connect nodes whose variables appear in the scope of
the same local function. A graphical model represents a
global function, often a probability distribution, defined
by Pr(X) ∝∏α ψα(Xα). An important task is to com-
pute the normalizing constant, also known as the parti-
tion function Z =

∑
X

∏
α ψα(Xα).

AND/OR search spaces. A graphical model can be ex-
pressed via a weighted state space graph. In a simple OR
search space, the states (or nodes) are partial assignments
relative to a variable ordering, where each layer corre-
sponds to a new assigned variable. A graphical model
can be transformed into a more compact AND/OR search
space [Dechter and Mateescu, 2007] by capturing condi-
tional independences, thus facilitating more effective al-
gorithms [Marinescu and Dechter, 2009]. The AND/OR
search space is defined relative to a pseudo tree of the
primal graph.

DEFINITION 1 (pseudo tree) A pseudo tree of an undi-
rected graph G = (V,E) is a directed rooted tree T =
(V,E′) such that every arc of G not in E′ is a back-arc

Figure 1: A Simple Graphical Model.

in T connecting a node in T to one of its ancestors. The
arcs in E′ may not all be included in E.

Given a pseudo tree T of a primal graph G, the AND/OR
search tree TT guided by T has alternating levels of
OR nodes corresponding to the variables, and AND
nodes corresponding to an assignment from its domain
with edge costs extracted from the original functions
F [Dechter and Mateescu, 2007]. Let s be a node in
Tτ . We denote by var(s) the last variable of the par-
tial value assignment associated with s. So if s stands
for x̄1..p = (x1, x2, ..., xp), then var(s) = Xp. Each
AND node s has a cost c(s) defined to be the product of
all factors ψα that are instantiated at s but not before.

DEFINITION 2 (solution subtree) A solution subtree
x̂M is a subtree of TT satisfying: (1) it contains the root
of TT ; (2) if an OR node is in x̂M , exactly one of its AND
child nodes is in x̂M ; (3) if an AND node is in x̂M then
all its OR children are in x̂M . The product of arc-costs
on any full solution tree equals the cost of a full configu-
ration of the modelM.

Example 1 Figure 1a is a primal graph of 4 bi-valued
variables and 4 binary factors of a graphical model. Fig-
ure 1b is a pseudo tree. Figure 1c displays the AND/OR
search tree guided by the pseudo tree. A solution subtree
is (B = 1, A = 0, C = 1, D = 0) having a cost of 72.

Each node s in TT can be associated with a value, Z(s)
expressing the conditioned partition function rooted at s.
Clearly, Z(s) can be computed recursively based on the
values of the children of s: OR nodes by summation and
AND nodes by multiplication. The value of TT , is the
value of its root node, which is the partition function of
the underlying model,M.

The size of the AND/OR search tree, TT is exponen-
tial in the height of the pseudo tree. It is possible to
merge some subtrees using a concept known as con-
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Figure 2: Motivating Example; Z=126.

Figure 3: Motivating Example Tree

text (defined later), yielding an AND/OR graph that
is exponential in the tree-width of the primal graph
[Dechter and Mateescu, 2007]. As noted, Z(s) can be
computed by a depth-first search scheme from leaves to
root of the AND/OR tree (See Figure 1 where the val-
ues attached to each node). When the pseudo tree is a
chain we get back the regular OR tree, where each path
corresponds to a full variable configuration.

Stratified sampling is a variance reduction tech-
nique that can be used with importance sam-
pling [Rubinstein and Kroese, 2007] [Liu et al., 2015]
[Gogate and Dechter, 2011] to achieve further reduction
in variance. Let f be a non-negative function defined
on a sample space X. We want to estimate the value
Z =

∑
x∈X f(x). In importance sampling, we can esti-

mate Z by drawing samples from X according to a pro-
posal distribution q and estimating the equivalent expres-
sion Z =

∑
x∈X

f(x)
q(x) q(x), leading to an importance

sampling estimator ẐI . In stratified importance sam-
pling, we first divide the sample space X into k strata
of equal area under the distribution q. Let J be a ran-
dom variable with k values {1, .., k} assigning to each
configuration in the sample space the index of its strata.
For each j ∈ J , we compute importance sampling es-
timators ẐIj of Zj =

∑
x∈X

fj(x)
qj(x)qj(x) from samples

drawn from the conditional distributions qj = q|(J = j)
and fj(x) be defined as f(x) if J(x) = j and 0 oth-
erwise. The stratified importance sampling estimator is
ẐSI = 1

k

∑k
j=1 Ẑ

I
j . It can be shown

THEOREM 1 ([Rizzo, 2007]) Let ZJ be a uniform ran-

dom variable defined on {1, ..., k} assigning value Zj to
j. Let ẐSI be the stratified importance sampling esti-
mator computed using m samples drawn in each of the
k strata. Let ẐI be the importance sampling estimator
computed with M = mk samples. The variance reduc-
tion achieved by moving from ẐI to ẐSI is k

mV ar(ZJ).

3 ABSTRACTION SAMPLING

A Motivating Example. Our proposed Abstraction
Sampling (AS) algorithm emulates stratified importance
sampling on partial configurations (nodes in the search
tree) layer by layer (each layer corresponding to a vari-
able). To illustrate the idea consider a small two dimen-
sional function over variables X1 and X2 with domains
D1 = D2 = {1, 2, 3, 4, 5} in Figure 2. Partial configu-
rations of length 1 (corresponding to X1) are partitioned
into two abstract states: one where X1 ∈ {1, 2} and the
other where X1 ∈ {3, 4, 5}. Note that this abstraction
function tries to put into the same abstract states rows
which have roughly the same total mass (sum of entries).
At the level of X2 we have abstract states defined just by
variable X2 - one where X2 ∈ {1, 2} and the other by
X2 ∈ {3, 4, 5}. We assume a uniform proposal distribu-
tion; note that the exact answer is Z = 126 (summing all
entries in the table).

The sampling process is illustrated in Figure 3. Assume
we pick X1 = 1 and X1 = 3 as representatives of their
respective abstract states, and give them weights 2 and
3, to account for the number of states they represent.
All extensions of these 2 assignments to X2 are gener-
ated, with abstract states indicated as diamonds and tri-
angles. There are now 4 candidates for a representative
of triangle abstraction with values {10, 9, 8, 7} and corre-
sponding weights {2, 2, 3, 3}, and 6 diamond candidates
with values {3, 5, 4, 2, 3, 2} and corresponding weights
{2, 2, 2, 3, 3, 3}. We select a representative at random in
proportion to their weights. Assume this yields config-
urations (X1 = 3, X2 = 2) and (X1 = 1, X2 = 4).
We next update the weights of the selected represen-
tatives to account for the mass they represent yielding:
w(X1 = 3, X2 = 2) ← w(X1 = 3, X2 = 2)/(3/10) =
3/(3/10) = 10 and w(X1 = 1, X2 = 4) ← w(X1 =
1, X2 = 4)/(2/15) = 2/(2/15) = 15, yielding an esti-
mate for the partition function Ẑ = 7 ·10+5 ·15 = 145.

We also compared the empirical variance of our estima-
tor with a simple importance sampler, using 100000 trials
and observed variance reduction from 2337 to 398, an al-
most 6 fold decrease. While in this example the abstract
states were not equal size, the abstractions were selected
to yield a large variance between the different abstract
states.
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Algorithm 1: OR Abstraction Sampling(AS) one probe
Require: An implicit OR search tree T of a modelM.

c(s, s′) is the cost of arc (s, s′) extracted fromM.
g(s) is the product of arc-costs from root to s and
h(s) (heuristic function) is an upper bound on the
partition function defined on nodes based on
graphical modelM. Abstraction a.

Ensure: Sampled tree T̃ . Estimate Ẑ = Z(T̃ ).
1: initialize T̃ ← ∅, Z̃ ← 0, OPEN ← {< s0, 1 >},
2: while OPEN is not empty do
3: < s,w(s) >← remove node in OPEN with

smallest a
4: if s is a leaf node in T then
5: Ẑ ← Ẑ + w(s) · g(s)
6: else
7: for each child s′ of s do
8: w(s′)← w(s)
9: if a(s′) = i and OPEN contains a node

< s{i}, w{i} > of abstraction {i} then
10: p← w(s′)g(s′)h(s′)

w(s′)g(s′)h(s′)+w{i}g(s{i})h(s{i})

11: w{i} ← w{i}
(1−p)

12: with probability p do:
13: remove s{i} from OPEN

14: OPEN ← OPEN ∪ {< s′, w(s′)
p >}

15: add s′ to T̃
16: else
17: OPEN ← OPEN ∪ {< s′, w(s′) >}
18: T̃ ← T̃ ∪ {< s,w(s) >}

(a) A weighted OR tree (b)
Probe 1

(c) Probe 2

(d) Full AND/OR search
tree

(e) Probe - AND/OR

Figure 4: Example of Probes

3.1 THE ALGORITHM

Our proposed Abstraction Sampling algorithm is a
Monte Carlo process that generates compact represen-
tatives T̃ of T , guided by an abstraction function. Ab-
straction Sampling for OR trees (Algorithm 1) builds a
subtree T̃ of T , level-by-level, in a breadth-first man-
ner. Starting from the root of T , at each step, it picks
a leaf node having the smallest (as explained next) ab-
stract value, and expands it to its child nodes. Each node
s is associated with a weight w(s) representing the mass
the abstract state stands for (root weight is 1). For each
newly generated node, the algorithm checks if there al-
ready exists a node having the same abstraction. If this
is the case, (line 9), it decides with some probability p,
which of the representative nodes to keep and which to
discard. The weight of the selected representative is ad-
justed to account for the discarded one (step 11). Other-
wise, it adds the new node to the frontier of nodes called
OPEN with the weight of its parent node (step 17).

Layered Abstractions. Given a weighted directed
AND/OR tree T , an abstraction function, a : T → I+,
where I+ are integers, partitions the nodes in T , layer
by layer, with the requirements that i) if var(s1) 6=
var(s2) → a(s1) 6= a(s2), and ii) if s′ ∈ ch(s) then
a(s) < a(s′) (this enforces breadth-first exploration;
ch(s) denotes the children of s in T ). Abstraction states
are denoted by {i} for an integer i.

The Sampling Proposal. We use p proportional to
w(s) · g(s) · h(s), where h is a heuristic that provides an
upper bound on the partition function (of the subprob-
lem rooted at s). While the algorithm is unbiased for
any sampling probability, the heuristic yields a proposal
function whose accuracy can significantly impact its con-
vergence, as in any importance sampling scheme.

Example 2 Consider the (OR) search tree T in Fig. 4a.
The cost of each solution is obtained by a product on its
solution arcs. In Figure 4b we show a probe generated
via an abstraction function that puts all nodes that repre-
sent a single variable in a single abstract state. In 4c, we
see a probe where each domain value of a variable corre-
sponds to a different abstract state, yielding 2 states per
variable, and thus 2 nodes per level of the generated tree.
The estimate for (b) is Ẑ = 180 and for (c) Ẑ = 156.

Abstraction Sampling for AND/OR trees requires sev-
eral modifications. The underlying search tree is an
AND/OR tree TT along a pseudo-tree T , and the ab-
straction function is defined on AND nodes. The algo-
rithm builds a subtree T̃T of TT , level-by-level, breadth
first. At each step, it picks a leaf AND node having the
smallest abstraction, and expands two levels down - child
OR nodes, and their child AND nodes. For newly gen-
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(a) A full AND/OR
tree with improper ab-
straction (colors)

(b) AND/OR sample
tree generated by im-
proper abstraction

Figure 5: Improper Abstraction for AND/OR

erated AND nodes, the algorithm proceeds as in the OR
case to select stochastically the representative node. The
estimate is not accumulated during the sampling process.
Rather, once a probe T̃T is generated, its partition func-
tion estimate can be computed in a depth-first manner.
Figures 4d and 4e provide an example AND/OR search
tree and a possible probe. 1

3.2 PROPER ABSTRACTIONS

To guarantee the validity and unbiasedness of our sam-
pling scheme for general AND/OR trees, we need to
ensure that the sampled AND/OR probe would include
only full solution subtrees of the underlying AND/OR
tree. For example, the sampled subtree in Figure 5b
could have been generated from the tree in Figure 5a
with the colors as abstraction, yet it contains a solution
tree that corresponds just to a partial configurations (e.g.
(B=0, A=0)) and therefore may lead to unbiased esti-
mates. This situation can be avoided if we require ab-
stractions to be proper, i.e. any two AND nodes of the
same variable, X , can have the same abstract state, only
if they are descendant of a common AND node in the
sampled AND/OR tree.

DEFINITION 3 (Branching variable, Proper abstraction)
A variable Y in a pseudo-tree T is a branching variable
of X , if Y is X’s closest ancestor with at least 2 child
nodes. An abstraction function a over AND nodes in TT
is proper if for any two AND nodes n1 and n2 having
var(n1) = var(n2) = X , if a(n1) = a(n2), then
n1 and n2 have a common ancestor AND node n3 s.t.
var(n3) = Y where Y is the branching variable of X .

Clearly, any OR tree abstraction is proper as there are no
branching variables. Abstraction Sampling for AND/OR
trees enforces the generation of proper probes during the
sampling process (for details see AND/OR algorithm in

1Note that while the AND/OR-AS algorithm is defined
here as a breath-first (BF ) traversal of the search space, other
formulations are possible. Our AND/OR-AS implementation
uses BF traversal on non-branching variables (chains) and
depth-first (DF ) traversal on branching variables, due to su-
perior time/space complexity of DFS algorithms.

supplementary material). For the remainder of the paper
we assume that AS is the general algorithm extended to
AND/OR spaces that enforces the proper condition.

4 PROPERTIES

Complexity The proper restriction limits compactness
of the sampled AND/OR trees. More branchings in the
pseudo tree yield more abstract states and consequently
larger probes. We can show that:

THEOREM 2 (size and complexity) Given a pseudo-
tree, the number of states in a probe by AS is O(n ·
mb+1), where n is the number of variables, b bounds the
number of branchings along any path of the pseudo-tree
and m bounds the maximum number of abstract states in
the input abstraction function, a, per variable. Clearly
for OR trees, b = 0 yielding size bounded by O(nm).

Notice that when we have many branchings in the pseudo
tree T , the underlying AND/OR tree from which we
sample is far more compact than the underlying OR tree.

Unbiasedness We can show that our sampling scheme
generates an unbiased estimate of the partition function.
Detailed proof is in the supplementary materials.

THEOREM 3 (unbiasedness) Given a weighted directed
AND/OR search tree T derived from a graphical model,
the estimate Ẑ generated by AS is unbiased.

5 ON VARIANCE AND ABSTRACTION
SELECTION

The proof of unbiasedness works for any sampling distri-
bution p. The reason for choosing our specific proposal
probabilities is to reduce the variance. We can show that

THEOREM 4 (exact proposal) If the proposal function p
in AS uses an exact heuristic h(n) = Z(n), then Ẑ has
zero variance (single probe is exact), for any abstraction.

Theorem 4 addresses the extreme case when the proposal
is exact. Next we talk about the other extreme when the
abstraction is exact.

THEOREM 5 (exact abstraction) When the abstraction
function satisfies that a(n) = a(n′) ⇒ Z(n) = Z(n′)
then, Ẑ is exact (i.e. Ẑ = Z) with one probe, if h satisfies
a(n) = a(n′)⇒ h(n) = h(n′) .

Since AS is a type of stratified importance sampling our
sampling perspective, (e.g., Theorem 1), suggests sev-
eral variance reduction ways. The first advises to use
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abstractions that at each layer partition nodes into equal
area abstract states under the proposal. The second is
advising towards increasing the variance of the estima-
tors between abstract states. The third encourages hav-
ing more refined abstractions with more abstract states
per layer, as long as the condition of equal size abstract
states can be maintained. At the same time, our search
perspective suggests to always unify nodes that root the
same subtrees, whenever such information is available.
One possibility is to use the notion of context.

The context of a variable X in a pseudo-tree T identi-
fies a subset C(X) of its ancestor variables, whose as-
signment uniquely determines the AND/OR subtree be-
low the node ([Dechter and Mateescu, 2007]). There-
fore, two nodes in the search tree having the same con-
text, (namely, the same assignment along their contexts)
root identical subtrees. So, if we use abstractions that are
context-isomorph and if h is the mini-bucket heuristic,
the two conditions of Theorem 5 hold, yielding:

Corollary 1 When the abstraction function is context-
isomorph, namely, a(n) = a(n′) ↔ C(n) = C(n′) and
if h is a mini-bucket heuristic, then the partition function
estimate, Ẑ, is exact.

In the following we construct two abstraction function
families based on the notion of context: relaxed context-
based and randomized context-based abstractions.

DEFINITION 4 (relaxed context-based abstractions)
An abstraction a at X is context-based relative
to a subset S, S ⊆ C(X), iff for every n1 and
n2 having var(n1) = var(n2) = X , we have:
a(n1) = a(n2) ↔ πSC(n1) = πSC(n2). If |S| = j
we say that we use a j-level context-based abstraction.
In particular, 0-level abstractions puts all the nodes of a
variable in a single abstract state.

This family of abstract functions will lead to abstract
states in each level having the same number of nodes,
which can be viewed as a first approximation to abstract
states having the same area under the proposal.

Our second family of abstractions introduces random-
ness into the actual way the abstraction depends on the
context. This can facilitate the generation of many ab-
stractions in an automated manner and potentially lead
to tighter estimates. We randomly assign nodes into ab-
stract states based on the value of a random hash func-
tion, taking into consideration only the context of a node.

DEFINITION 5 (randomized context-based abstraction)
Let k ∈ I+ and d ∈ I+ be parameters. Let N be the
number of variables in the model and K = {1, 2, .., k}.
We assume that all domains Di of the variables are

subsets of the positive integers. We construct an abstrac-
tion a, by first sampling a vector c = (c1, c2, ..., cN )
uniformly at random from KN . Given a node nj at level
j in the search tree, corresponding to the partial as-
signment x̄j = (x1, x2, x3, ..., xj), we compute its hash
value hash(nj) =

∑j
i=1 cixiIC(Xj)(Xi), where I is

the indicator function. We define its abstraction function
value a(nj) = hash(nj) mod d. The parameter d
determines the number of abstract states for each layer
of the tree.

6 EMPIRICAL EVALUATION

6.1 METHODOLOGY

Implementation and Configuration. We evaluate our
algorithm on 4 benchmark sets using several configu-
rations of the abstraction sampling algorithm. We im-
plemented the algorithm in C++ and ran experiments
on a 2.66 GHz processor with 2GB of memory. For
our heuristic we use Weighted Mini-Bucket Elimination
(WMBE) [Dechter and Rish, 2003, Liu and Ihler, 2011],
whose strength is controlled by a parameter called the i-
bound. Higher i-bounds lead to stronger heuristics at the
expense of higher computation and memory cost. We use
i-bound 10 in our experiments. While there is an inter-
play between the heuristic strength and the abstraction
level, we defer such investigation to future work.

Abstraction Functions. We use the two types of
context-based abstractions introduced in the previous
section: relaxed context-based (RelCB) and randomized
context-based (RandCB). RelCB is parametrized by its
level j, while RandCB by its parameter d. We compare
the more refined abstractions (higher j or d) to the 0-level
abstraction, that combines all nodes in a layer into a sin-
gle abstract state, corresponding to baseline regular im-
portance sampling. For OR trees, using a fixed variable
order, we experiment with abstractions having j ∈ {4, 8}
for RelCB, and d ∈ {16, 256} for RandCB.

For AND/OR trees we introduce hybrid abstractions that
allow a better control of probe size. A hybrid abstraction
with parameter j k (d k for RandCB) performs a j-level
abstraction (parameter d for RandCB) for nodes having
no more than k branching variables in the path to the
root, and 0-level abstraction below it. For RelCB abstrac-
tion family, we experiment with a pure 1-level abstrac-
tion (j = 1) and a hybrid abstraction with parameter 2 5.
For RndCB family, we experiment with a pure abstrac-
tion with d = 2 and a hybrid abstraction with parameter
4 5. For randomized abstractions, we tested three dif-
ferent random seeds and observed overall similar results;
we present results from one seed selected randomly.
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Figure 6: Convergence Plots for Different Abstraction Levels (aL) for Selected Problem Instances. #p – number of
probes, #n – average number of expanded nodes per probe, h – height of pseudo tree, maxNBVC – max number of
branching variables in any path of pseudo tree, error – distance from true value

Benchmarks. We tested on instances from 4 bench-
marks (BN, DBN, Pedigree, Promedas). We classify in-
stances as small (we do have the exact value of the par-
tition function) or large (we don’t, due to high induced
width). We use 130 small and 155 large instances. Sum-
mary statistics are in the first column of the results table.
Since DBN instances have chain-like pseudo-trees (sim-
ilar to OR), we test them only on OR trees.

Performance Measure. For each instance and config-
uration (abstraction family, tree type, abstraction level),
we ran theAS algorithm for 1 hour and recorded the par-
tition function estimate Ẑ at different times. For small
instances (exact Z known), we compute the log partition
function absolute error | log10 Ẑ − log10 Z|. For large
instances (exact Z unknown), we use as a proxy the dis-
tance of the log of the estimate from the log of an upper
bound of the partition ZUB (computed using heuristic
function) | log10 ZUB − log10 Ẑ|. We present the mean

of these errors aggregated by benchmark in Table 1.

Comparison with other schemes. We compare our esti-
mates with two state-of-the-art importance sampling al-
gorithms: Weighted Mini-Bucket Importance Sampling
(WMB-IS) [Liu et al., 2015] and IJGP-SampleSearch
(IJGP-SS) [Gogate and Dechter, 2011]. We use original
implementations from the authors and set the common
i-bound parameter to 10. For our algorithms and WMB-
IS, we use the same fixed variable order, while IJGP-SS
computes its own variable order.

The goal of WMB-IS algorithms [Lou et al., 2017a],
[Lou et al., 2017b] is to provide (determinis-
tic/probabilistic) upper/lower bounds of the estimate.
For that, they use a ”mixture wmb-is” proposal yielding
bounded importance weights so that known concentra-
tion theorems can be applied. This does not necessarily
yield optimal convergence. Our focus is to improve the
estimate by aiming to reduce the variance. Our approach

638



(abstraction sampling) should work with any proposal
function. We investigated two proposals, 1) multiplica-
tive one (leading to IS weights that are unbounded),
2) ”mixture wmb-is” proposal. We observed improved
performance with abstraction sampling in both cases, yet
the multiplicative proposal yielded faster convergence in
most cases, and it is therefore the one that we report.

6.2 RESULTS

The questions addressed by the empirical evaluation are:

• Does Abstraction Sampling result in improved con-
vergence and what insight do we gain on the 2
classes of abstractions?

• What is the impact of tree type (OR vs. AND/OR)?

• Performance of AS across benchmarks?

• Comparison of AS with state-of-the-art?

Individual plots. Figure 6 has convergence plots for se-
lected problem instances for both OR and AND/OR, us-
ing the family of randomized context-based abstractions
(RandCB). For each abstraction level we plot the anytime
estimate of the log partition function. The dashed line
represents the ground truth for the log partition function.

In the first row we show OR and AND/OR plots for the
same Grids instance. This is an example where moving
to higher level abstractions leads to faster performance
(AND/OR error is reduced from 22.66 to 2.93). In the
second row (a Promedas instance), the 0-level error is al-
ready small, so higher level abstractions have about the
same performance. In the third row we present two in-
stances, one from DBN and one from Pedigrees and see
that higher level abstractions speed up convergence. In
the Pedigree instance, all abstraction levels show similar
convergence pattern (the error is small).

Aggregate table. Table 1 presents mean errors aggre-
gated over each benchmark for all sampling schemes.
This includes our AS algorithm with both types of trees
(OR and AND/OR), and both families of abstractions
(RelCB and RandCB) and the two competing schemes.
For rows corresponding to our scheme, we present er-
rors for 3 abstraction levels: a0, a1, a2, where a0 is 0-
level abstraction and independent of the abstraction fam-
ily (RelCB or RandCB). a1 and a2 correspond to higher
level abstractions and their definition varies for OR and
AND/OR as described earlier. We show errors at 1 min,
20 min, 60 min. In column three we also show the aver-
age number of nodes per probe for each abstraction level.
For IJGP-SS, we report results only at the 1 hour mark.
An ”inf” in the table means that the respective algorithm

generates a zero estimate for one or more instances in the
benchmark, so the error would be infinity. In parenthe-
ses we show the fraction of instances where competing
scheme outperforms 0-level abstraction in OR trees.

We see that in both small and large Grids instances and
for all configurations (OR/AO, RelCB/RandCB), higher
level abstractions lead to performance improvement over
0-level abstraction. For grids, randomized (RandCB) ab-
straction may lead to more significant improvements than
RelCB, with AND/OR trees performing even better. For
example, after 60 min with OR-RelCB for Grids-small
we improve the average error from 4.94 to 3.39, while
with OR-RandCB we can improve to 1.41, and AO-
RandCB drives down error to 0.84. For both small and
large DBN instances, only RandCB shows improvement
(reducing error from 0.78 to 0.42 for DBN-small, and
from 363.93 to 362.88 for DBN-large). For Pedigree,
the 0-level abstraction is already good, so as expected,
higher level abstractions yield little extra benefit. In large
Promedas instances, RandCB abstraction improved per-
formance in both OR and AND/OR cases, while RelCB
was good in the AND/OR case. For small instances, all
errors are quite small, still some benefits are gained with
the randomized scheme over AND/OR space.

OR vs. AND/OR. AND/OR trees usually lead to im-
proved performance over OR. This is expected since
AND/OR search spaces are smaller. This is particu-
larly evident for Promedas (small and large) and for large
Grids. For example, in Grids-large going from OR-
RandCB to AO-RandCB reduces error from 900.01 to
841.84 after 60 min, for a1 abstraction. For Grids-small
the results are mixed on OR vs AND/OR for benchmarks
where errors are already small in the 0-level scheme.

Comparing with state-of-the-art Importance Sam-
pling. In most benchmarks our 0-level importance sam-
pling baseline is competitive and often outperforms com-
peting sampling algorithms. The point to remember is
that the abstraction scheme can be augmented on top of
any importance sampling scheme.

Discussion. From the analysis of results we gain several
valuable insights. Firstly, RandCB abstraction consis-
tently demonstrates equal and mostly improved perfor-
mance compared to the baseline scheme (0-level), while
RelCB abstraction is not consistently better. We hypoth-
esize that this difference is due to the ability of RandCB
abstractions to generate more uniformly sized abstract
states under the proposal. Secondly, we observe that
in general the AND/OR schemes lead to larger improve-
ments than OR ones. This was not obvious because of
the ”proper” condition. Thirdly, we observe that as ex-
pected larger gains are achieved when the baseline im-
portance sampling results in large errors, yet the perfor-
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Table 1: Mean Error Aggregated Over Benchmark for a Given Scheme, Time and Abstraction Level (a0, a1, a2) . a0 is
0-level abstraction, (a1, a2) are: OR-RelCB:(4, 8), OR-RandCB:(16, 256), AO-RelCB:(1, 2 5), AO-RandCB:(2, 4 5)
. (#inst, n̄, w̄, k̄, ¯|F |, s̄) are number of instances and averages of number of variables, induced width, max domain
size, number of functions, max scope size.

Benchmark Scheme #nodes per probe 1 min 20 min 60 min
#inst, n̄, w̄, k̄, ¯|F |, s̄ a0, a1, a2 a0, a1, a2 a0, a1, a2 a0, a1, a2
DBN-small OR-RelCB 141, 1963, 22687 1.18, 1,93, 2.58 0.88, 1.86, 1.77 0.78, 1.43, 1.65
60, 70, 30, 2, 16950, 2 OR-RandCB 141, 1611, 13449 1.18, 1.04, 0.81 0.88, 0.71, 0.63 0.78, 0.42, 0.54

WMB-IS 9.40 5.69 3.27
IJGP-SS 1.22

Grids-small OR-RelCB 180, 2774, 42184 6.68, 5.19, 5.07 6.06, 4.71, 4.25 4.94, 4.31, 3.39
7, 271, 24, 2, 791, 2 OR-RandCB 180, 2755, 34101 6.68, 5.05, 1.97 6.06, 4.10, 1.55 4.94, 3.83, 1.41

AO-RelCB 224, 13388, 91154 5.46, 3.84, 4.70 5.43, 3.68, 3.74 4.83, 2.97, 3.83
AO-RandCB 224, 9418, 65423 5.46, 1.97, 4.27 5.43, 1.72, 3.36 4.83, 0.84, 2.77

WMB-IS 2.94 1.94 1.21
IJGP-SS 38.81

Pedigree-small OR-RelCB 270, 6115, 271925 0.17, 0.19, 0.26 0.17, 0.17, 0.19 0.17, 0.17, 0.16
22, 917, 26, 5, 917, 4 OR-RandCB 270, 4967, 75980 0.17, 0.20, 0.25 0.17, 0.17, 0.19 0.17, 0.17, 0.19

AO-RelCB 294, 10286025, 337777 0.18, 0.47, 0.21 0.15, 0.36, 0.17 0.16, 0.20, 0.16
AO-RandCB 294, 1171192, 92627 0.18, 0.24, 0.18 0.15, 0.19, 0.16 0.16, 0.18, 0.16

WMB-IS inf (1/22) inf (3/22) 1.06
IJGP-SS 11.10

Promedas-small OR-RelCB 115, 1091, 12801 0.68, 0.77, 1.59 0.33, 0.44, 0.70 0.16, 0.34, 0.47
41, 666, 26, 2, 674, 3 OR-RandCB 115, 2174, 28712 0.69, 0.69, 0.62 0.33, 0.28, 0.38 0.16, 0.15, 0.21

AO-RelCB 110, 825, 5818 0.56, 0.59, 0.66 0.30, 0.34, 0.40 0.15, 0.23, 0.23
AO-RandCB 110, 753, 6162 0.56, 0.32, 0.28 0.30, 0.19, 0.15 0.15, 0.10, 0.10

WMB-IS inf (5/41) 1.77 1.15
IJGP-SS 3.06

DBN-large OR-RelCB 434, 6586, 91881 366.77, 368.29, 369.59 365.32, 366.49, 367.44 363.93, 365.04, 366.20
48, 216, 78, 2, 66116, 2 OR-RandCB 434, 4858, 71545 366.77, 365.56, 365.14 365.32, 364.04, 363.53 363.93, 363.14, 362.88

WMB-IS inf (0/48) inf (0/48) inf (0/48)
IJGP-SS 356.91

Grids-large OR-RelCB 2827, 45112, 719763 966.46, 925.86, 927.60 933.64, 900.71, 909.37 928.35, 889.53, 894.59
19, 3432, 117, 2, 10244, 2 OR-RandCB 2827, 45104, 710675 966.46, 945.98, 918.19 933.64, 912.19, 907.30 928.35, 900.01, 894.15

AO-RelCB 3326, 5485338, 2849697 949.25, 875.81, 910.60 925.85, 863.23, 892.96 918.74, 854.53, 885.18
AO-RandCB 3326, 3896561, 2826722 949.25, 860.66, 885.97 925.85, 845.20, 876.74 918.74, 841.84, 871.05

WMB-IS inf (6/19) inf (6/19) inf (7/19)
IJGP-SS inf (0/19)

Promedas-large OR-RelCB 194, 2092, 25156 inf, inf, inf 30.29, inf, inf 29.54, 30.28, 31.89
88, 962, 48, 2, 974, 3 OR-RandCB 194, 3586, 54901 inf, inf, 30.24 30.29, inf, 29.27 29.54, 29.26, 28.59

AO-RelCB 158, 1561, 10840 inf, 30.45, 30.55 30.00, 29.31, 29.32 29.06, 28.67, 28.44
AO-RandCB 158, 1319, 12082 inf, 29.23, 28.97 30.00, 28.47, 28.06 29.06, 27.89, 27.66

WMB-IS inf (1/88) inf (1/88) inf (2/88)
IJGP-SS 35.50

mance does not deteriorate when the baseline errors are
small, especially with RandCB abstractions. This sug-
gests using abstraction sampling as a robust enhance-
ment to importance sampling schemes, especially in sce-
narios when finding a good proposal is difficult or com-
putationally prohibitive. Fourthly, the results show that
our scheme is competitive with state-of-the art schemes.
Finally, our 0-level scheme outperforms WMB-IS al-
though they both rely on WMB-base proposal, but one
is multiplicative and the other is mixture. are not identi-
cal as we explained.

7 CONCLUSION

The paper presents Abstraction Sampling, a scheme that
augments search with sampling, exploiting the strength
of both. The scheme can be viewed as extending strati-
fied importance sampling to search spaces, allowing the
generation of sub-trees representing multiple configu-
rations, rather than a set of independent samples. We
proved the scheme’s correctness (unbiasedness for both

OR and AND/OR search spaces), analyzed it complexity,
discussed convergence properties and provided an exten-
sive empirical evaluation, showing its potential.

The key question is how to design effective abstraction
families. In particular, can we devise abstractions yield-
ing equal partitions under the given proposal function, as
suggested by theory. Should we aim at domain depen-
dent abstractions? What level of abstraction refinement
is cost-effective? Theory suggests that more refined ab-
stractions are superior. We observed that (higher level)
abstractions get more effective as the proposals gets less
effective. We would like to investigate the interaction
between these two functions. Finally, since AND/OR
search spaces are superior overall, can we overcome the
proper restriction to allow more flexible exploration of
abstraction functions.
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Abstract

Learning from small data sets is critical in
many practical applications where data col-
lection is time consuming or expensive, e.g.,
robotics, animal experiments or drug design.
Meta learning is one way to increase the data
efficiency of learning algorithms by general-
izing learned concepts from a set of training
tasks to unseen, but related, tasks. Often, this
relationship between tasks is hard coded or re-
lies in some other way on human expertise.
In this paper, we frame meta learning as a hi-
erarchical latent variable model and infer the
relationship between tasks automatically from
data. We apply our framework in a model-
based reinforcement learning setting and show
that our meta-learning model effectively gen-
eralizes to novel tasks by identifying how new
tasks relate to prior ones from minimal data.
This results in up to a 60% reduction in the
average interaction time needed to solve tasks
compared to strong baselines.

1 INTRODUCTION

Reinforcement learning (RL) is a principled mathemati-
cal framework for learning optimal controllers from trial
and error [28]. However, RL traditionally suffers from
data inefficiency, i.e., many trials are needed to learn
to solve a specific task. This can be a problem when
learners operate in real-world environments where exper-
iments can be time consuming (e.g., where experiments
cannot run faster than real time) or expensive. For exam-
ple, in a robot learning setting, it is impractical to con-
duct hundreds of thousands of experiments with a single
robot because we will have to wait for a long time and
the wear and tear on the hardware can cause damage.

There are various ways to address data-efficiency in RL.
Model-based RL, where predictive models of the transi-
tion function are learned from data, can be used to reduce
the number of experiments in the real world. The learned
model serves as an emulator of the real world. A chal-
lenge with these learned models is the problem of model
errors: If we learn a policy based on an incorrect model,
the policy is unlikely to succeed on the real task. To miti-
gate the issue of these model errors it is recommended to
use probabilistic models and to take model uncertainty
explicitly into account during planning [27, 10]. This
approach has been applied successfully to simulated and
real-world RL problems [9], where a policy-search ap-
proach was used to learn optimal policy parameters. Ro-
bustness to model errors and, thereby, increased data ef-
ficiency, can be achieved by using model predictive con-
trol (MPC) instead of policy search since MPC allows
for online updates of the model, whereas policy search
would update the model only after a trial [17].

If we are interested in solving a set of related tasks we
can use meta learning as an orthogonal approach to in-
crease data efficiency. Generally, the aim of meta learn-
ing is to train a model on a set of training tasks and
then generalize to new tasks using minimal additional
data [12]. The strength of meta learning is to transfer
learned knowledge to related situations. For example,
we may want to control multiple robot arms with slightly
different specifications (e.g., link weights or lengths) or
different operating environments (e.g., underwater, in
low gravity). Normally, learned controllers deal with a
single task. In a robotics context, solutions for multiple
related tasks are often desired, e.g., for grasping multiple
objects [22] or in robot games, such as robot table ten-
nis [24] or soccer [3]. Much of the literature on meta and
transfer learning in RL has focused on multi-task learn-
ing, i.e., cases where the system/robot is the same, but the
task changes [16, 29, 3, 5, 20, 21, 24, 8, 12]. Although
meta learning given multiple or non-stationary dynamics
has also been considered in [11, 18, 4, 1].
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We adopt a meta learning [26, 32, 12] perspective on the
problem of using knowledge from prior tasks for more
efficient learning of new ones. We take a probabilistic
view and propose to transfer knowledge within a model-
based RL setting using a latent variable model. We focus
on settings where system specifications differ, but where
the task objective is identical. We treat system specifi-
cations as a latent variable, and infer these unobserved
factors and their effects online. To address the issue of
meta learning within the context of data-efficient RL, we
propose to learn predictive dynamics models conditioned
on the latent variable and to learn controllers using these
models. We use Gaussian processes (GPs) [25] to model
the dynamics, and MPC for policy learning. To obtain a
posterior distribution on the latent variable, we use vari-
ational inference. The posterior can be updated online as
we observe more and more data, e.g., during the execu-
tion of a control strategy. Hence, we systematically com-
bine three orthogonal ideas (probabilistic models, MPC,
meta learning) for increased data efficiency in settings
where we need to solve different, but related tasks.

2 MODEL-BASED RL

We consider stochastic systems of the form

xt+1 = f(xt, ct) + ε (1)

with state variables x ∈ RD, control signals c ∈ RK
and i.i.d. system noise ε ∼ N (0,E), where E =
diag(σ2

1 , . . . , σ
2
D). For model-based RL we first aim to

learn the unknown transition function f . In this context,
[27, 10] highlighted that probabilistic models of f are
essential for data-efficient learning as they mitigate the
effect of model errors. Therefore, we learn the dynamics
of the system using a GP.

GP Dynamics A GP is a probabilistic, non-parametric
model and can be interpreted as a distribution over func-
tions. A GP is defined as an infinite collection of random
variables {f1, f2, . . . }, any finite number of which are
jointly Gaussian distributed [25]. A GP is fully specified
by a mean function m and a covariance function (ker-
nel) k, which allows us to encode high-level structural
assumptions on the underlying function such as smooth-
ness or periodicity. We denote an unknown function f
that is modeled by a GP by f ∼ GP (m(·), k(·, ·)). We
use the squared exponential (RBF) covariance function

k(xi,xj)=σ
2
f exp

(
− 1

2 (xi − xj)TL−1(xi − xj)
)

(2)

where σ2
f is the signal variance and L is a diagonal ma-

trix of squared length-scales.

RL with MPC Our objective is to find a sequence of
optimal controls c∗0, . . . , c

∗
H−1 that minimizes the ex-

pected finite-horizon cost

J = E
[∑H

t=1
`(xt)

]
, (3)

where xt is the state of the system at time t and ` is
a known immediate/instantaneous cost function that en-
codes the task objective. We consider an episodic setting.
Initial states x0 are sampled from p(x0) = N (µ0,Σ0).

To find the optimal open-loop sequence c∗0, . . . , c
∗
H−1,

we compute the expected long-term cost J in (3) using
Gaussian approximations p(x1), . . . , p(xH) for a given
control sequence c0, . . . , cH−1. The computation of the
expected long-term cost is detailed in the supplementary
material. Then, we find an open-loop control sequence
that minimizes the expected long-term cost and apply
the first control signal c∗0 to the system, which transi-
tions into the next state. Next we re-plan, i.e., we deter-
mine the next open-loop control sequence c∗0, . . . , c

∗
H−1

from the new state. This iterative MPC approach turns an
open-loop controller into a closed-loop controller. Com-
bining MPC with learned GP models for the underlying
dynamics increases the robustness to model errors and
has shown improved data efficiency in RL [17].

3 MODEL-BASED META RL

We assume a setting with a potentially infinite number
of dynamical systems that are of the same type but with
different specifications (e.g., multiple robotic arms with
links of differing lengths and weight). More formally,
we assume a distribution over dynamical systems with
samples fp ∼ p(f) indexed by p = 1..P . Each sam-
ple fp is a dynamical system of the form (1) with states
x ∈ RD and control signals c ∈ RK . Instead of learning
individual predictive models for each dynamical system
from scratch, we look to meta learning as an approach to
learning new dynamics more data efficiently by leverag-
ing shared structure in the dynamics.

Meta Learning Generally, meta learning aims to learn
new tasks with minimal data and/or computation using
knowledge or inductive biases learned from prior tasks
[12]. Here we require our model to accomplish two
things simultaneously:

1. Multi-Task Learning: Disentangle global and
task-specific properties of the different dynamics
such that it can solve multiple tasks.

2. Transfer Learning: Use global properties to gen-
eralize predictive performance to novel dynamics.
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We propose to address this meta-learning challenge in
a probabilistic way: We model the distribution over sys-
tems using a latent embeddingh and model the dynamics
using a global function conditioned on the latent embed-
ding. Each sample fp from the distribution is modeled
as

xt+1 = f(xt, ct,hp) + ε , (4)

such that the successor state depends on the latent sys-
tem specification hp. This means, we explicitly model
the global properties through a shared function f and the
task-specific variation using a distribution over the latent
variables p(hp). Framing the meta learning problem as
a hierarchical Bayesian model means that meta-training
becomes inference in a meta-learning model.

Training and Evaluation Training corresponds only
to the multi-task learning aspect of our meta learning ap-
proach. We aim to learn the global function f and the
latent embeddings hp given trajectory observations from
a set of training systems. For evaluation at test time, we
use inference to obtain a distribution over a set of latent
variables h∗ for each test system. Since our objective
is to improve data efficiency in an RL setting, we con-
sider two related but distinct measures of performance.
One corresponds to the transfer learning aspect of our
approach, where we infer only the latent test embeddings
without updating the global model f . We refer to this as
the single-shot performance. The other measure we use
is the additional data required to successfully solve a RL
task: few-shot learning. In this case, the global model f
is updated with new additional data, thus combining both
the multi-task and transfer learning aspects.

The meta RL procedures for training and testing are de-
tailed in algorithms 1 and 2, respectively.

3.1 META-LEARNING MODEL

Our meta-learning model is a GP prior on the unknown
transition function in (4) with a concatenated state x̃t =
(xt, ct,hp) ∈ RD+K+Q as the input to the model. We
define yt = xt+1 − xt as the targets of the GP and take
the mean function to be m(x̃t) = 0, which encodes that
a priori the state does not change [9]. Each dimension of
the targets y is modeled by an independent GP. We use a
Gaussian likelihood

p(yt|x̃t,f(·),θ) = N (yt|f(x̃t),E), (5)

where θ = {E,L, σ2
f , Q} are the model hyper-

parameters and f(·) =
(
f1(·), . . . , fD(·)

)
denotes a

multi-dimensional function. We place a standard-normal
prior hp ∼ N (0, I) on the latent variables hp. The full

Initialize dataset D and model M
. Initial random rollouts

forall training tasks do
execute random policy
add observations to D

end
. Meta training

while training tasks not solved do
—update—: train M and infer h given D
forall unsolved training tasks do

for each step in horizon do
—plan—: get control sequence using (3)
—execute—: execute first control in

sequence
end
add observations to D
check if task solved

end
end
Algorithm 1: Model-based Meta RL with MPC (Train)

specification of the model is

p(Y ,H,f(·)|X,C) (6)

=
∏P

p=1
p(hp)

∏Tp

t=1
p(yt|xt, ct, hp,f(·))p(f(·))

where we denote a collection of vectors in bold upper-
case and we have dropped dependence on the hyper-
parameters for notation purposes. The corresponding
graphical model is given in Fig. 1. The figure shows
the dependence of individual system observations on the
global GPs f(·) modeling each dimension of the out-
puts, the system-specific latent embeddings hp and the
observed states and controls.

Model Properties Our meta-learning GP (ML-GP)
model exhibits three important properties:

1. The latent variable encodes a distribution over plau-
sible systems and is inferred from data

2. Conditioning the GP on the latent variable enables
it to disentangle global and task specific variation
in the dynamics. Generalization to new dynamics is
done by inferring the latent variable of that system.

3. The latent variable is fixed within system trajecto-
ries so that inference can be performed online (e.g.
while executing a controller).

Fig. 2 illustrates these properties on a toy example.
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Given dataset D and model M from training
. Single shot performance

forall test tasks do
for each step in horizon do

—plan—: get control sequence using (3)
—execute—: execute first control in sequence
—inference—: infer the value of h∗ given
observations so far

end
add observations to D
check if task solved

end
. Meta test

while test tasks not solved do
—update—: train M and infer h given D
forall unsolved test tasks do

for each step in horizon do
—plan—: get control sequence using (3)
—execute—: execute first control in

sequence
end
add observations to D
check if task solved

end
end
Algorithm 2: Model-based Meta RL with MPC (Test)

3.2 INFERENCE

To learn the dynamics model we seek to optimize the
hyperparameters θ w.r.t. the log-marginal likelihood,
which involves marginalization of the latent variables
in (6). For predictions of the evolution of a system we
also need to infer the posterior GP and the posterior dis-
tribution of the latent variables H = (h1, ...,hP ). We
approach this problem with approximate variational in-
ference. We posit a variational distribution that assumes
independence between the latent functions of the GP and
the latent task variables

Q(f(·),H) = q(f(·))q(H) (7)

and minimize the Kullback-Leibler divergence between
the approximate and true posterior distributions. Equiv-
alently we can maximize the evidence lower bound

L = EQ(f(·),H)

[
log

p(Y ,H,f(·)|X,C)

Q(f(·),H)

]
, (8)

which lower-bounds the log-marginal likelihood [15].
We parameterize our variational distribution such that we
can compute the lower bound in (8). We then jointly op-
timize L with respect to the model hyperparameters and
the variational parameters.

Sparse Gaussian Processes It is important to account
for the fact that training a GP on a joint data set of

yt

∞
f(·)

xt

ut

hp

t = 1, . . . , Tp

p = 1, . . . , P

Figure 1: Graphical model for our ML-GP model.

x

f
(x

)

Train pred.

Test pred.

True f(x)

Train data

Test data

Figure 2: The figure shows six unknown tasks (toy exam-
ples) with a shared structure (the same function) and task
specific variation (fixed offset). The ML-GP model is
able to disentangle the two automatically given the train-
ing data (black discs) as demonstrated by the training
prediction curves. It also infers a reasonable value for
the offset given a single observations from unseen test
tasks (orange discs) and can use the global structure to
generalize predictive performance on those tasks.

P different systems quickly becomes infeasible due to
the O(T 3) computational complexity for training and
O(T 2) for predictions where T is the total number of
observations. To address this we turn to the variational
sparse GP approximation [30] and approximate the pos-
terior GP with a variational distribution q(f(·)) that de-
pends on a small set of M � T inducing points. We in-
troduce a set ofM inducing inputsZ = (z1, . . . ,zM ) ∈
RM×(D+K+Q), which live in the same space as x̃, with
corresponding GP function valuesU = (u1, . . . ,uM ) ∈
RM×D. We follow [14] and specify the variational ap-
proximation as a combination of the conditional GP prior
and a variational distribution over the inducing function
values, independent across output dimensions

q(fd(·)) =
∫
p(fd(·)|ud)q(ud)dud. (9)

where q(ud) = N (ud|md,Sd) is a full rank Gaussian.
The integral in (9) can be computed in closed form since
both terms are Gaussian, resulting in a GP with mean and
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covariance functions given by

mq(·) = kTZ(·)K−1ZZmd (10)

kq(·, ·) = k(·, ·)− kTZ(·)K−1ZZ(KZZ − Sd)K−1ZZkZ(·)
(11)

where [kZ(·)]i = k(·, zi) and [KZZ ]ij = k(zi, zj).
Here, the variational approach has two main benefits:
a) it reduces the complexity of training to O(TM2) and
predictions to O(TM), b) it enables mini-batch training
for further improvement in computational efficiency.

Latent Variables For the latent variables H we as-
sume a Gaussian variational posterior

q(H) =
∏P

p=1
N (hp|np,T p) (12)

where T p is in general a full rank covariance matrix. We
use a diagonal covariance in practice for more efficient
computation of the ELBO (8).

Evidence Lower Bound (ELBO) The ELBO can be
shown to decompose into (see supplementary material)

L =
∑P

p=1

∑T

t=1
Eq(ft|xt,ct)

[
log p(yt|f t)

]

−KL
[
q(H)||p(H)

]
−KL

[
q(U)||p(U)

]
(13)

where the expectation is taken with respect to

q(f t|xt, ct) =
∫
q(f t|xt, ct,hp)q(hp)dhp. (14)

We emphasize that q(f t|xt, ct,hp) =
q(f(x̃t)|xt, ct,hp) is the marginal of the GP eval-
uated at the inputs x̃t. The integral in (14) is intractable
due to the non-linear dependence on hp in (10) and
(11). Given our choice of kernel (RBF) and Gaussian
variational distribution q(hp) the first and second
moments can be computed in closed form. We could use
these terms to compute the log-likelihood term in closed
form since the likelihood is Gaussian but in practice
this can be prohibitively expensive since it requires
the evaluation of a TM2D tensor. Instead we avoid
computing the moments by approximately integrating
out the latent variable using Monte Carlo sampling.

Training For the update steps in algorithms
1 and 2 we jointly optimize the GP hyper-
parameters θ and the variational parameters
φ = {Z,M {md,Sd}Dd=1, {np,T p}Pp=1} w.r.t.
the ELBO. For the inference step in algorithm 2, we
optimize only the variational parameters for the latent
variables h, i.e. φh = {np,T p}Pp=1.

In practice, we use a single sample hp ∼ q(hp) drawn
from the variational distribution for each system. We use
stochastic mini-batch training, sampling a small num-
ber of trajectories and their associated latent variable
at a time. Empirically, we found standardizing the in-
put states and controls (x, c) and outputs (y) crucial
for successful training of the model. For optimization
we used Adam [19] with default hyperparameters: α =
1× 10−2, β1 = 0.9, β2 = 0.999, ε = 10−8.

4 EXPERIMENTS

Our experiments focus on evaluating our proposed model
in terms of predictive performance, the nature of the la-
tent embeddings and data efficiency. We address the fol-
lowing questions: “Does conditioning the GP on the la-
tent variable allow us to disentangle system specific and
global properties of the observations? Does this improve
predictive performance in the transfer learning setting?”
(Section 4.1). “Is the latent system embedding the model
learns a sensible one? (Section 4.2) “Does the appli-
cation of our ML-GP in model-based RL lead to data-
efficient learning across tasks” (Section 4.3).

As a baseline model we use a sparse GP (SGP) [30]
as described in Section 3.2 but without the latent vari-
able that explicitly represents the task. For assessing the
model quality (Section 4.1) we additionally evaluate the
performance of a standard GP with no sparse approxima-
tion. We use the following nonlinear dynamical systems
to perform our experiments:

Cart-pole swing-up The cart-pole system consists of
a cart that moves horizontally on a track with a freely
swinging pendulum attached to it. The state of this non-
linear system is the position x and velocity ẋ of the cart
and the angle θ and angular velocity θ̇ of the pendulum.
The control signals act as a horizontal force on the cart
limited to the range c ∈ [−15, 15]N. The mean of the
initial state distribution is the state where the pendulum
is hanging downward. The task is to learn to swing up
and balance the pendulum in the inverted position in the
middle of the track.

Double-pendulum swing-up The double-pendulum
system is a two-link robotic arm with two motors, one in
the shoulder and one in the elbow. The state of the system
comprises the angles θ1, θ2 and angular velocities θ̇1, θ̇2
of the inner and outer pendulums, respectively. The con-
trol signals are the torques c1,2 ∈ [−4, 4]Nm applied to
the two motors. The mean of p(x0) is the position where
both pendulums are hanging downward. The goal is to
find a control strategy that swings the double pendulum
up and balances it in the inverted position.
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4.1 QUALITY OF MODEL LEARNING

In the first set of experiments, we investigate if the latent
variable of the ML-GP improves prediction performance
on unseen systems compared to the SGP baseline. To
assess the effect of the sparse approximation we also in-
clude a standard GP baseline (no sparse approximation)
in this section. To test the prediction quality, we exe-
cute the same fixed control signals1 on six settings of the
cart-pole task to generate one 100-step (10 s) trajectory
per training task. The specifications of the training tasks
were all combinations (m, l) of m ∈ {0.4, 0.6, 0.8}, l ∈
{0.5, 0.7} where m and l denote the mass and length of
the pendulum, respectively. Thus, the total number of
data points for our six training tasks is T = 600 amount-
ing to 60 s of interaction time.

For evaluation we use the same sequence of control
signals we used for training and compute the one-step
prediction quality in terms of root mean squared error
(RMSE) and negative log likelihood (NLL) on a set of
test tasks. We use 14 held-out test tasks specified as
m ∈ {0.4, 0.6, 0.7, 0.8, 0.9}, l ∈ {0.4, 0.5, 0.6, 0.7},
excluding the (m, l)-combinations of the training tasks.

During evaluation, we observe 10 time steps from an un-
seen trajectory based on which we infer the latent task hp
using variational inference for the ML-GP while leaving
the model hyperparameters and other variational param-
eters fixed. We then predict the next 90 steps using the
ML-GP, SGP and GP models. ML-GP also performs on-
line inference of the latent variable after each step. We
repeat this experiment with 10 different seeds that deter-
mine the initial state, and average the results.

Fig. 3 shows the RMSE and NLL for all 3 models. The
ML-GP clearly outperforms both the SGP and GP base-
lines in terms of both the accuracy of its mean predic-
tions (as evident by the RMSE) as well as capturing the
data better under its predictive distribution as seen by the
NLL. The NLL accounts for both the mean prediction
as well as the uncertainty of the model about the predic-
tion. Both baselines have comparable RMSEs to each
other with enough inducing points but generalize poorly
on new tasks with overconfident predictions. Fig. 4 illus-
trates this behavior.

The baselines fail to generalize since they have no ob-
servations from the system with this configuration. The
ML-GP generalizes from training to new test tasks nat-
urally because it explicitly incorporates the latent vari-
ables encoding the system configuration.

1the control signals were manually chosen as ones that
solved a configuration not included in either the training or test
set.
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Figure 3: Mean and two standard deviation confidence
error-bars of the RMSE and NLL for the ML-GP, SGP
and the standard GP model as a function of the number of
inducing points. The ML-GP significantly outperforms
both baselines.

4.2 LATENT EMBEDDING

In order for our model to perform well in meta learning
settings, the latent variables hp need to reflect a sensi-
ble embedding. By sensible we mean it should take on
a particular structure: a) locally similar values in the la-
tent space should correspond to similar task specifica-
tions and b) moving in latent space should correspond to
coherent transitions in task specifications.

Fig. 5 shows an example of an inferred latent embedding
of both training and test tasks after the training procedure
outlined above. The test-task latent variables are inferred
from 10 observations from the held-out systems.

The different colors of the discs denote the four different
settings of lengths whereas the colors of the dotted lines
connecting the discs denote the five different settings of
mass. The figure plots the mean of each q(hp) with two
standard deviation error bars in each dimension. The em-
bedding displays an intuitive structure where changes in
length or mass are disentangled (denoted by the black ar-
rows) into a length-mass coordinate system with the ex-
pected transitive properties, e.g. the lengths are ordered
as blue (l = 0.4), green (l = 0.5), red (l = 0.6) and
orange (l = 0.7). The uncertainty estimates also exhibit
qualitatively the intuitive property of being less uncertain
about tasks which are similar to (closer to) the training
tasks, e.g. comparing the red and blue tasks in fig. 5.

4.3 DATA-EFFICIENT RL

Our second set of experiments investigates the perfor-
mance of the ML-GP model in terms of data efficiency
in RL settings. Specifically, we look at whether our meta
learning approach is a) at least as efficient at solving a
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Figure 4: One-step predictions of the angular velocity in
cart-pole. The figure shows the true data points (discs)
and the predictive distributions with a two standard de-
viation confidence interval for the ML-GP, SGP and a
standard GP. The ML-GP generalizes well to new tasks;
both the SGP and GP baselines are overly confident.

set of training tasks, b) more efficient at solving subse-
quent test tasks, when compared to a non-meta learning
baseline and c) whether the ML-GP model improves per-
formance when compared to the SGP model trained with
the meta learning approach.

We first learn a model of the dynamics (4), which we then
use to learn a policy to control the system. For policy
learning we use MPC, minimizing the cost in (3) with a
moving horizon to learn an optimal sequence of control
signals. We assume we have a set of training systems
and evaluate the performance of the models using some
held-out test systems with novel configurations (tasks).

We run experiments on both the cart-pole swing-up task
and the double-pendulum swing-up task. In both scenar-
ios, we use a sampling frequency of 10Hz, episodes of
30 steps (3 s) and a planning horizon of 10 steps. For the
cart-pole swing-up, solving the task means the pendulum
is balanced closer than 8 cm from the goal position for at
least the last 10 steps. For the double-pendulum swing-
up, it means the outer pendulum is balanced closer than
22 cm for at least the last 10 steps.

At meta-training or test-time, a pass through the training-
/test-set means executing the MPC policy learning algo-
rithm on each of the unsolved task in that set. Each ex-
ecution constitutes a trial for that task. The sets are tra-
versed until all the tasks are solved or all unsolved tasks
have executed 15 trials. The training and test procedures
are detailed in algorithms 1 and 2 in section 3. All results
are averaged over 20 independent random initializations.

Length

Mass

l = 0.4

l = 0.5

l = 0.6

l = 0.7

m = 0.4

m = 0.6

m = 0.7

m = 0.8

m = 0.9

Figure 5: Latent space embedding of cart-pole configu-
rations/tasks. The figure shows the mean (discs) of the
inferred latent variables and two standard deviation error
bars. Filled discs are training tasks and empty discs are
held out test tasks. The colors of the discs represent the
length and the colors of the dotted lines between discs
represent the mass.

Note that we execute on all (unsolved) tasks before re-
training the dynamics model as detailed in section 3.
This means that the model is updated with 3 s worth of
experience for every task in that pass at a time. On the
other hand, the model does not take advantage of addi-
tional prior experience until it has completed a pass.

For comparison with the ML-GP model, we use the SGP
model trained in two different ways. To establish a
lower-bound baseline, we run the model-based RL ap-
proach where we train a separate model for each task on
both the training and test sets. After each training task
we additionally attempt to solve each of the test tasks
to evaluate single-shot performance where we report the
mean across the training tasks as the single shot success
rate. We refer to this baseline as SGP-I which is a sparse
variant of the approach in [17] that achieves state-of-the-
art in data efficiency. Secondly, we train a single SGP
model on all the training tasks simultaneously using the
same training approach as we do for ML-GP. We refer
to this baseline as SGP-ML.

Cart-pole swing-up We train the models on six
specifications of the cart-pole dynamics, with m ∈
{0.4, 0.6, 0.8}, l ∈ {0.6, 0.8} and evaluate its per-
formance on a set of four test tasks chosen as m ∈
{0.7, 0.9}, l = {0.5, 0.7}. We choose these settings to
examine the performance on both interpolation and ex-
trapolation for differing lengths and masses. We choose
the squared distance between the tip of the pendulum
and goal position (with the pendulum balanced straight
in the middle of the track) as the cost. Fig. 6 shows the
mean success rate (over initializations and the four test
tasks) of ML-GP, SGP-I and SGP-ML against the num-
ber of trials executed on the systems. We observe that
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Figure 6: Mean success rate over initializations and the
four test tasks for the cart-pole system after training
on six tasks. The graph compares ML-GP with SGP-
I (trained independently) and SGP-ML (trained on all
tasks).

both the ML-GP model and the SGP-ML display gen-
eralization to new tasks as evident by the success rate
in the first trial (see also Table 1). However, whereas
the ML-GP quickly improves with more observations in
subsequent trials, the SGP-ML model struggles to solve
the remaining tasks. We attribute this failure to the in-
ability of the SGP-ML model to explain variation in the
dynamics caused by differences in system specifications.

When comparing with independent training of each sys-
tem we see that the ML-GP compares favorably, reach-
ing 80% success rate after only three trials and 90% af-
ter six trials compared to the SGP-I, which reaches 80%
after 7 trials and 90% after 8 trials. We further ana-
lyze performance of ML-GP to identify the tasks that
were additionally solved between trials 3 and 6. We find
that this is due to a consistently challenging system with
m = 0.9, l = 0.5, which requires the learner to extrap-
olate beyond the range of values seen during training.
The mean number of trials required to solve this task is
4.3 ± 0.6, compared to the task mean of 2.7 ± 0.2 tri-
als. Table 1 shows the mean total time required to solve

Table 1: Mean time spent solving the cart-pole system
and the single-shot success rate.

MODEL TRAIN (s) TEST (s) SINGLE SHOT
SGP-I 16.1 ± 0.4 17.5 ± 0.4 0.08 ± 0.01
SGP-ML 23.7 ± 1.4 20.8 ± 1.2 0.38 ± 0.04
ML-GP 15.1 ± 0.5 8.1 ± 0.6 0.35 ± 0.05

the training and test tasks. On average, ML-GP needs
less than half the amount of time to solve the test tasks
compared to individually training on the tasks (SGP-I).
We also see an improvement in the total training time,
which suggests that ML-GP derives some transfer ben-
efit during training despite training on the systems on a
concurrent trial basis, i.e. we do not update the model

until all systems have executed a given trial. Compared
to the SGP-ML, the ML-GP model can maintain an accu-
rate model while learning multiple systems and quickly
adapts to new dynamics, whereas the performance of
SGP-ML stagnates as reflected in the interaction time on
both the training and test systems.

Double-pendulum swing-up We repeat the same ex-
perimental set-up on the double-pendulum task. We
trained on six systems with m1 ∈ {0.5, 0.7}, l1 ∈
{0.4, 0.5, 0.7} and evaluate on a set of four test tasks
chosen as m1 ∈ {0.6, 0.8}, l1 = {0.6, 0.8}, where
m1, l1 are the mass and length of the inner pendulum.
The cost is the squared distance between the tip of the
outer pendulum and the goal position (with both pendu-
lums standing straight up). Fig. 7 plots the mean success
rate against the number of trials executed on the system.
Comparing the ML-GP model to the SGP-ML we ob-
serve comparable single-shot performance and a qualita-
tively similar learning curve for the test tasks. However,
the ML-GP reaches 90% success rate about four trials
before the SGP-ML, around trial nine, i.e. meta learn-
ing achieves a significantly higher data efficiency. Com-
pared to independent training of the tasks using SGP-I,
the ML-GP leads to significantly less (new) training data
needed to solve the tasks. Table 2 reports the mean total
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Figure 7: Mean success rate over initializations and the
four test tasks for the double pendulum after training on
six tasks. The graph compares the ML-GP against the
SGP-I (trained independently on each task) and the SGP-
ML (trained using the meta learning procedure).

time required to solve the tasks. Compared to the SGP-
ML, the performance of the two is similar, although ar-
guably the ML-GP compares favorably in terms of aver-
age time needed to solve the test tasks. Compared to the
SGP-I, we see improvement during training as well as at
test time. The average time needed for ML-GP to solve
the test environments is reduced to around 40% to that of
the SGP-I.
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Table 2: Mean time spent solving the double-pendulum
system and the single-shot success rate.

MODEL TRAIN (s) TEST (s) SINGLE SHOT
SGP-I 18.9 ± 0.7 25.9 ± 1.5 0.07 ± 0.01
SGP-ML 17.9 ± 1.3 13.7 ± 2.2 0.36 ± 0.06
ML-GP 16.6 ± 1.1 10.2 ± 1.6 0.43 ± 0.06

5 RELATED WORK

Meta learning has long been proposed as a form of learn-
ing that would allow systems to systematically build up
and re-use knowledge across different but related tasks
[26, 32]. MAML is a recent promising model free meta
learning approach that learns a set of model parameters
that are used to rapidly learn novel tasks [12]. Another
interpretation of MAML is formulated in [13], which
shares our hierarchical Bayesian formulation of the meta
learning problem. However, the model-free setting in
which MAML has been applied so far typically require
orders of magnitude more training data than the model-
based approaches we build up on in the present work.

Our ML-GP model resembles the GP latent variable
model (GPLVM), which is typically used in unsuper-
vised settings [23]. In the GPLVM, the GP is used
to map a low-dimensional latent embedding to higher-
dimensional observations. A Bayesian extension (BG-
PLVM) was introduced in [31] where inference over the
latent variable is performed using variational inference.
To enable minibatch training, and unlike BGPLVM, we
take the approach of [14] and do not marginalize out the
inducing variables. The main difference of our model
and the GPLVM is that we learn a mapping from both
observed and latent inputs to observations.

The combination of observed and latent inputs was in-
vestigated in [33] where the authors use Metropolis
sampling for inference which does not scale to larger
datasets. A similar setup is found in [7] where the model
is used for partially observed input data. The work also
proposes uses in autoregressive settings similar to ours.
Different from us, the distribution over inducing vari-
ables is analytically optimized, making minibatch train-
ing infeasible.

A related and complimentary line of research are multi-
output GPs (MOGPs) [2]. Recently, [6] proposed a la-
tent variable extension to MOGPs (LVMOGP) which is
similar to our ML-GP, particularly in their missing data
formulation of the model. The crucial difference from
our work is that we augment the input space by concate-
nating the latent variable to the input space while the LV-
MOGP uses the Kronecker product of two separate ker-
nels applied on the latent and input spaces respectively.

Notably, the two models are equivalent for kernels that
naturally decompose as a Kronecker product (e.g. the
RBF) but depart from there.

A similar framework to ours is found in [11], called hid-
den parameter Markov decision processes (HiP-MDP),
which parametrizes a family of related dynamics through
a low dimensional latent embedding. The HiP-MDP as-
sumes a fixed latent variable within trajectories. Differ-
ent from us, the authors use an infinite mixture of GP
basis functions where the task specific variation is ob-
tained through the weights of the basis functions [11].
This work was extended in [18], replacing the GP basis
functions with a Bayesian neural network. This enables
non-linear interactions between the latent and addresses
scalability. In this work, the interactions between latent
and state variables are obtained through the non-linear
RBF kernel, and the scalability is addressed through the
variational sparse approach.

In [8], an RL setting is considered that is closely related
to our meta-learning set-up. The authors use a parametric
policy that depends on a known deterministic task vari-
able and augment the policy function to include it as well.
In [8], the authors consider the same dynamical system
but solve different tasks by augmenting the policy with a
task variable. In our work, we look at different settings
of the dynamics but the task remains the same. We show
how to generalize to the setting where task variables are
latent and inferred from interaction data. This dramati-
cally extends applicability in real-world settings.

6 CONCLUSION

We proposed a meta learning approach within the context
of model-based RL that allows us to transfer knowledge
from training configurations of robotic systems to unseen
test configurations. The key idea behind our approach
is to address the meta learning problem probabilistically
using a latent variable model. We use online variational
inference to obtain a posterior distribution over the latent
variable, which describes the relatedness of tasks. This
posterior is then used for long-term predictions of the
state evolution and controller learning within a model-
based RL setting. We demonstrated that our ML-GP
approach is as efficient or better than a non-meta learn-
ing baseline when solving multiple tasks at once. The
ML-GP further generalizes well to learning models and
controllers for unseen tasks giving rise to substantial im-
provements in data-efficiency on novel tasks.
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[24] K. Mülling, J. Kober, O. Kroemer, and J. Peters.
Learning to select and generalize striking move-
ments in robot table tennis. International Journal
of Robotics Research (IJRR), 2013.

[25] C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. The MIT Press,
2006.

[26] T. Schaul and J. Schmidhuber. Metalearning.
Scholarpedia, 5(6):4650, 2010.

[27] J. G. Schneider. Exploiting model uncertainty esti-
mates for safe dynamic control learning. In Neural
Information Processing Systems (NIPS). 1997.

[28] R. S. Sutton and A. G. Barto. Reinforcement Learn-
ing: An Introduction. The MIT Press, 1998.

[29] M. Taylor and P. Stone. Cross-domain transfer for
reinforcement learning. In International Confer-
ence on Machine Learning (ICML), 2007.

[30] M. Titsias. Variational learning of inducing vari-
ables in sparse Gaussian processes. In International
Conference on Artificial Intelligence and Statistics
(AISTATS), 2009.

[31] M. Titsias and N. D. Lawrence. Bayesian Gaus-
sian process latent variable model. In International
Conference on Artificial Intelligence and Statistics
(AISTATS), 2010.

[32] R. Vilalta and Y. Drissi. A perspective view and
survey of meta-learning. Artificial Intelligence Re-
view (AI Review), 18(2):77–95, 2002.

[33] C. Wang and R. M. Neal. Gaussian Process Regres-
sion with Heteroscedastic or Non-Gaussian Resid-
uals. ArXiv e-prints, Dec. 2012.

652



Non-Parametric Path Analysis in Structural Causal Models

Junzhe Zhang and Elias Bareinboim
Purdue University, USA

{zhang745, eb}@purdue.edu

Abstract

One of the fundamental tasks in causal infer-
ence is to decompose the observed association
between a decision X and an outcome Y into
its most basic structural mechanisms. In this
paper, we introduce counterfactual measures
for effects along with a specific mechanism,
represented as a path from X to Y in an ar-
bitrary structural causal model. We derive a
novel non-parametric decomposition formula
that expresses the covariance of X and Y as
a sum over unblocked paths from X to Y con-
tained in an arbitrary causal model. This for-
mula allows a fine-grained path analysis with-
out requiring a commitment to any particular
parametric form, and can be seen as a gen-
eralization of Wright’s decomposition method
in linear systems (1923,1932) and Pearl’s non-
parametric mediation formula (2001).

1 INTRODUCTION

Analyzing the relative strength of different pathways be-
tween a decision X and an outcome Y is a topic that
has interested both scientists and practitioners across dis-
ciplines for many decades. Specifically, path analysis
allows scientists to explain how Nature’s “black-box”
works, and practically, it enables decision analysts to
predict how an environment will change under a variety
of policies and interventional conditions [Wright, 1923;
Baron and Kenny, 1986; Bollen, 1989; Pearl, 2001].

More recently, understanding using causal inference
tools how a black-box decision-making system operates
has been a target of growing interest in the Artificial In-
telligence community, most prominently in the context
of Explainability, Transparency, and Fairness [Lu Zhang,
2017; Kusner et al., 2017; Zafar et al., 2017; Kilbertus
et al., 2017; Zhang and Bareinboim, 2018a]. For exam-

ple, consider the standard fairness model described in
Fig. 1(a) that is concerned with the relation between a
hiring decision (Y ) and an applicant’s religious beliefs
(X), which are mediated by the location (W ), and con-
founded by the education background (Z) of the appli-
cant. 1 Directed edges represent functional relations
between variables. The relationship between X and Y
is materialized through four different pathways in the
system – the direct path l1 : X → Y , the indirect
path l2 : X → W → Y , and the spurious paths
l3 : X ← Z → Y and l4 : X ← Z →W → Y .

Assuming, for simplicity’s sake, that the functional re-
lationships are linear and UVi is an independent “er-
ror” associated with each variable Vi (called the linear-
standard model), Fig. 1(a) shows the structural coeffi-
cients corresponding to each edge – i.e., the value of the
variable Y is decided by the structural function Y ←
αYXX+αYZZ+αYWW+UY. The celebrated result known
as Wright’s method of path coefficients [Wright, 1923,
1934], also known as Wright’s rule, allows one to ex-
press the covariance ofX and Y , denoted by Cov(X,Y ),
as the sum of the products of the structural coefficients
along the paths from X to Y in the underlying causal
model. 2 In particular, Cov(X,Y ) is equal to:

αYX︸︷︷︸
X→Y

+ αWXαYW︸ ︷︷ ︸
X→W→Y

+ αXZαYZ︸ ︷︷ ︸
X←Z→Y

+ αXZαWZαYW︸ ︷︷ ︸
X←Z→W→Y

. (1)

Using the observational covariance matrix, the decom-
position above allows one to answer some compelling
questions about the relationship between X and Y in the
underlying model. For instance, the product αWXαYW ex-
plains how much the indirect discrimination through the
location (the path l2) accounts for the observed dispari-
ties in the religion composition among hired employees.

The path analysis method gained momentum in the so-
1This specific setting has been called standard fairness

model given its generality to representing a variety of decision-
making scenarios [Zhang and Bareinboim, 2018a].

2For a survey on linear methods, see [Pearl, 2000, Ch. 5].
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cial sciences during 1960’s, becoming extremely popular
in the form of the mediation formula in which the total
effect of X on Y is decomposed into direct and indi-
rect components [Baron and Kenny, 1986; Bollen, 1989;
Duncan, 1975; Fox, 1980]. 3 The bulk of this literature,
however, required a commitment to a particular paramet-
ric form, thus falling short of providing a general method
for analyzing natural and social phenomena with nonlin-
earities and interactions [MacKinnon, 2008].

It took a few decades until this problem could be tack-
led in higher generality. In particular, the advent of non-
parametric structural causal models (SCMs) allowed this
leap, and a more fine-grained path-analysis with a much
broader scope, including models with nonlinearities and
arbitrarily complex interactions [Pearl, 2000, Ch. 7]. In
particular, Pearl introduced the causal mediation formula
for arbitrary non-parametric models, which decomposes
the total effect TEx0,x1

(Y ) = E[Yx1
]−E[Yx0

], the differ-
ence between the causal effect of the intervention do(x1)
and do(x0) 4, into what is now known as the natural di-
rect (NDE) and indirect (NIE) effects [Pearl, 2001] (see
also [Imai et al., 2010, 2011; VanderWeele, 2015]). In
the case of the specific linear-standard causal model,

TE0,1(Y ) = αYX︸︷︷︸
NDE

+αWXαYW︸ ︷︷ ︸
NIE

for x0 = 0 and x1 = 1 levels. Remarkably, when
compared with Eq. 1, NDE and NIE capture the effects
along with the direct and indirect paths, but omits the
spurious (non-causal) paths between X and Y (in this
case, l3, l4). The mediation formula was recently gen-
eralized to account for these spurious paths (more akin
to Wright’s rules), which appears under the rubric of
the causal explanation formula [Zhang and Bareinboim,
2018a]. This formula decomposes the total variation
TVx0,x1(Y ) = E[Y |x1]− E[Y |x0] (difference in condi-
tional distributions) into counterfactual measures of the
direct (Ctf-DE), indirect (Ctf-IE), and spurious (Ctf-SE)
effects. In the linear-standard model, for x0 = 0, x1 = 1,

TV0,1(Y ) = αYX︸︷︷︸
Ctf-DE

+αWXαYW︸ ︷︷ ︸
Ctf-IE

+αXZαYZ + αXZαWZαYW︸ ︷︷ ︸
Ctf-SE

Despite the generality of such results, there are still out-
standing challenges when performing path analysis in
non-parametric models, i.e.: (1) Estimands are defined
relative to specific values assigned to the treatment x1

and its baseline x0, which may be difficult to select in
some non-linear settings; (2) Mediators and confounders

3Just to give an idea of this popularity, Baron and Kenny’s
original paper counts more than 70,000 citations.

4By convention [Pearl, 2000], the post-interventional
distribution is represented interchangeably by P (yx) and
P (y|do(x)). General notation is discussed in the next section.

(a)

Z

W

X Y
αWX

αYZαXZ

αYW

αWZ

αYX

(b)

W1

W2

X Y

Figure 1: Causal diagrams for (a) the standard fairness
model where X stands for the protected attribute, Y for
the outcome, W the mediators, and Z the confounders;
(b) the two-mediators setting where causal paths from X
to Y are mediated by W1,W2.

are collapsed and considered en bloc, leading to a coarse
decomposition of the relationship between X and Y
[Pearl, 2001; Vansteelandt and VanderWeele, 2012; Tch-
etgen and Shpitser, 2012; VanderWeele et al., 2014;
Daniel et al., 2015; Zhang and Bareinboim, 2018a]; (3)
Path-specific estimands are well-defined [Pearl, 2001;
Avin et al., 2005], but not in a way that they sum up to
either the total effect (TE) or variation (TV), precluding
the comparison of their relative strengths.

This paper aims to circumvent these problems. In partic-
ular, we decompose the covariance of a treatment X and
an outcome Y over effects along different mechanisms
between X and Y . We define a set of novel counter-
factual estimands for measuring the relative strength of a
specific mechanism represented as a path fromX to Y in
an arbitrary causal model. These estimands lead to a non-
parametric decomposition formula, which expresses the
covariance Cov(X,Y ) as a sum of the unblocked paths
from X to Y in the causal graph. This formula allows
a more fine-grained analysis of the total observed vari-
ations of Y due to X (both through causal and spurious
mechanisms) when compared to the state-of-art methods.
More specifically, our contributions are: (1) counterfac-
tual covariance measures for a specific pathway from X
to Y (causal and spurious) in an arbitrary causal model
(Defs. 8, 11-12); (2) non-parametric decomposition for-
mulae of the covariance Cov(X,Y ) over paths from X
to Y in the causal model (Thm. 5); (3) the identification
formulae estimating the proposed path-specific decom-
position from the passively-collected data in the standard
model (Thms. 6-7).

2 PRELIMINARIES

In this section, we introduce notations used throughout
the paper. We will use capital letters to denote variables
(e.g., X), and small letters for their values (x). The ab-
breviation P (x) represents the probabilities P (X = x).
For arbitrary sets A and B, let A−B denote their differ-
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ence, and let |A| be the dimension of set A. V[i,j] stands
for a set {Vi, . . . , Vj} (∅ if i > j). We use graphical
family abbreviations: An(X)G, De(X)G, Non-De(X)G,
Pa(X)G, Ch(X)G, which stand for the set of ancestors,
descendants, non-descendants, parents and children ofX
in G. We omit the subscript G when obvious.

The basic semantical framework of our analysis rests
on structural causal models (SCM) [Pearl, 2000, Ch. 7;
Bareinboim and Pearl, 2016]. A SCMM consists of a set
of endogenous variables V (often observed) and exoge-
nous variables U (often unobserved). The values of each
Vi ∈ V are determined by a structural function fi taking
as argument a combination of the other endogenous and
exogenous variables (i.e., Vi ← fi(PAi, Ui), PAi ⊆
V,Ui ⊆ U)). Values of U are drawn from a distribu-
tion P (u). A SCM M is called Markovian when the
exogenous are mutually independent and each Ui ∈ U is
associated with only one endogenous Vi ∈ V . If Ui is
associated with two or more endogenous variables, M is
called semi-Markovian.

Each recursive SCMM has an associated causal diagram
in the form of a directed acyclic graph (DAG) G, where
nodes represent endogenous variables and directed edges
represent functional relations (e.g., Figs. 1-2). By con-
vention, the exogenous U are not explicitly shown in the
graph; a dashed-bidirected arrow between Vi and Vj indi-
cates the presence of an unobserved confounder (UC) Uk
affecting both Vi and Vj (e.g., the path Vi ← Uk → Vj).

A path from X to Y is a sequence of edges which does
not include a particular node more than once. It may go
either along or against the direction of the edges. Paths
of the form X → · · · → Y are causal (from X to Y ).
We use d-separation and blocking interchangeably, fol-
lowing the convention in [Pearl, 2000]. Any unblocked
path that is not causal is called spurious. The direct link
X → Y is the direct path and all the other causal paths
from X to Y are called indirect. The set of unblocked
paths from X to Y given a set Z in a causal diagram G
is denoted by Π(X,Y |Z)G; causal, indirect, and spuri-
ous paths are denoted by Πc(X,Y |Z)G, Πi(X,Y |Z)G,
and Πs(X,Y |Z)G (G will be omitted when obvious).
For a causal path g including nodes V1, V2, we denote
g(V1, V2) a subpath of g from V1 to V2.5

An intervention on a set of endogenous variables X and
exogenous variables Ui, denoted by do(x∗, u∗i ), is an op-
eration where values of X,Ui are set to x∗, u∗i , respec-
tively, without regard to how they were ordinarily deter-
mined (X through fX and Ui through P (Ui)). Formally,
we can rewrite the definition of potential response [Pearl,
2000, Ch. 7.1] to account for operation on Ui, namely:

5Mediators (relative toX and Y ) are a set of variablesW ⊆
De(X) ∩ Non-De(Y ) such that |Πi(X,Y |W )| = 0.

Definition 1 (Potential Response). Let M be a SCM,
X,Y sets of arbitrary variables in V , and Ui a set of ar-
bitrary variables in U . Let U−i = U − Ui. The potential
response of Y to the intervention do(x∗, u∗i ) in the situ-
ation U = u, denoted by Yx∗,u∗i (u), is the solution for
Y with U−i = u−i, Ui = u∗i in the modified submodel
Mx∗ where functions fX are replaced by constant func-
tions X = x∗ , i.e., Yx∗,u∗i (u) , YMx∗ (u∗i , u−i).6

Yx∗,u∗i (u) can be read as the counterfactual sentence “the
value that Y would have obtained in situation U−i =
u−i, had the treatment X been x∗ and the situation Ui
been u∗i .” Averaging u over the distribution P (u), we
obtain a counterfactual random variable Yx∗,u∗i . If the
values of x∗, u∗i follow random variablesX∗, U∗i , we de-
note the resulting counterfactual YX∗,U∗i .

3 A COARSE COVARIANCE
DECOMPOSITION

In this section, we introduce counterfactual measures that
will allow us to non-parametrically decompose the co-
variance Cov(X,Y ) in terms of direct, indirect and spu-
rious pathways fromX to Y . Given space constraints, all
proofs are included in [Zhang and Bareinboim, 2018b].

If there exists no spurious path from X to Y , then treat-
ment X is independent of the counterfactual Yx∗ , i.e.,
(X ⊥⊥ Yx∗) [Pearl, 2000, Ch. 11.3.2]. The spurious co-
variance can then be defined as the correlation between
the factual variable X and counterfactual Yx∗ .

Definition 2 (Spurious Covariance). The spurious co-
variance between treatment X = x∗ and outcome Y is:

Covsx∗(X,Y ) = Cov(X,Yx∗). (2)

Property 1. |Πs(X,Y )| = 0⇒ Covsx∗(X,Y ) = 0.

The causal covariance can naturally be defined as the
difference between the total and spurious covariance.

Definition 3 (Causal Covariance). The causal covariance
of the treatment X = x∗ and the outcome Y is:

Covcx∗(X,Y ) = Cov(X,Y − Yx∗). (3)

Prop. 2 establishes the correspondence between the
causal paths and the causal covariance – if there is no
causal path from X to Y in the underlying model, the
causal covariance equates to zero.

Property 2. |Πc(X,Y )| = 0⇒ Covcx∗(X,Y ) = 0.

We consider more detailed measures corresponding to
the different causal pathways, and first, the direct path:

6An alternative way to see that the replacement operation
relative to Ui is to envision a system where Ui is observed.
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Definition 4 (Direct Covariance). Given a semi-
Markovian model M , let the set W be the mediators
between X and Y . The pure (Covdpx∗(X,Y )) and to-
tal (Covdtx∗(X,Y )) direct covariance of the treatment
X = x∗ on the outcome Y are defined respectively as

Covdpx∗(X,Y ) = Cov(X,Y − Yx∗,W ), (4)

Covdtx∗(X,Y ) = Cov(X,YWx∗ − Yx∗). (5)

By the composition axiom [Pearl, 2000, Ch. 7.3], Eqs. 4
and 5 can be explicitly written as follows 7:

Cov(X,Y − Yx∗,W ) = Cov(X,YX,W − Yx∗,W ),

Cov(X,YWx∗ − Yx∗) = Cov(X,YX,Wx∗ − Yx∗,Wx∗ ).

The counterfactual pure direct covariance (Eq. 4) is
shown graphically in Fig. 2, where (a) corresponds to
the Y -side, and (b) to the Yx∗,W -side. Note that from
the mediator W perspective, X remains at the level that
it would naturally have attained, while the “direct” in-
put from X to Y varies from its natural level (Fig. 2a)
to do(x∗) (b). The change of the outcome Y thus mea-
sures the effect of the direct path. A similar analysis also
applies to the total direct covariance (Eq. 5).

Property 3. Covdpx∗(X,Y ) = Covdtx∗(X,Y ) = 0 if X is
not a parent of Y (i.e., X 6∈ Pa(Y )).

We can turn around the definitions of direct covariance
and provide operational estimands for indirect paths.

Definition 5 (Indirect Covariance). Given a semi-
Markovian model M , let the set W be the mediators
between X and Y . The pure (Covipx∗(X,Y )) and to-
tal (Covitx∗(X,Y )) indirect covariance of the treatment
X = x∗ on the outcome Y are defined respectively as:

Covipx∗(X,Y ) = Cov(X,Y − YWx∗ ), (6)

Covitx∗(X,Y ) = Cov(X,Yx∗,W − Yx∗). (7)

Eqs. 6 and 7 correspond to the indirect paths, since they
capture the covariance of X and Y , but only via paths
mediated by W . The first argument of Y is the same in
both halves of the contrast, but this value can either be
x∗ (Eq. 7) or at the level that X would naturally attain
without intervention (Eq. 6).

Property 4. |Πi(X,Y )| = 0 ⇒ Covipx∗(X,Y ) =
Covitx∗(X,Y ) = 0.

Putting these definitions together, we can prove a general
non-parametric decomposition of Cov(X,Y ):

7Consider Eq. 4 as an example. For any U = u,
YX(u),W (u)(u) = Yx∗,w(u) if X(u) = x∗,W (u) = w.
By the composition axiom, X(u) = x∗,W (u) = w im-
plies Y (u) = Yx∗,w(u), which in turn gives YX(u),W (u)(u) =
Y (u). Averaging u over P (u), we obtain YX,W = Y .

(a) Y

W

X Y
−

(b) Yx∗,W

W

X x∗ Y

Figure 2: The graphical representation of measuring the
pure direct covariance Covdpx∗(X,Y ).

Theorem 1. Cov(X,Y ), Covsx∗(X,Y ) and
Covcx∗(X,Y ) obey the following non-parametric
relationship:

Cov(X,Y ) = Covcx∗(X,Y ) + Covsx∗(X,Y ), (8)

where Covcx∗(X,Y ) = Covdpx∗(X,Y )+Covitx∗(X,Y ) =
Covdtx∗(X,Y ) + Covipx∗(X,Y ).

In other words, the covariance between X and Y can
be partitioned into its corresponding direct, indirect, and
spurious components. In particular, Thm. 1 coincides
with Eq. 1 in the linear-standard model.

Corollary 1. In the linear-standard model, for
any x∗, Covsx∗(X,Y ), Covdpx∗(X,Y ), Covdtx∗(X,Y ),
Covipx∗(X,Y ) and Covitx∗(X,Y ) are equal to:

Covsx∗(X,Y ) = αXZαYZ + αXZαWZαYW,

Covdpx∗(X,Y ) = Covdtx∗(X,Y ) = αYX,

Covipx∗(X,Y ) = Covitx∗(X,Y ) = αWXαYW.

Corol. 1 says that the proposed decomposition (Thm. 1)
does not depend on the value of do(x∗) in the linear
model of Fig. 1(a), which is not achievable in previous
value-specific decompositions [Pearl, 2001; Zhang and
Bareinboim, 2018a].8

4 DECOMPOSING CAUSAL
RELATIONS

We now focus on the challenge of decomposing the
causal covariance into more elementary components. We
use the two-mediators setting (Fig. 1(b)) as example,
where X and Y are connected through four causal paths:
through bothW1,W2 (g1 : X →W1 →W2 → Y ), only
through W1 (g2 : X → W1 → Y ), only through W2

(g3 : X → W2 → Y ), and directly (g4 : X → Y ). Our
goal is to decompose the Covcx∗(X,Y ) over the paths
g[1,4]. Our analysis applies to semi-Markovian models,
without loss of generality, and the Markovian example
(Fig. 1(b)) is used for simplicity of the exposition.

8For the nonlinear models, the decomposing terms (e.g.,
Covsx∗(X,Y )) are still sensitive to the target level do(x∗). To
circumvent the challenges of picking a specific decision value,
one could assign a randomized treatment do(x∗ ∼ P (X)),
where P (X) is the distribution over the treatment X induced
by the underlying causal model.
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For a node Si ∈ Pa(Y ) and a set of causal paths π, the
edge Si → Y defines a funnel operator CSi→Y , which
maps from π to the set of paths CSi→Y (π) obtained from
π by replacing all paths of the formX → · · · → Si → Y
with X → · · · → Si, and removing all the other paths.
As an example, for π = {g1, g2, g3}, CW2→Y (π) =
{g1(X,W2), g3(X,W2)}, where g1(X,W2) is the sub-
path X → W1 → W2 and g3(X,W2) is the subpath
X → W2. We next formalize the notion of path-specific
interventions, which isolates the influence of the inter-
vention do(x∗) passing through a subset π of causal
paths from X , denoted by do(π[x∗]) (a similar notion
has been introduced by [Pearl, 2001], and then [Avin et
al., 2005; Shpitser and Tchetgen, 2016]).
Definition 6 (Path-Specific Potential Response). For a
SCM M and an arbitrary variable Y ∈ V , let π be a set
of causal paths. Let X be the source variables of paths
in π. Further, let Xπ→Y = {Xi : ∀Xi ∈ X,Xi → Y ∈
π} and S = (Pa(Y )G ∩ V ) − Xπ→Y . The π-specific
potential response of Y to the intervention do(π[x∗]) in
the situation U = u, denoted by Yπ[x∗](u), is defined as:

Yπ[x∗](u) =

{
Yx∗π→Y ,SCS→Y (π)[x∗](u) if π 6= ∅
Y (u) otherwise

where SCS→Y (π)[x∗](u) is a set of π-specific potential
response {SiCSi→Y (π)[x∗](u) : Si ∈ S}.9
Despite the non-trivial notation, the π-specific counter-
factual Yπ[x∗] is simply assigning the treatment do(x∗)
exclusively to the causal paths in π, while allowing all
the other causal paths to behave naturally. This con-
trasts with the counterfactual Yx∗ , which can be seen as
assigning the treatment do(x∗) to all causal paths from
X to Y . For instance, repeatedly applying Def. 6 to
g1 : X → W1 → W2 → Y (see [Zhang and Barein-
boim, 2018b, Sec. 2.1]), we obtain the g1-specific poten-
tial response Yg1[x∗] as

Yg1[x∗] = YX,W1,W2X,W1x∗
= YW2W1x∗

.

The intervention do(g1[x∗]) can be visualized more im-
mediately through its graphical representation (Fig. 3(b))
– the treatment do(x∗) is assigned throughout g1 while
all the other paths are kept at the level that it would have
attained “naturally” following X . The difference of the
outcome Y (induced by do(g1[x∗])) and the unintervened
Y (Fig. 3(a)) measures the relative strength of g1 itself,
which leads to the following definition.
Definition 7 (Pure Path-Specific Causal Covariance).
For a semi-Markovian model M and an arbitrary causal
path g from X , the pure g-specific causal covariance of
the treatment X = x∗ on the outcome Y is defined as:

Covcg[x∗](X,Y ) = Cov(X,Y − Yg[x∗]). (9)
9For a single causal path g, let Yg[x∗](u) = Y{g}[x∗](u).

Averaging u over P (u), we obtain a random variable Yπ[x∗].

g[1,4]

g1

(a) Y

W1

X

x∗
Y

W1 W2

−
(b) Yg1[x∗]

W1

X

x∗
Y

W1 W2

g[2,3]

(c) Yg1[x∗]

W1

X

x∗
Y

W1 W2

−
(d) Yg[1,3][x∗]

W1

X

x∗
Y

W1 W2

g4

(e) Yg[1,3][x∗]

W1

X

x∗
Y

W1 W2

−
(f) Yx∗

W1

X

x∗
Y

W1 W2

Figure 3: Graphical representations of the causal covari-
ance specific to g1 (a-b), g[2,3] (c-d) and g4 (e-f).

In the previous example, more explicitly, the pure g1-
specific causal covariance is equal to (Fig. 3(a-b)):

Covcg1[x∗](X,Y ) = Cov
(
X,Y − YW2W1x∗

)
. (10)

For U = u, the counterfactual Y∅[x∗](u) stands for the
values of Y when all causal paths are under the natural
regime. Eq. 9 can then be rewritten as:

Covcg[x∗](X,Y ) = Cov(X,Y∅[x∗] − Yg[x∗]).
The pure path-specific causal covariance for g can be
seen as a function of the difference between two path-
specific potential response Yπ0[x∗] and Yπ1[x∗] such that
g 6∈ π0 and π1 = π0 ∪ {g} (i.e., the different between π1

and π0 is g). The difference Yπ1[x∗] − Yπ0[x∗], therefore,
measures precisely the effects of do(x∗) along the target
causal path g. Def. 7 can be generalized to account for
the path-specific covariance in terms of path-differences.
Definition 8 (Path-Specific Causal Covariance). For a
semi-Markovian model M and an arbitrary causal path g
from X , let π be a function mapping g to a set of causal
paths π(g) from X such that g 6∈ π(g). The g-specific
causal covariance of the treatment X = x∗ on the out-
come Y is defined as:

Covcg[x∗](X,Y )π = Cov(X,Yπ(g)[x∗] − Yπ(g)∪{g}[x∗]).

The following property establishes the correspondence
between a causal path and its path-specific estimand.
Property 5. g 6∈ Πc(X,Y )⇒ Covcg[x∗](X,Y )π = 0.

Prop. 5 follows immediately as a corollary of Lem. 1,
which implies that the counterfactuals Yπ(g)[x∗] and
Yπ(g)∪{g}[x∗] define the same variable over U if g is not
a causal path from X to Y .
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Lemma 1. g 6∈ Πc(X,Y ) ⇒ Yπ(g)[x∗](u) =
Yπ(g)∪{g}[x∗](u).

Considering again the model in Fig. 1(b), let g[i,j] =
{gk}i≤k≤j (∅ if i > j). Recall that g4 = {X → Y }, and
note that the g4-specific causal covariance can be com-
puted using π(g4) = g[1,3], which yields:

Covcg4[x∗](X,Y )π = Cov(X,Yg[1,3][x∗] − Yg[1,4][x∗])
= Cov(X,YW1x∗ ,W2x∗

− Yx∗), (11)

which coincides with the direct effect (Eq. 5 with W =
{W1,W2}). Fig. 3(e-f) shows a graphical representation
of this procedure.

The path-specific quantity given in Def. 8 has an-
other desirable property, namely, the causal covariance
Covcx(X,Y ) can be decomposed as a summation over
causal paths from X to Y . To witness, first let an or-
der over Πc(X,Y ) be Lc : g1 < · · · < gn. For a path
gi ∈ Πc(X,Y ), the orderLc defines a functionLcπ which
maps from gi to a set of paths Lcπ(gi) that precede gi in
Lc, i.e., Lcπ(gi) = g[1,i−1]. We derive in the sequel a
path-specific decomposition formula for the causal co-
variance relative to an order Lc.
Theorem 2. For a semi-Markovian model M , let Lc be
an order over Πc(X,Y ). For any x∗, the following non-
parametric relationship hold:

Covcx(X,Y ) =
∑

g∈Πc(X,Y )

Covcg[x∗](X,Y )Lcπ .

Thm. 2 can be demonstrated in the model of Fig. 1(a).
Let an order Lc over g[1,4] be gi < gj if i < j.
First note that the path-specific causal covariance of g2

(Covcg2[x∗](X,Y )Lcπ ) and g3 (Covcg3[x∗](X,Y )Lcπ ) are
equal to, respectively,

Cov
(
X,YW2W1x∗

− YW2W1x∗
,W1x∗

)
(12)

Cov
(
X,YW2W1x∗

,W1x∗
− YW1x∗ ,W2x∗

)
(13)

The causal covariance Covcx(X,Y ) can then be de-
composed as the sum of Eqs. 10-13, respectively,
g1, g4, g2, g3. Fig. 3 describes this decomposition pro-
cedure: we measures the difference of the outcome
Y as the intervention do(x∗) propagates through paths
g1, g2, g3, g4. The sum of these differences thus equate
to the total influence of the intervention do(x∗) to the
outcome Y , i.e., the causal covariance Covcx∗(X,Y ).

5 DECOMPOSING SPURIOUS
RELATIONS

We introduce in the sequel a new strategy to decompose
the spurious covariance (Def. 2), which will play a cen-

(a)

Z1 U1

Z2 U2

X Y
(b)

Z1 U1

Z2 U2

X Y

Z1x∗

Z2x∗

Yx∗

Figure 4: Causal diagrams for (a) the one-confounder
setting where X and Y are confounded by the variable
Z2, of which Z1 is a parent node; (b) the twin network
for the model of (a) under do(x∗).

tral role in the analysis of the spurious relations relative
to the pair X,Y . The spurious covariance measures the
correlation between the observationalX and the counter-
factual Yx∗ (Def. 2). We will employ in our analysis the
twin network [Balke and Pearl, 1994; Pearl, 2000, Sec.
7.1.4], which is a graphical method to analyzing the rela-
tion between observational and counterfactual variables.

Consider the causal model M in Fig. 4(a), for example,
where the exogenous variables {U1, U2} are shown ex-
plicitly. Its twin network is the union of the model M
(factual) and the submodel Mx∗ (counterfactual) under
intervention do(x∗), which is shown in Fig. 4(b). The
factual (M ) and counterfactual (Mx∗ ) worlds share only
the exogenous variables (in this case, U1, U2), which
constitute the invariances shared across worlds. In this
twin network, the observational X and the counterfac-
tual Yx∗ are connected through two paths: one through
U1 and the other through U2. These paths correspond to
two pathways from X to Y in the original causal dia-
gram: τ1 : X ← Z2 ← Z1 ← U1 → Z1 → Z2 → Y ,
and τ2 : X ← Z2 ← U2 → Z2 → Y .

Note that when considering the corresponding paths in
the original graph (Fig. 4(a)), these paths (τ1, τ2) are not
necessarily simple, i.e., they may contain a particular
node more than once. Furthermore, each path can be
partitioned into a pair of causal paths (say, gl, gr) from
a common source Ui ∈ U (e.g., τ1 consists of a pair
(gl1 , gr1), where gl1 : U1 → Z1 → Z2 → X , and
gr1 : U1 → Z1 → Z2 → Y ). Indeed, these non-simple
paths are referred to as treks in the causal inference lit-
erature, which usually has been studied in the context of
linear models [Spirtes et al., 2001; Sullivant et al., 2010].

Definition 9 (Trek). A trek τ in G (from X to Y ) is
an ordered pair of causal paths (gl, gr) with a common
exogenous source Ui ∈ U such that gl ∈ Πc(Ui, X) and
gr ∈ Πc(Ui, Y ). The common source Ui is called the
top of the trek, denoted top(gl, gr). A trek is spurious if
gr ∈ Πc(Ui, Y |X), i.e., gr is a causal path from Ui to Y
that is not intercepted by X .
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We denote the set of treks from X to Y in G by
T (X,Y )G and spurious treks by T s(X,Y )G (G will
be omitted when obvious). We introduce next an esti-
mand for a specific spurious trek. For a spurious trek
τ = (gl, gr) with Ui = top(τ), first let Xgl denote the
path-specific potential response Xgl[U li ]

, where U li is an
i.i.d. draw from the distribution P (Ui). Similarly, let
Yx∗,gr = Yx∗,gr[Uri ]

10, where Uri ∼ P (Ui). Pure trek-
specific covariance can then finally be defined.

Definition 10 (Pure Trek-Specific Spurious Covariance).
For a semi-Markovian model M and a spurious trek
τ = (gl, gr) with Ui = top(gl, gr), the pure τ -specific
spurious covariance of the treatment X = x∗ on the out-
come Y is defined as:

Covtsτ [x∗](X,Y ) = Cov(X −Xgl , Yx∗ − Yx∗,gr ).
In words, the differences X −Xgl and Yx∗ − Yx∗,gr are
simply measuring the effects of the causal paths gl and
gr (Lem. 1), while the Cov(·) operator is in charge of
compounding them. (In the extreme case when gl or gr
are disconnected, the pure τ -specific spurious covariance
will equate to zero.) For example, the pure τ1-specific
spurious covariance Covtsτ1[x∗](X,Y ) in Fig. 4(a) is

Cov(X −Xgl1
, Yx∗ − Yx∗,gr1 ). (14)

Note that the counterfactualsXgl1
and Yx∗,gr1 assign the

randomized interventions do(U l1), do(Ur1 ) to the paths
gl1 , gr1 , respectively. By Def. 6, Eq. 14 is equal to:

Cov(X −XU l1
, Yx∗ − Yx∗,Ur1 ).

This quantity can be more easily seen through its graph-
ical representation, see Fig. 5 (top). The main idea is to
decompose U1 into two independent components U l1, U

r
1

(Fig. 5b), which is then contrasted with the world in
which U1 is kept intact (a).11 12 We note that by Def. 6,
X = X∅ and Yx∗ = Yx∗,∅. The pure τ1-specific spurious
covariance can be written as:

Covtsτ1[x∗](X,Y ) = Cov(X∅ −Xgl1
, Yx∗,∅ − Yx∗,gr1 ).

More generally, the pure trek-specific spurious covari-
ance for τ = (gl, gr) measures the covariance of vari-
ables Xπl − Xπl∪{gl} and Yx∗,πr − Yx∗,πr∪{gr}, where
πl (πr) is an arbitrary set of causal paths fromU that does
not contain gl (gr). This observational will be useful later
on, which leads to the trek-specific spurious covariance.

10Yx∗,gr [Uri ] is the gr-specific potential response of Y to
do(gr[U

r
i ]) in the submodel Mx∗ .

11This operation can be seen as the parallel to the pure path-
specific covariance (Def. 7), with the distinct requirement that
the replacement operator, used to generate the differences, is
not relative to the observed X , but the corresponding Ui.

12To avoid clutter, Fig. 5 is a projected version of the original
twin network focused on the relevant quantities (w.l.g.).

τ[1,2]

τ1

(a) X,Yx∗

U1

U2

X Yx∗ −
(b) XU l1

, Yx∗,Ur1

U l1 Ur1

U2

X Yx∗

τ2

(c) XU l1
, Yx∗,Ur1

U l1 Ur1

U2

X Yx∗ −
(d) XU l

[1,2]
, Yx∗,Ur

[1,2]

U l1 Ur1

U l2 Ur2

X Yx∗

Figure 5: The decomposition procedure of the spurious
covariance over the spurious treks τ1, τ2 (Thm. 3).

Definition 11 (Trek-Specific Spurious Covariance). For
a semi-Markovian model M , let τ be a spurious trek
(gl, gr) and π is a function mapping τ to a pair π(τ) =
(πl, πr) where πl and πr are sets of causal paths from U
such that gl 6∈ πl and gr 6∈ πr. The τ -specific spurious
covariance of the treatment X = x∗ on the outcome Y ,
denoted by Covtsτ [x∗](X,Y )π , is defined as

Cov(Xπl −Xπl∪{gl}, Yx∗,πr − Yx∗,πr∪{gr}).

The next proposition establishes the relationship between
Def. 11 and the corresponding spurious treks. This prop-
erty can be seen as a necessary condition for any measure
of strength for spurious relations.

Property 6. τ 6∈ T s(X,Y )⇒ Covtsτ [x∗](X,Y )π = 0.

As an example of Def. 11, the trek τ2 in Fig. 4(a) consists
of paths gl2 : U2 → Z2 → X and gr2 : U2 → Z2 → Y .
If we set π(τ2) = ({gl1}, {gr1}), the τ2-specific spurious
covariance can be measured by Covtsτ2[x∗](X,Y )π , i.e.,

Cov(Xgl1
−Xgl[1,2]

, Yx∗,gr1 − Yx∗,gr[1,2] ) (15)

= Cov(XU l1
−XU l

[1,2]
, Yx∗,Ur1 − Yx∗,Ur[1,2]). (16)

Eq. 16 is graphically represented in Fig. 5(c-d), where the
effect of the trek τ2 is measured. In words, the difference
between Fig. 5(c) and (d) is the effect of the causal paths
gl2 and gr2 when U2 is kept intact versus when divided
into two independent components (U l2, U

r
2 ).

Armed with the definition of trek-specific spurious co-
variance, we can finally study the decomposability of
the spurious covariance Covsx∗(X,Y ) (Def. 2). First, let
Us ⊆ U denote the maximal set of exogenous variables
that simultaneously affect variables X and Yx∗ (com-
mon exogenous ancestors), and let an order over Us be
Lsu : U1 < · · · < Un. For each Ui ∈ Us, let Lsli
be an order gil1 < · · · < giln over the set Πc(Ui, X).
Similarly, we define Lsri for Πc(Ui, Y |X). The tuple
Ls = 〈Lsu, {(Lsli ,Lsri)}1≤i≤|Us|〉 thus defines an order
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for the spurious treks T s(X,Y ). We denote Lsπ a func-
tion which maps from a trek τ to sets of pathsLsπ(τ) cov-
ered by the spurious treks preceding τ in Ls. Formally,
given a spurious trek τ = (gilj , g

i
rk

), Lsπ(τ) is equal to

(Πc(U[1,i−1], X) ∪ gil[1,j−1]
,Πc(U[1,i−1], Y |X) ∪ gir[1,k−1]

).

We are now ready to derive the decomposition formula
for the spurious covariance Covsx∗(X,Y ).
Theorem 3. For a semi-Markovian model M , let Ls =
〈Lsu, {(Lsli ,Lsri)}1≤i≤|Us|〉 be an order over spurious
treks T s(X,Y ). For any x∗, the following non-
parametric relationship hold:

Covsx∗(X,Y ) =
∑

τ∈T s(X,Y )

Covtsτ [x∗](X,Y )Lsπ

For example, in the model of Fig. 4(a), Us = {U1, U2}.
τ1 (τ2) is the only spurious trek associated with U1 (U2).
If we consider the order Ls such that Lsu : U1 < U2,
Thm. 3 dictates that Covsx∗(X,Y ) should be decom-
posed as the sum of Eqs. 14 and 15. Fig. 5 shows
the graphical representation of this decomposition proce-
dure: we measure the change of the covariance between
X and Yx∗ as we disconnect the relations going through
τ1 (assocaited with U1) and τ2 (U2), sequentially. The
sum of these changes thus equates to the correlations of
X and Y along the spurious pathways, i.e., the spuri-
ous covariance Covs[x∗](X,Y ). (See [Zhang and Barein-
boim, 2018b, Sec. 2] for more examples.)

6 NON-PARAMETRIC PATH
ANALYSIS

In this section, we put the results of the previous sections
together and derive a general path-specific decomposi-
tion for the covariance of the treatment X and the out-
come Y without assuming any specific parametric form.

We start by noting that each spurious path from X to Y
corresponds to a unique set of spurious treks that start
on X and end in Y . Recall that a spurious path l can
be seen as a pair of causal paths (gl, gr), where the only
node shared among gl and gr is the common source. For
example, the spurious path l : X ← Z2 → Y is a pair
(gl, gr) such that gl : Z2 → X and gr : Z2 → Y . We can
thus define a rule f which maps a trek τ ∈ T s(X,Y ) to
a spurious path l ∈ Πs(X,Y ). For τ = (gl, gr), let Vt be
the most distant recurring node from top(gl, gr) such that
Vt is the only node shared among subpaths gl(Vt, X) and
gr(Vt, Y ); the pair (gl(Vt, X), gr(Vt, Y )) corresponds to
a path l in Πs(X,Y ). As an example, the trek τ1 in
Fig. 4(a) has Vt = Z2, which corresponds to the spu-
rious path l : X ← Z2 → Y , and similarly, f(τ1) = l as
well as f(τ2) = l. Lem. 2 shows that the rule f forms a
valid surjective function.

Lemma 2. For a semi-Markovian model M , for each
spurious trek τ ∈ T s(X,Y ), there always exists a
unique most distant recurring node Vt.

For a spurious path l, let T s(l) = f−1(l) denote its cor-
responding treks. Specifically, if l 6∈ Πs(X,Y ), then
for each τ ∈ T s(l), we must have τ 6∈ T s(X,Y ). For
instance, if the spurious l in Fig. 4(a) is disconnected,
e.g., Z2 6→ X , treks τ1, τ2 are both disconnected as well.
From this observation, we could naturally define the spu-
rious covariance of a path l as a sum over treks in T s(l).

Definition 12 (Path-Specific Spurious Covariance). For
a semi-Markovian model M with an associated causal
diagram G, let l be an arbitrary spurious path in G. Let
π be a function that maps a trek τ = (gl, gr) ∈ T s(l) to
a pair π(τ) = (πl, πr), where πl and πr are arbitrary sets
of causal paths from U such that gl 6∈ πl and gr 6∈ πr.
The l-specific spurious covariance of the treatment X =
x∗ on the outcome Y is defined as

Covsl[x∗](X,Y )π =
∑

τ∈T s(l)
Covtsτ [x∗](X,Y )π

Property 7. l 6∈ Πs(X,Y )⇒ Covsl[x∗](X,Y )π = 0.

The surjectivity of the function f assures that the set
{T s(l)}l∈Πs(X,Y ) forms a partition over the spurious
treks T s(X,Y ). From Thm. 3, it follows immedi-
ately that the path-specific spurious covariance (Def. 12)
has the property that expresses the spurious covariance
Covsx∗(X,Y ) as a sum over Πs(X,Y ).

Theorem 4. For a semi-Markovian model M , let Ls =
〈Lsu, {(Lsli ,Lsri)}1≤i≤|Us|〉 be an order over spurious
treks T s(X,Y ). For any x∗, the following non-
parametric relationship hold:

Covsx∗(X,Y ) =
∑

l∈Πs(X,Y )

Covsl[x∗](X,Y )Lsπ

As an example, the path l : X ← Z2 → Y in Fig. 4(a)
corresponds to T s(l) = {τ1, τ2}. For an arbitrary or-
der Ls, Thm. 4 is applicable and immediately yields
Covsx∗(X,Y ) = Covsl[x∗](X,Y )Lsπ , which means that
the path l accounts for all the spurious relations between
X and Y . In other words, the spurious joint variability of
X and Y is fully explained by the variance of Z2, which
is a function of the exogenous variables U1 (through τ1)
and U2 (through τ2).

Thms. 1-2 and 4 together lead to a general path-specific
decomposition formula, which allows one to non-
parametrically decompose the covariance Cov(X,Y )
over all open paths fromX to Y in the underlying model.

Theorem 5 (Path-Specific Decomposition). For a semi-
Markovian model M , let Lc be an order over Πc(X,Y )
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and Ls = 〈Lsu, {(Lsli ,Lsri)}1≤i≤|Us|〉 be an order over
T s(X,Y ). For any x∗, the following non-parametric re-
lationship hold:

Cov(X,Y ) =
∑

l∈Πc(X,Y )

Covcl[x∗](X,Y )Lcπ

+
∑

l∈Πs(X,Y )

Covsl[x∗](X,Y )Lsπ .
(17)

We illustrate the use of Thm. 5 using the model discussed
in Sec. 1 (Fig. 1(a)). Recall that X and Y are connected
through the causal paths l1, l2 and spurious paths l3, l4.
Note that Us = {UZ} spuriously affects the treatment X
through the path gl = UZ → Z → X , and the outcome Y
through the paths gr1 = UZ → Z → Y and gr2 = UZ →
Z → W → Y . Let order Lc be l1 < l2 and Lsr be gr1 <
gr2 . For any level x∗, Thm. 5 equates the covariance
Cov(X,Y ) to the sum of

{
Covcli[x∗](X,Y )Lcπ

}
i=1,2

and{
Covsli[x∗](X,Y )Lsπ

}
i=3,4

, which can be written as

Cov(X,Y − Yx∗,W )︸ ︷︷ ︸
l1:X→Y

+ Cov(X,Yx∗,W − Yx∗)︸ ︷︷ ︸
l2:X→W→Y

+ Cov(X −XU lZ
, Yx∗ − Yx∗,Wx∗ZUrZ

)
︸ ︷︷ ︸

l3:X←Z→Y

+ Cov(X −XU lZ
, Yx∗,Wx∗ ,ZUrZ

− Yx∗,UrZ )
︸ ︷︷ ︸

l4:X←Z→W→Y

,

(18)

which are all well-defined, computable from the struc-
tural causal model [Def. 1; Pearl, 2000, Sec. 7.1].

7 IDENTIFYING PATH-SPECIFIC
DECOMPOSITION

By and large, identifiability is one of the most studied
topics in causal inference. It is acknowledged in the lit-
erature that obtaining identifiability may be non-trivial
even in the context of less granular measures of causal
effects, including quantities without nested counterfac-
tual and following the analysis of Pearl’s do-calculus.

In this section, we start the study of identifiability condi-
tions for when the path-specific decomposition formula
(Thm. 5) can be estimated from data, when the SCM is
not fully known. We’ll analyze the causal model dis-
cussed in Fig. 1(a) given its generality and potential to
encode more complex models. The main assumption en-
coded in this model is Markovianity, i.e., that all exoge-
nous variables are independent. We show next that iden-
tifiability can be obtained under these assumptions.

Theorem 6. The path-specific decomposition of Eq. 18
is identifiable if the distributions P (x, yx∗), P (x, yx∗,W )
and P (x, yx∗,Wx∗ ,ZUrZ

) are identifiable. Specifically,
in the model of Fig. 1(a), P (x, yx∗), P (x, yx∗,W ), and

P (x, yx∗,Wx∗ ,ZUrZ
) can be estimated, respectively, from

the observational distribution P (x, y, z, w) as follows:
P (x, yx∗) =

∑

z,w

P (y|x∗, w, z)P (w|x∗, z)P (x, z)

P (x, yx∗,W ) =
∑

z,w

P (y|x∗, z, w)P (x, z, w)

P (x, yx∗,Wx∗ ,ZUrZ
) =

∑

z,z′,w

P (y|x∗, z, w)P (w|x∗, z′)P (x, z′)P (z)

Note that all the quantities listed in Thm. 6 are ex-
pressible in terms of conditional distributions and do not
involve any counterfactual (simple nor nested), which
are readily estimable from the observational distribu-
tion. As an example, the l2-specific causal covari-
ance Covcl2[x∗](X,Y )Lcπ in Eq. 18 can be written as
Cov(X,Yx∗,W ) − Cov(X,Yx∗), which are computed
from the counterfactual distributions P (x, yx∗) and
P (x, yx∗,W ), respectively. These distributions can be es-
timated from the observational distribution P (x, y, z, w)
following Thm. 6. Indeed, the path-specific decompo-
sition formula (Thm. 5) is identifiable in the model of
Fig. 1(a) regardless of the order Lc and Ls. (For other
decompositions, see [Zhang and Bareinboim, 2018b].)

We further considered the identifiability conditions for
the path-specific decomposition formula when the more
stringent assumption that the underlying structural func-
tions are linear is imposed.
Theorem 7. Under the assumption of linearity and the
assumption of Fig. 1(a), for any arbitrary orders Lc and
Ls, for any x, the path-specific covariance of l1, l2, l3
and l4 are equal to:
Covcl1[x∗](X,Y )Lcπ = αYX, Covcl2[x∗](X,Y )Lcπ = αWXαYW

Covsl3[x∗](X,Y )Lsπ = αXZαYZ,Covsl4[x∗](X,Y )Lsπ = αXZαWZαYW

The parameters α can be estimated from the correspond-
ing (partial) regression coefficients [Pearl, 2000, Ch. 5].

Clearly, after applying Thm. 7 to Eq. 18, the resulting
decomposition coincides with Wright’s method of path
coefficients in the linear-standard model (Eq. 1).

8 CONCLUSIONS
We introduced novel covariance-based counterfactual
measures to account for effects along with a specific path
from a treatment X to an outcome Y (Defs. 8, 11-12).
We developed machinery to allow, for the first time, the
non-parametric decomposition of the covariance of X
and Y as a summation over the different pathways in the
underlying causal model (Thm. 5). We further provided
identification conditions under which the decomposition
formula can be estimated from data (Thm. 6-7).
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Abstract

Low precision weights, activations, and gradi-
ents have been proposed as a way to improve
the computational efficiency and memory foot-
print of deep neural networks. Recently, low
precision networks have even shown to be
more robust to adversarial attacks. How-
ever, typical implementations of low precision
DNNs use uniform precision across all lay-
ers of the network. In this work, we explore
whether a heterogeneous allocation of preci-
sion across a network leads to improved per-
formance, and introduce a learning scheme
where a DNN stochastically explores multi-
ple precision configurations through learning.
This permits a network to learn an optimal pre-
cision configuration. We show on convolu-
tional neural networks trained on MNIST and
ILSVRC12 that even though these nets learn
a uniform or near-uniform allocation strat-
egy respectively, stochastic precision leads to
a favourable regularization effect improving
generalization.

1 INTRODUCTION

Recent advances in deep learning, and convolu-
tional neural networks (CNN) in particular, have led
to well-publicized breakthroughs in computer vision
(Krizhevsky et al., 2012), speech recognition (Hinton
et al., 2012), and natural language processing (NLP)
(Bahdanau et al., 2014). Modern CNNs, however, have
increasingly large storage and computational require-
ments (Canziani et al., 2016). This has limited the appli-
cation scope to data centres that can accommodate clus-
ters of massively parallel hardware accelerators, such as
graphics processing units (GPUs). Still, GPU training

∗*Work completed while at the University of Guelph

of CNNs on large datasets like ImageNet (Deng et al.,
2009) can take hours, even on networks with hundreds of
GPUs, and achieving linear scaling beyond these sizes is
difficult (Goyal et al., 2017). As such, there is a growing
interest in investigating more fine-grained optimizations,
especially since deployment on embedded devices with
limited power, compute, and memory budgets remains
an imposing challenge.

Research efforts to reduce model size and speed up in-
ference have shown that training networks with binary or
ternary weights and activations (Courbariaux and Ben-
gio, 2016; Rastegari et al., 2016; Li et al., 2016a) can
achieve comparable accuracy to full precision networks,
while benefiting from reduced memory requirements and
improved computational efficiency using bit operations.
They may even confer additional robustness to adversar-
ial attacks (Galloway et al., 2018). More recently, the
DoReFa-Net model has generalized this finding to in-
clude different precision settings for weights vs. activa-
tions, and demonstrated how low precision gradients can
be also employed at training time (Zhou et al., 2016).

These findings suggest that precision in deep learning is
not an arbitrary design choice, but rather a dial that con-
trols the trade-off between model complexity and accu-
racy. However, precision is typically considered at the
design level of an entire model, making it difficult to
consider as a tunable hyperparameter. We posit that con-
sidering precision at a finer granularity, such as a layer
or even per-example could grant models more flexibil-
ity in which to find optimal configurations, which max-
imizes accuracy and minimizes computational cost. To
remain deterministic about hardware efficiency, we aim
to do this for fixed budgets of precision, which have pre-
dictable acceleration properties.

In this work we consider learning an optimal precision
configuration across the layers of a deep neural network,
where the precision assigned to each layer may be dif-
ferent. We propose a stochastic regularization technique
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akin to Dropout (Srivastava et al., 2014) where a net-
work explores a different precision configuration per ex-
ample. This introduces non-differentiable elements in
the computational graph which we circumvent using re-
cently proposed gradient estimation techniques.

2 RELATED WORK

Recent work related to efficient learning has explored
a number of different approaches to reducing the effec-
tive parameter count or memory footprint of CNN archi-
tectures. Network compression techniques (Han et al.,
2015a; Wang and Liang, 2016; Choi et al., 2016; Agusts-
son et al., 2017) typically compress a pre-trained network
while minimizing the degradation of network accuracy.
However, these methods are decoupled from learning,
and are only suitable for efficient deployment. Network
pruning techniques (Wan et al., 2013; Han et al., 2015b;
Jin et al., 2016; Li et al., 2016b; Anwar et al., 2017;
Molchanov et al., 2016; Tung et al., 2017) take a more
iterative approach, often using regularized training and
retraining to rank and modify network parameters based
on their magnitude. Though coupled with the learning
process, iterative pruning techniques tend to contribute to
slower learning, and result in sparse connections, which
are not hardware efficient.

Our work relates primarily to low precision techniques,
which have tended to focus on reducing the preci-
sion of weights and activations used for deployment
while maintaining dense connectivity. Courbariaux et
al. were among the first to explore binary weights and
activations (Courbariaux et al., 2015; Courbariaux and
Bengio, 2016), demonstrating state-of-the-art results for
smaller datasets (MNIST, CIFAR-10, and CVHN). This
idea was then extended further with CNNs on larger
datasets like ImageNet with binary weights and activa-
tions, while approximating convolutions using binary op-
erations (Rastegari et al., 2016). Related work (Kim
and Smaragdis, 2016) has validated these results and
shown neural networks to be remarkably robust to an
even wider class of non-linear projections (Merolla et al.,
2016). Ternary quantization strategies (Li et al., 2016a)
have been shown to outperform their binary counterparts,
moreso when parameters of the quantization module are
learned through backpropagation (Zhu et al., 2016). Cai
et al. have investigated how to improve the gradient qual-
ity of quantization operations (Cai et al., 2017), which is
complimentary to our work which relies on these gra-
dients to learn precision. Zhou et al. further explored
this idea of variable precision (i.e. heterogeneity across
weights and activations) and discussed the general trade-
off of precision and accuracy, exploring strategies for
training with low precision gradients (Zhou et al., 2016).

Our approach for learning precision closely resembles
BitNet (Raghavan et al., 2017), where the optimal preci-
sion for each network layer is learned through gradient
descent, and network parameter encodings act as reg-
ularizers. While BitNet uses the Lagrangian approach
of adding constraints on quantization error and preci-
sion to the objective function, we allocate bits to lay-
ers through sampling from a Gumbel-Softmax distri-
bution constructed over the network layers. This has
the advantage of accommodating a defined precision
budget, which allows more deterministic hardware con-
straints, as well as a wider range of quantization encod-
ings through the use of non-integer quantization values
early in training. In the allocation of bits on a budget,
our work resembles (Wang and Liang, 2016), though we
allow more fine-grained control over precision, and pre-
fer a gradient-based approach over clustering techniques
for learning optimal precision configurations.

To the best of our knowledge, our work is the first
to explore learning precision in deep networks through
a continuous-to-discrete annealed quantization strategy.
Our contributions are as follows:

• We experimentally confirm a linear relationship be-
tween total number of bits and speedup for low pre-
cision arithmetic, motivating the use of precision
budgets.

• We introduce a gradient-based approach to learn-
ing precision through sampling from a Gumbel-
Softmax distribution constructed over the network
layers, constrained by a precision budget.

• We empirically demonstrate the advantage of our
end-to-end training strategy as it improves model
performance over simple uniform bit allocations.

3 EFFICIENT LOW PRECISION
NETWORKS

Low precision learning describes a set of techniques that
take network parameters, typically stored at native 32-
bit floating point (FP32) precision, and quantize them to
a much smaller range of representation, typically 1-bit
(binary) or 2-bit (ternary) integer values. While low pre-
cision learning could refer to any combination of quan-
tizing weights (W), activations (A), and gradients (G),
most relevant work investigates the effects of quantizing
weights and activations on model performance. The ben-
efits of quantization are seen in both computational and
memory efficiency, though generally speaking, quantiza-
tion leads to a decrease in model accuracy (Zhou et al.,
2016). However, in some cases, the effects of quan-
tization can be lossless or even slightly improve accu-
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racy by behaving as a type of noisy regularization (Zhu
et al., 2016; Yin et al., 2016). In this work, we adopt the
DoReFa-Net model (Zhou et al., 2016) of quantizing all
network parameters (W,A,G) albeit at different precision.
Table 1 demonstrates this trade-off of precision and ac-
curacy for some common low precision configurations.

The justification for this loss in accuracy is the efficiency
gain of storing and computing low precision values. The
computational benefits of using binary values are seen
from approximating expensive full precision matrix op-
erations with binary operations (Rastegari et al., 2016),
as well as reducing memory requirements by packing
many low precision values into full precision data types.
For other low precision configurations that fall between
binary and full precision, a similar formulation is used.
The bit dot product equation (Equation 1) shows how
both the logical and and bitcount operations are used
to compute the dot product of two low-bitwidth fixed-
point integers (bit vectors) (Zhou et al., 2016). Assume
cm(x) is a placewise bit vector formed from a sequence
of M -bit fixed-point integers x =

∑M−1
m=0 cm(x)2m and

ck(y) is a placewise bit vector formed from a sequence
of K-bit fixed-point integers y =

∑M−1
k=0 ck(y)2

k, then

x · y=
M−1∑

m=0

K−1∑

k=0

2m+k bitcount[and(cm(x), ck(y))],

cm(x)i, ck(y)i ∈ {0, 1}∀i,m, k. (1)

Since the computational complexity of the operation is
O(MK), the speedup is a function of the total number
of bits used to quantize the inputs. Since matrix multipli-
cations are simply sequences of dot products computed
over the rows and columns of matrices, this is also true
of matrix multiplication operations. As a demonstration,
we implement this variable precision bit general matrix
multiplication (bit-GEMM) using CUDA, and show the
GPU speedup for several configurations in Figure 1.

As seen in Figure 1, there is a correlation between the
total number of bits used in each bit-GEMM (shade) and
the resulting speedup (point size). As such, from a hard-
ware perspective, it is important to know how many total
bits are used for bit-GEMM operations to allow for bud-
geting computation and memory. It should also be noted
that, in our experiments, operations with over 16 total
bits of precision were shown to be slower than the full
precision equivalent. This is due to the computational
complexity of the worst case of O(8 × 8) being slower
than the equivalent full precision operation. We therefore
focus on operations with 16 or less total bits of precision.

A natural question to follow is then, for a given bud-
get of precision (total number of bits), how do we most
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Figure 1: GPU-based bit-GEMM speedup for low pre-
cision matrices A and B. Results are compared with a
similarly optimized 32-bit GEMM kernel, and run on a
NVIDIA Tesla V100 GPU.

efficiently allocate precision to maximize model perfor-
mance? We seek to answer this question by parametriz-
ing the precision at each layer and learning these addi-
tional parameters by gradient descent.

3.1 LEARNING PRECISION

The selection of precision for variables in a model can
have a significant impact on performance. Consider the
DoReFa-Net model — if we decide on a budget of the
total number of bits to assign to the weights layer-wise,
and train the model under a number of different manual
allocations, we obtain the training curves in Figure 2. For
each training curve, the number of bits assigned to each
layer’s weights are indicated by the integer at the appro-
priate position (e.g. 444444 indicates 6 quantized layers,
all assigned 4 bits).

Varying the number of bits assigned to each layer can
cause the error to change by up to several percent, but
the best configuration of these bits is unclear without ex-
haustively testing all possible configurations. This moti-
vates learning the most efficient allocation of precision
to each layer. However, this is a difficult task for two
important reasons:

• unconstrained parameters that control precision will
only grow, as higher precision leads to a reduction
of loss; and

• quantization involves discrete operations, which
are non-differentiable and therefore unsuitable for
naı̈ve backpropagation.

The first issue is easily addressed by fixing the total net-
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Table 1: DoReFa-Net single-crop top-1 validation error for common weight (W), activation (A), and gradient (G)
quantization configurations on the ImageNet Large-Scale Visual Recognition Challenge 2012 (ILSVRC12) dataset.
The results are slightly improved over the results originally reported and were reproduced by us based on the public
DoReFa-Net (Zhou et al., 2016) codebase.

Model W A G Top-1 Validation Error

AlexNet (Krizhevsky et al., 2012) 32 32 32 41.4%
BWN (Courbariaux and Bengio, 2016) 1 32 32 44.3%
DoReFa-Net (Zhou et al., 2016) 1 2 6 47.6%
DoReFa-Net (Zhou et al., 2016) 1 2 4 58.4%
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Figure 2: The training error for a variety of DoReFa-Net
manual precision allocations is plotted for each weight
update. The uniform distribution of bits (i.e. 444444)
leads to the lowest error, while the least uniform config-
urations (e.g. 222288, 882222) lead to the highest error.

work precision (i.e. the sum of the bits of precision at
each layer) to a budget B, similar to the B = 24 config-
urations seen in Figure 2. The task is then to learn the
allocation of precision across layers. The second issue:
the non-differentiable nature of quantization operations
is an unavoidable problem, as transforming continuous
values into discrete values must apply some kind of dis-
crete operator. We avoid this issue by employing a kind
of stochastic allocation of precision and rely on recently
developed techniques from the deep learning community
to backpropagate gradients through discrete stochastic
operations.

Intuitively, we can view the precision allocation proce-
dure as sequentially allocating one bit of precision to
one of L layers. Each time we allocate, we draw from
a categorical variable with L outcomes, and allocate that
bit to the corresponding layer. This is repeated B times
to match the precision budget. An allocation of B bits
corresponds to a particular precision configuration, and

we sample a new configuration for each input example.
The idea of stochastically sampling architectural con-
figurations is akin to Dropout (Srivastava et al., 2014),
where each example is processed by a different architec-
ture with tied parameters.

Different from Dropout, which uses a fixed dropout prob-
ability, we would like to parametrize the categorical dis-
tribution across layers such that we can learn to prefer to
allocate precision to certain layers. Learning these pa-
rameters by gradient descent requires backprop through
an operator that samples from a discrete distribution. To
deal with its non-differentiability, we use the Gumbel-
Softmax, also known as the Concrete distribution (Jang
et al., 2016; Maddison et al., 2016), which, using a tem-
perature parameter, can be smoothly annealed from a
uniform continuous distribution on the simplex to a dis-
crete categorical distribution from which we sample pre-
cision allocations. This allows us to use a high tempera-
ture at the beginning of training to stochastically explore
different precision configurations and use a low tempera-
ture at the end of training to discretely allocate precision
to network layers according to the learned distribution.

Though non-integer bits of precision can be implemented
(detailed below), integer bits are more amenable to hard-
ware implementations, which is why we aim to con-
verge toward discrete samples. Table 2 shows examples
of sampling from this distribution at different tempera-
tures for a three class distribution. It should be noted
that in order to perform unconstrained optimization we
parametrize the unnormalized logits (also known as log-
odds) instead of the probabilities themselves.

Since the class logits πi control the probability of allo-
cating a bit of precision to a network layer li, at low tem-
peratures the one-hot samples will allocate bits of preci-
sion to the network according to the learned parameters
πi. However, at high temperatures we allocate partial
bits to layers. This is possible due to our quantization
straight-through estimator (STE), quantize, adopted
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Table 2: Examples of single samples drawn from a
Gumbel-Softmax distribution, parametrized by logits for
three classes π1, π2, π3 and a variety of temperatures
τ . The probability of allocating a bit to layer li is im-
pacted by the logit πi, where higher values correspond
to higher probabilities. The Gumbel-Softmax interpo-
lates between continuous densities on the simplex (at
high temperature) and discrete one-hot-encoded categor-
ical distributions (at low temperature).

τ
Class 1

(π1 = 1.00)
Class 2

(π2 = 2.00)
Class 3

(π3 = −0.50)

100.0 0.33 0.33 0.33
10.0 0.33 0.41 0.26
1.00 0.31 0.60 0.09
0.10 0.00 1.00 0.00

from (Zhou et al., 2016):

Forward:

ro=quantize(ri)=
1

2k − 1
round

(
(2k − 1)ri

)
, (2)

Backward:
∂c

∂ri
=

∂c

∂ro
(3)

where ri is the real number input, ro is the k-bit output,
and c is the objective function. Since quantize pro-
duces a k-bit value on [0, 1], quantizing to non-integer
values of k simply produces a more fine-grained range
of representation compared to integer values of k. This
is demonstrated in Table 3.

Table 3: The possible output values of the quantize
operation are shown for a variety of values of k, clipped
between 0 and 1. Non-integer values of k provide a more
fine-grained range of representation between successive
integer values (underlined).

k 1 1.50 2 2.25 2.50 2.75 3

0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.55 0.33 0.26 0.21 0.17 0.14

1.00 0.66 0.53 0.42 0.34 0.28
1.00 0.80 0.64 0.52 0.42

1.00 0.85 0.69 0.57
1.00 0.87 0.71

1.00 0.85
1.00

Using real values for quantization also provides useful
gradients for backpropagation, whereas the small finite
set of possible integer values would yield zero gradient
almost everywhere.

3.2 PRECISION ALLOCATION LAYER

We introduce a new layer type, the precision allocation
layer, to implement our precision learning technique.
This layer is inserted as a leaf in the computational graph,
and is executed on each forward-pass of training. The
precision allocation layer is parametrized by the learn-
able class probabilities πi, which define the Gumbel-
Softmax distribution. Each class probability is associ-
ated with a layer li, so the samples assigned to each class
are allocated as bits to the appropriate layer. This is il-
lustrated in Figure 3 and stepped through in Example 1.

It should be noted that during the early stages of train-
ing before the network performance has converged, al-
lowing the temperature to drop too low results in high-
variance gradients while also encouraging largely uneven
allocations of bits. This severely hurts the generaliza-
tion of the network. To deal with this, we empirically
observe a temperature where the class probabilities have
sufficiently stabilized, and perform hard assignments of
bits of precision based on these stabilized class probabil-
ities. To do this, we sample from the Gumbel-Softmax
a large number of times and average the results, in order
to converge on the expected class sample assignments.
Once we have these precision values, we fix the layers
at these precision values for the remainder of training.
We observe that the regularization effects of stochastic
bit allocations are most useful during early training, and
performing hard assignments greatly improves general-
ization performance. For all experiments considered, we
implement a hard assignment of bits after the tempera-
ture drops below 3.0.

4 EXPERIMENTS

We evaluate the effects of our precision layer on two
common image classification benchmarks, MNIST and
ILSVRC12. We consider two separate CNN archi-
tectures, a 5-layer network similar to LeNet-5 (Lecun
et al., 1998) trained on MNIST, and the AlexNet network
(Krizhevsky et al., 2012) trained on ILSVRC12. We use
the top-1 single-crop error as a measure of performance,
and quantize both the weights and activations in all ex-
periments considered. As in previous works (Zhou et al.,
2016), the first layer of AlexNet was not quantized. Ini-
tial experiments showed that the effects of learning pre-
cision were less beneficial to gradients, so we leave them
at full precision in all reported experiments.

Since our motivation is to show the precision layer as
an improvement over uniformly quantized low preci-
sion models, we compare our results to networks with
evenly distributed precision over all layers. We con-
sider three common low precision budgets as powers of
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Figure 3: Early in training, the Gumbel-Softmax class probabilities πi are initialized to 0 while the temperature
τ is high, generally resulting in uniform allocations of real-valued bits of precision. Later in training, with a low
temperature, the learned class probabilities usually result in some layers being allocated more or less discrete bits of
precision. In practice, the computational overhead of the precision layer is not noticeable.

Example 1. Consider a network with 4 layers, each denoted by li. To learn the precision of these layers, we add a precision
layer which constructs a Gumbel-Softmax distribution with 4 classes πi, where each class is assigned to a layer. Each class
probability is initalized to 0.0, and the temperature is initialized to 50.0. For a budget of 16 total bits, two example iterations
representative of early training (first iteration of epoch 0) and late training (first iteration of epoch 50) are shown below:
Epoch = 0, π1 = 0.0 , π2 = 0.0, π3 = 0.0, π4 = 0.0, τ = 50.0
• The precision layer is executed first, which means we sample from the Gumbel-Softmax 16 times because our budget is

16 bits, and accumulate the results of the 16 samples. Each individual sample gives us 4 class outputs which sum to 1
(e.g. [0.25, 0.25, 0.25, 0.25]), so sampling 16 times and accumulating the results for each class means our final results
will add to 16. Since the class probabilities are initialized to 0.0, and the temperature is high, the expected samples will
be continuous and relatively uniform across all classes.

– The samples associated with each layer li are: l1 = 4.1 , l2 = 3.9, l3 = 4.2, l4 = 3.8.
– We now assign 4.1 bits to layer 1, 3.9 bits to layer 2, 4.2 bits to layer 3, and 3.8 bits to layer 4. These bits are

assigned to the appropriate layer by applying the quantize operation of Equation 2 to the desired parameters
(e.g. weights) with k as the appropriate bit assignment (e.g. k = 4.1 for l1).

– The quantize operation will transform the layer parameters to one of several discrete positive quantities between
0 and 1 (see Table 3). Though these are fractional bit assignments, the quantize operations works the same as
if these were integer bit assignments.

– The iteration then proceeds as normal, with the quantized parameters and class probabilities πi updated during
back-propagation.

Epoch = 50, π1 = 0.9 , π2 = 0.5, π3 = −0.5, π4 = −1.1, τ = 0.01
• Similar to before, we begin by sampling from the Gumbel-Softmax 16 times because our budget is 16 bits, and accu-

mulate the results. However, the class probabilities have now changed such that π1 corresponds to the most likely class,
and π4 the least likely class, so the distribution is no longer uniform. As well, since the temperature is low (τ = 0.01),
the samples will now approach discrete.

– Samples: l1 = 5.0 , l2 = 4.0, l3 = 4.0, l4 = 3.0.
– We now assign 5.0 bits to layer 1, 4.0 bits to layer 2, 4.0 bits to layer 3, and 3.0 bits to layer 4, similar to before.

Since these bit assignments are integer values, the activity of the quantize operation is more intuitive.
– Similar to before, the quantize operation will transform the layer parameters to one of several discrete positive

quantities between 0 and 1 (see Table 3).
– The forward-pass then proceeds as normal, with the quantized parameters and class probabilities πi updated during

back-propagation. Since this is late training, parameter updates will be smaller in magnitude than in early training.
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Figure 4: The top-1 errors for the MNIST networks are
shown. Both baseline networks with uniform precision
allocation (i.e. budget=10 22222) and learned precision
networks (i.e. budget=10 learn) are assigned the same
total precision budget, indicated by the prefix.

2, which would provide efficient hardware acceleration,
where each layer is allocated 2, 4, or 8 bits. Baseline net-
works with uniform precision allocation are denoted with
the allocation for each layer and the budget (e.g. bud-
get=10 22222 denotes a baseline network with 2 bits
manually allocated to each of 5 layers for a budget of
10 bits), while the networks with learned precision are
denoted with the precision budget and learn (e.g. bud-
get=10 learn denotes a learned precision network with a
budget of 10 total bits, averaging 2 bits per layer).

4.1 MNIST

The training curves for the MNIST-trained models are
shown in Figure 4. The learned Gumbel-Softmax class
logits are shown in Figure 5.

We observe that the models with learned precision con-
verge faster and reach a lower test error compared to
the baseline models across all precision budgets consid-
ered, and the relative improvement is more substantial
for lower precision budgets. From Figure 5, we observe
that the models learn to assign fewer bits to early layers
of the network (conv0, conv1) while assigning more bits
to later layers of the network (conv2, conv3), as well as
preferring smoother (i.e. more uniform) allocations. This
result agrees with the empirical observations of (Ragha-
van et al., 2017). The results on MNIST are summarized
in Table 4. Uncertainty is calculated by averaging over
10 runs for each network with different random initial-
izations of the parameters.

4.2 ILSVRC12

The results for ILSVRC12 are summarized in Table 5.
Again, models that employ stochastic precision alloca-
tion converge faster and ultimately reach a lower test er-
ror than their fixed-precision counterparts on the same
budget. We observe that networks trained with stochas-
tic precision learn to take bits from early layers and as-
sign these to later layers, similar to the MNIST results.
While the class logits for the MNIST network were sim-
ilar to the ILSVRC12 results, they were not substantial
enough to cause changes in bit allocation during our hard
assignments. However, the ILSVRC12-trained networks
actually make non-uniform hard assignments. This sug-
gests that the precision layer has a larger affect on more
complex networks.

5 CONCLUSION AND FUTURE WORK

We introduced a precision allocation layer for DNNs,
and proposed a stochastic allocation scheme for learning
precision on a fixed budget. We have shown that learned
precision models outperform uniformly-allocated low
precision models. This effect is due to both learning the
optimal configuration of precision layer-wise, as well as
the regularization effects of stochastically exploring dif-
ferent precision configurations during training. More-
over, the use of precision budgets allow a high level of
hardware acceleration determinism which has practical
implications.

While the present experiments were focused on accuracy
rather than computational efficiency, future work will ex-
amine using GPU bit kernels in place of the full precision
kernels we used in our experiments. We also intend to
investigate stochastic precision in the adversarial setting.
This is inspired by Galloway et al. (2018), who report
that stochastic quantization at test time yields robustness
towards iterative attacks.

Finally, we are interested in a variant of the model where
rather than directly parametrizing precision, precision
is conditioned on the input. While this reduces hard-
ware acceleration determinism in real-time or memory-
constrained settings, it would enable a DNN to dynam-
ically adapt its precision configuration to individual ex-
amples.
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Abstract

The goal of personalized decision making is to
map a unit’s characteristics to an action tai-
lored to maximize the expected outcome for
that unit. Obtaining high-quality mappings of
this type is the goal of the dynamic regime lit-
erature. In healthcare settings, optimizing poli-
cies with respect to a particular causal pathway
may be of interest as well. For example, we
may wish to maximize the chemical effect of
a drug given data from an observational study
where the chemical effect of the drug on the
outcome is entangled with the indirect effect
mediated by differential adherence. In such
cases, we may wish to optimize the direct ef-
fect of a drug, while keeping the indirect effect
to that of some reference treatment. [15] shows
how to combine mediation analysis and dy-
namic treatment regime ideas to defines poli-
cies associated with causal pathways and coun-
terfactual responses to these policies. In this
paper, we derive a variety of methods for learn-
ing high quality policies of this type from data,
in a causal model corresponding to a longitu-
dinal setting of practical importance. We illus-
trate our methods via a dataset of HIV patients
undergoing therapy, gathered in the Nigerian
PEPFAR program.

1 INTRODUCTION

There has been growing interest in making personal-
ized decisions in different domains to account for in-
herent heterogeneity among individuals and optimize
individual-level experiences. For instance, personalized
medicine aims at systematic use of individual patient his-
tory including biological information and biomarkers to

improve patient’s health care. Personalized actions can
be viewed as realizations of decision rules where avail-
able information is mapped to the space of possible de-
cisions.

Making good personalized decisions often involves act-
ing in multiple stages. For instance, multiple successive
medical interventions may be required for long-term care
of patients with chronic diseases. The goal of personal-
ized medicine is to tailor a sequence of decision rules on
treatment, known as dynamic treatment regimes, based
on patient characteristics seen so far, to maximize the
likelihood of a desirable outcome. A number of algo-
rithms have been developed for finding optimal treatment
regimes from either observational data, or data from ex-
periments tailored for providing information on regime
quality, such as sequential multiple assignment random-
ized trials (SMARTs) [3, 6]. These algorithms use meth-
ods from causal inference, and aim to predict counter-
factual outcomes under policies different from those ac-
tually followed in the data [11, 5, 2].

A natural extension of these methods is finding treatment
regimes that optimizes a part of the effect of the treat-
ment on the outcome. We illustrate the utility of this
problem with the following example. Patients infected
with human immunodeficiency virus (HIV) are typically
put on courses of antiretroviral therapy, as a first line of
therapy. Although these sort of medications are effective
in combating the disease, the full benefit is not realized
since patients often do not fully adhere to the medica-
tion regimen. One of the causes of poor adherence to
the therapy is toxicity of the medication. Hence, viral
failure in a patient receiving treatment may be attributed
to either poor drug effectiveness or lack of adherence to
an otherwise effective treatment plan. In observational
studies of HIV patients, treatments are not randomly as-
signed, and patients have differential adherence. Because
of this, finding a policy that optimizes the overall effect
of the treatment plan on the outcome entangles two very
different causal pathways – the chemical pathway asso-
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ciated with the active ingredients in the treatment, and
the pathway associated with adherence.

We may, instead, consider the problem of finding a set
of policies that optimize only the direct chemical effect
of the drug, in the counterfactual situations where the
indirect effect mediated by adherence can be kept to that
of some reference treatment. Policies of this type may
be more directly relevant in precision medicine contexts
where adherence varies among patients.

[15] defines counterfactual responses to policies that set
treatments only with respect to a particular causal path-
way, and gives a general identification algorithm for
these responses, as a generalization of similar algorithms
for standard dynamic treatment regimes [19], and effects
associated with causal pathways in mediation analysis
[14]. In this paper, we consider algorithms that can be
used to find policies that maximize effects along particu-
lar causal pathways from data, in a causal model of most
immediate relevance in longitudinal settings.

The paper is organized as follows. We fix our notation,
and define counterfactual responses to treatment policies
and policies associated with pathways in Section 2. In
Section 3, we review existing techniques used in learning
policies optimizing the overall effect of actions. In Sec-
tion 4, we fix the causal model corresponding to a typical
longitudinal study, prove identification of counterfactual
policy responses under this model, and show how tech-
niques for maximizing treatment policies, described in
Section 4, may be extended to maximize policies associ-
ated with causal pathways. In Section 5, we illustrate the
methods we propose via an application involving data on
treatment of HIV patients in Nigeria. Our conclusions
are in Section 6. The Appendix contains the proofs of
all claims, a basic description of statistical inference in
semi-parametric models, as context for some of our esti-
mation strategies, visualizations of learned policies, and
descriptions of the experiments.

2 NOTATIONS AND PRELIMINARIES

Consider a multi-stage decision problem with K pre-
specified decision points, indexed by i = 1, . . . ,K. Let
Y denote the final outcome of interest and Ai denote the
action made at decision point i with the finite state space
of XAi . The set of all actions is denoted by A. Let W0

denote the available information prior to the first deci-
sion, and Wi denote the information collected between
decisions i and i+1, (Y ≡WK). GivenAi, denoteAi to
be all treatments administered from time 1 to i, similarly
for Wi and W i. We combine the treatment and covariate
history up to treatment decision Ai into a history vector
Hi. The state space of Hi is denoted by XHi .

We are interested in learning policies that map Hi to val-
ues of Ai, for all i, that maximize the expected value
of the outcome Y . Doing this from observed data en-
tails considering counterfactual outcomes Y hadAi been
assigned in a different way from what was actually ob-
served. We briefly review graphical causal models, and
the potential outcome notation from causal inference,
which will be used to define such counterfactuals.

Causal models are sets of distributions defined by restric-
tions associated with directed acyclic graphs (DAGs).
We will use vertices and variables interchangeably – cap-
ital letters for a vertex or variable (V ), bold capital letter
for a set (V), lowercase letters for values (v), and bold
lowercase letters for sets of values (v). By convention,
each graph is defined on a vertex set V. For a set of val-
ues a of A, and a subset A† ⊆ A, define aA† to be a
restriction of a to elements in A†. For a DAG G, and any
V ∈ V, we define the parents of V ∈ V to be the set
paG(V ) ≡ {W ∈ V | W → V }, and the children of
V ∈ V to be the set chG(V ) ≡ {W ∈ V | V →W}.
Causal models of a DAG G consist of distributions de-
fined on counterfactual random variables of the form
V (a) where a are values of paG(V ). These variables rep-
resent outcomes of V had all variables in paG(V ) been
set, possibly contrary to fact, to a. In this paper we as-
sume Pearl’s functional model for a DAG G with vertices
V which is the set containing any joint distribution over
all potential outcome random variables where the sets of
variables

{
{V (aV ) | aV ∈ XpaG(V )} | V ∈ V

}
are mu-

tually independent [8]. The atomic counterfactuals in the
above set model the relationship between paG(V ), rep-
resenting direct causes of V , and V itself. From these,
all other counterfactuals may be defined using recursive
substitution. For any A ⊆ V \ {V },

V (a) ≡ V (apaG(V )∩A, {paG(V ) \A}(a)), (1)

where {paG(V ) \ A}(a)) is taken to mean the (re-
cursively defined) set of counterfactuals associated with
variables in paG(V ), had A been set to a.

A causal parameter is said to be identified in a causal
model if it is a function of the observed data distribution
p(V). In all causal models of a DAG G in the literature,
all interventional distributions p({V \A}(a)) are iden-
tified by the g-formula:

p({V \A}(a)) =
∏

V ∈V\A
p(V | paG(V ))

∣∣
A=a

(2)

As an example, Y (a) in the DAG in Fig. 1 (a), is defined
to be Y (a,M(a,W ),W ), and its distribution is identi-
fied as

∑
w,m p(Y |a,m,w)p(m|a,w)p(w). In our se-

quential decision setting, the relevant counterfactual is
Y (aK), i.e. the response of Y had the treatment his-
tory AK = aK been administered, possibly contrary to
fact. Comparison of Y (aK) and Y (a′K) in expectation,
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Figure 1: (a) A simple causal DAG, with a single treat-
ment A, a single outcome Y , a vector W of baseline
variables, and a single mediator M . (b) A more complex
causal DAG with two treatmentsA1, A2, an intermediate
outcome W1, and the final outcome W2.

E[Y (aK)] − E[Y (a′K)], where aK is the treatment his-
tory of interest, and a′K is the reference treatment history,
gives the average causal effect of aK on the outcome Y .

Counterfactual Response to Policies

A dynamic treatment regime fA = {fA1 , . . . , fAK} is a
sequence of decision rules that forms a treatment plan for
patients over time. At the ith decision point, the ith rule
fAi maps the available information Hi prior to the ith
decision point to a treatment ai, i.e. fAi : XHi 7→ XAi .
Given a treatment regime fA, we define the counterfac-
tual response Y had A been assigned according to fA, or
Y (fA), as the following generalization of (1)

Y ({fAi (Hi(fA))|Ai ∈ paG(Y ) ∩A}, {paG(Y ) \A}(fA)). (3)

Under a causal model associated with the DAG G, the
distribution p(Y (fA)), is identified as the following gen-
eralization of the g-formula
∑

V\Y,A

∏

V∈V\A
p(V |{fAi (Hi)|Ai ∈ paG(V ) ∩A},paG(V ) \A) (4)

As an example, Y (a = fA(W )) in Fig. 1 (a) is de-
fined as Y (a = fA(W ),M(a = fA(W ),W ),W ),
and its distribution is identified as

∑
w,m p(Y |a =

fA(w),m,w)p(m|a = fA(w), w)p(w). We will call
policies corresponding to counterfactuals defined in (3)
overall policies, to distinguish them from policies asso-
ciated with causal pathways to be defined later.

Mediation Analysis

An important goal of causal inference is understanding
the mechanisms by which the treatment A influences the
outcome Y . A common framework for mechanism anal-
ysis is mediation analysis which seeks to decompose the
effect of A on Y into the direct effect and the indirect
effect mediated by a third variable, or more generally
into components associated with particular causal path-
ways. Consider the graph in Fig. 1 (a): the direct effect
corresponds to the effect along the edge A → Y , and
indirect effect corresponds to the effect along the path
A→M → Y , mediated by M .

Counterfactuals associated with mediation analysis have
been defined using a more general type of intervention in
a graphical causal model, namely the edge intervention
[16], which maps a set of directed edges in G to values
of their source vertices. Edge interventions have a natu-
ral interpretation in cases where a treatment variable has
multiple components that a) influence the outcome in dif-
ferent ways, b) occur or do not occur together in observed
data, and c) may in principle be intervened on separately.
For instance, smoking leads to poor health outcomes due
to two components: smoke inhalation and exposure to
nicotine. A smoker would be exposed to both of these
components, while a non-smoker to neither. However,
one might imagine exposing someone selectively only to
nicotine but not smoke inhalation (via a nicotine patch),
or only smoke inhalation but not nicotine (via smoking
plant matter not derived from tobacco leaves). These
types of hypothetical experiments correspond precisely
to edge interventions, and have been used to conceptual-
ize direct and indirect effects [12, 7].

We will write the mapping of a set of edges to values
of their source vertices as aα to mean edges in α are
mapped to values in the multiset a (since multiple edges
may share the same source vertex, and be assigned to
different values). For a subset β ⊆ α and an assignment
aα, denote aβ to be a restriction of aα to edges in β. For
simplicity, in the remainder of the paper we assume that
if (AW )→ ∈ α, then for all V ∈ chG(A), (AV )→ ∈ α,
where (XY )→ is a directed edge from X to Y.

We will write counterfactual responses to edge interven-
tions as Y (aα). An edge intervention that sets a set of
edges α to values in the multiset a is defined via the fol-
lowing generalization of recursive substitution (1):

Y (aα) ≡ Y (a{(ZY )→∈α}, {paᾱG(Y )}(aα)), (5)

where paᾱG(Y ) ≡ {W | (WY )→ 6∈ α}. For exam-
ple, in the DAG in Fig. 1 (a), Y (a{(AY )→,(AM)→}) as-
signing (AY )→ to a and (AM)→ to a′ is defined as
Y (a,M(a′,W ),W ).

Identification of edge interventions in graphical causal
models of a DAG corresponds quite closely with identi-
fication of regular (node) interventions, as follows. Let
Aα ≡ {A | (AB)→ ∈ α}. Consider an edge interven-
tion given by the mapping aα. Then, under the functional
model of a DAG G, the joint distribution of counterfac-
tual responses p({V \Aα}(aα)) is identified via the fol-
lowing generalization of (2) called the edge g-formula:

∏

V ∈V\Aα

p(V |a{(ZV )→∈α}, paᾱG(V )). (6)

For example, in Fig 1 (a), p(Y (a{(AY )→,(AM)→})) =∑
W,M p(Y |a,M,W )p(M |a′,W )p(W ), which is ob-

tained by marginalizing W and M from the edge g-
formula.
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Counterfactual Responses To Policies Associated
With Pathways

We now define counterfactual responses to policies that
operate only with respect to particular outgoing edges
from A. These counterfactuals generalize those in the
previous two sections.

As an example, we can view Fig. 1 (a) as representing
a cross-sectional study of HIV patients of the kind de-
scribed in [4], where W is a set of baseline character-
istics, A is one of a set of possible antiretroviral treat-
ments, M is adherence to treatment, and Y is a binary
outcome variable signifying viral failure. In this type
of study, we may wish to find fA(W ) that maximizes
the expected outcome Y had A been set according to
fA(W ) for the purposes of the direct effect of A on Y ,
and A were set to some reference level a′ for the pur-
poses of the effect of A on M . In other words, we may
wish to find fA(W ) to maximize the counterfactual mean
E[Y (fA(W ),M(a′,W ),W )]. This would correspond
to finding a treatment policy that maximizes the direct
(chemical) effect, if it were possible to keep adherence to
a level M(a′) as if a reference (easy to adhere to) treat-
ment a were given.

We now give a general definition for responses to such
path-specific policies. Fix a set of directed edges α, and
define Aα ≡ {A | (AB)→ ∈ α}. As before, we assume
if (AW )→ ∈ α, then for all V ∈ chG(A), (AV )→ ∈ α.
Define fα ≡ {f (AiW )→

Ai
: XHi 7→ XAi | (AiW )→ ∈ α}

as the set of policies associated with edges inα. Note that
fα may contain multiple policies for a given treatment
variable A.

Define Y (fα), the counterfactual response of Y to the set
of path-specific policies fα, as the following generaliza-
tion of (5) and (3):

Y ({f (AiY )→
Ai

(Hi(fα))|(AiY )→ ∈ α}, {paᾱG(Y )}(fα)) (7)

To reformulate our earlier example, if f̃ (AM)→
A as-

signs A to a constant value a′, and f{(AY )→,(AM)→} ≡
{f (AY )→
A (W ), f̃

(AM)→
A }, then Y (f{(AY )→,(AM)→}) ≡

Y (f
(AY )→
A (W ),M(a′,W ),W ).

The joint counterfactual distribution for responses to
path-specific policies, p({V (fα)|V ∈ V \Aα}), is iden-
tified under the functional model, and generalizes (6) and
(4) as follows:

∏

V ∈V\Aα

p(V |{f (AiV )→
Ai

(Hi)|(AiV )→ ∈ α},paᾱG(V )) (8)

For example, p(Y (fA(W ),M(a′,W ),W )) is identi-
fied as

∑
W,M p(Y |fA(W ),M,W )p(M |a′,W )p(W ) in

Fig. 1 (a). We prove a general version of this result in the
Appendix. A general identification theory for responses
to path-specific policies can be found in [15].

3 LEARNING OPTIMAL OVERALL
POLICIES

The goal of this paper is developing methods for learn-
ing optimal path-specific policies, in cases where re-
sponses to such policies are identified. Before discussing
optimal path-specific policies, we first review existing
approaches to finding optimal overall policies. Opti-
mality may be quantified in a number of ways. The
set of optimal policies is commonly defined as f∗A ≡
argmaxfA E[Y (fA)].

We will discuss existing methods for finding optimal
policies f∗A in the context of a causal model implying
positivity and sequential ignorability [10]. This model
is graphically represented, for two time points, in Fig. 1
(b), where W0 are baseline factors, W1 and W2 are in-
termediate and final outcomes, A1, A2 are treatments.
Variables W0,W1,W2 may be confounded by a hidden
common cause U . It is well known that in this model,
E[Y (fA)] is identified via (4). We now discuss a number
of approaches for computing the optimal set f∗A given
this identifying formula.

Approaches Based on Backwards Induction

In sequential decision problems, choosing optimal func-
tions fA may appear to be a difficult search problem over
a large set of function combinations. However, it is pos-
sible to use ideas from dynamic programming to trans-
form the problem of choosing optimal fA into a sequen-
tial problem where only a single optimal function is cho-
sen at a time.

Multiple modeling approaches are possible here. A sim-
ple approach is to model conditional densities of all out-
comes Wi given their past. Assuming all such models
were correctly specified, given any particular historyHK
up to the last decision pointAK , the optimal f∗AK is equal
to I(E[WK(AK = 1)|HK ] > E[WK(AK = 0)|HK ]),
which under our model is equal to I(E[WK |AK =
1, HK ] > E[WK |AK = 0, HK ]). Assuming optimal
f∗Ai+1

, . . . f∗AK , denoted by f∗Ai+1
, were already chosen,

the optimal f∗Ai is defined inductively as

I
[
E[WK(Ai = 1, f∗Ai+1

)|Hi] > E[WK(Ai = 0, f∗Ai+1
)|Hi]

]
.

Note that under our model, the counterfactual expecta-
tions above are identified via a modification of (4) where
the outer summation is only with respect to variables
Wi+1, . . . ,WK−1. For many kinds of statistical mod-
els for densities appearing as terms in (4), evaluating this
sum may be challenging. An alternative strategy that
avoids repeated summations is modeling the above ex-
pectations directly via Q-functions Qi, which are condi-
tional expectations over value functions Vi+1, given the
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history. These are defined recursively as follows:
QK(HK , AK ; γK) = E[WK | AK , HK ],

VK(HK) = max
aK

QK(HK , aK ; γK),

and for i = K − 1, . . . , 1, as
Qi(Hi, Ai; γi) = E[Vi+1(Hi+1) | Ai, Hi],

Vi(Hi) = max
ai

Qi(Hi, ai; γi).

The optimal policy at each stage may be eas-
ily derived from Q-functions as f∗Ai(Hi) =
argmaxai Qi(Hi, ai; γi). Q-functions are recursively
defined regression models where outcomes are value
functions, and features are histories up to the current
decision point. Thus, parameters γi, i = 1, . . . ,K, of
all Q-functions may be learned recursively by maximum
likelihood methods applied to regression at stage i,
given that the value function at stage i + 1 was already
computed for every row [2, 13].

Value Search

Consider a restricted class of policies F with elements
fA ≡ {fAi(Hi);Ai ∈ A}. It is often of interest to es-
timate the optimal policy within the class F , even if the
class does not contain the true optimal policy. For exam-
ple, F may be the set of clinically interpretable policies.
For a sufficiently simple class F , we can directly search
for the optimal f∗,FA ≡ argmaxfA∈F E[Y (fA)]. This is
called policy search or value search.

The expected response to an arbitrary treatment policy
β = E[Y (fA)], for fA ∈ F can be estimated in a number
of ways. For A = {A}, a simple estimator for β that
uses only the treatment assignment model π(H;ψ) for
p(A = 1|H) is the inverse probability weighting (IPW)
estimator:

E
[
Y CfA/πfA(H; ψ̂)

]
, (9)

where CfA ≡ I(A = fA(H)), πfA(H;ψ) ≡
π(H;ψ)fA(H)+(1−π(H;ψ))(1−fA(H)), the expec-
tation is evaluated empirically, and ψ̂ is fit by maximum
likelihood. This estimator will not in general yield the
optimal policy within F if π is misspecified. An alterna-
tive estimator for β that provides some protection against
this is the following:

E
[

CfAY

πfA (H; ψ̂)
−
CfA − πfA (H; ψ̂)

πfA (H; ψ̂)
E[Y |H,A = fA(H); γ̂]

]
.

(10)

The above estimator is doubly-robust meaning that it is a
consistent estimator if either the propensity score model
π(H;ψ) or the regression model E[Y |H,A; γ] is cor-
rectly specified.

Value search methods can in some cases be rephrased
as a weighted classification problem in machine learning
[20]. In the interest of space, we do not discuss methods
based on this observation further here.

G-Estimation

An alternative method for learning policies is to directly
model the counterfactual contrast functions known as op-
timal blip-to-zero functions, or the counterfactual devia-
tions in outcome from a reference treatment value (which
we take to be A = 0), conditional on history, assuming
all future decisions are already optimal. Specifically, for
each decision point i, we posit a structural nested mean
model (SNMM) γi(Hi, Ai;ψ) for the contrast

E
[
Y (āi, f

∗
Ai+1

) | Hi
]
− E

[
Y (āi−1, ai = 0, f∗Ai+1

) | Hi
]
.

Note that if the true γi(Hi, Ai;ψ) were known, the op-
timal treatment policies are those that maximize the blip
function at each stage: f∗Ai = argmaxai γi(Hi, Ai;ψi).
In order to estimate ψ using data, let

U(ψ, ζ(ψ), α) =

K∑

i=1

{Gi(ψ)− E [Gi(ψ) | Hi; ζ]}

×{di(Hi, Ai)− E [di(Hi, Ai) | Hi;α]} , (11)

where di(Hi, Ai) is any function of Hi and Ai, and

Gi(ψ) = Y−γj(Hi, Ai;ψ)+

K∑

k=i+1

[
γk(Hk, a

∗
k;ψ)− γk(Hk, ak;ψ)

]
.

Consistent and asymptotically normal (CAN) estima-
tors of ψ can be obtained using the estimating equa-
tions E[U(ψ, ζ(ψ), α)] = 0, as shown in [11]. The es-
timate obtained in (11) is doubly-robust, meaning that
the estimator ψ̂ is consistent if either E [Gi(ψ) | Hi; ζ]
or pi(Ai = 1 | Hi;α) is correctly specified.

Methods closely related to G-estimation based on coun-
terfactual regret were developed in [5]. We do not dis-
cuss them here in the interest of space.

4 LEARNING OPTIMAL
PATH-SPECIFIC POLICIES

We now consider how the methods for optimizing over-
all policies translate to optimizing path-specific policies.
Some of the generalizations we consider are currently
only known for single-stage decision problems.

Consider the generalization of Fig. 1 (b) to the longitu-
dinal setting with mediators, shown (for two time points)
in Fig. 2 (a). This causal model corresponds to the set-
ting described in detail in [4], representing an observa-
tional longitudinal study of HIV patients. Here, W0 rep-
resents the baseline variables of a patient, A1, A2 repre-
sent treatment assignments, which were chosen based on
observed treatment history according to physician’s best
judgement, W1,W2 are intermediate and final outcomes
(such as CD4 count or viral failure), and M1,M2 are
measures of patient adherence to their treatment regimen.
We are interested in finding policies fA1(H1), fA2(H2)
that optimize the effect of A1, A2 on W2 that is either
direct or via intermediate outcomes, but not via adher-
ence, and where adherence is kept to that of a reference
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treatment a′1, a
′
2. Specifically, we are interested in choos-

ing fA1
, fA2

to optimize the counterfactual expectation
E[W2(fA1

, fA2
)], which expands via (7) to

E


W2




W0, fA1
(H1),M1(a′1),

W1

(
fA1

(H1),M1(a′1)
)
, fA2

(H2),

M2

(
a′1, a

′
2,W1

(
fA1

(H1),M1(a′1)
)
,M1(a′1)

)





 .

(12)

The K stage version of the causal model in
Fig. 2 (a) is given by a complete DAG on variables
W0, A1,M1,W1, . . . , AK ,MK ,WK , listed in topo-
logical order, with a hidden common cause U of
W0, . . . ,WK . Let α be all directed edges out of
A1, . . . , AK . The general version of (12) is the ex-
pectation of WK taken with respect to the distribution
p(WK(fα)), where fα sets all edges (AiMj)→ to a′i, and
all other edges in α to a policy fAi(Hi).

Identifiability of p(WK(fα)) is given by the following
corollary of results in [14], which can be viewed as a
generalization of the collapse of the g-formula [10] to
longitudinal mediation settings.

Theorem 1 In the above model, with a positive observed
data distribution p(WK(fα)) is identified as

∑

HK,MK

∏K
i=1

{
p(Wi|Mi−1,W i−1, fAi (Hi))

p(Mi|ā′i,W i−1,Mi−1)
}
p(W0)

(13)

As a consequence (12) is identified as
∑

W1,M2

E
[
W2|fA1

(H1), fA2
(H2),W 1,M2

]
p(M1|a′1,W0)×

p(W1|W0, fA1
(H1),M1) p(M2|W 1,M1, a

′
1, a
′
2) p(W0).

We now discuss a number of strategies for finding opti-
mal path-specific policies identified by (13).

Parametric Backwards Induction

A simple approach for finding optimal path-specific poli-
cies is to combine backwards induction with a maximum
likelihood estimator for the conditional densities in the
identifying functional (13).

Consider Fig. 2 (a), and let ai and a′i denote the active
and reference levels of ai, respectively. Beginning at the
last stage K = 2, and assuming treatment is binary, the
optimal decision, f∗A2

, for a given patient with history
(w0, a1,m1, w1) sets A2 to either a2 or a′2 to maximize
the response W2, while keeping M2 at whatever value it
would have attained under a sequence of reference inter-
ventions (a′1, a

′
2):

f
∗
A2

= I
(
E[W2(a2,M2(a

′
2)) | H2] > E[W2(a

′
2,M2(a

′
2)) | H2]

)
.

The optimal decision at the first stage, f∗A1
, is given by

I
{
E
[
W2

(
a1, f

∗
A2

(H2),M1(a′1),W1(a1,M1(a′1)),

M2(a′2,M1(a′1),W1(a1,M1(a′1)))

) ∣∣∣H1

]
>

E
[
W2

(
a′1, f

∗
A2

(H2),M1(a′1),W1(a′1,M1(a′1)),

M2(a′2,M1(a′1),W1(a′1,M1(a′1)))

) ∣∣∣H1

]}
.

Under the causal model we described, the above coun-
terfactuals can be estimated using a modification of (13)
with no summations over, but instead conditioning on
histories H1 or H2. This approach easily generalizes to
any number of decision stages. The difficulty here, as
before, is the increasing amount of marginalizations that
must be performed as the number of stages grows.

Path-Specific Policies Via Q-Learning

We now describe how to generalize Q-learning to path-
specific policies, using the HIV example in Fig. 2 (a) to
ground the discussion. Recall that in this example, we
wish to set A1 and A2 with respect to edges into W1,W2

to maximize the outcome, while setting A1 and A2 to
reference values a′1, a

′
2 for the purposes of edges into

M1,M2.

Simply defining Q-functions as expectations over value
functions conditional on history does not work in our set-
ting, since mediators behave in a counterfactually differ-
ent way from either observed variables, or variables we
wish to set according to a policy. Moreover, the sequen-
tial nature of the problem means the nested counterfac-
tuals needed become quite involved to write down.

An alternative is to define Q-functions not in the ob-
served data distribution, corresponding to Fig. 2 (a), but
in a counterfactual distribution where A1, A2 behave as
observed, except for the purposes of edges into M1,M2,
in which case they are counterfactually set to a′1, a

′
2.

The graph corresponding to this counterfactual world is
shown in Fig. 2 (b), and can be viewed as a generalization
of a single world intervention graph [9], where treatment
variables are only intervened on for the purposes of cer-
tain outgoing edges. Note that descendant variables of
M1,M2 are marked with a tilde to make clear that these
variables are counterfactual and no longer equal to their
observed counterparts.

The distribution corresponding to this situation is sim-
ply p(V(a(A1M1)→,(A1M2)→,(A2M2)→)), where a sets
these edges to a′1, a

′
2. For K stages, the distribution is

p(V(aα)), where α are all edges of the form (AiMj)→,
and a sets each such edge to the reference value a′i. We
have the following claim.

Theorem 2 InK stage version of the model in Fig. 2(a),
p(V(aα)) is identified as

p̃(W̃0, Ã1, M̃1, W̃1, . . . , W̃K , ÃK , M̃K) =

p(W0)

K∏

i=1

p(Wi|Mi, Ai, Hi)p(Ai|Hi)p(Mi|a′i, Hi \A) (14)

We can now define Q-functions as value function expec-
tations on this new distribution, and proceed with back-
wards induction as before. The only difference between
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the previous formulation is how Q-functions parameters
are fit. In particular, we must compensate for the fact that
p̃ above is not the observed data distribution. Define

Q̃K(H̃K , ÃK ; γK) = Ẽ[W̃K | ÃK , H̃K ],

ṼK(H̃K) = max
aK

Q̃K(H̃K , aK ; γK), (15)

and for i = K − 1, . . . , 1, define

Q̃i(Hi, Ai; γi) = Ẽ[Ṽi+1(H̃i+1) | Ãi, H̃i],
Ṽi(H̃i) = max

ai
Q̃i(H̃i, ai; γi). (16)

In our example in Fig. 2 (a), K = 2, H1 ≡ {W0},
H̃2 ≡ {W0,M1,W1}, and Ẽ denotes expectations with
respect to appropriate conditional distributions derived
from p̃. Q-functions defined in this way can be used to
obtain the optimal path-specific policy at each stage.

Theorem 3 Given that each Q̃i, i = 1, . . . ,K is speci-
fied correctly, the optimal treatment at stage i given Hi

is equal to: f∗Ai(Hi) = argmaxai Q̃i(Hi, ai; γi).
Since parameters γ are not generally known, they must
be estimated from data. This can be done as follows.

Theorem 4 Assume models in the set
{Q̃i(H̃i, Ãi; γi), p(Mi|Ai, Hi;φ)|∀i} are correctly
specified. Then the estimation equations

E
[
∂Q̃K

∂γK
{WK − Q̃K(AK , HK ; γK)}wK(HK ; φ̂K)

]
= 0, and

E
[
∂Q̃i

∂γi
{Vi+1(Hi+1)− Q̃i(Hi, Ai; γi)}wi(Hi; φ̂i)

]
= 0,

are consistent for γK and γi, where

wi(Hi; φ̂i) ≡
p(Mi|Ai = a′, Hi; φ̂i)

p(Mi|Ai, Hi; φ̂i)
∀i = 1, . . . K.

Path-Specific Value Search

For simplicity, we restrict attention to a single-stage de-
cision problem, as shown in Fig. 1 (a), where we are in-
terested in picking a policy that maximizes the counter-
factual mean β = E[Y (A = f(W ),M(a′))].

Consider a restricted class of path-specific policies F
with elements f ≡ {f(W ), f̃} the latter setting A to a
constant value a′, regardless of W . Give any estimation
strategy for the counterfactual mean under a path-specific
policy, we can implement a direct search for the optimal
policies within F as before. By analogy with earlier dis-
cussion of value search, we give an IPW estimator for β
which generalizes (9):

E
[

Y C̃

π̃(W ; ψ̂)
· p(M |A = a′,W ; φ̂)

p(M |A = f(W ),W ; φ̂)

]
, (17)

W0

A1

M1

W1

U

A2

M2

W2

(a)

W0

A1

M̃1

W̃1

U

Ã2

M̃2

W̃2

a′1 a′2

(b)

Figure 2: (a) A causal model that generalized Fig. 1 (b)
by also considering mediators. (b) A “multiple world in-
tervention graph,” representing the counterfactual situa-
tion where adherence levels are kept to a reference treat-
ment level, but the chemical effect of drugs is operating
normally.

and an estimator which generalizes (10):

E
[

C̃

π̃(W ;ψ)

f(M |W,A = a′; φ̂)

f(M |W, f(W ); φ̂)

{
Y − E[Y |f(W ),M,W ; ζ̂]

}
+

I(A = a′)

πa′ (W ; ψ̂)

{
E[Y |f(W ),M,W ; ζ̂]−

∑

M

E[Y |f(W ),M,W ; ζ̂]

p(M |W,A = a
′
; ζ̂)
}

+
∑

M

E[Y |f(W ),M,W ; ζ̂]p(M |W,A = a
′
; φ̂)

]
,

(18)

where the expectation is evaluated empirically, C̃ ≡
I(A = f(W )), πa′(W ;ψ) = p(A = a′|W ;ψ),
π̃(W ; ψ̂) ≡ ∑

a πa(W ;ψ)I(a = f(W )), and ψ̂, φ̂, ζ̂
are fit by maximum likelihood. We have the following.

Theorem 5 Under regularity assumptions referenced
in the Appendix, the estimator in (17) is consis-
tent and asymptocally normal (CAN) if the mod-
els in the set {π(W ;ψ), p(M |W,A;φ)} are cor-
rectly specified, and the estimator in (18) is CAN in
the union model, where any two models in the set
{π(W ;ψ),E[Y |A,M,W ; ζ], p(M |W,A;φ)} are cor-
rectly specified.

This claim, and the estimators above, are extensions of
the results in [17].

Single-Stage G-Estimation For Path-Specific Policies

Results in [18] generalized optimal blip-to-zero func-
tions to mediation settings, by positing the following
SNMM γ(A,W ;ψ):

E[Y (A,M(A = 0))|W ]− E[Y (A = 0,M(A = 0))|W ]. (19)

Note that the policy f∗A maximizing E[Y (A =
f∗A(W ),M(0))] can be directly obtained from γ via
f∗A(W ) = argmaxa γ(A,W ;ψ). Since ψ is not gen-
erally known, it must be estimated from data. The fol-
lowing is a consistent set of estimating equations for ψ,
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under assumptions described in [18]:

E
[( I(A = 1)p(M |A = 0,W )

p(A = 1|W )p(M |A = 1,W )
{Y − E[Y |A = 1,M,W ]}−

(20)

I(A = 0)

p(A = 0|W )
{Y − E[Y |A = 1,M,W ] + γ(1,W ;ψ)}

)
h(W )

]
= 0

for h(W ) any |ψ|-dimensional function of W .

Note that unlike SNMMs associated with overall poli-
cies, which can be defined for any number of treatments,
SNMMs associated with path-specific policies have only
been defined for a single treatment. A longitudinal gen-
eralization of these models is left to future work.

5 EXPERIMENTS

We now illustrate our methods via a dataset on HIV
patients from Nigeria. The data consists of more than
50k treatment-naive HIV-1 infected patients who were
enrolled in the Harvard PEPFAR/AIDS Prevention Ini-
tiative program prior to Oct 2010. The patients were
put on courses of antiretroviral therapy (ART), with five
standard first-line regimen, and were followed every six
months for at least one year after the ART initiation. Pa-
tients stayed on their initial treatment plan unless they
were experiencing toxicity within a first-line drug regi-
men and consequently moved to a second-line regimen.
The data has records on demographics and clinical test
results such as CD4 counts, viral loads, and toxicity mea-
sures at 6-month intervals.

In order to combat chronic diseases such as HIV, patients
are required to follow long term use of medications. Full
benefits of the medications are realized when patients
take their medications as prescribed. Unfortunately, fac-
tors such as side effects, caused by drug toxicities, can
be developed alongside the course of treatment and lead
to poor adherence to the therapy. A primary measure of
adherence is provided in the data as average percent ad-
herence that is the total number of days that the patient
has drug supply over the total number of days in the time
period (6-month intervals).

We restricted our attention to the first year of follow
up, including two decision points and picked (log) CD4
count at the end of the first year as the outcome of inter-
est. CD4 count is one of the biomarkers that quantifies
how well the immune system is functioning and higher
values are more favorable. Drug toxicity and adherence
can mediate the effect of treatment on outcome. Since
reactions to drug toxicity and adherence behavior vary
among patients, we consider the problem of finding poli-
cies that optimize the direct chemical effect of the drug
where the indirect effect mediated through drug toxicity
and adherence are set to some reference levels. We run

an additional experiment where only the effect through
adherence is set to a reference level [4]. The latter results
are provided in the Appendix for the interest of space.

The causal model can be represented by the DAG in
Fig. 2 (a). Treatment decisions at the baseline and the
first follow up are respectively denoted by A1 and A2.
W1 is a dichotomized intermediate outcome that indi-
cates whether the CD4 count is above 450 cells/mm3 at
the the end of the same six month period. W2 is the fi-
nal outcome and denotes the log CD4 count at the end
of the first year after ART initiation. W0 includes all the
baseline factors such as sex, age, and test results prior
to any treatment initiation. Toxicity and adherence mea-
sures during the first six months and the first year after
treatment initiation are collected in M1 and M2, respec-
tively. Drug toxicity indicates any lab toxicities (alanine
transaminase ≥ 120 UI/L, creatinine ≥ 260 mmol/L,
hemoglobin ≤ 8 g/dL), and adherence indicates whether
average percent adherence was no less than 95%.

We first illustrate the results on finding optimal policies
in a two-stage decision problem using G-formula and Q-
learning methods, and then provide the results for finding
optimal policies for the single (first) stage decision prob-
lem using value search and G-estimation. In the single
stage analysis, we consider the log CD4 count at the end
of the sixth month as the outcome of interest. All model-
ing assumptions are described in the Appendix.

Methods For The Two-Stage Decision Problem

Optimal overall polices and path policies are estimated
as described in Sections 3 and 4. Expected outcomes
under optimal policies we learned, along with 95% con-
fidence intervals obtained by bootstrap, are shown in Ta-
ble. 1. In the interest of space, we do not consider correc-
tions necessary to preserve the validity of these intervals
in cases of model discontinuities, but these are straight-
forward [1]. Both optimal polices have higher expected
outcomes than the observed data, using either method.
Path-specific policies led to higher expected outcomes
compared to overall policies. This could be explained by
the phenomenon of countervailing adherence-mediated
effect, described in [4]. In other words, in some cases
the more chemically effective drugs are also harder to
take. In order to visualize optimal policies we learned
as clinically interpretable flowcharts, we viewed policy-
recommended decisions as class labels, and history as
features, and used a multilabel decision tree classifier, as
implemented in the rpart R package. The results are
shown in Fig. 1 and 2 in the Appendix. Since the clas-
sifiers are not perfect predictors of the policies, they are
to be viewed as interpretable approximations of the true
learned policy. Variables involved in the decisions, such
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Table 1: Comparison of population log CD4 counts under dif-
ferent policies (under treatment assignments in the observed
data, the value is 5.64 ± 0.01 in the 2-stage and 5.54 ± 0.01

in the 1-stage problem). G-formula and Q-learning are used
with 2-stage decision points. Value search and G-estimation
are used with 1-stage decision point.

Path Policies Overall Policies
G-formula 6.89 (5.76, 7.10) 6.79 (5.68, 6.90)
Q-learning 7.34 (6.10, 7.55) 6.89 (5.82, 7.12)

Value search 5.58 (5.54, 5.62) 5.56 (5.55, 5.58)
G-estimation 5.62 (5.50, 5.67) 5.79 (5.59, 6.04)

as age, gender, CD4, virological status, and so on, are
clinically reasonable.

Methods For The Single-Stage Decision Problem

We focus on patients that appear at baseline, and treat the
five first-line treatments as a binary decision by grouping
the first three (which we denote as group 1) and the last
two treatments (which we denote as group 2). We are
interested in finding a treatment group assignment at the
first decision point that leads to a higher CD4 count at
the first follow up, assuming adherence and toxicity are
set to a reference point for every patient. The model for
this setting is Fig. 1(a), where W is observed history up
to the first decision.

We considered policies of the form I{CD4m00 < α},
where CD4m00 denotes the CD4 count right before the
first decision point, to decide what treatment group the
patient should be assigned to. The normal range for this
variable is 500 to 1500 cells/mm3. We searched for an
optimal policy in this restricted class by varying α from
100 cells/mm3 to 1000 cells/mm3 by 50 cells/mm3 incre-
ments, and estimated the value for eachα using (18). Un-
der the modeling assumptions described in the Appendix,
the optimal threshold between group 1 and group 2 treat-
ments was chosen to be I{CD4m00 < 550 cells/mm3}.
In other words, if the CD4 count is less than 550, it is
better for the patients to receive any of the treatments in
the first treatment group. However, if we pick the op-
timal policy based on the overall effect of treatment on
outcome, then value search leads to policies of the form
I{CD4m00 < 250 cells/mm3}. The optimal overall pol-
icy decides to switch to group 2 treatments when HIV
gets more severe, while the optimal path policy decides
on switching when CD4 count is still within a healthy
range but at lower values. This implies that if treatment
adherence could be kept to that of a reference treatment,
initiation of treatments within group 2 could be delayed
to lower CD4 values. As before, both policies lead to a
higher than observed log CD4 count, with the path policy
yielding slightly higher outcomes than the overall policy.

Finally, we learned optimal path policies via G-
estimation. We estimated the parameters ψ for the
SNMM using (20). The population log CD4 count
under path policies and overall policies learned by G-
estimation are given in Table. (1), and a decision tree
view of the policies is shown in Fig. 3 in the Appendix.
Under our assumptions, the optimal path policy found by
G-estimation did not do much better than the outcomes
under observed treatments and the overall policies.

6 CONCLUSIONS

In this paper, we generalized ideas in mediation analy-
sis and dynamic treatment regimes to consider the prob-
lem of estimation of responses to policies associated
with particular causal pathways, and methods for learn-
ing policies that optimize these responses. Since vali-
dating findings in causal inference is difficult, and con-
clusions are sensitive to specific modeling assumptions
made, we developed multiple approaches for learning
optimal policies that rely on orthogonal sets of modeling
strategies. In particular, we considered strategies based
on backwards induction with either plug-in estimation or
Q-learning, value search for restricted classes of policies,
and G-estimation of structural nested mean models (SN-
MMs) generalized to mediation.

We illustrated these methods by finding policies for HIV-
positive patients that optimize the direct chemical effect
of antiretroviral therapy, where the indirect effect medi-
ated through drug toxicity and adherence are set to a ref-
erence level. The results in the experiment section sug-
gest that policies that aim to optimize the direct effect of
the treatment have better outcome responses than poli-
cies that optimize the overall effect of the treatment, and
optimal policies decide on clinically relevant variables,
such as age, gender, viral load, and CD4 count.

The estimation methods we described are applicable to
sequential decision problems, except for G-estimation
which is currently only limited to single-stage decision
problems. Generalizing the version of G-estimation
to longitudinal mediation problems, and deriving semi-
parametric estimators for the version of Q-learning we
described are areas for future work.
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Abstract

Estimating the value function for a fixed pol-
icy is a fundamental problem in reinforcement
learning. Policy evaluation algorithms—to es-
timate value functions—continue to be devel-
oped, to improve convergence rates, improve
stability and handle variability, particularly for
off-policy learning. To understand the prop-
erties of these algorithms, the experimenter
needs high-confidence estimates of the accu-
racy of the learned value functions. For en-
vironments with small, finite state-spaces, like
chains, the true value function can be easily
computed, to compute accuracy. For large,
or continuous state-spaces, however, this is no
longer feasible. In this paper, we address the
largely open problem of how to obtain these
high-confidence estimates, for general state-
spaces. We provide a high-confidence bound
on an empirical estimate of the value error to
the true value error. We use this bound to
design an offline sampling algorithm, which
stores the required quantities to repeatedly
compute value error estimates for any learned
value function. We provide experiments in-
vestigating the number of samples required by
this offline algorithm in simple benchmark re-
inforcement learning domains, and highlight
that there are still many open questions to be
solved for this important problem.

1 INTRODUCTION

Policy evaluation is a key step in many reinforcement
learning systems. Policy evaluation approximates the
value of each state—future sum of rewards—given a pol-
icy and either a model of the world or a stream of data

produced by an agents choices. In classical policy iter-
ation schemes, the agent continually alternates between
improving the policy using the current approximation of
the value function, and updating the approximate value
function for the new policy. Policy search methods like
actor-critic estimate the value function of the current pol-
icy to perform gradient updates for the policy.

However, there has been relatively little research into
methods for accurately evaluating policy evaluation al-
gorithms when the true values are not available. In most
domains where we are interested in performing policy
evaluation, it is difficult or impossible to compute the
true value function. We may not have access to the tran-
sition probabilities or the reward function in every state,
making it impossible to obtain the closed form solution
of the true value function v⇤. Even if we have access
to a full model of the environment, we may not be able
to represent the value function if the number of states is
too large or the state is continuous. Aside from small
finite MDPs like gridworlds and random MDPs, where
closed-form solutions can be computed [Geist and Scher-
rer, 2014, White and White, 2016], we often do not have
access to v⇤. In nearly all our well-known benchmark do-
mains, such as Mountain Car, Puddle World, Cart pole,
and Acrobot, we must turn to some other method to eval-
uate learning progress.

One option that has been considered is to estimate the
objective minimized by the algorithms. Several papers
[Sutton et al., 2008, Du et al., 2017] have compared the
performance of the algorithms in terms of their target ob-
jective on a batch of samples, using the approximate lin-
ear system for the mean-squared projected Bellman error
(MSPBE). One estimator, called RUPEE [White, 2015],
is designed to incrementally approximate the MSPBE by
keeping a running average across data produced during
learning. Some terms, such as the feature covariance ma-
trix, can be estimated easily; however, one component of
the MSPBE includes the current weights, and is biased
by this moving average approach. More problematically,
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some algorithms do not converge to the minimum of the
MSPBE, such as residual gradient for the mean-squared
Bellman error [Baird, 1995] or Emphatic Temporal Dif-
ference (ETD) learning [Sutton et al., 2016], which mini-
mize a variant of the MSPBE with a different weighting.
This approach, therefore, is limited to comparing algo-
rithms that minimize the same objective.

The more standard approach has been to use rollouts
from states to obtain samples of returns. To obtain
these rollout estimates, three parameters need to be cho-
sen: the number of states m from which to rollout, the
number of rollouts or trajectories t, and the length of
each rollout. Given these rollouts, the true values can
be estimated from each of the m chosen states, stored
offline, and then used for comparison repeatedly dur-
ing experiments. These evaluation schemes, however,
have intuitively chosen parameters, without any guar-
antees that the distance to the true values, the error, is
well-estimated. Early work comparing gradient TD al-
gorithms [Maei et al., 2009] used sampled trajectories—
2500 of them—but compared to returns, rather than value
estimates. For several empirical studies using benchmark
domains, like Mountain Car and Acrobot, there are a va-
riety of choices, including t = m = 500 [Gehring et al.,
2016]; m = 2000, t = 300 and 1000 length rollouts [Pan
et al., 2017]; and m = 5000, t = 5000 [Le et al., 2017].
For a continuous physical system, [Dann et al., 2014]
used as little as 10 rollouts from a state. Otherwise, other
papers have mentioned that extensive rollouts are used1,
but did not describe how [Konidaris et al., 2011, Dabney
and Thomas, 2014]. In general, as new policy evaluation
algorithms are derived, it is essential to find a solution
to this open problem: How can we confidently compare
value estimates returned by our algorithms?

In this work, we provide an algorithm that ensures, with
high-probability, that the estimated distance has small er-
ror in approximating the true distance between the true
value function v⇤ for an arbitrary estimate v̂. We focus in
the main body of the paper on the clipped mean-absolute
percentage value error (CMAPVE) as a representative
example of the general strategy. We provide additional
results for a variety of other losses in the appendix, to fa-
cilitate use for a broader range of error choices. We con-
clude by demonstrating the rollout parameters chosen for
several case studies, highlighting that previous intuitive
choices did not effectively direct sampling. We hope for
this algorithm to become a standard approach for gener-
ating estimates of the true values to facilitate comparison
of policy evaluation algorithms by reinforcement learn-
ing researchers.

1Note that [Boyan and Moore, 1995] used rollouts for a
complementary purpose, to train a nonlinear value function,
rather than for evaluating policy evaluation algorithms.

2 MEASURES OF LEARNING
PERFORMANCE

This paper investigates the problem of comparing algo-
rithms that estimate the discounted sum of future rewards
incrementally for a fixed policy. In this section, we first
introduce the policy evaluation problem and motivate a
particular measures of learning performance for policy
evaluation algorithms. In the following section, we dis-
cuss how to estimate this measure.

We model the agent’s interaction with the world as a
Markov decision process (MDP), defined by a (poten-
tially uncountable) set of states S , a finite set of actions
A, transitions P : S⇥A⇥S ! [0,1), rewards R : S⇥
A ⇥ S ! R and a scalar discount function � : S ! R.
On each time step t, the agent selects an action according
to it’s behaviour policy At ⇠ µ(·|St), the environment
transitions into a new state St+1 ⇠ P (·|St, At) and the
agent receives a scalar reward Rt+1

def
= R(St, At, St+1).

In policy evaluation, the agent’s objective is to estimate
the expected return

v⇤(s) = E[Gt|St = s, At ⇠ ⇡] (1)

for return Gt =

1X

i=0

�iRt+i+1

where v⇤(s) is called the state-value function for the tar-
get policy ⇡ : S⇥A! [0, 1]. From a stream of data, the
agent incrementally approximates this value function, v̂.
For experiments, to report learning curves, we need to
measure the accuracy of this estimate every step or at
least periodically, such as every 10 steps.

For policy evaluation, when the policy remains fixed, the
value error remains the gold standard of evaluation. Ig-
noring how useful the value function is for policy im-
provement, our only goal is accuracy with respect to v⇤.
Assume some weighting d : S ! [0,1), a probability
distribution over states. Given access to v⇤, it is common
to estimate the mean squared value error

MSVE(v̂)
def
= E[(v̂(S)� v⇤(S))2] (2)

=

Z

S
d(s) (v̂(S)� v⇤(s))2 ds

or the mean absolute value error

MAVE(v̂)
def
= E[|v̂(s)� v⇤(s)|]. (3)

The integral is replaced with a sum if the set of states is
finite. Because we consider how to estimate this error
for continuous state domains—for which it is more dif-
ficult to directly estimate v⇤—we preferentially assume
the states are continuous.
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These losses, however, have several issues, beyond esti-
mating them. The key issue is that the scale of the re-
turns can be quite different across states. This skews the
loss and, as we will see, makes it more difficult to get
high-accuracy estimates. Consider a cost-to-goal prob-
lem, where the agent receives a reward of -1 per step.
From one state the value could be�1000 and for another
it could be �1. For a prediction of �990 and �11 re-
spectively, the absolute value error for both states would
be �10. However, the prediction of �990 for the first
state is quite accurate, whereas a prediction of �11 for
the second state is highly inaccurate.

One alternative is to estimate a percentage error, or rela-
tive error. The mean absolute percentage value error is

MAPVE(v̂)
def
= E

 |v̂(S)� v⇤(S)|
|v⇤(S)| + ⌧

�
(4)

for some ⌧ � 0. The term ⌧ in the denominator ensures
the MAPVE does not become excessively high, if true
values of states are zero or near zero. For example, for
⌧ = 1, the MAPVE is essentially the MAVE for small
v⇤(s), which reflects that small absolute differences are
meaningful for these smaller numbers. For large v⇤(s),
the ⌧ has little effect, and the MAPVE becomes a true
percentage error, reflecting the fact that we are particu-
larly interested in relative errors for larger v⇤(s).

Additionally, the MAPVE can be quite large if v̂ is highly
inaccurate. When estimating these performance mea-
sures, however, it is uninteresting to focus on obtaining
high-accuracy estimate of very large MAPVE. Rather, it
is sufficient to report that v̂ is highly inaccurate, and fo-
cus the estimation of the loss on more accurate v̂. To-
wards this goal, we introduce the clipped MAPVE

CMAPVE(v̂)
def
= E


min

✓
c,

|v̂(S)� v⇤(S)|
|v⇤(S)| + ⌧

◆�

for some c > 0. This c provides a maximum percentage
error. For example, setting c = 2 caps error estimates
for approximate values that are worse than 200% inaccu-
rate. Such a level of inaccuracy is already high, and when
comparing policy evaluation algorithms, we are much
more interested in their percentage error—particularly
compared to each other—once we are within a reason-
able range around the true values. Note that c can be
chosen to be the maximum value of the loss, and so the
following results remain quite general.

Though many losses could be considered, we put for-
ward the CMAPVE as a proposed standard for policy
evaluation. The parameters ⌧ and c can both be appro-
priately chosen by the experimentalist, for a given MDP.
These parameters give sufficient flexibility in highlight-
ing differences between algorithms, while still enabling

high-confidence estimates of these errors, which we dis-
cuss next. For this reason, we use CMAPVE as the loss
in the main body of the text. However, for completeness,
we also show how to modify the analysis and algorithms
for other losses in the appendix.

3 HIGH-CONFIDENCE ESTIMATES
OF VALUE ERROR

Our goal now is to approximate the value error,
CMAPVE, with high-confidence, for any value function
v̂. Instead of approximating the error directly for each
v̂, the typical approach is to estimate v⇤ as accurately as
possible, for a large set of states s1, . . . , sm ⇠ d. Given
these high-accuracy estimates v̄, the true expected error
can be approximated from this subset of states for any v̂.

CMAPVE(v̂) ⇡ 1

m

mX

i=1

min

✓
c,

|v̂(si)� v̄(si)|
|v̄(si)| + ⌧

◆

Since the CMAPVE needs to be computed frequently,
for many steps during learning potentially across many
algorithms, it is important for this estimate of CMAPVE
to be efficiently computable. An important requirement,
then, is for the number of states m to be as small as pos-
sible, so that all the v̄(si) can be stored and the summed
difference is quick to compute.

One possible approach is to estimate the true value func-
tion v⇤ using a powerful function approximator, offline.
A large batch of data could be gathered, and a learning
method used to train v̄. This large function approximator
would not even need to be stored: only v̄(si) would need
to be saved once this offline procedure was complete.
This approach, however, will be biased by the form of
the function approximator, which can favor certain pol-
icy evaluation algorithms during evaluation. Further, it
is difficult to quantify this bias, particularly in a general
way agnostic to the type of function approximator an ex-
perimentalist might use for their learning setting.

An alternative strategy is to use many sampled rollouts
from this subset of states. This strategy is general—
requiring only access to samples from the MDP. A much
larger number of interactions can be used with the MDP,
to compute v̄, because this is computed once, offline, to
facilitate many further empirical comparisons between
algorithms after. For example, one may want to exam-
ine the early learning performance of two different policy
evaluation algorithms—which may themselves receive
only a small number of samples. The cached v̄ then en-
ables computing this early learning performance. How-
ever, even offline, there are limits to how many samples
can be computed feasibly, particularly for computation-
ally costly simulators [Dann et al., 2014].

685



Therefore, our goal is the following: how can we effi-
ciently compute high-confidence estimates of CMAPVE,
using a minimal number of offline rollouts. The choice
of a clipped loss actually enables the number of states
m to remain small (shown in Lemma 2), enabling effi-
cient computation of CMAPVE. In the next section, we
address the second point: how to obtain high-confidence
estimates, given access to v̄ that approximates v⇤. In the
following section, we discuss how to obtain these v̄.

3.1 OVERVIEW

We first provide an overview of the approach, to make it
easier to follow the argument. We additionally include a
notation table (Table 1), particularly to help discern the
various value functions.

Table 1: Table of Notation

v⇤ true values for policy ⇡
v̄⇤ true values for policy ⇡,

when using truncated rollouts to length l
v̄ estimated values for policy ⇡ using t rollouts,

when using truncated rollouts to length l
v̂ estimated values for policy ⇡, being evaluated
d distribution over the states S , d : S ! [0,1)
m number of states {s1, . . . , sm}, si ⇠ d

`c clipped error, `c(v1, v2) = min
⇣
c, |v1�v2|

|v2|+⌧

⌘

` true error, `(v̂, v⇤) = E[`c(v̂(S), v⇤(S))] under d
ˆ̀ approximate error,

ˆ̀(v̂, v⇤) = 1
m

Pm
i=1 `c(v̂(si), v

⇤(si))
Rmax an upper bound on the maximum absolute value

reward, Rmax � sup |R(s, a, s0)|
Vmax maximum absolute value for the policy ⇡ for any

state, e.g., Vmax = max reward�min reward
1��

K the number of times the error estimate is queried

First, we consider several value function approximations,
for use within the bound, summarized in Table 1. The
goal is to determine the accuracy of the estimates of the
learned v̂ with respect to the true values v⇤. We estimate
true values v⇤(si) for si using repeated rollouts from si;
this results in two forms of error. The first is due to trun-
cated rollouts, which for the continuing case would oth-
erwise be infinitely long. The second source of error is
due to using an empirical estimate of the true values, by
averaging sampled returns. We denote v̄⇤ as the true val-
ues, for truncated returns, and v̄ as the sample estimate
of v̄⇤ from m truncated rollouts.

Second, we consider the approximation in computing the
loss: the difference between v̂ and v⇤. We consider the
true loss `(v̂, v⇤) and the approximate loss ˆ̀(v̂, v⇤), in
Table 1. The argument in Theorem 1 revolves around

upper bounding the difference between these two losses,
in terms of three terms. These terms are bounded in Lem-
mas 2, 3 and 4. Lemma 2 bounds the error due to sam-
pling only a subset of m. Lemma 3 bounds the error
from approximating v⇤ with truncated rollouts. Lemma
4 bounds the error from dividing by |v̄(si)| + ⌧ instead
of |v⇤(si)| + ⌧ .

Finally, to obtain this general bound, we first assume that
we can obtain highly-accurate estimates v̄ of v̄⇤. We state
these two assumptions in Assumptions 1 and 2. These
estimates could be obtained with a variety of sampling
strategies, and so separate it from the main proof. We
later develop one algorithm to obtain such estimates, in
Section 4.

3.2 MAIN RESULT

We will compute rollout values from a set of sampled
states {si}m

i=1. Each rollout consists of a trajectory sim-
ulated, or rolled out, some number of steps. The length
of this trajectory can itself be random, depending on if an
episode terminates or if the trajectory is estimated to be
a sufficiently accurate sample of the full, non-truncated
return. We first assume that we have access to such tra-
jectories and rollout estimates and in later sections show
how to obtain such trajectories and estimates.

Assumption 1. For any ✏ > 0 and sampled state si, the
trajectory lengths li are specified such that,

|v̄⇤(si)� v⇤(si)|  ✏ (|v⇤(si)| + ⌧) (5)

Assumption 2. Starting from si, assume you have tra-
jectories of rewards {rijk} for trajectory index j 2
{1, . . . , t} and rollout index k 2 {0, . . . , lij � 1} for a
trajectory length lij that depends on the trajectory. The
approximated rollout values

v̄(si)
def
=

1

t

tX

j=1

lij�1X

k=0

�krijk (6)

are an (✏, �, ⌧ ) -approximation to the true expected val-
ues, where lij is an instance of the random variable li

v̄⇤(s)
def
= E

"
li�1X

k=0

�kRk

#
(7)

i.e, for 0 < ✏, with probability at least 1 � �/2, the fol-
lowing holds for all states

|v̄⇤(si)� v̄(si)|  ✏ (|v̄⇤(si)| + ⌧) (8)

Theorem 1. Let {s1, . . . , sm} be states sampled accord-
ing to d. Assume v̄(si) satisfies Assumption 1 and 2 for
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all i 2 {1, . . . , m}. Suppose the empirical loss mean es-
timates are computed K number of times with different
learned value functions v̂ each time. Then the approxi-
mation error

ˆ̀(v̂, v̄)
def
=

1

m

mX

i=1

`c(v̂(si), v̄(si)) (9)

for all the v̂ satisfies, with probability at least 1� �,
���`(v̂, v⇤)� ˆ̀(v̂, v̄)

���  (11) + (12) + (13) (10)

Proof: We need to bound the errors introduced from
having a reduced number of states, a finite set of trajecto-
ries to approximate the expected returns for each of those
states and truncated rollouts to get estimates of returns.
To do so, we first consider the difference under the ap-
proximate clipped loss, to the true value function.
���`(v̂, v⇤)� ˆ̀(v̂, v̄)

���
���`(v̂, v⇤)� ˆ̀(v̂, v⇤)

���+
���ˆ̀(v̂, v⇤)� ˆ̀(v̂, v̄)

���

The first component is bounded in Lemma 2. For the
second component, notice that
���ˆ̀(v̂, v⇤)� ˆ̀(v̂, v̄)

��� 1
m

mX

i=1

|`c(v̂(si), v
⇤(si))�`c(v̂(si), v̄(si))|

However, these two differences are difficult to compare,
because they have different denomiators: the first has
|v⇤(si)| + ⌧ , whereas the second has |v̄(si)| + ⌧ . We
therefore further separate each component in the sum
���`c(v̂(si), v

⇤(si))� `c(v̂(si), v̄(si))
���


���`c(v̂(si), v

⇤(si))�min

✓
c,

|v̂(si)� v̄(si)|
|v⇤(si)| + ⌧

◆ ���

+
���min

✓
c,

|v̂(si)� v̄(si)|
|v⇤(si)| + ⌧

◆
� `c(v̂(si), v̄(si))

���

The first difference has the same denominator, so
���`c(v̂(si), v

⇤(si))�min

✓
c,

|v̂(si)� v̄(si)|
|v⇤(si)| + ⌧

◆���

=
���min

✓
c,

|v̂(si)�v⇤(si)|
|v⇤(si)| + ⌧

◆
�min

✓
c,

|v̂(si)�v̄(si)|
|v⇤(si)| + ⌧

◆���

=
1

|v⇤(si)| + ⌧

���min (c(|v⇤(si)| + ⌧), |v̂(si)� v⇤(si)|)

�min (c(|v⇤(si)| + ⌧), |v̂(si)� v̄(si)|)
���

 1

|v⇤(si)| + ⌧
min (c(|v⇤(si)| + ⌧), |v⇤(si)� v̄(si)|)

= `c(v̄(si), v
⇤(si))

The last step follows from the triangle inequality | |x| �
|y| |c  |x�y|c on the clipped loss (see Lemma 7, in Ap-
pendix A, for an explicit proof that the triangle inequality
holds for the clipped loss).

Therefore, putting it all together, we have
���`(v̂, v⇤)� ˆ̀(v̂, v̄)

���


���`(v̂, v⇤)� ˆ̀(v̂, v⇤)

���

+
1

m

mX

i=1

`c(v̄(si), v
⇤(si))

+
1

m

mX

i=1

���min

✓
c,

|v̂(si)� v̄(si)|
|v⇤(si)| + ⌧

◆
� `c(v̂(si), v̄(si))

���

where the first, second and third components are
bounded in Lemmas 2, 3 and 4 respectively. Finally, due
to the application of Hoeffding’s bound (Lemma 2) with
error probability of atmost �/2 and assumption 2 which
may not hold with probability atmost �/2 and the union
bound, we conclude that the final bound holds with prob-
ability at least 1� �. ⌅
Lemma 2 (Dependence on m). Suppose the empirical
loss mean estimates are computed K number of times.
Then with probability at least 1� �/2:

���`(v̂, v⇤)� ˆ̀(v̂, v⇤)
��� 

r
log(4K/�)c2

2m
(11)

Proof: Since ˆ̀(v̂, v⇤) = 1
m

Pm
i=1 `c(v̂(si), v

⇤(si)) is
an unbiased estimate of `(v̂, v⇤), we can use Hoeffding’s
bound for variables bounded between [0, c]. For any of
the K times, the concentration probability is as follows:

Pr
✓���`(v̂, v⇤)� ˆ̀(v̂, v⇤)

���� t

◆
 2 exp

 
� 2t2m2

Pm
i=1 c2

!

= 2 exp

 
� 2mt2

c2

!
=

�

2K

Thus, due to union bound over all the K times, for all
those empirical loss mean estimates, the following holds

Pr

✓ ���`(v̂, v⇤)� ˆ̀(v̂, v⇤)
���  t

◆
� 1� �/2.

Rearranging the above, to express t in terms of �,

2 exp

 
� 2mt2

c2

!
=

�

2K
=) t =

r
log(4K/�)c2

2m
.

Therefore, with probability at least 1� �,
���`(v̂, v⇤)� ˆ̀(v̂, v⇤)

��� 
r

log(4K/�)c2

2m
.

⌅
Lemma 3 (Dependence on Truncated Rollout Errors).
Under Assumption 2 and 1,

1

m

mX

i=1

`c(v̄(si), v
⇤(si))  2✏ (12)
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Proof: We can split up this error into sampling error for
a finite length rollout and for a finite number of trajec-
tories. We can consider the unclipped error, which is an
upper bound on the clipped error.

|v⇤(si)� v̄(si)|
|v⇤(si)| + ⌧

 |v⇤(si)� v̄⇤(si)|
|v⇤(si)| + ⌧

+
|v̄⇤(si)� v̄(si)|

|v⇤(si)| + ⌧

These two terms are both bounded by ✏, by assumption.
⌅

Lemma 4. Under Assumption 2,

���min

✓
c,

|v̂(si)� v̄(si)|
|v⇤(si)| + ⌧

◆
�min

✓
c,

|v̂(si)� v̄(si)|
|v̄(si)| + ⌧

◆ ���

 c(1� (1 + ✏)�2) (13)

Proof: We need to bound the difference due to the dif-
ference in normalizer. To do so, we simply need to find
a constant � > 0 such that min

⇣
c, |v̂(si)�v̄(si)|

|v⇤(si)|+⌧

⌘
� �

The key is to lower bound |v⇤(si)| + ⌧ , which results
in an upper bound on the first term and consequently an
upper bound on the difference between the two terms.

|v̄(si)| + ⌧

|v⇤(si)| + ⌧
 |v̄(si)� v̄⇤(si)| + |v̄⇤(si)| + ⌧

|v⇤(si)| + ⌧

=
|v̄(si)� v̄⇤(si)|

|v⇤(si)| + ⌧
+

|v̄⇤(si)| + ⌧

|v⇤(si)| + ⌧

 ✏(|v̄⇤(si)| + ⌧)

|v⇤(si)| + ⌧
+

|v̄⇤(si)| + ⌧

|v⇤(si)| + ⌧

=
(1 + ✏)(|v̄⇤(si)| + ⌧)

|v⇤(si)| + ⌧

where the second inequality is due to Assumption 2.
Now further

(|v̄⇤(si)| + ⌧)

|v⇤(si)| + ⌧
 |v̄⇤(si)� v⇤(si)|

|v⇤(si)| + ⌧
+

|v⇤(si)| + ⌧

|v⇤(si)| + ⌧

 ✏(|v⇤(si)| + ⌧)

|v⇤(si)| + ⌧
+ 1

= ✏+ 1

giving

|v̄(si)| + ⌧

|v⇤(si)| + ⌧
 (1 + ✏)2 =) |v⇤(si)| + ⌧ � |v̄(si)| + ⌧

(1 + ✏)2
.

So, for a = (1 + ✏)2 and b = |v̂(si)�v̄(si)|
|v̄(si)|+⌧ , the term

| min (c, ab) � min (c, b) | upper bounds the difference.
Because a > 1 and b > 0, this term | min (c, ab) �
min (c, b) | is maximized when ab = c, and b = c/a.
In the worst case, therefore, | min(c, ab) �min(c, b)| 
c(1� a�1) which finishes the proof. ⌅

3.3 SATISFYING THE ASSUMPTIONS

The bounds above relied heavily on accurate sample es-
timates of v⇤(si). To obtain Assumption 1, we need
to rollout trajectories sufficiently far to ensure that trun-
cated sampled returns do not incur too much bias. For
problems with discounting, for � < 1, the returns can be
truncated once �l becomes sufficiently small, as the re-
maining terms in the sum for the return have negligible
weight. For episodic problems with no discounting, it is
likely that trajectories need to be simulated until termina-
tion, since rewards beyond the truncation horizon would
not be discounted and so could have considerable weight.

We show how to satisfy Assumption 1, for the discounted
setting. Note that for the trivial setting of Rmax = 0, it is
sufficient to use l = 1, so we assume Rmax > 0.

Lemma 5. For � < 1 and Rmax > 0, if

l =

⇠
log(✏⌧(1� �))� log(Rmax)

log �

⇡
(14)

then v̄⇤(s) satisfies Assumption 1:

|v̄⇤(s)� v⇤(s)|  ✏ (|v⇤(s)| + ⌧) (15)

Proof: The first component can be bounded as

|v̄⇤(s)� v⇤(s)| 
�����E
" 1X

k=0

�kRk

#
� E

"
l�1X

k=0

�kRk

#�����

 Rmax

✓
1

1� � �
1� �l

1� �

◆

= Rmax
�l

1� �
giving

|v̄⇤(s)� v⇤(si)|
|v⇤(s)| + ⌧

 Rmax
�l

⌧(1� �) .

Setting l as in (14) ensures Rmax
�l

⌧(1��)  ✏, completing
the proof. ⌅
For Assumption 2, we need a stopping rule for sampling
truncated returns that ensures v̄ is within ✏ of the true
expected value of the truncated returns, v̄⇤. The idea is
to continue sampling truncated returns, until the confi-
dence interval around the mean estimate shrinks suffi-
ciently to ensure, with high probability, that the values
estimates are within ✏ of the true values. Such stopping
rules have been designed for non-negative random vari-
ables [Domingos and Hulten, 2001, Dagum et al., 2006],
and extended to more general random variables [Mnih
et al., 2008]. We defer the development of such an algo-
rithm for this setting until the next section.
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4 THE ROLLOUT ALGORITHM

We can now design a high-confidence algorithm for es-
timating the accuracy of a value function. Practically,
the most important number to reduce is m, because these
values will be stored and used for comparisons on each
step. The choice of a clipped loss, however, makes it
more manageable to control m. In this section, we focus
more on how much the variability in trajectories, and tra-
jectory length, impact the number of required samples.

The general algorithm framework is given in Algorithm
1. The algorithm is straightforward once given an algo-
rithm to sample rollouts from a given state. The rollout
algorithm is where development can be directed, to re-
duce the required number of samples. This rollout al-
gorithm needs to be designed to satisfy Assumptions 1
and 2. We have already shown how to select trajectory
lengths to satisfy Assumption 1. Below, we describe how
to select m and how to satisfy Assumption 2.

Algorithm 1 Offline computation of v̄, to get high-
confidence estimates of value error

1: . Input ✏, �, ⌧
2: . Compute the values v̄ once offline and store for

repeated use
3: Set ✏m = ✏/2 and ✏̄ = ✏/(2(1 + c))

4: m log(4K/�)c2

2✏2m
5: for 1, . . . , m do
6: Sample si ⇠ d
7: v̄(si) Algorithm 2 with ✏̄, �

2m , ⌧

Specifying the number of sampled states m. For the
number of required samples for the outer loop in Algo-
rithm 1, we need enough samples to match the bound in
Lemma 2.

✏m =

r
log(4K/�)c2

2m
=) m =

log(4K/�)c2

2✏2m
(16)

m is chosen as
l

log(4K/�)c2

2✏2m

m
� ✏m and thus we are

being slightly conservative regarding the error to ensure
correctness with high probability. We opt for a separate
choice of ✏m for this part of the bound, because it is com-
pletely separate from the other errors. This number ✏m
could be chosen slightly larger, to reduce the number of
required sampled states to compare to, whereas ✏ might
need to be smaller depending on the choice of c and ⌧ .
Separating them explicitly can significantly reduce the
m in the outer loop, both improving time and storage,
as well as later comparison time, without impacting the
accuracy of the algorithm.

Algorithm 2 High-confidence Monte carlo estimate of
the expected return for a state

1: . Input ✏, �, ⌧ , state s
2: . Output an ✏, �, ⌧ -accurate approx. v̄(si) of v⇤(si)
3: LB 0, UB 1
4: cLB �1, cUB 1
5: ḡ  0, M  0
6: j  1, h 0, �  1.1, p 1.1, ↵ 1, x 1
7: while (1 + ✏)LB + 2✏⌧ < (1� ✏)UB or LB = 0 do
8: g  sample return that satisfies Assumption 1

(e.g., see Algorithm 3 in Appendix D)
9: � g � ḡ

10: ḡ  ḡ + �
j

11: M  M + �(g � ḡ)
12: �  

p
M/j

13: . Compute the confidence interval
14: if j �

⌅
�h
⇧

then
15: h h + 1
16: ↵ 

⌅
�h
⇧
/
⌅
�h�1

⇧

17: x �↵ log
�(p� 1)

3php

18: cj  �
q

2x
j + 3Vmaxx

j

19: LB max(LB, |ḡ|� cj)
20: UB min(UB, |ḡ| + cj)

21: cLB max(cLB, ḡ � cj)

22: cUB min(cUB, ḡ + cj)

23: if cUB�cLB
2  ✏⌧ then return cUB+cLB

2

24: j = j + 1
return sign(ḡ)

2 ((1 + ✏)LB + (1� ✏)UB)

Satisfying Assumption 2. Our goal is to get an
(✏, �, ⌧ )-approximation of v̄(si), with a feasible num-
ber of samples. In many cases, it is difficult to make
parametric assumptions about returns in reinforcement
learning. A simple strategy is to use a stopping rule
for generating returns, based on general concentration
inequalities—like Hoeffding’s bound—that make few
assumptions about the random variables. If we had a
bit more information, however, such as the variance of
the returns, we could obtain a tighter bound, using Bern-
stein’s inequality and so reduce the number of required
samples. We cannot know this variance a priori, but
fortunately an empirical Bernstein bound has been de-
veloped [Mnih et al., 2008]. Using this bound, Mnih
et al. [2008] designed EBGStop, which incrementally es-
timates variance and significantly reduces the number of
samples required to get high-confidence estimates.

EBGStop can be used, without modification, given a
mechanism to sample truncated returns that satisfy As-
sumption 1. However, we generalize the algorithm to

689



allow for our less restrictive condition |v̄⇤(si)� v̄(si)| 
✏(|v̄⇤(si)| + ⌧), as opposed to the original algorithm
which ensured |v̄⇤(si) � v̄(si)|  ✏|v̄⇤(si)|. When
⌧ = 0 in our algorithm, it reduces to the original; since
this is a generalization on that algorithm, we continue to
call it EBGStop. This modification is important when
v⇤(si) = 0, since this would require v̄⇤(si) = v⇤(si)
when ⌧ = 0. For ⌧ > 0, once the accuracy is within
⌧ , the algorithm can stop. The Algorithm is summa-
rized in Algorithm 2. The proof follows closely to the
proof for EBGStop; we include it in Appendix A. Al-
gorithm 2 uses geometric sampling, like EBGStop, to
improve sample efficiency. The idea is to avoid check-
ing the stopping condition after every sample. Instead,
for some � > 1, the condition is checked after �k sam-
ples; the next check occurs at �k+1. This modification
improves sample efficiency from a multiplicative factor
of log( R

✏|µ| ) to log log( R
✏|µ| ), where R is the range of the

random variables and µ is the mean.

Lemma 6. Algorithm 2 returns an ✏, �, ⌧ -approximation
v̄(si):

|v̄⇤(si)� v̄(si)|  ✏(|v̄⇤(si)| + ⌧)

Corollary 1. For any 0 < ✏m and 0 < ✏̄ < 1, Algorithm
1 returns an ✏, �-accurate approximation: with probabil-
ity at least 1� �,

�����`(v̂, v⇤)� 1

m

mX

i=1

`c(v̂(si), v̄(si))

�����  ✏

where
✏ = ✏m + 2(1 + c)✏̄ (17)

Algorithm 1 uses this theorem, for a given desired level
of accuracy ✏. To obtain this level of accuracy, ✏m = ✏/2
and ✏̄ given to Algorithm 2 is set to ensure 2(1+ c)✏̄ = ✏.

5 EXPERIMENTS ON BENCHMARK
PROBLEMS

We investigate the required number of samples to get
with a level of accuracy, for different probability lev-
els. We report this for two continuous-state bench-
mark problems—Mountain Car and Puddle World—
which have previously been used to compare policy eval-
uation algorithms. Our goal is to (a) demonstrate how
this framework can be used to obtain high-confidence
estimates of accuracy and (b) provide some insight into
how many samples are needed, even for simple reinforce-
ment learning benchmark domains.

We report the number of returns sampled by Algorithm
2, averaged across several states. The domains, Moun-
tain Car and Puddle World, are as specified in the policy

evaluation experiments by Pan et al. [2017]. For Moun-
tain Car, we use the energy pumping policy, with 60%
random action selection for the three actions. For Pud-
dle World, we used a uniform random policy for the four
actions. They are both episodic tasks, with a maximum
absolute value of Vmax = 100 and Vmax = 8000 respec-
tively. The variance in Puddle World is particularly high,
as it has regions with high-variance, high-magnitude re-
wards. We sampled m = 100 states uniformly across the
state-space, to provide some insight into the variability
of the number of returns sampled across the state-space.
We tested ✏ 2 {0.01, 0.05, 0.1} and � 2 {0.01, 0.1}, and
set ⌧ = 1.0. We focus here on how many returns need to
be sampled, rather than the trajectory length, and so do
not use c nor explicitly compute clipped errors `c.

The results indicate that EBGStop requires a large num-
ber of samples, particularly in Puddle World. Figure 1b
for Mountain Car and Figure 1a both indicate that de-
creasing ✏ from 0.05 to 0.01, to enable higher-accuracy
estimates of value function error, causes an exponential
increase in the required number of samples, an increase
of 103 to 104 for Mountain Car and 105 to 106 for Puddle
World. An accuracy level of 0.01, which corresponds to
difference of 1% for clipped errors, is a typical choice for
policy evaluation experiments, yet requires an inordinate
number of samples, particularly in Puddle World.

We further investigated lower bounds on the required
number of samples. Though EBGStop is a state-of-the-
art stopping algorithm, to ensure high-confidence bounds
for any distribution with bounded mean and variance, it
collects more samples than is actually required. To as-
sess its efficiency gap, we also include an idealistic ap-
proach to computing the confidence intervals, using re-
peated subsamples computed from the simulator. By ob-
taining many, many estimates of the sample average, us-
ing t samples of the truncated return, we can estimate
the actual variability of the sample average. We pro-
vide additional details in Appendix D. Such a method
to compute the confidence interval is not a viable algo-
rithm to reduce the number of samples generated. Rather,
the goal here is to report a lower bound on the number
of samples required, for comparison and to motivate the
amount the sampling algorithm could be improved. The
number of samples generated by EBGStop is typically
between 10 to 100 times more than the optimal number
of samples, which indicates that there is much room to
improve sample efficiency.

6 CONCLUSION

In this work, we present the first principled approach to
obtain high-confidence error estimates of learned value
functions. Our strategy is focused on the setting tackled
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(a) Puddle World (b) Mountain Car

Figure 1: The number of sampled returns to obtain high-confidence estimates v̄ of the true values v⇤. The y-axis is
logarithmic, with many more samples used for smaller ✏. The box-plot similarly are logarithmic, and so are actually
much larger for smaller ✏ than larger ✏. The accuracy ✏ has a much larger effect on the number of sampled returns
that are required, than the probability �. An additional point of interest is that there are a few states that required
significantly more samples for the returns, indicated by the outliers depicted as individual points.

by reinforcement learning empiricists, comparing value
function-learning algorithms. In this context, accuracy of
value estimates, for multiple algorithms, need to be com-
puted repeatedly, every few steps with increasing data
given to the learning algorithms. We provide a general
framework for such a setting, where we store estimates of
true value functions using samples of truncated returns.
The framework for estimating true values for comparison
is intentionally generic, to enable any (sample-efficient)
stopping algorithm to be used. We propose one solution,
which uses empirical Bernstein bounds, to significantly
reduce the required number of samples over other con-
centration inequalities, such as Hoeffding’s bound.

This paper highlights several open challenges. As
demonstrated in the experiments, there is a large gap be-
tween the actual required number of samples and that
provided by the algorithm using an empirical Bernstein
stopping-rule. For some simulators, this overestimate
could result in a prohibitively large number of samples.
Although this is a problem more generally faced by the
sampling literature, it is particularly exacerbated in rein-
forcement learning where the variability across states and
returns can be high, with large maximum values. An im-
portant avenue, then, is to develop more sample-efficient
sampling algorithms to make high-confidence error es-

timates feasible for a broader range of settings in rein-
forcement learning.

Another open challenge is to address how to sample
states {s1, . . . , sm}. This paper is agnostic to how these
states are obtained. However, it is not always straightfor-
ward to sample these from a desired distribution. Some
choices are simple, such as randomly selecting these
across the state space. For other cases, it is more com-
plicated, such as sampling these from the stationary dis-
tribution of the behaviour policy, dµ. The typical strat-
egy is to run µ for a burn-in period, so that afterwards
it is more likely for states to be sampled from the sta-
tionary distribution. The theoretical effectiveness of this
strategy, however, is not yet well-understood. There has
been work estimating empirical mixing times [Hsu et al.,
2015] and some work bounding the number of samples
required for burn-in [Paulin, 2015]. Nonetheless, it re-
mains an important open question on how to adapt these
results for the general reinforcement learning setting.

One goal of this paper has been to highlight an open
problem that has largely been ignored by reinforcement
learning empiricists. We hope for this framework to
stimulate further work in high-confidence estimates of
value function accuracy.
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Abstract

The design of personalized incentives or rec-
ommendations to improve user engagement
is gaining prominence as digital platform
providers continually emerge. We propose
a multi-armed bandit framework for match-
ing incentives to users, whose preferences are
unknown a priori and evolving dynamically
in time, in a resource constrained environ-
ment. We design an algorithm that com-
bines ideas from three distinct domains: (i)
a greedy matching paradigm, (ii) the upper
confidence bound algorithm (UCB) for ban-
dits, and (iii) mixing times from the theory of
Markov chains. For this algorithm, we provide
theoretical bounds on the regret and demon-
strate its performance via both synthetic and
realistic (matching supply and demand in a
bike-sharing platform) examples.

1 INTRODUCTION

The theory of multi-armed bandits plays a key role in
enabling personalization in the digital economy (Scott,
2015). Algorithms from this domain have successfully
been deployed in a diverse array of applications includ-
ing online advertising (Lu et al., 2010; Mehta and Mir-
rokni, 2011), crowdsourcing (Tran-Thanh et al., 2014),
content recommendation (Li et al., 2010), and selecting
user-specific incentives (Ghosh and Hummel, 2013; Jain
et al., 2014) (e.g., a retailer offering discounts). On the
theoretical side, this has been complemented by a litany
of near-optimal regret bounds for multi-armed bandit
settings with rich combinatorial structures and complex
agent behavior models (Chen et al., 2016; Gai et al.,
2011; Kveton et al., 2015; Sani et al., 2012). At a high

∗Authors contributed equally.

level, the broad appeal of bandit approaches for allocat-
ing resources to human agents stems from its focus on
balancing exploration with exploitation, thereby allow-
ing a decision-maker to efficiently identify users’ prefer-
ences without sacrificing short-term rewards.

Implicit in most of these works is the notion that in large-
scale environments, a designer can simultaneously allo-
cate resources to multiple users by running independent
bandit instances. In reality, such independent decompo-
sitions do not make sense in applications where resources
are subject to physical or monetary constraints. In simple
terms, matching an agent to a resource immediately con-
strains the set of resources to which another agent can be
matched. Such supply constraints may arise even when
dealing with intangible products. For instance, social
media platforms (e.g., Quora) seek to maximize user par-
ticipation by offering incentives in the form of increased
recognition—e.g., featured posts or badges (Immorlica
et al., 2015). Of course, there are supply constraints on
the number of posts or users that can be featured at a
given time. As a consequence of these coupling con-
straints, much of the existing work on multi-armed ban-
dits does not extend naturally to multi-agent economies.

Yet, another important aspect not addressed by the litera-
ture concerns human behavior. Specifically, users’ pref-
erences over the various resources may be dynamic—
i.e. evolve in time as they are repeatedly exposed to the
available options. The problem faced by a designer in
such a dynamic environment is compounded by the lack
of information regarding each user’s current state or be-
liefs, as well as how these beliefs influence their prefer-
ences and their evolution in time.

Bearing in mind these limitations, we study a multi-
armed bandit problem for matching multiple agents to a
finite set of incentives1: each incentive belongs to a cate-

1We use the term incentive broadly to refer to any resource
or action available to the agent. That is, incentives are not lim-
ited to monetary or financial mechanisms.

693



gory and global capacity constraints control the number
of incentives that can be chosen from each category. In
our model, each agent has a preference profile or a type
that determines its rewards for being matched to differ-
ent incentives. The agent’s type evolves according to a
Markov decision process (MDP), and therefore, the re-
wards vary over time in a correlated fashion.

Our work is primarily motivated by the problem faced
by a technological platform that seeks to not just max-
imize user engagement but also to encourage users to
make changes in their status quo decision-making pro-
cess by offering incentives. For concreteness, consider
a bike-sharing service—an application we explore in our
simulations—that seeks to identify optimal incentives for
each user from a finite bundle of options—e.g., varying
discount levels, free future rides, bulk ride offers, etc.
Users’ preferences over the incentives may evolve with
time depending on their current type, which in turn de-
pends on their previous experience with the incentives.
In addition to their marketing benefits, such incentives
can serve as a powerful instrument for nudging users to
park their bikes at alternative locations—this can lead to
spatially balanced supply and consequently, lower rejec-
tion rates (Singla et al., 2015).

1.1 CONTRIBUTIONS AND ORGANIZATION

Our objective is to design a multi-armed bandit algorithm
that repeatedly matches agents to incentives in order to
minimize the cumulative regret over a finite time hori-
zon. Here, regret is defined as the difference in the re-
ward obtained by a problem specific benchmark strategy
and the proposed algorithm (see Definition 1). A prelim-
inary impediment in achieving this goal is the fact that
the capacitated matching problem studied in this work is
NP-Hard even in the offline case. The major challenge
therefore is whether we can achieve sub-linear (in the
length of the horizon) regret in the more general match-
ing environment without any information on the users’
underlying beliefs or how they evolve?

Following preliminaries (Section 2), we introduce
a simple greedy algorithm that provides a 1/3–
approximation to the optimal offline matching so-
lution (Section 3). Leveraging this first contribu-
tion, the central result in this paper (Section 4) is
a new multi-armed bandit algorithm—MatchGreedy-
EpochUCB (MG-EUCB)—for capacitated matching
problems with time-evolving rewards. Our algorithm ob-
tains logarithmic (and hence sub-linear) regret even for
this more general bandit problem. The proposed ap-
proach combines ideas from three distinct domains: (i)
the 1/3–rd approximate greedy matching algorithm, (ii)
the traditional UCB algorithm (Auer et al., 2002), and

(iii) mixing times from the theory of Markov chains.

We validate our theoretical results (Section 5) by per-
forming simulations on both synthetic and realistic in-
stances derived using data obtained from a Boston-based
bike-sharing service Hubway (hub). We compare our
algorithm to existing UCB-based approaches and show
that the proposed method enjoys favorable convergence
rates, computational efficiency on large data sets, and
does not get stuck at sub-optimal matching solutions.

1.2 BACKGROUND AND RELATED WORK

Two distinct features separate our model from the ma-
jority of work on the multi-armed bandit problem: (i)
our focus on a capacitated matching problem with finite
supply (every user cannot be matched to their optimal in-
centive), and (ii) the rewards associated with each agent
evolve in a correlated fashion but the designer is unaware
of each agent’s current state. Our work is closest to (Gai
et al., 2011) which considers a matching problem with
Markovian rewards. However, in their model the rewards
associated with each edge evolve independently of the
other edges; as we show via a simple example in Sec-
tion 2.2, the correlated nature of rewards in our instance
can lead to additional challenges and convergence to sub-
optimal matchings if we employ a traditional approach as
in (Gai et al., 2011).

Our work also bears conceptual similarities to the rich
literature on combinatorial bandits (Badanidiyuru et al.,
2013; Chen et al., 2016; Kveton et al., 2014, 2015; Wen
et al., 2015). However, unlike our work, these papers
consider a model where the distribution of the rewards
is static in time. For this reason, efficient learning al-
gorithms leveraging oracles to solve generic constrained
combinatorial optimization problems developed for the
combinatorial semi-bandit setting (Chen et al., 2016;
Kveton et al., 2015) face similar limitations in our model
as the approach of (Gai et al., 2011). Moreover, the re-
wards in our problem may not have a linear structure so
the approach of (Wen et al., 2015) is not applicable.

The novelty in this work is not the combinatorial aspect
but the interplay between combinatorial bandits and the
edge rewards evolving according to an MDP. When an
arm is selected by an oracle, the reward of every edge
in the graph evolves—how it evolves depends on which
arm is chosen. If the change occurs in a sub-optimal di-
rection, this can affect future rewards. Indeed, the dif-
ficulties in our proofs do not stem from applying an or-
acle for combinatorial optimization, but from bounding
the secondary regret that arises when rewards evolve in a
sub-optimal way.

Finally, there is a somewhat parallel body of work
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on single-agent reinforcement learning techniques (Azar
et al., 2013; Jaksch et al., 2010; Mazumdar et al., 2017;
Ratliff et al., 2018) and expert selection where the re-
wards on the arms evolve in a correlated fashion as in
our work. In addition to our focus on multi-agent match-
ings, we remark that many of these works assume that the
designer is aware (at least partially) of the agent’s exact
state and thus, can eventually infer the nature of the evo-
lution. Consequently, a major contribution of this work is
the extension of UCB-based approaches to solve MDPs
with a fully unobserved state and rewards associated with
each edge that evolve in a correlated fashion.

2 PRELIMINARIES

A designer faces the problem of matchingm agents to in-
centives (more generally jobs, goods, content, etc.) with-
out violating certain capacity constraints. We model this
setting by means of a bipartite graph (A, I,P) where A
is the set of agents, I is the set of incentives to which the
agents can be matched, and P = A × I is the set of all
pairings between agents and incentives. We sometimes
refer to P as the set of arms. In this regard, a matching is
a set M ⊆ P such that every agent a ∈ A and incentive
i ∈ I is present in at most one edge belonging to M .

Each agent a ∈ A is associated with a type or state θa ∈
Θa, which influences the reward received by this agent
when matched with some incentive i ∈ I. When agent a
is matched to incentive i, its type evolves according to a
Markov process with transition probability kernel Pa,i :
Θa × Θa → [0, 1]. Each pairing or edge of the bipartite
graph is associated with some reward that depends on the
agent–incentive pair, (a, i), as well as the type θa.

The designer’s policy (algorithm) is to compute a match-
ing repeatedly over a finite time horizon in order to max-
imize the expected aggregate reward. In this work, we
restrict our attention to a specific type of multi-armed
bandit algorithm that we refer to as an epoch mixing pol-
icy. Formally, the execution of such a policy α is divided
into a finite number of time indices [n] = {1, 2, . . . , n},
where n is the length of the time horizon. In each time
index k ∈ [n], the policy selects a matching α(k) and
repeatedly ‘plays’ this matching for τk > 0 iterations
within this time index. We refer to the set of iterations
within a time index collectively as an epoch. That is,
within the k–th epoch, for each edge (a, i) ∈ α(k), agent
a is matched to incentive i and the agent’s type is allowed
to evolve for τk iterations. In short, an epoch mixing
policy proceeds in two time scales—each selection of a
matching corresponds to an epoch comprising of τk it-
erations for k ∈ [n], and there are a total of n epochs.
It is worth noting that an epoch-based policy was used
in the UCB2 algorithm (Auer et al., 2002), albeit with

stationary rewards.

Agents’ types evolve based on the incentives to which
they are matched. Suppose that β(k)

a denotes the type
distribution on Θa at epoch k and i ∈ I is the incentive
to which agent a is matched by α (i.e., (a, i) ∈ α(k)).
Then, β(k+1)

a (θa) =
∑
θ′∈Θa

P τka,i(θ
′, θa)β

(k)
a (θ′).

For epoch k, the rewards are averaged over the τk itera-
tions in that epoch. Let rθa,i denote the reward received
by agent a when it is matched to incentive i given type
θ ∈ Θa. We assume that rθa,i ∈ [0, 1] and is drawn from a
distribution Tr(a, i, θ). The reward distributions for dif-
ferent edges and states in Θa are assumed to be indepen-
dent of each other. Suppose that an algorithm α selects
the edge (a, i) for τ iterations within an epoch. The ob-
served reward at the end of this epoch is taken to be the
time-averaged reward over the epoch. Specifically, sup-
pose that the k–th epoch proceeds for τk iterations be-
ginning with time tk—i.e. one plus the total iterations
completed before this—and ending at time tk+1 − 1 =
tk + τk − 1, and that θa(t) denotes agent a’s state at
time t ∈ [tk, tk+1 − 1]. Then, the time-averaged reward
in the epoch is given by rθa(tk)

a,i = 1
τk

∑tk+1−1
t=tk

r
θa(t)
a,i .

We use the state as a superscript to denote dependence
of the reward on the agent’s type at the beginning of the
epoch. Finally, the total (time-averaged) reward due to a
matching α(k) at the end of an epoch can be written as∑

(a,i)∈α(k) r
θa(tk)
a,i .

We assume that the Markov chain corresponding to each
edge (a, i) ∈ P is aperiodic and irreducible (Levin et al.,
2009). We denote the stationary or steady-state distribu-
tion for this edge as πa,i : Θa → [0, 1]. Hence, we define
the expected reward for edge (a, i), given its stationary
distribution, to be µa,i = E

[∑
θ∈Θa

rθa,iπa,i(θ)
]

where
the expectation is with respect to the distribution on the
reward given θ.

2.1 CAPACITATED MATCHING

Given P = A × I, the designer’s goal at the beginning
of each epoch is to select a matching M ⊆ P—i.e. a
collection of edges—that satisfies some cardinality con-
straints. We partition the edges in P into a mutually ex-
clusive set of classes allowing for edges possessing iden-
tical characteristics to be grouped together. In the bike-
sharing example, the various classes could denote types
of incentives—e.g., edges that match agents to discounts,
free-rides, etc. Suppose that C = {ξ1, ξ2, . . . , ξq} de-
notes a partitioning of the edge set such that (i) ξj ⊆ P
for all 1 ≤ j ≤ q, (ii)

⋃q
j=1 ξj = P , and (iii) ξj∩ξj′ = ∅

for all j 6= j′. We refer to each ξj as a class and for any
given edge (a, i) ∈ P , use c(a, i) to denote the class that
this edge belongs to, i.e., (a, i) ∈ c(a, i) and c(a, i) ∈ C.
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Given a capacity vector b = (bξ1 , . . . , bξq ) indexed on
the set of classes, we say that a matching M ⊆ P is a
feasible solution to the capacitated matching problem if:
a) for every a ∈ A (resp., i ∈ I), the matching must

contain at most one edge containing this agent (resp.,
incentive)

b) and, the total number of edges from each class ξj
contained in the matching cannot be larger than bξj .

In summary, the capacitated matching problem can be
formulated as the following integer program:

max
∑

(a,i)∈P w(a, i)x(a, i)

s.t.
∑
i∈I x(a, i) ≤ 1 ∀a ∈ A∑
a∈A x(a, i) ≤ 1 ∀i ∈ I∑
(a,i)∈ξj x(a, i) ≤ bξj , ∀ξj ∈ C

x(a, i) ∈ {0, 1}, ∀(a, i) ∈ P

(P1)

We use the notation {P, C, b, (w(a, i))(a,i)∈P} for a ca-
pacitated matching problem instance. In (P1), w(a, i)
refers to the weight or the reward to be obtained from the
given edge. The term x(a, i) is an indicator on whether
the edge (a, i) is included in the solution to (P1). Clearly,
the goal is to select a maximum weight matching subject
to the constraints. In our online bandit problem, the de-
signer’s actual goal in a fixed epoch k is to maximize the
quantity

∑
(a,i)∈P r

θa(tk)
a,i x(a, i), i.e., w(a, i) = r

θa(tk)
a,i .

However, since the reward distributions and the current
user type are not known beforehand, our MG-EUCB al-
gorithm (detailed in Section 4.2) approximates this ob-
jective by setting the weights to be the average observed
reward from the edges in combination with the corre-
sponding confidence bounds.

2.2 TECHNICAL CHALLENGES

There are two key obstacles involved in extending tra-
ditional bandit approaches to our combinatorial setting
with evolving rewards, namely, cascading sub-optimality
and correlated convergence. The first phenomenon oc-
curs when an agent a is matched to a sub-optimal arm i
(incentive) because its optimal arm i∗ has already been
assigned to another agent. Such sub-optimal pairings
have the potential to cascade, e.g., when another agent
a1 who is matched to i in the optimal solution can no
longer receive this incentive and so on. Therefore, unlike
the classical bandit analysis, the selection of sub-optimal
arms cannot be directly mapped to the empirical rewards.

Correlated Convergence. As mentioned previously, in
our model, the rewards depend on the type or state of an
agent, and hence, the reward distribution on any given
edge (a, i) can vary even when the algorithm does not
select this edge. As a result, a naı̈ve application of a ban-
dit algorithm can severely under-estimate the expected

reward on each edge and eventually converge to a sub-
optimal matching. A concrete example of the poor con-
vergence effect is provided in Example 1. In Section 4.2,
we describe how our central bandit algorithm limits the
damage due to cascading while simultaneously avoiding
the correlated convergence problem.

Example 1 (Failure of Classical UCB). Consider a
problem instance with two agents A = {a1, a2}, two
incentives I = {i1, i2} and identical state space i.e.,
Θa1 = Θa2 = {θ1, θ2}. The transition matrices and
deterministic rewards for the agents for being matched
to each incentive are depicted pictorially below: we as-
sume that ε > 0 is a sufficiently small constant.

θ1 θ2

rθ1a1,i1 = 0 rθ2a1,i1 = 1

1

ε
0 1− ε

Edge
(a1, i1)

θ1 θ2

rθ1a1,i2 = 0.5 rθ2a1,i2 = 0.5

ε

1
1− ε 0

Edge
(a1, i2)

θ1 θ2

rθ1a2,i1 = 0.5 rθ2a2,i1 = 0.5

ε

1
1− ε 0

Edge
(a2, i1)

θ1 θ21

ε
0 1− ε

Edge
(a2, i2)

rθ1a2,i2 = 0 rθ2a2,i2 = 1

Agent a1 Agent a2

Figure 1: (a) State transition diagram and reward for each edge:
note that the state is associated with the agent and not the edge.

Clearly, the optimal strategy is to repeatedly chose the
matching {(a1, i1), (a2, i2)} achieving a reward of (al-
most) two in each epoch. An implementation of tra-
ditional UCB for the matching problem—e.g., the ap-
proach in (Chen et al., 2016; Gai et al., 2011; Kveton
et al., 2015)—selects a matching based on the empirical
rewards and confidence bounds for a total of

∑n
k=1 τk

iterations, which are then divided into epochs for con-
venience. This approach converges to the sub-optimal
matching of M = {(a1, i2), (a2, i1)}. Indeed, every
time the algorithm selects this matching, both the agents’
states are reset to θ1 and when the algorithm explores
the optimum matching, the reward consistently happens
to be zero since the agents are in state θ1. Hence, the
rewards for the (edges in the) optimum matching are
grossly underestimated.

3 GREEDY OFFLINE MATCHING

In this section, we consider the capacitated matching
problem in the offline case, where the edge weights are
provided as input. The techniques developed in this sec-
tion serve as a base in order to solve the more general
online problem in the next section. More specifically, we
assume that we are given an arbitrary instance of the ca-
pacitated matching problem {P, C, b, (w(a, i))(a,i)∈P}.
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Algorithm 1 Capacitated-Greedy Matching Algorithm

1: function MG((w(a, i))(a,i)∈P , b)
2: G∗ ← ∅, E′ ← P
3: while E′ 6= ∅:
4: Select (a, i) = arg max(a′,i′)∈E′ w(a′, i′)
5: if|G∗ ∩ c(a, i)| < bc(a,i) then
6: G∗ ← G∗ ∪ {(a, i)}
7: E′ ← E′ \ {(a′, i′)} ∀(a′, i′) : a′ = a or i′ = i

else
8: E′ ← E′ \ {(a, i)}
9: return G∗

10: end function

Given this instance, the designer’s objective is to
solve (P1). Surprisingly, this problem turns out to be NP-
Hard and thus cannot be optimally solved in polynomial
time (Garey and Johnson, 1979)—this marks a stark con-
trast with the classic maximum weighted matching prob-
lem, which can be solved efficiently using the Hungarian
method (Kuhn, 1955).

In view of these computational difficulties, we develop
a simple greedy approach for the capacitated matching
problem and formally prove that it results in a one-third
approximation to the optimum solution. The greedy
method studied in this work comes with a multitude of
desirable properties that render it suitable for matching
problems arising in large-scale economies. Firstly, the
greedy algorithm has a running time of O(m2 logm),
where m is the number of agents—this near-linear ex-
ecution time in the number of edges makes it ideal for
platforms comprising of a large number of agents. Sec-
ondly, since the output of the greedy algorithm depends
only on the ordering of the edge weights and is not sen-
sitive to their exact numerical value, learning approaches
tend to converge faster to the ‘optimum solution’. This
property is validated by our simulations (see Figure 2c).
Finally, the performance of the greedy algorithm in prac-
tice (e.g., see Figure 2b) appears to be much closer to the
optimum solution than the 1/3 approximation guaranteed
by Theorem 1 below.

3.1 ANALYSIS OF GREEDY ALGORITHM

The greedy matching is outlined in Algorithm 1. Given
an instance {P, C, b, (w(a, i))(a,i)∈P}, Algorithm 1
‘greedily’ selects the highest weight feasible edge in each
iteration—this step is repeated until all available edges
that are feasible are added to G∗. Our main result in this
section is that for any given instance of the capacitated
matching problem, the matching G∗ returned by Algo-
rithm 1 has a total weight that is at least 1/3–rd that of
the maximum weight matching.

Theorem 1. For any given capacitated matching prob-
lem instance {P, C, b, (w(a, i))(a,i)∈P}, let G∗ denote
the output of Algorithm 1 and M∗ be any other feasi-
ble solution to the optimization problem in (P1) includ-
ing the optimum matching. Then,

∑
(a,i)∈M∗ w(a, i) ≤

3
∑

(a,i)∈G∗ w(a, i).

The proof is based on a charging argument that takes
into account the capacity constraints and can be found
in Section B.1 of the supplementary material. At a high
level, we take each edge belonging to the benchmarkM∗

and identify a corresponding edge inG∗ whose weight is
larger than that of the benchmark edge. This allows us to
charge the weight of the original edge to an edge in G∗.
During the charging process, we ensure that no more than
three edges in M∗ are charged to each edge in G∗. This
gives us an approximation factor of three.

3.2 PROPERTIES OF GREEDY MATCHINGS

We conclude this section by providing a hierarchi-
cal decomposition of the edges in P for a fixed in-
stance {P, C, b, (w(a, i))(a,i)∈P}. In Section 4.1, we
will use this property to reconcile the offline version
of the problem with the online bandit case. Let G∗ =
{g∗1 , g∗2 , . . . , g∗m} denote the matching computed by Al-
gorithm 1 for the given instance such that w(g∗1) ≥
w(g∗2) ≥ . . . ≥ w(g∗m) without loss of generality2. Next,
let G∗j = {g∗1 , g∗2 , . . . , g∗j } for all 1 ≤ j ≤ m—i.e. the j
highest-weight edges in the greedy matching.

For each 1 ≤ j ≤ m, we define the infeasibility set HG∗
j

as the set of edges in P that when added to G∗j violates
the feasibility constraints of (P1). Finally, we use LG

∗
j to

denote the marginal infeasibility sets—i.e. LG
∗

1 = HG∗
1

and
LG
∗

j = HG∗
j \HG∗

j−1, ∀ 2 ≤ j ≤ m. (1)

We note that the marginal infeasibility sets denote a mu-
tually exclusive partition of the edge set minus the greedy
matching—i.e.,

⋃
1≤j≤m L

G∗
j = P \ G∗. Moreover,

since the greedy matching selects its edges in the de-
creasing order of weight, for any g∗j ∈ G∗, and every
(a, i) ∈ LG∗j , we have that w(g∗j ) ≥ w(a, i).

Armed with our decomposition of the edges in P \ G∗,
we now present a crucial structural lemma. The follow-
ing lemma identifies sufficient conditions on the local
ordering of the edge weights for two different instances
under which the outputs of the greedy matching for the
instances are non-identical.
Lemma 1. Given instances {P, C, b, (w(a, i))(a,i)∈P}
and {P, C, b, (w̃(a, i))(a,i)∈P} of the capacitated match-
ing problem, let G∗ = {g∗1 , g∗2 , . . . , g∗m} and G̃ denote

2If g = (a, i), we abuse notation and let w(g) = w(a, i).
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the output of Algorithm 1 for these instances, respec-
tively. Let E1, E2 be conditions described as follows:

E1 ={∃j < j′ |(w̃(g∗j ) < w̃(g∗j′)) ∧ (g∗j′ ∈ G̃)}
E2 ={∃g∗j ∈ G∗, (a, i) ∈ LG

∗
j |

(w̃(g∗j ) < w̃(a, i)) ∧ ((a, i) ∈ G̃)}.

If G∗ 6= G̃, then at least one of E1 or E2 must be true.

Lemma 1 is fundamental in the analysis of our MG-
EUCB algorithm because it provides a method to map the
selection of each sub-optimal edge to a familiar condition
comparing empirical rewards to stationary rewards.

4 ONLINE MATCHING—BANDIT
ALGORITHM

In this section, we propose a multi-armed bandit algo-
rithm for the capacitated matching problem and analyze
its regret. For concreteness, we first highlight the in-
formation and action sets available to the designer in
the online problem. The designer is presented with a
partial instance of the matching problem without the
weights, i.e., {P, C, b} along with a fixed time horizon
of n epochs but has the ability to set the parameters
(τ1, τ2, . . . , τn), where τk is the number of iterations un-
der epoch k. The designer’s goal is to design a policy α
that selects a matching α(k) in the k–th epoch that is a
feasible solution for (P1). At the end of the k–th epoch,
the designer observes the average reward rθa(k)

a,i for each
(a, i) ∈ α(k) but not the agent’s type. We abuse notation
and take θa(k) to be the agent’s state at the beginning
of epoch k. The designer’s objective is to minimize the
regret over the finite horizon.

The expected regret of a policy α is the difference in
the expected aggregate reward of a benchmark match-
ing and that of the matching returned by the policy,
summed over n epochs. Owing to its favorable prop-
erties (see Section 3), we use the greedy matching on
the stationary state rewards as our benchmark. Measur-
ing the regret with respect to the unknown stationary-
distribution is standard with MDPs (e.g., see (Gai et al.,
2011; Tekin and Liu, 2010, 2012)). Formally, let
G∗ denote the output of Algorithm 1 on the instance
{P, C, b, (µa,i)(a,i)∈P}—i.e., with the weights w(a, i)
equal the stationary state rewards µa,i.
Definition 1. The expected regret of a policy α with re-
spect to the greedy matching G∗ is given by

Rα(n) = n
∑

(a,i)∈G∗
µa,i −

n∑

k=1

∑

(a,i)∈α(k)

E[r
θa(k)
a,i ],

where the expectation is with respect to the reward and
the state of the agents during each epoch.

4.1 REGRET DECOMPOSITION

As is usual in this type of analysis, we start by decompos-
ing the regret in terms of the number of selections of each
sub-optimal arm (edge). We state some assumptions and
define notation before proving our generic regret decom-
position theorem. A complete list of the notation used
can be found in Section A of the supplementary mate-
rial.
1. For analytic convenience, we assume that the number

of agents and incentives is balanced and therefore,
|A| = |I| = m. WLOG, every agent is matched to
some incentive in G∗; if this is not the case, we can
add dummy incentives with zero reward.

2. Suppose that G∗ = {g∗1 , g∗2 , . . . , g∗m} such that
µg∗1 ≥ . . . ≥ µg∗m and let i∗(a) denote the incen-
tive that a is matched to in G∗. Let L∗1, . . . L

∗
m be the

marginal infeasibility sets as defined in (1).
3. Suppose that τ0 ≥ 1 and τk = τ0 + ζk for some

non-negative integer ζ.
Let 1{·} be the indicator function—e.g., 1{(a, i) ∈
α(k)} is one when the edge (a, i) belongs to the match-
ing α(k), and zero otherwise. Define Tαa,i(n) =∑n
k=1 1{(a, i) ∈ α(k)} to be the random variable that

denotes the number of epochs in which an edge is se-
lected under an algorithm α. By relating E[Tαa,i(n)] to
the regret Rα(n), we are able to provide bounds on the
performance of α.

By adding and subtracting
∑

(a,i)∈P E[Tαa,i(n)]µa,i from
the equation in Definition 1, we get that

Rα(n) =
∑

(a,i)∈P E[Tαa,i(n)](µa,i∗(a) − µa,i)
+
∑n
k=1

∑
(a,i)∈P E[1{(a, i) ∈ α(k)}

(
µa,i − rθa(k)

a,i

)
].

To further simplify the regret, we separate the edges
in P by introducing the notion of a sub-optimal edge.
Formally, for any given a ∈ A, define Sa :=
{(a, i) | µa,i∗(a) ≥ µa,i ∀i ∈ I} and S :=

⋃
a∈A Sa.

Then, the regret bound in the above equation can be sim-
plified by ignoring the contribution of the terms in P \S.
That is, since µa,i∗(a) < µa,i for all (a, i) ∈ P \ S ,

Rα(n) ≤∑(a,i)∈S E[Tαa,i(n)](µa,i∗(a) − µa,i)
+
∑n
k=1

∑
(a,i)∈P E[1{(a, i) ∈ α(k)}

(
µa,i − rθa(k)

a,i

)
].

(2)

Recall from the definition of the marginal infeasibility
sets in (1) that for any given (a, i) ∈ P \G∗, there exists
a unique edge g∗j ∈ G∗ such that (a, i) ∈ L∗j . Define
L−1(a, i) := g∗j ∈ G∗ such that (a, i) ∈ L∗j . Now, we
can define the reward gap for any given edge as follows:

∆a,i =





µa,i∗(a) − µa,i, if (a, i) ∈ S
µL−1(a,i) − µa,i, if (a, i) ∈ (P \G∗) \ S
µg∗j−1

− µg∗j , if (a, i) = g∗j for j ≥ 2
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This leads us to our main regret decomposition result
which leverages mixing times for Markov chains (Fill,
1991) along with Equation (2) in deriving regret bounds.
For an aperiodic, irreducible Markov chain Pa,i, using
the notion that it convergences to its stationary state un-
der repeated plays of a fixed action, we can prove that for
every arm (a, i), there exists a constant Ca,i > 0 such
that

∣∣E
[
µa,i − rθa(k)

a,i

]∣∣ ≤ Ca,i/τk—in fact, this result

holds for all type distributions β(k)
a of the agent.

Proposition 1. Suppose for each (a, i) ∈ P , Pa,i is an
aperiodic, irreducible Markov chain with corresponding
constant Ca,i. Then, for a given algorithm α where τk =
τ0 + ζk for some fixed ζ > 0, we have that

Rα(n) ≤∑(a,i)∈S Eα
[
Tαa,i(n)

]
(∆a,i +

Ca,i
τ0

)

+m
C∗
ζ

(
1 + log

(
ζ(n− 1)/τ0 + 1

))
.

The proof of this proposition is in Section B.2 of the sup-
plementary material.

4.2 MG-EUCB ALGORITHM AND ANALYSIS

In the initialization phase, the algorithm computes and
plays a sequence of matchingsM1,M2, . . . ,Mp for a to-
tal of p epochs. The initial matchings ensure that ev-
ery edge in P is selected at least once—the computa-
tion of these initial matchings relies on a greedy cov-
ering algorithm that is described in Section C.1 of the
supplementary material. Following this, our algorithm
maintains the cumulative empirical reward r̄a,i for ev-
ery (a, i) ∈ P . At the beginning of (say) epoch k, the
algorithm computes a greedy matching for the instance
{P, C, b, (w(a, i))(a,i)∈P} where w(a, i) = r̄a,i/Ta,i +
ca,i, i.e., the average empirical reward for the edge added
to a suitably chosen confidence window. The INCENT(·)
function (Algorithm 2, described in the supplementary
material since it is a trivial function) plays each edge in
the greedy matching for τk iterations, where τk increases
linearly with k. This process is repeated for n−p epochs.
Prior to theoretically analyzing MG-EUCB, we return to
Example 1 in order to provide intuition for how the algo-
rithm overcomes correlated convergence of rewards.

Revisiting Example 1: Why does MG-EUCB work? In
Example 1, the algorithm initially estimates the empiri-
cal reward of (a1, ii) and (a2, i2) to be zero respectively.
However, during the UCB exploration phase, the match-
ing M1 = (a1, i1), (a2, i2) is played again for epoch
length > 1 and the state of agent a1 moves from θ1 to
θ2 during the epoch. Therefore, the algorithm estimates
the average reward of each edge within the epoch to be
≥ 0.5, and the empirical reward increases. This contin-
ues as the epoch length increases, so that eventually the

Algorithm 2 MatchGreedy-EpochUCB

1: procedure MG-EUCB(ζ, τ0,P)
2: t1 ← 0, r̄a,i ← 0 & Ta,i ← 1 ∀(a, i) ∈ P
3: M1,M2, . . . ,Mp ⊂ P s.t. (a, i) ∈ Mj ⇔ (a, i) /∈
M` ∀` 6= j . see Supplement C.1 for details

4: INCENT(·) . see Alg. 2 in Supplement C
5: for1 ≤ n ≤ m . play each arm once
6: (r̄a,i)(a,i)∈Mn

← INCENT(Mn, tn, n, τ0, ζ)
7: tn+1 ← tn + τ0 + ζn
8: end for
9: while n > m

10: MG = MG((r̄a,i/Ta,i + c
Ta,i
a,i (n))(a,i)∈P )

11: (ra,i(tn))(a,i)∈MG
← INCENT(MG, tn, n, τ0, ζ)

12: r̄a,i ← r̄a,i + 1
τ0+ζnra,i(tn) ∀(a, i) ∈MG

13: Ta,i ← Ta,i + 1 ∀(a, i) ∈MG

14: tn+1 ← tn + τ0 + ζn; n← n+ 1
15: end while
16: end procedure

empirical reward for (a1, i1) exceeds that of (a1, i2) and
the algorithm correctly identifies the optimal matching as
we move from exploration to exploitation.

In order to characterize the regret of the MG-EUCB algo-
rithm, Proposition 1 implies that it is sufficient to bound
the expected number of epochs in which our algorithm
selects each sub-optimal edge. The following theorem
presents an upper bound on this quantity.

Theorem 2. Consider a finite set of m agents A and
incentives I with corresponding aperiodic, irreducible
Markov chains Pa,i for each (a, i) ∈ P . Let α be the
MG-EUCB algorithm with mixing time sequence {τk}
where τk = τ0 + ζk, τ0 > 0, and ζ > 0. Then for every
(a, i) ∈ S,

Eα[Ta,i(n)] ≤ 4m2

∆2
a∗,i∗

(
ρa∗,i∗√
τ0

+
√

6 log n+ 4 logm
)2

+ 2(1 + log(n))

where (a∗, i∗) = argmax(a1,i1)∈P\g∗1

⌈
4

∆2
a1,i1

(ρa1,i1√
τ0

+
√

6 log n+ 4 logm
)2⌉

, and ρa,i is a constant specific to

edge (a, i).

The full proof of the theorem is provided can be found in
the supplementary material.

Proof (sketch.) There are three key ingredients to the
proof: (i) linearly increasing epoch lengths, (ii) overcom-
ing cascading errors, and (iii) application of the Azuma-
Hoeffding concentration inequality.

By increasing the epoch length linearly, MG-EUCB en-
sures that as the algorithm converges to the optimal
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Figure 2: Synthetic Experiments: Comparison of MG-EUCB(+) and H-EUCB(+) to their respective offline solutions (G- and H-
optimal, respectively) and to C-UCB (classical UCB). We use the following set up: (i) |A| = |I| = |Θa| = 10 (see Supplement D
for more extensive experiments) (ii) each state transition matrix Pa,i associated with an arm (a, i) ∈ P was selected uniformly
at random within the class of aperiodic and irreducible stochastic matrices; (iii) the reward for each arm, state pair rθa,i is drawn
i.i.d. from a distribution Tr(a, i, θ) belonging to either a Bernoulli, Uniform, or Beta distribution; (iv) τ0 = 50 and ζ = 1.

matching, it also plays each arm for a longer duration
within an epoch. This helps the algorithm to progres-
sively discard sub-optimal arms without selecting them
too many times when the epoch length is still small. At
the same time, the epoch length is long enough to al-
low for sufficient mixing and separation between multi-
ple near-optimal matchings. If we fix the epoch length
as a constant, the resulting regret bounds are consider-
ably worse because the agent states may never converge
to the steady-state distributions.

To address cascading errors, we provide a useful charac-
terization. For a given (a, i), suppose that uka,i(t) refers
to the average empirical reward obtained from edge (a, i)
up to epoch t−1 plus the upper confidence bound param-
eter, given that edge (a, i) has been selected for exactly
k times in epochs 1 to t − 1 . For any given epoch k
where the algorithm selects a sub-optimal matching, i.e.,
α(k) 6= G∗, we can apply Lemma 1 and get that at least
one of the following conditions must be true:

1. 1{∃j < j′|
(
ukg∗

j′
(t) > ukg∗j (t)

)
∧ (g∗j′ ∈ α(t))}

2. 1{∃j, (a, i) ∈ L∗j |
(
ukg∗j (t) < uka,i(t)

)
∨ ((a, i) ∈

α(k))} = 1

This is a particularly useful characterization because it
maps the selection of each sub-optimal edge to a familiar
condition that compares the empirical rewards to the sta-
tionary rewards. Therefore, once each arm is selected for
O(log(n)) epochs, the empirical rewards approach the
‘true’ rewards and our algorithm discards sub-optimal
edges. Mathematically, this can be written as

Eα[Ta′,i′(n)] = 1 +
∑n
t=p+1 1{(a′, i′) ∈ α(t)}

≤ `m2 +
∑m
j=1

∑
(a,i)∈L+

j

∑n
t=p+1

∑t−1
s=1

∑t−1
k=`

(

1{usg∗j (t) ≤ uka,i(t)}
)
,

where ` is some carefully chosen constant, L+
j = L∗j ∪

{g∗j+1} and L+
m = L∗m.

With this characterization, for each s, we find an upper
bound on the probability of the event {usg∗j (t) ≤ uka,i(t)}.
However, this is a non-trivial task since the reward ob-
tained in any given epoch is not independent of the
previous actions. Specifically, the underlying Markov
process that generates the rewards is common across
the edges connected to any given agent in the sense,
that the initial distribution for each Markov chain
that results from pulling an edge is the distribution at
the end of the preceding pull. Therefore, we employ
Azuma-Hoeffding (Azuma, 1967; Hoeffding, 1963), a
concentration inequality that does not require indepen-
dence in the arm-based observed rewards. Moreover,
unlike the classical UCB analysis, the empirical reward
can differ from the expected stationary reward due to
the distributions Tr(a, i, θ) and βka,i 6= πa,i. To account
for this additional error term, we use bounds on the
convergence rates of Markov chains to guide the choice
of the confidence parameter cka,i(t) in Algorithm 2.
Applying the Azuma-Hoeffding inequality, we can show
that with high probability, the difference between the
empirical reward and the stationary reward of edge (a, i)
is no larger than cka,i(t).

As a direct consequence of Proposition 1 and Theorem 2,
we get that for a fixed instance, the regret only increases
logarithmically with n.

5 EXPERIMENTS

In this section, we present a set of illustrative experi-
ments with our algorithm (MG-EUCB) on synthetic and
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Figure 3: Bike-share Experiments: Figures 3a and 3b compare the efficiency (percentage of demand satisfied) of the bike-share
system with two demand models under incentive matchings selected by MG-EUCB+ with upper and lower bounds given by the
system performance when the incentives are computed via the benchmark greedy matching that uses the state information and when
no incentives are offered respectively. In Figure 3c we plot the mean reward of the MG-EUCB+ algorithm with static and random
demand which gives the expected number of agents who accept an incentive within each epoch.

real data. We observe much faster convergence with
the greedy matching as compared to the Hungarian al-
gorithm. Moreover, as is typical in the bandit literature
(e.g., (Auer et al., 2002)), we show that a tuned version
of our algorithm (MG-EUCB+), in which we reduce the
coefficient on the log(n) term in the UCB ‘confidence
parameter’ from six to three, further improves the con-
vergence of our algorithm. Finally we show that our al-
gorithm can be effectively used as an incentive design
scheme to improve the performance of a bike-share sys-
tem.

5.1 SYNTHETIC EXPERIMENTS

We first highlight the failure of classical UCB ap-
proaches (C-UCB)—e.g., as in (Gai et al., 2011)—for
problems with correlated reward evolution. In Figure 2a,
we demonstrate that C-UCB converges almost imme-
diately to a suboptimal solution, while this is not the
case for our algorithm (MG-EUCB+). In Figure 2b,
we compare MG-EUCB and MG-EUCB+ with a vari-
ant of Algorithm 2 that uses the Hungarian method (H-
EUCB) for matchings. While H-EUCB does have a
‘marginally’ higher mean reward, Figure 2c reveals that
the MG-EUCB and MG-EUCB+ algorithms converge
much faster to the optimum solution of the greedy match-
ing than the Hungarian alternatives.

5.2 BIKE-SHARE EXPERIMENTS

In this problem, we seek to incentivize participants in
a bike-sharing system; our goal is to alter their intended
destination in order to balance the spatial supply of avail-
able bikes appropriately and meet future user demand.
We use data from the Boston-based bike-sharing service
Hubway (hub) to construct the example. Formally, we

consider matching each agent a to an incentive i = s′a,
meaning the algorithm proposes that agent a travel to
station s′a as opposed to its intended destination sa (po-
tentially, for some monetary benefit). The agent’s state
θa controls the probability of accepting the incentive by
means of a distance threshold parameter and a parameter
of a Bernouilli distribution, both of which are drawn uni-
formly at random. More details on the data and problem
setup can be found in Section D of the supplementary
material.

Our bike-share simulations presented in Figure 3 show
approximately a 40% improvement in system perfor-
mance when compared to an environment without incen-
tives and convergence towards an upper bound on system
performance. Moreover, our algorithm achieves this sig-
nificant performance increase while on average matching
less than 1% of users in the system to an incentive.

6 Conclusion

We combine ideas from greedy matching, the UCB
multi-armed bandit strategy, and the theory of Markov
chain mixing times to propose a bandit algorithm for
matching incentives to users, whose preferences are un-
known a priori and evolving dynamically in time, in a
resource constrained environment. For this algorithm,
we derive logarithmic gap-dependent regret bounds de-
spite the additional technical challenges of cascading
sub-optimality and correlated convergence. Finally, we
demonstrate the empirical performance via examples.
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Abstract

We introduce a new class of sparse multi-
prototype classifiers, designed to combine
the computational advantages of sparse
predictors with the non-linear power of
prototype-based classification techniques.
This combination makes sparse multi-
prototype models especially well-suited for
resource constrained computational plat-
forms, such as the IoT devices. We cast our
supervised learning problem as a convex-
concave saddle point problem and design
a provably-fast algorithm to solve it. We
complement our theoretical analysis with
an empirical study that demonstrates the
merits of our methodology.

1 INTRODUCTION

As modern machine-learned models become more
accurate, they also tend to grow bigger and become
more expensive to compute. Deep neural networks,
massive decision tree ensembles, and other contem-
porary machine learning predictors can have hun-
dreds of millions of parameters, resulting in a large
memory footprint and a high computational cost.
These models become especially prohibitive when
the goal is to deploy them on resource impoverished
platforms, such as wearable computers or IoT de-
vices (Kumar et al. , 2017). Similarly, their high
cost makes it difficult to build systems that need to
keep track of many different models, such as those
that maintain a separate model per user. Unsurpris-
ingly, these issues have fostered a renewed interest in
learning models that strike a better balance between
accuracy and cost.

Efforts to develop machine learning techniques that

produce more compact models can be broadly bi-
furcated into two schools of thought. The first ap-
proach is to train a large and accurate model topol-
ogy, and subsequently compress it using an approxi-
mation method. Some of these approximation tech-
niques include pruning (Han et al. , 2016; Nan et al.
, 2016; Luo et al. , 2017), low-rank matrix approxi-
mation (Sainath et al. , 2013; Nakkiran et al. , 2015),
hashing (Chen et al. , 2015), and parameter quan-
tization or binarization (Hubara et al. , 2016; Han
et al. , 2016). Another popular technique is to use a
large model to generate training data for a smaller
model (Bucila et al. , 2006).

The second approach incorporates compression more
intimately into the training objective. For example,
the well-known Lasso (Tibshirani, 1996) and Elastic-
Net (Zou & Hastie, 2005) algorithms use a sparsity-
inducing regularization term to control the sparsity
of a linear model. The resulting sparse predictor re-
lies only on a small subset of the available features,
and is therefore economical to store and make pre-
dictions. The weakness of these approaches is that
linear predictors are typically not expressive enough
to achieve state-of-the-art accuracy. Another com-
mon idea is to define models that are specified by a
small number of prototypes, for example, by learn-
ing a Support Vector Machine (SVM) with a small
support set (Dekel & Singer, 2007; Dekel et al. ,
2008), or by finding a compressed set of reference
points for a Nearest Neighbor model (Kusner et al.
, 2014; Zhong et al. , 2017; Gupta et al. , 2017). A
main drawback of these techniques is that they typi-
cally require solving highly non-convex optimization
problems, which makes it difficult to guarantee their
convergence and optimality. Another shortcoming of
many of these approaches is that the prototypes that
they learn are typically dense.

In this paper, we subscribe to the second approach
mentioned above, and address the cost-accuracy
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tradeoff by designing the training objective appro-
priately. Specifically, we introduce a class of models
that we call Sparse Multi-Prototype (SMP) classi-
fiers. SMP classifiers attempt to combine the spar-
sity benefits of linear models with the non-linear
power of multi-prototype methods. Namely, each
class is associated with a small set of prototypes,
and each of those prototypes is sparse. But for their
sparsity, SMP classifiers are reminiscent of multi-
class SVMs (Weston & Watkins, 1999; Crammer &
Singer, 2001), and their multi-prototype extensions
(Aiolli & Sperduti, 2005).

We formulate the training procedure for SMP clas-
sifiers as a convex optimization problem. Specifi-
cally, we cast the SMP training problem as a convex-
concave saddle point optimization problem and show
that this formulation admits fast convergence via a
primal-dual proximal point algorithm due to Cham-
bolle and Pock (Chambolle & Pock, 2011, 2016; He
et al. , 2017; Zhang & Xiao, 2015; Yu et al. , 2017).
On one hand, our formulation induces sparsity by
incorporating a regularization term, similar to the
`1 term used in Lasso and Elastic-Net. On the other
hand, it controls the number of prototypes using an-
other regularization term, similar to the one used
to derive convex formulations of clustering (Hocking
et al. , 2011) and regression (Feng et al. , 2012). Our
optimization formulation and algorithm are different
from the ones used in these papers.

The rest of the paper is organized as follows. We
set up the problem in Section 2. We then show,
in Section 3, how our problem can be posed as a
saddle point problem that admits fast and provable
convergence via the Chambolle-Pock procedure. We
present the results of our experiments in Section 4.

2 PROBLEM FORMULATION

Let Y be a finite set of labels. Suppose that we
are given a set of training examples {(xi, yi)}mi=1 ,
where each xi ∈ Rn and yi ∈ Y. Without loss of
generality, we assume an ordering of the training
examples: examples from first class precede those in
second, examples from second precede those in third,
and so on.

Our goal is to learn a classifier c : Rn 7→ Y. Assume
(without loss of generality) that c is defined by a set
of scoring functions {φy}y∈Y , where the value φy(x)
is interpreted as the score of predicting the label y
for the instance x. Using these scoring functions,

our classifier takes the form

c(x) = arg max
y∈Y

φy(x).

The classifier c(x) correctly classifies the example
(x, y) if and only if

φy(x)−max
y′ 6=y

φy′(x) > 0. (1)

We use this property to define the empirical loss
m∑

i=1
`

(
φyi(xi)−max

y 6=yi
φy(x)

)
,

where ` is a convex monotonically non-increasing
loss function that upper bounds the error indica-
tor function (for instance, ` could be hinge-loss or
log-loss). Clearly, this loss is an upper-bound on the
number of multiclass classification mistakes.

If we use a linear score function for each class, i.e.,

φy(x) = wy · x, y ∈ Y,

where each wy ∈ Rn is called a class prototype, and
· denotes the inner product of two vectors, then we
obtain the multi-class support vector machine (We-
ston & Watkins, 1999; Crammer & Singer, 2001).

In this paper, we allow multiple prototypes for each
class (Aiolli & Sperduti, 2005). Suppose we have
in total N prototypes w1, . . . , wN ∈ Rn, and let Jy
be the set of the prototype indices associated with
class y for each y ∈ Y. We let the score function for
class label y be

φy(x) = max
j∈Jy

wj · x.

Since ` is monotonically non-increasing, we have

`

(
φyi(xi)−max

y 6=yi
φy(xi)

)

= `

(
max
j∈Jyi

wj · xi − max
j /∈Jyi

wj · xi
)

≤ `

(
wj(i) · xi − max

j /∈Jyi
wj · xi

)

= max
j /∈Jyi

`
(
(wj(i) − wj) · xi

)
,

where j(i) ∈ Jyi is any fixed assignment of prototype
to the example (xi, yi). The last expression above is
a convex function in all the prototypes w1, . . . , wN ,
and so is the average loss function

1
m

m∑

i=1
max
j /∈Jyi

`
(
(wj(i) − wj) · xi

)
. (2)
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Note that j(i) needs to be fixed before we optimize
over the prototypes, but is not required to maximize
wj ·xi over j ∈ Jyi . This relaxation helps us to obtain
a convex upper bound on the loss in the general case.

Setting N = |Y| and |Jy| = 1 recovers the loss
for the multi-class SVM, and we have j(i) =
arg maxj∈Jyi wj · xi. In the other extreme case, we
can let N = m and associate each training exam-
ple (xi, yi) with a prototype wi. In this case, we
can have φyi(xi) = wi · xi = arg maxj∈Jyi wj · xi.
However, this approach requires excessive amount
of storage and computation, and also may cause sig-
nificant overfitting.

In practice, we can cluster the training examples in
each class into p groups, where p is much smaller
than the number of examples in the class. Then we
can have p prototypes for each class y ∈ Y, and as-
sociate the examples in each cluster within the class
with a common prototype: j(i) = j(i′) if yi = yi′ ,
and xi and xi′ belong to the same cluster.

2.1 SMOOTHING THE LOSS

In order to leverage the fast algorithms designed for
smooth convex optimization, we focus on smooth
loss functions. In particular, we use the log-loss

`(α) = log(1 + exp(−α)).

Although this is a smooth function, the average
loss function defined in (2) is non-smooth, due to
the max operators in the sum. We can make the
loss function smooth using the usual trick of soft-
max. Specifically, we can replace the function u(z) =
maxj `(zj) with

ũ(z) = log
(

1 +
∑
j exp(−zj)

)
. (3)

As a result, the smoothed loss function is

f(W ) = 1
m

m∑

i=1
log
(

1+
∑

j /∈Jyi

exp
(
(wj − wj(i)) · xi

))
,

(4)
where W ∈ RN×n is a matrix formed by stacking
the vectors wT1 , . . . , wTN as its rows.

2.2 ENFORCING GROUP SPARSITY

Instead of relying on a separate clustering stage to
reduce the number of prototypes, we can use a more
principled approach based on convex optimization.
Suppose we start with a large number of prototypes,
for example, by having a separate prototype for each

training example. While minimizing the average loss
function, we may add the regularization term

∑

y∈Y

∑

j>i
i,j∈Jy

‖wi − wj‖∞, (5)

which encourages some of the prototypes in each
class to merge, forming a smaller set of distinct pro-
totypes.

We introduce some notations to simplify our presen-
tation. Let Wy ∈ R|Jy|×n be the matrix formed by
stacking the set of prototypes {wTj : j ∈ Jy} as its
rows. For each class y ∈ Y, we form a by × |Jy| ma-
trix By, where by =

(|Jy|
2
)
. Specifically, each row of

By corresponds to a pair (i, j) such that i < j and
i, j ∈ Jy, with value 1 at index i, -1 at index j, and
0 elsewhere. Then the penalty function in (5) can
be written as

∑

y∈Y
‖ByWy‖∞,1,

where the matrix norm ‖ · ‖∞,1 is defined as

||U ||∞,1 =
∑

i

||Ui,·||∞ =
∑

i

max
r∈[n]

|Ui,r|.

Therefore, the regularized loss can be written as

f(W ) + λ
∑

y∈Y
‖ByWy‖∞,1,

where λ > 0 is a regularization parameter and f is
the smoothed average loss defined in (4).

2.3 IMPOSING PROTOTYPE SPARSITY

In addition to the group sparsity aimed at having
fewer prototypes, we can also induce sparsity in each
prototype by adding the following regularization:

hη(Wy) , ||Wy||1,1 + η

2 ||Wy||2F ,

where ‖ · ‖F denotes the matrix Frobenius norm and

‖U‖1,1 =
∑

i

||Ui,·||1 =
∑

i

∑

r∈[n]

|Ui,r|.

In other words, hη is an elastic-net type of regular-
ization, where η is a parameter to trade off between
the `1 and `2 regularizations.

In summary, we would like to solve the following
sparse multi-prototype (SMP) classification prob-
lem:

min
W

{
f(W ) + λ

∑

y∈Y
‖ByWy‖∞,1 + µ

∑

y∈Y
hη(Wy)

}
,

(6)
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Algorithm 1 The Chambolle-Pock (CP) Algorithm
input: parameters τ , σ, and initial point (w0, v0)
Set w̄0 = w0

for t = 0, 1, 2, . . . do
vt+1 = proxσg (vt + σKw̄t)
wt+1 = proxτh

(
wt − τ

(
∇f(wt) +KT vt+1))

w̄t+1 = 2wt+1 − wt

where λ, µ > 0 are regularization hyperparameters.
This is a convex optimization problem. However,
due to the complex structure of the regularization
terms, it is not clear how to solve this minimization
problem directly in an efficient manner (e.g., how to
compute the proximal mapping of the group sparsity
regularization). In the next section, we tackle this
problem using a primal-dual first-order algorithm.

3 PRIMAL-DUAL ALGORITHM

Chambolle & Pock (2011, 2016) developed a class
of primal-dual first-order algorithms for solving the
following form of convex-concave saddle-point prob-
lems with bilinear coupling:

min
w∈Rd

max
v∈Rd′

f(w) + h(w) + 〈Kw, v〉 − g?(v), (7)

where f is convex and differentiable, and both h and
g? are convex but may be non-differentiable. In par-
ticular, g? can be considered as the conjugate func-
tion of some convex function g. Here K is a bilinear
coupling matrix of dimension d′ × d. In addition, it
is assumed that the proximal mappings of h and g?,

proxh(w) = arg min
u∈Rd

{
f(u) + 1

2 ||u− w||
2
2

}
,

proxg?(v) = arg min
z∈Rd′

{
g?(z) + 1

2 ||z − v||
2
2

}
,

can be computed efficiently. Intuitively, the proxi-
mal map proxh(w) looks for a point u that has a low
cost f(u) and is not too far from w.

Algorithm 1 shows the CP algorithm (Chambolle &
Pock, 2016) for solving the convex-concave saddle-
point problem (7). Suppose ∇f is Lipschitz contin-
uous with Lipschitz constant Lf , i.e.,

‖∇f(u)−∇f(w)‖2 ≤ Lf‖u− w‖2, ∀u,w ∈ Rd,

and the spectral norm of K is bounded by L, i.e.,
‖K‖ ≤ L. Chambolle & Pock (2016) showed that
this algorithm enjoys an O(1/t) convergence rate
(the reduction of optimization error after t itera-
tions) provided that the step size parameters σ and

τ satisfy the condition
(

1
τ
− Lf

)
1
σ
≥ L2. (8)

In the rest of this section, we show how to transform
the SMP problem (6) into the form of (7), and how
to compute the relevant proximal mappings as well
as choose the step sizes.

3.1 SADDLE-POINT FORMULATION

Let g(U) = ‖U‖∞,1, and let 〈U, V 〉 denote the in-
ner product between the two matrices, i.e., 〈U, V 〉 =
Tr(UTV ). The conjugate function of g is defined as

g?(V ) = max
U

{
〈U, V 〉−g(U)

}
=
{

0 if ‖V ‖1,∞ ≤ 1
+∞ otherwise,

where ‖V ‖1,∞ = maxi ‖Vi,·‖1 = maxi
∑
j |Vi,j | is the

dual norm of ‖ · ‖∞,1. We replace the group sparsity
regularizations gy(ByWy) = ‖ByWy‖∞,1 in (6) by

max
Vy

{
〈ByWy, Vy〉 − g?y(Vy)

}
,

which yields the convex-concave saddle-point prob-
lem

min
W

max
V

{
f(W ) + µ

∑

y∈Y
hη(Wy)

+ λ
∑

y∈Y

(
〈ByWy, Vy〉 − g?y(Vy)

)}
. (9)

Here the subscript y in gy and g?y indicates that their
arguments may have different dimensions; more
specifically, Vy ∈ Rby×n with by =

(|Jy|
2
)
. With some

delicate vectorization of the matrix variables, we can
put the formulation from (9) in the exact form of (7).

Without loss of generality, let the multi-class labels
be {1, 2, . . . , |Y|}. Denote by vec(A) the column vec-
tor formed by stacking the columns of matrix A on
top of one another. By a slight abuse of notation,
we define

vec(W ) , [vec(W>1 )> vec(W>2 )> . . . vec(W>|Y|)]>.

Note that vec(W ) ∈ RNn, where N is the total num-
ber of prototypes. Likewise, we form vec(V ) ∈ Rbn,
where b ,

∑
y∈Y by, by concatenating the vectoriza-

tions of {Vy}. Let Id and 0d be, respectively, the
identity matrix and the zero matrix of order d. Let
1d be a d-dimensional vector with all coordinates
set to 1. We use A1 ⊗ A2 to denote the Kronecker
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product of any two vectors or matrices A1 and A2.
Finally, we represent the kth standard basis in R|Y|

by ek, i.e., ek has coordinate k set to 1 and all the
others set to 0.

With the above notations, and letting w̃ = vec(W )
and ṽ = vec(V ), we can show that the saddle-point
problem in (9) can be expressed as

min
w̃∈RNn

min
ṽ∈Rbn

f̃(w̃) + 〈B̃w̃, ṽ〉 − g̃?(ṽ),

with appropriate definitions of f̃ , B̃ and g̃?. First,
we have (with some tedious algebra)

λ
∑

y∈Y
〈ByWy, Vy〉 = 〈B̃w̃, ṽ〉,

where

B̃ ,



|Y|∑

k=1
eke
>
k ⊗Bk


⊗ λIn. (10)

We define abs(z) , [|z1|, |z2|, . . . , |zk|] for any vector
z ∈ Rk. We note that

∑
y∈Y λg

?
y(Vy) is finite (when

it is 0) only if g?y(Vy) = 0, i.e. only if ||Vy||1,∞ ≤ 1,
for all y ∈ Y. Moreover, for λ finite and positive, we
have λg?y(Vy) = g?y(Vy). This lets us define

g̃?(ṽ) , g?(Cg abs(ṽ)), where

Cg =
|Y|∑

k=1
eke
>
k ⊗ 1>n

is a block diagonal matrix with |Y| blocks each equal
to 1>n , and g?(z) = 0 if zk ∈ [−1, 1] for all k ∈
{1, . . . , |Y|} and ∞ otherwise.

Finally, we can write the smoothed loss function
f(W ) defined in (4) as

f(W ) = f̃(w̃) = 1
m

m∑

i=1
ũ(Aiw̃), (11)

where ũ is the soft-max function defined in (3), and

Ai = Ci(IN ⊗ x>i ).

Here Ci is a matrix with (N − |Iyi |) rows and
N columns. Each row of Ci corresponds to some
j /∈ Jyi , with its j(i)th coordinate being 1, jth co-
ordinate being −1, and all the other coordinates be-
ing 0.

3.2 BOUNDS ON THE LIPSCHITZ
CONSTANTS

In order to choose the step sizes σ and τ in the CP
algorithm appropriately, we need to estimate the two
parameters Lf and L that appeared in (8). First, we
give an upper bound on Lf .
Proposition 1. The Lipschitz constant Lf of
∇f̃(w̃) defined in (11) is bounded as

Lf ≤ NR2,

where N is the total number of prototypes and R is
an upper bound on ‖xi‖ for all i = 1, . . . ,m.

Proof. We derive the desired result by bounding the
spectral norm of the Hessian matrix of f̃ defined
in (11). It is sufficient to consider the Hessian of
each ũ(Aiw̃), which can be written as

Hi = A>i ∇2ũ(Aiw̃)Ai.

It is not hard to check that ∇2ũ(Aiw̃) � I, i.e., the
matrix I−∇2ũ(Aiw̃) is positive semidefinite for any
w̃. Therefore we have

Hi � A>i Ai = (IN ⊗ x>i )>C>i Ci(IN ⊗ x>i ).

In terms of their spectral norm, we have

‖Hi‖ ≤ ‖C>i Ci‖ ‖IN ⊗ x>i ‖2. (12)

If ‖xi‖2 ≤ R, then we have ‖IN ⊗ x>i ‖ ≤ R.

It remains to bound ‖C>i Ci‖, which is the same as
‖CiC>i ‖. By construction of Ci at the end of Sec-
tion 3.1, we have

CiC
>
i = Idi + 1di1

>
di

where di = N − |Jyi |. Therefore we have

‖C>i Ci‖ = ‖CiC>i ‖ = N − |Jyi |+ 1 ≤ N.

Combining with (12), we conclude that ‖Hi‖ ≤
NR2. Finally, since ‖∇2f̃(w̃)‖ ≤ (1/m)

∑m
i=1 ‖Hi‖,

we obtain the desired result.

Next we derive the precise value of L = ‖B̃‖.
Proposition 2. The singular values of the matrix
B̃ defined in (10) belong to the set

{
λ
√
|J1|, . . . , λ

√
|J|Y||, 0

}
.

Therefore, the spectral norm of B̃ is

L = max
k=1,...,|Y|

λ
√
|Jk|.
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Proof. We first claim that Bk has two distinct sin-
gular values, viz.,

√
|Jk| (with multiplicity |Jk| -

1) and 0 (with multiplicity 1). We invoke a char-
acterization of the singular values in terms of the
eigen decomposition of positive semidefinite matrix
B>k Bk ∈ R|Jk|×|Jk| to argue for the full spectrum of
Bk. Specifically, if η2 is an eigenvalue of the matrix
B>k Bk, then η is a singular value of Bk.

Now note that B>k Bk has all the off-diagonal co-
ordinates equal to -1 and all the diagonal coordi-
nates equal to |Jk| − 1. This is precisely the Lapla-
cian of the complete graph with |Jk| nodes, which is
known to have the eigenvalue |Jk| with multiplicity
|Jk| − 1 and 0 with multiplicity one. This completes
the analysis for the spectrum of Bk.

Next, we note the term within the parentheses
in the definition of B̃ is a block diagonal matrix
with blocks B1, . . . , B|Y|, and therefore, the set of
the singular values of this set is simply the union
of the singular values of each block, i.e., the set
{
√
|J1|, . . . ,

√
|J|Y||, 0}. Finally, the distinct singu-

lar values of B̃ are {λ
√
|J1|, . . . , λ

√
|J|Y||, 0}, since

λ is the unique singular value (multiplicity n) of the
matrix λIn. This follows since every singular value
µ12 of A1 ⊗ A2 can be expressed as the product of
singular values µ1 of A1 and µ2 of A2.

We can rewrite the condition in (8) as

τ ≤ 1
Lf

,
στ

1− τLf
L2 ≤ 1.

Given the bounds for Lf and L derived in Proposi-
tion 1 and Proposition 2, we can choose the step sizes
τ and σ to satisfy the conditions above, which lead
to O(1/t) convergence of the CP algorithm. For ex-
ample, if we start with p prototypes for each class,
then |Jk| = p for k ∈ {1, . . . , |Y|} and N = p|Y|.
Therefore we have Lf ≤ p|Y|R2 and L2 = λ2p, and
can choose

τ = 1
2pR2|Y| , σ ≤ 1

2λ2p

1
τ
.

We note that the bound on Lf can be very loose.
Some trial-and-error for tuning the step sizes is ex-
pected in practice.

3.3 COMPUTING PROXIMAL MAPS

We denote the sign of a real number p by sign(p) ∈
{0,±1}, and the positive part max(0, p) by (p)+. For
clarity of presentation, in this section, we use A(i, j)
to denote the entry of the matrix A at the ith row

and jth column. Our next result shows that the
Chambolle-Pock (CP) update for each Wy, y ∈ Y,
can be computed via a closed form expression.
Proposition 3. The CP update rule for Wy is

W t+1
y (i, j) =

sign(U ty(i, j))
µτη + 1

(
|U ty(i, j)| − µτ

)
+ ,

where U ty ,W t
y − τ

(
∇yf(W t) + λB>y V

t+1
y

)
.

Proof. In the CP algorithm, the matrix Wy is up-
dated as

W t+1
y = proxµτhη

(
W t
y − τ(∇yf(W t) + λB>y V

t+1
y )

)
,

where ∇yf(W t) denotes the partial gradient of f
with respect to Wy at the previous iterate W t. We
can equivalently write the above proximal mapping
as

W t+1
y = argmin

Z

{
hη(Z) + 1

2µτ ||Z − U
t
y||2F

}
. (13)

Since W t+1
y is optimal for the above minimization

problem, the (sub-)gradient of the corresponding ob-
jective function must vanish. Recall that

hη(Wy) = ‖Wy‖1,1 + (η/2)‖Wy‖2
F .

The optimality condition for (13) means that there
exists Z(i, j) ∈ ∂|W t+1

y (i, j)| such that

Z(i, j)+ηW t+1
y (i, j)+ 1

µτ
(W t+1

y (i, j)−U ty(i, j)) = 0.

When W t+1
y (i, j) = 0, we have ∂|W t+1

y (i, j)| ∈
[−1, 1], which implies |U t(i, j)| ≤ µτ . Otherwise,
we have ∂Z∗(i, j) = sign(Z∗(i, j)), whence

|U t(i, j)| > µτ and sign(Z∗(i, j)) = sign(U t(i, j)).

So, we can perform soft thresholding to obtain Z∗,
i.e. W t+1

y , for all cases, and it turns out as claimed.

We next derive an expression for updating Vy.
Proposition 4. The CP update rule for Vy is

V t+1
y = arg min

||Z||1,∞≤1

1
2
∥∥Z − (V ty + λσtByW̄

t
y)
∥∥2
F
.

Proof. Since the empirical loss term and the sparsity
term depend only on W , the update rule for Vy is

V t+1
y = arg max

Z

{
λ(〈ByW̄ t

y , Z〉 − g?y(Z))

− 1
2σ ||Z − V

t
y ||2F

}
.
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Figure 1: Visual comparison of the decision boundary of classifiers on a run of the vineyard
dataset. The instances for two classes are shown in red and blue, with the test data, additionally, encircled.

We note that

λ(〈ByW̄ t
y , Z〉 − g?y(Z)) − 1

2σ ||Z − V
t
y ||2F

= −λg?y(Z)− 1
2σ

(
||Z − V ty ||2F − 2σλ〈ByW̄y

t
, Z〉

)

= −λg?y(Z)− 1
2σ ||Z − (V ty + σλByW̄y

t)||2F .

Since g?y(Z) is the indicator function of the unit norm
ball ‖Z‖1,∞, i.e., g?y(Z) = 0 if ‖Z‖1,∞ ≤ 1 and ∞
otherwise, we have V t+1

y

= argmin
Z

{
λg?y(Z)+ 1

2σ
∥∥Z−(V ty + σλByW̄

t
y)
∥∥2
F

}

= arg min
||Z||1,∞≤1

1
2
∥∥Z − (V ty + λσtByW̄

t
y)
∥∥2
F
,

which is what we set out to prove.

Using the results of Propositions 3 and 4, we arrive
at the customized CP algorithm in Algorithm 2 for
solving the SMP problem. For the updates on Vy,
we can compute V t+1

y by projecting independently
the rows of (V ty +σλByW̄

t
y) on the `1 unit ball. This

can be done efficiently (Brucker, 1984; Pardalos &
Kovoor, 1990; Duchi et al. , 2008).

4 EXPERIMENTS

We conducted several experiments1 to substantiate
the benefits of our framework. Our experiments are
designed to convey two salient aspects of our ap-
proach. First, we attempt to position our method
as an alternative to the standard classification algo-
rithms. Second, we underscore the aptness of our ap-
proach as a viable means to obtaining highly sparse
yet accurate representations. Before we dive into the
details, we provide some visual intuition to differen-
tiate our method from the other models.

We consider the following classifiers for the picto-
rial depiction: linear SVM (LSVM), SVM with a
non-linear kernel (RSVM) selected from radial basis
function, polynomial, and sigmoid via cross valida-
tion, Logistic Regression (LR), Decision Trees (DT),
Random Forest (RF), k-Nearest Neighbor (kNN),
Gaussian Process (GP), Gradient Boosting (GB),
AdaBoost (AB), and Quadratic Discriminant Anal-
ysis (QDA). Our baselines are popular in the ma-
chine learning literature, have varying degrees of

1All our experiments used the average loss function
from (2) in Algorithm 2 directly (i.e. without any
smoothing), and we set T = 200.
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Table 1: Comparison of test accuracy of the different classification algorithms on low dimensional OpenML
datasets. The number of prototypes per class for the proposed algorithm, i.e. SMP, was set to 2.

LSVM RF AB LR DT kNN RSVM GB QDA GP SMP
sleuth1714 .82±.03 .83±.08 .81±.14 .83±.04 .83±.06 .82±.04 .76±.03 .82±.06 .63±.13 .80±.03 .87±.06

vis env .66±.04 .65±.08 .66±.03 .65±.08 .62±.04 .57±.03 .69±.06 .64±.03 .62±.07 .65±.09 .70±.03
sleuth2016 .71±.04 .70±.03 .70±.05 .72±.03 .65±.07 .67±.06 .72±.04 .65±.03 .62±.07 .73±.03 .74±.02
sleuth1605 .66±.09 .70±.06 .66±.07 .70±.07 .63±.09 .66±.05 .65±.09 .65±.09 .62±.05 .72±.07 .70±.06
sleuth2002 .65±.04 .59±.04 .60±.04 .64±.04 .55±.04 .63±.07 .64±.04 .60±.05 .65±.05 .62±.04 .68±.06
rmftsa cto .75±.02 .70±.02 .74±.02 .75±.00 .69±.03 .71±.03 .74±.02 .72±.03 .76±.02 .75±.02 .76±.02
rabe266 .93±.04 .90±.04 .91±.04 .92±.04 .91±.03 .92±.03 .93±.04 .90±.04 .94±.03 .95±.04 .94±.04
rabe265 .58±.07 .64±.05 .60±.10 .63±.02 .54±.05 .55±.03 .62±.06 .56±.09 .61±.04 .60±.08 .64±.06
rabe148 .95±.04 .94±.02 .91±.08 .95±.04 .89±.07 .92±.05 .91±.06 .91±.08 .92±.09 .95±.02 .96±.02

prnn synth .82±.02 .84±.02 .84±.02 .83±.02 .83±.01 .83±.02 .83±.03 .84±.01 .83±.03 .84±.02 .85±.02
hutsof99 .74±.07 .69±.06 .65±.09 .73±.07 .60±.10 .66±.11 .66±.14 .67±.05 .59±.07 .70±.05 .77±.04

humandev .88±.03 .86±.02 .85±.03 .89±.04 .85±.03 .87±.04 .88±.03 .86±.03 .88±.03 .88±.02 .89±.04
elusage .90±.05 .84±.06 .84±.06 .89±.04 .84±.06 .87±.05 .89±.04 .84±.06 .90±.04 .89±.04 .92±.04
baskball .70±.02 .65±.04 .68±.02 .71±.03 .71±.03 .63±.02 .66±.05 .69±.04 .69±.04 .68±.02 .71±.03

michiganacc .72±.06 .60±.09 .71±.05 .71±.04 .67±.06 .68±.05 .71±.05 .69±.04 .72±.04 .71±.05 .73±.05
election2000 .92±.04 .91±.04 .91±.03 .92±.02 .91±.03 .92±.01 .90±.07 .92±.02 .72±.06 .92±.03 .93±.02
cyyoung9302 .80±.04 .83±.05 .83±.02 .86±.04 .75±.10 .83±.02 .84±.02 .83±.05 .83±.07 .84±.03 .87±.04
bankruptcy .84±.07 .84±.06 .82±.04 .90±.05 .80±.05 .78±.07 .89±.06 .81±.05 .78±.15 .90±.05 .95±.02

asbestos .65±.04 .60±.05 .60±.03 .65±.07 .60±.05 .59±.04 .56±.06 .60±.06 .65±.05 .60±.06 .68±.06
MindCave2 .70±.04 .65±.06 .63±.05 .72±.04 .66±.04 .64±.05 .67±.06 .69±.06 .65±.03 .71±.04 .73±.06

Algorithm 2 Sparse Multi-Prototype Classification
1: Choose parameters λ, η, µ and τ, σ
2: Initialize W 0 = {W 0

y }y∈Y and V 0 = {V 0
y }y∈Y

3: Populate B = {By}y∈Y
4: W̄ 0 = W 0

5: for t = 0, 1, . . . , T do
Update V t+1 using `1 projections

6: Zty = V ty + λσByW̄
t
y

7: V t+1
y = arg min

||Z||1,∞≤1
(1/2)||Z − Zty||2F

Update W t+1 using soft thresholding
8: U ty = W t

y − τ
(
∇fy(W t

y ,W
t
\y) + λB>y V

t+1
y

)

9: Qty(i, j) =
sign(U ty(i, j))
µτη + 1

10: W t+1
y (i, j) = Qty(i, j)

(
|U ty(i, j)| − µτ

)
+

Update W̄ t+1

11: W̄ t+1
y = 2W t+1

y −W t
y

(non-)linearity, and include models from both the
generative and the discriminative families.

Fig. 1 shows the decision boundaries obtained by the
different classifiers on the vineyard data. The two
classes are depicted in red and blue. The test data
have been encircled to distinguish them from the

training instances. We observe that, on this prob-
lem, the different instantiations of our model provide
a better separation of the two classes compared to
the other models. For instance, both the linear clas-
sifiers, i.e. Logistic Regression and SVM with lin-
ear kernel, seem to underfit the data. On the other
hand, the SMP models are able to carve out good
decision boundaries. We further observe that our
model trained with five prototypes performs better
than that trained with two on this data. However,
this phenomenon does not hold in general, since hav-
ing multiple prototypes might lead to overfitting, es-
pecially in small datasets, for low values of λ.

4.1 LOW-DIMENSIONAL REGIME
(NO SPARSITY)

We found that the SMP performed very well on
several low-dimensional (i.e. n ≤ 20) OpenML
datasets.2 We now describe the results of our ex-
periments with these datasets. We preprocessed all
the data to normalize each feature to have zero mean
and unit variance. We split each dataset evenly into
train and test sets using random partitioning. For
SMP, we clustered the training examples in each
class into p = 2 clusters using k-means, and initial-

2Available at https://www.openml.org/
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Figure 2: Comparison on high dimensional OpenML datasets. Each stacked bar shows two numbers:
average test accuracy on the left, and total number of selected features (including multiplicities) on the right.

ized the class prototypes with the cluster centers.
We followed 5-fold cross-validation (CV) for each
method to obtain a good setting of hyperparame-
ters. The details are given in the Supplementary.
We report the average test accuracy and standard
deviation over five random partitions per dataset.

The results on test accuracy are documented in Ta-
ble 1. Evidently, SMP is seen to perform very well
on many of these datasets. Note that these results
should not be misconstrued as implying that SMP
would generally work well with arbitrary data. In-
deed, we discovered that the performance of SMP
was suboptimal on many other datasets, where al-
gorithms like RSVM and GB performed much better
due to highly non-linear structure in the data.

4.2 HIGH-DIMENSIONAL REGIME

In this section, we explicate the results of our ex-
periments on high dimensional data, where feature
selection becomes especially critical. Our objective
is to demonstrate the efficacy of SMP in recovering
discriminative sparse features.

We first describe the experimental setup. We com-
pare SMP with six baselines that induce sparsity
by minimizing an `1-regularized loss function (Bach
et al. , 2012). These baselines minimize a regular-
ized empirical loss function, namely hinge loss, log
loss, or the binary-classification Huber loss, where

the regularization consisted of either `1 or elastic net
penalty (i.e. both `1 and `2 terms). We call these six
baselines as L1Hi (`1, hinge), L1L (`1, log), L1Hu
(`1, Huber), EnHi(elastic net, hinge), ENL(elastic
net, log) and ENHu(elastic net, huber) respectively.

The amount of sparsity achieved by different base-
lines at any fixed penalty is method specific. There-
fore, we first observed the sparsity obtained with
SMP on each method, and then modulated the `1
penalty for other methods to have roughly the same
number of selected features. Then, we retrained
these classifier using only the selected features, us-
ing the same loss (hinge, loss, or log) and an addi-
tional `2 penalty. Our procedure ensured that each
baseline benefited, in effect, from an elastic net-like
regularization while having the most important fea-
tures at its disposal. We followed 5-fold CV to find
a good setting of hyperparameters for each method.

Our results on several high dimensional OpenML
datasets are summarized in Fig. 2. The first number
in the name of a dataset represents the number of
instances in the dataset, while the second term rep-
resents dimensionality. In SMP, since some features
might be selected in more than one prototype, for
fairness of evaluation, we included the multiplicity
while computing the selected feature count. These
results underscore the merits in combining the power
of multiple prototypes with sparse representations.
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Abstract

Recent stochastic quadrature techniques for
undirected graphical models rely on near-
minimax degree-k polynomial approximations
to the model’s potential function for inferring
the partition function. While providing de-
sirable statistical guarantees, typical construc-
tions of such approximations are themselves
not amenable to efficient inference. Here, we
develop a class of Monte Carlo sampling algo-
rithms for efficiently approximating the value
of the partition function, as well as the asso-
ciated pseudo-marginals. More precisely, for
pairwise models with n vertices and m edges,
the complexity can be reduced from O(dk)
to O(k4 + kn + m), where d ≥ 4m is the
parameter dimension. We also consider the
uses of stochastic quadrature for the problem
of maximum-likelihood (ML) parameter esti-
mation. For completely observed data, our
analysis gives rise to a probabilistic bound
on the log-likelihood of the model. Maxi-
mizing this bound yields an approximate ML
estimate which, in analogy to the moment-
matching of exact ML estimation, can be inter-
preted in terms of pseudo-moment-matching.
We present experimental results illustrating the
behavior of this approximate ML estimator.

1 INTRODUCTION

The major source of complexity in the course of param-
eter estimation for undirected graphical models is the
#P-hardness of the partition function (Valiant, 1979; Bu-
latov and Grohe, 2004). This quantity plays a funda-
mental role in various contexts, including approximate
inference, maximum-likelihood (ML) parameter estima-
tion, and large deviations analysis—to mention just a

few. For a general undirected model, exact computation
of this partition function is intractable; therefore, devel-
oping approximations and bounds is an important prob-
lem. The dominant approaches in this area are Markov
Chain Monte Carlo (MCMC) sampling approaches (An-
drieu et al., 2003) and variational inference (Wainwright
and Jordan, 2008). While both directions work very well
in practice, theoretical quality guarantees cannot be as-
serted. Some of the existing techniques indeed deliver
error bounds, but the error cannot be quantified without
making assumptions that go beyond the ordinary varia-
tional principle or sampling procedures.

Our recent stochastic quadrature technique (Piatkowski
and Morik, 2016) for undirected graphical models relies
on a near-minimax degree-k polynomial approximation
to the model’s potential function for inferring the parti-
tion function. While providing desirable statistical guar-
antees, typical constructions of such approximations are
themselves not amenable to efficient inference. Here, we
develop a class of Monte Carlo sampling algorithms for
efficiently approximating the value of the partition func-
tion, as well as the associated pseudo-marginals.

Our contributions can be summarized as follows:

• We provide a Monte Carlo sampling procedure that
reduces the complexity of the stochastic quadrature
inference method from O(dk) to O(k4 + kn + m)
when certain combinatorial quantities are precom-
puted. An empirical evaluation shows that our new
method is several orders of magnitude faster than
the existing approach.

• We provide the first stochastic quadrature based al-
gorithm for marginal inference, and thus, for ap-
proximate maximum-likelihood parameter estima-
tion. Experimental results show that approximate
log-likelihood and predicted marginal probabilities
are close to their exact counterparts.

• We explain how the stochastic quadrature can be ap-
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plied to models with continuous random variables.

• Our results are derived from first-principles and
work with any discrete and some continuous expo-
nential family members.

2 NOTATION AND BACKGROUND

Let us summarize the notation and background neces-
sary for subsequent development. The set that con-
tains the first n strictly positive integers is denoted by
[n] = {1, 2, . . . , n}.

Graphical Models: An undirected graph G = (V,E)
consists of n = |V | vertices, connected via edges
(v, w) ∈ E. For each vertex v ∈ V , we denote the
set of adjacent vertices by N (v). A clique C is a fully-
connected subset of vertices, i.e., ∀v, w ∈ C : (v, w) ∈
E. The set of all cliques of G is denoted by C. Here,
any undirected graph represents the conditional inde-
pendence structure of an undirected graphical model or
Markov random field (MRF). To this end, we identify
each vertex v ∈ V with a random variable Xv tak-
ing values in the state space Xv . The random vector
X = (Xv : v ∈ V ) contains the joint state of all ver-
tices in some arbitrary but fixed order, taking values x in
the Cartesian product space X =

⊗
v∈V Xv . Moreover,

we allow to access these quantities for any proper subset
of variables S ⊂ V , i.e., XS = (Xv : v ∈ S), xS , and
XS , respectively.

Exponential Families: Markov random fields with
strictly positive density can be represented via exponen-
tial family members, which have been studied exten-
sively during the last century, e.g. (Pitman, 1936; Ham-
mersley and Clifford, 1971; Besag, 1975; Wainwright
and Jordan, 2008). The probability density of X w.r.t.
some probability measure Pθ can hence be written as

pθ(x) = exp(〈θ, φ(x)〉 −A(θ)) (1)

where θ ∈ Rd is the d-dimensional parameter vector,
and φ(x) is a statistic, sufficient for θ—it captures all
properties of X which are relevant for inferring θ, i.e.,
P(θ ∈ Ω | φ(x)) = P(θ ∈ Ω | x) for all Ω ⊆ Rd. Nor-
malization of pθ is guaranteed via A(θ) = lnZ(θ) =
ln
∫
X exp(〈θ, φ(x)〉) d ν(x) w.r.t. some base measure

ν. Different base measures allow for either discrete of
continuous random variablesX (Wainwright and Jordan,
2008). When X is discrete, the statistic φ(x), given via
φ(x)C=y =

∏
v∈V δ{xC=y} with y ∈ XC , is always

sufficient for θ. Here, δ{expression} is the indicator func-
tion that evaluates to 1 if and only if the expression is
true, and 0 otherwise. Note that each dimension of φ,

say φ(x)i, corresponds to φ(x)C=y . That is, we have an
equivalence between indices i ∈ [d] and pairs of clique
C ∈ C and clique-state y ∈ XC , in short: i ≡ (C,y).
Thus, we have d =

∑
C∈F |XC | dimensions in total.

This kind of sufficient statistic is also called overcom-
plete. In various applications (Ising, 1925; Sutton and
McCallum, 2011), the dimensionality of the model is re-
duced by assuming a pairwise factorization. Only cliques
of size ≤ 2 are considered in this case, which implies
d ≤∑v∈V |Xv|+

∑
{v,w}∈E |Xv||Xw|.

Quadrature: Whenever integrating a function f is not
tractable, one may resort to numerical methods in order
to approximate the definite integral I[f ] =

∫ u
l
f(z) d z.

A different way of performing numeric integration are
general quadrature rules. There, the basic idea is to re-
place the integrand f by an approximation h ≈ f , that
admits tractable integration. It turns out, that choosing
h = hk to be a degree-k Chebyshev polynomial approx-
imation of f , delivers highly accurate results, due to the
equioscillation property implied by near-minimax opti-
mality. The general quadrature procedure can be sum-
marized as
∫ u

l

f(x)dx ≈
∫ u

l

hk(x)dx =
k∑

i=0

wif(xi) = Ik[f ]

where wi are certain coefficients and xi are certain ab-
scissae in [l, u] (all to be determined) (Mason and Hand-
scomb, 2002).

In general, any polynomial approximation works. It can
be shown that an optimal (w.r.t. the lp-norm) degree-
k polynomial approximation hk of any function f on a
fixed interval [l;u] always exists and is uniquely char-
acterized by the equioscillation property (Mason and
Handscomb, 2002). That is, the error function E(z) =
f(z) − hk(z) oscillates on [l;u] and has exactly k + 2
extrema (Jr., 1966).

Due to their oscillation property, Chebyshev polynomials
are an important building block in the construction and
analysis of minimax optimal approximations. Cheby-
shev polynomials are specified by the fundamental re-
currence relation

T0(z) = 1, T1(z) = z, Tk(z) = 2zTk−1(z)− Tk−2(z) .

They have an extraordinary large variety of convenient
properties, like rapidly decreasing and individually con-
verging coefficients (Gautschi, 1985), which make them
ubiquitous in virtually any field of numerical analysis.
An excellent discussion of Chebyshev polynomials in
general, can be found in (Mason and Handscomb, 2002).
Depending on the choice of interpolation points and
different kinds of orthogonality properties, Chebyshev
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polynomial based quadrature rules are termed Gauss-
Chebyshev quadrature, Fejér quadrature or Clenshaw-
Curtis quadrature (Clenshaw and Curtis, 1960).

Putting all together, the (deterministic) quadrature ap-
proximation to the partition function Z(θ) is

Z(θ) =

∫

X
exp(〈θ, φ(x)〉) d ν(x)

≈
∫

X
ˆexpkζ(〈θ, φ(x)〉) d ν(x) = Ẑkζ (θ) , (2)

where ˆexpkζ is a degree-k Chebyshev approximation
to the exponential function on the interval [l;u], and
ζ are the corresponding coefficients. Chebyshev ap-
proximations yield the best uniform approximation on
[l;u]. ζ can be approximated numerically via discrete
cosine transformation or the Remez exchange algorithm
(Fraser, 1965). It can be shown that the approximation
error ε is bounded and exponentially small in k ln k (Xi-
ang et al., 2010) when l ≤ minx〈θ, φ(x)〉 and u ≥
maxx〈θ, φ(x)〉.

3 FAST STOCHASTIC QUADRATURE

In this section, we present the stochastic Clenshaw-
Curtis quadrature that yields an (1± ε)-approximation to
the partition function (Piatkowski and Morik, 2016). We
then develop a class of Monte Carlo algorithms designed
to perform the actual estimation of A(θ) efficiently.

k-Integrable Statistics: Let φ denote the d-
dimensional statistic of the exponential family rep-
resentation (1) of some undirected graphical model
for X . Of particular interest are statistics which are
k-integrable—that is, the function

χkφ(j) =

∫

X

k∏

i=1

φ(x)ji d ν(x) (3)

admits a polynomial time computable closed-form ex-
pression for all index tuples j ∈ [d]k. It can be shown
(Piatkowski and Morik, 2016) that overcomplete suffi-
cient statistics of discrete Markov random fields are al-
ways k-integrable. In this case,

χkφ(j) =





|X |
|X⋃k

i=1
C(ji)

| , j is realizable

0 , otherwise .
(4)

Here, C(ji) denotes the clique that corresponds to the
i-th entry of j, i.e., ji ≡ (C(ji),y(ji)). An index tuple
j is not realizable, if two (or more) indices imply that
the same vertex is in two (or more) different states at the
same time.

Let us extend this result by showing that various suf-
ficient statistics for continuous random variables are as
well k-integrable.

Lemma 1 (Continuous k-integrability) Let X be an
n-dimensional continuous random vector. Any statistic
φ(x) : Rn → Rd whose coordinate-wise statistics φ(x)i
are (linear transformations of)

φ(x)i = xcj , or φ(x)i = 1
xcj

, or φ(x)i = ln(xj)
c,

with c ∈ N, j ∈ [n], is k-integrable for all k ∈ N.

Details on the integration of elementary functions can be
found in (Bronstein, 1990). In fact, the sufficient statis-
tics of the Gaussian, Poisson, exponential, beta, Dirich-
let, Pareto, Weibull with known shape, chi-squared, log-
normal, beta, and gamma distributions, restricted to the
interval (0;u], consist only of terms of the form 1/xc,
xc, and ln(x)c which implies their k-integrability. E.g.,
assume that φ(x)1 = x and φ(x)2 = ln2(x)2 with
x ∈ (0;u], then, for j = (1, 2, 1), we have χkφ(j) =

u3(9 ln(u)2 − 6 ln(u) + 2)/(27 ln(2)2), which is indeed
a polynomial time computable closed-form.

One may extend Lemma 1 to include statistics of the
form |x−m|c, which appear in the density of the Laplace
distribution. Closed-form expressions exist, but we ex-
cluded them here due to the notational clutter that arises
when products of such functions are integrated.

Stochastic Clenshaw-Curtis Quadrature (SCCQ):
The major ingredient of the stochastic quadrature is a
specific probability mass function (pmf) over index tu-
ples j ∈ [d]i of length 0 ≤ i ≤ k. For ease of notation,
we assume that indices of (k + 1)-dimensional objects
start at 0. Suppose φ : X → Rd+ is a non-negative, k-
integrable statistic. Let ‖χiφ‖1 denote the 1-norm of the
function χiφ. Moreover, for any (k+1)-dimensional real-
valued vector ζ, let |ζ| denote the element-wise absolute
value of ζ, i.e., ‖χiφ‖1 =

∑
j∈[d]i |χiφ(j)|.

Let further (J , I) be the discrete random variable with
state space [d]k ⊗ ([k] ∪ {0}) and pmf Pζ,φ(J = j, I =
i) = Pφ(J = j | I = i)Pζ,φ(I = i) with

Pζ,φ(I = i) =
|ζi|‖χiφ‖1∑k
j=0 |ζj |‖χ

j
φ‖1

(5)

and

Pφ(J = j | I = i) =
χiφ(j)

‖χiφ‖1
. (6)

We call Pζ,φ the tuple mass with parameter (ζ, φ).

Now, we define the random variable which constitutes
the core of SCCQ.
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Algorithm 1: Stochastic Clenshaw-Curtis Quadra-
ture
input θ, ζ, k, N
output Approximate partition function ẐN,kζ (θ)

1: S ← 0
2: for l = 1 to N do
3: (j, i) ∼ Pζ,φ
4: S ← S + Ẑkj,i(θ)
5: end for
6: ẐN,kζ (θ)← 1

N S

Definition 1 (1-SCCQ) Let k ∈ N, θ ∈ Rd, and let J
be a random index tuple of random length I , both having
joint tuple mass Pζ,φ. The random variable

ẐkJ,I(θ) = τ sgn(ζI)
I∏

r=0

θJr

with τ =
∑k
j=0 |ζj |‖χ

j
φ‖1 is called 1-SCCQ.

Surprisingly, this random variable is closely related to
the quadrature approximation to Z(θ) from equation (2).

Theorem 1 (Unbiasedness of SCCQ) Let ζ be the co-
efficient vector ζ of a degree-k polynomial approxima-
tion to exp over some arbitrary but fixed interval [l;u],
and let φ be a non-negative and k-integrable statistic.
The random variable ẐkJ,I(θ) is an unbiased estimator
for Ẑkζ (θ) =

∫
x

ˆexpkζ(〈θ, φ(x)〉) d ν(x).

Proof. Using equations (3), (5), and (6), as well as Def-
inition 1, it follows that

E
[
ẐkJ,I(θ)

]

=
k∑

i=0

∑

j∈[d]k
Pζ,φ(J = j, I = i)τ sgn(ζi)

i∏

r=0

θjr

=
k∑

i=0

ζi
∑

j∈[d]i

i∏

r=0

θjr

∫

X

i∏

r=0

φ(x)jr d ν(x)

=

∫

X

k∑

i=0

ζi〈θ, φ(x)〉i d ν(x) = Ẑkζ (θ) ,

where the last line stems from the fact that

〈θ, φ(x)〉i =

d∑

j1=1

d∑

j2=1

· · ·
d∑

ji=1

i∏

l=0

θjl

i∏

r=0

φ(x)jr .

�
Based on the theorem, we devise a Monte Carlo proce-
dure, called N -SCCQ or simply SCCQ, shown in Algo-
rithm 1. By combining the error ε that is introduced by

the polynomial approximation with the error that is intro-
duced by the sampling procedure, an overall error bound
can be derived1.

Theorem 2 (SCCQ Error Bound) Let ζ be the coeffi-
cient vector of a degree-k Chebyshev approximation to
exp on [l;u] = [−‖θ‖1; +‖θ‖1] with worst-case error ε.
Let ẐN,kζ (θ) be the output of Algorithm 1. Furthermore,
let δ ∈ (0, 1], ε > 0, N = (ln 2/δ)τ22‖θ‖2k′∞ ε−2|X |−2,
with (k − 1) k! ≥ 8 exp(2‖θ‖1)/(πε), and k′ = 1 if
‖θ‖∞ < 1 or otherwise k′ = k. Then,

P[|ẐN,kζ (θ)− Z(θ)| < εZ(θ)] ≥ 1− δ .

3.1 COMPUTATIONAL COMPLEXITY

While SCCQ enjoys a bounded error and an apparently
simple algorithm, the actual sampling of index tuples
from Pζ,φ (line 3 in Algorithm 1) and the computation
of ẐkJ,I(θ) (line 4 in Algorithm 1) turn out to be compu-
tationally hard. Computing ẐkJ,I(θ) requires the ‖χiφ‖1
values. In (Piatkowski and Morik, 2016), the authors as-
sume that the values of ‖χiφ‖1 for all 0 ≤ i ≤ k are pre-
computed, which requiresO(dk) additions. While rather
small polynomial degrees (k ≈ 8) suffice to achieve
reasonable results, the overcomplete dimension d of a
10 × 10 binary Ising grid model is 720. Hence, at least
dk = 7208 > 275 additions are required to compute
‖χiφ‖1. In our initial work on SCCQ (Piatkowski and
Morik, 2016), rejection sampling was used to generate
the samples from Pζ,φ with a uniform proposal Q on
[d]k ⊗ ([k] ∪ {0}). Since the ratio Pζ,φ(j, i)/Q(j, i) =
(k + 1)dkPζ,φ(j, i) is large, one shall expect that many
samples will be rejected.

3.2 NORMALIZING THE TUPLE MASS

To alleviate the complexity issues of SCCQ, we now
present a closed-form expression for ‖χiφ‖1. Our result
relies on the closed-form of k-integrable statistics, which
is given by equation (4) for discrete state space models.
We restrict ourselves to discrete models, since a general
closed-form that covers all continuous state space mod-
els does not exist. However, the general methodology
can be transferred to the continuous case.

The forthcoming results make heavy use of equivalence
classes of index tuples j ∈ [d]i and their cardinalities. In

1An earlier result can be found in (Piatkowski and Morik,
2016). There, the bound on the error of the polynomial ap-
proximation uses an inequality which is originally designed for
complex-valued functions. Here, we apply a recent inequality
due to Trefethen (Trefethen, 2008). Both results are qualita-
tively equivalent w.r.t. N and k. Nevertheless, the new proof is
simplified.
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this context, it is important to recall that any index j ∈ [d]
corresponds to a pair of clique and state: i ≡ (C,y).
Consequently, a tuple of indices corresponds to a tuple
of cliques and states.

Definition 2 (Sub-Alphabets) Let A be some set of ob-
jects or symbols—A is an alphabet—and let P(A) be its
power set. The set P(A, n) ⊆ P(A) contains all subsets
of A with at most n elements, i.e.,

P(A, n) = {S ∈ P(A) | |S| ≤ n} .
The size of P(A, n) is thus

|P(A, n)| =
n∑

i=1

(
|A|
i

)
.

Definition 3 (Tuple Classes) Let i ∈ N, and denote the
clique tuple that corresponds to an index tuple j ∈ [d]i

byC(j) ∈ Ci. Two or more index tuples j, j′ may corre-
spond to the same clique tuple, i.e., C(j) = C(j′). The
equivalence class of all index tuples that correspond to
the same clique tuple is denoted by

[[j]] = {j′ ∈ [d]i | C(j) = C(j′)} .
Similarly, two or more clique tuples C,C ′ may corre-
spond to the same set of cliques. The equivalence class
of clique tuples that correspond to the same set of cliques
is denoted by

[[C]] =

{
C ′ ∈ Ci

∣∣∣∣∣
⋃

c∈C
{c} =

⋃

c′∈C′
{c′}

}
.

Combining both, the equivalence class of all index tu-
ples, whose corresponding clique tuples are in the same
equivalence class, is denoted by

[[j]]∗ = {j′ ∈ [d]i | C(j′) ∈ [[C(j)]]} .

Note that all members of a specific clique tuple equiva-
lence class [[C]] are determined by a unique set of cliques
which come from the alphabet C. Hence, we identify
each class [[C]] with this unique set of cliques and treat
each [[C]] as an element of P(C, i). Moreover, there are
|P(C, i)| distinct size-i clique tuple equivalence classes.

In the remainder, it will be important to know how large
these equivalence classes are.

Lemma 2 (Counting Tuples) Let i, j ∈ N, j ∈ [d]j ,
C ∈ Ci, and consider the equivalence classes defined
above. Then,

|[[j]]| =
i∏

l=1

|XC(j)l |, |[[C]]| = h(C)!

{
i

h(C)

}
,

|[[j]]∗| = |[[C(j)]]||[[j]]|

where h(C) is the number of distinct cliques which ap-
pear in the tupleC, n! is the factorial, and {n k}> is the
Stirling number of second kind.

It will be helpful to define equivalence classes of index
tuples w.r.t. some k-integrable statistics. Here, equiva-
lence w.r.t. χiφ is established by the value that each mem-
ber of an equivalence class contributes to ‖χiφ‖1.

Definition 4 (Tuple Classes and k-integrability) Let φ
be a k-integrable statistic, i ∈ N, and j ∈ [d]i. The
equivalence class of all index tuples which correspond
to the same clique tuple and have non-zero χiφ-value is
denoted by

[[j]]φ = {j′ ∈ [d]i | j′ ∈ [[j]] ∧ χiφ(j′) 6= 0} .

The corresponding extension to equivalence classes of
clique tuples, is denoted by

[[j]]∗φ = {j′ ∈ [d]i | j′ ∈ [[j]]∗ ∧ χiφ(j′) 6= 0} .

Up to now, we made no use of the fact that our state
space is discrete. The above definitions and lemmas
are valid for any exponential family model with posi-
tive k-integrable statistic. However, the proof of the next
lemma makes use of equation (4). In order to extend our
results to continuous random variables, one has to invoke
Lemma 1 to derive a closed-form for χiφ.

Lemma 3 (Counting Realizable Tuples) Suppose φ is
the binary, overcomplete sufficient statistic of discrete
MRFs. Then,

|[[j]]φ| = |XC(j)|, and |[[j]]∗φ| = |[[C(j)]]||[[j]]φ| ,

with XC(j) = X∪il=1C(j)l and C(j) ∈ Ci.

Now, we have gathered all terms and definitions to devise
an improved procedure for the normalization of the index
tuple mass.

Theorem 3 (Tuple Mass Normalization) Suppose φ is
the binary, overcomplete sufficient statistic of discrete
MRFs. The conditional index tuple mass Pζ,φ(J = j |
I = i) (equation (6)) can be normalized in O(1) steps.
More precisely,

‖χiφ‖1 = |X |
i∑

l=0

{
i
l

}(
|C|
l

)
l! = |X ||C|i . (7)

The complexityO(1) provided in the theorem is an over-
whelming improvement, compared to the naive summa-
tion, i.e.,O(dk). Since we need the normalization ‖χiφ‖1
for all 1 ≤ i ≤ k tuple lengths, ẐkJ,I(θ) can be computed
in O(k) steps when a pair (j, i) is given.
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Algorithm 2: Fast Index Tuple Sampler
input Tuple length i
output Sample j | I = i from Pζ,φ

1: l ∼ P(l | i) // See Theorem 4
2: a ∼ U(1; binom(|C|, l))
3: b ∼ U(1; Stirling2(i, l)× factorial(l))
4: [[C]]← compute a-th l-combination of
{1, 2, . . . , |C|} // via (Buckles and Lybanon, 1977)

5: C ← compute b-th composition of {1, 2, . . . , i}
with l subsets // via (Ehrlich, 1973)

6: S ← ⋃i
h=1Ch

7: c ∼ U(1;
∏
v∈S |Xv|)

8: y← compute c-th joint state of all vertices in S
9: return j that corresponds to C = y

3.3 FAST INDEX TUPLE SAMPLER

Based on the insights that we gained so far, we derive a
direct sampling scheme for index tuples that circumvents
any rejection step (Algorithm 2).

Given our results from the last subsection, drawing a ran-
dom tuple length from Pζ(I) can be done efficiently—it
is a draw from a categorical distribution with state space
size k (which is rather small). Sampling from the tu-
ple mass Pζ,φ(J = j | I = i) can be more involved,
which motivates the derivation of a specialized sampling
scheme. Our algorithm is motivated by inversion sam-
pling: For any fixed i, inversion sampling of j then con-
sists of drawing a uniform random number u in (0; 1),
and finding the smallest L ∈ N, such that the sum of the
first L tuple masses exceeds u. The L-th tuple is then
the sample. The worst-case runtime complexity is then
O(dk) per sample, which can be prohibitively expensive
whenever the dimension d of the model is large. Based
on the equivalence classes that we exploited already for
the normalization of the tuple mass, we derive a factor-
ization of Pζ,φ(J = j | I = i) which in turn implies an
efficient stagewise sampling procedure.

To this end, let ≺ be an any arbitrary but fixed strict to-
tal ordering on the equivalence classes of clique tuples.
I.e., ∀A,B ∈ P(C, i) with A 6= B, either [[A]] ≺ [[B]]
or [[B]] ≺ [[A]]—by definition, each element of P(C, i)
corresponds to a unique equivalence class. This order
induces an order on clique tuples and index tuples, i.e.,
j, j′ ∈ [d]i, j ≤ j′ ⇔ [[C(j)]] � [[C(j′)]]. Within each
equivalence class, we assume that tuples are ordered lex-
icographically.

Theorem 4 (Tuple Mass Factorization) Suppose that
φ is the binary, overcomplete sufficient statistic of a dis-

I L [[C]]

Y C

Figure 1: Directed graphical model for the factorization
of the tuple mass Pζ,φ(J = j, I = i). Any index tuple
j can be identified with some pair (C,y) of clique tuple
and state tuple.

crete state MRF. The tuple mass of any j factorizes:

Pζ,φ(J = j | I = i)

=P(C | [[C]], l, i)P(y | [[C]], i)P([[C]] | l)P(l | i)

with

P(l | i) =|C|−i
{
i
l

}(
|C|
l

)
l!

P([[C]] | l) =
1(
|C|
l

) P(C | [[C]], l, i) =
1{
i
l

}
l!

P(y | [[C]], i) =

{
1

|X[[C]]| ,y ∈ X[[C]]

0 , otherwise ,

where l denotes the number of distinct cliques in the
clique tuple C, [[C]] denotes the equivalence class that
contains C, and y is the joint state of all cliques in the
tuple C.

While the proof is rather simple, it is not obvious how to
come up with this factorization. The idea is to first draw
the equivalence class [[C]], then a uniform member C of
this class, then a uniform joint state y of all cliques in
C. Notice that the sampling steps for [[C]], C and y are
uniform, while the probability mass of the number l of
distinct cliques that will appear in the tuple is a function
of l. Let us now investigate the complexity of our new
method.

Theorem 5 (Complexity of Tuple Sampling)
Algorithm 2 samples an index tuple j of given length i
from Pζ,φ in

O(k4 + kn+ |C|+ {i l}> + l!)

steps. When permutations and partitions are precom-
puted, the runtime reduces to

O(k4 + kn+ |C|)
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per sample. Here, k is the polynomial degree, l ≤ i is
the number of distinct cliques in the generated tuple, and
n = |V |.

Thus, we found a Monte Carlo algorithm to sample from
Pζ,φ without any rejection step. Since the algorithm does
not use a Markov chain, the generated samples are truly
independent. Any number of samples can thus be gen-
erated in parallel. Because no data has to be exchanged,
the overall runtime scales linearly with the number of
processors. This is a superior property compared to
MCMC methods, where sampling cannot be parallelized
and consecutive samples are not independent. More-
over, the theorem tells us how the complexity of stochas-
tic quadrature is related to the graphical structure and
the polynomial degree. The runtime is independent of
the parameter dimension d and the state space sizes. In
contrast, the runtime of loopy belief propagation (Pearl,
1988; Kschischang et al., 2001) and similar variational
techniques (like TRW-BP (Wainwright et al., 2003)) is at
least quadratic in the vertex state space sizes.

4 APPROXIMATE ML ESTIMATION

An important feature of maximum-likelihood parameter
estimation is that the solution is specified by moment-
matching. To illustrate this notion, suppose that we are
given an i.i.d. data set D = {x1,x2, . . . ,xN} from
some unknown measure Pθ∗ . By using an exponential
family model (which is exact whenever the state space
X is discrete), the log-likelihood of θ on D is given by:

`(θ) =
1

N

N∑

i=1

lnPθ(xi) = 〈θ, µ̃〉 −A(θ)

with µ̃ = (1/N)
∑N
i=1 φ(xi). Taking the derivatives

of ` w.r.t. some θi, we find that (1/N)
∑N
i=1 φ(xi) =

Eθ[φ(X)i] at any critical point θ where Eθ denotes the
expectation under Pθ. That is, the maximum-likelihood
solution has its moments matched to the empirical av-
erage µ̃. In this section, we show how SCCQ can be
used to develop a method for approximate ML estima-
tion that, in analogy to this exact moment-matching, per-
forms a type of pseudo-moment matching. To this end, a
means of computing ∇A(θ) = ∇ lnZ(θ) = Eθ[φ(X)]
via SCCQ is required. Recalling that i ≡ (C,y)
and that φ(y) is binary in discrete models reveals that
Eθ[φ(X)i] = Pθ(φ(X)i = 1) = Pθ(XC = y). Since
Pθ(XC = y) is the marginal probability mass of the
event {C = y}, the problem of computing Eθ[φ(X)i] is
also called marginal inference.

4.1 MARGINAL INFERENCE

For any subset U ⊆ V of variables, and any joint state
xU , the marginal density is defined by

Pθ(XU = xU ) =

∫

XV \U
Pθ(xU ,xV \U ) d ν(x)

=
1

Z(θ)

∫

XV \U
exp(〈θ, φ(x)〉) d ν(x) ,

with x = (xU ,xV \U ). Especially the last integral is
reminiscent of the partition function. In fact, it can be
interpreted as the partition function of another model
with state space XV \U . It is this sum that will be ap-
proximated via SCCQ to estimate the marginal. To for-
malize this idea, we provide adjusted definitions of the
SCCQ core concepts. First, we adapt the notion of
k-integrability to marginal densities. In accordance to
equation (3), we call φ marginally k-integrable, if

χkφ,U (j,xU ) =

∫

XV \U

k∏

i=1

φ(xU ,xV \U )ji d ν(xV \U )

admits a polynomial time computable closed-form ex-
pression for all j ∈ [d]k, for all U ⊆ V , and for all
xU ∈ XV \U . The difference to ordinary k-integrability
is merely symbolical. In fact, all k-integrable statistics
that are mentioned in this paper are also marginally k-
integrable. Moreover, marginally k-integrable statistics
give rise to the marginal tuple mass Pζ,φ(J = j,XU =
xU , I = i) in the same way how the ordinary tuple mass
from equation (6) arises from ordinary k-integrability.
Moreover, the marginal tuple mass factorizes.

Corollary 1 (Marginal Tuple Mass Factorization)
Suppose that φ is the binary, overcomplete sufficient
statistic . The marginal tuple mass factorizes:

Pζ,φ(J = j, I = i,XU = xU )

=P(C | [[C]], l, i)P(y,xU | [[C]], i)P([[C]] | l)P(l | i)p(i)

where P(l | i), P([[C]] | l), and P(C | [[C]], l, i) are given
by Theorem 4, and

P(y,xU | [[C]], i) =





1
|X[[C]]∪U | ,y ∈ X[[C]]

∧ 6 ∃v ∈ U : xv 6= yv
0 , otherwise .

The ordinary tuple mass Pζ,φ(J = j, I = i) and the
marginal tuple mass Pζ,φ(J = j,XU = xU , I = i) dif-
fer only in the factor P(y,xU | [[C]], i). We may hence
use their quotient as importance weight to convert SCCQ
samples for the partition function into SCCQ samples for
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Algorithm 3: SCCQ Marginal Inference
input θ, k, ζ, N
output Pseudo marginals µ̂

1: S ← 0,m← 0, done← false
2: while ∃i : mi < N do
3: (j, i) ∼ Pζ,φ(·,xC)
4: for C ∈ C do
5: for xC ∈ XC do
6: if agree(j, i, C,x) ∧mi < N then
7: Sl ← Sl + Ẑkj,i(θ)p(y(j),xC |[[C(j)]],i)

p(y(j)|[[C(j)]],i)
8: mi ←mi + 1
9: end if

10: end for
11: end for
12: end while
13: for C ∈ C do
14: for xC ∈ XC do
15: µ̂C=xC ←

SC=xC∑
xC∈XC SC=xC

16: end for
17: end for

marginal probabilities. We have

EJ,I
[
p(y(J),xU | [[C(J)]], I)

p(y(J) | [[C(J)]], I)
ẐkJ,I(θ)

]

=
k∑

i=0

∑

j∈[d]i
Pζ,φ(J = j, I = i)wj,i,U Ẑ

k
j,i(θ)

=
k∑

i=0

∑

j∈[d]i
Pζ,φ(J = j, I = i,XU = xU )Ẑkj,i(θ)

=EJ,I,XU=xU

[
ẐkJ,I(θ)

]
,

with importance weight wj,i,U = p(y(j),xU |[[C(j)]],i)
p(y(j)|[[C(j)]],i) .

Now, we gathered all parts which are required for
marginal inference. The corresponding inference proce-
dure is provided in Algorithm 3. While the main idea is
to perform d separate runs of Algorithm 1, such a naive
approach would result in an unnecessary high runtime.
Instead, we make use of Corollary 1 to propose an im-
portance sampling approach, in which each SCCQ sam-
ple is shared among all marginals. For each marginal
p(XC = xC), we validate if the pair (j, i) that is
sampled in line 3 agrees with the assignment xC (line
6)—otherwise, its marginal tuple mass is zero. If they
agree, we reweigh the sample, perform the summation
and count the number of successes in lines 7 and 8. In
lines 13–17, the estimated sums are normalized and writ-
ten to µ̂.

4.2 PARAMETER ESTIMATION

With Algorithm 3, we can compute the log-likelihood’s
gradient ∇`(θ), and employ any first-order method to
estimate the parameters. To measure the progress of pa-
rameter estimation, it is convenient to estimate the log-
likelihood of the model, which inherits its computational
complexity from the log-partition function. Before we
proceed to some experimental results, we close this sec-
tion by translating the SCCQ error bound from Theo-
rem 2 to an error bound on the log-likelihood.

Theorem 6 (SCCQ Log-Likelihood Error) Assume
that the preconditions of Theorem 2 hold. Let
ˆ̀(θ) = 〈θ, µ̃〉 − ln ẐN,kζ (θ) be the SCCQ approx-
imation to the log-likelihood. Whenever the outcome
ẐN,kζ (θ) of Algorithm 1 is positive, we have

P

[
|ˆ̀(θ)− `(θ)| < εZ(θ)

min{ẐN,kζ (θ), Z(θ)}

]
≥ 1− δ .

That is, with probability of at least 1− δ, the absolute er-
ror in the approximated log-likelihood is roughly ε when
ẐN,kζ (θ) and Z(θ) have the same order of magnitude.

5 EXPERIMENTAL DEMONSTRATION

Theoretical insights from the previous sections do prov-
ably reduce the computational complexity. Moreover,
pseudo marginals, based on unbiased estimates of the
quadrature approximation to the partition function, facil-
itate approximate maximum-likelihood estimation. We
conduct a small set of experiments to assess our methods
empirically and answer the following questions:

Q1 What is the runtime improvement when ‖χkφ‖ is
computed via Theorem 3 instead of naive summa-
tion?

Q2 What is the runtime improvement when index tuples
are sampled with Algorithm 2 instead of rejection
sampling?

Q3 Does SCCQ-based approximate maximum-
likelihood estimation work in practice?

To answer Q1, we measure the runtime in nanoseconds
for computing ‖χkφ‖ via Theorem 3 and via naive sum-
mation on a 4×4 binary Ising grid for polynomial degree
k ∈ {1, 2, 3, 4}. The results are depicted in the leftmost
plot of Figure 2. All results are averaged over 10 in-
dependent runs and error-bars show the standard devia-
tion (if any). The runtime is shown in log-scale. Nor-
malizing the tuple mass via Theorem 3 is several orders
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Figure 2: From left to right: (1) Runtime in log-scale for computing ‖χkφ‖ with Theorem 3 (light blue) and naive
summation (dark blue). Runtime in log-scale for drawing a single index tuple via Algorithm 2 (light blue) and rejection
sampling (dark blue). (3) and (4): Progress of (approximate) negative log-likelihood −`(θ) and mean squared error
(MSE) between predicted and empirical marginals during parameter estimation on the mushroom data set. The solid
line indicates the exact outcome, while the dashed lines represent SCCQ results withN = 104 samples and k ∈ {1, 3}.

of magnitude faster than the standard approach, as ex-
pected. Regarding Q2, the situation looks similar. The
corresponding results are depicted in the second plot of
Figure 2. We see that increasing the polynomial degree
and thus the maximal tuple length increases the runtime
of rejection sampling. Clearly, the proportion of rejected
samples increases when the state space size of the ran-
dom tuples increases. On the other hand, the runtime
of Algorithm 2 is almost constant in practice. To an-
swer Q3, a regularized maximum-likelihood estimation
on the mushroom data set2 is conducted. The set contains
5644 fully observed training instances. Each data point
x consists of 23 categorical features with up to 9 dif-
ferent states, representing properties of mushrooms. In
total, |X | ≈ 243. To facilitate exact computation of like-
lihood and marginals, we use the Chow-Liu tree (Chow
and Liu, 1968) as the conditional independence structure
of the model. Note, however, that SCCQ is completely
oblivious of the graphical structure. Hence, the reported
results are valid for intractable non-tree-structured mod-
els as well. To prevent the model parameters from be-
coming too large, l1-regularization with λ = 1/2 is ap-
plied. The actual parameter estimation is carried out
via the fast iterative shrinkage-thresholding algorithm
(FISTA) (Beck and Teboulle, 2009) with stepsize 1/L
where L is an upper bound on the log-likelihood’s gradi-
ent’s Lipschitz constant. We run SCCQ with N = 104

Monte Carlo samples. In each training iteration, we as-
sess the (approximate) negative log-likelihood and the
mean squared error (MSE) between predicted and empir-
ical marginal probabilities. The last two plots of Figure 2
show the corresponding results. Each line corresponds
to one parameter estimation. Since the runs converge in
different iterations, the three lines have slightly different
lengths. The results show that even the very coarse linear
(k = 1) approximation yields a reasonable approximate
log-likelihood and approximate marginals. The learning

2https://archive.ics.uci.edu/ml/datasets/mushroom

process evolves similar to the exact computation. When
the polynomial degree is increased to k = 3, the approx-
imation is even closer to the exact outcome as predicted
by the theory. Especially the SCCQ marginal probabili-
ties are often indistinguishable from the exact marginals.

6 CONCLUSION

We presented the first complete framework for SCCQ-
based parameter learning for undirected graphical mod-
els. Quadrature-based inference provides bounds on the
partition partition. However, the complexity of exist-
ing algorithms is exponential in the degree of the un-
derlying polynomial approximation and polynomial in
the dimension of the model’s parameter vector—the ac-
companying computational complexity is not practical.
We provide accelerated SCCQ algorithms whose com-
plexity is independent of the dimension. Our empiri-
cal evaluation shows that the new algorithms are sev-
eral orders of magnitude faster. In addition, we provide
the first algorithm for SCCQ-based marginal inference
whose practical speed and accuracy are sufficient to be
used for approximate maximum-likelihood estimation.
Hence, SCCQ is a highly parallel drop-in replacement
for MCMC and message-passing whenever the parame-
ter norm is bounded (e.g., via regularization). Finally,
we explained how the stochastic quadrature can be ap-
plied to models with continuous random variables, which
opens new research opportunities, e.g., inference in ex-
ponential family models with mixed domains, where
some dimensions are discrete and others are continuous.
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Abstract

Marginal MAP is a key task in Bayesian in-
ference and decision-making, and known to
be very challenging in general. In this paper,
we present an algorithm that blends heuristic
search and importance sampling to provide any-
time finite-sample bounds for marginal MAP
along with predicted MAP solutions. We con-
vert bounding marginal MAP to a surrogate
task of bounding a series of summation prob-
lems of an augmented graphical model, and
then adapt dynamic importance sampling [Lou
et al., 2017b], a recent advance in bounding
the partition function, to provide finite-sample
bounds for the surrogate task. Those bounds are
guaranteed to be tight given enough time, and
the values of the predicted MAP solutions will
converge to the optimum. Our algorithm runs
in an anytime/anyspace manner, which gives
flexible trade-offs between memory, time, and
solution quality. We demonstrate the effective-
ness of our approach empirically on multiple
challenging benchmarks in comparison with
some state-of-the-art search algorithms.

1 INTRODUCTION

Probabilistic graphical models, including Bayesian net-
works and Markov random fields, provide a framework for
representing and reasoning with probabilistic and deter-
ministic information [Dechter, 2013; Dechter et al., 2010;
Darwiche, 2009]. Typical inference queries in graphi-
cal models include maximum a posteriori (MAP) that
aims to find an assignment of MAP (or MAX) variables
with the highest value, the partition function that is the
normalizing constant ensuring a proper probability mea-
sure over all variables, and marginal MAP (MMAP) that

generalizes the aforementioned two tasks by maximizing
over a subset of variables with the remaining variables
marginalized, which arises in many scenarios such as
latent variable models [Ping et al., 2014] and decision-
making tasks [Kiselev and Poupart, 2014].

MMAP has complexity NPPP [Park, 2002], commonly
believed to be more challenging than either max infer-
ence (NP-complete [Darwiche, 2009]) or sum inference
(#P-hard [Valiant, 1979]), and can be intractable even for
tree-structured models [Park, 2002]. Because of the inher-
ent difficulty of MMAP, recent works on MMAP often
focus on approximate schemes. Among these, approxi-
mations with deterministic or probabilistic guarantees are
of particular interest because they quantify bounds on the
approximation errors. We also prefer approaches with an
anytime behavior because they allow users to trade off
computational resources with solution quality.

Approaches that offer deterministic bounds are typically
based on search or variational methods. Some early work-
s [Park and Darwiche, 2003; Yuan and Hansen, 2009] in
search solve MMAP exactly based on depth-first branch
and bound. Marinescu et al. [2014] outperformed its
predecessors by introducing AND/OR search spaces and
high-quality variational heuristics; this was further im-
proved using best-first search variants, including weighted
heuristic search [Lee et al., 2016b], and alternating depth-
first and best-first AND/OR search (AAOBF [Marinescu
et al., 2017]). However, these methods typically require
regular evaluation of internal summation problems when
traversing the MAP space; when these internal sums are
difficult, the search process may stall completely. One
way to avoid this issue is to unify the summation with
the MAP search in a single, best-first search framework
(UBFS [Lou et al., 2018]), which allows the bounds to
improve as the summation is performed, and switch to
other MAP configurations when appropriate. However,
another promising approach is to make use of probabilis-
tic bounds (e.g., Lou et al. [2017b]), which hold with a
user-selected probability, and can be significantly faster
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and tighter than deterministic bounds. However, since
each MAP configuration is associated with an indepen-
dent summation problem, comparing MAP configurations
using probabilistic bounds must compensate for the pres-
ence of many uncertain tests (in effect, a multiple hypoth-
esis testing problem), and is thus non-trivial to adapt to
the MAP search, which may contain exponentially many
such configurations.

Variational methods [Wainwright and Jordan, 2008] offer
another class of deterministic bounds for MMAP. How-
ever, these bounds are often not anytime (e.g., [Liu and
Ihler, 2013]), and those, such as [Ping et al., 2015], are
often not “any-space”, meaning that their quality depends
heavily on the available memory and may not continue
to improve without more. Other types of algorithms can
provide anytime deterministic bounds for MMAP as well,
for example, one based on factor set elimination [Mauá
and de Campos, 2012]; however, the factor sets that it
maintains tend to grow very large, which limits its practi-
cal use to problems with relatively small induced widths
(see Marinescu et al. [2017] or Lou et al. [2018]).

Some Monte Carlo approaches are able to provide proba-
bilistic bounds; for example, Xue et al. [2016] proposes
a random hashing based algorithm that provides a con-
stant factor approximation. However, this approach can
have difficulty on large scale problem instances (see [Lou
et al., 2018]). Other Monte Carlo methods may have no
bound guarantees at all, e.g., those based on Markov chain
Monte Carlo [Yuan et al., 2004; Doucet et al., 2002].

To some extent, the intrinsic hardness of MMAP arises
from the non-commutativity of the sum and max opera-
tions. One natural idea to alleviate this issue is to convert
the mixed inference task to a pure sum or a pure max
one first. For example, Cheng et al. [2012] constructs
an explicit factorized approximation of the marginalized
distribution using a form of approximate variable elimi-
nation, which results in a structured MAP problem.

Our Contributions. In this paper, we present an ap-
proach that provides anytime finite-sample bounds (i.e.,
they hold with probability 1− δ for some confidence pa-
rameter δ) for MMAP, that enjoys the benefits of both
heuristic search and importance sampling. Briefly speak-
ing, we follow Doucet et al. [2002] to construct an aug-
mented graphical model from the original model by repli-
cating the marginalized variables and potential functions.
From this augmented model, we derive a sequence of
decreasing summation objectives that bound the MMAP
optimum raised to some fixed power. Then, we adapt dy-
namic importance sampling [Lou et al., 2017b] to bound
these summation objectives and provide finite-sample
bounds of the MMAP optimum.

Our framework has several key advantages: 1) it pro-
vides anytime probabilistic upper and lower bounds that
are guaranteed to be tight given enough time. 2) it is
able to predict high-quality MAP solutions whose values
converge to the optimum; the exploration-exploitation
trade-off of searching MAP solutions is controlled by the
number of replicates of the marginalized variables. 3) it
runs in an anytime/anyspace manner, which gives flexible
trade-offs between memory, time, and solution quality.

2 BACKGROUND

Let X = (X1, . . . , XN ) be a vector of random variables,
where each Xi takes values in a discrete domain Xi; we
use lower case letters, e.g. xi ∈ Xi, to indicate a value of
Xi, and x to indicate an assignment of X . A graphical
model over X consists of a set of factors F = {fα(Xα) |
α ∈ I}, where each factor (a.k.a. potential function) fα
is defined on a subset Xα = {Xi | i ∈ α} of X , called
its scope.

We associate an undirected graph G = (V,E), or primal
graph, with F , where each node i ∈ V corresponds to
a variable Xi and we connect two nodes, (i, j) ∈ E, iff
{i, j} ⊆ α for some α. Then,

f(x) =
∏

α∈I
fα(xα)

defines an unnormalized probability measure over X .

Let XM be a subset of X called MAX variables, and
XS = X\XM SUM variables. The MMAP task seeks an
assignment x?M of XM with the largest marginal probabil-
ity:

x?M = argmax
xM

π(xM) (1)

where

π(xM) =
∑

xS

f(x).

IfXM is an empty set, the MMAP task reduces to comput-
ing the normalizing constant (a.k.a. partition function); if
XS is empty, it becomes the standard MAP inference task.
We use XM to denote the MAP space, i.e., the Cartesian
product of all Xi’s where Xi is a MAX variable. We will
assume in the sequel that x?M is unique for convenience,
though our algorithm and analysis still hold without this
assumption.

2.1 AND/OR Search Spaces

An AND/OR search space is a generalization of the stan-
dard (“OR”) search space, that enables us to exploit condi-
tional independence structure during search [Dechter and
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Figure 1: (a) A primal graph of a graphical model over
7 variables (A, B, C are MAX variables and D, E, F, G
are SUM variables) with unary and pairwise potential
functions. (b) A valid pseudo tree for the primal graph.
(c) An AND/OR search tree guided by the pseudo tree.
(d) An augmented model created by replicating SUM
variables and factors of the model in (a). Plate notations
used here. (e) A valid pseudo tree for the augmented
model.

Mateescu, 2007]. The AND/OR search space for a graphi-
cal model is defined relative to a pseudo tree that captures
problem decomposition along a fixed search order.

Definition 1 (pseudo tree). A pseudo tree of a primal
graph G = (V,E) is a directed tree T = (V,E′) sharing
the same set of nodes as G. The tree edges E′ form a
subset of E, and each edge (i, j) ∈ E \ E′ are required
to be a “back edge”, i.e., the path from the root of T to j
passes through i (denoted i ≤ j).

If a tree node of a pseudo tree corresponds to a MAX
variable in the associated graphical model of the pseudo
tree, we call it MAX node, otherwise we call it SUM node.
A pseudo tree is called valid for an MMAP task if there
is no MAX variable descended from any SUM variable.
Thus, all MAX variables of a valid pseudo tree form a
subtree (assuming a dummy MAX root) that contains the

root. We assume valid pseudo trees in the sequel.

Guided by a pseudo tree, we can construct an AND/OR
search tree consisting of alternating levels of OR and
AND nodes for a graphical model. Each OR node s is
associated with a variable, which we lightly abuse no-
tation to denote Xs; the children of s, ch(s), are AND
nodes corresponding to the possible values of Xs. If
an OR node is associated with some MAX variable, it
is called OR-MAX node. Notions of OR-SUM, AND-
MAX, AND-SUM nodes are defined analogously. The
root ∅ of the AND/OR search tree corresponds to the root
of the pseudo tree. Let pa(c) = s indicate the parent of c
in the AND/OR tree, and an(c) = {n | n ≤ c} indicate
the ancestors of c (including itself) in the tree.

In an AND/OR tree, any AND node c corresponds to a
partial configuration x≤c of X , defined by its assignment
and that of its ancestors: x≤c = x≤p∪{Xs = xc}, where
s = pa(c), p = pa(s). For completeness, we also define
x≤s for any OR node s, which is the same as that of its
AND parent, i.e., x≤s = x≤pa(s). For any node n, the
corresponding variables of x≤n are denoted as X≤n. Let
de(Xn) be the set of variables below Xn in the pseudo
tree; we define X>n = de(Xn) if n is an AND node;
X>n = de(Xn) ∪ {Xn} if n is an OR node.

We also associate a weight wc with each AND node, de-
fined to be the product of all factors fα that are instantiat-
ed at c but not before:

wc=
∏

α∈Ic
fα(xα), Ic={α | Xpa(c) ∈ Xα ⊆ Xan(c)}.

Example. Fig. 1(a) shows the primal graph of a pairwise
model. Variables A, B, C are MAX variables, and the rest
SUM. Fig. 1(b) shows one valid pseudo tree of the model.
Fig. 1(c) shows the AND/OR search tree that respects the
pseudo tree.

2.2 SEARCH IN AND/OR SEARCH TREES

Finally, the purpose of the search tree is to compute some
inference quantity for the model, such as the MAP opti-
mum maxx f(x), the partition function Z =

∑
x f(x)

and the MMAP optimum maxxM

∑
xS
f(x). To this

end, we associate a “value” vn with each node n in
the AND/OR search tree, which represents the inference
task’s value on the unexpanded portion of the search space
below node n. The value vn can be defined recursively
in terms of its children and grandchildren as follows. We
first define vl = 1 for any leaf (since no part of the model
remains uninstantiated). Let n be a non-leaf node; for
maximization tasks, we have

Max: vn =

{∏
c∈ch(n) vc, if AND node n.

maxc∈ch(n) wcvc, if OR node n.
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while for summation, the recursion defining vn for n is

Sum: vn =

{∏
c∈ch(n) vc, if AND node n.∑
c∈ch(n) wcvc, if OR node n.

For MMAP tasks, the recursion for AND nodes is the
same as the aforementioned tasks, while the recursion for
OR nodes is more involved:

MMAP : vn =





max
c∈ch(n)

wcvc, if OR-MAX node n.
∑

c∈ch(n)

wcvc, if OR-SUM node n.

Any search algorithm for reasoning about the model can
be thought of as maintaining upper (and/or lower) bounds
on these quantities at each node. In particular, for heuristic
search, we assume that we have a heuristic function hn
that gives upper (or lower) bound on vn. These heuristics
typically are more accurate deeper in the search tree, and
therefore their updates can be propagated upwards to
the root to yield tighter bounds to the overall inference
value. Any search algorithm is then defined by the order
of expansion of the search tree.

A typical example of this kind of search algorithms is
AOBFS [Lou et al., 2017a], a best-first search algorithm
that can provide anytime upper (and/or lower) bounds for
the summation task. Since AOBFS will be a component
of our proposed algorithm, we briefly present some of
its essence here. AOBFS maintains an explicit AND/OR
search tree of visited nodes, denoted S. For each node
n in the AND/OR search tree, AOBFS maintains un,
an upper bound on vn, initialized via a pre-compiled
heuristic vn ≤ h+

n , and subsequently updated during
search using information propagated from the frontier:

un =

{∏
c∈ch(n) uc, if AND node n.∑
c∈ch(n) wcuc, if OR node n.

Thus, the upper bound at the root, u∅, is an anytime deter-
ministic upper bound of the partition function. Note that
this upper bound depends on the current search tree S , so
we write US = u∅.

If all nodes below n have been visited, then un = vn;
we call n solved and can remove the subtree below n
from memory. Hence we can partition the frontier nodes
into two sets: solved frontier nodes, SOLVED(S), and
unsolved ones, OPEN(S).

2.3 DYNAMIC IMPORTANCE SAMPLING

Our work can be viewed as a generalization of dynamic
importance sampling (DIS) [Lou et al., 2017b], a recent

advance in bounding the partition function with finite-
sample bounds (see also [Liu et al., 2015]), which we
briefly introduce here to make our paper self-contained.

DIS interleaves search with sampling: search, as it im-
proves the deterministic upper bound of the partition func-
tion by expanding nodes in the AND/OR search tree,
also induces a sequence of importance sampling proposal
distributions with bounded importance weights that are
unbiased estimators of the partition function. Meanwhile,
samples are drawn independently from those improving
proposal distributions. By averaging those importance
weights based on their corresponding upper bounds, DIS
constructs an unbiased estimator of the partition function
Z with strong probabilistic guarantees.

To be more specific, DIS applies AOBFS with its “upper
priority” to quickly drive down the deterministic upper
bound. The current search tree S induces a proposal distri-
bution qS ; importance weights f(x)/qS(x) are bounded
by US and give an unbiased estimator of Z:

f(x)/qS(x) ≤ US , E
[
f(x)/qS(x)

]
= Z.

Drawing a sample from qS can be described as a “two-
step” top-down sampling process from the root:

Step 1 For an internal node n ∈ S: if it is an AND
node, all its children are selected; if n is an OR
node, one child c ∈ ch(n) is randomly selected with
probability wcuc/un.

Step 2 When an unsolved frontier node n ∈ OPEN(S)
is reached, draw a sample of its descendant variables
X>n in the pseudo tree according to the mixture
proposal q(x>n|x≤n) derived from weighted mini-
bucket (WMB, [Liu and Ihler, 2011]).

DIS introduces an unbiased estimator Ẑ of Z:

Ẑ =
HM(U)

N

N∑

i=1

Ẑi
Ui
, HM(U) =

[ 1

N

N∑

i=1

1

Ui

]−1

.

where {Ẑi = f(xi)/qSi(xi)}Ni=1 are importance weights
from samples {xi|xi ∼ qSi(x)} with {Si} the corre-
sponding search trees, and {Ui = USi}Ni=1 the corre-
sponding upper bounds on the importance weights respec-
tively. By defining

∆=HM(U)
[
√

2V̂ar({Ẑi/Ui}Ni=1) ln(2/δ)

N
+

7 ln(2/δ)

3(N − 1)

]

where V̂ar({Ẑi/Ui}Ni=1) is the unbiased empirical vari-
ance of {Ẑi/Ui}Ni=1, Ẑ enjoys the finite-sample guar-
antees: with probability at least 1 − δ, Ẑ + ∆ and
Ẑ−∆ are upper and lower bounds of Z, respectively, i.e.,
Pr[Z ≤ Ẑ + ∆] ≥ 1− δ and Pr[Z ≥ Ẑ −∆] ≥ 1− δ.
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3 OUR ALGORITHM

In this section, we introduce our algorithm, the general
idea of which is to first bound the mixed inference ob-
jective with a series of sum inference objectives whose
finite-sample bounds can be established by generalizing
DIS, and then translate the bounds back to those of the
original objective in which we are interested.

3.1 AN AUGMENTED GRAPHICAL MODEL

We first introduce an augmented graphical model which
connects the MMAP optimum to a series of summation
tasks. The augmented graphical model is built from the
original model by replicating the SUM variables and the
factors. Note that the idea of introducing an augmented
space on which we perform inference is adopted from
Doucet et al. [2002].

LetXaug = (XM, X
1
S , . . . , X

K
S ) be all the variables of the

augmented model where X1
S , . . . , X

K
S are K replicates

of the SUM variables XS. The overall function faug of the
augmented model is defined as

faug(xaug) =
K∏

k=1

f(xM, x
k
S).

Thus, the partition function of the augmented model is

Zaug =
∑

xM,x1
S ,...,x

K
S

K∏

k=1

f(xM, x
k
S)=

∑

xM

πK(xM).

Considering that πK(x?M) (see (1)) is the largest term in
the sum on the r.h.s., we have

Zaug/|XM| ≤ πK(x?M) ≤ Zaug, (2)

that is to say,

(Zaug/|XM|)1/K ≤ π(x?M) ≤ Z1/K
aug ,

where |XM| is the size of the MAP space. The above
inequalities are actually well-known boundedness rela-
tions between the∞-norm and p-norms of the Euclidean
space R|XM|. These bounds are monotonic in K, i.e., they
improve as K increases, and become tight as K goes to
infinity. In other words, K acts as a “reverse temperature”
parameter. The lower bound is negatively impacted by the
domain sizes of the MAX variables, which can be quite
loose if |XM| is large compared to the scale of K.

The significance of (2) is that it connects the MMAP op-
timum to a summation quantity Zaug that can be easily
approximated using Monte Carlo methods such as impor-
tance sampling.
Example. Fig. 1(d) shows an augmented graphical model
created from the model of Fig. 1(a). Fig. 1(e) shows one
valid pseudo tree for the augmented model.

3.2 MIXED DYNAMIC IMPORTANCE
SAMPLING

A straightforward idea is to apply DIS to bound Zaug
whose finite-sample bounds can then be translated to
those of π(x?M). However, several key issues remain to be
addressed for this idea to work well.

The first issue is about how to adapt DIS to the augment-
ed model in an efficient manner. Since the augmented
model might have many more variables compared to the
original model, a naı̈ve construction of AND/OR trees
leads to an excessively large search space. Note that any
Xk

S in the augmented model is an identical copy of XS;
we thus do not necessarily distinguish those XS copies
during search. That is to say, when search instantiates
those factors involving SUM variables, it behaves as usu-
al but takes into account the effect of replication when
using information propagated from SUM nodes. We can
also apply an analogous idea to construct weighted mini-
bucket (WMB) [Liu and Ihler, 2011] heuristics to ensure
that they are still compatible with the new search process.
In a nutshell, search for the augmented model can enjoy
the same complexity as that for the original model.

Meanwhile, the proposal distribution qSaug(xaug) associat-
ed with a search tree S has a decomposition property:

qSaug(xaug) = qSaug(xM)

K∏

k=1

qSaug(xkS |xM), (3)

with qSaug(xkS |xM) are identical conditional distribution-
s. Its importance weights also share the boundedness
property:

faug(xaug)/qSaug(xaug) ≤ USaug,

where USaug is the upper bound associated with S. Note
that sampling from qSaug can also be done via a two-step
sampling procedure analogous to that in DIS.

One point worth mentioning is that

π(xM) = E[f(xM, x
k
S)/qSaug(xkS |xM)]

implies that we can estimate the value of each sampled
MAP configuration xM along the way.

Another issue is that if Zaug is much larger than πK(x?M),
even high-quality bounds of Zaug might not result in rea-
sonably good bounds of π(x?M), let alone those bounds
will never be tight in general for π(x?M) with a finite K.
One way to alleviate this issue is based on the following
key observation: for any subset A of XM that contains
x?M, we have

ZAaug/|A| ≤ πK(x?M) ≤ ZAaug, (4)
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Algorithm 1 Mixed Dynamic Importance Sampling
Require: Control parameters K, Nd, Nl; confidence pa-

rameter δ; memory budget, time budget.
Ensure: Ẑaug, ∆, HM(U), HM(U/|A|).

1: Construct WMB heuristics for the augmented model.
2: Initialize S ← {∅} with the root ∅.
3: while within the time budget
4: // update S, US , AS during search.
5: if within the memory budget
6: Expand Nd nodes via AOBFS (Alg. 1 of Lou

et al. [2017a]) with its “upper priority”).
7: else
8: Expand Nd nodes via depth-first search.
9: end if

10: Draw Nl samples from qSaug (see (3)).
11: After drawing each sample:
12: Update N , Ẑaug, HM(U), HM(U/|A|),

V̂ar, ∆ via (5), (6), (11), (12).
13: end while

where

ZAaug =
∑

xM∈A
πK(xM).

The above inequalities tell us that if we know an instanti-
ation of XM is not optimal, we can mute its contribution
to Zaug and use the resulting smaller summation quantity
to bound πK(x?M).

This observation enables pruning during search: any node
ruled out from being associated with the optimal configu-
ration can be removed from memory. Such pruning is par-
ticularly useful to prune MAX nodes: for any AND-MAX
node with its sub-problem beneath solved, if it holds the
highest value among its siblings, all its siblings (solved
or not) and their descendants can be pruned immediately.
Thus, as pruning proceeds along with search, A shrinks
towards {x?M}. We use AS to denote the remaining MAP
space associated with the search tree S.

Note that when we approach the memory limit, we switch
the default best-first search to a depth-first search (DFS)
that is also compatible with the sampling procedure, and
leads to a complete search algorithm with the capability
to identify x?M and its value given enough time. By in-
terleaving search and sampling, we derive our algorithm
named mixed dynamic importance sampling (MDIS) and
present it in Alg. 1.

Remarks on Alg. 1.

1) K as the number of replicates of the SUM variables
controls the exploration-exploitation trade-off. When K
is small, we draw a small number of samples for the

SUM variables in each iteration, which allows us to e-
valuate each sampled MAP configuration fast, however
introduces more randomness when assessing the MAP
configuration; when K is large, we have more accurate
estimate of a MAP configuration being sampled, but also
slow down exploration of the MAP space.

2) To predict MAP solutions in an anytime manner, one
can simply choose the one with the highest estimated
value among those configurations that have been sampled.

3.2.1 Finite-sample Bounds for Marginal MAP

In MDIS, each sample not only comes from a different
proposal distribution but also gives importance weights
corresponding to a different expectation, which is more
complicated than in DIS.

Let {xiaug}Ni=1 be a series of samples drawn via Al-
g. 1, with {Si} the corresponding search trees, {Ẑiaug =

faug(xiaug)/qSiaug(xiaug)}Ni=1 the corresponding importance
weights, and {Ui = USiaug}Ni=1 the corresponding upper
bounds associated with those search trees respectively.
We denote Ai as the MAP space preserved in Si. Thus,

E
[
Ẑiaug

]
= ZAiaug.

That is to say, the importance weights have different (in
fact, decreasing) expectations; this differs from the case of
DIS where any importance weight has the same expecta-
tion (the partition function). We propose an estimate Ẑaug
whose expectation is again an upper bound of πK(x?M) in
the following way:

Ẑaug =
HM(U)

N

N∑

i=1

Ẑiaug

Ui
, (5)

where

HM(U) =
[ 1

N

N∑

i=1

1

Ui

]−1

(6)

is the harmonic mean of the upper bounds {Ui}Ni=1. Thus,
Ẑaug upweights the terms Ẑiaug whose expectations are
closer to πK(x?M). The expectation of Ẑaug is

E
[
Ẑaug

]
=

HM(U)

N

N∑

i=1

ZAiaug

Ui
.

E
[
Ẑaug

]
is a convex combination of {ZAiaug}Ni=1 with co-

efficients {HM(U)
NUi

}Ni=1, shrinking towards πK(x?M) as
search proceeds.

According to (4), since πK(x?M) ≤ ZAiaug, we know

πK(x?M) ≤ E
[
Ẑaug

]
, (7)
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and from ZAiaug ≤ |Ai|πK(x?M), we know

E
[
Ẑaug

]
≤ πK(x?M)

HM(U)

N

N∑

i=1

|Ai|
Ui

. (8)

By combining (6), (7), and (8), we derive two-sided
bounds for πK(x?M) involving E

[
Ẑaug

]
:

∑N
i=1 1/Ui∑N

i=1 |Ai|/Ui
E
[
Ẑaug

]
≤ πK(x?M) ≤ E

[
Ẑaug

]
. (9)

From the above, we can see that the bounds get tight only
when Ai approaches {x?M}. To be concise, we re-arrange
the L.H.S. of (9) to derive:

HM(U/|A|)
HM(U)

E
[
Ẑaug

]
≤ πK(x?M) ≤ E

[
Ẑaug

]
, (10)

where

HM(U/|A|) =
[ 1

N

N∑

i=1

|Ai|
Ui

]−1

(11)

is the harmonic mean of {Ui/|Ai|}Ni=1.

Considering Ẑiaug are independent, and E Ẑaug/HM(U),
Ẑaug/HM(U), Ẑiaug/Ui are all within the interval [0, 1],
we can apply an empirical Bernstein bound [Maurer and
Pontil, 2009] to derive finite-sample bounds on E Ẑaug
and translate those bounds to π(x?M) based on (10).

Theorem 1. For any δ ∈ (0, 1), we define

∆ = HM(U)
(
√

2V̂ar ln(2/δ)

N
+

7 ln(2/δ)

3(N − 1)

)
, (12)

where V̂ar is the unbiased empirical variance of
{Ẑiaug/Ui}Ni=1. Then, the following probabilistic bounds
hold for π(x?M):

Pr
[
π(x?M)≤(Ẑaug+∆)

1
K

]
≥1−δ,

Pr
[
π(x?M)≥

( (Ẑaug−∆) HM(U/|A|)
HM(U)

) 1
K
]
≥1−δ,

i.e., (Ẑaug + ∆)
1
K and (

(Ẑaug−∆) HM(U/|A|)
HM(U)

) 1
K are upper

and lower bounds of π(x?M) with probability at least 1−δ,
respectively.

Note that it is possible that Ẑaug − ∆ < 0 early on; if
so, we may replace Ẑaug −∆ with any non-trivial lower
bound of Zaug. In the experiments, we use δẐaug, a (1−δ)
probabilistic bound by the Markov inequality [Gogate and
Dechter, 2011]. We can replace Ẑaug +∆ with the current
deterministic upper bound if the latter is tighter.

4 EXPERIMENTS

We evaluate our proposed approach (MDIS) against t-
wo baseline methods on five benchmarks. The base-
lines include UBFS [Lou et al., 2018], a unified best-first
search algorithm that emphasizes rapidly tightening the
upper bound, and AAOBF [Marinescu et al., 2017], a
best-first/depth-first hybrid search algorithm that balances
upper bound quality with generating and evaluating poten-
tial solutions. These two are state-of-the-art algorithms
for anytime upper and lower bounds respectively. We
do not compare to XOR MMAP [Xue et al., 2016] and
AFSE [Mauá and de Campos, 2012] due to their limita-
tions to relatively easy problem instances as shown in Lou
et al. [2018].

Three benchmarks are formed by problem instances from
recent UAI competitions: grid- 50 grid networks with
size no smaller than 25 by 25, promedas- 50 medical
diagnosis expert systems, protein- 44 instances made
from the “small” protein side-chains of [Yanover and
Weiss, 2002]. Since the original UAI instances are pure
MAP tasks, we generate MMAP instances by randomly
selecting 10% of the variables as MAP variables. The
fourth benchmark is planning, formed by 15 instances
from probabilistic conformant planning with a finite-time
horizon [Lee et al., 2016a]. On these four benchmarks,
we compare anytime bounds. Some statistics of the four
benchmarks are shown in Table 1. These benchmarks
are selected to illustrate different problem characteristics;
for example, protein instances are relatively small but
high cardinality, while planning instances have more
variables and higher induced width, but lower cardinality.
The fifth benchmark, which we will describe in detail
later, is created from an image denoising model in order
to evaluate quality of the predicted MAP solutions.

The time budget is set to 1 hour for the experiments on
the first four benchmarks. We allot 4GB memory to al-
l algorithms, with 1GB extra memory to AAOBF for
caching. For our experiments, we use the weighted mini-
bucket [Liu and Ihler, 2011] heuristics, whose memory
usage is roughly controlled by an ibound parameter. For a
given memory budget, we first compute the largest ibound
that fits in memory, then use the remaining memory for
search. Since all the competing algorithms use weighted
mini-bucket heuristics, the same ibound is shared during
heuristic construction. We set Nd = 100 and Nl = 1 (see
Alg. 1) as suggested by the experimental results in Lou et
al. [2017b]. We set δ = 0.025. All implementations are
in C/C++ courtesy of the original authors.

Anytime bounds for individual instances. Fig. 2
shows the anytime behavior of all the methods on in-
stances from four benchmarks. In terms of lower bounds,
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Table 1: Statistics of the four evaluated benchmarks. The
first three benchmarks are formed by problem instances
from recent UAI competitions, where 10% of variables are
randomly selected as MAX variables. “avg. ind. width of
sum” in the last row stands for the average induced width
of the internal summation problems.

grid promedas protein planning

# instances 50 50 44 15
avg. # variables 1248.20 982.10 109.55 1122.33

avg. % of MAX vars 10% 10% 10% 12%
avg. # of factors 1248.20 994.76 394.64 1127.67

avg. max domain size 2.00 2.00 81.00 3.00
avg. max scope 3.00 3.00 2.00 5.00

avg. induced width 124.82 108.14 15.84 165.00
avg. pseudo tree depth 228.92 158.78 33.52 799.33
avg. ind. width of sum 43.44 40.32 10.20 49.67

our approach can always provide decent lower bounds
even when the internal summation problems are quite
challenging, while AAOBF may not work well since it
relies on exact evaluation of those internal summation
problems, e.g., on those shown in Fig. 2(b)-2(d). When
the internal summation problems are relatively easy, their
exact evaluation is cheap; thus AAOBF might perform bet-
ter than ours. Fig. 2(a) gives a typical example. In terms
of upper bounds, our bound quality is often eventually
comparable to UBFS, e.g., Fig. 2(b)-2(d). UBFS typically
performs better than MDIS early on, while MDIS quickly
catches up and becomes comparable. Improvement in
AAOBF on upper bounds also requires fast exact evalua-
tion of the internal summation problems, which might not
be possible in many cases. So, AAOBF is usually not as
competitive as the other two methods on upper bounds.

Anytime bounds across benchmarks. We present the
anytime performance across the four benchmarks in Ta-
ble 2 and 3 where we compare anytime bounds at three
different timestamps: 1 minute, 10 minutes and 1 hour.
From Table 2, we can observe that MDIS with K=5 is
dominant at any of these timestamp/benchmark combi-
nations for lower bounds. MDIS with K=10 performs
less well, perhaps because it requires more time to draw
one full sample compared to when K=5, leading the em-
pirical Bernstein lower bounds to kick in relatively late;
this phenomenon can be also observed in all the plots in
Fig. 2. UBFS provides the best upper bounds as shown
in Table 3. However, our algorithm generally performs
better than AAOBF in terms of upper bounds.

Empirical evaluation of solution quality. To evaluate
the MAP solution quality predicted by our algorithm, we
create an image denoising task from the MNIST database1

1http://yann.lecun.com/exdb/mnist/

Table 2: Number of instances that an algorithm achieves
the best lower bounds at each timestamp (1 min, 10 min,
and 1 hour) for each benchmark. The best for each setting
is bolded. Entries for UBFS are blank because UBFS
does not provide lower bounds.

grid promedas protein planning

# instances 50 50 44 15

Timestamp: 1min/10min/1hr

MDIS (K=5) 47/44/45 32/34/31 31/27/28 14/13/13
MDIS (K=10) 3/2/1 4/5/6 11/13/14 1/2/2

UBFS -/-/- -/-/- -/-/- -/-/-
AAOBF 0/4/4 16/21/24 2/4/4 0/0/0

Table 3: Number of instances that an algorithm achieves
the best upper bounds at each timestamp (1 min, 10 min,
and 1 hour) for each benchmark. The best for each setting
is bolded.

grid promedas protein planning

# instances 50 50 44 15

Timestamp: 1min/10min/1hr

MDIS (K=5) 0/0/0 9/12/13 5/9/15 1/1/1
MDIS (K=10) 0/0/0 10/13/14 9/10/13 1/2/3

UBFS 50/50/50 50/50/50 36/32/26 14/14/13
AAOBF 0/0/1 2/4/6 2/2/2 1/1/1

of handwritten digits [LeCun et al., 1998]. We binarize
each image, resize it to 14 by 14, and then randomly flip
5% of the pixels to generate a corrupt one. We train a con-
ditional restricted Boltzmann machine (CRBM) [Mnih
et al., 2011] model with 64 hidden units and 196 visible
units using mixed-product BP [Ping and Ihler, 2017; Li-
u and Ihler, 2013] for the denoising task. The resulting
graphical model thus has 64 SUM variables and 196 MAX
variables. Fig. 3(c) gives an illustration of this model. The
advantage of this model is that we can easily evaluate any
MAP configuration since the internal summation problem
only contains singleton potentials; thus this model favors
AAOBF since AAOBF is able to evaluate MAP configu-
rations at a very low cost. We set K to 5 and runtime to
10 minutes for convenience. We test on 100 images with
10 images per digit. Fig. 3(a) compares the denoising
results among all the algorithms for one instance per digit.
Fig. 3(b) gives an example of the quality of the predicted
MAP solutions of our algorithm. In general, the quality of
predicted MAP solutions for our algorithm are better than
the other two baselines in 51 of 100 instances, which is
generally as good as AAOBF (47/100) despite the model
being well-suited to AAOBF. A possible reason is that our
algorithm is able to traverse the MAP space very quickly
and get cheap stochastic estimates of the most promising
MAP solutions.
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Figure 2: Anytime bounds for MMAP on instances from four benchmarks. The max domain sizes of those instances
from (a)-(d) are 2, 2, 81, 3 respectively, and the induced widths of the internal summation problems are 25, 28, 8, 24
respectively. Curves for some bounds may be (partially) missing because they are not in a reasonable scope. UBFS only
provides upper bounds. The time limit is 1 hour.
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Figure 3: (a) Image denoising results for one instance per digit. The first row is for the ground truth images. The second
row is for the noisy inputs created from the ground truth by randomly flipping 5% pixels. Below the first two rows are
denoised images from UBFS, AAOBF, MDIS (K=5) respectively. (b) An example on MAP solution quality comparison.
(c) Illustration of the conditional restricted Boltzmann machine (CRBM) model used for the image denoising task.
When conditioned on an input “X”, this model has a bipartite graph structure between hidden units “h” (SUM variables)
and visible units “v” (MAX variables).

5 CONCLUSION

In this paper, we propose an approach that provides any-
time finite-sample upper and lower bounds for MMAP,
which enjoys the merits of both heuristic search and im-
portance sampling. Our approach is particularly useful
for problem instances whose internal summation prob-
lems are challenging. It predicts high-quality MAP so-
lutions along with their estimated values. It runs in an
anytime/anyspace manner, which gives flexible trade-offs
between memory, time, and solution quality.

Acknowledgements

We thank all the reviewers for their helpful feedback. We
also thank Wei Ping for assistance with the experiments.

This work is sponsored in part by NSF grants IIS-
1526842 and IIS-1254071, the U.S. Air Force (Contract
FA9453-16-C-0508), and DARPA (Contract W911NF-18-
C-0015).

References
Qiang Cheng, Feng Chen, Jianwu Dong, Wenli Xu, and Alexan-

der Ihler. Approximating the sum operation for marginal-
MAP inference. In AAAI, pages 1882–1887, 2012.

Adnan Darwiche. Modeling and Reasoning with Bayesian Net-
works. Cambridge University Press, 2009.

Rina Dechter and Robert Mateescu. AND/OR search spaces for
graphical models. Artificial Intelligence, 171(2-3):73–106,
2007.

Rina Dechter, Hector Geffner, and Joseph Y Halpern. Heuristics,
Probability and Causality. A Tribute to Judea Pearl. College
Publications, 2010.

Rina Dechter. Reasoning with probabilistic and deterministic
graphical models: Exact algorithms. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 7(3):1–191,
2013.

Arnaud Doucet, Simon J. Godsill, and Christian P. Robert.
Marginal maximum a posteriori estimation using Markov
chain Monte Carlo. Statistics and Computing, 12(1):77–84,
2002.

Vibhav Gogate and Rina Dechter. Sampling-based lower bounds

733



for counting queries. Intelligenza Artificiale, 5(2):171–188,
2011.

Igor Kiselev and Pascal Poupart. Policy optimization by
marginal-MAP probabilistic inference in generative models.
In AAMAS, pages 1611–1612, 2014.
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Abstract

The conditional independence structure in-
duced on the observed marginal distribution by
a hidden variable directed acyclic graph (DAG)
may be represented by a graphical model rep-
resented by mixed graphs called maximal an-
cestral graphs (MAGs). This model has a num-
ber of desirable properties, in particular the set
of Gaussian distributions can be parameterized
by viewing the graph as a path diagram. Mod-
els represented by MAGs have been used for
causal discovery [22], and identification theory
for causal effects [28].

In addition to ordinary conditional indepen-
dence constraints, hidden variable DAGs also
induce generalized independence constraints.
These constraints form the nested Markov
property [20]. We first show that acyclic linear
SEMs obey this property. Further we show that
a natural parameterization for all Gaussian dis-
tributions obeying the nested Markov property
arises from a generalization of maximal ances-
tral graphs that we call maximal arid graphs
(MArG). We show that every nested Markov
model can be associated with a MArG; viewed
as a path diagram this MArG parametrizes the
Gaussian nested Markov model. This leads di-
rectly to methods for ML fitting and computing
BIC scores for Gaussian nested models.

1 INTRODUCTION

Causal models associated with graphs have a long history
in statistics, beginning with the seminal work of Wright
in pedigree analysis [27], Haavelmo’s work on simulta-
neous equations in econometrics [13] and the more re-
cent synthesis of earlier work into a general causal mod-
eling framework due to Pearl [17]. Causal graphical

models are widely used in a variety of disciplines, with
many theoretical developments and applications.
An important parametric subclass of causal graphical
models are the linear structural equation models with
correlated errors (SEMs). In fact, Wright and to some
extent Haavelmo’s work was originally within the SEM
class. SEMs are defined over a class of mixed graphs
containing directed (→) edges representing direct causa-
tion, and bidirected (↔) edges representing correlated er-
rors. Mixed graphs of this type without directed cycles—
an assumption that rules out cyclic causation—are called
acyclic directed mixed graphs (ADMGs).
Given an ADMG G, the linear structural equation model
with correlated errors (SEM) associated with G is for-
mally defined as the set of multivariate normal distribu-
tions with covariance matrices of the form

Σ = (I −B)−TΩ(I −B)−1,

where ωij = ωji = 0 unless i↔ j exists in G, and bij =
0 unless i→ j exists in G. The matrix Ω—and therefore
Σ—is assumed to be positive definite. We denote this
set by Psem(G), and the set of Gaussians with arbitrary
covariances N .
It is easy to show that this model is equivalent to assum-
ing that each variableXi is a linear function of its parents
with coefficients bji together with an additive error term.
The error terms are assumed to have a multivariate nor-
mal distribution with covariance matrix given by Ω. If
Ω = I , error terms are uncorrelated and the SEM corre-
sponds to a directed acyclic graph (DAG).
Elements of Psem(G) are known to obey the global
Markov property for G given by a criterion called m-
separation [15, 19, 23]; this is the natural extension of
d-separation to mixed graphs—see the Appendix for a
definition. This criterion implies that absences of cer-
tain edges in G correspond to conditional independences
in elements of Psem(G). Densities that obey this global
Markov property are said to be in the ordinary Markov
model of G, a set of densities we denote Po(G) [9].
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Hence Psem(G) ⊆ Po(G) ∩ N ; that is elements of the
SEM for G are multivariate normal and are in the ordi-
nary Markov model of G.
Given a DAG D with observed variables O and hidden
variables H , a simple operation, called the latent projec-
tion [26], maps it to an ADMG G with only observed
variables O, such that d-separation applied to any vari-
ables in O in D, and m-separation applied to G yields
the same set of conditional independence relations on O.
Thus, distributions Markov relative to a hidden variable
DAG yield marginal distributions in Po(G) for a latent
projection G.
However, more recent work has shown that these
marginal distributions also obey certain generalized
conditional independence constraints, sometimes called
Verma constraints [6]. These define a model known as
the nested Markov model, also associated with G, and de-
noted Pn(G) [20]; generally Pn(G) ⊆ Po(G), since the
nested model implies all the constraints of m-separation.
In this paper we show that distributions in the SEM for G
also obey the additional constraints of the nested Markov
model, so Psem(G) ⊆ Pn(G) ∩N .
Although well-studied, general SEMs possess many
complexities that make them potentially difficult to work
with. The models may not be everywhere identifiable,
and may contain singularities that prevent convergence
of fitting algorithms [5]. No general distributional equiv-
alence result is available for SEMs; see [25] for re-
cent developments. In addition, while characterization
of identifiability of causal effects is known for non-
parametric structural equations [14, 21], a similar re-
sult is not known for SEMs despite decades of work
[1, 2, 3, 4, 8, 11, 12, 24].
It is known that SEMs are everywhere identified if and
only if they are associated with ADMGs in a special
class [7]; in this paper we call this class arid graphs.
We show that in a further subclass called maximal arid
graphs (MArGs), it is the case that Psem(G) = Pn(G) ∩
N . Moreover, we show that restricting to maximal arid
graphs is without loss of generality in the sense that for
any ADMG G, there exists a maximal arid graph G† such
that Pn(G) = Pn(G†). We also provide an algorithm for
obtaining this maximal arid projection from G, and show
that G† has the same ancestral relations as G.
Our results immediately imply that the nested Markov
model over multivariate normal densities is a curved
exponential family of known dimension, and is every-
where identifiable. They also imply that Gaussian nested
models can be fitted efficiently with existing algorithms,
such as RICF [5], applied to the SEM associated with
G†. Conversely, our results imply that every SEM obeys
all the generalized independence constraints implied by
Pn(G).

MArGs form a natural subclass of ADMGs for the pur-
poses of nested Markov model search methods, which
could be used for causal discovery. This would be a
more powerful alternative to model search with maxi-
mal ancestral graphs (MAGs), since nested models are
more fine-grained and therefore make more unambigu-
ous causal information available. Though the results
in this paper make significant progress towards causal
structure learning with nested Markov models, more
work is required. In particular, a natural next step would
be to fully describe equivalence classes of nested Markov
models, and develop a constraint based model search al-
gorithm that is akin to the FCI algorithm [22], but that
also takes generalized conditional independence con-
straints into account.
The remainder of the paper is organized as follows. Sec-
tion 2 gives some preliminary definitions, including that
of acyclic directed mixed graphs (ADMGs). In Section
3 we define the nested Markov model associated with
ADMGs formally, including the central notion of ‘fix-
ing’. Section 4 shows that the class of nested models can
be represented, without loss of generality, by the class
of maximal arid graphs. Section 5 characterizes fixing
in terms of zeroes of SEM parameters; this leads to the
result in Section 6, which shows that for maximal arid
graphs, the nested model and SEM coincide. We con-
clude with an example in Section 7, and discussion in
Section 8. The proofs of certain results that are not es-
sential to the presentation are deferred to the Appendix.

2 PRELIMINARIES

In this paper, we consider mixed graphs with directed
(→) and bidirected (↔) arrows connecting pairs of dis-
tinct vertices. There is at most one edge of each type be-
tween any pair of vertices, and we forbid directed cycles
(i.e. sequences of the form v1 → v2 → · · · → vk → v1
for k ≥ 2). Graphs in this class are called acyclic di-
rected mixed graphs (ADMGs). ADMGs may contain
bows, where both a → b and a ↔ b, but this is the
only circumstance in which more than one edge may be
present between two vertices. See Fig. 2, 3 and 4 for
examples of ADMGs.
We will use standard genealogical terminology for rela-
tions between vertices. Given a vertex v in an ADMG G
with a vertex set V , define the sets of parents, children,
ancestors, descendants, and siblings of v as

paG(v) ≡ {w : w → v in G}
chG(v) ≡ {w : v → w in G}
anG(v) ≡ {w : w = v or w → · · · → v in G}
deG(v) ≡ {w : w = v or v → · · · → w in G}
sibG(v) ≡ {w : w ↔ v in G}.
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respectively. Define also the non-descendants of v to
be ndG(v) ≡ V \ deG(v). The definitions apply dis-
junctively to sets, e.g. for a set of vertices W ⊆ V ,
paG(W ) ≡ ⋃w∈W paG(w). In addition, we define the
district of v to be the set

disG(v) ≡ {w : w ↔ . . .↔ v in G}.

The set of districts of an ADMG G, which we denote by
D(G), always partitions the set of vertices in G.
An internal vertex v on a path is a collider (on the path)
if both adjacent edges have an arrowhead at v. A path
from w to v in G is called a collider path if every internal
vertex is a collider on the path. For example w → z ↔
m ← v is a collider path, while w → z → m → v is
not.
Given an ADMG G, and a subset S of vertices V in G,
the induced subgraph GS is the graph with vertex set S,
and those edges in G between elements in S. A set S
is called bidirected-connected in G if D(GS) contains a
single set.

3 NESTED MARKOV MODELS

Nested Markov models are a class of graphical models
associated with ADMGs, and defined by generalized in-
dependence constraints. We consider random variables
XV ≡ (Xv : v ∈ V ) taking values in the product space
XV = ×v∈V Xv , for finite dimensional sets Xv . For any
A ⊆ V we denote the subset (Xv : v ∈ A) by XA.
A kernel qV (xV |xW ) is a collection of densities over
XV , indexed by xW ∈ XW . Conditional densities are
kernels, but not all kernels are obtained by condition-
ing; we give some examples later. Conditioning and
marginalization are defined in the usual way in kernels.
A joint density p(xV ) over XV is said to be nested
Markov with respect to an ADMG G if it obeys certain
independence constraints in kernels derived from p(xV )
using a ‘fixing’ operation. These constraints are implied
by the m-separation criterion applied to conditional AD-
MGs (CADMGs) obtained from G by an analogous fix-
ing operation. We now define these terms, and the nested
Markov model, precisely.
A CADMG G(V,W ) is an ADMG with a set of random
vertices V and fixed vertices W , with the property that
sibG(w) ∪ paG(w) = ∅ for every w ∈ W . An example
can be found in Fig. 1(b); note that we depict fixed ver-
tices with rectangular nodes, and random vertices with
round nodes. Vertices V in a CADMG correspond to
random variables, as in standard graphical models, while
vertices in W correspond to variables that were fixed to
a specific value by some operation, such as condition-
ing or causal interventions. The genealogical relations in

Section 2 generalize in a straightforward way to CAD-
MGs by ignoring the distinction between V and W ; the
only exception is that districts are only defined for ran-
dom vertices, so D(G(V,W )) partitions V .

3.1 Fixing

A vertex r ∈ V is said to be fixable in a CADMG
G(V,W ) if disG(r) ∩ deG(r) = ∅. Given a CADMG
G(V,W ), and a fixable r ∈ V , the fixing operation φr(G)

yields a new CADMG G̃(V \ {r},W ∪ {r}) obtained
from G(V,W ) by removing all edges of the form → r
and ↔ r, and keeping all other edges. Given a kernel
qV (xV |xW ) associated with a CADMG G(V,W ), and
a fixable r ∈ V , the fixing operation φr(qV ;G) yields a
new kernel

q̃V \{r}(xV \{r} |xW , xr) ≡
qV (xV |xW )

qV (xr |xndG(r))
.

A sequence r1, . . . , rk of vertices in V is said to be fix-
able if r1 is fixable in G, r2 is fixable in φr1(G), etc. A re-
sult in [20] states that for any p(xV ) ∈ Pn(G), two valid
fixing sequences on the same set of variables R yield the
same CADMG and kernel. We therefore unambiguously
define

φR(G) ≡ φrk(. . . φr2(φr1(G)) . . .),

and similarly the kernel φR(p;G).
If a fixing sequence exists for a set R ⊆ V in G(V,W ),
we say V \R is a reachable set. Such a set is called intrin-
sic if the vertices in V \ R are bidirected-connected (so
that D(φR(G)) has a single element). We denote the col-
lections of reachable and intrinsic sets in G respectively
byR(G) and I(G).
For any v ∈ V , such that chG(v) = ∅, the Markov blan-
ket of v in a CADMG G(V,W ) is defined as

mbG(v) ≡ (disG(v) ∪ paG(disG(v))) \ {v},

this is the set of vertices that are connected to v by col-
lider paths. For brevity, we will denote mbφV \S(G)(v) by
mbG(v, S).
We are now ready to define the nested Markov model
Pn(G). Given an ADMG G, let ≺ be any topological
ordering on V . A distribution p(xV ) is in the nested
Markov model associated with G if, for each intrinsic
S ⊆ V and ≺-maximal v ∈ S,

Xv ⊥⊥ XV \({v}∪mbG(v,S)) | XmbG(v,S)

holds in φV \S(p(xV );G). This is known as the or-
dered local Markov property for nested models. As
a consequence, under the nested model, fixing r
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a b c d(a)

a b c d(b)

a b c d(c)

Figure 1: (a) An ADMG G that is not ancestral; (b)
a CADMG obtained from G in (a) by fixing a and
c; (c) the graph obtained from (b) that is used to
check conditional independence statements associated
with φ{a,c}(p(a, b, c, d);G).

within any R ∈ R(G) may be redefined as di-
viding by qR(xr |xmbG(r,R)), instead of dividing by
qR(xr |xndG(r)) (see section 2.11 in [20]). Nested
models can be equivalently defined by a global nested
Markov property obtained by applying the m-separation
criterion to each reachable graph φV \S(G) after adding
bidirected edges between all pairs of fixed vertices;
adding these bidirected edges ensures no independences
are implied between vertices in W . These m-separations
imply independences in the kernel φV \S(p;G); see [20].

Example 1. Consider the ADMG in Fig. 1(a). The ver-
tices a, c and d all satisfy the condition of being fixable,
but b does not since d is both a descendant of, and in the
same district as, b. The CADMG G({b, d}, {a, c}) ob-
tained after fixing a and c is shown in Fig. 1(b). Notice
that fixing c removes the edge b → c, but that the edge
c → d is preserved. Applying m-separation to the graph
shown in Fig. 1 (c), obtained from Fig. 1 (b) by connect-
ing a, c by a bidirected edge, yields

Xd ⊥⊥ Xa | Xc in φ{a,c}(p(x{a,b,c,d});G).

In addition, one can see easily that if an edge a→ d had
been present in the original graph, then we would not
have obtained this m-separation.

4 ARID GRAPHS

The main result of this section is that the nested Markov
model associated with any ADMG G can be associated,
without loss of generality, with a closely related maximal
arid graph (MArG) G†.
Arid graphs lack certain structures called C-trees [21]
(aka convergent arborescences [7]) that present difficul-
ties for identifiability. As a result, any linear SEM asso-
ciated with an arid graph is everywhere identifiable [7].

In addition, maximal arid graphs are analogous to (but a
strict superset of) maximal ancestral graphs (MAGs), a
class of ADMGs also used for causal discovery.
The section proceeds as follows. In Section 4.1 we de-
fine the reachable closure of a set which is the smallest
reachable superset of that set. These structures will be
used in the proofs of our results, and to define C-trees
and (maximal) arid graphs in Section 4.2. In Section
4.3 we define a projection operation which constructs,
for any ADMG, its maximal arid graph counterpart. In
Section 4.4, we show a number of useful graphical prop-
erties remain invariant between the original ADMG, and
its maximal arid graph, leading to the proof of our main
result in Section 4.5.

4.1 Reachable Closures

For a CADMG G(V,W ), a (reachable) subset C ⊆ V is
called a reachable closure for S ⊆ C if the set of fixable
vertices in φV \C(G) is a subset of S. Every set S in G
has a reachable closure.

Proposition 2. If A,B ∈ R(G), then A ∩B ∈ R(G).

Proof. This follows from the fact that if a vertex is fix-
able, it remains fixable after fixing other vertices (see
Lemma 27 of [20]).

Proposition 3. For any set of random vertices S in a
CADMG G, there is a unique reachable closure.

Proof. Assume there are two such distinct closures
W1,W2. Since both W1 and W2 are reachable, so is
W1∩W2, by Proposition 2. Since S ⊆W1 and S ⊆W2,
S ⊆W1∩W2. Consider a fixing sequence σ1 for V \W1.
Then there exists a fixing sequence σ2 for V \(W1∩W2)
which contains σ1 as a prefix. Note that W1 being reach-
able implies that W1 6⊆ W2, by the same argument as in
the proof of Proposition 2; hence σ2 is non-empty. But
this implies W1 is not a reachable closure for S, since
the next element in σ2 after the σ1 prefix cannot lie in S.
This is a contradiction.

In light of Proposition 3, we denote the unique reachable
closure of a set S in G by 〈S〉G . By definition 〈S〉G ∈
R(G) for any S, and if S ∈ R(G) then 〈S〉G = S. To
avoid clutter, if S = {s}, we write 〈{s}〉G as 〈s〉G .

Proposition 4. Let A ⊆ B with B a reachable set; then
〈A〉φV \B(G) = 〈A〉G .

Lemma 5. 〈S〉G ⊆ S ∪ paG(〈S〉G).

Proof. If s ∈ 〈S〉G \ S then s has a child in 〈S〉G since
otherwise s is fixable, which is a contradiction.
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4.2 C-Trees and Arid Graphs

For any v ∈ V in an ADMG G, the induced subgraph
G〈v〉 is called a v-rooted C-tree [21] or an arborescence
converging on v [7]. These subgraphs are particularly
important because of the following result.

Theorem 6 ([7], Theorem 2). The SEM for an ADMG G
is everywhere identifiable if and only if 〈v〉G = {v} for
all v ∈ V .

In other words, the SEM parameterization is identifiable
everywhere if and only if G does not contain any non-
trivial converging arborescences. We call such graphs
‘arid’, since they do not contain such ‘trees’.

Definition 7. An ADMG G is called arid if for every
vertex v in G, 〈v〉G = {v}.
Arid ADMGs are “DAG-like,” in the sense that in any
DAG G, it is also the case that 〈v〉G = {v}. The cen-
tral result of this section is that the nested Markov model
Pn(G), a statistical model with desirable properties, may
be associated without loss of generality with arid graphs.
The ordinary Markov model Po(G) has previously been
associated with another special class of ADMGs called
ancestral graphs in [18].

Definition 8. An ADMG G is called ancestral if for ev-
ery vertex v in G, sibG(v) ∩ anG(v) = ∅.
Arid graphs may be viewed as a strict generalization of
ancestral graphs of [18], due to the following property of
C-trees.

Proposition 9. If 〈a〉G contains more than one element,
then there exists b ∈ 〈a〉G with a↔ b in G.

Proof. If no such element exists then every element in
paG(a) ∩ 〈a〉G is fixable in φV \〈a〉G (G), which is a con-
tradiction.

Proposition 10. Ancestral graphs are arid.

Proof. Follows immediately by the contrapositive appli-
cation of Proposition 9 and 〈a〉G ⊆ anG(a).

Proposition 11. An arid graph with at least two vertices
contains at least two fixable vertices.

Proof. Since the graph is acyclic, there is some childless
v that is therefore fixable. Since the graph is arid, 〈v〉G =
{v} ⊂ V , and so there is also some other vertex that can
be fixed to make {v} reachable.

4.3 Maximal Arid Projection

To prove that Pn(G) can always be associated with an
arid graph, we define the maximal arid projection opera-
tion which, for every ADMG G, yields a closely related

a b c

(a)

a b c

(b)

a b c

(c)

a b c

(d)

Figure 2: Graphs illustrating maximal arid projection.
The graphs (a) and (c) are not arid, but have maximal
arid projections given by (b) and (d) respectively.

graph G† that is arid, and ultimately show that G and G†
yield the same nested model.
In this section we define this projection operation and
derive several of its properties, culminating in a proof
that the projection and fixing operations commute. We
first need a preliminary definition.

Definition 12. A pair of vertices a 6= b in an ADMG
G is densely connected if either a ∈ paG(〈b〉G), or b ∈
paG(〈a〉G), or 〈{a, b}〉G is a bidirected-connected set.
A CADMG G is called maximal if every pair of densely
connected vertices in G are adjacent.

Densely connected vertex pairs form the nested Markov
analogue of inducing paths [26]. Just as the existence
of an inducing path between a pair of vertices prevents
m-separation by any set, so does the existence of dense
connectedness between a pair of vertices prevents m-
separation by any set within any CADMG correspond-
ing to a reachable set. In effect, a densely connected pair
cannot be made independent, by any combination of con-
ditioning and fixing operations.

Definition 13. For a CADMG G, we define the maximal
arid projection of G, denoted G†, to be the graph that
shares the vertex sets V,W with G, and that contains the
following edges:

• for b ∈ V , the edge a → b exists in G† if a ∈
paG(〈b〉G),

• for a, b ∈ V , the edge a ↔ b exists in G† if neither
a ∈ paG(〈b〉G), nor b ∈ paG(〈a〉G), but 〈{a, b}〉G is
a bidirected-connected set.

Fig. 2 provides some elementary examples of the max-
imal arid projection. In each of (a) and (c) we have a
dense inducing path between the vertices a and c. For (a)
we insert the edge a→ c to represent this (yielding (b)),
while in (c) we add a ↔ c (yielding (d)). In each case
the bow arcs are replaced by directed edges.
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We provide several results characterizing the output of
the maximal arid projection operation, first noting that
pairs of vertices adjacent in G are also adjacent in G†.
Proposition 14.

(i) If a ∈ paG(b), then a ∈ paG†(b).

(ii) If a ∈ sibG(b), then either a ∈ paG†(b) or a ∈
sibG†(b) or b ∈ paG†(a).

Ancestral relationships are also preserved in G†.
Proposition 15. a ∈ anG(b) if and only if a ∈ anG†(b).

Proof. If a ∈ anG(b), then a ∈ anG†(b) follows by an in-
ductive application of Proposition 14(i). If a ∈ anG†(b),
then fix a directed path a → w1 → · · ·wk → b in G†.
Each directed edge on this path from c to d is due to
c ∈ paG(〈d〉G) being true. But since every element 〈d〉G
is an ancestor of d in G, this implies the existence of a
directed path from c to d in G. Thus, there is a directed
path from a to b in G.

Proposition 16. If G is a (C)ADMG, then so is G†.

Proof. Acyclicity of G† follows from Proposition 15; in
addition, in a CADMG it is clear from the definition that
no arrowheads are introduced into W .

If G is acyclic then G† is simple, i.e. contains at most one
edge between each pair of vertices, so if G is an ADMG
then G† is an example of a bow-free acyclic path diagram
(BAP) [5, 16].

Proposition 17. D(G†) is a sub-partition of D(G). Fur-
ther, for any S reachable in G and G†, D(φV \S(G†))
forms a sub-partition of D(φV \S(G)).

Note that it will follow from Theorem 19 that if S is
reachable in G then it is also reachable in G†.
Lemma 18. Let v be fixable in G. For any a, b ∈ V there
is a directed path from a to b in G with no intermediate
vertex being v, if and only if there is such a path in G†.
Theorem 19. If S is reachable in an ADMG G, then it
is also reachable in G† via the same fixing sequence. In
this case, (φV \S(G))† = φV \S(G†).

Corollary 20. 〈S〉G† ⊆ 〈S〉G for any set S.

Proposition 21. G† is a maximal arid graph.

4.4 Invariance Results In Maximal Arid
Projections

A key result will be that the nested Markov model asso-
ciated with a maximal arid projection is the same as that
for the original graph, and this will be proven by showing
that the Markov blankets in the two graphs are the same.

Lemma 22. Suppose that w ∈ paG(〈v〉G), and that
〈{v, w}〉G is bidirected-connected. Then 〈{v, w}〉G =
〈v〉G and in particular w ∈ 〈v〉G .

Lemma 23. If v, w ∈ V are connected by a collider
path π in G then they are connected by a collider path π†

in G† that uses a subset of the internal vertices of π. In
addition, if π starts with an edge v →, then so does π†.

This follows by definition of G†, and properties of clo-
sures of sets of vertices of size 1 and 2. A detailed proof
is in the Appendix.
As an example of this result, notice that the path t →
x ↔ bp ↔ y in Fig. 4 (a) is replaced by t → bp ↔ y in
the maximal arid projection in Fig. 4 (b).
We provide a partial converse.

Lemma 24. If v, w ∈ V are connected by a collider path
π† in G†, then they are also connected by a collider path
in G.

Proof. π† is of the form →↔ · · · ↔← (possibly with-
out the directed edges). Each↔ represents a bidirected
path in G. A directed edge in G†, say v → t, represents
an edge v → s for s ∈ 〈t〉G . Since 〈t〉G is bidirected-
connected, there is a path of the form v →↔ · · · ↔ t in
G. Concatenating these paths (and possibly shortening)
gives another collider path.

Theorem 25. Let S be a reachable set in G. Then
mbG(v, S) = mbG†(v, S).

Proof. First note that v is childless in φV \S(G) if and
only if it is so in φV \S(G†), so the statement is well-
defined. Theorem 19 shows that it is enough to show this
for S = V . The result is then a direct consequence of
Lemmas 23 and 24, since the Markov blanket is just the
set of vertices connected to v by collider paths.

Proposition 26. There is a one-to-one correspondence
between intrinsic sets in G and in G†.
Remark 27. The set H is referred to by [10] as the re-
cursive head associated with S. A consequence of the
argument in the proof above is that the discrete parame-
terization given by [10] is identical for G and G†.
An important result is that fixing corresponds to the same
probabilistic operation in G and G†.
Proposition 28. If S ∈ R(G), then any fixing sequence
σ for V \ S valid in G consists of the same set of fix-
ing operations when applied to p(xV ) using G and when
applied to p(xV ) using G†.

Proof. Recall that fixing is division of φW (p(xV );G) ≡
qV (xV |xW ) by qV (xv |xmbG(v,S)∪W ). By Theorem
25, mbG(v, S) = mbG†(v, S), and a simple induction
gives the result.
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Thus, for any S ∈ R(G†), qS is well defined without
specifying the particular sequence of fixing operations in
G†. Some fixing sequences may be valid in G† but not in
G; however the kernels reached in G† are related to those
reachable in G by the following result.

Lemma 29. Suppose S ∈ I(G†), and let S† = 〈S〉G .
Let v be the maximal element of S. Any independences
involving the full conditional of v hold in qS if and only
if they hold in qS† .

Proof. For simplicity assume S† = V , so we write G and
G† in place of φV \S†(G) and φV \S†(G†) respectively.
This is justified by Theorem 19.
Suppose that s ∈ S† \ S is fixable in G† but not in G.
Then s ∈ disG(v) and is an ancestor of some r ∈ S such
that chG(r) = ∅ (in both G and G†).
The vertices r and v are connected by a collider path in
G, and so also are in G†. Further, since they have no
children in G, they also have no children in G†, and these
paths are therefore made up entirely of bidirected edges
in both graphs; in other words, r and v are in the same
district in both graphs. Since s is fixable in G† but not in
G, and since ancestor relations are preserved, it follows
that s is in the same district as r and v in G, but not in G†.
Fixing s involves division by qS†(xs |xmbG† (s)). Since
v is in a different district to s and has no children, then
v /∈ mbG†(s), and so by Lemma 10 of [20] we have
qS†(xv |xS†\{v}, xW ) = qS†\{s}(xv |xS†\{v}, xW ).
Any further vertices in S† \ S are also not in the same
district as v for the same reason, so v never appears in
their Markov blankets and hence this is also the same as
the full conditional qS(xv |xS\{v}, xW∪(S†\S)). The re-
sult follows.

4.5 Any ADMG And Its Maximal Arid Projection
Define The Same Nested Model

We are now ready to state and prove the main result of
this section.

Theorem 30. Pn(G) = Pn(G†).

Proof. Let ≺ be a topological order and consider any
pair S, S† as defined in Proposition 26. We will show
that the corresponding independences for the ordered lo-
cal nested Markov property are equivalent. Let v be the
≺-maximal element of S (and therefore of S†). Then the
two independences are

(
Xv ⊥⊥ XV \(mbG(v,S)∪{v}) | XmbG(v,S)

)

in φV \S(p(xV );G), and

(
Xv ⊥⊥ XV \(mbG† (v,S†)∪{v}) | XmbG† (v,S†)

)

a b

c d

(a)

a b

c d

(b)

b

a c

(c)

Figure 3: (a) A graph with a non-nested SEM constraint,
and (b) A nested Markov equivalent graph. (c) A graph
in which the parameter ωbc is not identifiable after any
fixing.

in φV \S†(p(xV );G†). Since—as follows from the proof
of Proposition 26—we have mbG(v, S) = mbG†(v, S†),
it only remains to bridge the difference between the ker-
nels. But this is an independence on the full conditional
of φV \S†(p(xV );G), so by Lemma 29, it holds in that
kernel if and only if it holds in φV \S(p(xV );G†).

5 THE FIXING OPERATION IN
STRUCTURAL EQUATION MODELS

If v is fixable in an ADMG G, the kernel qV \{v} result-
ing from fixing v is obtained by dividing p(xV ) by the
conditional distribution p(xv | xnd(v)). Hence

qV \{v}(xV \{v} |xv)
≡ p(xnd(v)) · p(xde(v)\{v} |xnd(v)∪{v}),

and therefore qV \{v} preserves both the marginal dis-
tribution of Xnd(v) and the conditional distribution of
Xde(v)\{v} given Xnd(v)∪{v}.

Remark 31. A Gaussian kernel q(xS |xV \S) is parame-
terized via a set of means E[xS |xV \S ] indexed by xV \S
and variances Cov[xS |xV \S ]. There is a distribution
naturally associated with q(xS |xV \S) given by:

p∗S(xV ) ≡ qS(xS |xV \S)
∏

v∈V \S
q∗v(xv),

where q∗v(xv) is an arbitrary marginal distribution.
In what follows we will consider kernels qS(xS |xV \S)
derived from a mean zero Gaussian distribution p(xV ),
hence parametrized via Cov[xV ]. We will then take
q∗v(xv) to be the univariate normal distribution p(xv). It
then follows that the Gaussian distribution p∗S(xV ) corre-
sponding to qS(xS |xV \S) will also be parametrized via
a covariance matrix Cov∗S [xV ].

Proposition 32. Every conditional independence that
holds in qS also holds in p∗S .
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We now show that fixing in the linear SEM corresponds
to setting all coefficients corresponding to incoming
edges to zero, but keeping all other parameters constant.

Lemma 33. Let v be fixable in an ADMG G. Then
in an SEM corresponding to G, setting bwv = ωvw =
ωwv = 0 for all w 6= v is equivalent to dividing by
p(xv | xnd(v))/q∗v(xv).

Proof. We show that setting parameters to zero as in-
dicated leaves the marginal distribution p(xnd(v)) and
the conditional distribution p(xde(v)\{v} |xnd(v), xv) un-
changed. The former follows easily from the trek rule
(see, for example, [7]), since no edge in any trek be-
tween non-descendants of v is altered. Similarly, since
we choose VarXv = ωvv (see Remark 31), and the only
trek from v to itself in the fixed graph is the trivial trek;
hence ωvv is also preserved.
It remains to show that the same holds for the conditional
distribution of the strict descendants given {v} ∪ nd(v).
To see this, note that it is equivalent to check that the con-
centration kij = (Σ−1)ij remains the same whenever ei-
ther i or j is a descendant of v. Without loss of generality
we may assume that j has no descendants (by marginal-
izing anything which is not an ancestor of i, j, v). Then
we have

K = Σ−1 = (I −B)TΩ−1(I −B);

denote ωij =
(
Ω−1

)
ij

. By definition of the model, Ω

is a block-diagonal matrix with blocks corresponding to
districts in the graph G, and therefore so is Ω−1. Hence
kij (including the case i = j) can be written as

kij =

p∑

d=1

bidω
dj + ωij =

∑

d∈dis(j)
bidω

dj + ωij , (1)

(corresponding to paths of the form i → d ↔ · · · ↔ j
and i ↔ · · · ↔ j respectively). We claim none of the
quantities in (1) are modified by setting the parameters
bwv and ωvw = ωwv to zero.
Suppose for a contradiction that bid for d ∈ disG(j) is
one of the parameters set to zero; this could happen only
if d = v. Now, if i is the descendant of v then this
would imply a cycle, and if j is the descendant of v then
d ∈ disG(j) implies v is not fixable which is also a con-
tradiction. Hence bid is not set to zero.
Next consider ωdj . If d, j are in different districts then
ωdj = 0. Since Ω−1 is block diagonal, this parameter
will only change if v is in the same district as j and d.
If j is a descendant of v then v 6∈ disG(j) since v is
fixable. If i is a descendant of v then so is d, and therefore
v 6∈ dis(j) = dis(d) for the same reason. Therefore the
quantities ωij , ωdj all remain unchanged, as they are a
function only of the block of Ω corresponding to dis(j).

Hence if either i or j is a descendant of v, then none
of the terms in (1) is changed by setting bwv = ωvw =
ωwv = 0 for all w 6= v.

Thus in the context of a linear SEM fixing v corresponds
to setting the parameters bwv and ωvw = ωwv to zero.
We have the following result as a direct consequence:

Theorem 34. Let G be an ADMG then Psem(G) ⊆
Pn(G) ∩N .

Recall that N is the set of multivariate Gaussian distri-
butions with positive definite covariance matrix.

6 ARID SEMS REPRESENT ALL
GAUSSIAN NESTED MODELS

The Gaussian nested Markov model associated with an
ADMG G is exactly the linear SEM corresponding to the
maximal arid projection G† of G:

Theorem 35. Let G be an ADMG. Then Psem(G†) =
Pn(G) ∩N .

Proof. By Theorem 34 Psem(G†) ⊆ Pn(G) ∩ N . Fur-
ther, by Theorem 30, Pn(G) = Pn(G†). Thus it suffices
to prove that Pn(G)∩N ⊆ Psem(G) where G is maximal
and arid.
In order to facilitate our inductive argument, we extend
the definitions of Pn(G) and Psem(G) and the result to
CADMGs and kernels. Specifically, if G(V,W ) is a
CADMG and≺ is a topological ordering on V , then ker-
nel qV ∈ Pn(G) if, for each intrinsic S ⊆ V and ≺-
maximal v ∈ S,

Xv ⊥⊥ XV \({v}∪mbG(v,S)) | XmbG(v,S)

holds in φV \S(qV (xV |xW );G). Similarly, Psem(G)
represents a SEM where, if there is an edge w → v with
w ∈W , v ∈ V then the equation for Xv contains bwvxw
as a summand. We now claim that if G is a CADMG then
Psem(G†) = Pn(G)∩N , whereN is the set of Gaussian
kernels. This is clearly sufficient.
Suppose p ∈ Pn(G) ∩ N , where G(V,W ) is a CADMG
with topological ordering ≺.
If |V | = 1 then the result follows by regression on
XpaG(v). Otherwise we proceed by induction on |V |. Let
v be the maximal vertex under ≺.
For any fixablew in G we obtain by the induction hypoth-
esis that qV \{w} ∈ Pn(φw(G)) = Psem(φw(G)). Hence
we can identify parameters for edges not involving v by
fixing v. Any directed edge parameter bij can be identi-
fied provided j is not fixed; if |V | ≥ 2 then, since G is
arid, it contains at least two fixable vertices by Proposi-
tion 11. Hence we can identify every bij in this manner.
[Since valid fixings commute, all such results will agree.]
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Similarly we can identify any bidirected edge this way
except possibly ωwv if w and v are the only two fixable
vertices in G. In this case, G contains only one district
and every vertex is an ancestor of v or w.
Since we have identified every other parameter, let p̃γ
be the distribution obtained from all the other parame-
ters with ωvw = γ. Then by construction, p̃γ and p have
the same margins over V \ {v} and V \ {w}. If we can
choose γ so that the covariance σvw matches that in p,
then p = p̃γ . It is not hard to see that σvw is a mono-
tonic function of ωvw, so the only restriction is on the
positive definiteness of the relevant covariance matrices.
Since the set of positive definite matrices is convex, the
set of valid ωvw is an interval; in addition, Ω is positive
definite if and only if Σ is positive definite. Hence, by
the intermediate value theorem there exists a γ that maps
to the appropriate σvw.

Example 36. To see the difficulty with the induction in
the previous proof, consider the graph in Fig. 3 (c). There
are two fixable vertices, b and c, and in either case the fix-
ing corresponds to marginalizing over the corresponding
random variable. This means that, in either case, the edge
parameter ωbc is not identifiable. Every other parameter
can be identified inductively, and we may finally use σbc
to identify ωbc.

7 EXAMPLE

Consider the following simplified medical trial to exam-
ine the effect of diet and exercise on diabetes, adapted
from [5]. At baseline, patients are randomly assigned to
perform t hours of exercise in a week, but actually per-
form x hours. At the end of the week their blood pres-
sure (bp) is measured, this is assumed to depend upon x,
but also to be confounded with it by lifestyle factors. In
the second phase of the trial, patients are assigned to lose
∆bmi kilograms in weight; the value of ∆bmi is random,
but for ethical reasons depends linearly on x and bp. Fi-
nally, at the end of the trial, triglyceride levels (y) are
measured, which is used to diagnose diabetes; these are
assumed to be correlated with blood pressure, and depen-
dent on exercise and weight loss. This causal structure
naturally yields the ADMG shown in Fig. 4(a).
Though a perfectly reasonable causal description of the
model, Fig. 4(a) contains a bow and therefore the asso-
ciated model is non-smooth and not everywhere iden-
tifiable. Performing maximal arid projection gives the
graph G† in Fig. 4(b), which gives an SEM that induces a
curved exponential family and is nested Markov equiv-
alent to the SEM corresponding to the original graph.
Note that the resulting graph is not an ancestral graph;
indeed G† preserves more of the structure than the corre-
sponding MAG.

t x bp ∆bmi y(a)

t x bp ∆bmi y(b)

Figure 4: (a) A graph representing a clinical trial for
interventions in diabetes; the associated SEM is non-
smooth. (b) A nested Markov equivalent graph whose
SEM represents a curved exponential family.

8 DISCUSSION

We have presented a subclass of ADMGs—the maximal
arid graphs (MArGs)—that fully represents the class of
nested Markov models. We have shown that any linear
SEM associated with a MArG is precisely equal to the
class of Gaussian densities in the nested Markov model
for that MArG.
We remark that the results on arid graphs we derived in
Section 4 are completely non-parametric, and apply not
only to the Gaussian models that we study here, but to
any model; we showed that any nested Markov equiv-
alence class contains a MArG which, since MArGs are
maximal and simple graphs, is a canonical representa-
tive of the class to use in search procedures within the
set of nested models. In this sense MArGs serve a simi-
lar role to MAGs for scoring-based searches for ordinary
Markov models corresponding to ADMGs.
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Abstract

There has been recent interest in developing
scalable Bayesian sampling methods such as
stochastic gradient MCMC (SG-MCMC) and
Stein variational gradient descent (SVGD) for
big-data analysis. A standard SG-MCMC algo-
rithm simulates samples from a discrete-time
Markov chain to approximate a target distribu-
tion, thus samples could be highly correlated,
an undesired property for SG-MCMC. In con-
trary, SVGD directly optimizes a set of particles
to approximate a target distribution, and thus is
able to obtain good approximations with rela-
tively much fewer samples. In this paper, we
propose a principle particle-optimization frame-
work based on Wasserstein gradient flows to
unify SG-MCMC and SVGD, and to allow new
algorithms to be developed. Our framework
interprets SG-MCMC as particle optimization
on the space of probability measures, revealing
a strong connection between SG-MCMC and
SVGD. The key component of our framework
is several particle-approximate techniques to
efficiently solve the original partial differential
equations on the space of probability measures.
Extensive experiments on both synthetic data
and deep neural networks demonstrate the ef-
fectiveness and efficiency of our framework for
scalable Bayesian sampling.

1 INTRODUCTION
Bayesian methods have been playing an important role
in modern machine learning, especially in unsupervised
learning (Kingma and Welling, 2014; Li et al., 2017), and
recently in deep reinforcement learning (Houthooft et al.,
2016; Liu et al., 2017). When dealing with big data, two
lines of research directions have been developed to scale

up Bayesian methods, e.g., variational-Bayes-based and
sampling-based methods. Stochastic gradient Markov
chain Monte Carlo (SG-MCMC) is a family of scalable
Bayesian learning algorithms designed to efficiently sam-
ple from a target distribution such as a posterior distri-
bution (Welling and Teh, 2011; Chen et al., 2014; Ding
et al., 2014; Chen et al., 2015). In principle, SG-MCMC
generates samples from a Markov chain, which are used
to approximate a target distribution. Under a standard set-
ting, samples from SG-MCMC are able to match a target
distribution exactly with an infinite number of samples
(Teh et al., 2016; Chen et al., 2015). However, this is prac-
tically infeasible, as only a finite number of samples are
obtained. Although nonasymptotic approximation bounds
w.r.t. the number of samples have been investigated (Teh
et al., 2016; Vollmer et al., 2016; Chen et al., 2015), there
are no theory/algorithms to guide learning an optimal set
of fixed-size samples/particles. This is an undesirable
property of SG-MCMC, because in practice one often
seeks to learn the optimal samples of a finite size that best
approximate a target distribution.

A remedy for this issue is to adopt the idea of particle-
based sampling methods, where a set of particles (or
samples) are initialized from some simple distribution,
followed by iterative updates to better approximate a tar-
get distribution. The updating procedure is usually done
by optimizing some metrics such as a distance measure
between the target distribution and the current approx-
imation. There is not much work in this direction for
large-scale Bayesian sampling, with an outstanding rep-
resentative being the Stein variational gradient descent
(SVGD) (Liu and Wang, 2016a). In SVGD, the update
of particles are done by optimizing the KL-divergence
between the empirical particle distribution and a target
distribution, thus the samples are designed to be updated
optimally to reduce the KL-divergence in each iteration.
Because of this property, SVGD is found to perform bet-
ter than SG-MCMC when the number of samples used to
approximate a target distribution is limited, and has been
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applied to other problems such as deep generative models
(Feng et al., 2017) and deep reinforcement learning (Liu
et al., 2017; Haarnoja et al., 2017; Zhang et al., 2018b).

Though often achieving comparable performance in prac-
tice, little work has been done on investigating connec-
tions between SG-MCMC and SVGD, and on developing
particle-optimization schemes for SG-MCMC. In this
paper, adopting ideas from Waserstein-gradient-flow liter-
ature, we propose a unified particle-optimization frame-
work for scalable Bayesian sampling. The idea of our
framework is to work directly on the evolution of a den-
sity functions on the space of probability measures, e.g.,
the Fokker-Planck equation in SG-MCMC. To make the
evolution solution computationally feasible, particle ap-
proximations are adopted for densities, where particles
can be optimized during the evolution process. Both
SG-MCMC and SVGD are special cases of our frame-
work, and are shown to be highly related. Notably, sam-
pling with SG-MCMC becomes a deterministic particle-
optimization problem as SVGD on the space of probabil-
ity measures, overcoming the aforementioned correlated-
sample issue. Furthermore, we are able to develop new
unified particle-optimization algorithms by combing SG-
MCMC and SVGD, which is less prone to high-dimension
space and thus obtains better performance for large-scale
Bayesian sampling. We conduct extensive experiments on
both synthetic data and Bayesian learning of deep neural
networks, verifying the effectiveness and efficiency of our
proposed framework.

2 PRELIMINARIES
In this section, we review related concepts and algorithms
for SG-MCMC, SVGD, and Wasserstein gradient flows
(WGF) on the space of probability measures.

2.1 Stochastic gradient MCMC

Diffusion-based sampling methods Generating ran-
dom samples from a distribution (e.g., a posterior dis-
tribution) is one of the fundamental problems in Bayesian
statistics, which has many important applications in ma-
chine learning. Traditional Markov Chain Monte Carlo
methods (MCMC), such as the Metropolis–Hastings algo-
rithm (Metropolis et al., 1953) produces unbiased samples
from a desired distribution when the density function is
known up to a normalizing constant. However, most
of these methods are based on random walk proposals
which suffer from high dimensionality and often lead to
highly correlated samples. On the other hand, dynamics-
based sampling methods such as the Metropolis adjusted
Langevin algorithm (MALA) (Xifara et al., 2014) avoid
this high degree of correlation by combining dynamical

systems with the Metropolis step. In fact, these dynamical
systems are derived from a more general mathematical
technique called diffusion process, or more specifically,
Itó diffusion (Øksendal, 1985).

Specifically, our objective is to generate random samples
from a posterior distribution p(✓|X) / p(X |✓)p(✓),
where ✓ 2 Rr represents the model parameter, and
X , {xi}N

i=1 represents the data. The canonical form is
p(✓|X) = (1/Z) exp(U(✓)), where U(✓) =

log p(X |✓) + log p(✓) ,
NX

i=1

log p(xi |✓) + log p(✓)

is referred to as the potential energy based on an i.i.d.
assumption of the model, and Z is the normalizing con-
stant. In Bayesian sampling, the posterior distribution
corresponds to the (marginal) stationary distribution of
a (continuous-time) Itó diffusion, defined as a stochastic
differential equation of the form:

d⇥t = F (⇥t)dt + g(⇥t)dWt , (1)

where t is the time index; ⇥t 2 Rp represents the
full variables in a dynamical system, and ⇥t ◆ ✓t

(thus p � r) is potentially an augmentation of model
parameter ✓; Wt 2 Rp is p-dimensional Brownian
motion. Functions F : Rp ! Rp and g : Rp !
Rp⇥ p are assumed to satisfy the Lipschitz continuity
condition (Ghosh, 2011). By Fokker-Planck equation
(or the forward Kolmogorov equation) (Kolmogoroff,
1931; Risken, 1989), when appropriately designing the
diffusion-coefficient functions F (·) and g(·), the station-
ary distribution of the corresponding Itó diffusion equals
the posterior distribution of interest, p(✓|X). For ex-
ample, the 1st-order Langevin dynamic defines ⇥ = ✓,
and F (⇥t) = 1

2r✓U(✓), g(⇥t) = Ir; the 2nd-order
Langevin diffusion defines ⇥ = (✓,q), and F (⇥t) =⇣ q
�B q�r✓U(✓)

⌘
, g(⇥t) =

p
2B

⇣ 0 0
0 Ir

⌘
for a

scalar B > 0; q is an auxiliary variable known as the
momentum (Chen et al., 2014; Ding et al., 2014).

Let the density of⇥t be µt, it is known µt is characterized
by the Fokker-Planck (FP) equation (Risken, 1989):

@µt

@t
= �r⇥ · (µtF (⇥t)) +r⇥r⇥ : (µt⌃(⇥t)) (2)

where ⌃(⇥t) , g(⇥t)g
>(⇥t), a ·b , a> b for vec-

tors a and b, A :B , trace(A>B) for matrices A and
B. The FP equation is the key to develop our particle-
optimization framework for SG-MCMC. In the following,
we focus on the simplest case of 1st-order Langevin dy-
namics if not stated explicitly, though the derivations
apply to other variants.

Stochastic gradient MCMC SG-MCMC algorithms
are discretized numerical approximations of the Itó dif-
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fusion (1). They mitigate the slow mixing and non-
scalability issues encountered in traditional MCMC algo-
rithms by i) adopting gradient information of the posterior
distribution, ii) using minibatches of the data in each iter-
ation of the algorithm to generate samples, and iii) ignor-
ing the rejection step as in standard MCMC. To make the
algorithms scalable in a big-data setting, three develop-
ments will be implemented based on the Itó diffusion: i)
define appropriate functions F and g in the Itó-diffusion
formula so that the (marginal) stationary distributions co-
incide with the target posterior distribution p(✓|X); ii)
replace F or g with unbiased stochastic approximations
to reduce the computational complexity, e.g., approximat-
ing F with a random subset of the data instead of using
the full data. For example, in the 1st-order Langevin dy-
namics,r✓U(✓) could be approximated by an unbiased
estimator with a subset of data:

r✓Ũ(✓) , r log p(✓) +
N

n

nX

i=1

r✓ log p(x⇡i |✓) (3)

where ⇡ is a size-n random subset of {1, 2, · · · , N}, lead-
ing to the first SG-MCMC algorithm in machine learning –
stochastic gradient Langevin dynamics (SGLD) (Welling
and Teh, 2011); and iii) solve the generally intractable
continuous-time Itô diffusions with a numerical method,
e.g., the Euler method (Chen et al., 2015). For example,
this leads to the following update in SGLD:

✓` = ✓`�1 +r✓Ũ(✓`�1)h +
p

2h �` ,

where h means the stepsize, ` indexes the samples, �` ⇠
N (0, I) is a random sample from an isotropic normal
distribution. After running the algorithm for L steps, the
collection of samples {✓`}L

`=1 are used to approximate
the unknown posterior distribution 1

Z eU(✓).

2.2 Stein variational gradient descent
Different from SG-MCMC, SVGD initializes a set of par-
ticles which are iteratively updated so that the empirical
particle distribution approximates the posterior distribu-
tion. Specifically, we consider a set of particles {✓(i)}M

i=1

drawn from some distribution q. SVGD tries to update
these particles by doing gradient descent on the interactive
particle system via

✓(i)  ✓(i) + h�(✓(i)), � = arg max
�2F

{ @

@h
KL(q[h�]||p)}

where � is a function perturbation direction chosen to
minimize the KL divergence between the updated density
q[h�] estimated by the particles and the posterior p(✓|X)
(p for short). Since KL(qkp) is convex in q, global opti-
mum of q = p can be guaranteed. SVGD considers F as
the unit ball of a vector-valued reproducing kernel Hilbert

space (RKHS) H associated with a kernel (✓,✓0). In
such as setting, Liu and Wang (2016b) shown:

� @

@h
KL(q[h�]kp)|h=0 = E✓⇠q[trace(�p�(✓))], (4)

with �p�(✓) , r✓U(✓)>�(✓) +r✓ · �(✓),

where �p is called the Stein operator. Assuming that the
update function �(✓) is in a RKHS with kernel (·, ·), it
was shown in (Liu and Wang, 2016b) that (4) is maxi-
mized with:
�(✓) = E✓⇠q[(✓,✓

0)r✓U(✓) +r✓(✓,✓0)]. (5)

When approximating the expectation E✓⇠q[·] with empiri-
cal particle distribution and adopting stochastic gradients,
we arrive at the following updates for the particles (`
denotes the iteration number): ✓(i)

`+1 = ✓
(i)
` +

h

M

MX

j=1

h
(✓

(j)
` ,✓

(i)
` )r

✓
(j)
`

Ũ(✓
(j)
` ) +r

✓
(j)
`

(✓
(j)
` ,✓

(i)
` )
i

(6)

SVGD applies updates (6) repeatedly, moving the sam-
ples to a target distribution p.

2.3 Wasserstein Gradient Flows
For a better motivation of WGF, we start from gradient
flows defined on the Euclidean space.

Gradient flows on the Euclidean space For a smooth
function E : Rr ! R, and a starting point ✓0 2 Rr, the
gradient flow of E(✓) is defined as the solution of the
differential equation: d✓

dt = �rE(✓(t)), s.t. ✓(0) = ✓0.
This is a standard Cauchy problem (Rulla, 1996), en-
dowed with a unique solution if rE is Lipschitz con-
tinuous. When E is non-differentiable, the gradient is
replaced with its subgradient, defined as @E(✓) , {p 2
Rr : F (✓0) � F (✓) + p ·(✓0 � ✓), 8✓0 2 Rr}. Note
@E(✓) = {rE(✓)} if E is differentiable at ✓. In this
case, the gradient flow formula above is replaced with:
d✓
dt 2 �@E(✓(t)).

Wasserstein gradient flows Let P(⌦) denote the space
of probability measures on ⌦ ⇢ Rr. WGF is an exten-
sion of gradient flows in Euclidean space by lifting the
definition onto the space of probability measures. For-
mally, let P(⌦) be endowed with a Riemannian geometry
induced by the 2nd-order Wasserstein distance, i.e., the
curve length between two elements (two distributions) is
defined as:

W 2
2 (µ, ⌫) , inf

�

⇢Z

⌦⇥⌦

k✓ � ✓0k22d�(✓,✓0) : � 2 �(µ, ⌫)

�

where �(µ, ⌫) is the set of joint distributions over (✓,✓0)
such that the two marginals equal µ and ⌫, respectively.
The Wasserstein distance can be explained as an optimal-
transport problem, where one wants to transform elements
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in the domain of µ to ⌫ with a minimum cost (Villani,
2008). The term k✓�✓0k22 represents the cost to transport
✓ in µ to ✓0 in ⌫, and can be replaced by a general metric
c(✓,✓0) in a metric space. If µ is absolutely continuous
w.r.t. the Lebesgue measure, there is a unique optimal
transport plan from µ to ⌫, i.e., a mapping T : Rr ! Rr

pushing elements in the domain of µ onto ⌫ satisfying
T#µ = ⌫. Here T#µ denotes the pushforward measure of
µ. The Wasserstein distance is equivalently reformulated
as: W 2

2 (µ, ⌫) , infT
�R

⌦
c(✓, T (✓))dµ(✓)

 
.

Let {µt}t2[0,1] be an absolutely continuous curve in P(⌦)
with finite second-order moments. We consider to define
the change of µt’s by investigating W 2

2 (µt, µt+h). Mo-
tivated by the Euclidean-space case, this is reflected by
a vector field, vt(✓) , limh!0

T (✓t)�✓t

h called the ve-
locity of the particle. A gradient flow can be defined on
P(⌦) correspondingly (Ambrosio et al., 2005).
Lemma 1 Let {µt}t2[0,1] be an absolutely-continuous
curve in P(⌦) with finite second-order moments. Then
for a.e. t 2 [0, 1], the above vector field vt defines a
gradient flow on P(⌦) as: @tµt +r · (vt µt) = 0.

The gradient flow describes the evolution of a functional
E, which is a lifted version of the function in the case of
Euclidean space in Section 2.3 to the space of probability
measures. E maps a probability measure µ to a real value,
i.e., E : P(⌦) ! R. We will focus on the case where
E is convex in this paper, which is enough considering
gradient flows for SG-MCMC and SVGD, though the the-
ory applies to a more general �-convex energy functional
setting (Ambrosio et al., 2005). It can be shown that vt

in Lemma 1 has the form vt = �r �E
�µt

(µt) (Ambrosio
et al., 2005), where �E

�µt
is called the first variation of E at

µt. Based on this, gradient flows on P(⌦) can be written

@tµt = �r · (vt µt) = r ·
✓

µtr(
�E

�µt
(µt))

◆
. (7)

Remark 1 Intuitively, an energy functional E character-
izes the landscape structure (appearance) of the corre-
sponding manifold in P(⌦), and the gradient flow (7)
defines a geodesic path on this manifold. Usually, by
choosing appropriate E, the landscape is convex, e.g., for
the cases of both SG-MCMC and SVGD described be-
low. This provides a theoretical guarantee on the optimal
convergence of a gradient flow.

3 PARTICLE-OPTIMIZATION-
BASED SAMPLING

In this section, we interpret the continuous versions of
both SG-MCMC and SVGD as WGFs, followed by sev-
eral techniques for particle optimization in the next sec-
tion. In the following, µt denotes the distribution of ✓t.

3.1 SVGD as WGF

The continuous-time and infinite-particle limit of SVGD
with full gradients, denoted as SVGD1, is known to be
a special instance of the Vlasov equation in nonlinear
partial-differential-equation literature (Liu, 2017):

@tµt = r · ((W ⇤µt)µt) , (8)

where (W ⇤µt)(✓) ,
R

W(✓ � ✓0)µt(✓
0)d✓0 is the con-

volutional operator applied for some function W : Rr !
R. To specify SVGD1, we generalize the convolutional
operator, and consider W as a function with two input
arguments, i.e.,

(W ⇤µt)(✓) ,
Z

W(✓,✓0)µt(✓
0)d✓0 .

Under this setting, we can specify the function W(·, ·)
for SVGD1 as
W(✓,✓0) , r✓0 log p(✓0|X)(✓0,✓) +r✓0(✓0,✓)

= r✓0 [p(✓0|X)(✓,✓0)] /p(✓0) . (9)

As will be shown in Section 4, W in (9) naturally leads
to the SVGD algorithm, without the need to derive from
an RKHS perspective.
Proposition 2 The stationary distribution of (8) is
limt!1 µt , µ = p(✓|X).

To interpret SVGD1 as a WGF, we need to specify two
quantities, the energy functional and an underlying metric
to measure distances between density functions.

Energy functional and distance metric of SVGD1
There are two ways to derive energy functionals for
SVGD1, depending on the underlying metrics for proba-
bility distributions. When adopting the WGF framework
where W2 is used as the underlying metric, according to
(7), the energy functional Es must satisfy

r✓

✓
�Es

�µt
(µt)

◆
= W(✓,✓0) ⇤ µt (10)

= E✓0⇠µt

⇥
r✓0

⇥
p(✓0|X)K(✓,✓0)

⇤
/p(✓0|X)

⇤
.

In general, there is no close-form solution for the above
equation. Alternatively, Liu (2017) proved another form
of the energy functional by defining a different distance
metric on the space of probability measures, called H-
Wasserstein distance:

WH(q1, q2) , inf
�t,µt

⇢Z 1

0

k�tkHdt, s.t. µt = �r✓ · (�tµt),

µ0 = q1, µ1 = q2k} , (11)

where �t , W ⇤µt, and k · kH is the norm in the Hilbert
space induced by (·, ·). Under this metric, the underly-
ing energy functional is proved to be the standard KL-
divergence between µt and p, e.g.,

Es = KL(µt, p(·|X)).

As can be seen in Section 4, this interpretation allows one
to derive SVGD, a particle-optimization-based algorithm
to approximate the continuous-time equation (8).
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3.2 SG-MCMC as WGF

The continuous-time limit of SG-MCMC, when consid-
ering gradients to be exact, corresponds to standard Itó
diffusions. We consider the Itó diffusion of SGLD for
simplicity, e.g.,

d✓t =
1

2
rU(✓t)dt + dW . (12)

Energy functional The energy functional for SG-
MCMC is easily seen by noting that the corresponding FP
equation (2) is in the gradient-flow form of (7). Specifi-
cally, the energy functional E is defined as:

E(µ) , �
Z

U(✓)µ(✓)d✓

| {z }
E1

+

Z
µ(✓) log µ(✓)d✓

| {z }
E2

(13)

Note E2 is the energy functional of a pure Brownian
motion (e.g., U(✓) = 0 in (12)). We can verify (13) by
showing that it satisfies that FP equation. According to
(7), the first variation of E1 and E2 is calculated as

�E1

�µ
= �U,

�E2

�µ
= log µ + 1 . (14)

Substituting (14) into (7) recovers the FP equation (2) for
the Itó diffusion (12).

4 PARTICLE OPTIMIZATION
An efficient way to solve the generally infeasible WGF
formula (7) is to adopt numerical methods with particle
approximation. With a little abuse of notation but for
conciseness, we do not distinguish subscripts t and ` for
the particle ✓, i.e., ✓t denotes the continuous-time ver-
sion of the particle, while ✓` denotes the discrete-time
version. We develop several techniques to approximate
different types of WGF for SG-MCMC and SVGD. In
particle approximation, the continuous density µt is ap-
proximated by a set of M particles (✓

(i)
t )M

i=1 that evolve
over time t with weights (mi)

M
i=1 such that

PM
i=1 mi = 1,

i.e., µt ⇡
PM

i=1 mi�(✓
(i)
t ), where �(✓(i)

t ) = 1 when
✓ = ✓

(i)
t and 0 otherwise. Typically m0is are chosen

at the beginning and fixed over time, thus we assume
mi = 1

M and rewrite µt ⇡ 1
M

PM
i=1 �(✓

(i)
t ) in the fol-

lowing for simplicity. We investigate two types of particle-
approximation methods in the following, discrete gradient
flows and by blob methods.

Particle approximation by discrete gradient flows
Denote Ps(Rr) be the space of probability measures with
finite 2nd-order moments. Define the following optimiza-
tion problem with stepsize h:

Jh(µ) , arg min
⌫2Ps(Rd)

⇢
1

2h
W 2

2 (µ, ⌫) + E(⌫)

�
. (15)

A discrete gradient flow of the continuous one in (7) up to
time T is the composition of a sequence of the solutions
(µ̃`)

T/h
`=1 of (15), i.e.,

µ̃` , Jh(µ̃`�1) = Jh(Jh(· · · µ0)) , J`hµ0 . (16)

One can show that when h ! 0, the discrete gradient
flow (16) converges to the true flow (7) for all `. Specifi-
cally, let @E(µ) be the set of Wasserstein subdifferential
of E at µ, i.e., ⇠ 2 @E(µ) if @tµ = ⇠ is satisfied. De-
fine |@E|(µ) = min{k⇠kL2(µ) : ⇠ 2 @E(µ)} to be the
minimum norm of the elements in @E(µ). We have

Lemma 3 (Craig (2014)) Assume E is proper, coercive
and lower semicontinuous (specify in Section B of the
Supplementary Material (SM)). For an µ0 and t � 0, as
T
h !1, the discrete gradient sequence µ̃T/h , J

T/h
h µ0

converge uniformly in t to a compact subset of [0, +1),
and W 2

2 (µ̃T/h, µT ) 
p

3|@E|(µ)
p

Th.

Lemma 3 suggests the discrete gradient flow can approxi-
mate the original WGF arbitrarily well if a small enough
stepsize h is adopted. Consequently, one solves (16)
through a sequence of optimization procedures to update
the particles. We will derive a particle-approximation
method for the W2 term in (15), which allows us to solve
SG-MCMC efficiently. However, this technique is not
applicable to SVGD, as we neither have an explicit form
of the energy functional in (10) when adopting the W2

metric, nor have an explicit form for the metric WH in
(11) when adopting the KL-divergence as the energy func-
tional. Fortunately, this can be solved by the second
approximation method called blob methods.

Particle approximation by blob methods The name
of blob methods comes from the classical fluids literature,
where instead of evolving the density in (7), one evolves
all particles on a grid with time-spacing h (Carrillo et al.,
2017). Specifically, note the function vt in (7) represents
velocity of particles via transportation map T , thus solv-
ing a WGF is equivalent to evolving the particles along
their velocity in each iteration. Formally, one can prove

Proposition 4 (Craig and Bertozzi (2016)) Let µ0 ⇡
1
M

PM
i=1 �(✓

(i)
0 ). Assume vt in (7) is well-defined and

continuous w.r.t. each ✓(i)
t at time t. Then solving the PDE

(7) reduces to solving a system of ordinary differential
equations for the locations of the Dirac masses:

d✓
(i)
t /dt = �vt(✓

(i)
t ) . (17)

Proposition 4 suggests evolving each particle along the
directions defined by vt, eliminating the requirement to
know an explicit form of the energy functional. In the
following, we apply the above particle-optimization tech-
niques to derive algorithms for SVGD and SG-MCMC.
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4.1 A particle-optimization algorithm for
SVGD

As mentioned above, discrete-gradient-flow approxima-
tion does not apply to SVGD. We thus rely on the blob
method. From Section 3.1, vt in SVGD is defined as
vt(✓) = (W ⇤µt)(✓). When µt(✓) is approximated by
particles, vt(✓

(i)
t ) is simplified as:

vt(✓
(i)
t ) =

1

M

MX

j=1

W(✓
(i)
t ,✓

(j)
t ) .

As a result, with the definition of W in (9), updating
{✓(i)

t } by time discretizing (17) recovers the update equa-
tions for standard SVGD in (6).

4.2 Particle-optimization algorithms for
SG-MCMC

Both the discrete-gradient-flow and the blob methods can
be applied for SG-MCMC, which are detailed below.

Particle optimization with discrete gradient flows
We first specify Lemma 3 in the case of SG-MCMC in
Lemma 5, which is known as the Jordan-Kinderlehrer-
Otto scheme (Jordan et al., 1998).

Lemma 5 (Jordan et al. (1998)) Assume that
p(✓t|X)  C1 is infinitely differentiable, and
kr✓ log p(✓|X)k  C2 (1 + C1 � log p(✓|X)) (8✓)
for some constants {C1, C2}. Let T = hK with K the
number of iterations, µ̃0 be an arbitrary distribution with
same support as p(✓|X), and {µ̃k}K

k=1 be the solution
of the functional optimization problem:

µ̃k = arg min
µ2Ps(Rr)

KL (µkp) +
1

2h
W 2

2 (µ̃k�1, µ) . (18)

Then µ̃K converges to µT in the limit of h ! 0, i.e.,
limh!0 µ̃K = µT , where µT is the solution of the FP
equation (2) at time T .

According to Lemma 5, it is apparent that SG-MCMC can
be implemented by iteratively solving the optimization
problem in (18). However, particle approximations for
both terms in (18) are challenging. In the following, we
develop efficient techniques to solve the problem.

First, rewrite the optimization problem in (18) as

min
µ2Ps(Rr)

�Eµ[log p(✓|X)]| {z }
F1

+ Eµ[log µ] +
1

2h
W 2

2 (µ̃k�1, µ)
| {z }

F2

We aim at deriving gradient formulas for both the F1

and F2 terms under a particle approximation in order
to perform gradient descent for the particles. Let µ ⇡
1
M

PM
i=1 �(✓

(i)). The gradient of F1 is easily approxi-
mated as

@F1

@✓(i)
⇡ �r✓(i) log p(✓(i)|X) . (19)

To approximate the gradient for F2, let pij denote the
joint distribution of the particle-pair (✓(i),✓

(j)
k�1). Note

Eµ[log µ] is minimized when the particles {✓(i)} are uni-
formly distributed. In other words, the marginal distribu-
tion vector (

P
j pij)i is a uniform distribution. Combin-

ing Eµ[log µ] with the definition of W2, calculating F2 is
equivalent to solving the following optimization problem:

P ,{pij} = arg min
pi,j

X

i,j

pijdij (20)

s.t.
X

j

pij =
1

M
,
X

i

pij =
1

M
,

where dij , k✓(i) � ✓(j)
k�1k2. We can further enforce

the joint distribution {pij} to have maximum entropy by
introducing a regularization term Epij [log pij ], which is
stronger than the regularizer enforced for the marginal
distribution above. After introducing Lagrangian multipli-
ers {↵i,�i} to deal with the constraints in (20), we arrive
at the dual problem:

maxLD({pij}, {↵i}, {�i}) = �
X

i,j

pij log pij + pijdij

+
X

i

↵i(
X

j

pij �
1

M
) +

X

j

�j(
X

i

pij �
1

M
) ,

where � is the weight for the regularizer. The optimal
pij’s can be obtained by applying KKT conditions to set
the derivative w.r.t. pij to be zero, ending up with the
following form:

p⇤ij = uie
�dij/�vj ,

where ui , e�
1
2�

↵i
� , vj = e�

1
2�

�j
� . As a result, the

particle gradients on F2 can be approximated as

@F2

@✓(i)
⇡ �

P
j uivjdije

�dij/�

@✓(i)
(21)

=
X

j

2uivj(
dij

�
� 1)e�dij/�(✓(i) � ✓(j)

k�1) .

Theoretically, we need to adaptively update {ui, vj} as
well to ensure the constraints in (20). In practice, however,
we use a fixed scaling factor � to approximate uivj for
the sake of simplicity.

Particle gradients are obtained by combining (19) and
(21), which are then used to update the particles {✓(i)}
by standard gradient descent. Intuitively, (19) encour-
ages particles move to local modes while (21) regularizes
particle interactions. Different from SVGD, our scheme
imposes both attractive and repulsive forces for the par-
ticles. Specifically, by inspecting (21), we can conclude
that: i) When ✓(i) is far from a previous particle ✓(j)

k ,
i.e., dij

� > 1, ✓(i) is pulled close to {✓(j)
k } with force

proportional to (
dij

� � 1)e�dij/�; ii) when ✓(i) is close
enough to a previous particle ✓(j)

k , i.e., dij

� < 1, ✓(i) is
pushed away, preventing it from collapsing to ✓(j)

k .
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Particle optimization with blob methods The idea of
blob methods can also be applied to particle approxi-
mation for SG-MCMC, which require the velocity vec-
tor field vt. According to (13), this is calculated as:
vt(✓) = �r✓ �(E1+E2)

�µ = �r✓U � r✓µ/µ. Unfor-
tunately, direct application of particle approximation is
infeasible because the term r✓µ is undefined with dis-
crete µ. To tackle this problem, we adopt the idea in
Carrillo et al. (2017) to approximate the energy functional
E2 in (13) as: E2 ⇡

R
µ(✓) log(µ ⇤ K)(✓)d✓, where

K(·, ·) is another kernel function to smooth out µ. Con-
sequently, based on Carrillo et al. (2017), the velocity vt

can be calculated as (details in Section C of the SM):

vt(✓) = �r✓U �
nX

j=1

r
✓
(j)
t

K(✓,✓
(j)
t )/

X

k

K(✓
(j)
t ,✓

(k)
t )

�
nX

j=1

r
✓
(j)
t

K(✓,✓
(j)
t )/

nX

k=1

K(✓,✓
(k)
t ) (22)

Given vt, particle updates can be obtained by solving (17)
numerically as in SVGD. By inspecting the formula of
vt in (22), the last two terms both act as repulsive forces.
Interestingly, the mechanism is similar to SVGD, but with
adaptive force between different particle pairs.

5 THE GENERAL RECIPE

Based on the above development, a more general particle-
optimization framework is proposed by combining the
PDEs of both SG-MCMC and SVGD. As a result, we
propose the following PDE to drive evolution of densities

@µt

@t
=�r✓ · (µtF (✓t)) + �1r✓ · ((W ⇤µt)µt)

+ �2r✓r✓ :
�
µtg(✓t)g

>(✓t)
�

, (23)

where �1 and �2 are two constants. It is easily seen that
to ensure the stationary distribution of (23) to be equal to
p(✓|X), the following condition must be satisfied:

r✓· (p(✓|X)F (✓)) = �1r✓ · ((W ⇤p(✓|X))p(✓|X))

+ �2r✓r✓ :
�
p(✓|X)g(✓)g>(✓)

�
(24)

There are many feasible choices for the functions and pa-
rameters {F (✓),W, g(✓),�1,�2} to satisfy (24). How-
ever, the verification procedure might be complicated
given the present of a convolutional term in (24). We
recommend the following choices for simplicity:

• F (✓) = 1
2U(✓), W = 0, g(✓) = I and �2 = 1: this

reduces to the Wasserstein-based SGLD with parti-
cle optimization. Specifically, when the discrete-
gradient-flow approximation is adopted, the algo-
rithm is denoted as w-SGLD; whereas when the blob
method is adopted, it is denoted as w-SGLD-B.

• F (✓) = 0, g(✓) = 0, W is defined as (9): this
reduces to standard SVGD.

• F (✓) = 1
2U(✓), g(✓) = I, W is defined as (9), and

�2 = 1: this is the combination of SGLD and SVGD,
and is called particle interactive SGLD, denoted as
PI-SGLD or ⇡-SGLD.

It is easy to verify that condition (24) is satisfied for all
the above three particle-optimization algorithms. Further-
more, particle updates are readily developed by applying
either the discrete-gradient-flow or blob-based methods.

6 RELATED PARTICLE-BASED
MCMC METHODS

There have been related particle-based MCMC algo-
rithms. Representative methods are sequential Monte
Carlo (SMC) (Moral et al., 2006), particle MCMC (PM-
CMC) (Andrieu et al., 2010) and many variants. In SMC,
particles are sample from a proposal distribution, and the
corresponding weights are updated by a resampling step.
PMCMC extends SMC by sampling from an extended
distribution interacted with a MH-rejection step. Com-
pared to our framework, their proposal distributions are
typically hard to choose; furthermore, optimality of the
particles from both methods can not be guaranteed. Fur-
thermore, the methods are typically much more computa-
tionally expensive. Recently, Dai et al. (2016) proposed
a particle-based MCMC algorithm by approximating a
target distribution with weighted kernel density estimator,
which updates particle weights based on likelihoods of
the corresponding particles. This approach is theoretically
sound but lacks an underlying geometry interpretation. Fi-
nally, we note that w-SGLD has been successfully applied
to reinforcement learning recently for improved policy
optimization (Zhang et al., 2018a).

7 EXPERIMENTS
We verify our framework on a set of experiments, in-
cluding a number of toy experiments and applications to
Bayesian sampling of deep neural networks (DNNs).

7.1 Demonstrations
Toy Distributions We compare various sampling meth-
ods on multi-mode toy examples, i.e., SGLD, SVGD,
w-SGLD, w-SGLD-B and ⇡-SGLD. We aim to sample
from four unnormalized 2D densities p(z) / exp{U(z)},
with detailed functional form provided in the SM. We
optimize/sample 2000 particles to approximate target dis-
tributions. The results are shown in Figure 1. It can be
seen from Figure 1 that though SGLD maintains good
asymptotic properties, it is inaccurate to approximate dis-
tributions with only a few samples; in some case, the
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samples cannot even cover all the modes. Interestingly,
all other particle-optimization-based algorithms success-
fully find all the modes and fit the distributions well. w-
SGLD is good at finding modes, but worse at modeling
the correct variance due to difficulty of controlling the
balance between attractive and repulsive forces between
particles. w-SGLD-B is better than w-SGLD at modeling
the distribution variance, performing similarly to SVGD
and ⇡-SGLD. Even though, we note that w-SGLD is very
useful when the number of particles is small, which fits a
distribution better, as shown in Section E of the SM.

Figure 1: Illustration of different algorithms on toy distribu-
tions. Each column is a distribution case. 1st row: Ground
truth; 2nd row: standard SGLD; 3rd row: w-SGLD; 4th row:
w-SGLD-B; 5th row: SVGD; 6th row: ⇡-SGLD.

Bayesian Logistic regression We next compare the
three variants of our framework (i.e.SVGD, w-SGLD
and w-SGLD-B) on a simple logistic-regression task with
quantitative evaluations. We use the same model, data
and experimental settings as Liu and Wang (2016a). The
Covertype dataset contains 581,012 data points and 54
features. We perform 5 runs for each setting and report
the mean of testing accuracies/log-likelihoods. Figure 2
plots both test accuracies and test log-likelihoods w.r.t. the

Iteration

Figure 2: Test accuracies (left) and log-likelihoods (right)
v.s. iterations for SVGD, w-SGLD and w-SGLD-B.

number of training iterations. It is clearly that while all
methods converge to the same accuracy/likelihood level,
both w-SGLD and w-SGLD-B converge slightly faster
than SVGD. In addition, w-SGLD and w-SGLD-B have
similar convergence behaviors, thus we only use w-SGLD
in the DNN experiments below.

Figure 3: Impact of W 2
2 factor � and parti-

cle number M .

Parameter
Sensitivity
Now we
study the
role of hyper-
parameters
in ⇡-SGLD:
the number
of particles
M and
the scaling
factor � to
replace the uivj-term in (21). We use the same dataset
and model as the above experiment. Figure 3 plots test
accuracies along with different parameter settings. As
expected, the best performance is achieved with appro-
priate scale of W 2

2 . The performance keep improving
with increasing particles. Interestingly, the Wasserstein
regularization is more important when the number of
particles is small, demonstrating the superiority when
approximate distributions with very few particles.

7.2 Applications on deep neural networks
We conduct experiments for Bayesian learning of DNNs.
Different from traditional optimization for DNNs, we are
interested in modeling weight uncertainty of neural net-
works, an important topic that has been well explored
(Hernández-Lobato and Adams, 2015; Blundell et al.,
2015a; Li et al., 2016; Louizos and Welling, 2016). We
assign priors to the weights, which are simple isotropic
Gaussian priors in our case, and perform posterior sam-
pling with the proposed particle-optimization-based al-
gorithms, as well as other standard algorithms such as
SGLD and SGD. We use the RMSprop optimizer for
feed-forward networks (FNN), and Adam for for con-
volutional neural networks (CNNs) and recurrent neural
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networks (RNNs). For all methods, we use a RBF ker-
nel K(✓,✓0) = exp(�k✓�✓0k22/h), with the bandwidth
set to h = med2/ log M . Here med is the median of the
pairwise distance between particles. All experiments are
conducted on a single TITAN X GPU.

Feed-forward Neural Networks We perform the clas-
sification tasks on the standard MNIST dataset. A two-
layer model 784-X-X-10 with ReLU activation function
is used, with X being the number of hidden units for each
layer. The training epoch is set to 100. The test errors are
reported in Table 1. Not surprisingly, Bayesian methods
generally perform better than their optimization coun-
terparts. The new ⇡-SGLD which combines w-SGLD
and SVGD improves both methods with little computa-
tional overhead. In additional, w-SGLD seems to perform
better than SVGD in this case, partially due to a better
asymptotic property mentioned in (Liu, 2017). Further-
more, standard SGLD which is based on MCMC obtains
higher test errors compared to particle-optimization-based
algorithms, partially due to the correlated-sample issue
discussed in the introduction. See (Blundell et al., 2015b)
for details on the other methods in Table 1.

Table 1: Classification error of FNN on MNIST.

Test Error
Method 400-400 800-800
⇡-SGLD 1.36% 1.30%
w-SGLD 1.44% 1.37%
SVGD 1.53% 1.40%
SGLD 1.64% 1.41%
RMSprop 1.59% 1.43%
RMSspectral 1.65% 1.56%
SGD 1.72% 1.47%
BPB, Gaussian 1.82% 1.99%
SGD, dropout 1.51% 1.33%

Convolution Neural Networks We use the CIFAR-10
dataset to test our framework on CNNs. We adopt a CNN
of three convolution layers, using 3⇥3 filter size with
C64-C128-C256 channels, and 2⇥2 max-pooling after
each convolution layer. Our implementation adopts batch
normalization, drop out and data augmentation to improve
the performance. Training losses and test accuracies are
presented in Table 2. Consistently, ⇡-SGLD outperforms
all other algorithms in terms of test accuracy. ADAM ob-
tains a better training loss but worse test accuracy, indicat-
ing worse generalization ability of the optimization-based
methods compared to Bayesian methods.

Recurrent Neural Networks For RNNs, we run stan-
dard language models. Experiments are presented on
three publicly available corpora: APNEWS, IMDB and
BNC. APNEWS is a collection of Associated Press news
articles from 2009 to 2016. IMDB is a set of movie re-

Table 2: Classification error of CNN on CIFAR-10.

Method Training Loss Test Accuracy
ADAM 23.80 86.76%
SVGD 30.57 88.72%
SGLD 28.52 88.64%
w-SGLD 31.26 88.80%
⇡-SGLD 25.06 89.52%

views collected by Maas et al. (2011), and BNC BNC Con-
sortium (2007) is the written portion of the British Na-
tional Corpus, which contains excerpts from journals,
books, letters, essays, memoranda, news and other types
of text. These datasets can be downloaded from Github⇤.

Table 3: Perplexity of language model on three corpora.

Method APNEWS IMDB BNC
SGD 64.13 72.14 102.89

SGLD 63.01 68.12 95.13
SVGD 61.64 69.25 94.99

w-SGLD 61.22 67.41 93.68
⇡-SGLD 59.83 67.04 92.33

We follow the standard set up as Wang et al. (2017).
Specifically, we lower case all the word tokens and filter
out word tokens that occur less than 10 times. All the
datasets are divided into training, development and testing
sets. For the language model set up, we consider a 1-layer
LSTM model with 600 hidden units. The sequence length
is fixed to be 30. In order to alleviate overfitting, dropout
with a rate of 0.4 is used in each LSTM layer. Results in
terms of test perplexities are presented in Table 3. Again,
we see that ⇡-SGLD performs best among all algorithms,
and w-SGLD is slightly better than SVGD, both of which
are better than other algorithms.

8 CONCLUSION
We propose a unified particle-optimization framework
for large-scale Bayesian sampling. Our framework de-
fines gradient flows on the space of probability measures,
and uses particles to approximate the corresponding den-
sities. Consequently, solving gradient flows reduces to
optimizing particles on the parameter space. Our frame-
work includes the standard SVGD as a special case, and
also allows us to develop efficient particle-optimization
algorithms for SG-MCMC, which is highly related to
SVGD. Extensive experiments are conducted, demon-
strating the effectiveness and efficiency of our proposed
framework. Interesting future work includes designing
more practically efficient variants of the proposed particle-
optimization framework, and developing theory to study
general convergence behaviors of the algorithms, in addi-
tion to the asymptotic results presented in (Liu, 2017).

⇤https://github.com/jhlau/topically-driven-language-model
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Abstract

Domains such as citizen science biodiversity
monitoring and real estate sales are produc-
ing spatial data with a continuous response
and a vector of covariates associated with each
spatial data point. A common data analy-
sis task involves finding unusual regions that
differ from the surrounding area. Existing
techniques compare regions according to the
means of their distributions to measure unusu-
alness. Comparing means is not only vulner-
able to outliers, but it is also restrictive as an
analyst may want to compare other parts of
the probability distributions. For instance, an
analyst interested in unusual areas for high-
end homes would be more interested in the
90th percentile of home sale prices than in the
mean. We introduce the Quantile Spatial Scan
Statistic (QSSS), which finds unusual regions
in spatial data by comparing quantiles of data
distributions while accounting for covariates at
each data point. We also develop an exact in-
cremental update of the hypothesis test used by
the QSSS, which results in a massive speedup
over a naive implementation.

1 INTRODUCTION

Analysis of spatial data often involves finding spatial
regions that are different from the surrounding area.
For example, epidemiologists are interested in finding
regions with an unusually high incidence of disease
while criminologists are interested in identifying crime
hotspots. The spatial scan statistic (SSS) (Kulldorff,
1997) is a widely used technique to discover unusual re-
gions from a Bernoulli or Poisson point process. The
SSS searches over a given set of regions, scoring each

region according to how a quantity of interest (eg. the
disease rate) inside the region differs from outside the re-
gion. Finally, the SSS computes the p-value of the high-
est scoring region using a randomization test.

Many spatial data sets, however, are more complex than
point processes, which focus on the spatial locations of
the data. Real-world spatial data sets from domains such
as citizen science biodiversity monitoring and real es-
tate associate a response value with each point as well
as a set of covariates (i.e. features). For example,
in a real estate data set, each data point has a loca-
tion, a sale price, and associated features such as square
footage, number of bedrooms, age, etc. Formally, we
represent the ith data point of dataset D as a tuple
(Yi, Xi,1, . . . , Xi,p, Li,1, . . . , Li,d), where Yi is a con-
tinuous response, (Xi,1, . . . , Xi,p) are the p covariates
and (Li,1, . . . , Li,d) are coordinates in d-dimensions; for
simplicity, we assume d = 2. In later sections, we will
refer to the data asD = {Y ,X,L} to represent the dis-
tinct aspects of response, covariates and locations.

We can follow the SSS framework to find unusual re-
gions in this more complex setting. For each region, we
fit a model that captures the relationship between the fea-
tures and the response variable. Then, we use a scoring
function to compare the models from the “inside” ver-
sus the “outside” regions, by using a hypothesis test that
compares the means of the models. While such an ap-
proach seems reasonable, there are two shortcomings.
First, the approach is not robust as the mean is well
known to be vulnerable to outliers and the models for
each region can be badly skewed by outliers with extreme
values for the response variable (Rousseeuw and Leroy,
1987). Second, many real-world tasks involve compar-
ing spatial regions using other parts of their distributions
besides the mean. For instance, a real-estate agent inter-
ested in high-end homes may want to compare regions
based on the 90th percentile of the sale price distribu-
tion. To overcome both of these problems, we develop a
novel method for comparing quantiles of spatial regions.
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To accomplish our goal of comparing quantiles of spatial
regions, we modify the proposed SSS variant by fitting
quantile regression models to the “inside” and “outside”
regions. Unfortunately, this naive approach is computa-
tionally expensive; fitting a quantile regression requires
a linear program and this step would be required in the
inner loop of the algorithm. To make the algorithm ef-
ficient, we replace the likelihood ratio test with the rank
test, which is a non-parametric hypothesis test that avoids
the need to fit quantile regressions to the “inside” re-
gions. However, performing a rank test from scratch ev-
ery time we score a new region is also computationally
expensive. Instead, we develop an incremental version
of the rank test that allows the rank test from a smaller
region to be updated when the region is grown to include
more spatial data points.

The contributions of our work are as follows. First,
we introduce the Quantile Spatial Scan Statistic (QSSS),
which discovers unusual regions for continuous spatial
data with covariates. The comparison between regions to
determine unusualness is based on a comparison of the τ -
th quantile of the response variable distributions. To our
knowledge, no such version of the SSS currently exists
in the literature. This algorithm is also robust to outliers,
unlike an analogous algorithm that makes comparisons
based on the mean of a region. Second, we show how to
make the QSSS over an order of magnitude faster than a
naive implementation by introducing an incremental up-
date to the rank test. This update is exact and not an
approximation. Finally, we evaluate the QSSS on sim-
ulated data and also show interesting results from case
studies on three real-world datasets.

2 RELATED WORK AND
BACKGROUND

We first discuss related work and then provide some
background needed to understand our approach. A large
body of work that is seemingly related to our task has fo-
cused on producing disease maps that illustrate how dis-
ease cases vary across space (eg. (Best et al., 2005)). Re-
searchers have also investigated spatial quantile regres-
sion (eg. (Reich et al., 2011; Macmillan, 2013)). These
modeling approaches generally produce a probabilistic
surface, which results in a useful visualization but does
not directly solve our goal of identifying specific unusual
regions. Achieving this goal requires a human to inspect
the probabilistic surface, manually segment it into un-
usual regions and rank these regions according to some
unusualness criterion. This human intervention is not de-
sirable when the spatial region is large and also if the goal
is to create an automated monitoring system. Our QSSS
algorithm essentially automates these steps in a compu-

tationally efficient manner.

2.1 THE SPATIAL SCAN STATISTIC

The Spatial Scan Statistic, introduced by Kulldorff
(1997) is a widely used approach for finding anomalous
regions. For the SSS, each spatial data point is repre-
sented by a tuple (ci, bi) along with its location. The
value ci corresponds to a count at location i (e.g. the
number of disease cases) and bi is the baseline value (e.g.
the population) at location i. The value ci is Poisson dis-
tributed with mean qbi, where q is the probability of an
event of interest occurring.

The original SSS used a scanning window in the shape of
a circle to discover unusual regions. While in theory the
search should be over all circular regions, the search is, in
practice, often limited to circles with centers determined
by a fixed grid superimposed on the spatial area. Let
C be the set of all circular regions searched by the SSS
and let C ∈ C be the region under consideration. For a
region C under consideration, let cin =

∑
i∈C ci, cout =∑

i/∈C ci, bin =
∑
i∈C bi, bout =

∑
i/∈C bi. Let qin be

the event probability inside the region C and let qout be
the probability outside the region C.

Under the null hypothesis H0, the event probability is
uniform across the entire area i.e. qin = qout. Under the
alternate hypothesisH1(C), qin > qout. We estimate qin
and qout using maximum likelihood estimation. The SSS
uses the likelihood ratio test to score a region C:

Score(C) =
P (D|H1(C))

P (D|H0)

=

(
cin
bin

)cin(cout
bout

)cout(cin + cout
bin + bout

)−(cin+cout)

if ( cinbin ) > ( coutbout
) and 1 otherwise.

The SSS then selects the region with the highest score
i.e. C∗ = argmax

C∈C
Score(C). Due to the multiple hy-

pothesis testing problem, we cannot interpret the score
from the likelihood ratio test as a true p-value. Instead,
we estimate the p-value through a randomization test.
In each replication of the randomization test, we main-
tain the same underlying population as the original prob-
lem, but generate events assuming a uniform probability.
Then, the search for the best scoring region is performed.
The process is repeated for R replications to produce an
empirical distribution which determines how likely it is
to obtain a best score of C∗.

Many researchers have extended the original SSS ap-
proach, including using scanning windows that are arbi-
trarily shaped (Duczmal and Assuncao, 2004) and incor-
porating mobility patterns (Lan et al., 2014). One variant

757



goes beyond shifts in means by discovering which sub-
population is most affected by a treatment (McFowland
et al., 2018). We point out that performing a quantile-
based comparison results in a fundamentally different
type of optimization problem and past work on speeding
up the SSS (eg. (Neill and Moore, 2004; Neill, 2012)) is
not readily applicable. Finally, Moore and Wong (2015)
use the SSS to find species rich hotspots but they do not
compare quantiles of distributions.

2.2 QUANTILE REGRESSION

Suppose we have a continuous random variable Y with
distribution function F (Y ) = P (Y ≤ y). The τ -th
quantile q(τ), with 0 < τ < 1, is defined as q(τ) =
F−1(τ) = inf

y
{F (y) ≥ τ}. For example, when τ = 0.5,

we get the median. Given a dataset Y1, . . . , Yn, the τ -
th sample quantile q̂(τ), can be computed by solving the
optimization problem:

q̂(τ) = argmin
q

n∑

i=1

ρτ (Yi − q)

where ρτ (r) = r(τ − I(r < 0)).

Quantile regression, introduced by Koenker and Bassett
(1978), fits a regression to the conditional τ -th quan-
tile of the response variable. Given a dataset D =
{(Y1,X1), . . . , (YN ,XN )} where Yi is the response
variable and Xi are the covariates, fitting a quantile re-
gression involves solving:

β̂(τ) = argmin
β

n∑

i=1

ρτ (Yi −Xiβ)

The solution β̂(τ) produces a conditional quantile func-
tionQY (τ |X = x) = x′β̂(τ), similar to how a standard
regression produces the conditional mean when the coef-
ficients are multiplied with the covariate values.

Quantile regression is a useful tool for analyzing specific
parts of a distribution. It can model the data extremes
by setting τ close to either 1 or 0, or it can reduce the
influence of these points by modeling τ close to 0.5.

There are several methods for comparing two quantile
regression models. These test include applications of
Wald’s test, the Likelihood Ratio test, and Rank test
(Koenker and Machado, 1999). Mood’s median test
(Mood, 1950) can also be adapted to perform a com-
parison at a given quantile. While fast to compute, this
version of Mood’s test lacks the power of the Wald, Like-
lihood Ratio, and Rank alternatives. Any of these meth-
ods are still usable when the covariate set X is empty
by using the quantiles of Y . We use the Rank test, as

it can be implemented without repeatedly re-estimating
the quantile regression coefficients for each data subset,
thereby reducing its computation time without sacrific-
ing power. In the following section we explain the Rank
test for quantile regression.

2.3 RANK TEST FOR QUANTILE
REGRESSION

Let the regression model for the τ th quantile have the
form Y = Xβ1+X̃β2 where each rowXi corresponds
to a data point. For a given data subset C ⊆ D, X̃i =
Xi if Xi ∈ C and X̃i = 0 if Xi 6∈ C. This model will
simultaneously fit a regression to C and D \ C. In the
spatial scan context C is the region inside our circle and
D \C is the region outside. The goal is then to test the
null hypothesis H0 : β2 = 0 against the alternative H1 :
β2 6= 0 to see if the subset C is sufficiently different
from the full distribution ofD.

The Rank test is an application of the score test, using a
score function and ranking process to estimate the data
distribution when the true likelihood is unknown. In
general terms, the score test statistic is composed of the
product of the square of a score vector, an approxima-
tion of the derivative using a score function in place of
the true likelihood, and the inverse of the Fischer infor-
mation. The Rank test statistic takes the following form
when applied to quantile regression for the null hypothe-
sis above (Gutenbrunner et al., 1993).

T = S′M−1S/Ψ2 (1)

We include the following definitions along with the di-
mensions of each term in braces for clarity.

S[p×1] = n−1/2(X̃ −HX̃)′b̂

H[n×n] = X(X′X)−1X′

b̂[n×1] = −
∫
ψ(t)dâ(t)

M[p×p] = n−1(X̃ −HX̃)′(X̃ −HX̃)

We now provide an intuitive explanation for each term.
S is the score vector for the test. It represents an approx-
imate derivative of β under the null hypothesis. By for-
mulatingS with the matrix X̃−HX̃ , the influence ofX
(andβ1) is removed, focusing the approximate derivative
on β2, the parameters of interest. When S is large, it in-
dicates that the null hypothesis is ill-suited to the data.

With the true likelihood unknown, S is calculated using
b̂, an n vector of scores calculated for each data point.
These scores are computed by integrating the score func-
tion ψ(t) with respect to the regression rankscores â de-
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fined by Gutenbrunner and Jureckov (1992). The regres-
sion rankscores allow the rank test to be applied to quan-
tile regression by converting the multi-dimensional data
into a single-dimensional ranking for the chosen quan-
tile. â is equal to the dual solution of the quantile re-
gression under the null hypothesis, and can be calcu-
lated using the primal solution β1. The value âi = 1
if β1Xi > 0, 0 if β1Xi < 0, and between 0 and 1 if
β1Xi = 0, satisfyingX ′â = (1− τ)X ′1.

Ψ2 =
∫

(ψ(t) − ψ̄)2dt is an additional normalization
term for the covariance of the score function. Koenker
and Machado (1999) highlight the quantile score func-
tion ψ(t) = τ − I(t < τ), which focuses the test on a
specific quantile. This gives us b̂i = âi(τ)− (1−τ) and
Ψ2 = τ(1 − τ). With this choice of score function, b̂i
is either τ if β1Xi > 0, τ − 1 if β1Xi < 0, or a value
inbetween otherwise.

The test statistic T follows a Chi-squared distribution
with p degrees of freedom under the null hypothesis. It
has the desirable properties of not depending on the error
distribution, and not needing to learn the model under the
alternative hypothesis. The values b̂ are calculated under
the null hypothesis that β2 = 0.

3 METHODOLOGY

We start with a high level overview of our QSSS1. Given
a datasetD = {Y ,X,L}, and a list of starting locations
P , the QSSS searches over circular areas inL, beginning
at each starting location in P and growing the regions
one data point at a time, starting from some minimum
number of points. The regions are grown as circles of
increasing radius. Each time the region grows, we calcu-
late its test statistic using our Incremental Rank test (Sec-
tion 3.1). Once the region cannot be grown any larger, or
reaches a maximum size, we move on to the next start-
ing point in P . After all starting points have been ex-
hausted, an adjusted p-value is calculated for the region
with the highest test statistic using a Gumbel correction
(Section 3.2). We chose the Gumbel correction because
it is much faster than the traditional randomization test.
If the adjusted p-value is significant then the algorithm
returns the region, otherwise it says that no significant
region was found.

3.1 FASTER RANK TEST FOR QSSS

In the QSSS framework, the Rank test needs to be per-
formed for every circular subsetC ⊆D. We can choose
a set of starting points (either each data point or a grid

1Matlab code for our experiments and algorithms can be
found at https://github.com/moortrav/QSSS

formed over L) for the regions and grow each one, re-
calculating our hypothesis test each time the region over-
laps a new data point. The inclusion of a new data point
i into the region will change the ith row of X̃ from a row
of zeros to the ith row of X . Under the framework of
the Rank test, X , H , and b̂ will be the same for every
choice of region C. Thus our only task is to update T as
X̃ changes.

The primary bottlenecks in updating T are in updating
S and recomputing M−1. M−1 can be updated in-
crementally using applications of the Sherman-Morrison
formula (Sherman and Morrison, 1950), but a more effi-
cient update can be performed by leveraging the special
structure of T . Note that we can re-write T as

T = b̂Z(Z′Z)−1Z′b̂/Ψ2 (2)

where Z = X̃ −HX̃ . Z(Z′Z)−1Z′ is by definition a
projection matrix onto the space of Z. If we let U be an
n x p orthonormal column basis of Z, then

T = b̂UU ′b̂/Ψ2 (3)

The inverse in Equation 2 is a normalization term. Since
U is already normalized, the formulation of Equation 3
allows us to forgo the matrix inverse calculation. Thus
we can quickly recalculate T by performing incremental
updates to our orthonormal basis U as X̃ changes.

3.1.1 Incremental Orthogonalization of Rank Test

Our goal is to take an existing orthonormal basis at itera-
tion t (i.e. U t), and calculate U t+1 based on the (small)
change in X̃ when a new data point is added to the in-
side region. To do this efficiently, we leverage the QR
decomposibility ofZt, which enables a rank one update.
However, we also need to efficiently preserve the QR de-
composibility of Zt+1, which we do through a series of
Givens rotations.

Let K[n×n] be a row selector matrix, where K[j,j] = 1
if point j is in C, and all other values are zero. For a
current region Ct at iteration t, X̃ = KtX . If we add
point i to X̃ during iteration t+ 1, then this is equivalent
to changing the ith diagonal of Kt from 0 to 1. We can
express this change as a matrix sum Kt+1 = Kt +Ki

whereKi is zero except for the ith diagonal. This allows
us to decompose the change in Zt+1 as follows:
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Zt+1 = (Kt +Ki)X −H(Kt +Ki)X (4)

= Zt +KiX −HKiX (5)

= Zt + (ei −Hi)
′Xi (6)

where ei is the ith unit basis vector of size 1 × n. Note
that e′iXi is an outer product producing a matrix of size
n × p. H is a symmetric matrix, so we use the row
vector Hi to keep our notation consistent. In Equation
6 we have reduced the update to Zt to the product of a
column and row vector i.e. (ei −Hi)

′Xi. This means
that the matrix added to Zt has a rank of one, and the
change to each column of Zt is a multiple of the same
column vector (ei−Hi)

′. We can use this special update
structure in an algorithm to find U t+1 efficiently.

If the QR factorization of Zt is known, where R is an
upper triangular matrix and Q = U t is an orthonor-
mal column basis, then the factorization for Zt+1 can
be found with the rank one update algorithm detailed in
section 12.5.1 of Golub and Loan (2012). This algo-
rithm lets us find the factorization Zt+1 = Qt+1Rt+1

using the previous factorization Zt = QtRt, giving us
U t+1 = Qt+1 for our update to the test statistic T .

Let v = ei −Hi. We start by refactoring the update as

Zt+1 = QtRt + v′Xi = Qt(Rt +w′Xi) (7)

Where w′ = (Qt)−1v′ = (Qt)′v′. Our goal is to turn
Zt+1 into the product of an orthonormal matrix (which
will be Qt+1) and an upper triangular matrix to be pro-
duced from (Rt +w′Xi) through Givens rotations. The
details of the Golub and Loan (2012) algorithm that does
this can be found in the supplemental materials.

This algorithm is not ideal in its current form, because
creating the upper triangular matrix takes O(n) Givens
rotations, a result of Q being n × n. However, the
first p columns of Q and p rows of R, denoted as
Q[·,1:p] and R[1:p,·], are sufficient to reconstruct Z, as
Z = Q[·,1:p]R[1:p,·] = QR. Working with this reduced
factorization would reduce the storage and number of
Givens rotations required for the algorithm.

Unfortunately this representation is insufficient to per-
form the update. If we were to compute the vector w
from Equation 7 with Q[·,1:p], then w′ = Q′[·,1:p]v

′ =

Q′[·,1:p]e
′
i − Q′[·,1:p]H ′i = 0. To see this, note that

Q′[·,1:p]e
′
i is zero because the ith row ofZt andQ is zero,

since the ith data point has not been added to the inside
region yet. Q′[·,1:p]H

′
i is also zero because Hi is per-

pendicular toZt and thus perpendicular toQ[·,1:p]. With
w′ = 0, Equation 7 becomes Zt+1 = Qt

[·,1:p]R
t
[1:p,·],

which completely ignores the update term. Intuitively
speaking, we cannot update the column basis of Zt by
only considering that basis.

Fortunately, there is a way to summarize the influence
of the last n-p columns of Q, denoted Q[·,(p+1):n],
into a single vector. When the Givens rotations zero
out element j in w, it changes element j − 1 to√
w2
j−1 + w2

j . Consequently, the result of rotations

J ′p+1 . . .J
′
n−1 will set wp+1 =

√
w2
p+1 + . . .+ w2

n =
√∑n

j=p+1(Q′jHi)2) = |Q[·,(p+1):n]Hi|. Be-
cause Q[·,1:p] is perpendicular to Hi, the columns
Q[·,p+1] . . .Q[·,n] are an orthonormal basis of Hi. Pro-
jectingHi onto its own basis will preserve its length, giv-
ing us |Q[·,(p+1):n]Hi| = |Hi|. Thus, we can summarize
all n−p Givens rotations with a single vector q such that
qHi = |Hi|, which gives us q = Hi/|Hi|. If we ap-
pend q as a new column ofQ[·,1:p] to produce Q̃[·,1:p] and
a zero row to the bottom of R[1:p,·] to produce R̃[1:p,·]
then we can run the algorithm with only O(p) Givens
rotations and still produce the same result. Since q is
normalized and perpendicular to Q[·,1:p], Q̃[·,1:p] is still
orthonormal.

We can perform the rank one update on Q̃t
[·,1:p] and

R̃t
[1:p,·] using the algorithm in Golub and Loan (2012).

The first p columns of Q̃t+1
[·,1:p] make our new orthonormal

column basis U t+1 used to calculate our test statistic T .

Algorithm 1 Incremental Rank Test

Inputs: X,H, b̂,Q,R, τ , i
v = ei −Hi

Q,R =qr update(Q,R,v,Xi)
T = b̂′QQ′b̂/(τ(1− τ))
Return(T )

Algorithm 1 shows the incremental rank test which calls
qr update. It takes the index i of the datapoint being
added to the region, along with the QR factorization for
the previous iteration as inputs. The details of qr update
can be found in the supplementary materials. We can run
the algorithm with either the full QR factorization, or the
abridged form represented by Q̃[·,1:p] and R̃[1:p,·]

Note that our incremental rank test is not an approxima-
tion as it computes the test statistic (Equation 1) exactly.

3.1.2 Update Runtime

With our compact representation for Q̃[·,1:p] and R̃[1:p,·],
the rank one update to our QR factorization takes O(np)
time. Each Givens rotation is an O(n) operation, and
we perform O(p) of them in total. Once U t+1 is found,
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T t+1 can be calculated in O(np) time by computing
b̂U t+1 = u, and then finding T t+1 = uu′. Thus the
entire update to T can be performed inO(np) time when
a single point is added to X̃ .

3.2 MULTIPLE HYPOTHESIS TEST
CORRECTION

To account for the multiple hypothesis test problem, we
perform a correction using the method in Abrams et al.
(2010). We generate 1000 simulations of the data un-
der the null hypothesis. The maximum test statistic from
each of these simulations are used to fit the parameters
µ, γ of a Gumbel distribution. We calculate the adjusted
p-value of a region with test statistic T as 1− g(T |µ, γ),
where g is the CDF of the Gumbel distribution. This tells
us the rarity of drawing a value at least as large as T from
the distribution of maximum test statistics. In all of our
applications we report the most significant region found
by QSSS, provided that the adjusted p-value of the region
is less than 0.05. Otherwise no significantly different re-
gion is found.

4 RESULTS

4.1 SYNTHETIC DATA EXPERIMENTS

We begin by demonstrating the speedup from our incre-
mental formulation of the Rank test, followed by a com-
parison of the Rank test to other possible choices of hy-
pothesis tests. We use synthetic data to evaluate these
two criteria, as it is easy to generate in large quantities,
and it can contain a verifiable ground truth.

4.1.1 Simulator

The purpose of our simulator is to inject data points in
spatial regions where the data distribution is altered at a
specific percentile. We start with a default distribution,
then modify a specific range of the distribution for a ran-
dom spatial region. This acts as the target region for the
algorithm to identify. A detailed description of our sim-
ulator can be found in the supplemental materials.

4.1.2 Incremental Rank Test Timing

Using our simulated data, we compare the runtime of our
incremental version of the Rank test to its naive (non-
incremental) formulation. For each algorithm we calcu-
lated the Rank test statistic T , starting from a base radius,
then expanding to include 100 new points. In Figure 1 we
show the average time, in milliseconds, that each algo-
rithm took to calculate T when a new point was added.
These tests were done for increasing values of n while

keeping p constant at 5. The two algorithms start out at
similar times when n = 1000, but quickly diverge. At
n = 16, 000 our incremental Rank test takes only 2.83
ms to compute each update, while the non-incremental
version takes 166.9 ms. The incremental speedup for
the Rank test makes it usable within the framework of
the QSSS, while the naive calculation would take far too
much time to be feasible for large n.

Figure 1: Average time to update the Rank test statistic,
for the full and incremental formulations. Times were
averaged over 100 updates for randomly generated data
with different values of n and constant p = 5.

4.1.3 Comparison against Other Baselines

We are unaware of other methods that can solve exactly
the same problem as the QSSS. As a result, we develop
three baseline algorithms that can be used for compar-
ison. We create the first baseline by adapting the SSS
to account for covariates by modeling the response for
the inside (and outside) region using least squares regres-
sion. This baseline compares means (not quantiles) of
distributions by using a likelihood ratio test. We add the
Mean test to show the ineffectiveness of a mean-based
test statistic in finding regions that differ only in specific
quantiles. For the second baseline, we modify the SSS to
focus on a specific quantile of the distribution. We do this
by fitting a τ th quantile regression with coefficients β to
the entire data set; then, for each test region, this base-
line calculates Mood’s test at τ , which is a statistic from
a 2 × 2 Chi-Squared table that compares the number of
points above and below the β plane from both inside and
outside of the region. Finally, our third baseline is simi-
lar to the second baseline but it replaces Mood’s test with
the more powerful but computationally expensive likeli-
hood ratio test from Koenker and Machado (1999) (LR)
for quantile regression. This LR test forms a Chi-squared
statistic from the residuals of the quantile regressions fit
to the null and alternative models.

Using our simulator, we produced 30 randomly gener-
ated data sets with n = 1000. B2 (parameters for the
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injected data) is the same as B1 (parameters for the nor-
mal data) in these datasets, except between the 70th and
100th percentiles of the distribution. 100 of the points are
generated from f(B2) and 900 of the points are gener-
ated from f(B1). Our Moods, LR, and Rank test search
for regions that differ at the 90th percentile. For each
algorithm, we look at the most significant region found
for each dataset, provided it has a p-value of at most 0.05
after the Gumbel correction. Otherwise we count the al-
gorithm as finding no significant region for that dataset.
Note that this experiment setup is extremely challenging.
The ground truth region to detect makes up 10% of the
total dataset, but only 30% of the points in the region
on average indicate that it has a different distribution.
Adding in the random noise term further complicates the
detection task.

P=3 Moods LR Rank Mean
Precision 0.322 0.499 0.576 0.405
Recall 0.353 0.548 0.500 0.334
F1 0.337 0.522 0.535 0.366
Time (s) 3.32∗ 350.73 46.64 31.06
P=5 Moods LR Rank Mean
Precision 0.259 0.395 0.508 0.216
Recall 0.320 0.416 0.484 0.110
F1 0.286 0.405 0.495 0.146
Time (s) 3.02∗ 310.65 84.36 39.25

P=10 Moods LR Rank Mean
Precision 0.286 0.243 0.676∗ 0.197
Recall 0.344 0.278 0.442 0.169
F1 0.312 0.259 0.535∗ 0.182
Time (s) 3.26∗ 379.32 83.31 38.25

Table 1: The precision, recall, F1 and running time of
QSSS on synthetic data using various algorithms. The *
indicates statistical significance (paired t-test, α = 0.05).

Table 1 shows the results of the simulation experiments.
The precision, recall and F1 score of each algorithm is
reported in the task of finding the region generated from
B2 in each dataset. These values are calculated on a
per data point basis for each dataset, then averaged over
the 30 datasets. Three experiment runs were performed,
with dimensionality p = 3, 5 and 10. LR and Rank are
the two most accurate tests for p = 3 and 5, with Rank
being the most accurate for p = 10. The poor perfor-
mance of Mood’s and Mean is expected, since Mood’s is
a low power test and Mean is ill-suited to find such subtle
distributional variations.

Table 1 also shows the average total runtime of each spa-
tial scan algorithm on the simulation data. This table il-
lustrates the speed of Mood’s test compared to the other
hypothesis tests. We can also see that the LR test is sig-

nificantly slower than the others, a result of needing to fit
a quantile regression to the alternative model for every
test region. In our implementation of LR, we use warm-
starting to increase the speed of the quantile regression
algorithm as the regions grow point by point. Even with
warmstarting, the LR algorithm still takes at least four
times longer to run on the simulation data than our other
hypothesis choices.

Comparing the accuracy and timing results, we see that
while the Rank and LR test are the most accurate, the
Rank test offers the best tradeoff in terms of usability be-
tween speed and power. We found it infeasible to use the
computationally expensive LR test, even on moderately
sized datasets. While the Mood’s and Mean tests were
faster, neither one was very capable at detecting differ-
ences in our simulated data. Due to these result, we pri-
marily use the Rank test in our case studies below; we
also include results from the Mean test to illustrate the
differences between the two.

4.2 ROBUSTNESS TO OUTLIERS

One of the benefits of quantile based analysis is that it
is more robust to data outliers than mean-based methods.
We illustrate how this can affect spatial scan analysis us-
ing eButterfly data as an example use case.

(a) 50th Percentile (b) Mean

Figure 2: Most significant regions found from eButterfly
data, with data points in the region shown as red dots.
The figures are zoomed in on the Toronto region for vis-
ibility. Figure 2a is from the QSSS algorithm at the 50th
percentile, Figure 2b is from the mean regression spa-
tial scan. The region in 2b represents a single location,
rather than an area, as all the data from that subset have
the same location parameters.

Citizen science biodiversity monitoring programs, such
as eButterfly (Prudic et al., 2017), play an important role
in ecology as it informs species distribution models and
also conservation programs. Citizen scientists participat-
ing in these programs submit checklists which record ob-
servations of certain types of organisms, such as butter-
flies in the case of eButterfly, identified by species.
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We construct a dataset out of the abundance counts of
monarch butterflies (i.e. the number of butterfly individ-
uals observed) in Ontario in 2016. Quantile regression on
count data can be addressed using the smoothing method
in Machado and Silva (2002), which turns the counts into
continuous values by adding uniform noise. This trans-
formation allows us to perform inference with the Rank
test as we would with continuous data.

In our analysis, we include the time spent observing for
each checklist as the covariate, since there should be a
strong correlation between this value and the number
of monarchs observed. We ran our QSSS algorithm on
several different quantiles and compared the top region
for each to the top region found by a mean-based least
squares spatial scan.

Figure 2 shows the most significant regions found by the
mean regression spatial scan and QSSS at the 50th per-
centile2. Inspection of the data, and verification with do-
main experts at eButterfly reveal two interesting results
identified by the algorithms. Within the data time win-
dow there is a single observer who heavily skews the
distribution. This observer was involved in a monarch
tagging project, and submitted a significant number of
very high monarch checklists. The region found by the
mean spatial scan only includes the checklists from this
observer, all at the same spatial location. When QSSS is
run at the 50th percentile, a different trend emerges. The
checklists from the observer has much less influence on
the model at this level, and the algorithm instead picks up
an area of high monarch counts due to migration routes
around the great lakes.

If we were limited to only mean-based spatial scans, we
would have to filter out the outlier data from the monarch
tagging observer to find the desired trends in the dataset.
Being able to adjust the percentile of QSSS allows us to
reduce the influence of outliers as desired, without ex-
plicit removal of outliers from the data.

4.3 QUANTILE BASED REGION DETECTION

We now demonstrate the usefulness of detecting unusual
spatial regions based on different quantiles.

4.3.1 Education and Unemployment Data

We combine the county-level education and unemploy-
ment datasets from the USDA Economic Research Ser-
vice web page (Parker, 2017). We use the county-level
unemployment rates from 2016 as the response variable,
and combine the education percentages from 2012-2016

2All maps generated using ggmap in R (Kahle and Wick-
ham, 2013)

with median household income (as percentage of state
total) values from 2016 as the covariates. The education
percentages are the proportion of adults in each county
with less than a high school diploma, just a high school
diploma, one to three years of college, and four years of
college or more. We only use the counties from the con-
tinental US.

We ran our QSSS algorithm on the 10th and 90th per-
centile of the data, along with a mean-based approach
using least squares regression. Figure 3 shows the most
significant region found by each algorithm. Both the
mean and 90th percentile search found the Appalachian
region that intersects Kentucky, West Virginia and Vir-
ginia, which is well-known to have high unemployment
rates with the collapse of the coal industry (Caruthers,
2016). In the 10th percentile region, South Dakota,
North Dakota, Nebraska, and Colorado are rated 2,3,4,
and 6 in unemployment in the continental US as a whole.
This middle region of the country enjoys lower unem-
ployment rates due to the local oil industry and relatively
low fallout from the Great Recession (DePillis, 2018).
The most significant region discovered at the 10th per-
centile has a 2 point lower unemployment rate on aver-
age, which is abnormally low even when compared to
other low unemployment areas.

The unemployment data results highlight the fact that the
QSSS, unlike the mean scan, can identify multiple trends
in a dataset by changing the modeled quantile.

4.3.2 eBird

The final case study presents the results of applying
QSSS to eBird (Sullivan et al., 2014) data. The eBird
project collects bird observation checklists from citizen
scientists around the world. We compiled two datasets
from eBird data collected in 2017 between March and
April. These datasets correspond to two different Bird
Conservation Regions (BCRs) within the U.S. We divide
the data by BCR because they represent cohesive habitats
for different bird species. Our choice of March and April
is to mitigate the effects of seasonality on the algorithms.

Different from our eButterfly study, we used the total
number of species observed from each checklist as our
response variable, and the time spent observing as the co-
variate. Past work has shown that the number of species
observed per unit time is highly predictive of the skill
level of an observer (Kelling et al., 2015). We use the
same count smoothing approach on the eBird data as we
did on eButterfly to fit the quantile regression model.

Figure 4 shows the most significant regions found for
the mean spatial scan and our QSSS run at the 90th
percentile. We corresponded with domain experts from
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(a) 10th Percentile (b) 90th Percentile (c) Mean

Figure 3: Most significant region found by the QSSS algorithm for the 10th and 90th percentiles of the Education
and Unemployment dataset. Most significant region by the mean spatial scan is included for comparison. Regions are
illustrated by the centroids of the counties they contain.

(a) BCR 31 90th Percentile (b) BCR 31 Mean

(c) BCR 37 90th Percentile (d) BCR 37 Mean

Figure 4: The most significant regions found by QSSS at
the 90th percentile and by the mean spatial scan on eBird
data from BCRs 31 (Florida) and 37 (Gulf coast). Data
points within a region are shown as red dots.

eBird, who offered an analysis on the regions detected.

For BCR 31, the QSSS found an unusual birding location
– one that is less frequented by beginners. The birders
who visit this region are highly skilled and are able to
continue observing a high number of bird species as they
stay there. In contrast, the mean scan found a popular
species-rich hotspot in the Everglades frequented by both
experts and novices. This region has many large wading
birds which are easy to see and identify initially.

In BCR 37, the QSSS found a hotspot in Matagorda Bay
because it has an unusually high number of bird species
along the shoreline that can be readily observed as com-
pared to the surrounding area. Our domain expert com-

mented that the area found by the mean scan was an area
that was not particularly high in species. Upon inspecting
the models for the inside versus outside region, we found
that the models indicate that observers appear to find less
species initially inside that area than outside that area.

The mean scan and QSSS algorithms both found very
different but meaningful regions for the BCRs. We hy-
pothesize that the QSSS is finding unusual areas in terms
of the observation process for more skilled observers (as
in BCR 31) and we will continue our analysis on other
BCRs in future work.

5 FUTURE WORK AND CONCLUSION

The QSSS discovers unusual spatial regions that differ
from the surrounding area. The inner loop of the algo-
rithm relies on comparing quantile regressions fit to data
from inside and outside a region under consideration. To
perform these comparisons efficiently, we developed an
incremental rank test, which is over an order of magni-
tude faster than a naive implementation. Our results on
simulated data and on three real-world datasets show that
QSSS enables a new type of analysis for spatial data that
is different from mean-based methods and that the QSSS
is also robust to outliers. For future work, we would like
to investigate reporting the top K most unusual regions
rather than the top 1 and we would also like to extend our
work to find unusual regions in both space and time.
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Abstract

The goal of many machine learning
tasks is to learn a model that has small
population risk. While mini-batch
stochastic gradient descent (SGD) and
variants are popular approaches for
achieving this goal, it is hard to pre-
scribe a clear stopping criterion and to
establish high probability convergence
bounds to the population risk. In this
paper, we introduce Stable Gradient
Descent which validates stochastic gra-
dient computations by splitting data
into training and validation sets and
reuses samples using a differential pri-
vate mechanism. StGD comes with a
natural upper bound on the number
of iterations and has high-probability
convergence to the population risk. Ex-
perimental results illustrate that StGD
is empirically competitive and often
better than SGD and GD.

1 INTRODUCTION

The primary goal in several machine learning
tasks is to learn a model with finite training
samples that generalizes well to unseen instances.
One typically attempt to solve the following
optimization problem which finds a minimizer
w? of the population risk F over some model
class W:

w? ∈ argmin
w∈W

F (w) , Ez∼P [l(w, z)] , (1)

where z ∈ Z is a data point in domain Z follow-
ing the unknown distribution P , and l :W×Z 7→
R is a certain loss function associated with the
learning problem. For example, in classification
problems z = (x, y) is an instance-label pair, w
denotes a classifier, and l(w, z) can be the hinge
loss or logistic loss.
Due to the unavailability of distribution P, the
challenge of a learning algorithm is to search
for an approximate minimizer ŵn of the risk
F based only on a set of finite samples Zn =
{z1, z2, ..., zn}. A good criterion for quantifying
the quality of ŵn is through the excess risk:

F (ŵn)− F (w?) . (2)

A learning algorithm for obtaining ŵn should
have small excess risk. Being a function of the
random set of samples Zn, F (ŵn) is a random
variable and a good learning algorithm is ex-
pected to have small excess risk with high prob-
ability.
In the literature, there are several approaches
to tackle the problem. The classical approach
is empirical risk minimization (ERM) (Shalev-
Shwartz and Ben-David [2014]) which aims to
find an empirical minimizer defined as ŵERMn ∈
argminw∈W F̂ (w) , 1

n

∑n
j=1 l(w, zj). Usually

first-order iterative optimization methods such
as gradient descent (GD) are used to obtain
the minimizer. However, GD uses all samples
to compute gradients in each iteration and is
quite slow for large datasets. A popular ap-
proach in modern machine learning is stochastic
gradient descent (SGD)(Zhang [2004];Rakhlin
et al. [2012];Hazan and Kale [2014]). SGD
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minimizes the population risk directly by de-
scending along stochastic gradients, computed
based on a single sample or a mini-batch of
samples. The stochastic gradient equals the pop-
ulation gradient in expectation (Shalev-Shwartz
and Ben-David [2014]). Convergence of SGD
is typically analyzed in expectation rather than
with high probability with a few notable excep-
tions(Rakhlin et al. [2012]). In practice, since
the improvements in the objective function value
is non-monotonic, it is hard to prescribe a theo-
retically well grounded stopping criterion.
Conceptually, a mini-batch SGD algorithm
would be much more well behaved if we had
access to n fresh samples in each iteration. In
such a setting, one would be able establish high
probability bounds on the sample gradients stay-
ing close to the population gradient across all
iterations, leading to high probability bounds
on the excess risk. In this paper, we introduce
Stable Gradient Descent (StGD), which behaves
similar to the ideal case of n fresh samples per
iteration using ideas from adaptive data analysis
(Dwork et al. [2015c]) and differential privacy
(Dwork and Roth [2014]). Each iteration leads to
a small privacy loss which, unlike SGD, automat-
ically puts a bound on the number of iterations
StGD can be run. We present basic and mini-
batch StGD and provide high probability bounds
on the excess risk for different types of convex
loss functions.
The main idea in StGD is simple: separate the
available samples into a training and a valida-
tion set, compute stochastic gradient on both,
and check if they are close. If they are indeed
close, there is confidence in that descent direc-
tion and StGD proceeds with the descent. On
the other hand, if they are not close, there is lack
of confidence in the descent direction, and StGD
uses a noisy version of the estimated gradient
to do descent. The challenge in naively carrying
out the simple idea is that the algorithm may
overfit on both the training and the validation
set. As a result, StGD carries out the compar-
ison of training and validation gradients using
a differentially private mechanism, which allows
StGD to reuse the same samples over iterations

but still get high probability bounds across all
iterations as if the samples were fresh.
The remainder of the paper is organized as fol-
lows. Section 2 describes related work. We
present basic StGD in Section 3, and present
min-batch StGD in Section 4, along with high
probability excess risk bounds. We present ex-
perimental results in Section 5, and conclude in
Section 6. All technical proofs are deferred to
the supplementary material.

2 RELATED WORK

ERM and SGD: For ERM, a common algo-
rithm is gradient descent (Shalev-Shwartz and
Ben-David [2014]) which computes the full gra-
dient of the empirical risk and takes a step along
it at each iteration. The performance of ERM
is usually measured in terms of the uniform
convergence of F̂ (w) to F (w) over W. (Hardt
et al. [2015]) analyzed the stochastic gradient
method (SGM) for ERM in terms of stability
and optimization error: E[F (ŵn)] − F (w?) ≤
εopt(w) + εstab. They demonstrated that for L-
Lipschitz continuous function, SGM has the con-
vergence rate of O(L/

√
n). SGD minimizes the

population risk by allowing the optimization pro-
cedure to take a step along a random direction,
as long as the expected value of the direction
is the population gradient (Shalev-Shwartz and
Ben-David [2014]). In this case, with n to be the
number of stochastic gradient computations. For
strongly convex functions, SGD can achieve an
expectation risk bound of rate O(1/n) (Hazan
and Kale [2014],Rakhlin et al. [2012]). (Rakhlin
et al. [2012]) also presented a similar high prob-
ability bound for SGD.
Differential Privacy: Informally, differential
private analysis ensures that the outcome of
analysis on two nearly identical input datasets
(different on a single component) should also be
nearly identical. As a result, an analyst will
not be able to distinguish any single data by
comparing the change of output. In the context
of machine learning, this randomized algorithm
M can be a learning algorithm that outputs a
classifier M(D) = f where D is the training
set. Some work (Chaudhuri et al. [2011], Bass-2
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ily et al. [2014]) introduced differential privacy
to ERM to protect sensitive information about
training data. (Dwork et al. [2015b], Dwork et al.
[2015a]) introduced differential privacy to adap-
tive data analysis (ADA). In ADA, analyst test
adaptively generated hypotheses on one holdout
set where those hypotheses have dependence on
the holdout set. To ensure the repeatedly used
holdout set to provide valid validations, they
designed a Thresholdout mechanism which al-
lows the analyst to query the holdout set via a
differentially private way. They showed differen-
tially private reused holdout set maintains the
statistical nature of fresh sample.
The main contribution of this paper is, we in-
troduce differential privacy to gradient descent
by applying Thresholdout to the training set.
We show that the training set can be reused
and maintains the statistical nature of fresh
sample in all iterations. Mathematically speak-
ing, gradients computed on the differentially-
private reused training set concentrate around
the population value with high probability. We
exploit the concentration property to derive high-
probability risk bounds of StGD.

3 STABLE GRADIENT DESCENT

3.1 PRELIMINARIES

We consider the problem of minimizing the pop-
ulation risk defined in Equation 1. We denote
∇l(w, z) as the gradient of l(w, z). We use ∇il(·)
to denote the i-th coordinate of ∇l(·). Besides,
we use gi(w), g̃i(w) and ĝi(w) to be the i-th coor-
dinate of g(w) (population gradient), g̃(w) (gra-
dient computed by StGD) and ĝ(w) (empirical
gradient), respectively, for i ∈ {1, ..., d}, where
d is the dimension of w. For example, given the
sample set S, ĝ(w) = ∑

zj∈S ∇l(w, zj)/|S|. We
consider some special cases of F (w) with the
following assumptions(Boyd and Vandenberghe
[2004]):
1. Convex and L-Lipschitz: Function F is
convex with L-Lipschitz if for all w,w′ ∈ W and
L ≥ 0:

|F (w′)− F (w)| ≤ L‖w′ − w‖.
2. Strongly Convex: Formally, a function F

Algorithm 1 Stable Gradient Descent (StGD)
Algorithm

1: Input: Dataset S, certain loss l(·), initial
point w0.

2: Set: Noise variance σ, iteration time T , step
size η.

3: Separate S randomly and evenly into St and
Sh.

4: for s = 0, ..., T do
5: Run DPGC(St, Sh, ws, σ, l(·)) to compute

gradient g̃(ws).
6: ws+1 = ws − ηg̃(ws).
7: end for

is α-strongly convex, if for all w,w′ ∈ W and
any subgradient g(w) of F at w, we have

F (w′) ≥ F (w) + (w′ − w)T g(w) + α

2 ‖w′ − w‖
2.

3. Smooth: We say a function F is β-smooth,
if w,w′ ∈ W and any subgradient g(w) of F at
w, we have

F (w′) ≤ F (w) + (w′ − w)T g(w) + β

2 ‖w′ − w‖
2.

3.2 STGD ALGORITHM

We present StGD in two parts: Algorithm 1 and
Algorithm 2 (DPGC). To simplify, we suppose
there are 2n available samples S ∼ P2n. The
StGD randomly and evenly separates them into
two datasets: training set St and validation set
Sh, both of which are of size n. We set a noise
parameter σ and the total iterations T . We
analyze the optimal values of parameters σ and
T in the next section. Starting from initial point
w0, at each s-th iteration, StGD runs DPGC
(Algorithm 2) to query the training set St in
order to obtain an estimated gradient g̃(ws),
then updates the ws+1 based on g̃(ws) (line 5, 6
in Algorithm 1).
We present the pseudo-code of DPGC in
Algorithm 2. DPGC unrestrictedly ac-
cesses the validation set Sh, but accesses St
via a differentially private way: Given ws,
DPGC first computes gradients on St and
Sh: gt(ws) = ∑

zi∈st ∇l(ws, zi)/|St|, gh(ws) =3
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Algorithm 2 Differentially Private Gradient
Computation (DPGC)

1: Input: Dataset St and Sh, parameter ws,
noise variance σ, loss l(·).

2: Compute gradients gt(ws) and gh(ws):
gt(ws) = ∑

zi∈st ∇l(ws, zi)/|St|,
gh(ws) = ∑

zi∈sh ∇l(ws, zi)/|Sh|.
3: for i= 1,...,d do
4: Sample ξ ∼ Lap(σ), γ ∼ Lap(2 · σ),

τ ∼ Lap(4 · σ).
5: if |gti(ws)− ghi (ws)| > γ + τ then
6: g̃i(ws) = gti(ws) + ξ.
7: else
8: g̃i(ws) = ghi (ws).
9: end if

10: end for
11: Return: g̃(ws) .

∑
zi∈sh ∇l(ws, zi)/|Sh|. Second, for each coordi-

nate i ∈ {1, ..., d}, DPGC validates gti(ws) with
ghi (ws) (line 5-line 8 in Algorithm 2): If their
absolute difference is beyond the threshold γ+τ ,
DPGC outputs gti(ws) with noise. Otherwise,
DPGC returns ghi (ws).

3.3 CONVERGENCE ANALYSIS
We assume that for every i-th coordinate, the
gradient function |∇il(w, z)| ≤ G for a fixed
constant G. Given an n-sample set S ∈ Zn
and a fixed w0 that is chosen independent of
the dataset S, ĝi(w0) = ∑

zj∈S ∇il(w0, zj)/n
and gi(w0) = Ez∼P [∇il(w0, zj)], by Hoeffding’s
bound, we have the concentration as

P{|ĝi(w0)− gi(w0)| > σ} 6 2 exp
(
−2nσ2

4G2

)
. (3)

In general, updating w1 through typical gra-
dient descent: w1 = w0 − ηĝ(w0), the above
concentration bound does not hold for ĝi(w1) =∑
zj∈S ∇il(w1, zj)/n, because w1 is no longer in-

dependent of dataset S. In the next lemma,
we demonstrate that w1, w2, ..., wT updated by
a differential private mechanism have similar
concentration bounds as described in Equation
3.
Lemma 1. LetM be an ε-differentially private
gradient descent algorithm and St ∼ Pn be the

training set. Let ws =M(St) be the correspond-
ing output for s ∈ 1, ..., T and ĝ(ws) be the em-
pirical gradient on St. For any σ > 0, i ∈ 1, ..., d
and s ∈ 1, ..., T , setting ε 6 σ

2G ensures

P{|ĝi(ws)− gi(ws)| > σ} 6 6
√

2 exp
(
−nσ2

4G2

)
. (4)

Lemma 1 illustrates that differential privacy en-
ables the reused training set to maintain the
statistical guarantee as a fresh set under the con-
dition that the privacy parameter ε is bounded
by the estimation error σ. Next, we analyze the
privacy parameter ε of StGD.
Lemma 2. StGD satisfies 2TG

nσ -differentially
private.

In order to achieve the gradient concentration
bound described in Lemma 1 by considering the
guarantee of Lemma 2 (i.e. to guarantee that for
every ws, we have P{|ĝi(ws) − gi(ws)| > σ} 6
6
√

2 exp(−nσ2

4G2 )), we need to set 2TG
nσ 6 σ

2G so
that we achieve ε-differential privacy for ε 6 σ

2G .
As a result, we get the upper bound of itera-
tion time T in StGD as T = σ2n

4G2 . Next theo-
rem shows that across all iterations, gradients
produced by StGD maintain high probability
concentration bounds.
Theorem 1. Given parameter σ > 0, let
w1, w2, ..., wT be the adaptively updated points
by StGD and g̃(w1), ..., g̃(wT ) be the correspond-
ing output gradient. If we set T = σ2n

4G2 , then for
all s ∈ 1, ..., T and for all t > 0, we have

P{ ‖g̃(ws)− g(ws)‖2 > d(6t+ 1)2σ2}
6 2d exp(−t) + 6

√
2d exp

(
−nσ2

4G2

)
.

(5)

Theorem 1 concludes that the gradient g̃(ws)
produced by StGD concentrates to the popula-
tion gradient g(ws) and the concentration error
is tightly around (6t + 1)2σ2. Increasing noise
parameter σ increases the privacy guarantee as
well as the total number of iterations, but also
increases the concentration error. Decreasing σ
has the opposite effect. We consider StGD in
two cases: 1) F is L-Lipschitz and α-strongly
convex; 2) F is β-smooth and α-strongly convex.
For these two cases, we present the best value
of σ for the trade-off between statistical rate4
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and optimization rate which depends on num-
ber of iterations in order to achieve the optimal
risk bound. To simplify the result, we use the
notation ρn,d = lnn+ ln d.
Theorem 2. For L-Lipschitz and α-strongly
convex function F , given 2n available samples,
set noise parameter σ2 = 4G2ρn,d/

√
n, step size

ηs = 2
α(s+1) and iteration time T = ρn,d

√
n

for StGD. Let ŵn = ∑T
s=0ws/(T + 1), StGD

achieves:

F (ŵn)− F (w?) 6 O
( ln(

√
nρn,d)√
nρn,d

)
+O

(
dρ3
n,d√
n

)
,

(6)
with probability at least 1−O(ρn,d√

n
)

The first term of the risk bound in Theorem 2 cor-
responds to typical strongly convex optimization
rate O(lnT/T ) (Bubeck [2015]) ( T = ρn,d

√
n in

our case) and is similar to the high probability
bound of SGD analyzed in Rakhlin et al. [2012].
The second term comes from the statistical er-
ror that depends on available sample size n and
dimension d.
Theorem 3. For β-smooth and α-strongly con-
vex function F , given 2n available samples, set
noise parameter σ2 = ρn,d(4G2α+β)2

nαβ , step size
η = 1

α+β and iteration time T = (κ+ 1
κ + 2)ρn,d

where κ = β/α. Let ŵn = wT be the output of
StGD, we have the following excess risk bound:

F (ŵn)−F (w?) 6 O

(
‖w1 − w?‖2

n

)
+O

(
dρ3
n,d

n

)
(7)

with probability at least 1−O
(
ρn,d
n4d3

)
.

The risk bound in Theorem 3 is also composed of
optimization term and statistical term (same for
the subsequent theorems). Factor ‖w1 − w?‖2
implies a good initial point can be beneficial.
In terms of computational complexity, StGD re-
peats O(lnn) iterations on n samples. It requires
a complexity of O(n lnn) gradient computations.

4 MINI-BATCH EXTENSIONS

In this section, we extend StGD to its mini-
batch version for large-scale machine learning
tasks. We first introduce a simple mini-batch

Algorithm 3 mini-batch SGD
1: Input: Dataset S, loss l(·), initial point w0
2: Set: Step size η, batch size m.
3: Separate S into T parts: S0, ..., ST−1 with
m samples each part.

4: for s = 0, ..., T − 1 do
5: Compute gradient ĝ(ws) on Ss
6: ws+1 = ws − ηs · ĝ(ws)
7: end for

SGD algorithm, then we present the differentially
private algorithm mini-batch StGD.
The mini-batch SGD algorithm is described in
Algorithm 3. The available set is first partitioned
into T batches withm samples each batch. Then
Algorithm 3 updates ws based on the gradient
computed on each batch. Mini-batch SGD ter-
minates after a single pass over all batches. The
following theorem analyzes the risk bound of
mini-batch SGD.
Theorem 4. Given 2n available samples,
mini-batch SGD can achieve the following:

1. F is L-Lipschitz and α-strongly con-
vex: If we set the step size ηs = 2

α(s+1) , batch
size m =

√
n and iteration time T = 2n/m,

output ŵn = ∑T
s=1ws/T of mini-batch SGD sat-

isfies:

F (ŵn)− F (w?) 6 O
(

ln(
√
n+1)√
n

)
+O

(
d ln
√
n√

n

)

(8)
with probability at least 1− d/√n.

2. F is β smooth and α-strongly convex:
If we set the step size η = 1

α+β , m = αβn
(α+β)2 lnn ,

T = 2n/m, output ŵn = wT of StGD satisfies:
F (ŵn)− F (w?) 6 O

(‖w1−w?‖2

n

)
+O

(
d ln2 n
n

)

(9)
with probability 1−O

(
lnn
n

)
.

(Frostig et al. [2015]) proposed a variant of mini-
batch SGD that also does a single pass of the
available data. For smooth and strongly convex
function, they established a convergence rate of
O(1/n) in expectation that is similar to the rate
in Theorem 4.5
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Algorithm 4 mini-batch StGD
1: Input: Dataset S, loss l(·), initial point w0
2: Set: Step size η, batch size m, inner itera-

tions T1, noise σ
3: Separate S into T parts: S0, ..., ST−1 with
m samples each part.

4: for s = 0, ..., T − 1 do
5: ws+1 = StGD(ws, Ss, η, T1, σ)
6: end for

The mini-batch version of StGD is given in Algo-
rithm 4 (mini-batch StGD) that is also a private
version of mini-batch SGD: For each batch Ss,
where s ∈ {0, ..., T − 1}, call StGD to query Ss
and update ws+1 as the initial point for next
batch Ss+1. In each call, there are T1 inner
iterations that StGD queries Ss for T1 times
through DPGD. Let w̃0 = ws as the initial point
in each call, then sub-algorithm StGD updates
w̃k+1 = w̃k + ηg̃(w̃k) for k = {0, ..., T1 − 1} and
ws+1 = w̃T1 .
Theorem 5. Given 2n available samples,
mini-batch StGD can achieve the following:

1. F is L-Lipschitz and α-strongly con-
vex: If we set the step size ηs = 2

α(s+1) , batch
size m =

√
n, T = 2n/m, noise parame-

ter σ2 = 8G2 lnn/
√
n and T1 = lnn, output

ŵn = ∑T
s=1ws/T of mini-batch StGD satisfies:

F (ŵn)− F (w?) 6 O
(

ln(
√
n+1)√

n lnn

)
+O

(
ln3 n√
n

)

(10)
with probability at least 1− d/√n.

2. F is β smooth and α-strongly convex:
If we set the step size η = 1

α+β , m = αβn
(α+β)2 lnn ,

T = 2n/m, T1 = lnn , noise parameter σ2 =
4G2(α+β)2(lnn)2

αβn , output ŵn = wT of mini-batch
StGD satisfies:

F (ŵn)− F (w?) 6 O
(‖w1−w?‖2

nlnn

)
+O

(
d ln4 n
n

)

(11)
with probability at least 1−O

(
ln2 n
n

)
.

Theorem 5 shows that, compared to the basic
mini-batch SGD (Theorem 4), the private ver-

sion improves the rate of the first term for both
types of functions.

5 EXPERIMENTS

In this section, we conduct experiments to evalu-
ate performances of the proposed algorithms on
artificial data and real world data. We divide our
experiments into three sets to address questions:
(i) How do the StGD and the mini-batch StGD
perform regarding the convergence to the pop-
ulation optimum? (ii) For small datasets, how
does StGD perform compared to SGD and GD.
(iii) For large datasets, does mini-batch StGD
outperform SGD and mini-batch SGD? After
discussing the experimental setup, we evaluate
these questions empirically in Sections 5.2, 5.3,
and 5.4 respectively.

5.1 EXPERIMENTAL SETTING

Datasets: We use both artificial datasets and
real-world datasets for our experiments. We dis-
cuss the datasets in two categories: the small
datasets (i.e., small artificial dataset, breast can-
cer, diabetes and german.numer) for StGD, SGD
and GD, and large datasets (i.e., large artifi-
cial dataset, cove type, rcv1 and real-sim) for
mini-batch StGD, SGD and mini-batch SGD.
All the real-world datasets are from LIBSVM
(Chang and Lin [2011]). The real-world datasets
are described in the Table 1. The small arti-
ficial dataset, consists of 50 features and one
label: zi = (xi, yi) ∈ R50 × {1,−1}. The large
artificial dataset consists of 500 features and
one label: zi = (xi, yi) ∈ R500 × {1,−1}. The
value of each feature is random noise, drawn
i.i.d. from normal distribution N(0, 1). To gen-
erate the label, we first set an optimal minimizer
w? ∈ R50 for small datasets and w? ∈ R500 for
large datasets. Then, we draw the label yi cor-
responding to xi from the Bernoulli distribution
yi ∼ B( 1

1+exp(−w?Txi) ,
exp(−w?Txi)

1+exp(−w?Txi)).
Evaluation Metrics: We measure the perfor-
mance of these algorithms for binary classifica-
tion problem with linear models. We focus on
the smooth and strongly convex loss function
case and define the loss function F to be the6
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Table 1: Datasets
Datasets Data size Features

breast cancer 683 10
diabetes 768 8

german.numer 1000 24
cove type 581012 54

rcv1 697641 47236
real-sim 72309 20958

logistic loss. Thus, the population risk is

F (w) = E[ln(1 + exp(−yiwTxi))]. (12)

Given a training set of instance-label pairs
{xi, yi}ni=1 the empirical risk is

F̂ (w) = 1
n

n∑

i=1
ln(1 + exp(−yiwTxi))]. (13)

The population optimum is

F (w?) = E[ln(1 + exp(−yiw?Txi))]. (14)

We use ŵn to be the output trained on n sam-
ples. We evaluate these algorithms in terms
of the excess risk F (ŵn) − F (w?) and test er-
ror rate for artificial datasets. Since we cannot
know the population optimum F (w?) out of the
expectation, we let the loss computed on a large
fresh set (2000 fresh samples for small data case,
20000 fresh samples for large data case) to rep-
resent the population risk. As for the real-world
datasets, since the population minimizer is un-
known, we evaluate these algorithms based on
the test loss and test error rate.
Setup and parameters: We set w0 = {1}d
as the initial point for artificial datasets and
w0 = {0}d for real-world datasets. As for the
step size, we use the typical η = a1/

√
n for

SGD, η = a2 for StGD, mini-batch SGD and
mini-batch StGD (which is the default setting
in our theoretical analysis) and η = a3 for GD.
The above a1, a2 and a3 are all constants and we
use grid search to find the best values of them
for different datasets. As for the iteration times,
given the training set with size n and d features,
we set 500 iterations for GD and 10∗ (lnn+ln d)
for StGD. SGD stops iteration after a single
pass over all training samples. Mini-batch StGD
has batch size n/ lnn and ln2 n iterations. Mini-
batch SGD has the same batch size, but lnn

iterations. Finally, we set the noise parameter
σ = (lnn + ln d)/n for StGD and σ = ln2 n/n
for mini-batch StGD.

5.2 EVALUATIONS OF STGD

In the first set of experiments, we validate the
theoretical promise of StGD and mini-batch
SGD on artificial datasets. To show the con-
vergence in terms of the sample size n, we
sample a series of artificial datasets with size
n ∈ {50, 100, 150, ..., 2000} and run these algo-
rithms on those datasets. To show how feature
size d influences the convergence of StGD, we
generate samples with feature size d = 100 and
d = 150 and report corresponding risks. We
repeat the experiment 50 times and report the
mean and standard deviation of the results.
We report the population risks (test loss on the
large fresh set) F (ŵn), empirical risks (train loss)
F̂ (wn), population optimum (estimated by the
large fresh set) and excess risks F (ŵn)− F (w?).
Fig. 1 (a) and Fig.1 (c) illustrate the convergence
rate of StGD and mini-batch SGD respectively.
As n increases, the population risks of StGD
and mini-batch StGD converge to population
optimum. Fig. 1 (b) and (d) show how the
feature size d influences the convergence rate.
Larger d implies a slower convergence rate.

5.3 COMPARISON of STGD, SGD
AND GD

In the second set of experiments, we compare
StGD, SGD and GD on small datasets in terms
of excess risk/test loss and test error rate. For
the real-world datasets, we first sample 20% data
points from the whole datasets to be the test set,
and let the remaining samples to be the train
set. Afterwards, we sample a series of datasets
with size n ∈ {10, 20, ..., 250} (for diabetes and
breast cancer) and n ∈ {20, 40, ..., 400} (for ger-
man.numer) from the remaining train set and
run these algorithms on those datasets. The
artificial data split is the same as the first set
experiment. Given each n, we train the model
and report the loss and error rate on the test
set. We repeat the above procedure 10 times
and report the mean and standard deviation of7
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(a) (b) (c) (d)
Figure 1: The StGD and mini-batch StGD on artificial data. (a) The risks of StGD. (b) The excess risks of StGD with
different data dimension d. (c) The risks of mini-batch StGD. (d) The excess risks of mini-batch StGD with different data
dimension d. The X-axis is the number of samples, and the Y-axis is the Risk/Loss.

Figure 2: Compare the StGD, SGD and GD on both artificial datasets and small real-world datasets. The X-axis and the
Y-axis refer to Fig. 1. The excess risk of StGD converges as fast as GD on artificial dataset. The StGD outperforms GD
and SGD in terms of the test loss on real-world datasets.

Figure 3: Compare the StGD, SGD and GD on both artificial dataset and small real-world datasets. The X-axis and
the Y-axis refer to Fig. 1. The StGD outperforms GD and SGD in terms of the test error rate on artificial dataset and
real-world datasets.

Figure 4: Compare the mini-batch StGD, SGD and mini-batch SGD on both artificial dataset and large real-world datasets.
The X-axis and the Y-axis refer to Fig. 1. The excess risk of mini-batch StGD converges as fast as GD on artificial dataset.
The mini-batch StGD outperforms SGD and mini-batch SGD in terms of the test loss on real-world datasets.

the results.
Fig. 2 presents the excess risks and test losses
on four small datasets of the three algorithms
and Fig. 3 compares the test error rates. For
artificial datasets, StGD performs nearly the

same as GD in terms of the excess risks and
test error rates. For diabetes, breast cancer
and german.numer, StGD converges better than
GD. In terms of the variance, these three algo-
rithms perform more variance on real-world data

8
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Figure 5: Compare the mini-batch StGD, SGD and mini-batch SGD on both artificial dataset and large real-world datasets.
The X-axis and the Y-axis refer to Fig. 1. The test error rate of mini-batch StGD converges as fast as GD on artificial
dataset. The mini-batch StGD outperforms SGD and mini-batch SGD in terms of the test error rate on real-world datasets.

than artificial data. The variance of the losses
and error rates from repeated runs come form
the training data and the algorithm themselves.
The noise amount in StGD and the size of the
training sample play an important role in vari-
ances. Repeating training the models with small
dataset brings out large variance. Fig. 2 and
Fig. 3 show that the variances decrease as the
sample size increases.

5.4 COMPARISON of MINI-BATCH
SGD, MINI-BATCH STGD AND
SGD

In the third set of experiments, we com-
pare mini-batch StGD, mini-batch SGD and
SGD on large datasets. For the real-world
datasets, the train and test data split is the
same as the second set experiment. From
the train set, we sample a series of datasets
with size n ∈ {100, 300, ..., 50000} for artifi-
cial data, n ∈ {100, 200, ..., 20000} for cove
type, n ∈ {100, 500, ..., 100000} for rcv1 and
n ∈ {100, 500, ..., 70000} for real-sim. Given
each n, we train the model and report the loss
and error rate on the test set. We repeat the
above procedure 10 times and report the mean
and standard deviation of the results.
The excess risks on artificial dataset and the test
losses on real-world datasets are shown in Fig. 4
and the test error rates is given in Fig. 5. The re-
sults show mini-batch StGD achieves the lowest
test loss and test error rate for four datasets and
lowest variance for cover type (three algorithms
perform low variance in the other three datasets).
Compared to training with small datasets (Fig.2
and Fig. 3), we observe less variance with large

datasets.

6 CONCLUSION

In this paper, we study the optimization prob-
lems in machine learning. Considering the dif-
ficulty of obtaining new samples for gradient
descent to approximate population gradient, we
propose a stable gradient descent algorithm
based on adaptive data analysis and differen-
tial privacy. We demonstrate StGD works as a
basic gradient descent which has access to fresh
sample at each iteration. Furthermore, we the-
oretically analyze that the proposed algorithm
converges fast to the population optimum with
high probability. Finally, we compare the pro-
posed algorithm with existing methods in exper-
iments. The empirical evaluation illustrate the
promise of the proposed algorithm and demon-
strated it outperforms existing methods.
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Abstract

The efficient use of limited computational re-
sources is an essential ingredient of intel-
ligence. Selecting computations optimally
according to rational metareasoning would
achieve this, but this is computationally in-
tractable. Inspired by psychology and neu-
roscience, we propose the first concrete and
domain-general learning algorithm for approx-
imating the optimal selection of computations:
Bayesian metalevel policy search (BMPS). We
derive this general, sample-efficient search al-
gorithm for a computation-selecting metalevel
policy based on the insight that the value of
information lies between the myopic value
of information and the value of perfect in-
formation. We evaluate BMPS on three in-
creasingly difficult metareasoning problems:
when to terminate computation, how to allo-
cate computation between competing options,
and planning. Across all three domains, BMPS
achieved near-optimal performance and com-
pared favorably to previously proposed metar-
easoning heuristics. Finally, we demonstrate
the practical utility of BMPS in an emergency
management scenario, even accounting for the
overhead of metareasoning.

1 INTRODUCTION

The human brain is the best example of an intelligent
system we have so far. One feature that sets it apart from
current AI is the remarkable computational efficiency
that enables people to effortlessly solve hard problems
for which artificial intelligence either under-performs
humans or requires superhuman computing power and
training time. For instance, to defeat Garry Kasparov

3.5–2.5, Deep Blue had to evaluate 200 000 000 posi-
tions per second, whereas Kasparov was able to per-
form at almost the same level by evaluating only 3 posi-
tions per second (Campbell, Hoane, & Hsu, 2002; IBM
Research, 1997). This ability to make efficient use of
limited computational resources is the essence of intel-
ligence (Russell & Wefald, 1991a). People accomplish
this feat by being very selective about when to think and
what to think about, choosing computations adaptively
and terminating deliberation when its expected benefit
falls below its cost (Gershman, Horvitz, & Tenenbaum,
2015; Lieder & Griffiths, 2017; Payne, Bettman, & John-
son, 1988).

Rational metareasoning was introduced to recreate
such intelligent control over computation in machines
(Horvitz, Cooper, & Heckerman, 1989; Russell & We-
fald, 1991b; Hay, Russell, Tolpin, & Shimony, 2012).
In principle, rational metareasoning can be used to al-
ways select those computations that make optimal use
of the agent’s finite computational resources. However,
its computational complexity is prohibitive (Hay et al.,
2012). The human mind circumvents this computational
challenge by learning to select computations through
metacognitive reinforcement learning (Krueger, Lieder,
& Griffiths, 2017; Lieder & Griffiths, 2017; Wang et al.,
2017). Concretely, people appear to learn to predict the
value of alternative cognitive operations from features
of the task, their current belief state, and the cognitive
operations themselves. If humans learn to metareason
through metacognitive reinforcement learning, then it
should be possible to build intelligent systems that learn
to metareason as efficiently as people.

In this paper, we introduce Bayesian metalevel policy
search (BMPS), the first domain-general algorithm for
learning how to metareason, and evaluate it against exist-
ing methods for approximate metareasoning on three in-
creasingly more complex toy problems. Finally, we show
that our method makes metareasoning efficient enough to
offset its cost in a more realistic emergency management
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scenario. In this problem, which we use as a running ex-
ample, an emergency manager must decide which cities
to evacuate in the face of an approaching tornado. She
bases her decision on a series of computationally inten-
sive simulations that noisily estimate the impact of the
tornado on each city. Because time is short, she is forced
to decide which simulations are the most important to
run. In the following section, we discuss how to formal-
ize this problem as a sequential decision process.

2 BACKGROUND

2.1 METAREASONING

If reasoning seeks an answer to the question “what
should I do?”, metareasoning seeks to answer the ques-
tion “how should I decide what to do?”. The theory of ra-
tional metareasoning (Russell & Wefald, 1991b; Russell
& Subramanian, 1995) frames this problem as selecting
computations so as to maximize the sum of the rewards
of resulting decisions minus the costs of the computa-
tions involved. Concretely, one can formalize reason-
ing as a metalevel Markov decision process (metalevel
MDP) and metareasoning as solving that MDP (Hay et
al., 2012). While traditional (object-level) MDPs de-
scribe the objects of reasoning—the state of the external
environment and how it is affected by physical actions—
a metalevel MDP describes reasoning itself. Formally,
a metalevel MDP Mmeta = (B,A, T meta, rmeta) is an
MDP where the states B encode the agent’s beliefs, the
actions A are computations, the transition function Tmeta
describes how computations update beliefs, and the re-
ward function rmeta describes the costs and benefits of
computation. A definition table for our notation is in-
cluded in the Supplementary Material.

A belief state b ∈ B encodes a probability distribution
over parameters θ of a model of the domain. For ex-
ample, in the tornado problem described in the introduc-
tion, θ could be a vector of k probabilities that each of
the k cities will incur evacuation-warranting damage; b
would thus encode k distributions over [0, 1], e.g. k Beta
distributions. The parameters θ determine the utility of
acting according to a policy π, that is Uπ(θ). For one-
shot decisions, Uπ(θ) is the expected reward of taking
the single action identified with π. In the tornado prob-
lem, for example, π can be represented as a binary vector
of length k indicating whether each city should be evac-
uated, and Uπ(θ) is the cost of making the evacuations
plus the expected cost of failing to evacuate cities that
incur major damage. In sequential decision-problems,
Uπ(θ) = V

(θ)
π (s) is the expected sum of rewards the

agent will obtain by acting according to policy π if the
environment has the characteristics encoded by θ.

A includes computations C that update the belief, as well
as a special metalevel action ⊥ that terminates delibera-
tion and initiates acting on the current belief. The effects
of computations are encoded by Tmeta : B × A × B →
[0, 1] analogously to a standard transition function. The
termination action always leads to a unique end state.

The metalevel reward function rmeta captures the cost
of thinking (Shugan, 1980) and the external reward the
agent expects to receive from the environment. The com-
putations C have no external effects and thus always in-
cur a negative reward rmeta(b, c) = −cost(c). In the
problems studied below, all computations that deliber-
ate have the same cost, that is cost(c) = λ for all c ∈ C
whereas cost(⊥) = 0. An external reward is received
only when the agent terminates deliberation and makes a
decision, which is assumed to be optimal given the cur-
rent belief. The metalevel reward for terminating is thus
rmeta(b,⊥) = maxπ Eθ∼b[Uπ(θ)].1

Early work on rational metareasoning (Russell & We-
fald, 1991b) defined the optimal way to select computa-
tions as maximizing the value of computation (VOC):

π∗meta = argmax
c

VOC(c, b), (1)

where VOC(c, b) is the expected improvement in deci-
sion quality that can be achieved by performing compu-
tation c in belief state b and continuing optimally, mi-
nus the cost of the optimal sequence of computations
(Russell & Wefald, 1991b). When no computation has
positive value, the policy terminates computation and ex-
ecutes the best object-level action, thus VOC(⊥, b) = 0.

2.2 APPROXIMATE METAREASONING

Previous work (Russell & Wefald, 1991b; Lin,
Kolobov, Kamar, & Horvitz, 2015) has approx-
imated rational metareasoning by the meta-greedy
policy argmaxc VOC1(c, b) where VOC1(c, b) =
EB′∼Tmeta(b,c,·) [rmeta(B

′,⊥)]− rmeta(b,⊥)+ rmeta(b, c),
is the myopic value of computation (Russell & Wefald,
1991b). The meta-greedy policy selects each computa-
tion assuming that it will be the last computation. This
policy is optimal when computation provides diminish-
ing returns (i.e. the improvement from each additional
computation is less than that from the previous one), but
it deliberates too little when this assumption is violated.
For example, in the tornado problem (where false nega-
tives have high cost), a single simulation may be unable
to ensure that evacuation is unnecessary with sufficient
confidence, while two or more could.

1If the agent’s model is unbiased, this reward has the same
expectation but lower variance than the true external reward.

777



Hay et al. (2012) approximated rational metareasoning
by combining the solutions to smaller metalevel MDPs
that formalize the problem of deciding how to decide
between one object-level action and the expected re-
turn of its best alternative. Each of these smaller met-
alevel MDPs includes only the computations for rea-
soning about the expected return of the corresponding
object-level action. While this blinkered approximation
is more accurate than the meta-greedy policy, it is also
significantly less scalable and not directly applicable to
metareasoning about planning.

These are the main approximations to rational metarea-
soning. So, to date, there appears to be no accurate and
scalable method for solving general metalevel MDPs.

2.3 METACOGNITIVE RL

It has been proposed that metareasoning can be made
tractable by learning an approximation to the value of
computation (Russell & Wefald, 1991b). However, de-
spite some preliminary steps in this direction (Harada
& Russell, 1998; Lieder et al., 2014; Lieder, Krueger,
& Griffiths, 2017) and related work on meta-learning
(Smith-Miles, 2009; Thornton, Hutter, Hoos, & Leyton-
Brown, 2013; Wang et al., 2017), learning to approx-
imate bounded optimal information processing remains
an unsolved problem in artificial intelligence.

Previous research in cognitive science suggests that peo-
ple circumvent the intractability of metareasoning by
learning a metalevel policy from experience (Lieder &
Griffiths, 2017; Cushman & Morris, 2015; Krueger et al.,
2017). At least in some cases, the underlying mechanism
appears to be model-free reinforcement learning (RL)
(Cushman & Morris, 2015; Krueger et al., 2017). This
suggests that model-free reinforcement learning might
be a promising approach to solving metalevel MDPs.
To our knowledge, this approach is yet to be explored
in artificial intelligence. Here, we present a proof-
of-concept that near-optimal metalevel policies can be
learned through metacognitive reinforcement learning.

3 BAYESIAN METALEVEL POLICY
SEARCH

According to rational metareasoning, an optimal met-
alevel policy is one that maximizes the VOC (Equa-
tion 1). Although the VOC is intractable to compute, it
can bounded. Bayesian metalevel policy search (BMPS)
capitalizes on these bounds to dramatically reduce the
difficulty of learning near-optimal metalevel policies.
Figure 1 illustrates that if the expected decision quality
improves monotonically with the number of computa-

tions, then the improvement achieved by the optimal se-
quence of computations should lie between the benefit of
deciding immediately after the first computation and the
benefit of obtaining perfect information (Howard, 1966).
The former is given by the myopic value of information,2

(2)VOI1(c, b) = EB′∼Tmeta(b,c,·) [U (B′)]− U (b) .

and the latter is given by the value of perfect information,

(3)VPI(b) = Eθ∗∼b [U (B∗ (·; θ∗))]− U (b) ,

where U(b) = rmeta(b,⊥) is shorthand for the expected
value of terminating computation and B∗(θ; θ∗) =
δ(θi − θ∗i ) is the belief state with perfect knowledge of
the true environment parameters θ∗.

In problems with many parameters, this upper bound can
be very loose because the optimal metalevel policy might
reason only about a small subset of relevant parame-
ters. To capture this, we introduce an additional fea-
ture VPIsub(c, b) that measures how beneficial it would
be to have full information about a subset of the parame-
ters that are most relevant to the given computation. We
model relevance with a function f(c, i) that returns 1 if
θi is relevant to what c is reasoning about and 0 other-
wise. Using this relevance function, we define the value
of gaining perfect information about the relevant subset
of parameters as

(4)VPIsub(c, b) = Eθ∗∼b [U(B′sub(·; c, b, θ∗))]− U(b),

2The VOI1 defined here is equal to the myopic VOC defined
by Russell and Wefald (1991) plus the cost of the computation.
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Figure 1: Expected performance in metareasoning about
how to choose between three actions increases monoton-
ically with the number of computations, asymptoting at
the value of perfect information (VPI). Consequently, the
value of executing a single computation must lie between
the myopic value of information (VOI1) and the VPI.
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with

B′sub(θ; c, b, θ
∗) =

k∏

i

B∗(θi; θ
∗)f(c,i) · b(θi)1−f(c,i),

where k is the number of parameters in the agent’s
model of the environment. In the tornado problem, for
example, each simulation is informative about a sin-
gle parameter (the probability that the target city will
sustain evacuation-warranting damage); thus, we define
f(cj , i) = 1(j = i). In the general case, the relevance
function is a design choice that affords an easy oppor-
tunity to imbue BMPS with domain knowledge. In the
simulations reported below, the relevance function asso-
ciates each c with the set of parameters that inform the
value of the actions (or, in the case of planning, options)
that c reasons about.

Critically, all three VOI features can be computed ef-
ficiently or can be efficiently approximated by Monte-
Carlo integration (Hammersley, 2013). BMPS thus ap-
proximates the VOC by a mixture of VOI features and an
estimate of the cost of future computations

(5)ˆVOC(c, b;w) = w1 · VOI1(c, b) + w2 · VPI(b)
+w3 ·VPIsub(c, b)−w4 · cost(c),

with the constraints that w1, w2, w3 ∈ [0, 1], w1 + w2 +
w3 = 1, and w4 ∈ [1, h] where h is an upper bound
on how many computations can be performed. Since
the VOC defines the optimal metalevel policy (Equa-
tion 1), we can define an approximately optimal policy,
πmeta(b;w) = argmaxc ˆVOC(c, b;w).

The parameters w of this policy are opti-
mized by maximizing the expected return
E [
∑
t rmeta(bt, πmeta(bt;w))], i.e. direct policy search.

Because there are only three free parameters with the
summation constraint, we propose using Bayesian
optimization (BO) (Mockus, 2012) to optimize the
weights in a sample efficient manner.

The novelty of BMPS lies in leveraging machine learn-
ing to approximate the solution to metalevel MDPs and
in the discovery of features that make this tractable. As
far as we know, BMPS is the first general approach to
metacognitive RL. In the following sections, we validate
the assumptions of BMPS, evaluate its performance on
increasingly complex metareasoning problems, compare
it to existing methods, and discuss potential applications.

4 EVALUATIONS OF BMPS

We evaluate how accurately BMPS can approxi-
mate rational metareasoning against two state-of-the-

art approximations—the meta-greedy policy and the
blinkered approximation—on three increasingly difficult
metareasoning problems.

4.1 WHEN TO STOP DELIBERATING?

How long should an agent deliberate before answering a
question? Our evaluation mimics this problem for a bi-
nary prediction task (e.g., “Will the price of the stock go
up or down?”). Every deliberation incurs a cost and pro-
vides probabilistic evidence Xt ∼ Bernoulli(θ) in favor
of one outcome or the other. At any point the agent can
stop deliberating and predict the outcome supported by
previous deliberations. The agent receives a reward of
+1 if its prediction is correct, or incurs a loss of −1 if it
is incorrect. The goal is to maximize the expected reward
of this one prediction minus the cost of computation.

4.1.1 Metalevel MDP

We formalize the problem of deciding when
to stop thinking as a metalevel MDP Mmeta =
(B,A, Tmeta, rmeta) where each belief state (α, β) ∈ B
defines a beta distribution over the probability θ of the
first outcome. The metalevel actions A are {c1,⊥}
where c1 refines the belief by sampling, and ⊥ termi-
nates deliberation and predicts the outcome that is most
likely according to the current belief. The transition
probabilities for sampling are defined by the agent’s be-
lief state, that is Tmeta((α, β), c1, (α+1, β)) = α

α+β and

Tmeta((α, β), c1, (α, β+1)) = β
α+β . The reward function

rmeta reflects the cost of computation, rmeta(b, c1) = −λ,
and the probability of making the correct prediction,
rmeta(b,⊥) = +1 · pcorrect(α, β)− 1 · (1− pcorrect(α, β)),
where pcorrect(α, β) = max{ α

α+β ,
β

α+β }). We set the
horizon to h = 30, meaning that the agent can perform
at most 29 computations before making a prediction (the
30th metalevel action must be ⊥).

Since there is only one parameter (θ has length one), the
VPIsub feature is identical with the VPI feature; thus, we
exclude it. For the same reason, the blinkered approxi-
mation is equivalent to solving the problem exactly, and
we exclude it from the comparison.

4.1.2 Evaluation procedure

We evaluated the potential of BMPS in two steps:
First, we performed a regression analysis to evaluate
whether the proposed features are sufficient to capture
the value of computation, computed exactly by back-
ward induction (Puterman, 2014). Second, we tested
whether a near-optimal metalevel policy can be learned
by Bayesian optimization of the weights of the metalevel
policy. We ran 500 iterations of optimization, estimating
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Figure 2: Results of performance evaluation on the prob-
lem of metareasoning about when to stop deliberating.

the expected return of the policy entailed by the probed
weight vector by its average return across 2500 episodes.
The performance of the learned policy was evaluated on
an independent test set of 3000 episodes.

4.1.3 Results

First, linear regression analyses confirmed that the three
features (VOI1(c, b), VPI(c, b), and cost(c)) are suffi-
cient to capture between 90.8% and 100.0% of the vari-
ance in the value of computation for performing a sim-
ulation (VOC(b, c1)) across different states b, depending
on the cost of computation. Concretely, as the cost of
computation increased from 0.001 to 0.1 the regression
weights shifted from 0.76 ·VPI+0.46 ·VOI1−4.5 · cost
to 0.00 · VPI + 1.00 · VOI1 − 1.00 · cost and the ex-
plained variance increased from 90.8% to 100.0%. The
explained variance and the weights remained the same
for costs greater than 0.1. Supplementary Figure 1 illus-
trates this fit for λ = 0.02.

Second, we found that the VOI1 and the VPI features
are sufficient to learn a near-optimal metalevel policy.
As shown in Figure 2, the performance of BMPS was
at most 5.19% lower than the performance of the opti-
mal metalevel policy across all costs. The difference in
performance was largest for the lowest cost λ = 0.001
(t(2999) = 3.75, p = 0.0002) and decreased with in-
creasing cost so that there was no statistically signifi-
cant performance difference between BMPS and the op-
timal metalevel policy for costs greater than λ = 0.0025
(all p > 0.15). BMPS performed between 6.78% and
35.8% better than the meta-greedy policy across all costs
where the optimal policy made more than one obser-
vation (all p < 0.0001) and 20.3% better on average
(t(44999) = 42.4, p < 10−15).

4.2 META-DECISION-MAKING

How should an agent allocate its limited decision-time
across estimating the expected utilities of multiple al-
ternatives? To evaluate how well BMPS can solve this
kind of problem, we evaluate it on the Bernoulli met-
alevel probability model introduced by Hay et al. (2012).
This problem is similar to the standard multi-armed ban-
dit problem with one critical difference: Only the re-
ward from the final pull counts—the previous ”simu-
lated” pulls provide information, but no reward. Like
the first problem, the agent takes a single object-level
action, choosing arm i and receiving reward r(s, ai) ∼
Bernoulli(θi). Unlike the first problem, however, the
agent must track multiple environment parameters and
select among competing computations.

4.2.1 Metalevel MDP

The Bernoulli metalevel probability model is a metalevel
MDP Mmeta = (B,A, Tmeta, rmeta, h) where each be-
lief state b defines k Beta distributions over the reward
probabilities θ1, · · · , θk of the k possible actions. Thus
b can be represented by ((α1, β1), . . . , (αk, βk)) where
b(θi) = Beta(θi;αi, βi). For the initial belief state b0,
these parameters are αi = βi = 1. The metalevel ac-
tions A are {c1, . . . , ck,⊥} where ci simulates action
ai and ⊥ terminates deliberation and executes the ac-
tion with the highest expected return. The metalevel
transition function Tmeta encodes that performing com-
putation ci increments αi with probability αi

αi+βi
and in-

crements βi with probability βi
αi+βi

. The metalevel re-
ward function rmeta(b, c) is −λ for c ∈ {c1, · · · , ck} and
rmeta(b,⊥) = maxi

αi
αi+βi

. Finally, the horizon h is the
maximum number of metalevel actions that can be per-
formed and the last metalevel action must be ⊥.

4.2.2 Evaluation procedure

We evaluated BMPS on Bernoulli metalevel probabil-
ity problems with k ∈ {2, · · · , 5} object-level actions, a
horizon of h = 25, and computational costs ranging from
10−4 to 10−1. We compared the policy learned by BMPS
with the optimal metalevel policy and three alternative
approximations: the meta-greedy heuristic (Russell &
Wefald, 1991b), the blinkered approximation (Hay et al.,
2012), and the metalevel policy that always deliberates as
much as possible. In addition to these, we also trained a
Deep-Q-Network (DQN) (Mnih et al., 2015) on the met-
alevel MDP to compare the performance of our method
to baselines achieved by off-the-shelf deep RL methods
(Dhariwal et al., 2017).

We trained BMPS as described above, but with 10 iter-
ations of 1000 episodes each. To combat the possibil-
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ity of overfitting, we evaluated the average returns of the
five best weight vectors over 5000 more episodes and se-
lected the one that performed best. The relevance func-
tion for VPIsub matches each computation with the single
parameter it is informative about, i.e., f(cj , i) = 1(j =
i). The optimal metalevel policy and the blinkered pol-
icy were computed using backward induction (Puterman,
2014). The DQN was trained for 5, 000, 000 steps. Since
the episodes have a horizon of h = 25, this resulted in
more than 200, 000 training episodes for the DQN. We
evaluated the performance of each policy by its average
return across 2000 test episodes for each combination of
computational cost and number of object-level actions.

4.2.3 Results

We found that the BMPS policy attained 99.1% of op-
timal performance (0.6535 vs. 0.6596, t(1998) =
−7.43, p < 0.0001) and significantly outperformed
the meta-greedy heuristic (0.60, t(1998) = 83.9, p <
10−15), the full-deliberation policy (0.20, t(1998) =
469.1, p < 10−15), and the DQN (0.58, t(1998) =
79.2, p < 10−15). The performance of BMPS (0.6535)
and the blinkered approximation (0.6559) differed by
only 0.37%.

Figure 3a shows the methods’ average performance as
a function of the cost of computation. BMPS outper-
formed the meta-greedy heuristic for costs smaller than
0.03 (all p < 10−15), the full-deliberation policy for
costs greater than 0.0003 (all p < 0.005), and the DQN
for all costs (all p < 10−15). For costs below 0.0003, the
blinkered policy performed slightly better than BMPS
(all p < 0.01). For all other costs both methods per-
formed at the same level (all p > 0.1). For costs above
0.01, performance of BMPS becomes indistinguishable
from the optimal policy’s performance (all p > 0.1).

Figure 3b shows the metareasoning performance of each
method as a function of the number of options. We found
that the performance of BMPS scaled well with the size
of the decision problem. For each number of options, the
relative performance of the different methods was con-
sistent with the results reported above.

Finally, as illustrated in Supplementary Figure 2, we
found that BMPS learned surprisingly quickly, usually
discovering near-optimal policies in less than 10 itera-
tions. In particular, BMPS was able to perform signif-
icantly better than the DQN, despite being trained on
fewer than 20% as many episodes. This demonstrates
the value of the proposed VOI features, which dramat-
ically constrain the space of possible metalevel policies
to be considered.

4.3 METAREASONING ABOUT PLANNING

Having evaluated BMPS on problems of metareasoning
about how to make a one-shot decision, we now evalu-
ate its performance at deciding how to plan. To do so,
we define the Bernoulli metalevel tree, which general-
izes the Bernoulli metalevel probability model by replac-
ing the one-shot decision between k options by a tree-
structured sequential decision problem that we will re-
fer to as the object-level MDP. The transitions of the
object-level MDP are deterministic and known to the
agent. The reward associated with each of k = 2h+1 − 1
states in the tree is deterministic, but initially unknown;
r(s, a, si) = θi ∈ {−1, 1}. The agent can uncover these
rewards through reasoning at a cost of −λ per reward.
When the agent terminates deliberation, it executes a pol-
icy with maximal expected utilty. Unlike in the previous
domains, this policy entails a sequence of actions rather
than a single action.

4.3.1 Metalevel MDP

The Bernoulli metalevel tree is a metalevel MDP
Mmeta = (B,A, Tmeta, rmeta) where each belief state b
encodes one Bernoulli distribution for each transition’s
reward. Thus, b can be represented as (p1, · · · , pi) such
that b(θi = 1) = pi and b(θi = −1) = 1 − pi. The
initial belief b0 has pi = 0.5 for all i. The metalevel
actions are defined A = {c1, · · · , ck,⊥} where ci re-
veals the reward at state si and ⊥ selects the path with
highest expected sum of rewards according to the cur-
rent belief state. The transition function Tmeta encodes
that performing computation ci sets pi to 1 or 0 with
equal probability (unless pi has already been updated, in
which case ci has no effect). The metalevel reward func-
tion is defined rmeta(b, c) = −λ for c ∈ {c1, · · · , ck},
and rmeta(b,⊥) = maxt∈T

∑
i∈tE[θi | pi] where T is

the set of possible trajectories t through the environment,
and E[θi | pi] = 2pi − 1 is the expected reward attained
at state si.

4.3.3 Evaluation procedure

We evaluated each method’s performance by its aver-
age return over 5000 episodes for each combination of
tree-height h ∈ {2, · · · , 6} and computational cost λ ∈
{2−7, · · · , 20}. To facilitate comparisons across plan-
ning problems with different numbers of steps, we mea-
sured the performance of metalevel policies by their ex-
pected return divided by the tree-height.

We trained the BMPS policy with 100 iterations of 1000
episodes each. To combat the possibility of overfit-
ting, we evaluated the average returns of the three best
weight vectors over 2000 more episodes and selected
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Figure 3: Metareasoning performance of alternative methods on the Bernoulli metalevel probability model (a) as a
function of the cost of computation and (b) as a function of the number of actions. Metareasoning performance is
defined as the expected reward for the chosen option minus the computational cost of the decision process. Error bars
enclose 95% confidence intervals.

the one that performed best. The relevance function
for VPIsub maps a computation to all the parameters
that affect the value of any policy that the initial com-
putation is informative about, i.e. f(cj , i) = 1(i ∈
{j} ∪ descendents(j) ∪ ancestors(j))

For metareasoning about how to plan in trees of height
2 and 3, we were able to compute the optimal met-
alevel policy using dynamic programming. But for larger
trees, computing the optimal metalevel policy would
have taken significantly longer than 6 hours and was
therefore not undertaken.

The blinkered policy of Hay et al. (2012) is not directly
applicable to planning because of its assumption of “in-
dependent actions” which is violated in the Bernoulli
metalevel tree. Briefly, the assumption is violated be-
cause the reward at a given state affects the value of mul-
tiple policies. Thus, we derived a recursive generaliza-
tion of the blinkered policy to compare with our method.
See the Supporting Materials for details.

4.3.4 Results

We first compared BMPS with the optimal policy for
h ∈ {2, 3}, finding that it attained 98.4% of op-
timal performance (0.367 vs. 0.373, t(159998) =
−2.87, p < 10−15). Metareasoning performance dif-
fered significantly across the four methods we evaluated
(F (3, 799840) = 4625010; p < 10−15), and the mag-
nitude of this effect depends on the height of the tree
(F (12, 799840) = 1110179, p < 10−15) and the cost of
computation (F (21, 799840) = 1266582, p < 10−15).

Across all heights and costs, BMPS achieved a metarea-

soning performance of 0.392 units of reward per object-
level action, thereby outperforming the meta-greedy
heuristic (0.307, t(399998) = 72.84, p < 10−15),
the recursively blinkered policy (0.368, t(399998) =
20.77, p < 10−15), and the full-deliberation policy
(−1.740, t(399998) = 231.18, p < 10−15).

As shown in Figure 4a, BMPS performed near-optimally
across all computational costs, and its advantage over the
meta-greedy heuristic and the tree-blinkered approxima-
tion was largest when the cost of computation was low,
whereas its benefit over the full-deliberation policy in-
creased with the cost of computation.

Figure 4b shows that the performance of BMPS scaled
very well with the size of the planning problem, and that
its advantage over the meta-greedy heuristic increased
with the height of the tree.

5 IS METAREASONING USEFUL?

The costs of metareasoning often outweigh the result-
ing improvements in object-level reasoning. But here we
show that the benefits of BMPS outweigh its costs in a
potential application to emergency management.

During severe weather, important decisions—such as
which cities to evacuate in the face of an approaching
tornado—must be based on a limited number of compu-
tationally intense weather simulations that estimate the
probability that a city will be severely hit (Baumgart,
Bass, Philips, & Kloesel, 2008). Based on these simu-
lations, an emergency manager makes evacuation deci-
sions so as to minimize the risk of false positive errors
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Figure 4: Metareasoning performance of alternative methods on the Bernoulli tree (a) as a function of computational
cost (with tree-height 3) and (b) as a function of the number of actions (marginalizing over computational costs
between 10−4 and 10−1). Metareasoning performance is normalized by tree height to facilitate comparison. In (b),
the optimal policy is only shown for heights at which it can be computed in under six hours and the full observation
policy is not shown because its performance is negative for all heights. Error bars enclose 95% confidence intervals.

(evacuating cities that are safe) and false negative errors
(failing to evacuate a city the tornado hits). We assume
that the manager has access to a single supercomputer,
but pays no cost for running each simulation. Thus, the
manager has a fixed budget of simulations and her goal
is to maximize the expected utility of the final decision.

5.1 METHODS

We model the above scenario as follows: There is a fi-
nite amount of time T until evacuation decisions about
k cities have to be made. For each city i, the emer-
gency manager can run a fine grained, stochastic simu-
lation (ci) of how it will be impacted by the approaching
tornado. Each simulation yields a binary outcome, in-
dicating whether the simulated impact would warrant an
evacuation or not. The belief state b and transition func-
tion Tmeta of the corresponding metalevel MDP are the
same as in the Bernoulli metalevel probability model:
Each belief state defines k Beta distributions that track
the probability that the tornado will cause evacuation-
warranting damage in each city. The parameters αi and
βi correspond to the number of simulations predicting
that the tornado {would — would not} be strong enough
to warrant an evacuation of city i. Prior to the first sim-
ulation, the parameters for each city i are initialized as
αi = 0.1 and βi = 0.9 to capture the prior knowledge
that evacuations are rarely necessary. The primary for-
mal difference from the Bernoulli metalevel probability
model lies in how the final belief state is translated into
a decision and reward. Rather than choosing a single
option, the agent must make k independent binary deci-

sions about whether to evacuate each city. Evacuation
has a cost, λevac = −1, but failing to evacuate a heavily-
hit city has a much larger cost, λfn = −20. Thus, the
metalevel reward function is

rmeta(b,⊥) =
∑

1≤i≤k
max

{
αi

αi + βi
· λfn, λevac

}
. (6)

In contrast to the previous simulations, we now explicitly
consider the cost of metareasoning. The decision time T
has to be allocated between reasoning about the cities
and metareasoning about which city to reason about so
that T = nsim · (tMR + tsim), where nsim is the number
of simulations run, tMR is the amount of time it takes to
choose one simulation to run (i.e. by metareasoning),
and tsim is the amount of time it takes to run one simula-
tion. Thus, for given values of tMR and tsim the number of
simulations that can be performed is nsim =

⌊
T

tMR+tsim

⌋
,

where bxc rounds x down to the closest integer. Note that
metalevel policy is computed offline, and thus training
time does not factor into the above equation. The simula-
tions reported below use a single BMPS policy optimized
for k = 20 and nsim = 50 to mimic the reuse of pre-
computed weights in practical applications; the weights
are relatively insensitive to these parameters.

To assess if BMPS could be useful in practice, we com-
pare the utility of evacuation decisions made by its met-
alevel policy to those made by a baseline metalevel pol-
icy that uniformly distributes simulations across the k
cities. Since the BMPS policy has tMR > 0 while the
baseline policy has tMR ≈ 0, BMPS will typically run
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fewer simulations and must make up for this by choos-
ing more valuable ones.

5.2 RESULTS

We evaluated the BMPS policy and the uniform compu-
tation policy on the tornado problem with T = 24 hours,
k ∈ {10, 30} cities, and a range of plausible values for
the duration of each weather simulation (tsim ∈ [2−2, 24]
hours). For each policy and parameter setting we esti-
mate utility as the mean return over 5000 rollouts.

Empirically, we found that tMR ≈ 1 ms for k = 10 and
tMR ≈ 3 ms for k = 30. Thus, even with a conservative
estimate of tMR = 0.001 hours, metareasoning would
cost at most one simulation. Consequently, in our simu-
lations, diverting some of the computational resources to
metareasoning was advantageous regardless of how long
exactly a tornado simulation might take and the number
of cities being considered. As Figure 5 shows, the benefit
of metareasoning was larger for the more complex prob-
lem with more cities and peaked for an intermediate cost
of object-level reasoning.

While this is a hypothetical scenario, it suggests that
BMPS could be useful for practical applications. Specif-
ically, we suggest that the method will be most valu-
able when a metareasoning problem must be faced mul-
tiple times (so that the cost of training BMPS offline can
be amortized) and object-level computations are expen-
sive (so that the resulting savings in object-level reason-
ing outweigh the online cost of computing the features
used for metareasoning). In follow-up simulations, we
explored conditions in which the cost of metareasoning
causes a substantial reduction in the number of simula-
tions that can be run. We found that metareasoning con-
tinues to be useful as long as object-level computation
is substantially more expensive than metareasoning (see
Supplementary Material).
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Figure 5: Benefit of metareasoning in the tornado evacu-
ation scenario depending on the duration of each simula-
tion (tsim) and the number of cities considered.

6 DISCUSSION

We have introduced a new approach to solving the foun-
dational problem of rational metareasoning: metacogni-
tive reinforcement learning. This approach applies algo-
rithms from RL to metalevel MDPs to learn a policy for
selecting computations. Our results show that BMPS can
outperform the state of the art for approximate metarea-
soning. While we illustrated this approach using a policy
search algorithm based on Bayesian optimization, there
are many other RL algorithms that could be used instead,
including policy gradient algorithms, actor-critic meth-
ods, and temporal difference learning with function ap-
proximation.

Since BMPS approximates the value of computation as a
mixture of the myopic VOI and two other VOI features,
it can be seen as a generalization of the meta-greedy ap-
proximation (Lin et al., 2015; Russell & Wefald, 1991a).
It is the combination of these features with RL that makes
BMPS tractable and powerful. BMPS works well across
a wider range of problems than previous approximations
because it reduces arbitrarily complex metalevel MDPs
to low-dimensional optimization problems. We predict
that metacognitive RL will enable significant advances
in artificial intelligence and its applications. In the long
view, metacognitive RL may become a foundation for
self-improving AI systems that learn how to solve in-
creasingly complex problems with increasing efficiency.

One weakness of our approach is that the time required
to compute the value of perfect information by exact in-
tegration increases exponentially with the number of pa-
rameters in the agent’s model of the environment. Thus,
an important direction for future work is developing
efficient approximations or alternatives to this feature,
and/or discovering new features via deep RL (Mnih et
al., 2015). A second limitation is our assumption that the
meta-reasoner has an exact model of its own computa-
tional architecture in the form of a metalevel MDP. This
motivates the incorporation of model-learning mecha-
nisms into a metacognitive RL algorithm.

We have shown that the benefits of metareasoning with
our method already more than outweigh its computa-
tional costs in scenarios where the object-level computa-
tions are very expensive. It might therefore benefit prac-
tical applications that involve complex large-scale simu-
lations, active learning problems, hyperparameter search,
and the optimization of functions that are very expensive
to evaluate. Finally, BMPS could also be applied to de-
rive rational process models of human cognition.
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Abstract

Multi-step temporal difference (TD) learning
is an important approach in reinforcement
learning, as it unifies one-step TD learning
with Monte Carlo methods in a way where
intermediate algorithms can outperform ei-
ther extreme. They address a bias-variance
trade off between reliance on current estimates,
which could be poor, and incorporating longer
sampled reward sequences into the updates.
Especially in the off-policy setting, where the
agent aims to learn about a policy different
from the one generating its behaviour, the vari-
ance in the updates can cause learning to di-
verge as the number of sampled rewards used
in the estimates increases. In this paper, we in-
troduce per-decision control variates for multi-
step TD algorithms, and compare them to ex-
isting methods. Our results show that includ-
ing the control variates can greatly improve
performance on both on and off-policy multi-
step temporal difference learning tasks.

1 TEMPORAL DIFFERENCE
LEARNING

Temporal-difference (TD) methods (Sutton, 1988) com-
bine ideas from Monte Carlo and dynamic programming
methods, and are an important approach in reinforcement
learning. They allow learning to occur from raw expe-
rience in the absence of a model of the environment’s
dynamics, like with Monte Carlo methods, while com-
puting estimates which bootstrap off of other estimates,
like with dynamic programming. TD methods provide a
way to learn online and incrementally in both prediction
and control settings.

Several TD methods have been proposed. Sarsa (Rum-

mery & Niranjan, 1994; Sutton, 1996) is a classical on-
policy algorithm, where the policy being learned about,
the target policy, is identical to the one generating the
behaviour, the behaviour policy. However, Sarsa can be
extended to learn off-policy, where the target policy can
differ from the behaviour policy, through the use of per-
decision importance sampling (Precup et al., 2000). Ex-
pected Sarsa (van Seijen et al., 2009) is another exten-
sion of Sarsa where instead of using the value of the cur-
rent state-action pair to update the value of the previous
state, it uses the expectation of the values of all actions
in the current state under the target policy. Since Ex-
pected Sarsa takes the expectation under the target pol-
icy, it can be used off-policy without importance sam-
pling to correct for the discrepancy between its target
and behaviour policies. Q-learning (Watkins, 1989) is
arguably the most popular off-policy TD control algo-
rithm, as it can also perform off-policy learning with-
out importance sampling, but it is equivalent to Expected
Sarsa where the target policy is greedy. The above meth-
ods are often described in the one-step case, but they can
be extended across multiple time steps.

Multi-step TD methods, such as the n-step TD and
TD(λ) methods, create a spectrum of algorithms where
at one end exists one-step TD learning, and at the other,
exists Monte Carlo Methods. Intermediate algorithms
are created which, due to a bias-variance tradeoff, can
outperform either extreme (Jaakkola et al., 1994). Multi-
step off-policy algorithms, especially ones with explicit
use of importance sampling, have significantly larger
variance than their on-policy counterparts (Sutton &
Barto, 1998), and several proposals have been made
to address this issue in the TD(λ) space of algorithms
(Munos et al., 2016; Mahmood et al., 2017).

In this paper, we focus on n-step TD algorithms as they
provide exact computation of the multi-step return, have
conceptual clarity, and provide the foundation for TD(λ)
methods. We formulate per-decision control variates for
existing n-step TD algorithms, and give insight on their
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implications in the TD(λ) space of algorithms. On prob-
lems with tabular representations as well as one with
function approximation, we show that the introduction
of per-decision control variates can improve the perfor-
mance of existing n-step TD methods on both on and
off-policy prediction and control tasks.

2 ONE-STEP TD METHODS

The sequential decision-making problem in reinforce-
ment learning is often modeled as a Markov decision
process (MDP). Under the MDP framework, an agent
interacts with an environment over a sequence of dis-
crete time steps. At each time step t, the agent re-
ceives information about the environment’s current state,
St ∈ S , where S is the set of all possible states in
the MDP. The agent is to use this state information to
select an action, At ∈ A(St), where A(s) is the set
of possible actions in state s. Based on the environ-
ment’s current state and the agent’s selected action, the
agent receives a reward, Rt+1 ∈ R, and gets infor-
mation about the environment’s next state, St+1 ∈ S ,
according to the environment model: p(r, s′|s, a) =
P (Rt+1 = r, St+1 = s′|St = s,At = a).

The agent selects actions according to a policy, π(s, a) =
P (At = a|St = s), which gives a probability distribu-
tion across actions a ∈ A(s) for a given state s. Through
policy iteration (Sutton & Barto, 1998), the agent can
learn an optimal policy, π∗, where behaving under it will
maximize the expected discounted return:

Gt = Rt+1+γRt+2+γ
2Rt+3+ ... =

T−t−1∑

k=0

γkRt+k+1

(1)
given a discount factor γ ∈ [0, 1] and T equal to the final
time step in an episodic task, or γ ∈ [0, 1) and T equal
to infinity for a continuing task.

Value-based methods approach the sequential decision-
making problem by computing value functions, which
provide estimates of what the return will be from a partic-
ular state onwards. In prediction problems, also referred
to as policy evaluation, the goal is to estimate the return
under a particular policy as accurately as possible, and a
state-value function is often estimated. It is defined to be
the expected return when starting in state s and following
policy π: vπ(s) = Eπ[Gt|St = s]. For control problems,
the policy which maximizes the expected return is to be
learned, and an action-value function from which a pol-
icy can be derived is instead estimated. It is defined to be
the expected return when taking action a in state s, and
following policy π:

qπ(s, a) = Eπ[Gt|St = s,At = a] (2)

Of note, the action-value function can still be used for
prediction problems, and the state-value can be com-
puted as an expectation across action-values under the
policy π for a given state:

vπ(s) = Eπ[qπ(s, ·)] =
∑

a

π(s, a)qπ(s, a) (3)

One-step TD methods learn an approximate value func-
tion, such as Q ≈ qπ for action-values, by computing an
estimate of the return, Ĝt. First, Equation 2 can be writ-
ten in terms of its succesor state-action pairs, also known
as the Bellman equation for qπ:

qπ(s, a) =
∑

r,s′

p(r, s′|s, a)
(
r + γ

∑

a′

π(s′, a′)qπ(s
′, a′)

)

(4)
Based on Equation 4, one-step TD methods estimate the
return by taking an action in the environment according
to a policy, sampling the immediate reward, and boot-
strapping off of the current estimates in the value func-
tion for the remainder of the return. The difference be-
tween this TD target and the value of the previous state-
action pair is then computed, and is often referred to as
the TD error. The previous state-action pair’s value is
then updated by taking a step proportional to the TD er-
ror with step size α ∈ (0, 1]:

Ĝt = Rt+1 + γQ(St+1, At+1) (5)

Q(St, At)← Q(St, At) + α[Ĝt −Q(St, At)] (6)

Equations 5 and 6 correspond to the Sarsa algorithm. It
can be seen that in state St+1, it samples an action At+1

according to its behaviour policy, and then bootstraps off
of the value of this state-action pair. With a sufficiently
small step size, this estimates the expectation under its
behaviour policy over the values of successor state-action
pairs in Equation 4, allowing for on-policy learning.

In the off-policy case, the discrepancy from At+1 being
drawn from the behaviour policy needs to be corrected.
One approach is to correct the affected terms with per-
decision importance sampling. With actions sampled
from a behaviour policy µ, and a target policy π, the es-
timate of the return of off-policy Sarsa with per-decision
importance sampling becomes:

ρt =
π(St, At)

µ(St, At)
(7)

Ĝt = Rt+1 + γρt+1Q(St+1, At+1) (8)

Note that in the on-policy case, ρt is always 1, strictly
generalizing the original on-policy TD target in Equation
5.

Another approach for the off-policy case is to compute
the expectation of all successor state action pairs under

787



the target policy directly, instead of sampling and cor-
recting the discrepancy. This approach has lower vari-
ance and is often preferred in the one-step setting for
action-values, and gives the Expected Sarsa algorithm
(van Seijen et al., 2009) characterized by the following
TD target:

Ĝt = Rt+1 + γEπ[Q(St+1, ·)] (9)

3 MULTI-STEP TD LEARNING

TD algorithms are referred to as one-step TD algorithms
when they only incorporate information from a single
time step in the estimate of the return that the value func-
tion is being updated towards. In multi-step TD methods,
a longer sequence of experienced rewards is used to es-
timate the return. For example, on-policy n-step Sarsa
would update an action-value Q(St, At) towards the fol-
lowing estimate:

Ĝt:t+n = Rt+1 + γRt+2 + ...+ γnQ(St+n, At+n)

=

n−1∑

k=0

γkRt+k+1 + γnQ(St+n, At+n) (10)

Of note, n-step Expected Sarsa (Sutton & Barto, 2018)
is identical up until the n-th step, where it instead boot-
straps off of the expectation under the target policy:

Ĝt:t+n =
n−1∑

k=0

γkRt+k+1 + γnEπ[Q(St+n, ·)] (11)

The n-step returns can also be written recursively, and
is convenient in the more general per-decision off-policy
case. If we define the following bootstrapping condition:

Ĝt:t = Q(St, At) (12)

The n-step extension of off-policy Sarsa with per-
decision importance sampling, as characterized by Equa-
tions 7 and 8, can now be written as:

Ĝt:t+n = Rt+1 + γρt+1Ĝt+1:t+n (13)

TD algorithms which update towards these n-step esti-
mates of the return constitute the n-step TD algorithm
family (Sutton & Barto, 2018). Their computational
complexity increases with n, but have the benefit of con-
ceptual clarity, and exact computation of the multi-step
return. The n-step returns also provide the foundation
for other multi-step TD algorithms.

Another family of multi-step per-decision TD algo-
rithms, TD(λ), is also used in practice. They are char-
acterized by computing a geometrically weighted sum of

n-step returns, denoted as the λ-return:

Ĝλt = (1− λ)
∞∑

n=1

λn−1Ĝt:t+n (14)

It introduces a hyperparameter λ ∈ [0, 1] where λ = 0
gives one-step TD, and increasing λ effectively increases
the number of sampled rewards included in the estimated
return. Substituting the n-step Sarsa return (13) into
Equation 14 gives the λ-return for the Sarsa(λ) algo-
rithm, and assuming Q does not change, it can be ex-
pressed as a sum of one-step Sarsa’s TD errors:

Ĝt = Rt+1 + γρt+1Q(St+1, At+1)

Ĝλt = Q(St, At) +

∞∑

k=t

(Ĝk −Q(Sk, Ak))

k∏

i=t+1

γλρi

(15)

This shows that the λ-return for Sarsa(λ) can be esti-
mated by computing one-step TD errors, and decaying
the weight of later TD errors at a rate of γλρt. Imple-
menting this online and incrementally, an eligibility trace
vector is maintained to track which state-action pairs led
to the current step’s TD error. The traces of earlier state-
action pairs are decayed at each step by the afformen-
tioned decay rate, and each action-value is adjusted by
the current TD error weighted by the trace of the corre-
sponding state-action pair.

Contrasting with n-step TD methods, the computational
complexity of TD(λ) control algorithms scales with the
size of the environment, |S| × |A|. That is, there is an
environment-specific increase in complexity, but it no
longer scales with the number of sampled rewards in the
estimate of the return.

4 PER-DECISION CONTROL
VARIATES

When trying to estimate the expectation of some variable
X , control variates are often of the following form (Ross,
2013):

X∗ = X + c(Y − E[Y ]) (16)

where Y is the outcome of another variable with a known
expected value, and c is a coefficient to be set. X∗ then
has the following variance:

V ar(X∗) = V ar(X) + c2V ar(Y ) + 2cCov(X,Y )
(17)

From this, the variance can be minimized with the opti-
mal coefficient c∗:

c∗ = −Cov(X,Y )

V ar(Y )
(18)
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Suppose the n-step Sarsa algorithm samples the impor-
tance sampling-corrected n-step return, jointly samples
the importance sampling-corrected action-value (through
the sampled action), and computes the expected action-
value under the target policy. We get the following esti-
mate of this term of the multi-step return:

(ρt+1Ĝt+1:t+n)
∗ = ρt+1Ĝt+1:t+n

+ c
(
ρt+1Q(St+1, At+1)− Eπ[Q(St+1, ·)]

)

(19)

Under the assumption that the current estimates are accu-
rate, the action-values represent the expected return. Due
to this, the sampled reward sequence and the action-value
are, in expectation, perfectly correlated. The covariance
term in Equation 18 would then be the variance of the
action-value due to the policy, and from this, a reason-
able choice for the coefficient would be −1. This gives:

(ρt+1Ĝt+1:t+n)
∗ = ρt+1Ĝt+1:t+n

+ Eπ[Q(St+1, ·)]− ρt+1Q(St+1, At+1) (20)

Substituting this estimate into the recursive definition of
n-step Sarsa (13) and maintaining the same bootstrap-
ping condition in Equation 12 gives the following n-step
return:

Ĝt:t+n = Rt+1 + γ
(
ρt+1Ĝt+1:t+n

+ Eπ[Q(St+1, ·)]− ρt+1Q(St+1, At+1)
)

(21)

Because Eµ[Eπ[Q(St+1, ·)]− ρt+1Q(St+1, At+1)] = 0,
the additional term does not introduce bias into the esti-
mate. To provide an intuition of how it might reduce the
variance in the estimate, we can consider some extreme
cases of the importance sampling ratio. If ρt+1 = 0,
when the behaviour policy takes an action that the target
policy would have never taken, it will bootstrap off of
the expectation of its current estimates instead of cutting
the return. If ρt+1 is much greater than 1, an equivalent
amount of its current action-value estimate is subtracted
to compensate.

In the one-step case, the introduction of this control vari-
ate results in one-step Expected Sarsa’s target:

Ĝt:t+n = Rt+1 + γ
(
ρt+1Q(St+1, At+1)

+ Eπ[Q(St+1, ·)]− ρt+1Q(St+1, At+1)
)

Ĝt:t+n = Rt+1 + γEπ[Q(St+1, ·)]

When applied at the bootstrapping step, it implicitly re-
sults in bootstrapping off of the expectation under the
target policy as opposed to the importance sampling-
corrected action-value. It can be viewed as an alternate
generalization of Expected Sarsa to the multi-step set-
ting, where the control variate is applied to the sampled
reward sequence in addition to the bootstrapping step.

The control variate can be interpreted as performing an
expectation correction at each step based on current es-
timates. Each reward in the trajectory depends on the
sampled action at each step, but the algorithm aims to
learn the expectation across all possible trajectories un-
der a policy. The importance sampling-corrected action-
value is a closer estimate to the sampled return, as the
agent knows which action resulted in the immediate re-
ward at each step. Because of this, the action-value is
like a guess of what the remainder of the sampled re-
ward sequence will be, and the difference between that
and the expectation across all actions provides a per-step
estimate of the discrepancy between the sampled reward
sequence and the expectation across all reward sequences
from the current step onwards.

It can also be seen as implicitly performing adaptive n-
step learning, adjusting the amount of information in-
cluded based on how accurate its current estimates are.
If we rearrange the n-step return:

Ĝt:t+n = Rt+1 + γEπ[Q(St+1, ·)]
+ γ
(
ρt+1Ĝt+1:t+n − ρt+1Q(St+1, At+1)

)

(22)

We get the one-step Expected Sarsa target, along with
some difference between the actual sampled rewards and
its current estimates. If the value estimates are poor,
more rewards will be effectively included in the estimate,
and vice-versa. If there is no stochasticity in the environ-
ment, it ends up approaching one-step Expected Sarsa as
the estimates get close to the true value function.

If we follow similar steps in the state-value case, we ar-
rive at the following n-step return with a per-decision
control variate:

Ĝt:t = V (St)

Ĝt:t+n = ρt(Rt+1 + γĜt+1:t+n) + V (St)− ρtV (St)

Ĝt:t+n = ρt(Rt+1 + γĜt+1:t+n) + (1− ρt)V (St)
(23)

Of note, the state-value control variate disappears in the
on-policy case, but the action-value one does not.

5 RELATIONSHIP WITH EXISTING
ALGORITHMS

If we substitute the n-step Sarsa return with the per-
decision control variate (21) into the definition of the λ-
return in Equation 14, we can rearrange it into a sum of
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one-step Expected Sarsa’s TD errors:

Ĝt = Rt+1 + γEπ[Q(St+1, ·)]

Ĝλt = Q(St, At) +

∞∑

k=t

(Ĝk −Q(Sk, Ak))

k∏

i=t+1

γλρi

(24)

This is equivalent to using the eligibility trace decay rate
of Sarsa(λ), but backing up the TD error of one-step Ex-
pected Sarsa. That is, in the space of action-value TD(λ)
algorithms, having the one-step estimates of the return
bootstrap off of the expectation under the target policy
implicitly induces this per-decision control variate in the
corresponding n-step returns.

An existing algorithm that also uses one-step Expected
Sarsa’s TD error in its λ-return is the Tree-backup(λ) al-
gorithm (Precup et al., 2000). Denoting πt = π(St, At),
Tree-backup(λ) is characterized by the following equa-
tions:

Ĝt = Rt+1 + γEπ[Q(St+1, ·)]

Ĝλt = Q(St, At) +
∞∑

k=t

(Ĝk −Q(Sk, Ak))
k∏

i=t+1

γλπt

(25)

If we look at n-step Tree-backup’s estimate of the return,
we can show that it also includes the expectation correc-
tion terms:

Ĝt:t+n = Rt+1 + γ(πt+1Ĝt+1:t+n

+
∑

a6=At+1

π(St+1, a)Q(St+1, a)

Ĝt:t+n = Rt+1 + γ(πt+1Ĝt+1:t+n

+ Eπ[Q(St+1, ·)]− πt+1Q(St+1, At+1)) (26)

The estimate takes some portion of the sampled reward
sequence, and the difference between the expectation un-
der the target policy and an equivalent portion of the sam-
pled action-value estimate.

The introduction of the control variates with the affor-
mentioned choice of the control variate parameter results
in an instance of a doubly robust estimator. The use of
doubly-robust estimators in off-policy policy evaluation
has been investigated by Jiang et al. (2016) and Thomas
et al. (2016). However, results when applying the ap-
proaches in an online, model-free setting, as well as its
view as a multi-step generalization of Expected Sarsa,
appear to be novel.

Harutyunyan et al. (2016) has acknowledged the implicit
introduction of these terms when using the expectation
form of the TD error in action-value TD(λ) algorithms.

However, their work investigated the off-policy correct-
ing effects of including the difference between the expec-
tation under the target policy with an action-value sam-
pled from the behaviour policy (without importance sam-
pling corrections). This work focuses on the effect of ex-
plicitly including the additional terms, with importance
sampling, in the n-step setting for both on and off-policy
TD learning.

In the state-value setting, combining Equations 23 and
14 gives the following λ-return:

Ĝt = Rt+1 + γV (St+1)

Ĝλt = V (St) + ρt

∞∑

k=t

(Ĝk − V (Sk))

k∏

i=t+1

γλρi (27)

which is an intuitive generalization of off-policy per-
decision importance sampling for state-values, having an
additional importance sampling correction term for the
first reward in the sequence. It can be seen that the in-
clusion of an action-dependent trace decay rate scaling a
TD error, as opposed to the return estimate alone, implic-
itly induces the state-value control variate in the n-step
estimate of the return.

6 EXPERIMENTS

In this section, we focus on the action-value setting and
investigate the performance of n-step Sarsa with the per-
decision control variate (denoted as n-step CV Sarsa)
on three problems. The first two are multi-step predic-
tion tasks in a tabular environment, one being off-policy
and one being on-policy. The remaining one is a con-
trol problem involving function approximation, evaluat-
ing the performance of n-step CV Sarsa beyond the tab-
ular setting, as well as how it handles a changing (greed-
ifying) policy.

Figure 1: 5×5 Grid World environment. It was set up as
an on and off-policy multi-step prediction task where the
goal was to estimate the expected return under the target
policy as accurately as possible.
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Figure 2: 5x5 Grid World off-policy prediction results. The plot shows the performance of various parameter set-
tings of each algorithm in terms of RMS error after 200 episodes in the learned value function. The shaded region
corresponds to one standard deviation, and the results are averaged over 1000 runs.

Since n-step CV Sarsa ends up bootstrapping off of the
expectation over action-values at the end of the reward
sequence, we compare the algorithm to n-step Expected
Sarsa as characterized by Equation 11. This allows for
examining the effects of the control variate being applied
to each reward in the reward sequence in an online and
incremental setting.

6.1 5×5 GRID WORLD

The 5×5 Grid World is a 2-dimensional grid world hav-
ing terminal states in two opposite corners. The actions
consist of 4-directional movement, and moving into a
wall transitions the agent to the same state. The agent
starts in the center, and a reward of−1 is received at each
transition. Experiments were run in both the off-policy
and on-policy settings with no discounting (γ = 1), and
the root-mean-square (RMS) error between the learned
value function and the true value function were com-
pared.

6.1.1 Off-policy Prediction

For the off-policy experiments, the target policy would
move north with probability 1 − ε, and select a random
action equiprobably otherwise. ε was set to 0.5, and the
behaviour policy was equiprobable random for all states.
A parameter study was done for 1, 2, and 4 steps, and the
RMS error was measured after 200 episodes. The results
are averaged over 1000 runs, and can be seen in Figure
2.

It can be seen that 2-step Expected Sarsa only outper-
forms 1-step Expected Sarsa for a very limited range
of parameters, but is worse otherwise. 4-step Expected

Sarsa was unable to learn for most parameter settings.
When the control variate is applied to each reward, we
can see that 2-step CV Sarsa outperforms 1-step Ex-
pected Sarsa for all parameter settings, and the variance
is reduced relative to 2-step Expected Sarsa. Further-
more, 4-step CV Sarsa ends up being able to learn, and
can outperform 2-step CV Sarsa for a reasonably wide
range of parameters.

6.1.2 On-policy Prediction

In the on-policy case, the target policy and behaviour pol-
icy were both equiprobable random for all states. The pa-
rameters tested are identical to the off-policy experiment
with the addition of 8-step instances of each algorithm.
The RMS error was measured after 200 episodes, and
are also averaged over 1000 runs. The results are sum-
marized in Figure 3.

2-step Expected Sarsa ends up performing better than
1-step Expected Sarsa for a wider range of parameters
than in the off-policy case, but the best parameter set-
tings for each perform similarly. Further increasing the
number of steps results in relatively poor performance,
and doesn’t do better than the best parameter setting of
1-step Expected Sarsa. Looking at n-step CV Sarsa, we
can see that performance is drastically improved for all
tested settings of n. Of note, while introducing the per-
decision control variate resulted in lower variance for a
reasonable range of parameters, assumptions were made
regarding the accuracy of the value function when set-
ting the control variate parameter c in Equation 19. If the
number of steps n and the step size α get too large, it
can result in larger variance and divergence on parame-
ter settings where n-step Expected Sarsa did not diverge.
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Figure 3: 5x5 Grid World on-policy prediction results. The plot shows the performance of various parameter settings of
each algorithm in terms of RMS error after 200 episodes in the learned value function. The shaded region corresponds
to one standard deviation, and the results are averaged over 1000 runs.

We did not investigate alternate methods of setting the
control variate parameter in this work.

6.2 MOUNTAIN CAR

To show that this use of control variates is compati-
ble with function approximation, we ran experiments on
mountain car as described by Sutton and Barto (1998).
A reward of −1 is received at each step, and there is no
discounting.

Figure 4: The mountain car environment (Sutton &
Barto, 1998). The agent starts at a random location in
the valley, receives a reward of −1 at each step, and its
goal is to drive past the flag in as few steps as possible.

Because the environment’s state space is continuous, we
used tile coding (Sutton & Barto, 1998) to produce a fea-
ture representation for use with linear function approx-
imation. The tile coder used 16 tilings, an asymmetric

offset by consecutive odd numbers, and each tile covered
1/8-th of the feature space in each direction.

We compared n-step Expected Sarsa and n-step CV
Sarsa with 1, 2, 4, and 8 steps across different step sizes
α. Each algorithm learned on-policy with an ε-greedy
policy which selects an action greedily with respect to its
value function with probability 1− ε, and selected a ran-
dom action equiprobably otherwise. In this experiment,
ε was set to 0.1. We measured the return per episode up
to 100 episodes, and averaged the results over 100 runs.
The results for the best parameter setting for each algo-
rithm can be found in Figure 5.

Figure 5: Mountain Car on-policy control results. The
plot shows the return per episode of the best parameter
setting of each algorithm in terms of the mean return over
all episodes. The shaded region corresponds to one stan-
dard error, and the results are averaged over 100 runs.
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The two algorithms showed a similar trend in the pa-
rameters as in the 5×5 Grid World environment, but
were less pronounced. This is likely due to not requir-
ing accurate value function estimates to perform the task
well, and the control variate having less of an effect with
greedier target policies, because Eπ[Q(St, ·)] gets rela-
tively close to Q(St, At). Despite this, as seen in the
results for the best parameter settings, n-step CV Sarsa
still outperforms n-step Expected Sarsa on this task.

7 DISCUSSION

From our experiments, n-step CV Sarsa appears to be an
improved multi-step generalization of Expected Sarsa. In
both on and off-policy prediction tasks on the 5×5 Grid
World environment, it generally resulted in lower vari-
ance as well as considerably lower error in the estimates
compared to n-step Expected Sarsa, an algorithm which
can be interpreted as only applying the control variate
at the bootstrapping step. Moreover, when used on a
continuous state space control problem with function ap-
proximation, applying the control variate on a per-reward
level still resulted in greater performance in terms of av-
erage return per episode.

Despite the improvement on most of the tested parame-
ter settings, the results also showed that the addition of
the per-decision control variates can cause learning to di-
verge for large n and large step size α, even on settings
where n-step Expected Sarsa did not diverge. It is sus-
pected that this is due to assuming the estimates are accu-
rate when setting the control variate parameter in Equa-
tion 19. This was not further investigated, but it could be
an avenue for future work.

While our results focused on the action-value per-
decision control variate, other experiments not included
in this paper showed that the state-value per-decision
control variate in Equation 23 can also be applied in
the off-policy action-value setting. It resulted in perfor-
mance in between that of n-step Expected Sarsa and n-
step CV Sarsa, supporting that it is beneficial to add it,
but better to use the action-value control variate if the
agent is learning action-values.

8 CONCLUSIONS

In this paper, we presented a way to derive per-decision
control variates in both state-value and action-value n-
step TD methods. The state-value control variate is only
present in the off-policy setting, but the action-value con-
trol variate affects both on and off-policy learning. In the
action-value case, applying the per-decision control vari-
ate results in an alternative multi-step extension of Ex-

pected Sarsa. With this control variate perspective, the
existing n-step Expected Sarsa algorithm can be inter-
preted as only applying a control variate at the bootstrap-
ping step, when it can be applied to the sampled reward
sequence as well. Our results on prediction and control
problems show that applying it on a per-decision level
can greatly improve the accuracy of the learned value
function, and consequently perform better when doing
TD control.

We also showed how the per-decision control variates re-
late to TD(λ) algorithms. This provided insight on how
minor adjustments in the TD(λ) space can implicitly in-
duce these per-decision control variates in the underly-
ing n-step returns, resulting in a more unified view of
per-decision multi-step TD methods.

Our experiments were limited to the n-step TD setting
without eligibility traces, and focused on learning action-
values. We only considered a naive setting of the control
variate scaling parameter c, when our results suggest that
the way we set it can negatively affect learning for a few
(relatively extreme) parameter combinations. Perhaps in-
sight from the analytical optimal coefficient in Equation
18 can be used to adapt the control variate online to fur-
ther improve performance.
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Abstract
Temporal events in the real world often exhibit
reinforcing dynamics, where earlier events
trigger follow-up activity in the near future.
A canonical example of modeling such dy-
namics is the Hawkes process (HP). However,
previous HP models do not capture the rich
dynamics of real-world activity—which can
be driven by multiple latent triggering factors
shared by past and future events, with the la-
tent features themselves exhibiting temporal
dependency structures. For instance, rather
than view a new document just as a response to
other documents in the recent past, it is impor-
tant to account for the factor-structure under-
lying all previous documents. This structure
itself is not fixed, with the influence of earlier
documents decaying with time. To this end,
we propose a novel Bayesian nonparametric
stochastic point process model, the Indian Buf-
fet Hawkes Processes (IBHP), to learn multiple
latent triggering factors underlying streaming
document/message data. The IBP facilitates
the inclusion of multiple triggering factors in
the HP, and the HP allows for modeling latent
factor evolution in the IBP. We develop a learn-
ing algorithm for the IBHP based on Sequen-
tial Monte Carlo and demonstrate the effective-
ness of the model. In both synthetic and real
data experiments, our model achieves equiv-
alent or higher likelihood and provides inter-
pretable topics and shows their dynamics.

1 INTRODUCTION
Temporal activity in real applications exhibit rich dy-
namics, with past events influencing the future through
multiple structured latent factors. For example, the ideas
in a research paper may be derived from multiple exist-
ing works in the literature, each of which contributes one

or more factors, with only their combination serving to
trigger the event. Similarly, a conversation among indi-
viduals may heat up or cool down due to the topics being
discussed (e.g., politics vs. weather). Communications
via email or on social media platforms like Facebook or
Twitter may exhibit analogous dynamics. In addition,
individual checkin data on platforms like Foursquare or
Yelp may depend on combinations of characteristics and
activities from previous visited locations. Finally in bi-
ological data, pathways are often only activated when a
set of genes is expressed together.

Latent feature models (both parametric and nonparamet-
ric) have found wide application in settings where ex-
changeability holds. A canonical model from Bayesian
nonparametrics is the Indian Buffet process (IBP). While
there has been some work towards relaxing exchange-
ability assumptions to allow for temporal dynamics,
modeling the full richness of interactions remains an
open challenge. Our main contribution in this work is a
framework that facilitates the modeling of temporal dy-
namics through a combination of ideas from the IBP with
those of Hawkes processes (HP).

In recent years, Hawkes processes [11, 10, 12, 15, 22]
have become a popular modeling choice to capture such
temporal dynamics [4, 18, 14, 19, 13, 7, 17, 8, 16, 21].
As we outline later, the standard Hawkes process has
a number of limitations centering around the fact that
each event is triggered by a single observation instead
of possibly multiple events and/or factors. To this end,
we propose a novel Bayesian nonparametric stochastic
point process model, the Indian Buffet Hawkes Processes
(IBHP), that synergizes ideas between the IBP and the
HP. The contributions of our work include:

1. The use of the IBP to add multiple triggering factors
to the HP, which helps to better model dynamics and
improves interpretation.

2. Embedding the temporal information from the HP
into the IBP to drive the latent factor estimation,
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which expands its capability to model factor evo-
lution over time.

3. Developing an efficient and scalable learning al-
gorithm for the IBHP model, based on Sequential
Monte Carlo (SMC).

4. Demonstrating the effectiveness of the IBHP on
both synthetic and four real-world datasets, where
we also show how our framework enables the con-
struction of more flexible (e.g., multi-event) trigger-
ing rules.

2 PRELIMINARIES
Formally, we are given a sequence of N observations
yn = {tn, Tn}, n = 1, . . . , N . For the nth event, tn
is the time of occurrence, and Tn represents observed
attributes attached to it. Since our focus is mostly on
settings where events are messages, we will refer to at-
tributes as text. We will model the event times tn and
event text Tn as realizations of a process whose states
depend on a hidden state variable zn, summarizing the
past observations y1:(n−1). Before outlining our model,
we first review existing work related to our problem.

2.1 HAWKES PROCESSES (HP)
Hawkes processes (HP) [11, 10, 12, 15, 22] are self-
exciting point processes [5] where earlier events have a
time-decaying influence on future events. Parametrized
by a base rate γ and a non-negative triggering kernel κ(·)
(the latter models the contribution of each past observa-
tion), the rate function at time t can be written as:

λ(t) = γ +

ˆ t

0

κ(t− s) dN(s) (1)

where N(s) is the number of observations within [0, s).
Given the rate function λ(t) and observation history
H(0,T ] = (t1, · · · , tn), the likelihood function of a
Hawkes process is:

L(H) = exp {−Λ(0, T )}
n∏

i=1

λ(ti) (2)

where Λ(0, T ) =
´ T

0
λ(t) d t is the cumulative rate. The

events in a standard HP are triggered by a single event at
a time (see Figure 1).

2.2 INDIAN BUFFET PROCESSES (IBP)
The Indian Buffet Process (IBP) [9] is a Bayesian non-
parametric prior over an infinite dimensional binary ma-
trix whose columns represent exchangeable factors un-
derlying observations. Suppose there are N customers
(observations) arriving sequentially in a restaurant with
infinite number of dishes (factors). Each customer is as-
signed dishes as follows:

• The first customer comes in and helps herself to
Poisson(α) dishes.
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(a) A Hawkes process with single triggers.
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(b) A Hawkes process with multiple triggers.

Figure 1: HP with single and multiple triggers. In (a), #3
is triggered by a single event #1, while in (b) it is trig-
gered by #1 and #2. The triggering kernels can be quite
different depending on how the triggering has happened.
HP with single triggers would fail to model influences
from both #1 and #2 at the same time, as shown in (b).

• When the nth customer arrives, they independently
choose each existing dish with probability mk/n,
where mk is the number of customers that have al-
ready sampled dish k (the popularity of the dish).
• In addition, they sample Poisson(α/n) new dishes.

The IBP has several distinctive features: 1) Each ob-
servation can have multiple factors; 2) The number of
factors grows non-parametrically depending on the size
of the dataset; 3) The probability of adding new fac-
tors decreases – since the number of new factors follows
Poisson(α/n) which decreases as n increases; 4) The
rows are exchangeable, with the row sums distributed
Poisson(α).

We write the binary feature matrix as C. The conditional
probability that element cik = 1 is given by

P (cik = 1|c−i,k) =
m−ik
N

(3)

where c−ik is the kth column without considering the ith

observation, and m−ik is the sum of c−ik. We need only
condition on c−ik rather than including other columns
because the columns of the matrix are generated inde-
pendently under this prior. In a Bayesian framework with
observations X, the posterior can be written as:

P (cik = 1|C−ik,X) ∝ P (X|C)P (cik = 1|c−ik) (4)

where P (X|C) is the data likelihood.
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3 MODEL

Our proposed model, the IBHP, can be viewed as a non-
parametric latent state space model, where past events
yn = {tn, Tn} influence future observations through
latent state variables zn = {Kn,Vn} (described be-
low). The zn’s summarize information about the past,
and themselves evolve following dynamics based on the
IBP. Algorithmically, the generative process (see Algo-
rithm 1 for the pseudocode and Figure 2 for an illustrative
example) can be described in the following three steps.

3.1 INITIALIZATION (M,Π,Θ)

To setup the model, we first specify a triplet M =
{S, D, L}, with S representing the vocabulary of all
possible words in the observations, D representing the
length of each document (for simplicity we assume all
are equal), and L representing the number of basis ker-
nels. We also require a pair of hyper parameters Π =
{w0,v0} for the priors of the kernel and word distribu-
tion weights.

Each latent factor influences the content of future events
through a set of dictionary weights, which are used to
generate text. We write vk for the vector of weights
over the words in the vocabulary for the kth factor – a
length |S| vector which sums to one. The weights vk are
sampled from a Dirichlet prior (with hyper parameter v0)
whenever a new factor is created (see later). Each latent
factor also influences the timing of future events through
a triggering kernel, and we assume each kernel is a linear
combination of a set of L bases. Throughout, we assume
L exponential basis kernels:

γl(δ) = βle
− δ
τl , l = 1, . . . , L. (5)

This requires a set of parameters {(βl, τl)}, each of
which captures a distinct type of excitation pattern. A
binary matrix C indicates which factors are associated
with each observation. The kth factor kernel for the ith

observation κik is a weighted sum of the L basis kernels:

κik(δ|wk, cik) =

{∑L
l=1 wkl · γl(δ), if cik = 1

0, if cik = 0
(6)

The weights wkl, loadings of the basis kernels for the
factors, are sampled from a Dirichlet prior (with hyper
parameter w0) whenever a new factor is created (see
later). Thus, immediately after an event (when δ = 0),
there is a jump in the event rate with amplitude equal to
κik = wᵀ

kβ. Observations with the same factor share
the factor kernel. We write the model parameters as
Θ = {λ0, {βl}, {τl}}, where λ0 is a base-rate at which
events happen spontaneously.

3.2 THE FIRST EVENT (M,Θ→ z1 → y1)
To generate the observation y1 = {t1, T1}, we first sam-
ple the auxiliary variables c1 and w1:K . The factor la-
bel variable c1 is a binary vector of length K, where
K ∼ Poisson(λ0) is the number of existing factors.
cnk = 1 implies that the nth observation has a label
of factor k. Set c1k = 1 for k = 1, . . . ,K. The ker-
nel weights wk is a vector of weights for the kth fac-
tor to load the basis kernels. Each wk is of length L
(the number of basis kernels), and sums to one. Sample
wk ∼ Dir(w|w0) for k = 1, . . . ,K.

Given the values of c1 and w1:K , we can sample the
associated latent variables z1 = {K1,V1}. Define the
1×K IBHP matrix K1, whose rows are κ1, with values
wᵀ
kβ (see Equation 6) – since δ = 0. For n = 1, sam-

ple vk ∼ Dir(v|v0) for k = 1, . . . ,K, and define the
|S|×K matrix V1, whose columns are vk. Conditioned
on these state variables z1, we sample the first observa-
tion y1 = {t1, T1}: The time stamp t1 is sampled from a
Poisson process with rate λ0; and the text T1 is sampled
from Multi(D,

∑K
k=1 vk/K), where the weight parame-

ter is the averaged factor weight of the first observation.

3.3 FOLLOW-UP EVENTS (zn−1 → zn → yn)
For a new event, we first decide its associated factors, and
sample its time stamp afterwards. Conditioning on zn−1,
suppose there are K existing factors, each of which can
be represented by an independent Hawkes process. At
time tn−1, the factor rate for the kth factor is:

λk(tn−1) =
n−1∑

i=1

κik(tn−1 − ti)
‖κi‖0

(7)

As with the generation of the initial event, follow-up
events (n > 1) are also generated by two steps. First,
we sample the auxiliary variables cn and set w and v
for any newly generated factors. The firstK components
of the factor label variable cn is sampled independently
from a Bernoulli distribution with probability parameter

pk =
λk(tn−1)

λ0/K + λk(tn−1)
(8)

Meanwhile, K+ new factors are created by setting
cnk′ = 1, for k′ = K + {1, . . . ,K+}, where

K+ ∼ Poisson

(
λ0

λ0 +
∑K
k=1 λk(tn−1)

)
(9)

If κ are binary, which is the case in IBP, and λ0 = 1,
then the mean of K+ becomes 1/n and pk = (n− 1)/n,
which reduces to the case of IBP with parameter 1:

K∑

k=1

n−1∑

i=1

κik(tn−1 − ti)
‖κi‖0

=
n−1∑

i=1

‖κi‖0
‖κi‖0

= n− 1 (10)
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For each new factor k′, we draw from the corresponding
priors for wk′ ∼ Dir(w|w0) and vk′ ∼ Dir(v|v0).

Next, we decide the hidden state variables zn =
{Kn,Vn}. Vn is constructed by simply adding columns
for the vk′ for newly sampled factors to Vn−1. Kn is
constructed by first updating Kn−1 with respect to the
new lag time δ = tn− ti. This step is done symbolically,
since we do not know tn yet. Then we add the rows κik′
for the newly sampled event based on Equation 6 with
δ = 0. We emphasize that Kn(tn) : R+ → Rn×(K+K′)

at this moment is a symbolic function of tn.

Conditioned on these state variables zn, we sample the
nth observation yn = {tn, Tn}: The time stamp tn, de-
pending on its related factors, is sampled from a Poisson
process with rate

λ(tn) =
∑

κnk 6=0

λk(tn) =
∑

κnk 6=0

n∑

i=1

κik(tn − ti)
‖κi‖0

(11)

The overall rate of IBHP, however, includes the base rate
and other factors too:

λ̄(tn) = λ0 + λ(tn) +
∑

κnk=0

λk(tn) (12)

Now, at this point, since tn is known, we can proceed to
compute the actual values of Kn. Finally, we sample the
dictionary text Tn from Multi(D,

∑
κnk 6=0 vk/‖κn‖0),

where the weight parameter is the averaged of all ‖κn‖0
factor weights associated with the nth observation.

4 POSTERIOR INFERENCE
4.1 SMC FOR IBHP
Sequential Monte Carlo [6] (SMC) methods are powerful
and flexible tools for posterior inference in time-series
models such as ours. Here, we adapt particle filtering
methods to our set up, allowing us to scale our model to
large-data regimes. The idea here is to represent the state
of the system at any time (from 1 to N ) with a set of F
particles. We build on ideas from [20], extending them
to our more structured setting.

The idea at a high level is to propagate each particle for-
ward by one time step according to the prior, and then
reweight each particle by how “compatible” it is with
the observation at that time. If the effective number of
particles is small (according to their weights), then the
algorithm resamples the particles with replacement. Our
algorithm to learn the IBHP factors and model parame-
ters can be described as follows (see Algorithm 2 for the
pseudocode):

A. Initialize Particle Weights. The particle weights are
initialized uniformly: uf1 = 1

F , for f = 1, . . . , F . Then
for each time step i = [1 . . . N ], we do the following:

1. Initialization:
- Model specifications:M = {L,D,S};
- Model hyper parameters: Π = {w0,v0};
- Model parameters: Θ = {λ0, {βl, τl}};
2. Generate the First Event:
- Set c1,1:K = 1, where K ∼ Poisson(α0);
- Sample wk ∼ Dir(w|w0) and set κ1;
- Sample vk ∼ Dir(v|v0);
- Sample t1 ∼ PP(λ0);
- Sample T1 ∼ Multi

(
D,
∑
κ1k 6=0 vk/‖κ1‖0

)

3. Generate Follow-up Events:
for n = 2, . . . , N do

- Sample cn according to Equations 8 and 9.
- Sample wk′ ∼ Dir(w|w0) and set κn;
- Sample vk′ ∼ Dir(v|v0);
- Sample tn ∼ PP(λ(tn)) by Equation 11.
- Sample
Tn ∼ Multi

(
D,
∑
κnk 6=0 vk/‖κn‖0

)
.

end

Algorithm 1: Generative process of IBHP.

B. Sample Particles. According to [20], our particles
z̃fi = {K̃f

i , Ṽ
f
i } are sampled based on the conditional

distributions p(zi|zi−1) described in Section 3.3.

C. Sample Model Parameters. Since the posterior of the
model parameter Θ = {λ0, {βl}, {τl}} is proportional
to the product of its prior and the data likelihood de-
scribed in Equation 2 and Section 3, we can first sam-
ple from its prior, and then use the product of the prior
and the HP data likelihood as weights of the samples to
approximate the posterior [8]. We update the triggering
kernels using the new parameters.

D. Update Particle Weights. The importance weight is
the ratio between the true posterior and the proposal dis-
tribution. Since we use the prior as the proposal, we up-
date the particle weights by ufi = ufi−1p(yi|z̃fi ,Θ) and
then normalize them to ufj = ufj /(

∑F
f=1 u

f
j ).

E. Resample Particles. If the effective number of parti-
cles is too small, we resample with replacement F parti-
cles from the existing ones with the normalized weights.

4.2 COMPLEXITY AND SCALABILITY
The SMC algorithm for the IBHP is easy to implement
and scalable. Due to the sequential updating strategy, the
time complexity of this algorithm isO(NF ), whereN is
the number of observations and F is the number of par-
ticles. We will demonstrate and discuss the effectiveness
of the algorithm in the experiment section in more detail.
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Figure 2: An example of IBHP. In this IBHP realization, the first 8 observations created 6 factors. Each factor has a
distinctive color, and color intensities represent instantaneous factor popularities. An observation may be labeled with
multiple factors, and are colored in its decomposed factor view accordingly. The dependency tree describes the related
events for each observation, where the directed arrows indicate dependency relations. The rate for any observation is
the aggregation of all its related factor rates (see Equation 11), whereas the overall rate at any time is the sum of all
factor rates – so the overall rate can be excited by one observation multiple times through different factors. The overall
rate is represented by its height relative to the reference time line. See Section 6.1 for more details.

Initialize the F uniform particle weights.

for each observation yi = {ti, Ti}, i = 1, . . . , n
do

for each particle zfi = {Ki,Vi} of
observation yi, f ∈ {1, . . . , F} do

- Sample the auxiliary variables wi, ci and
latent factor particles zfi = {Ki,Vi}.

- Sample the model parameters
Θ = {λ0, {βl}, {τl}}.

- Update the triggering kernels.
- Update the particle weights ufi .

end

Normalize the particle weights.
if ‖ui‖−22 < threshold, i.e., the effective
number of particles is too low then

Resample particles with replacement
based on the particle weights.

end
end

Algorithm 2: SMC inference algorithm for IBHP.

5 RELATED WORK
The idea of considering nonparametric Bayesian models
with temporal point processes in a unified framework has
been popular in recent years. For example, [4] proposed

a Bayesian nonparametric model that utilizes the Chinese
Restaurant Processes (CRP) as a prior for the clusters
among individuals, whose rates of communications are
modeled by HP. [18] used a similar idea but further ex-
tended the model by modeling the jump sizes of HP using
Gaussian Processes (GP). HP models with various gener-
alizations of a CRP, such as the distance dependent CRP
(ddCRP) [14], the nested CRP (nCRP) [19], and the Chi-
nese Restaurant Franchise Processes (CRFP) [13], have
also been explored.

Other attempts have been made by borrowing the ideas
from Deep Learning. For example, [7] proposed a model
to view the intensity function of a temporal point pro-
cess as a nonlinear function of the history, and use recur-
rent neural networks to automatically learn a representa-
tion of the influences from the event history. [17] mod-
eled streams of events by constructing a neurally self-
modulating multivariate point process where the intensi-
ties of multiple event types evolve based on a continuous-
time LSTM. Lastly, [21] considered the use of latent
factors in HP models to represent dependencies among
instances that influence reciprocity over time. But the
work focused on modeling static factors of homophily
and reciprocity in social networks and not the evolution
of factors over time.

Perhaps the closest works to our model are [8] and [16].
In [8], the authors proposed a Dirichlet Hawkes Pro-
cesses (DHP) model that combines the CRP with HP in a
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unified framework, where the cluster assignment in CRP
is driven by the intensities of HP. [16] further developed
this in their Hierarchical Dirichlet Hawkes Processes
(HDHP) model by replacing the CRP with a CRFP that
is capable of modeling steaming data for multiple users.
However, there are several major distinctions compared
to our IBHP: 1) In both the DHP and HDHP models,
events are triggered by single factors, while in our IBHP,
multiple latent triggering factors are introduced; 2) the
form of the triggering kernels do not depend on history
events, and in contrast, our IBHP model is more flexible
to be able to adopt non-additive triggering rules to learn
different perspectives of the observed data. We will com-
pare our model to [8] and [16] next.

6 EXPERIMENTS
We compare IBHP with three methods from the previous
section: the vanilla Hawkes process (HP), the Dirich-
let Hawkes (DHP; [8]), and the Hierarchical Dirichlet
Hawkes (HDHP; [16]). We evaluate the models on both
synthetic and real-world data.

6.1 SYNTHETIC DATASETS
The purpose of our synthetic-data experiments is
twofold: 1) to understand the identifiability of our model
and the accuracy of our SMC algorithm when the true
data generation process satisfies the model assumptions,
and 2) to understand the effects of misspecification.

Our setup is as follows. The Hawkes process base rate
is λ0 = 2. For the basis kernels, we use: γ1(δ) =
e−δ/0.3, γ2(δ) = 2e−δ/0.2, γ3(δ) = 3e−δ/0.1. γ1 has
the smallest jump but also the largest time-scale; at the
other extreme, γ3 has the largest jump with a fast decay-
parameter. γ2 might be used to model ‘regular’ events,
while γ1 and γ3 are for non-urgent and urgent ones re-
spectively. We construct the dictionary S from the top
1000 words from the NIPS dataset [2], and the document
lengths are set to D = 20. The hyperparameters, which
are not to be estimated, are set as w0 = ( 1

3 ,
1
3 ,

1
3 ),v0 =

( 1
1000 , . . . ,

1
1000 ). We generate N = 1000 observations

with this setup, and use the first 80% of the dataset for
training, and the last 20% for testing. For each SMC iter-
ation, we use 10 particles, and report averages and error
bars based on 10 runs with different random seeds.

A. Parameter learning and prediction. Experiments A1
and A2 shown in Table 1 are the parameter estimates and
the log-likelihoods over training and test datasets. Our
model outperforms other models in terms of predictive
log-likelihood. This demonstrates two points. Firstly,
our SMC algorithm is able to accurately recover the un-
derlying model parameters. Furthermore, estimating pa-
rameters for the misspecified models on this dataset is
fair, since they have the same interpretation. Thus for

instance, our results tell us that fitting a Hawkes model
that does not include multiple triggering factors results in
a significant overestimation of the base rate λ0: a result
that one might have expected.

A1. Parameter Estimation
Parameter λ0 {βl} {τl}

Values 2 1,2,3 0.3,0.2,0.1
IBHP 1.8 0.92, 1.63, 2.71 0.33, 0.18, 0.09
HDHP 3.3 0.77, 4.56 6.11 3.75, 3.20, 2.94
DHP 2.9 0.83, 5.72, 5.83 1.21, 1.58, 1.28
HP 5.4 2.25, 4.38, 3.01 0.73, 2.54, 3.56

A2. Log-likelihoods
Training Test

IBHP 318.52 47.68
HDHP 192.74 12.23
DHP 201.96 11.78
HP 81.68 6.18
B. Learn Latent State Variables (K = 5, 10, 20)

Jaccard(K) 1 - Hellinger(V)
IBHP 0.83, 0.81, 0.77 0.79, 0.73, 0.68
HDHP 0.56, 0.40, 0.35 0.51, 0.44, 0.29
DHP 0.61, 0.42, 0.38 0.64, 0.41, 0.36

Table 1: Model comparison over the synthetic datasets.

B. Learn latent state variables. Table 1 part B focuses
on learning the latent state variables. Now, rather that
generating data from our nonparametric model, we fix
K = 5, 10, 20 in the data-generating process, and then
compare these with our nonparametric esimates using
two metrics: the Jaccard Index to compare the binary
matrices C and the Hellinger distance for V. A first com-
plication is that these matrices need not have the same
number of columns, and so for each comparison, we pad
the smaller matrix with zero-columns to facilitate com-
parison. A bigger challenge is a ‘label-switching’ issue
that arises since column permutations do not effect the
quality of the estimates. To overcome this, after match-
ing dimensions, we greedily match columns, and then
compute scores. We point out that padding with zeros
favors the alternative methods, since their solutions have
many zeros; nevertheless, our model still gives the best
Jaccard scores as well as Hellinger distances (we actually
report complementary Hellinger distances (viz. one mi-
nus the actual distance), so that large numbers imply bet-
ter performance for both statistics. As before, our results
demonstrate the insufficiency of the alternate models and
justifies the need for multiple factors.

C. The effects of base rate and basis kernels. The base
rate λ0, together with the evolving kernels, control the
dynamics of latent factors. In Table 2 part C, we see
that increasing λ0 increases the average number of fac-
tors per observation increases—more strongly violating
the single factor assumption of competing methods. This
observation is also accompanied by a widening perfor-
mance gap between our model and the alternatives.
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C. Effects of Base Rate
λ0 Topics Jaccard Hellinger Test

IBHP
4 9.01 0.79 0.75 50.21
8 12.28 0.72 0.69 68.37
16 28.33 0.64 0.61 72.07

HDHP
4

1
0.32 0.40 43.78

8 0.28 0.38 51.06
16 0.31 0.26 50.79

DHP
4

1
0.29 0.37 41.67

8 0.33 0.31 49.18
16 0.27 0.28 52.33

Table 2: Effects of model specifications.

D. The effects of triggering rule. In Equation 11, the
event rate depends on the rates of the underlying factors
in an additive manner. We can allow more flexible trig-
gering rules by allowing richer interactions among factor
dynamics. For example, we define a “double-sharing”
triggering rule as follows: trigger a jump in the rate func-
tion only when two or more factors are shared with a
previous observation. Thus Equation 11 becomes:

λ(tn) =
∑

κnk 6=0

[
n−1∑

i=1

κik(tn, ti)

‖κi‖0
+φ

(
κik(tn, tn)

‖κn‖0

)]
(13)

where φ = 0 if the rule is not triggered—there is no
“jump”, otherwise φ = wᵀ

kβ/‖κn‖0—there is a “jump”.
We sketch this out in Figure 3.

1

2

00

5

3

11

7

51

71

6

52

21

6

Topic 1Topic 3

3

1

5

2

7

All Events

44

63

43

Topic 2

12

23

42 41

32

Root

Figure 3: IBHP with “double-sharing” rule. Obs. 2 does
not trigger a “jump” because no previous observations
share more than two factors with it. However, obs. 4
triggers two jumps because it shares two factors with obs.
1 (factor 1 and 2), and two with obs. 2 (factor 1 and 3).

Incorporating such nonlinearities result in dynamics that
are significantly different from the additive setup: this is
evidenced in Table 3, where the simpler additive version
the IBHP now has a degraded score. There are numerous
variations to our simple “double-sharing” rule that are
relevant across a variety of situations.

D. Predictive Log-likelihoods on Double-sharing Data
Additive Model Double-sharing Model

IBHP 15.38 ±3.82 20.82 ±3.23

HDHP 8.97 ±4.07 12.36 ±3.18

DHP 8.26 ±3.19 10.17 ±3.20

HP 4.98 ±3.61 5.04 ±3.22

Table 3: Model comparison with “double-sharing” data.

6.2 REAL DATASETS
The purpose of our real data experiments is threefold:
1) to verify that the multiple triggering factors in IBHP
are indeed relevant to real applications, 2) to demonstrate
that our SMC inference algorithm is scalable for real-
world datasets, and 3) to use our IBHP model to present
meaningful findings, both quantitative and qualitative.
We consider four different datasets: Facebook Dataset.
This data contains Facebook message communications
among 20,603 individuals. We pick the top 10 most con-
nected individuals (based on the number of friends), and
add in their one-hop and two-hop friends. This results in
a total of 376 individuals. NIPS Dataset [2]. The Kaggle
NIPS dataset contains the title, authors, abstracts, and ex-
tracted text for all 7241 NIPS papers from the first 1987
conference to the current 2017 conference. This dataset
is different in that it contains rich message information;
however the number of time-points is just 30. Santa
Barbara Corpus Dataset [3]. This is a standard dataset
used for applications involving Hawkes processes. We
use conversation #33, a lively family discussion which
centers around a disagreement that an individual, Jen-
nifer, is having with her mother, Lisbeth. Enron Email
Dataset[1]. The Enron dataset contains about half a mil-
lion email messages communicated among about 150 se-
nior managers of the Enron corporation. We pick the
longest thread of emails.

For each experiment, we use the first 80% of the dataset
as training set, the next 10% as validation set, and the last
10% as test set. We train our model on training sets with
different hyperparameters, then pick the best one based
on their performances on the validation set, and use this
model to report performances on the test set. The re-
ported values are based on ten runs with different random
number seeds. The dictionary S is all the unique words
in the dataset; the document length Dn is counted from
each observed text Tn; and we use the three (L = 3)
exponential basis kernels defined in Equation 5.

A. Predictive log-likelihood. The log-likelihoods in Ta-
ble 4 show that for three of four datasets, our model out-
performs the alternatives. The performance gaps exhibit
a range of values. On the NIPS dataset, our model shows
a massive improvement over the competition, while there
is no significant improvement for the Enron dataset. The
numbers in parentheses, giving the average number of
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Figure 4: FB dataset. Topic dynamics.

topics associated with each message, provides a partial
explanation. For the Enron dataset, this number is just
two, suggesting that there is limited benefit from model-
ing multiple factors, and that the simpler HDHP model
may be more appropriate. For the NIPS dataset, this
number is about 10, explaining the gap in performance.

FB Dataset (average # factors = 4.19)
Training Validation Test

IBHP 1822 ±96 219 ±10 277 ±11

HDHP 1083 ±88 123 ±10 133 ±10

DHP 1058 ±90 144 ±9 200 ±14

HP 782 ±75 62 ±7 69 ±7

NIPS Dataset (average # factors = 10.21)
Training Validation Test

IBHP 8378 ±172 913 ±23 1012 ±28

HDHP 3229 ±169 216 ±12 191 ±11

DHP 2018 ±164 203 ±10 202 ±10

HP 390 ±48 49 ±8 40 ±7

SB Dataset (average # factors = 6.52)
IBHP 520 ±62 187 ±12 137 ±9

HDHP 132 ±9 32 ±6 34 ±6

DHP 169 ±10 51 ±7 78 ±9

HP 96 ±10 15 ±4 23 ±4

Enron Dataset (average # factors = 2.17)
IBHP 2602 ±101 313 ±12 381 ±12

HDHP 2322 ±117 203 ±10 392 ±11

DHP 2639 ±118 268 ±11 339 ±12

HP 729 ±92 28 ±5 19 ±5

Table 4: Model comparisons over the real datasets.

B. Latent structure vs. dynamics. The rich structure of
the NIPS dataset is balanced by its simple temporal struc-
ture just with 30 time points. This raises the question:
how much of our models performance is due to the latent
structure incorporated into our modeling framework, and
how much is due to temporal dynamics of this structure.
To study this more carefully, we shuffle the publication
years (documents published in the same year remain to-
gether, however), thus destroying temporal information.
Table 5 shows that this incurs a relatively small loss now,
suggesting that most of the performance gains observed
in Table 4 are due to the latent factors. However, remov-
ing temporal information still incurs enough of a hit in
performance to justify our methodology.

Test Log-likelihoods on the NIPS Dataset
Original Shuffled Relative Loss

IBHP 1012.08 914.76 -9.62%
HDHP 191.29 88.19 -53.90%
DHP 201.73 79.05 -60.81%
HP 40.17 18.22 -54.64%

Table 5: Model comparison on the shuffled NIPS dataset.

C. Discovering popular topics and words. One of the
immediate benefits of our IBHP is that it returns the fac-
tor rate matrix K and the word-distribution matrix V,
providing a rich summary of popular topics and words.
Figure 5 shows, in the NIPS dataset, the most popular
three topics at the end of the training dataset time span.
The lists of words suggest that the first topic is related
to kernel methods, the second to deep learning, and the
third to Bayesian methods. The intensity of the colors
indicates popularities. Our model suggests that topic 2,
which hypothetically is related to deep learning, has been
increasingly more popular in the NIPS community.
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Figure 5: NIPS dataset. Popular topics and words.

D. Learning factor dynamics. Unlike the IBP, the IBHP
matrix not only carries binary “present/missing” infor-
mation, but also real-valued kernel weights κik, which
reveal the temporal dynamics of the factors. Figure 4
shows two most popular factors from the FB dataset. The
first relates to school life, and the second to off-class ac-
tivities. To confirm this, we plot the average of the esti-
mated rate functions across four similar one week peri-
ods in Figure 4. The patterns of the two factor rates are
quite different: The first factor is active after Monday,
and peaks in the middle of the week, before cooling down
near the weekend. The second factor, however, climbs
steadily and becomes more excited during the weekend.
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E. Infering dependencies and causalities. According
to Equation 11, the rate after an event depends on ear-
lier events that share factors with it. Figure 6 provides a
detailed view of IBHP on the SB dataset under the usual
additive rule. We also apply the “double-sharing” rule to
the dataset. In Figure 7, we see several consequences: 1)
the rate functions are not triggered until the 6th obser-
vation under the double-sharing rule, 2) the IBHP ma-
trices are different, and 3) the inferred factors are differ-
ent. Further investigation shows the first red circle corre-
sponds to the observation with text “I am mean to you all
the time!” and the last red circle to “What time is it?”—
one to heat up the process and one to cool it down. This
suggests that adopting different triggering rules may al-
low us to capture different aspects of the data, which in
our SB double-sharing case, bookends an active family
discussion.

Observations Cooling HeatingBackground

Time

321 …

Stage A

Stage B

Stage C

Figure 6: SB Dataset. Additive rule. Every observation
creates a jump of the rate function. Topics can be inter-
preted as background, cooling, and heating activities.

Observations J LBackground

Time

321 …

Stage A

Stage B

Stage C

Figure 7: SB Dataset with double-sharing. White cir-
cles represent observations that do not trigger the rule.
Topics can be interpreted as background activities, and
those of Jennifer and Lisbeth.

F. Predict future event times. In Table 4, we report
the log-likelihoods on the test datasets for each a model.
To evaluate the predictive ability of our model in more
depth, we use it for a different predictive task: predict the
time of the next event in windows of increasing sizes, and
for each case, report the absolute different from the ob-
served data. Table 6 shows that, as the size of predictions
increases, the mean absolute error increases, as well as

the standard error: as the predictions becomes harder, the
predictions becomes inaccurate and unreliable. Nonethe-
less, our model outperforms competing models accord-
ing to this metric as well.

Prediction Window Size
pws = 1 pws = 5 pws = 10

IBHP 0.61 ±0.11 0.97 ±0.18 1.37 ±0.28

HDHP 0.82 ±0.13 1.24 ±0.20 2.18 ±0.33

DHP 0.87 ±0.10 1.19 ±0.16 2.21 ±0.29

HP 0.92 ±0.17 2.06 ±0.23 3.56 ±0.31

Table 6: FB Dataset. Predicting future event times.

G. Predicting future topics and words. Our last exper-
iment is concerned with the prediction of the latent state
variables. The dotted line in Figure 8 represents the end
of the training phase, where we have obtained the latent
factor rate matrix K and the latent factor word distribu-
tion matrix V. To the right of the dotted line, we show
the projected rate function, along with the first three pre-
dictions and their predicted top words. Our model sug-
gests that, for the NIPS dataset, topic 2 is taking over
topic 3 and may become dominant in the next few events.
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Figure 8: NIPS dataset. Predicted events.

7 CONCLUSION
In this paper, we proposed the Indian Buffet Hawkes Pro-
cess (IBHP)—a novel Bayesian nonparametric stochastic
point process model for learning multiple latent trigger-
ing factors of streaming document/message data. Our
approach establishes the synergy between Indian Buffet
Processes (IBP) and Hawkes processes (HP): on the one
hand, we use the IBP to add multiple triggering factors
to the HP, which helps to better model dynamics and im-
proves interpretation, and on the other hand, the tempo-
ral information from the HP is embedded into the IBP
to drive the latent factor estimation, which expands its
capability to model evolution of factors.
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Abstract

We introduce Battling-Bandits – an online
learning framework where given a set of n arms,
the learner needs to select a subset of k ≥ 2
arms in each round and subsequently observes
a stochastic feedback indicating the winner of
the round. This framework generalizes the stan-
dard Dueling-Bandit framework which applies
to several practical scenarios such as medical
treatment preferences, recommender systems,
search engine optimization etc., where it is eas-
ier and more effective to collect feedback for
multiple options simultaneously. We develop a
novel class of pairwise-subset choice model, for
modelling the subset-wise winner feedback and
propose three algorithms - Battling-Doubler,
Battling-MultiSBM and Battling-Duel: While
the first two are designed for a special class
of linear-link based choice models, the third
one applies to a much general class of pairwise-
subset choice models with Condorcet winner.
We also analyzed their regret guarantees and
show the optimality of Battling-Duel proving
a matching regret lower bound of Ω(n log T ),
which (perhaps surprisingly) shows that the
flexibility of playing size-k subsets does not
really help to gather information faster than the
corresponding dueling case (k = 2), at least for
the current subsetwise feedback choice model.
The efficacy of our algorithms are demonstrated
through extensive experimental evaluations on
a variety of synthetic and real world datasets.

1 INTRODUCTION

The problem of Dueling-Bandits has recently gained
much attention in the machine learning community
[22, 4, 24, 25, 23, 16]. Dueling bandits is an online learn-

ing framework, generalizing multi-armed bandits [5], in
which learning proceeds in rounds: At each round the
learner selects a pair of arm and observes a stochastic feed-
back of the winner of the comparison (duel) between the
selected arms. Several algorithms have been proposed for
this problem which are designed to learn to play the best
arm as often as possible over time [22, 4, 24, 25, 23, 16].
These algorithms are tailor-made to work well under spe-
cific assumptions on the underlying pairwise comparison
model that generates the stochastic feedback and under
specific definition of the winner of a set of arms [16].

In this work, we introduce a natural generalization of the
dueling bandits problem where given a set of n items
(bandit arms), the learner’s objective at each round is to
choose a subset of k ≥ 2 arms (unlike selecting just two
arms as in case of dueling bandits), upon which the winner
of the ‘battle’ among these k selected items is revealed
by the environment as stochastic feedback. The goal of
the learner is to identify an appropriately defined ‘best’
item in the process and play it often as possible.

We term this as the problem of Battling-Bandits as at
each round, essentially a subset of k items are competing
against each other unlike a pairwise duel as in the case of
Dueling-Bandits. Such settings occur naturally in many
application domains where it is practically easier for cus-
tomers or patients to give a single feedback for a set of
options (products or medical treatments), click on one
link from set of search engine outcomes etc., as opposed
to comparing only two options at a time. To the best of
our knowledge this is the first work to generalize the pair-
wise feedback model of dueling bandits to a subsetwise
model in an online regret minimization setup.

Related Work

The most related work to the current problem setup is
[17], where also a fixed set of arms in chosen in each
round. However, the key difference lies in the feedback
structure. While in [17] the feedback is a pairwise prefer-
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ence matrix consisting outcomes of one or more chosen
pairs (maximum of

(
n
2

)
pairs), in our setting we only

observe a single index of the winning arm. In [8], the
authors also consider an extension of the dueling bandits
framework where multiple arms are chosen in each round.
We differ from their setup since we allow to choose only
a fixed k-set of arms at each round, whereas [8] allows a
variable number of arm selection. Moreover their work
does not have any theoretical guarantees while we provide
regret guarantees for our algorithms. Another work in
the similar essence is DCM-bandits [12], where a list of
k distinct items are offered at each round and the users
choose one or more from it scanning the list from top
to bottom. Their learning objective differs substantially
from ours since the DCM feedback is based on a fairly
different cascading feedback model. Moreover, their re-
gret objective demands to find the set of best k items as
opposed to finding a unique best item as in our case.

Another related body of literature is dynamic assortment
optimization where the objective is offer a subset of a
fixed set of items to the customers in order to maximize
the expected revenue. The demand of any item depends
on the substitution behavior of the customers that is cap-
tured mathematically by a choice model specifying the
probability of a consumer selecting a particular item from
any offered set. The problem has been studied under
different choice models – e.g. multinomial logit [19],
mallows and mixture of mallows [9], markov chain based
choice models [10], single transition model [15], general
discrete choice models [7] etc. A related bandit setting
has also been studied as the MNL-Bandits problem in [2]
where the learner selects a fixed set of k arms in each
iteration. However, the feedback is observed from a multi-
nomial logit model (MNL) which is different from the
subset choice model we considered here. Moreover their
setting takes item prices into account due to which the
notion of the ‘best item’ is different from ours, i.e. the
Condorcet winner. Thus our current problem setting can
not be reduced to theirs and vice-versa.

Proposed Work

The main challenge of Battling-Bandits lies in keeping
track of the subset choice probabilities, i.e. the probability
of an item winning in a given subset of k items, which
could be potentially of size O(knk) as our objective is to
find the “best" (Condorcet winner) item in the hindsight,
we must allow repetitions of items within a offered set,
which actually results in nk possible number of subsets
and each subset may give rise to atmost k choice prob-
abilities depending on number of distinct items in the
subset. Thus without any further structural or parametric
assumptions on the feedback choice model, the problem
becomes computationally intractable.

We thus introduce the pairwise-subset choice model for
the purpose which is based on a pairwise preference
model with Condorcet winner (Section 2) and propose
three different algorithms (Section 3): The first two –
Battling-Doubler and Battling-MultiSBM, are inspired by
the Doubler and MultiSBM algorithms of [4] which works
under a special class of pairwise-subset choice model,
viz. linear-subset choice model, which naturally general-
izes the linear-link based dueling feedback model of [4].
Both the algorithms are based on a novel reduction of the
battling bandit problem to classical multiarmed bandit
(MAB) [5]. Note that, although they apply to a special
subclass of choice models, their regret guarantees hold
for a richer class of arm sets, e.g. the regret of Battling-
Doubler holds for any general class of (even infinitely
many!) structured arms, whereas Battling-MultiSBM ap-
plies to any finite set of unstructured arms.

Our third algorithm, Battling-duel, works for the most
general class of pairwise subset choice models, which
is built on the novel idea of reducing battling bandits to
the dueling case by using a dueling bandit algorithm as a
black box, e.g. Relative-UCB [24] or Double-Thompson
Sampling [21] which are guaranteed to work optimally
(with O(n log T ) regret guarantee) under any pairwise
preference based feedback model with Condorcet winner.

Contributions. The specific contributions of this paper
can be summarized as follows:

1. We develop a novel class of subsetwise feedback
model, called pairwise-subset choice model, which
is based on a pairwise preference model with Con-
dorcet winner that models the winning probability
of an item in a battle in terms of its pairwise winning
probabilities over others. We further analyse a spe-
cial class of the above model, namely linear-subset
choice model which generalizes the linear-link based
dueling feedback model of [4] (Section 2).

2. We propose three algorithms for the probelme of
Battling-Bandits and analyze the regret guarantees
of each under a natural notion of regret with respect
to the Condorcet item (see Section 2.2). In particular,
we show that the regret for the first two algorithms,
Battling-Doubler and Battling-MultiSBM, scales
as O(nk ln2(T )) and O(nK(ln(T ) + n ln(n) +
n ln ln(T )) respectively, under linear-subset choice
model. The regret of our third algorithm Battling-
Duel holds under the general class of pairwise-subset
choice model that scales as O(n lnT ) (Section 3).

3. We also prove a lower bound of Ω(n ln(T )) for
Battling-Bandits under pairwise-subset choice model
which shows that the regret of Battling-Duel algo-
rithm matches the lower bound (upto constant factor),

2
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thereby making it the optimal possible algorithm for
the current problem setup (Section 4). An interesting
and perhaps surprising point to note here is that our
regret bounds are independent of the subset size k,
which implies the flexibility of playing larger subsets
does not really help to gather information faster than
the corresponding dueling case (k = 2), atleast with
the current setting of the battling problem.

4. Our extensive simulation based experiments justi-
fies the derived theoretical guarantees of our pro-
posed algorithms. We also compare our algorithms
to Self-Sparring algorithm of [17], which is the only
existing work applicable to our setting and show
the superior performance of our algorithms on both
synthetic and real word data sets (Section 5).

Organization: In Section 2, we describe the problem
setup and introduce our notions of regret. Section 3 de-
scribes our three proposed algorithms along with theoreti-
cal regret guarantees. In Section 4, we derive the lower
bound for Battling-Bandits problem. Section 5 presents
our experimental evaluations and finally we conclude with
remarks and directions for future work in Section 6.

2 PROBLEM SETUP

We proposed the problem of Battling-Bandit (or in
short BB) as a natural generalization of the well-studied
Dueling-Bandit (DB) problem in the bandit literature:
Given a set of n ≥ 2 items (equivalently, bandit arms)
denoted by [n] = {1, 2, . . . , n}, at each round t ∈ N,
the learner’s task is to build a multiset of k ≥ 2 items
from [n]. The environment then picks a ‘winner’ – one
of the k items from the chosen set – according to a
subset choice model, unknown to the learner, and re-
veals the winner’s identity to the learner. We denote by
St ⊆ [n] the multiset of k items chosen by the learner,
i.e., St ≡ (St(1), . . . , St(k)) ∈ [n]k, and i∗t ∈ [k] to be
the index of the winning item in St, at iteration t. Each se-
lection of k items also carries with it a cost or regret. The
aim of the learner is to choose sets of items to minimize
the total cumulative regret over a time horizon T .

From a different point of view, the setting of receiving
the winner information of the subset St at each round t
can be seen as a game between k players. Each player is
associated with an index i ∈ [k] and chooses an arm from
[n], thus specifying the multiset St. The winning player
is the index of the winning item revealed to the learner at
time t – the winner of the battle among k players. Hence
we named it as the problem of Battling-Bandit (BB). We
next describe the rule of winner selection in a given battle.

2.1 Subset Choice Models

Given a fixed set of items (context), choice modeling
defines the decision probability of preferring an individual
or set of items through stochastic models. In the present
case, we use subset choice models to specify the winning
probability of an item in a given set. We first introduce
a broad class of subset choice models, called pairwise-
subset choice models, extending the notions from pairwise
preference models for the dueling bandit (k = 2) problem.

Pairwise-subset choice model. We define a class of
subset choice models based on any pairwise preference
matrix Q ∈ [0, 1]n×n, where Qa,b denotes the proba-
bility of arm a beating b, for any a, b ∈ [n]. Clearly,
Qa,b + Qb,a = 1. Now given a set S ⊆ [n] of k items
with S ≡ (a1, . . . , ak) ∈ [n]k and any i ∈ [k], we define
the probability of ith index gets selected as the winner as:

P (i|S) =
k∑

j=1,j 6=i

2Qai,aj
k(k − 1)

∀i ∈ [k]. (1)

It can be easily checked that the formula above defines a
valid probability distribution over the indices i ∈ [k]. We
remark that since S is a multiset, the arm corresponding to
the winning index is not necessarily unique; as an extreme
example, in the multiset of k items (a1, a2, . . . , ak), we
might have ai = a ∈ [n], ∀i ∈ [k], in which case each
index i ∈ [k] wins with probability 1/k.

Note that when k = 2 (the dueling bandit case), for
any S = (a, b), we have P (i|S) = Qai,aj , where
i, j ∈ [2], i 6= j and a1 = a and a2 = b; which de-
fines the pairwise probability of item a winning over item
b in a pairwise duel. The following result provides an
alternative interpretation of the pairwise-subset choice
model in terms of the average probability that the item in
question wins in a randomly chosen duel:
Lemma 1. Let S ≡ (a1, . . . , ak) ∈ [n]k be a multiset of
k arms from [n]. Suppose U and V are two items (indices)
chosen uniformly at random without replacement from [k],
and W ∈ [2] is drawn as the winning index according to
the pairwise preference model Q over the set (aU , aV ).
Let X = U if W = 1 and X = V if W = 2. Then, for
each i ∈ [k], P(i|S) in (1) is the probability that X = i.
Remark 1. Note that if a Condorcet winner [16] a∗ ∈
[n] exists with respect to the preference matrix Q, i.e.
∃a∗ ∈ [n], such that Qa∗,j > 1

2 , ∀j ∈ [n] \ {a∗}, then it
is easy to verify that for any (multi)set S ⊆ [n], P (i|S) >
P (j|S) whenever ai = a∗ and aj ∈ [n] \ {a∗}, ∀i, j ∈
[k], i 6= j. Our objective is to identify this ‘best’ arm
a∗ and play it as often as possible; as spelt out in the
definition of our regret (Section 2.2).

We now define an utility score based subset choice model
as a special class of pairwise-subset choice models.

3
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Linear-subset choice model. Let us assume that each
arm a ∈ [n] is associated with an unknown utility
score θa ∈ [0, 1]. Then given a multiset of k items
S ≡ (a1, . . . , ak) ∈ [n]k, the probability that its ith index
gets selected as the winner with probability

P(i|S) =

∑k
j=1,j 6=i(θai − θaj + 1)

k(k − 1)

=
1

k
+

∑k
j=1,j 6=i(θai − θaj )

k(k − 1)
, ∀i ∈ [k]. (2)

We call this the linear-subset choice model since the
model is can be seen as a special case of pairwise-
subset choice model when the underlying pairwise prefer-
ence model Qθ is linear, i.e. Pr(a beats b) = Qθa,b =
(θa−θb+1)

2 , a, b ∈ [n]. Note that this model general-
izes the linear-link based pairwise feedback model of
[4] at k = 2, as for any S = (a, b), the probability
Pr(a beats b) = (θa−θb+1)/2 becomes exactly equal to
that of [4] used for modeling the dueling bandit feedback.
Remark 2. The linear-subset choice model satisfy a nat-
ural monotonicity property: For any set S ≡ (a1, . . . , ak)
and i, j ∈ [k], θai > θaj ⇒ P (i|S) > P (j|S), thus the
element with highest θ score is most likely to get selected
as the winner of set S. In other words, an ordering over θ
values, induces an ordering over the arms as well.

There also exist other notions subset choice models in the
literature, e.g., one popular class among them is the ran-
dom utility based models (RUM) [6] as described below:

RUM based Choice Models. One of the most popu-
larly studied class of choice models are Random Util-
ity Models (RUM). RUM assumes an underlying ground
truth of utility score θi ∈ R for each item i ∈ [n],
and assigns a conditional distribution Di(·|θi) for scor-
ing item i. So given S ⊆ [n], one first draws a ran-
dom utility score Xi ∼ Di(xi|θi) xi ∈ R, for each
item i ∈ S, and selects i with probability of Xi being
the maximum among all the scores of items in S, i.e.
i ∼ P(i|S) = Pr(Xi > Xj ∀j ∈ S \ {i}), ∀i ∈ S
One widely used example of RUM is the Multinomial-
Logit (MNL) or famously called Plackett-Luce model (PL)
where D′is are independent Gumbel distributions [6], i.e.
Di(xi|θi) = e−(xj−θj)e−e

−(xj−θj) . In this case it can be
shown that P(i|S) = eθai∑

j∈S e
θaj

, ∀i ∈ S.

Similarly, alternative family of discrete choice models
can be obtained assuming different distributions over the
utility scores Xi, e.g. when (X1, . . . Xn) ∼ N (θ,Σ) are
jointly normal with mean θ = (θ1, . . . θn) and covariance
Σ, above reduces to Multinomial Probit Model (MNP),
although unlike MNL, choice probabilities P(i|S) for
MNP do not have a closed formed solution [20].

2.2 Measuring performance – Regret

We compare the performance of the learner’s strategy
with respect to a ‘best’ arm of the choice model. As
defined before, for pairwise-subset choice models, the
most natural candidate for the ‘best’ arm is the Condorcet
winner a∗ ∈ [n], i.e. Qa∗,a > 1

2 , ∀a ∈ [n] \ {a∗},
assuming Q contains a Condorcet arm. Then an intuitive
way to define the regret of Battling-Bandit is by extending
the notion of dueling bandit regret [24, 22, 4] as follows:

RBBT =
T∑

t=1

(∑
a∈St

(
Qa∗,a − 1

2

)

k

)
, (3)

Consequently, the aim of the learner is to play sets St at
times t = 1, 2, . . . to keep the regret as low as possible
which in fact corresponds to playing a∗ as many times as
possible in St, at any round t. Clearly only if the learner
plays the set St = (a1, a2, . . . ak) such that ai = a∗ ∀i ∈
[k], the corresponding regret incurred at round t is 0.

Note that, for linear-subset choice models, the ‘best’ arm
is a∗ = argmaxa∈[n]θa, i.e., an arm having the highest
utility score, as that happens to be the Condorcet winner
of the underlying pairwise preference model Qθ. Thus
using (3), we can similarly define the regret RBBT in this
case as well with Qθa∗,a = (θa∗−θa+1)

2 ,∀a ∈ [n].

3 PROPOSED ALGORITHMS
In this section we describe three algorithms for the
Battling-Bandit problem. The first two algorithms,
Battling-Doubler and Battling-MultiSBM, respectively
generalize the two algorithms for utility based dueling
bandits (UBDB) Doubler and MultiSBM, proposed by
Ailon et al. [4], which essentially address the problem by
using classical multi-armed bandit (MAB) algorithm as an
underlying black box. Our third algorithm, Battling-Duel
is based on dueling matches that uses black-box instances
of a dueling bandit algorithms for the purpose.

The main advantage of Battling-Doubler is that it works
even with an infinite set of arms, although its regret guar-
antee is off by an extra multiplicative factor of lnT . On
the other hand, Battling-MultiSBM guaranteesO(nk lnT )
regret for any finite set of n arms. However both these
algorithms are tailored for linear-subset choice model, un-
like our third algorithm, Battling-duel, which in contrast
applies to the general class of pairwise-subset choice mod-
els (Section 2) and is shown to perform optimally with a
regret guarantee of O(n log T ) as long as the it uses an
optimal dueling bandit algorithm as the black box.

Before describing our proposed algorithms, it is worth
describing the black-box algorithms used to design them.

SBM: We call a black box algorithm for the classical
4
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MAB problem1 as a single bandit machine (SBM). Any
SBM instance S supports three operations: Reset, Ad-
vance and Feedback. Reset(S) initializes the instance
S. Advance(S) suggests which arm to play next and
Feedback(S, r) feedbacks a reward r ∈ [0, 1] to S.

Definition 2. (α-robust SBM) [4] Consider a SBM in-
stance S with n arms. For any sub-optimal arm x ∈ [n],
let Tx be the number of times x is played by S in T rounds.
The SBM S is said to be α-robust if ∀s ≥ 4α∆−2

x lnT , it
holds that P[Tx > s] < 2

α (s/2)−α, where ∆x denotes
the gap between the expected reward of the best arm and
that of arm x in the underlying MAB instance.

DBM: Similar to SBM, we call a black box algorithm
for the dueling bandit problem as dueling bandit machine
(DBM). A DBM also supports the same three operations
as that of a SBM instance, with the only difference being
that a DBM instance D, outputs two arms x, y ∈ [n] on
the Advance(D) operation instead of one. We refer x as
the right arm and y the left arm. Also, in this case, the
feedback r upon Feedback(S, r) is a preference relation
between x and y defined as r = 1(y beats x). We now
describe our main algorithms and their regret guarantees.
Proofs of all the theorems are deferred to the Appendix.

3.1 Battling-Doubler

The first algorithm, Battling-Doubler, maintains a single
SBM instance S . The total time horizon T is divided into
exponentially growing epochs, and a MAB game is played
within each epoch using S . Specifically, at any epoch, the
algorithm plays the first (k − 1) arms uniformly from the
multiset of arms L selected by S in the previous epoch,
the kth arm is played adaptively according to suggestion
of the SBM S upon which S receives a binary reward
based on the defeat or victory of the kth arm it suggested.
Algorithm 1 describes Battling-Doubler formally.

Remark 3. Note that when [n] is finite, in order to save
the memory overhead of maintaining the multiset L (line
14), a more elegant approach can be to instead maintain a
probability distribution pt ∈ ∆n over the n arms, where
pta ∈ [0, 1] denotes the fraction of times arm a ∈ [n]
was played as the kth arm of St−1 at round (t− 1), and
sample at1, a

t
2, · · · , atk−1 according to pt (in line 7).

Theorem 3. Battling-Doubler Regret for general arm
sets. Assume that the SBM S used by Battling-Doubler
has expected regret no more than c lnβ(t) at the end of t ∈
N rounds, where c > 0, β > 0 are constants independent

1Given a fixed set of n arms, each associated to a reward
distribution with their expectation bounded in the range [0, 1],
the classical MAB defines the problem of identifying the best
arm with highest expected reward by actively selecting one arm
at each round sequentially and receiving a feedback from its
underlying reward distribution in an online fashion [5].

Algorithm 1 Battling-Doubler
1: Initialize: S ← an SBM over set of [n] arms
2: L ← [n]
3: `← 1, t← 1
4: while true do
5: reset(S)
6: for j = 1, 2, 3 · · · 2` do
7: Select at1, a

t
2, · · · , atk−1 uniformly from L

8: atk ← Advance(S)
9: Play St = (at1, a

t
2, · · · atk)

10: Receive winner i∗t ∈ [k]
11: Feedback(S,1(i∗t = k))
12: t← t+ 1
13: end for
14: L ← the multiset of arms played as atk in epoch `
15: `← `+ 1
16: end while

of t. Then, under the linear-subset choice model, the
expected regret of Battling-Doubler at the end of T rounds
is at most 2c kβ

β+1 lnβ+1(T ).
Corollary 4. Battling-Doubler Regret for finite set of
arms. Assume the SBM S used in Battling-Doubler is the
Upper Confidence Bound (UCB) algorithm [5] and sup-
pose the underlying feedback model used for the Battling-
Bandit problem is linear-subset choice model with pa-
rameter θ ∈ [0, 1]n, such that θ1 > maxni=2 θi. Then
the expected regret of Battling-Doubler is O(kH log2 T ),
where H :=

∑n
i=2

1
∆i

, and ∆i = θ1 − θi ∀i ∈ [n].

Note that, the above regret guarantee becomes trivial if
the gap parameter H is large. Instead, we can also derive
the a gap-independent regret bound as follows:
Corollary 5. Battling-Doubler Regret (Gap-
independent regret bound) Assume that the SBM
S in Battling-Doubler is the Upper Confidence Bound
(UCB) algorithm [5]. Then under any linear-subset
choice model, the expected regret of Battling-Doubler is
at most O(k

√
nT log3 T ).

3.2 The Battling-MultiSBM algorithm

Unlike Battling-Doubler, Battling-MultiSBM simultane-
ously maintains n independent SBMs Sa, ∀a ∈ [n]. At
each round t, the first (k − 1) arms are played according
to the last (k − 1) arms of round (t − 1) and the kth

arm is played according to the suggestion of SBM Sat−1
k

which corresponds to the kth arm played at round t− 1.
As before, a binary reward is fed back to Sat−1

k
based

on whether the arm it suggested at round t wins or not.
Battling-MultiSBM is formally described in Algorithm 2.

Theorem 6. Battling-MultiSBM Regret with
finite arms. Suppose all the SBMs used
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Algorithm 2 Battling-MultiSBM
1: Initialize: For each arm a ∈ [n],Sa ← new SBM

over set of arms [n]. Reset(Sa).
2: Select a0

2, a
0
3, · · · a0

k uniformly from [n]
3: for t = 1, 2, · · ·T do
4: atj = at−1

j+1, ∀j ∈ [k − 1]

5: atk ← advance
(
Satk−1

)

6: Play St = (at1, a
t
2, · · · atk)

7: Receive winner i∗t ∈ [k]

8: Feedback
(
Satk−1

,1(i∗t = k)
)

9: end for

in Battling-MultiSBM are α-robust, where
α = max{3, 2 + lnK

ln lnT }. Also assume θ1 > maxni=2 θi,
∆i = (θ1 − θi), ∀i ∈ [n] and H :=

∑n
i=2

1
∆i

. Then,
under the linear-subset choice model with param-
eter θ ∈ [0, 1]n, the regret of Battling-MultiSBM is

O
(
kHα

(
lnT + n lnn+ n ln lnT + 2

∑n
i=2 ln 1

θ1−θi

))
.

Note that the above bound is essentially of O(nk log T ),
since H = O(n) given a fixed instance of linear-subset
choice model θ. Similar Battling-Doubler, here also we
can derive a gap-independent regret bound as follows:
Corollary 7. Battling-MultiSBM Regret (Gap indepen-
dent regret bound). If the SBMs used in Battling-
MultiSBM are α-robust, α = max{3, 2+ lnK

ln lnT }, then un-
der any linear subset choice model, the regret of Battling-
MultiSBM is O

(
k
√
nTα

(√
lnT + n (lnn+ln lnT )√

lnT

))
.

3.3 Battling-Duel

Our third algorithm Battling-Duel, is a simple general
algorithm for Battling-Bandits that uses a good (low-
regret) dueling bandit algorithm as its black-box and
works under any pairwise-subset choice model. Battling-
Duel maintains an instance of a dueling bandit algo-
rithm (DBM) D, at each round t, the algorithm receives
two arms xt, yt ∈ [n] from D, and plays the multiset
St = (xt, xt, . . . , xt, yt, yt, . . . , yt) of k arms by repli-
cating xt and yt equal number of times on an average.
More precisely, xt is replicated for either bk/2c or dk/2e
number of times with equal probability of 1

2 and the rest
half of St is filled with yt. Upon playing St, once the
identity of the battling winner is revealed, D receives a
corresponding dueling feedback depending on if its xt or
yt. The formal description is given in Algorithm 3.

The following result shows an exact equivalence between
the regret of Battling-Duel RBBT (BD) and that of its
underlying dueling bandit algorithm RDBT (D).
Theorem 8. Battling-Duel Regret. Under any pairwise-
subset choice model with preference matrix Q, the regret

Algorithm 3 Battling-Duel
1: Initialize: D ← new dueling bandit algorithm over

set of [n] arms
2: for t = 1, 2, · · · do
3: {xt, yt} ← Advance(D)
4: St=(xt, . . . , xt, yt, . . . , yt), where xt and yt are

respectively replicated for bk/2c and dk/2e or
dk/2e) and bk/2c times, each with probability 1

2 .
5: Receive winner i∗t ∈ [k]
6: Feedback: (D,1(St(i

∗
t ) = yt))

7: end for

incurred by Battling-Duel (BD) in T rounds is

RBBT (BD) = κRDBT (D),

where κ = 2(k−1)
k if k is even, or κ = 2k

k+1 other-
wise. RDBT (D) is the regret incurred by D in T rounds,

i.e. RDBT (D) =
∑T
t=1

(Q′a∗,xt−
1
2 )+(Q′a∗,yt−

1
2 )

2 as per the
standard definition of regret for any dueling bandit algo-
rithmD [24, 22] under Q′ (as also obtained from (3) with
k = 2), Q′ being the pairwise preference model perceived
by D in Algorithm 3, such that Q′xt,yt := P(i∗t == xt),
for any choices of (xt, yt), at any round t.

Using D as the state-of-the-art RUCB algorithm [24],
gives the following regret guarantee for Battling-Doubler:
Corollary 9. Battling-Duel Regret with RUCB. Assume
that the DBM D in Battling-Duel is RUCB [24], then
under any pairwise-subset choice models with preference
matrix Q, the regret of Battling-Duel is

κ


C̃ +

∑

i∈[a]\{a∗}

2α(∆i + 4∆max)

∆2
i

lnT


 , (4)

where C̃ is a problem instance (i.e. Q) dependent con-
stant, independent of the time horizon T , ∆i =

(
Qa∗,i −

1
2

)
, ∆max = maxi∈[n] ∆i, ∀i ∈ [n], κ = 2(k−1)

k if k is

even, or κ = 2k
k+1 otherwise.

Note that Corollary 9 essentially gives an O(n log T ) re-
gret guarantee for Battling-Duel since the first term of
(4) is constant given a fixed Q, whereas the second term
scales as log T for each (n− 1) suboptimal arms. Clearly
Battling-Duel performs the best in terms of dependency
of its regret guarantee on n, k and T , among all three of
our proposed algorithms. We next establish a matching
regret lower bound of Ω(n log T ) for the problem, which
essentially proves the optimality of Battling-Duel.

4 REGRET LOWER BOUND

In this section, we derive an Ω(n lnT ) regret lower bound
(Theorem 8) for the problem of Battling-Bandit under any
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pairwise-subset choice model. Our proof involves reduc-
tion of an instance of the Dueling-Bandit (DB) problem
to an instance of the Battling-Bandit (BB) problem and
solve the former using an algorithm designed for the later.
More specifically, we first prove the following key result:

Theorem 10 (Reducing Dueling-Bandit to Battling-Ban-
dit). There exists a reduction from the Dueling-Bandits
problem to Battling-Bandits, which preserves expected
regret under any pairwise-subset choice model.

Proof. Consider that we have an algorithm ABB for the
BB problem and our goal is to construct a DB algorithm
ADB using this. One intuitive way to do this is: At any
round t, first play ABB to generate the set St of k arms,
randomly sample two indices it, jt ∈ [k] from the set [k],
play ait , ajt respectively as the left and right arm of DB,
receive the winner wt of the duel (ait , ajt) from the DB
environment and feedback a winning index i∗t to ABB
accordingly as the winner of the St battle. The resulting
algorithm ADB is as summarized in Algorithm 4.

Algorithm 4 ADB: Reducing DB to BB
1: for t = 1, 2, . . . do
2: St ←Multiset of arms played by ABB at round t
3: Draw it, jt ∼ Unif[k] (without replacement)
4: Play (ait , ajt)
5: Receive feedback wt = 1({ait beats ajt})
6: Return i∗t = itwt + jt(1− wt) ∈ {it, jt} to ABB

as winning index to ABB
7: end for

The crucial observation is that if the DB environment
actually simulates the winner from an underlying (un-
known) preference matrix Q, then internally ABB sees
a world where subset choice probabilities are given by

P(i|S) =
∑k
j=1,j 6=i 2Qai,aj
k(k−1) , due to Lemma 1. Thus at

each round t, the average instantaneous regret of ADB is:

Eit,jt∼[k],it 6=jt [rt(ADB)]

= Eit,jt∼[k],it 6=jt

[
(Qa∗,ait −

1
2 ) + (Qa∗,ajt −

1
2 )

2

]

=
1

k(k − 1)

k∑

i=1

2(k − 1)

[
(Qa∗,i − 1

2 )

2

]

=

k∑

i=1

[
(Qa∗,i − 1

2 )

k

]
= rt(ABB).

where the second equality follows since the expecta-
tion is taken over the random draw of two indices it, jt
from [k] without replacement, a∗ ∈ [n] being the Con-
dorcet arm of Q and rt(ABB) denotes the instantaneous

regret of ABB at round t, as defined in Section 2.2.
Thus we get E[RT (ADB)] = E

[∑T
t=1 rt(ADB)

]
=

∑T
t=1 rt(ABB) = RT (ABB), proving the claim.

Corollary 11. Given any algorithm ABB for Battling-
Bandits (BB) under pairwise-subset choice model asso-
ciated to a preference matrix Q with Condorcet winner,
there exists a problem instance of BB such that

lim inf
T→∞

E[RT (ABB)]

lnT
≥

∑

i∈[n]\{a∗}
min
j∈Bi

∆ij

kl(Qi,j , 1
2 )
,

where ∆ij =
(Qa∗,i− 1

2 )+(Qa∗,j− 1
2 )

2 , Bi = {j | Qi,j <
1
2}, and kl(p, q) = p log p

q + (1− p) log 1−p
1−q denotes the

kl-divergence between two Bernoulli distributions with
parameters p and q.

Remark 4. Note that Corollary 11 implies that the
asymptotic regret lower bound is Ω(n log T ) since∑
i∈[n]\{a∗}minj∈Bi

∆ij

kl(Qij , 12 )
essentially involves a

sum over (n − 1) terms, each being a constant for a
fixed Q, thus making it Ω(n). This therefore concludes
that the regret guarantee of Battling-Duel (Theorem 8) is
indeed optimal when used with a ‘good’ dueling bandit
algorithm of O(n log T ) regret guarantee (Corollary 9).

Remark 5. The optimal regret guarantee of O(n log T )
of Battling-Bandits with pairwise-subset choice model
is independent of the subset size k, which essentially
clarifies the tradeoff of learning rate with subset size k —
even with the flexibility of playing larger k-sized sets (k ≥
2) does not help in faster information aggregation than
the corresponding dueling setup (k = 2) — which might
appear counter intuitive but is justified as information
theoretically the winner information of a k-set does not
reveal any additional information over that in a 2-set.

5 EXPERIMENTS

We now present empirical evaluations for our proposed
algorithms on different synthetic and real world datasets
and also compare them with the Self-Sparring algorithm
of [17], which is the only existing work applicable to our
framework. In all our experimental results, our proposed
algorithm Battling-Duel outperforms the rest, rightfully
justifying the optimality of its regret guarantees as dis-
cussed in Remark 4. A detailed discussion is given below:

Algorithms. We compared the performances of the fol-
lowing 5 algorithms: 1. BD-RUCB: Battling-Duel (Sec-
tion 3.3) with RUCB [24] as the DBM D. 2. BD-TS:
Battling-Duel (Section 3.3) with Double-Thompson Sam-
pling [21] as the DBM D. 3. B-Dblr: Battling-Doubler
(Section 3.1) with UCB [5] as the SBM S. 4. B-Msbm:
Battling-MultiSBM (Section 3.2) with UCB [5] as the

7

811



SBM S. 5. SS-TS: Self-Sparring algorithm [17] with
Thompson Sampling [3]. This algorithm closely resem-
bles to the Sparring algorithm of [4] that maintains a
single copy of SBM (a MAB algorithm), and at each
round t, it queries the SBM k times to produce a k-sized
battling set St. To the best of our knowledge no other
existing work applies to the setup of Battling-Bandits.

Experimental Setup and Performance Measures We
plot regret of each of the 5 algorithms for different real
world and synthetic datasets, as describe in Section 5.1
and 5.2. In all the experiments the time horizon is fixed to
T = 5000 (with few exceptions if the regret plot do not
converge within 5000 time iterations) and the experiments
are run for different item sizes n and subset sizes k as
specified in the corresponding experiments. The measure
of performances in all the plots is the total regret RBBT
in T round as defined in (3). All results are reported as
average across 50 runs along with the standard deviations.

5.1 Experiments on Synthetic Datasets

For synthetic experiments with linear-subset choice model
(Section 2), we use the following four different utility
score vectors θ: 1. arith 2. geom 3. g1 and 4. g3.

Both arith and geom has n = 8 items, with item 1
being the ‘best’ (Condorcet) item of highest score, i.e.
θ1 > max8

i=2 θi; the rest of the θis are in an arithmetic
or geometric progression respectively, as their names sug-
gest. The two score vectors are described in Table 2.

arith 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
geom 0.8 0.7 0.512 0.374 0.274 0.2 0.147 0.108

Table 1: Parameters for linear-subset choice model

The next two utility score vectors has n = 15 items in
each. Similarly as before, item 1 is the Condorcet winner
here as well, with θ1 > max8

i=2 θi. More specifically
for g1, the individual score vectors are of the form: θi =
0.8, if i = 1 and θi = 0.2, ∀i ∈ [15] \ {1}. For g3, the
individual score vectors are of the form: θi = 0.8, if i =
1, θi = 0.7, ∀i ∈ [8] \ {1} and θi = 0.6, otherwise

Clearly, g3 is a harder model (for learning the Cordorcet
item), than g1 as in the former case, the gap between the
items scores are very close to each other and the best and
the second best item is only 0.1 distance apart, whereas
gap is 0.6 for every suboptimal items in the later case.
The fact is reflected in our experimental results as well.

Results on linear-subset choice model. Figure 1 shows
the comparative regret performances of the 5 algorithms,
for Battling-Bandits with linear-subset choice model on 4
different utility score vectors as described above. We set
k = 4 for arith and geom and k = 8 for the rest two.

The results clearly shows the superiority of Battling-Duel
compared to the rest. In fact, BD-TS performs slightly
better than BD-RUCB as Thompson sampling based algo-
rithms are known to perform empirically well compared
to UCB based algorithms (in spite of both1 having a sim-
ilar O(n log T ) regret guarantee), although it comes at
the cost of a higher performance variability as evident
from our plots. SS-TS being a Thompson Sampling based
algorithm, it exhibits a very high variability too.

Figure 1: Averaged regret over time on synthetic datasets
(on linear-subset choice model)

Results on MNL choice model. We also run the above
experiment for the same 4 utility scores 1. arith 2. geom
3. g1 and 4. g3 on Multinomial Logit (MNL) choice
model (as describes in Section 2). Similarly as before,
even in this case the two Battling-Duel algorithms, BD-
RUCB and BD-TS, perform the best among all 5. As
argued before, g3 being the “hardest instance to learn”,
for both linear and MNL choice models, we had to run the
algorithms for comparatively larger number of iterations
until convergence. The results are shown in Figure 2.

Figure 2: Averaged regret over time on synthetic datasets
(on multinomial logit (MNL) model)

Results on Pairwise-subset choice model. We finally
run experiments for the general pairwise-subset choice
model on two synthetic pairwise preference matrices:
arxiv-pref and arith-pref with n = 6 and n = 8 respec-
tively. See Appendix E.2 for the details of the datasets.
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We run the experiments for k = 4 for both the datasets.
As before, the two Battling-Duel algorithms excel the rest
in this case as well, as follows from Figure 3.

Figure 3: Averaged regret over time on synthetic datasets
(on pairwise-subset choice model)

5.2 Experiments on Real Datasets

We also evaluated our method on four real-world prefer-
ence learning datasets: 1. Car [1] 2. Hurdy [16] 3. Tennis
[16] and 4. Sushi [11]. Each of the dataset contains pair-
wise preferences of a given set of n items, where n = 10
for both Car and Hurdy, and it is respectively 8 and 16 for
Tennis and Sushi. All the preference matrices contain a
Condorcet winner (as required as per our problem setup in
Section 2). We set k = 6 for both Hurdy and Tennis and
respectively 4 and 10 for Car and Sushi. The description
of the datasets along with data extraction procedure and
the actual preference matrices are given in Appendix E.

Figure 4: Averaged regret over time on real datasets (on
pairwise-subset choice model)

Results. Figure 4 shows the comparative regret perfor-
mances of the 5 algorithms used. As expected, BD-TS
turns out to be the best algorithm for most of the cases,
with BD-RUCB following it closely, whereas B-BMsbm
and B-Dblr performs poorly in comparison, rightfully
justifying their suboptimal regret guarantees (Theorem 3
and 6). SS-TS shows a very high variability as usual and
performs worse than both BD-RUCB and BD-TS.

5.3 Effect of varying subset size k

We also analyze the scaling of the regret performances
our optimal algorithm Battling-Duel with increasing k.

We use BD-RUCB for the purpose on two score vectors
1. g1 and 2. g1-big with varying k, keeping n fixed to 15
and 50 respectively. Here g1-big is just a larger version
of g1 utility score with n = 50 items, such that θ1 = 0.8
and θi = 0.2, ∀i ∈ [50] \ {1} (see Appendix E for
details). The results are shown in Figure 5, which clearly
reflects that the learning rate of Battling-Duel does not
scale with k, justifying that its regret guarantee is indeed
independent of the subset size k (Theorem 8).

Figure 5: Averaged regret over time with varying k and
fixed n (on linear-subset choice model)

6 CONCLUSION AND FUTURE WORK

We introduce the problem of Battling-Bandit – generaliza-
tion of the well-studied Dueling-Bandit problem, where
the objective is to find the ‘best’ arm by successively
playing a subset of k arms from a pool of n arms and
subsequently receiving the winner feedback in an online
fashion. For this we develop a novel k-wise feedback
model, viz. pairwise-subset choice model and propose
three algorithms along with their regret bound guaran-
tees. We also show a matching regret lower bound of
Ω(n log T ) proving the optimality of our algorithms.

Our proposed framework of Battling-Bandits opens up a
set of new directions to explore – with different choices of
feedback models, regret objectives, or even applying this
to new settings like revenue maximization, contextual or
adversarial bandits etc. One very interesting point noted
here is that the optimal regret guarantee is independent
of the subset size k ≥ 2, which implies the flexibility
of playing larger subsets does not really help to gather
information faster than the corresponding dueling case
(k = 2), atleast with the current pairwise-subset choice
feedback model. It will be interesting to study the tradeoff
of the subset size on the regret (learning rate to identify the
‘best’ arm) for different subset choice models, e.g. MNL,
MNP etc. Lastly, it would also be useful to analyze other
dueling bandit algorithms, e.g. Sparring [4], especially
for large set of structured arms and their implications in
solving Battling-Bandit with different settings.
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Abstract

This work investigates the training of condi-
tional random fields (CRFs) via the stochas-
tic dual coordinate ascent (SDCA) algorithm
of Shalev-Shwartz and Zhang (2016). SDCA
enjoys a linear convergence rate and a strong
empirical performance for binary classification
problems. However, it has never been used to
train CRFs. Yet it benefits from an “exact” line
search with a single marginalization oracle call,
unlike previous approaches. In this paper, we
adapt SDCA to train CRFs, and we enhance it
with an adaptive non-uniform sampling strategy
based on block duality gaps. We perform ex-
periments on four standard sequence prediction
tasks. SDCA demonstrates performances on
par with the state of the art, and improves over
it on three of the four datasets, which have in
common the use of sparse features.

1 INTRODUCTION

The conditional random field (CRF) model (Lafferty et al.,
2001) is a common tool in natural language process-
ing and computer vision for structured prediction. The
optimization of this model is notoriously challenging.
Schmidt et al. (2015) describes a practical implementation
of the stochastic average gradient (SAG) algorithm (Roux
et al., 2012) for CRFs and proposes a non-uniform sam-
pling scheme that boosts performance. This algorithm
(SAG-NUS) is currently the state of the art for CRFs op-
timization and we refer to Schmidt et al. (2015) for a
detailed review of competing methods.

Deterministic (batch) methods such as L-BFGS (Sha and
Pereira, 2003; Wallach, 2002) have linear convergence
rate but the cost per iteration is large. On the other hand,
the online exponentiated gradient method (OEG) (Collins
et al., 2008) and SAG are both members of a family of

algorithms with cheap stochastic updates and linear con-
vergence rates, and they have both been applied to the
training of CRFs. They are called variance reduced algo-
rithms, because their common point is to use memory to
reduce the variance of the stochastic update direction as
they get closer from the optimum. Johnson and Zhang
(2013) coined the name stochastic variance reduced gradi-
ent (SVRG) and Defazio et al. (2014) unified the family.

The stochastic dual coordinate ascent (SDCA) algorithm
proposed by Shalev-Shwartz and Zhang (2013b, 2016)
is a member of this family that has not yet been applied
to CRFs. It is closely related to OEG in that it also does
block-coordinate ascent on the dual objective. Yet an in-
teresting advantage of SDCA over OEG (and SAG) is that
the form of its update makes it possible to perform an “ex-
act” line search with only one call to the marginalization
oracle, i.e. the computation of the marginal probabilities
for the CRF. This is in contrast to both SAG and OEG
where each step size change requires a new call to the
marginalization oracle. We thus propose in this paper to
investigate the performance of SDCA for training CRFs.

Contributions. We adapt the multiclass variant of SDCA
to the CRF setting by considering the marginal probabili-
ties over the cliques of the graphical model. We provide
a novel interpretation of SDCA as a relaxed fixed point
update and highlights the block separability of the dual-
ity gap. We propose to enhance SDCA with an adaptive
non-uniform sampling strategy based on the block gaps,
and analyze its theoretical convergence improvement over
uniform sampling. We compare the state-of-the-art meth-
ods on four prediction tasks with a sequence structure.
SDCA with uniform sampling performs comparably with
OEG and SAG. When SDCA is enhanced with the adap-
tive sampling strategy, it outperforms its competitors in
terms of number of parameters updates on three of the
tasks. These three tasks are all about natural language
with handcrafted sparse features. We hypothesize that
the efficiency of the dual methods can be related to the
sparsity of these features.
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Related work. Our proposed gap sampling strategy
is similar to the one from Osokin et al. (2016) in the
context of SDCA applied to the structured SVM objec-
tive, which reduces to the block-coordinate Frank-Wolfe
(BCFW) algorithm (Lacoste-Julien et al., 2013). Dünner
et al. (2017) recently analyzed a general adaptive sam-
pling scheme for approximate block coordinate ascent
that generalizes SDCA. Their proposed sampling scheme
(which basically chooses the biggest gap) was motivated
in the different context of mixed GPU and CPU computa-
tions, which does not apply to our setting. Our proposed
practical strategy takes in consideration the staleness of
the gaps and is more robust in our experimental setting.
Csiba et al. (2015) proposes an adaptive sampling scheme
for SDCA for binary classification which unfortunately
cannot be generalized to the CRF setting due to an in-
tractable computation. Closely related to our work is
Perekrestenko et al. (2017) who analyzed several adaptive
sampling strategies for a generalization of the primal-
dual SDCA setup, including our proposed gap sampling
scheme. However their analysis was focused on the sin-
gle coordinate descent method (e.g. binary SDCA) and
on sublinear convergence results obtained when strong
convexity is not assumed. We cover instead the block-
coordinate approach relevant to CRFs, and one of our
notable results is to show that the linear convergence rate
for gap sampling dominates the one for uniform sam-
pling, in contrast to what happens in the sublinear regime
studied by Perekrestenko et al. (2017).

Outline. We review the optimization problem for CRFs
as well as provide novel insights on the primal-dual op-
timization structure in Section 2. We present SDCA for
CRFs in Section 3 and discuss important implementation
aspects in Section 4. We present and analyze various
adaptive sampling schemes for SDCA in Section 5. We
provide experiments in Section 6 and discuss the implica-
tions in Section 7.

2 CONDITIONAL RANDOM FIELDS

In this section, we review the CRF model and its asso-
ciated primal and dual optimization problems. We then
derive some interesting properties which motivate several
optimization algorithms.

2.1 DEFINITION

A CRF models the conditional probability of a struc-
tured output y 2 Y (e.g. a sequence) given an input
x 2 X with a Markov random field that uses an expo-
nential family parameterization with sufficient statistics
F (x, y) 2 Rd and parameters w 2 Rd : p(y|x; w) /
exp(w>F (x, y)). The feature vector F decomposes as a

b r a c e

xi,1

yi,1

xi,2

yi,2

xi,3

yi,3

xi,4

yi,4

xi,5

yi,5

Figure 1: Example of graphical model for the optical
character recognition (OCR) task. We want to exploit
the structure of the word to predict that yi,5 is an "e"
and not a "c". This can be done by working on the pairs
yi,{t,t+1} = (yi,t, yi,t+1), the cliques of that model.

sum over the cliques C 2 C of the graphical model for y:
F (x, y) =

P
C FC(x, yC), where yC denotes the subset

of coordinates of y selected by the indices from the set C.
See Figure 1 for an illustration.

2.2 PRIMAL PROBLEM

We have a data set (xi, yi)i2[1,n] of n i.i.d. input and
structured output pairs. The parameter is learned by mini-
mizing the `2-regularized negative log-likelihood:

min
w2Rd

�

2
kwk22 +

1

n

nX

i=1

� log (p(yi|xi; w)) . (1)

We now rewrite it using the notation for the SDCA setup
for multi-class classification from Shalev-Shwartz and
Zhang (2016). Denote Mi = |Yi| the number of la-
belings for sequence i. Denote Ai the d ⇥ Mi matrix
whose columns are the corrected features { i(y) :=
F (xi, yi) � F (xi, y)}y2Yi

. Denote also �i(s) :=
log
�P

y2Yi
exp(sy)

�
the log-partition function for the

scores s 2 RMi . The negative log-likelihood can be
written � log(p(yi|xi; w)) = �i(�A>i w). The primal
objective function to minimize over w 2 Rd thus be-
comes:

P(w) :=
�

2
kwk22 +

1

n

nX

i=1

�i(�A>i w) . (2)

2.3 DUAL FORMULATION

The above minimization problem (2) has an equivalent
Fenchel convex dual problem (Lebanon and Lafferty,
2002). Denote �M the probability simplex over M ele-
ments. Denote ↵i 2 �Mi the set of dual variables for a
given xi. The dual problem handles directly the probabil-
ity of the labels for the training set. The dual objective
to maximize over the choice of ↵ = (↵1, . . . ,↵n) 2
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�|Y1| ⇥ . . .⇥�|Yn| is:

D(↵) := ��
2
k 1

n�

X

i

Ai↵ik2 +
1

n

nX

i=1

H(↵i) , (3)

where H(↵i) := �Py2Yi
↵i(y) log(↵i(y)) is the en-

tropy of the probability distribution ↵i. The negative
entropy appears as the convex conjugate of the softmax:
�H = �⇤.

2.4 OPTIMALITY CONDITION

We define the conjugate weight function ŵ as follows:

ŵ(↵) :=
1

n�

X

i

Ai↵i =
1

�n

nX

i=1

Ey⇠↵i [ i(y)]

=
1

�

 
1

n

nX

i=1

F (xi, yi)�
1

n

nX

i=1

Ey⇠↵i
[F (xi, y)]

!
.

It is the difference between the average of the ground
truth features, and the average of the expected features
for the dual variable, up to a factor 1

� . We can show that
ŵ(↵?) = w? where w? and ↵? are respectively the opti-
mal primal parameters and the optimal dual parameters.

We can also define the conjugate probabilities ↵̂i as fol-
lows:

8i, ↵̂i(w) := rs�i(�A>i w) = p(.|xi; w). (4)

We get another optimality condition ↵̂(w?) = ↵?. These
two optimality conditions can be deduced directly from
the structure of the duality gaps.

2.5 DUALITY GAPS

Note that P(w) � D(↵) is always true, with equality at
the optimum. The duality gap is defined by:

g(w,↵) = P(w)�D(↵) . (5)

Note that we can rewrite the primal gradient as following:

rP(w) = �(w � ŵ � ↵̂(w)) . (6)

One can verify that:

g(w, ↵̂(w)) =
�

2
kw � ŵ(↵̂(w))k2 (7)

=
1

2�
krP(w)k2 . (8)

This structure of the gap for the primal weights and its
conjugate dual probabilities have an equivalent in the
dual. Denote the Fenchel duality gap of �i for the scores
si = �AT

i w and probabilities ↵i:

Fi(si,↵i) := �i(si) + �⇤i (↵i) + sT
i ↵i � 0. (9)

The positivity comes from the definition of convex con-
jugates. The gap is zero when si and ↵i are conjugate
variables for �i, e.g. ↵i = r�i(si). For any smooth
loss �i, the duality gap between ŵ(↵) and↵ decomposes
as a sum of Fenchel gaps (Shalev-Shwartz and Zhang,
2013a):

g(ŵ(↵),↵) =
1

n

X

i

F (�AT
i ŵ(↵),↵i). (10)

The log-sum-exp and the entropy are a special pair
of conjugates. Their Fenchel duality gap is also
equal to the Bregman divergence generated by �⇤i =
�H , the Kullback-Leibler divergence: Fi(si,↵i) =
DKL(↵i||r�i(si)). Writing this for the same pair of
conjugate variables yields:

g(ŵ(↵),↵) =
1

n

X

i

DKL(↵i||↵̂i(ŵ(↵)). (11)

The duality gaps (7) and (11) are typically used to monitor
the optimization. In Appendix D, we explain how one can
transfer a convergence guarantee on the primal or dual
suboptimality to a convergence guarantee on the duality
gap.1 Moreover, the block-separability of gaps from (11)
can motivate an adaptive sampling scheme, as we describe
in Section 5.

2.6 INTERPRETATION

The primal formulation chooses a w of small norm so
as to maximise the conditional probability of observing
the labels. Conversely, the dual formulation chooses con-
ditional probabilities of the labels so as to minimize the
`2 distance between the expected features and empirical
expectation of the ground truth features. The optimal dis-
tribution would be the empirical distribution, if not for the
entropic regularization that favors more uniform probabili-
ties. This is the regularized version of the classical duality
between maximum-likelihood and maximum-entropy for
exponential families.

The optimality conditions show that the solution of the
primal Problem (2) is also a fixed point for the function ŵ�
↵̂. Because of the gradient form (6), the gradient descent
update can also be written as a relaxed fixed point update:

w+ = w � �rP(w) (12)
= (1� ��)w + �� ŵ � ↵̂(w) . (13)

The algorithm SDCA described in the next section also
admits a relaxed fixed point update on the block ↵i

1 This implies that convergence results on the dual problem
directly translates to convergence results on the primal and vice-
versa; a fact apparently missed in the linear rate comparison
of Schmidt et al. (2015).
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(see (14)). More generally, optimization algorithms for
Problem (2) can often be interpreted as a back and forth
between the conjugate variables w and ŵ(↵̂(w)) (primal
methods) or ↵ and ↵̂(ŵ(↵)) (dual methods). For instance,
one could interpret OEG as a relaxed fixed point iteration
over the score variables si = �AT

i w.

w
↵̂ //

�
rs�i(�AT

i w)
�n
i=1

✏✏
1

n�

P
i Ai↵i

OO

↵
ŵoo

Most of the results presented in this section and in Sec-
tion 5 can be transposed to other kinds of loss and regu-
larization, under some regularity assumptions. Our focus
in this paper is the application of SDCA to CRF models
and thus we focused the discussion on the log-likelihood
setting and the `2 norm, which are widely used.

3 PROXIMAL STOCHASTIC DUAL
COORDINATE ASCENT

We first describe the SDCA in its general setting, and then
describe the necessary modifications for training a CRF.

3.1 GENERAL SETTING

The stochastic dual coordinate ascent algorithm (SDCA)
updates one dual coordinate at a time so as to maximize
the dual objective. SDCA was originally proposed for
binary classification (Shalev-Shwartz and Zhang, 2013b)
where each dual variable ↵i lives in �2 = [0, 1]. In this
case, it is possible to do exact coordinate maximization
of the dual objective over a single ↵i with standard one
dimensional optimization.

In the multi-class setting however, there is no simple way
to maximize the dual objective over the block ↵i 2 �K .
The algorithm with the surprising name of Proximal-
SDCA2, option II (Shalev-Shwartz and Zhang, 2016) pro-
poses a solution to this problem. It updates ↵i in a clever
direction derived from the primal-dual relationship, which
amounts to a relaxed fixed point update. See Algorithm 1.

We now describe the idea. At all time, we maintain the
pair of dual and primal variables (↵, w = ŵ(↵)). At
each step, we sample a training point i. We compute �i =
rs�i(�AT

i w) = ↵̂i � ŵ(↵), the next fixed point iterate.
We then define the dual ascent direction by �i := �i � ↵i.
Finally we update the block ↵i with the right step size
so as to increase the dual objective D(↵) using a relaxed
fixed point update:

↵+
i  ↵i + ��i = (1� �)↵i + �↵̂i � ŵ(↵) . (14)

2We simply call it SDCA in the rest of this paper

Algorithm 1 Prox-SDCA (option II) called SDCA here

Initialize ↵(0)
i 2 �Mi

, 8i
Let w(0) = ŵ(↵(0)) = 1

�n

P
i Ai↵i

for t = 0, 1 . . . do
Sample i uniformly at random in {1, . . . , n}
Let �i := ↵̂i(w) = rs�(�AT

i w)

Let �i = �i � ↵(t)
i {dual ascent direction}

Let vi = 1
�nAi�i {primal direction}

Solve Equation (15) to get �⇤ {Line Search}
Update ↵(t+1)

i := ↵
(t)
i + �⇤�i

Update w(t+1) := ŵ(↵(t+1)) = w(t) + �⇤vi

The dual ascent direction is guaranteed to increase D(↵),
unless �i = 0 (this actually means that the block is already
optimal, see (11)). The primal weights w = ŵ(↵) are
related to ↵ by a linear transformation. Define the primal
direction vi = 1

�nAi�i 2 Rd. One can update the weights
directly: w+  w + �vi.

The step size � 2 [0, 1] is either fixed, or found via line
search. In practice the fixed step size for which conver-
gence is guaranteed is really small. The line search is
relatively cheap as we are looking at only one block:

�⇤ := arg max
�2[0,1]

��⇤i (↵i +��i)�
�n

2
kw +�vik2. (15)

Note that one can decompose the quadratic term and pre-
compute hw, vii and kvik2 to accelerate the optimisation.
The bottleneck remains the computation of �⇤i (and its
derivatives).

3.2 ADAPTATION TO CRF

In the CRF setting, the dual variable ↵i is exponentially
large in the input size xi. For a sequence xi of length T
where each node can take up to K values, the number
of possible labels is |Yi| = KT . It might not even fit in
memory. Instead, the standard approach used in OEG and
SAG is to consider the marginal probabilities (µC)C2C
on the cliques of the graphical model. Similarly, we
replace ↵ by µ = (µ1, · · · , µn), where µi 2

Q
C �C is

the concatenation of all the clique marginal vectors for
the sample i. For the same sequence xi, this reduces the
memory cost to K2(T � 1) for the pair marginals. We
denote mi =

P
C |Yi,C | this new memory fingerprint.

For a sequence long enough, we have mi ⌧ Mi. The
associated weight vector can still be expressed as function
of µ thanks to the separability of the features:

ŵ(µ) =
1

�n

X

i

X

C

Eµi,C
[ i,C ] =

1

�n

X

i

Biµi, (16)

where Bi = ( i,C(yC))C,yC
2 Rd⇥mi is the horizontal

concatenation of the cliques feature vectors.
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Algorithm 2 SDCA for CRF

Initialize µ
(0)
i 2QC �C consistently 8i {use (21)}

Set w(0) := ŵ(µ(0)) = 1
�n

P
i Biµ

(0)
i {See (16)}

(Optional) Let gi = 100, 8i
for t = 0, 1 . . . do

Sample i uniformly at random in {1, . . . , n}
(Alternatively) Sample i proportionally to gi

Let ⌫i,C(yC) := p(yC |xi; w
(t)), 8C 2 C {oracle}

(Optional) Let gi = D̃(µi||⌫i) {duality gap (19)}
Let �i = ⌫i � µ

(t)
i {ascent direction}

Let vi = 1
�n ŵ(�i) {primal direction}

Solve Equation (20) to get �⇤ {Line Search}
Update µ

(t+1)
i := µ

(t)
i + �⇤�i

Update w(t+1) := ŵ(µ(t+1)) = w(t) + �⇤vi

Now, assume that the graph has a junction tree struc-
ture T = (C, S) (Koller and Friedman, 2009, Def. 10.3),
where C is the set of maximal cliques and S the set of
separators. We can then run message passing on the junc-
tion tree to infer the new marginals given weights w:
µ̂i(w) = p(yC = .|xi; w). We can also now recover the
joint probability ↵i(y) as a function of its marginals µi,C

(Koller and Friedman, 2009, Def. 10.6):

↵i(y) =

Q
C2C µi,C(yC)Q
S2S µi,S(yS)

. (17)

Equation (17) in turn allows us to compute the entropy
and the divergences of the joints, using only the marginals.
Let µi and ⌫i be the marginals of respectively ↵i and �i,
then the entropy and the Kullback-Leibler divergence are
given by:

H̃(µi) := H(↵i) =
X

C

H(µi,C)�
X

S

H(µi,S) (18)

and

D̃(µi||⌫i) := DKL(↵i||�i)

=
X

C

DKL(µi,C ||⌫i,C)�
X

S

DKL(µi,S ||⌫i,S). (19)

With this expression of the entropy (18), we can compute
the dual objective, and thus perform the line search:

�⇤ = arg max
�2[0,1]

H̃(µ
(t)
i +��i)�

�n

2
kw(t)+�vik2. (20)

With the Kullback-Leibler divergence (19), we can com-
pute efficiently the individual duality gaps from (11). Al-
gorithm 2 describes this variation of SDCA, with as an
option a non-uniform sampling strategy defined in Sec-
tion 5.3.

4 IMPLEMENTATION

We provide in Appendix A a discussion of various impor-
tant implementation aspects summarized here.

1. The initialization of dual methods for CRFs can sig-
nificantly influence their performance. As explained
in Appendix A, we use:

↵(0) := "u + (1� ")� , (21)

where u is the uniform distribution on each block, �
is a unit mass on each ground truth label and " is a
small number.

2. Storing the dual variable may be expensive and one
should allocate a decent amount of memory.

3. The line search requires computing the entropy of
the marginals. This is costly and we used Newton-
Raphson algorithm to minimize the number of itera-
tions. This in turn requires storing the logarithm of
the dual variable.

5 ADAPTIVE SAMPLING FOR SDCA

Recently, there has been a lot of attention on non-uniform
sampling for stochastic methods. The general goal is to
sample more often points which are harder to classify and
can bring more progress on the objective. These methods
are said to be adaptive when the sampling probability
changes during the optimization. SDCA itself has had
several adaptive schemes proposed. In the following, we
attempt to explain and relate these methods, and suggest
new schemes that work well on our problem.

5.1 ASCENT LEMMA

We start by restating the ascent lemma from Equation (25)
in Shalev-Shwartz and Zhang (2013a). This lemma in-
spires and supports all the strategies.

Ascent after sampling i: At iteration t, if we sample i
and take a step of size �i 2 [0, 1], we can lower bound
the resulting dual improvement:

n(D(↵+)�D(↵))

� �i

⇥
�(�AT

i w) + �⇤(↵i) + wT Ai↵i

⇤
| {z }

Fenchel gap=:gi

+ �i

✓
(1� �i)

2
� �iRi

2�n

◆
k�i � ↵ik21 (22)

where Ri := kAik21!2 = maxy2Yi
k i(y)k22 is the

squared radius of the corrected features for sample i.

Note that compared to the original text, we used the fact
that the regularizer is the `2 norm and the loss is 1-smooth
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with respect to the `1 norm. We define R := maxi Ri,
R̄ := 1

n

P
i Ri and ḡ := 1

n

P
i gi the true duality gap

(see (9)-(10)). We also introduce Li := � + Ri

n an
upper bound on the smoothness of loss i plus regular-
izer for the `2 norm. We recall from Section 2.5 that
gi = DKL(↵i||�i) (11). We give the name residual to
di := k�i � ↵ik21.

This lemma is derived with standard assumptions and
inequalities on the smoothness of the loss and the strong
convexity of the regularizer. The first term of the lower
bound is the ascent guarantee while the other term gives
condition on the step-size to ensure progress. We refer
the reader to the original paper for more details.

To get the expected progress (conditioned on the past)
after sampling with probability p, we simply need to take
the sum of the inequality above after multiplying both
sides by pi. Our goal is to maximize this lower bound by
choosing the right probability p and step sizes �. To be
able to conclude the proof with the original method, we
also want some constants time the duality gap ḡ to appear
in the lower bound – the gap is lower bounded by the dual
suboptimality and thus this constant will give the linear
rate of convergence. The lemma can then transpose this
result from the dual sub-optimality to the duality gap as
described in Appendix D. From there on there are two
general approaches: importance sampling and duality gap
sampling.

5.2 IMPORTANCE AND RESIDUAL SAMPLING

With the importance sampling approach, the goal is to set
the step-size and the probability so that they cancel each
other out: �i = �

pi
. One then get an unbiased estimate

of the true duality gap from (11) as the first term of the
upper bound. What is left is maximizing the second term
with respect to p. This is the approach proposed by Zhao
and Zhang (2015) (Importance Sampling, left term below)
and generalized by Csiba et al. (2015) (Residual sampling,
a.k.a. AdaSDCA for binary classification, right term):

pi / Li or pi / di

p
Li. (23)

These sampling schemes somehow allow to maximize the
second term of (22). Intuitively, they replace a depen-
dency on R in the convergence rate by a dependency on
R̄. They can give good results on binary and multi-class
logistic regression. There are a few issues though.

• One needs an accurate estimate of the Li.
• Importance sampling is not adaptive.
• In the CRF setting, the residual is di = k�i � ↵ik21.

It is the squared `1 norm of a vector of exponential
size. We are not aware of any trick to compute it
efficiently.

5.3 GAP SAMPLING

To make sure that the second term is positive, the original
proof of uniform SDCA sets �i = � = (1 + R

�n )�1 to
obtain:

nEp[D(↵+)�D(↵)] � �
X

i

pigi. (24)

Assuming a full knowledge of the duality gaps gi, the
optimal decision is to sample the point with maximum
duality gap. This was done by Dünner et al. (2017) in the
context of multi-class classification on a pair CPU-GPU.
While the GPU computes the update, the CPU updates as
many duality gaps as possible. This lead to impressive
acceleration over massive datasets.

However, this is not our current setting. We know and
update only one gap at a time (for efficiency). Because of
staleness of the gaps, our experiments with this method
did not even converge for the most part (see Section 6.3).
We need a more robust method.

We take inspiration from what was done by Osokin et al.
(2016) to improve the Block-Coordinate Frank-Wolfe
(BCFW) algorithm (Lacoste-Julien et al., 2013). We pro-
pose to bias sampling towards examples whose duality
gaps are large: pi / gi. If we know all the duality gaps,
the expected improvement reads:

nEp[D(↵+)�D(↵)] � �(g)2 � ḡ, (25)

where �(g) =
q

1
n

P
i g2

i

ḡ2 2 [1,
p

n] is the non-uniformity
of the duality gaps, as defined in Osokin et al. (2016, Sec-
tion 3.1). The value �(g)2� is the value that will appear in
the linear convergence rate of this method. It means that
the convergence rate for gap sampling dominates the one
for uniform sampling. This is different from what was ob-
served for BCFW where they could not prove dominance
in general.

In practice we use stale estimates of the gaps and there are
no convergence guarantees. We discuss more this issue in
section 6.3.

We also explored a combination of gap sampling and im-
portance sampling. We could get similar convergence rate
where a trade-off appeared between the mean smoothness
and the non-uniformity. We detail these considerations as
a technical report in Appendix F for the interested reader.

6 EXPERIMENTS

We conducted these experiments to answer three ques-
tions: (1) How does the line search influence SDCA? (2)
How do the non-uniform sampling schemes compare with
each other? and (3) How does SDCA compare with SAG
and OEG on sequence prediction?
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Table 1: Dataset summary. d is the dimension of w. n is
the number of data points (sequences). N is the number
of nodes (e.g. sum of sequences length). K is the number
of possible labels for each node. A is the number of
attributes (see Appendix B). a is the maximum number of
attributes extracted from one node. Mem. is the memory
required by the pairwise marginals stored as float 64. The
pairwise marginals dominate the memory cost.

Dataset OCR CONLL NER POS

d 4,082 1.6⇥ 106 2.8⇥ 106 8.6⇥ 106

n 6,202 8,936 15,806 38,219
N 52,827 2.1⇥ 105 2⇥ 105 9.1⇥ 105

K 26 22 9 45
A 128 74,658 3.1⇥ 105 1.9⇥ 105

a 128 19 20 13
Mem.(GiB) 0.2 0.7 0.1 13

6.1 EXPERIMENTAL SETTING

We applied the experimental setup outlined by Schmidt
et al. (2015). We implemented SDCA to train a classi-
fier on four CRF training tasks: (1) the optical character
recognition (OCR) dataset (Taskar et al., 2004), (2) the
CoNLL-2000 shallow parse chunking dataset (CONLL),
(3) the CoNLL-2002 Dutch named-entity recognition
dataset (NER), and (4) a part-of-speech (POS) tagging
task using the Penn Treebank Wall Street Journal data.
Additional details regarding these datasets are provided
in Table 1. Note that the tasks (2), (3), (4) are about lan-
guage understanding. They use sparse features (the ratio
a/A from the table is small). The sparsest data set is NER.
Note that POS is considerably larger than other datasets.
All experiments are performed with a regularization factor
� = 1/n. We used our own implementation3 of SDCA
coded in plain Python and Numpy (Walt et al., 2011). In
most plots we report the logarithm base 10 of the primal
sub-optimality. We got the optimum by running L-BFGS
a large number of iterations.

6.2 EFFECT OF THE LINE SEARCH

We implemented the safe bounded Newton-Raphson
method from Press et al. (1992, Section 9.4) on the deriva-
tive of the line search function. A natural question to ask
is : how precise should the line search be? The stopping
criterion for this algorithm is the size of the last step taken
so there is no proper precision parameter. We refer to this
stopping criterion for the line search as the sub-precision
of SDCA.

3The code to reproduce our experiments is available
at: https://remilepriol.github.io/research/
sdca4crf.html.

We discovered experimentally that the convergence of
SDCA is mostly independent of the sub-precision. On
all datasets, if we ask 0.01 sub-precision or less, SDCA
converges with the same rate. An explanation is that the
accuracy of the optimization arises from iterates ↵ and
↵̂(ŵ(↵)) getting closer to each other in the simplex with
each iteration.

Reaching 0.01 or 0.001 takes on average 2 iterations.
Each iteration of Newton’s method require the computa-
tion of the first and second derivative of the line search
objective (20). In the following we report results with
sub-precision 0.001 to be on the safe side. These 2 iter-
ations were taking about 30% of the algorithms running
time for each dataset.4

We also performed experiments with only one step of the
Newton update. The convergence was not affected on
OCR, CONLL and POS, but convergence failed on NER
(see Figure 8 of Appendix E). This phenomenon could be
related to sparsity.

6.3 COMPARISON OF SAMPLING SCHEMES

We compare the performance of four sampling strategies
with 20% of uniform sampling against the full Uniform
approach, on the OCR dataset (see results in Figure 2):

• Importance: sample proportionally to the smooth-
ness constants Li = � + Ri

n . We report how we
evaluated the radii Ri in Appendix C.

• Gap: sample proportionally to our current estimate
of the duality gaps.5

• Gap ⇥ importance: sample proportionally to the
product of the gap and smoothness constants.

• Max: sample deterministically the variable with the
largest recorded gap (Dünner et al., 2017).

As discussed in Section 5.3, Max sampling is not robust
enough to the staleness of the gap estimates and fails to
converge here. We also observe that Importance performs
worse than Uniform, and that Gap⇥ Importance performs
worse than Gap. This indicates that the smoothness upper
bounds we estimated are not informative of the difficulty
of optimizing a point for SDCA. Overall, Gap sampling
gives the best performance and this is what we use in the
following experiments.

The ratio of uniform sampling is here to mitigate the
fact that we sample proportionally to stale gaps. This is

4 We also tried initializing the line search with 0.5 or with
the previous step size. There was no significant difference.

5 For the gap approaches, we initialize the gap estimates with
large values (100) so as to perform a pass over the whole dataset
before starting to sample proportionally to the stale estimates.
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Figure 2: Performance of competing sampling schemes
on the OCR dataset with 80% of non-uniformity. Sam-
pling proportionally to the gap gives the best performance.
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Figure 3: SDCA with Gap sampling applied on NER with
various fractions of non-uniform sampling, as indicated
by the number in the legend. Increasing the fraction only
improves the performance, up to a certain point.

the strategy adopted by SAG-NUS (Schmidt et al., 2015)
which samples uniformly half of the time. Another strat-
egy used by Osokin et al. (2016) is to update all the duality
gaps at once every 10 epochs or so. Our experiments indi-
cate that these strategies are not needed for SDCA-GAP.
Increasing the ratio of non-uniformity up to 1 only im-
proves the performance on all datasets, though after 0.8
the improvements are marginal, as illustrated by Figure 3
for the NER dataset.

In fact, the estimate of the total gap maintained by SDCA
is somewhat accurate, as illustrated for different datasets
in Figure 9 of Appendix E. Empirically, it always remains
within a factor 2 of the true duality gap. This accuracy
is a good news because one can use this estimate of the
duality gap as a stopping criterion for the whole algorithm.
Once it reaches a certain precision threshold, one just has
to perform one last batch update to check the real value.
This is similar in spirit to SAG, which uses the norm of its
estimate of the true gradient as a stopping criterion. Both
are duality gaps estimators (see Equation (7)).

6.4 COMPARISON AGAINST SAG AND OEG

We downloaded the code for OEG and SAG-NUS as im-
plemented by Schmidt et al. (2015) from the SAG4CRF
project page.6 We used our own implementation of SDCA
with a line search sub-precision of 0.001. We provide
the comparison in Figure 4 according to two different
measures of complexity which are implementation inde-
pendent.

Oracle calls. Schmidt et al. (2015) compared the algo-
rithms on the basis of the number of oracle calls. We re-
port these on OCR and NER in Figures 4a and 4d. Results
on the other datasets are in Figure 6 in Appendix E. This
metric was suitable for the methods they compared. Both
OEG and SAG-NUS use a line search where they call an
oracle on each step. SDCA does not need the oracle to
perform its line search. However the oracle is message
passing on a junction tree. It has a cost proportional to
the size of the marginals. Each iteration of the line search
require computing the entropy of these marginals, or their
derivatives. These costs are roughly the same. Comparing
the number of oracle calls for each method is thus unfairly
advantaging SDCA by hiding the cost of its line search.
It becomes a relevant comparison when a marginalization
oracle becomes much more expensive than approximating
the entropy (see the discussion in Section 7). When this
cost is hidden, SDCA-GAP is on par with SAG-NUS* on
OCR and it is much faster on the sparse datasets.

Parameter updates. To give a different perspective, we
report the log of the sub-optimality against the number
of parameter updates in Figures 4b, 4c, 4e and 4f. This
removes the additional cost of the line search for all meth-
ods.7

We observe that uniform SDCA and OEG need roughly
the same number of parameters update on all four datasets.
When we add the adaptive gap sampling, SDCA outper-
forms OEG by a margin. On OCR, SDCA and SDCA-
GAP do not perform as well as SAG-NUS. On the three
other datasets, SDCA-GAP needs less iterations. In fact,
the more sparse the dataset, the less iterations are needed.

This is likely explained by SDCA’s ability to almost per-
fectly optimize each block separately due to its line search
method. More specifically, as the datasets become sparser,
the prediction between data points becomes less and less
correlated (i.e. the label distribution for two points that
share no attributes will not influence each other directly
through their primal weights). In settings where no points

6https://www.cs.ubc.ca/~schmidtm/
Software/SAG4CRF.html

7 This is a penalty for SAG-NUS* which enforces a line-
search skipping strategy.
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(a) OCR (Oracle Calls) (b) OCR (c) CONLL

(d) NER (Oracle calls) (e) NER (f) POS

Figure 4: Primal sub-optimality as a function of the number of oracle calls (left) or parameters updates (center and
right). SDCA refers to uniform sampling. SDCA-GAP refers to sampling Gap sampling 80% of the time. SAG-NUS
performs a line search at every iteration. SAG-NUS* implements a line-search skipping strategy. It appears worse than
SAG-NUS when we look at the number of updates, which hides the cost of the line search.

share any attributes (completely sparse), all methods opti-
mize each point independently. SDCA may perform very
well thanks to its precise line search.

In terms of test error, SDCA is on par with SAG, and a bit
better than OEG. All methods reach maximum accuracy
after a few epochs. We report the evolution of the test
error in Figure 7 of Appendix E.

Comparing the number of parameters updates also has
a disadvantage. It penalizes methods with line search
skipping strategies likes OEG and SAG. The running time
is highly implementation dependent and providing a fair
comparison is non-trivial. We focused on implementation
independent comparisons. SCDA, SAG and OEG have
many common operations: the oracle, the computation of
the scores and the primal direction. The fact that the line
search took only 30% of SDCA’s runtime indicates that
the conclusion drawn from the number of updates may
hold for other metrics.

7 DISCUSSION

In this work, we investigated using SDCA for training
CRFs for the first time. The observed empirical con-
vergence per parameter update was similar for standard
SDCA and OEG. However, SDCA can be enhanced with
an adaptive sampling scheme, consistently accelerating

its convergence and also yielding faster convergence than
SAG with non-uniform sampling on datasets with sparse
features. It would be natural to also implement a gap sam-
pling scheme for OEG, though several quantities needed
for the computation are not readily available in standard
OEG and would yield higher overhead in actual imple-
mentation. We leave finding a more efficient implementa-
tion of a gap sampling scheme for OEG as an interesting
research direction.

A key feature of SDCA is to only require one marginal-
ization oracle per line-search. This could become ad-
vantageous over SAG or OEG when the marginalization
oracle becomes much more expensive than evaluating the
entropy function from the marginals. Examples for this
scenario include: when a parallel implementation is used
for the entropy computation; or when the marginalization
oracle uses an iterative approximate inference algorithms
such as TRW BP whereas an approximation of the en-
tropy is direct from the marginals (Krishnan et al., 2015).
Investigating these scenarios with full timing comparison
(which is implementation dependent) is a further interest-
ing direction of future work.

We also note that acceleration schemes have been pro-
posed for both SAG and SDCA (Lin et al., 2015; Shalev-
Shwartz and Zhang, 2016), though they have not been
tested yet for training CRFs.
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Abstract

We propose a new algorithm for computing
a constant-factor approximation of precision-
recall (PR) curves for massive noisy datasets
produced by generative models. Assessing va-
lidity of items in such datasets requires human
annotation, which is costly and must be mini-
mized. Our algorithm, ADASTRAT, is the first
data-aware method for this task. It chooses the
next point to query on the PR curve adaptively,
based on previous observations. It then selects
specific items to annotate using stratified sam-
pling. Under a mild monotonicity assumption,
ADASTRAT outputs a guaranteed approxima-
tion of the underlying precision function, while
using a number of annotations that scales very
slowly with N , the dataset size. For exam-
ple, when the minimum precision is bounded
by a constant, it issues only log logN preci-
sion queries. In general, it has a regret of no
more than log logN w.r.t. an oracle that is-
sues queries at data-dependent (unknown) op-
timal points. On a scaled-up NLP dataset of
3.5M items, ADASTRAT achieves a remark-
ably close approximation of the true precision
function using only 18 precision queries, 13x
fewer than best previous approaches.

1 INTRODUCTION

Generative machine learning models can produce mas-
sive amounts of noisy data. To be fruitfully used as a
standalone resource for human consumption or in down-
stream applications, a practitioner must understand the
quality of such data. This is often done with a precision-
recall or PR curve, which characterizes how data quality
degrades as the model’s confidence in the validity of each

item reduces. While a PR curve can be easily created for
discriminative models by using pre-annotated held-out
data, doing so for generative models is not straightfor-
ward. The latter is particularly challenging when human
judgment or an expensive simulation is required to assess
the validity or quality of generated data items.

Consider, for example, a creative deep learning sys-
tem that can generate a million poems about a given
topic (Ghazvininejad et al., 2016) or a natural language
system that has produced over a hundred million English
paraphrase pairs (Ganitkevitch et al., 2013; Pavlick et al.,
2015). How does one go about assessing the quality of
such generated data or of the models behind them?

A key bottleneck is annotation: Despite substantial ad-
vances in crowdsourcing technology, our ability to an-
notate novel data at a reasonable cost is far outpaced by
increasingly sophisticated models that generate data at
an even quicker pace. Computing the exact precision of
a dataset of N items requires annotating the validity of
every item, making exact computation infeasible for all
but the smallest datasets. Conventional random sampling
methods can achieve a constant-factor approximation of
the PR curve with Θ(

√
N logN) valid/invalid annota-

tions, but this, as Sabharwal and Sedghi (2017) argued, is
also impractical in the modern era of big data. They pro-
posed a logarithmic stratified sampling algorithm, hence-
forth referred to as LOGSTRAT, that can do so using
only O(logN log logN) annotations,1 as long as the un-
derlying precision function satisfies a weak monotonic-
ity property. They also proposed PAULA, which achieves
this with O(∆ logN) annotations, but requires a stronger
notion of local monotonicity akin to concavity. This
stronger monotonicity is characterized by a parameter ∆,
which is difficult to estimate from data.

Both of these algorithms query the precision function at a
set S of geometrically spaced points (thus |S| = logN ),

1These logarithms are w.r.t. base 1 + ε, the guaranteed ap-
proximation factor. The bounds thus scale roughly as 1/ε .
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and interpolate between them. They, however, suffer
from a limitation that S is chosen in a data oblivious
way—it depends only on N and the desired approxima-
tion ratio, independent of the actual data. While logN
queries are sufficient, they might be overkill, e.g., in the
extreme case when the precision function is a constant.

We present a new algorithm, called ADASTRAT for
adaptive stratifiled sampling, that adaptively chooses
what to query next based on current observations of the
data. It provides a guaranteed approximation under the
same weak monotonicity condition as LOGSTRAT, with-
out the stronger condition needed by PAULA.

The main novelty is the following: Given any k points
observed on a PR curve, we show how to precisely char-
acterize the “envelope” (Figure 1) of all possible PR
curves that pass through these k points (Theorem 2).
This envelope can be maintained efficiently as more
points are observed. This leads to a natural bisection-
style algorithm, which iterates until the “height” of the
envelope (i.e., the maximum gap between its upper and
lower boundaries) falls within the desired approxima-
tion ratio. The approximate curve ADASTRAT outputs is
the geometric mean of the resulting upper and lower en-
velopes, which are non-linear, in line with the fact that
a linear interpolation isn’t appropriate in the precision-
recall space (Davis and Goadrich, 2006).

ADASTRAT is surprisingly powerful both in theory and
in practice. Formally, besides the initial few data points
that each of these algorithm annotates, ADASTRAT uses
O(K logK) annotations chosen via adaptive stratified
sampling (Theorem 8) if it ends up querying K points
before meeting the stopping condition. The data deter-
mines how large K is. When the precision function de-
cays very rapidly or very slowly, K can be as small as 2.
Indeed, in two extreme cases, ADASTRAT queries only
the first and last points of the PR curve and accurately
interpolates everything in-between. When the minimum
precision is bounded by a constant (e.g., 0.5 or 0.3) as in
most practical cases,K scales as log logN (Corollary 1).
In the worst case, K is logN (Theorem 4), matching the
asymptotic bound for LOGSTRAT.

We perform a regret analysis of ADASTRAT, show-
ing (Theorem 6) that it never needs more than roughly
log logN times more queries than an “optimal” oracle
algorithm that may use a priori knowledge of the shape
of the precision function to decide which points to query.

Using the envelope view, we also provide a matching
lower bound: every algorithm that operates by query-
ing the precision function at some subset of points and
guarantees a constant-factor approximation, must query
Ω(logN) points in the worst case (Theorem 7).

From a practical perspective, we evaluate various al-
gorithms on scaled-up versions of the fully-annotated
PPDB dataset used by Sabharwal and Sedghi (2017).
On the PPDB-36K dataset with 35,615 items, we find
that ADASTRAT queries only 18 points of the precision
function, a 4.3x reduction from the 78 points queried by
both LOGSTRAT and PAULA. Its strength is further high-
lighted by larger datasets, such as PPDB-100x, a 100x
larger fully-annotated randomized variant that we cre-
ated with a similar PR curve as the original. Here, de-
spite the 100-fold increase in dataset size, ADASTRAT
continues to query only 18 points, 13x fewer than the
234 needed by LOGSTRAT and PAULA. ADASTRAT uses
mere 24K annotations,2 a tiny fraction of the 3.5M items
in this expanded dataset, while still yielding an impres-
sive practical approximation (Figure 4).

1.1 RELATED WORK

Despite the importance of evaluating the precision-recall
tradeoff of generative machine learning models, much
research has been devoted to computing summary statis-
tics (average precision AP, discounted cumulative gain
DCG, etc.). Various results provide confidence intervals
around estimated statistics (Carterette et al., 2006; Yil-
maz et al., 2008; Aslam et al., 2006; Yilmaz and Aslam,
2006; Schnabel et al., 2016), often using different sam-
pling approaches equipped with variance reduction tech-
niques. Kanoulas (2015) provides a survey of relevant
quality evaluation approaches in information retrieval.

In contrast to these efforts, we focus on characterizing
the full precision recall curve at scale (over millions of
items) and with provable guarantees. This task is consid-
erably more challenging than computing summary statis-
tics, an evidence of which is that these statistics can often
be easily “read off” if one has computed the entire curve.

Relatively little research effort has been devoted to cap-
turing an entire precision curve. In the area of vision,
Welinder et al. (2013) propose semi-supervised perfor-
mance evaluation, which is a generative model to cap-
ture a classifier’s confidence scores. Unlike their use of a
parametric model that makes certain assumptions about
the curve, ours is a model-free approach relying only on
a (weak form of) monotonicity.

Our setup is closest to that of Sabharwal and Sedghi
(2017). Different from their approach, we propose to ac-
cess the precision-recall curve in a data-aware, adaptive
fashion. This, as we show, greatly reduces the sample
complexity. Further, we do not make the strong mono-
tonicity assumption needed for their strongest algorithm.

2The conventional method needs 284K annotations and
LOGSTRAT needs 54K.
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2 PRELIMINARIES

Consider the ranked output T = (t1, t2, . . . , tN ) of an
algorithm A, where each ti comes from some universe
U (e.g., all documents on the Web, all paraphrase pairs,
all subject-verb-object triples, etc.). Each item u ∈ U
is associated with an unknown true label v(u) ∈ {0, 1}
that captures the semantics of some underlying task (e.g.,
whether a document is relevant to a query, whether a pair
of phrases is a linguistic paraphrase, whether a triple de-
notes a true fact, etc.). We assume access to a noisy es-
timator, e.g., a crowd-sourced annotation, ṽ(u) of v(u)
that equals 1 − v(u) with probability η < 1/2, and
equals v(u) otherwise. The precision function of A,
p : [N ] → [0, 1], maps each rank r ∈ [N ] to the fraction
of the top r items in T that are positive, i.e., labeled as 1:

p(r) =
1

r

r∑

i=1

v(ti) (1)

where we omit A from the notation for brevity.

Precision functions are widely used in machine learn-
ing. In fact, they are the building blocks of many sta-
tistical metrics. For example, a commonly used met-
ric, precision-at-k, which measures the quality of the
top-k ranked items, is exactly p(k). As a second ex-
ample, precision-recall curves can be built from preci-
sion functions. To see this, suppose a classifier out-
puts and ranks items based on its belief that each item
is positive. v(ti) is an indicator variable, that is 1 if and
only if the item ranked at the i-th place is positive. The
classifier draws a line and classifies the top k items as
positive examples. The precision of such a decision is
1/k

∑k
i=1 v(ti), which is exactly p(k), while the recall

is
∑k
i=1 v(ti)/

∑N
i=1 v(ti), which is p(k)/p(N). Other

metrics, such as Gain@k, accuracy, F1, true positive
rate (TPR), false positive rate (FPR), Receiver Operat-
ing Characteristic (ROC) curve, average precision (AP),
specificity, sensitivity, etc, can all be computed from p.
Surveys by Fawcett (2006), Davis and Goadrich (2006),
and Majnik and Bosnic (2013) provide more examples.

Given T , indirect access to ṽ, and ε ∈ (0, 1], our goal
is to compute a pointwise (1 + ε)-approximation p̃ of
p. We assume accessing each ṽ(ti) is costly, e.g., needs
human annotation. Therefore, we would like to compute
p̃ efficiently in terms of the number of evaluations of ṽ.

2.1 POINT ESTIMATES: RANDOM SAMPLING

A simple way to obtain an estimate p̃(r) of p(r) for
a fixed rank r, which we refer to as a point estimate
at r, is via random sampling: Sample (with repeti-
tion) a set of indices J independently and uniformly

from {1, 2, . . . , r}, obtain a noisy estimate ṽ(tj) for
each v(tj), and compute the empirical average p̃(r) =
1
z

∑
j∈J ṽ(tj) where z = |J |. Then, assuming p ≥ 1/3,

the expected value of p̃(r) is within a factor of 1 + η of
p(r) (see Appendix). One can apply tail inequalities such
as the two-sided Hoeffding bound (Hoeffding, 1963) to
compute how tight the estimate is. For any ε > η, to ob-
tain a (1+ ε)-approximation of p(r) with a confidence of
1 − δ (e.g., a 95% confidence would mean δ = 0.05), it
suffices to have z samples where:

z ≥ (1 + η)2

2(ε− η)2p(r)2
ln

2

δ
. (2)

Details are deferred to the Appendix. When η = 0, this
simplifies to the bound of Sabharwal and Sedghi (2017).

2.2 WEAK MONOTONICITY

Being the average of r 0-1 numbers, p(r) necessarily
fluctuates up and down as r increases. Nevertheless, we
assume that T = (t1, t2, . . . , tN ) is a ranked output of
an algorithmA, where the true v(ti) in the beginning are
more likely to be 1. In other words, one expects p(r)
to broadly decrease with increasing r. This property is
captured by the following weak monotonicity notion in-
troduced by Sabharwal and Sedghi (2017), for which we
use a slightly different notation:
Definition 1 (Weak Monotonicity). Let m, r̃ ∈ N+.
Then p is (r̃,m)-weak monotone if for all r1 ≥ r̃ and
r2 ≥ r1 +m, we have p(r1) ≥ p(r2).

Weak monotonicity guarantees that, after the first r̃
points, precision is non-increasing for points ranked at
leastm apart. Under this property, Sabharwal and Sedghi
(2017) showed that it is sufficient to compute precision
at only logarithmically many points in order to guaran-
tee a tight approximation of the entire PR curve, which
is reflect by their algorithm LOGSTRAT. They also relied
on a stronger monotonicity assumption for their strongest
algorithm, which we do not assume here.
Theorem 1 (LOGSTRAT (Sabharwal and Sedghi, 2017)).
Let T, v, p, r̃,m be as above. Let ε ∈ (0, 1], δ > 0, pmin

be the minimum value of p, and β > 1. Let ` =
dlog1+ε r̃e and L = blog1+εNc. If m ≤ bε(1 +
ε)` − 1c and p is (r̃,m)-monotone, then with proba-
bility at least 1 − δ, the output of LOGSTRAT on in-
put (T, v, ε, r̃, δ, pmin, β) is a β(1 + ε)-approximation of
p(r). Further, LOGSTRAT queries p at L − ` points,
and uses annotation of the first (roughly) r̃ points and
of ε(L−`)

2(β−1)2(1+ε)p2min
ln L−`

δ/2 points chosen randomly via
stratified sampling.

Note that this result assumes the noiseless setting, η = 0.
Note also that since L = Θ(logN), LOGSTRAT re-
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quires querying p at Θ(logN) points and annotating
Θ(logN log logN) data points. Our goal is to improve
upon this by adaptively deciding where to query (and
which points to annotate), and when to stop.

3 CHARACTERIZING PRECISION
FUNCTIONS THROUGH k POINTS

What could a precision function possibly look like if we
know values of it at k points? We answer this question
by providing a precise characterization of all precision
functions passing through k given points, under the as-
sumption of weak monotonicity. First, we characterize
a tight upper bound ub(v; y, p(y)) and a lower bound
lb(v; y, p(y)) for every point p(v) at the precision func-
tion if we know the value of a single point p(y). We
call the space between ub and lb an envelope induced by
the value of p(y), because any p(v) must be sandwiched
between lb(v; y, p(y)) and ub(v; y, p(y)). These bounds
are formally defined next, and illustrated in Figure 1.

Figure 1: A graphical illustration of the upper bound
ub (red line) and the lower bound lb (dashed blue line)
induced by one point p(y). The envelope is shaded.

Definition 2. Let p be a precision function whose value
p(y) is known at a point y. Define ub and lb, each pa-
rameterized by y, p(y), and (implicitly) by m, as:

ub(v; y, p(y)) =



p(y)y/v if v ≤ y
(p(y)y + v − y)/v if y < v ≤ y + bmp(y)c
(p(y)y + bmp(y)c)/v if y + bmp(y)c < v ≤ y +m

p(y) if v > y +m

lb(v; y, p(y)) =



p(y), if v < y −m,
(p(y)y − bmp(y)c)/v, if y −m ≤ v < y − bmp(y)c
(p(y)y + v − y)/v, if y − bmp(y)c ≤ v < y,
p(y)y/v, if v ≥ y.

Our characterization is summarized by the following the-
orem, whose proof is left to the appendix:

Theorem 2. Let p be any (r̃, m)-monotonic precision
function. Then, for any v, y > r̃, we have:

lb(v; y, p(y)) ≤ p(v) ≤ ub(v; y, p(y))

Further, ub and lb are tight—each corresponds to a valid
precision function whose value at y is p(y).

This single point envelope characterization easily ex-
tends to the case where the values of p at are known at k
points, p(y1), p(y2), . . . , p(yk). The envelope here is the
intersection of the k single point envelopes:

ub(v) =
k

min
j=1

ub(v; yj , p(yj)) (3)

lb(v) =
k

max
j=1

lb(v; y1, p(y1)) (4)

Finally, we define the height of the envelope induced by
ub and lb as the maximum over i of ub(i)/lb(i).

4 The ADASTRAT ALGORITHM

Armed with the notion of an envelope characterizing all
precision functions that could possibly pass through k
observed points, we describe ADASTRAT (Algorithm 1).
The idea is to query p near the beginning and the end,
compute the envelope induced by these two observa-
tions, and continue making further queries in the mid-
dle and tightening the envelope until its height is within
(the square of) the desired approximation ratio. The al-
gorithm then outputs the geometric mean of the (non-
linear) upper and lower bounds of the final envelope.

As before, T = (t1, t2, . . . , tN ) are the ranked data items
with (unknown) true binary labels v(ti) and precision
function p. We assume access to an η-noisy estimator ṽ
of v and an oracle QUERY(i, T, ṽ) that returns a guaran-
teed β-approximation of the true precision p(i) at a given
point i, for some β ≥ 1 + η. Given ε, δ > 0, our goal is
to obtain a β(1 + ε)-approximation of the entire p with
confidence at least 1 − δ. For m, r̃ ∈ N+, we assume p
is (r̃,m)-weak monotonic. For brevity, we define:

l̃ = max

{⌈
(1 + ε)2m

2ε+ ε2

⌉
, r̃

}
.

We first discuss a simple case, where QUERY(i, T, ṽ) re-
turns the exact value of p(i), i.e., β = 1 (and thus η = 0).
We will extend our result to the case where β > 1 later.
In Algorithm (1), we maintain the envelope of possible
precision functions represented by the upper bound ũb(i)
and the lower bound l̃b(i). We update these bounds in
function UPDATEUL as we get access to the values of
the precision function at different locations. UPDATEUL
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Algorithm 1: ADASTRAT(T, l̃, ṽ, ε): Adaptive Stratified
Sampling for Approximating the Precision Function.

for i = 1, 2, . . . , N do ũb(i)← 1; l̃b(i)← 0

for i = 1, 2, . . . , l̃ do
v(ti)← ACCESS(i, T )

p̃(i)← 1
i

∑i
j=1 v(tj)

ũb, l̃b← UPDATEUL(i, p̃(i), ũb, l̃b)

p̃(N)← QUERY(N,T, ṽ)

ũb, l̃b← UPDATEUL(N, p̃(N), ũb, l̃b)

p̃(l̃ + 1), . . . , p̃(N − 1)← PR(l̃, N, p̃(l̃), p̃(N), ũb, l̃b)
return p̃(1), . . . , p̃(N)

Function PR(l, r, p̃(l), p̃(r), ũb, l̃b)

if maxi∈{l,...,r}
ũb(i)

l̃b(i)
≤ (1 + ε)2 or r

l ≤ (1 + ε)2

then
// stopping condition met
for i ∈ {l + 1, . . . , r − 1} do

p̃(i)←
√
ũb(i) l̃b(i)

else
c← round(

√
lr) // bisect the interval

p̃(c)← QUERY(c, T, ṽ) // query mid-point
ũb, l̃b← UPDATEUL(c, p̃(c), ũb, l̃b)
p̃(l + 1), . . . , p̃(c− 1)

← PR(l, c, p̃(l), p̃(c), ũb, l̃b)
p̃(c+ 1), . . . , p̃(r − 1)

← PR(c, r, p̃(c), p̃(r), ũb, l̃b)

return p̃(l + 1), . . . , p̃(r − 1)

Function UPDATEUL(y, p̃(y), ũb, l̃b):
for i = 1, . . . , N do

ũb(i)← min{ũb(i), ub(ṽ; y, p̃(y))}
l̃b(i)← max{l̃b(i), lb(ṽ; y, p̃(y))}

return ũb, l̃b

intersects the old envelope with a new pointwise upper
and lower bound, just as in Equation (3,4). We compute
the exact values of p(1), . . . , p(l̃) by accessing the values
of v(t1), . . . , v(tl̃) directly. Here, ACCESS(i, T ) returns
the exact value of v(ti).3

Function PR returns p̃(l + 1), . . . , p̃(r − 1), which
form an (1 + ε)-approximation to the true values p(l +
1), . . . , p(r − 1). In function PR, first the algorithm
checks the height of the envelope between p̃(l) and p̃(r).
If the height is less than (1+ε)2, then the algorithm stops,

3For simplicity, we assume ACCESS uses v instead of ṽ.
Under the noisy setting where ACCESS uses ṽ, the results can
be extended by averaging multiple calls to ACCESS.

returning the geometric mean of ũb and l̃b. When β = 1,
the second stopping condition r/l ≤ (1 + ε)2 is redun-
dant, because for any l, r, such that l̃ ≤ l < r < (1+ε)2l,
we must have p(r) ≥ p(l)l/r ≥ p(l)/(1 + ε)2 and
p(l) ≥ p(r)(r − m)/l ≥ p(r)/(1 + ε)2, due to Theo-
rem 2. In other words, if condition r/l < (1 + ε)2 is
met, then the height of the envelope has already dropped
below (1 + ε)2. If the function does not stop, there is at
least one point i between l and r, where ũb(i)/l̃b(i) ex-
ceeds (1 + ε)2. In this case, we query the function value
at a middle point c = round(

√
lr), and recursively call

PR on intervals (p̃(l), . . . , p̃(c)) and (p̃(c), . . . , p̃(r)).

When β > 1, we stop first when the estimated bound-
aries ũb and l̃b are within (1 + ε)2. In this case, we know
that true values of p lie in the range between βũb and
l̃b/β, which are at most β2(1+ ε)2 apart. It is easy to see
that p̃ =

√
ũb l̃b provides a β(1 + ε) approximation to

any curve in this range, which includes p. We also stop
when r/l ≤ (1 + ε)2. In this case, we know that the
actual height of the envelope (distance between the true
boundaries ub and lb) is bounded by (1 + ε)2 (due to the
same reason as why r/l ≤ (1 + ε)2 is redundant when
β = 1). Since all point estimations are at most off by
β, ũb is at most β ub and l̃b is at least lb/β. Therefore,
p̃ =

√
ũb l̃b is a β(1 + ε) approximation. Putting this all

together, we have the following theorem:

Theorem 3. Let T, ṽ, p,m, r̃, l̃, β, and ε be as defined
before. If the precision function p is (r̃,m)-weak mono-
tonic and QUERY(i, T, ṽ) is a β-approximation of p(i)
for all i, then the output of ADASTRAT (Algorithm 1) on
input (T, l̃, ṽ, ε) is a pointwise β(1 + ε)-approximation
of the true precision values p(1), . . . , p(N).

Sufficient Conditions for Stopping

To understand the complexity of ADASTRAT in terms of
the number of calls to QUERY, we analyze the stopping
condition of PR, namely, whether the height of the enve-
lope is within than (1 + ε)2. We provide two sufficient
conditions for stopping. The two lemmas below follow
by writing down the pointwise envelopes induced by p̃(l)
and p̃(r) and making use of the fact that r > l ≥ l̃.
Lemma 1. Under weak monotonicity, if p̃(l)/p̃(r) ≤
(1 + ε)2, the height of the envelope4 is bounded by
(1 + ε)2.

Lemma 2. Under weak monotonicity, if (p̃(r)r)/(p̃(l)l) ≤
(1+ε)2, the height of the envelope is bounded by (1+ε)2.

The sufficient stopping conditions captured by Lemmas 1
and 2 are two interesting cases of early stopping, in

4defined by substituting p̃ into (3) and (4).
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contrast to LOGSTRAT, where O(log1+εN) queries are
needed regardless of the shape of the precision function.

Lemma 1 captures the case where p does not drop too
much from l to r. This corresponds to the density of
v(ti) that are 1 staying almost the same for all entries
in the range from l to r. Notice that the density almost
always cannot increase, because of weak monotonicity.

Lemma 2 captures the other extreme, where v(ti) is al-
most always zero for the entries in the range from l to
r. In this case, the precision function drops at its fastest
rate. Our algorithm is able to capture these two cases,
stopping early, thereby preventing unnecessary queries.

Upper Bound on the Number of Query Calls

The above stopping conditions imply that ADASTRAT
never makes more calls to QUERY than LOGSTRAT does.
Specifically, deferring a proof to the Appendix:

Theorem 4. Under the conditions of Theorem 3, the
number of calls to QUERY is at most log1+ε(N/l̃).

4.1 REGRET BOUNDS

Consider an “optimal” algorithm that is guaranteed to
produce a (1 + ε)-approximation of all weak monotonic
precision function with as few accesses to QUERY as
possible. If this algorithm knew the shape of p a priori, it
could clearly be very smart about where it queries p in or-
der to generate a guaranteed approximation. The regret
of any algorithm, then, is defined as how many (multi-
plicatively) more accesses to QUERY it needs, compared
to this optimal algorithm who knows all. We prove that
ADASTRAT has a regret of no more than log2 log1+εN .

We start by exploring how such an “optimal” algorithm
might behave. Suppose it has access to the maximum and
minimum precision values, pmax and pmin, as well as to
q1, . . . , qK , where K =

⌈
log1+ε

pmax

pmin

⌉
and qi is the first

location where p falls below pmax/(1 + ε)i−1. Then,
as we show next, it suffice for the “optimal” algorithm
to make only K queries, namely to p(q1), . . . , p(qK), to
guarantee a (1 + ε)-approximation:

Lemma 3. Let q1, . . . , qK be as defined above. Let
p̃(j) = p(qi) whenever j ∈ {qi, . . . , qi+1}. Then p̃ is
a (1 + ε)-approximation of p in the range [l̃′, N ].

Lemma 3 guarantees that the “optimal” algorithm does
not make too many queries when the precision function
decays slowly, i.e., pmax/pmin is small. In the other ex-
treme, where the precision function decays in its fastest
possible way, p(r)r stays almost as a constant. In this
case, we can prove that the “optimal” algorithm does not
make much more queries beyond the ratio of the maxi-
mal and minimal values of p(r)r. Specifically, suppose

the “optimal” algorithm has access to s1, . . . , sP , where
sj is the first location that function p(r)r goes above

p(l̃)l̃(1+ε)j−1. Then P =
⌈
log1+ε

p(N)N

p(l̃)l̃

⌉
. We can also

prove that it suffices for the “optimal” algorithm to query
the above P points to obtain a (1 + ε)-approximation:

Lemma 4. Let s1, . . . , sP be as defined above. Let
p̃(j) = p(si)si/j whenever j ∈ {si, . . . , si+1}. Then
p̃ is a (1 + ε)-approximation of p in the range [l̃, N ].

Proofs of these two lemmas may be found in Ap-
pendix B. Putting these together gives a bound on OPT,
the number of times the optimal algorithm calls QUERY:

Theorem 5. Under the conditions of Theorem 3,

OPT ≤
⌈

log1+ε min

(
pmax

pmin
,
p(N)N

p(l̃)l̃

)⌉
.

Now we state our main regret bound:

Theorem 6. Under the conditions of Theorem 3, ADAS-
TRAT calls QUERY no more than (OPT + 1)(1 +
log2 log1+εN) + 1 times.

This says that the number of QUERY calls made by
ADASTRAT is roughly O(OPT · log2 log1+εN). The
high level idea to prove Theorem 6 is as follows. Sup-
pose r1, . . . , rOPT are the actual query points of the
optimal algorithm. Because ADASTRAT uses a binary
search, i.e., it always splits an interval at its geomet-
ric middle point. Then it takes ADASTRAT roughly
O(log2 log1+εN) splits to “locate” one query point ri of
the optimal algorithm (more precisely, find a point that is
sufficiently close to ri that guarantees the approximation
bound). Hence, the total number of queries of ADAS-
TRAT is bounded by OPT times log2 log1+εN . Our ac-
tual proof to Theorem 6 is based on walking through the
actual calling map of the function PR, where each node
in this map represents an actual interval (p(l), p(r)) that
PR called. We leave this proof to Appendix B.

Combining Theorems 5 and 6, we immediately obtain
the following worst case upper bound for ADASTRAT.

Corollary 1. Under the conditions of Theorem 3,
ADASTRAT calls QUERY no more than

O

(
log1+ε min

{
pmax

pmin
,
p(N)N

p(l̃)l̃

}
· log2 log1+εN

)

times.

Thus, ADASTRAT makes very few queries when p is flat
or decays very fast. In general, when pmin may be treated
as a constant bounded away from zero (e.g., 0.5 or 0.3,
as is the case in many practical applications), this shows
that ADASTRAT scales essentially as log logN .
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4.2 ASYMPTOTIC LOWER BOUND

What is the minimum number of calls to the QUERY
function needed in order to guarantee an (1 + ε)-
approximation to p? We provide a worst-case lower
bound, confirming that ADASTRAT is asymptotically op-
timal in terms of the number of queries.

Theorem 7. Let A be any algorithm that accesses the
precision function only via the QUERY oracle and, for
any (r̃,m)-weak monotonic precision function, outputs
a curve that (1 + ε)-approximates it. For any ε′ > ε, A
must make at least Ω(log1+ε′ N) accesses to QUERY.

The high level idea of the proof to Theorem 7 is as fol-
lows: let J ≈ log1+ε′ N . We carefully construct a family
of 2J valid precision functions F = {f0, f1, . . . , f2J−1}
such that, for any two functions fi and fj , there exists
at least one point yi,j , such that fi(yi,j) and fj(yi,j) are
separated by more than (1 + ε)2 (i.e., either fi(yi,j) >
(1 + ε)2fj(yi,j) or fj(yi,j) > (1 + ε)2fi(yi,j)). We call
this point yi,j a separating point between fi and fj .

Now suppose algorithm A can output a (1 + ε)-
approximation to any given precision function. Starting
with an unknown function f ∈ F , we can use A to iden-
tify f . To do so, we runA to obtain a (1+ε)-approximate
curve f̃ and examine its values at all separating points.
Because f̃ is a (1 + ε)-approximation and the distance
between two functions at a separating point is more than
(1 + ε)2, we can unambiguously determine the correct
f . Appendix B includes a detailed construction of the
function family F following this high-level idea.

4.3 STRATIFIED SAMPLING FOR QUERY

Suppose ADASTRAT ends up calling QUERY on the K
points r1 < r2 . . . < rK (generally not in this order)
before terminating. By design, r1 > l̃ and rK = N .
Let δ > 0 and β > 1 + η ≥ 1. We would like
QUERY to provide a β-approximation of p(ri) for all
i ∈ {1, . . . ,K} with an overall (cumulative) confidence
of at least 1 − δ. To achieve this, QUERY proceeds sim-
ilarly to LOGSTRAT but with ṽ rather than v: it uses as
an estimate of p(ri) the empirical average of η-noisy es-
timates ṽ(tj) of true labels v(tj) for s uniform random
samples j drawn independently from [1, ri], where:

s =

⌈
(1 + η)2

2(β − 1− η)2p2min

ln
2K

δ

⌉
(5)

Here pmin is an estimate of (a lower bound on) the mini-
mum value of p for the given data.5

5Domain knowledge about the data might allow using a
small constant, such as 0.3, for pmin. Alternatively, one can
use an estimate of p(N) obtained via an adaptive concen-

Of course, we don’t know K a priori; we will ad-
dress this shortly. It follows from the Hoeffding bound,
Eq. (2), that such an empirical average provides a β-
approximation of p(ri) with confidence at least 1−δ/K.
Applying the union bound over all i, ADASTRAT has
overall confidence at least 1 − δ in its estimates being
correct simultaneously at all K points r1, . . . , rK .

As in LOGSTRAT, since we rely only on the union bound,
the samples obtained for r1 can be (partially) reused as
samples for all ri > r1. The amount of reuse is de-
termined by what we will refer to as the sample density
of an interval in {1, . . . , N}, defined as the ratio of the
number of samples in this interval to the size of the inter-
val. Clearly, in order to have s uniform samples available
for ri, we must have a sample density of at least s/ri in
the interval [1, ri]. We would like to achieve this while
minimizing the total number of samples.

It can be verified that the following stratified sampling
strategy, henceforth referred to as S , results in the mini-
mum overall number of samples while ensuring that the
sample density in [1, ri] is at least s/ri:

draw
⌈
(r1−l̃)s
r1

⌉
samples in [l̃ + 1, r1]

draw
⌈
(ri−ri−1)s

ri

⌉
samples in [ri−1 + 1, ri] for i > 1

In LOGSTRAT, the K points are visited in increasing
order, simplifying the implementation of S in practice.
Further, K is known a priori to be log1+εN/l̃ and ri by
design equals ri−1(1+ε). This makes it easy to compute
the total number of evaluations of v needed, which sums
up to l̃ + ε

1+εs log1+εN/l̃, in line with Theorem 1.

The adaptive nature of ADASTRAT makes both the im-
plementation of S and a similar calculation challenging.
Nevertheless, the following result holds:
Theorem 8. Under the conditions of Theorem 3, for any
δ > 0 and β > 1 + η ≥ 1, QUERY can be implemented
using a stratified sampling strategy such that ADASTRAT
provides a β(1 + ε)-approximation of the precision func-
tion p with a confidence of at least 1− δ using l̃ evalua-
tions of the true label v and:

(⌈
r1 − l̃
r1

⌉
+

K∑

i=2

⌈
ri − ri−1

ri

⌉)
· s

evaluations of the noisy estimate ṽ, where s =⌈
(1+η)2

2(β−1−η)2p2min
ln 2K

δ

⌉
and r1, r2, . . . , rK are the points

where ADASTRAT calls QUERY.

tration inequality, such as Corollary 1 of Zhao et al. (2016),
which provides a dynamic stopping condition to decide how
many samples are sufficient, and guarantees that this num-
ber, zmin, is upper bounded by a generalization of Hoeffding’s
bound with an additional log log term: 1.8zmin(γ

2p(N)2 −
0.6 log(log1.1 zmin + 1)) ≤ ln(12/δ), where 1 + γ = β

1+η
.
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We note that this quantity is bounded above by Ks,
which scales as O(K logK), considering other param-
eters as constants. This simplified expression is equiva-
lent to not reusing samples at all, and thus quite loose
in practice. Even so, for datasets requiring K �
logN , this is substantially smaller than the equivalent
O(logN log logN) expression for LOGSTRAT.

Unlike LOGSTRAT, there are two hurdles to implement-
ing a stratified sampling strategy that supports the num-
ber of annotations claimed in Theorem 8: K is un-
known in the beginning and ADASTRAT does not visit
r1, . . . , rK in increasing order. Let r′1, . . . , r

′
K be the or-

der in which ADASTRAT actually queries the K points.
To address the first hurdle (unknown K), we follow an
iterative deepening approach and simply begin by as-
sumingK = 1 when querying r′1. When ADASTRAT de-
cides to make the next query at r′2, we setK = 2, go back
to r′1 to obtain correspondingly more annotations for it,
and then obtain samples for r′2 based on K = 2. This
process continues, slowly incrementing K and obtaining
more samples at previously queried points to make up
for the difference. Since the samples are drawn indepen-
dently, this yields the same outcome as if we had known
the true value of K in advance and obtained the corre-
sponding number of samples for each r′i in a single shot.

To address the second hurdle (queries not in increasing
order), we adapt stratified sampling as follows. For
simplicity of exposition, we assume here thatK is known
at the start. When querying r′1, we use stratification sim-
ilar to LOGSTRAT and obtain s(r′1− l̃)/r′1 fresh samples
in the range [l̃+1, r′1], inducing a sample density s/r′1 in
this range. When querying r′2, there are two possibilities.
If r′2 > r′1, then again we obtain fresh samples with den-
sity s/r′2 in the range [r′1 + 1, r′2], similar to LOGSTRAT.
If, on the other hand, r′2 < r′1, we obtain fresh sam-
ples instead in the range [l̃+1, r′2] to increase the sample
density here from s/r′1 to s/r′2. This process continues
with each new query, whose effect is to raise the sam-
ple density between the immediately lower queried point
and the current point. It can be verified that this process
ends with the sample density underlying the expression
in Theorem 8, namely s/ri in the range [ri−1 + 1, ri].

5 EXPERIMENTS

For an empirical evaluation, we consider the fully-
annotated subset of PPDB 2.0 (Ganitkevitch et al., 2013)
used by Sabharwal and Sedghi (2017), henceforth re-
ferred to as PPDB-36K. It contains N = 35,615 English
language paraphrase pairs for each of which Pavlick et al.
(2015) provide a correctness confidence score (thus in-
ducing an overall ranking) obtained using a machine
learning algorithm, as well as crowdsourced annotations
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Figure 2: Number of queries of the precision function as
dataset size increases. ADASTRAT uses only 21 queries
even for PPDB-36K-1000x with 35M items.

of the validity of each pair as a valid paraphrase, on a
5-point scale (1-5). A pair ti receiving an average hu-
man judgment of at least 3 is considered correct, i.e.,
v(ti) = 1 for such i, and 0 otherwise. For a direct com-
parison with prior work, we experiment with noiseless
access to v, i.e., η = 0 and ṽ = v.

Given the fully-annotated nature of PPDB-36K, the true
precision function for it can be easily calculated and used
to assess the performance of algorithms such as ADAS-
TRAT. One drawback of this dataset, however, is its rel-
atively small size. To alleviate this while still retain-
ing the property of having a fully-annotated yet realis-
tic dataset, we consider scaled up variants of PPDB-
36k, created as follows. Using a sliding window of size
∆ = 100, we compute the running average q(i) of v(ti)
for 1 ≤ i ≤ N , using smaller sliding windows as appro-
priate when i < ∆ or i > N−∆. For a scaling factor s ∈
{10, 100, 1000}, for each 1 ≤ i ≤ N , we draw s inde-
pendent random samples from the Bernoulli distribution
with parameter q(i). This results in 3 datasets, PPDB-
36K-10x, PPDB-36K-100x, and PPDB-36K-1000x, that
are 10, 100, and 1000 times larger than PPDB-36K, resp.

5.1 SCALING: QUERIES AND ANNOTATIONS

Our first experiment evaluates the number of queries (of
the precision function) used by various algorithms, as
well as the total number of annotations, as the dataset
size is varied from 36K to 35M. We use the following
parameters throughout: ε = 0.03, δ = 0.05, β = 1.05.6

Figure 2 shows in a semi-log plot the number of queries
needed, as the dataset size grows.7 As expected, both
LOGSTRAT and PAULA use the same number of queries,
which starts with 78 for PPDB-36K and grows propor-

6Code and data available at http://allenai.org.
7The exact number of queries is reported in Appendix A.
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Figure 3: Number of annotations needed by vari-
ous algorithms as dataset size increases. ADASTRAT
needs substantially fewer annotations than competing al-
gorithms that also do not assume strong monotonicity.

tional to logN , reaching 312 queries for PPDB-36K-
1000x. In contrast, ADASTRAT uses only 18 to 21
queries, even for the largest dataset with over 35M items.
This aligns with the intuition that the adaptive nature of
ADASTRAT allows it to be driven more by the “shape” of
the precision function, rather than by the raw data size.

Figure 3 illustrates in a log-log plot the total number of
samples used by each method, as the dataset size grows;
again, exact numbers may be found in Appendix A. The
conventional random sampling baseline asymptotically
scales as Θ(

√
N logN). In line with this, the corre-

sponding blue curve has a slope of roughly 0.5, reaching
close to 1M required annotations for PPDB-36K-1000x.
LOGSTRAT (red curve) is substantially more practical,
growing from 18K annotations to 73K. PAULA (dashed
purple line) needs the fewest annotations for the two
smaller datasets, but relies the assumption of strong lo-
cal monotonicity, which is difficult to verify in practice.
Finally, ADASTRAT (green line) uses the fewest num-
ber of annotations (24K and 28K, resp.) for the two
larger datasets. Further, among algorithms that do not
rely on strong monotonicity, ADASTRAT has 20%-61%
higher annotation efficiency than LOGSTRAT and 41%-
97% higher than conventional random sampling.

5.2 APPROXIMATION QUALITY

The top plot in Figure 4 shows the approximate preci-
sion function p̃ (green curve) produced by ADASTRAT
for PPDB-36K-100x. Despite querying only 18 points
(marked with small red squares) along the true curve,
ADASTRAT is able to obtain a remarkably good approx-
imation of the entire true precision function (shown in
black, and often occluded by the green curve).

Both LOGSTRAT and PAULA (bottom plot, red) also ob-
tain a similarly tight approximation, except towards the
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Figure 4: Precision function approximations generated
by ADASTRAT (top) and LOGSTRAT and PAULA (bot-
tom), for PPDB-36K-100x. 18 green markers (top) and
234 corners of red boxes (bottom) are the points queried
by the corresponding algorithm.

right end of the curve. Importantly, however, they do
so by querying the true precision at 234 points, visually
identifiable as the “corners” of the little red boxes. In
particular, because of the geometrically spaced nature of
the points they query, there is an enormous number of
queries in the left part of the curve, which, as illustrated
by ADASTRAT’s more spaced-out query points, is unnec-
essary. This demonstrates the strength of ADASTRAT in
exploiting data observations to be smart about where and
how often to query the true precision function.

6 CONCLUSION

We proposed ADASTRAT, a data-aware algorithm for
computing the precision function of massive noisy
datasets, with a constant-factor approximation guaran-
tee. ADASTRAT intelligently chooses precision points
to query. Under a mild monotonicity assumption, it out-
puts a guaranteed curve with minimal queries made to
the PR curve, scaling very slowly with N , the number
of items. ADASTRAT’s regret w.r.t. an oracle is bounded
by log logN . We also provide a matching asymptotic
lower bound in terms of the number of queries. On an
NLP dataset of 3.5M items, ADASTRAT achieves a close
approximation with merely 18 precision queries.
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Abstract

A latent force model is a Gaussian process with
a covariance function inspired by a differential
operator. Such covariance function is obtained
by performing convolution integrals between
Green’s functions associated to the differential
operators, and covariance functions associated
to latent functions. In the classical formula-
tion of latent force models, the covariance func-
tions are obtained analytically by solving a dou-
ble integral, leading to expressions that involve
numerical solutions of different types of error
functions. In consequence, the covariance ma-
trix calculation is considerably expensive, be-
cause it requires the evaluation of one or more
of these error functions. In this paper, we use
random Fourier features to approximate the so-
lution of these double integrals obtaining sim-
pler analytical expressions for such covariance
functions. We show experimental results using
ordinary differential operators and provide an
extension to build general kernel functions for
convolved multiple output Gaussian processes.

1 INTRODUCTION

Latent force models (LFMs) [Álvarez et al., 2009] are a
type of multiple-output Gaussian processes (GPs) where
the covariance function has been derived from physical
models. In particular, LFMs assume that each output
{fd(t)}Dd=1 can be expressed as the convolution inte-
gral of a latent function u(t), and a Green’s function
Gd(t) associated to a linear dynamical system, one per
output, fd(t) =

∫ t
0
Gd(t − τ)u(τ)dτ . Such representa-

tion for fd(t) introduces a dependency between outputs
fd(t) and fd′(t). For example, if we assume that u(t)
follows a Gaussian process prior with zero mean func-
tion and covariance k(t, t′), due to the linearity of the

integral transform, fd(t) and fd′(t) are jointly Gaussian
with a cross-covariance function given as kfd,fd′ (t, t

′) =∫ t
0
Gd(t− τ)

∫ t′
0
Gd′(t

′ − τ ′)k(τ, τ ′)dτ ′dτ .

LFMs have been used for uncovering the dynamics of
transcription factors in a gene network [Gao et al., 2008],
for extrapolating human motion from motion capture data
[Álvarez et al., 2013], for segmenting motor primitives in
humanoid robotics [Álvarez et al., 2011], for modeling
the thermal properties of buildings [Ghosh and et al.,
2015], among several other applications for which prior
knowledge of a mechanistic model can be coded in the
covariance function of a GP. By including physics in
the covariance function of a GP, we grant extrapolation
abilities to an otherwise interpolation only-model.

In a classical latent force model, the covariance of the la-
tent function k(t, t′) follows an Exponentiated Quadratic
(EQ) form, leading to analytical solutions for the cross-
covariances kfd,fd′ (t, t

′). However, these solutions are
computationally expensive since they involve calculating
functions that can only be obtained by numerical methods.
For example, using the second order LFM introduced
in Álvarez et al. [2009], involves computing the error
function erf(·) with a complex argument or the Faddeeva
function, that require the evaluation of numerical integrals
that are expensive to compute.

In this work, we use random Fourier features (RFF)
[Rahimi and Recht, 2008] to reduce the mathematical
complexity of the expressions involved in the covariance
functions of the LFM. In particular, we approximate the
calculation of the EQ kernel, with a representation that
involves its probability density via the Bochner’s theorem.
Such representation for the covariance of k(τ, τ ′) trans-
forms the double integral for kfd,fd′ (t, t

′) into two sepa-
rate integrals that can easily be solved using the Laplace
or Fourier transforms. Once the inner integrals are solved
(the integrals that depend on τ and τ ′), the remaining
integral is solved using a Monte Carlo approximation
with S samples. The quality of the approximation of the
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cross-covariances kfd,fd′ (t, t
′) will depend, then, on the

number of samples S used. Additionally, by representing
the latent force model kernel using a sum of basis func-
tions, we are able to reduce the computational complexity
of inverting the ND ×ND kernel matrix obtained from
the multiple outputs, assuming that each output has N
data observations.

Following a similar procedure, we also introduce a ran-
dom Fourier feature approximation for the more general
convolved multiple output Gaussian process kernel, a
model that can be used for multiple-output with no parti-
cular known dynamics.

2 LATENT FORCE MODELS

Latent force models are Gaussian processes for multiple
outputs with the characteristic that their covariance func-
tion involves ordinary or partial differential equations. In
particular, LFMs assume that each output {fd(t)}Dd=1 can
be described using

Dd{fd(t)} = u(t),

where Dd is the differential operator associated to a linear
ordinary differential equation (ODE) or a linear partial
differential equation (PDE), and u(t) is the excitation
function. LFMs assume that u(t) is unknown and place
a Gaussian process prior over it. The solution for fd(t)
follows as

fd(t) =

∫ t

0

Gd(t− τ)u(τ)dτ, (1)

where Gd(·) corresponds to the Green’s function asso-
ciated to the differential operator Dd. The latent force
or function u(t) is unobserved, and follows a Gaussian
process prior with zero mean function, and covariance
function given by k(t, t′). Since u(t) is being transformed
by a linear operator, fd(t) also follows a Gaussian process
with covariance function kfd,fd(t, t

′). Furthermore, since
all fd(t) have a common input u(t), it is also possible to
compute a cross-covariance function between fd(t), and
fd′(t

′), kfd,fd′ (t, t
′).

Equation (1) can be extended to include additional latent
functions with different characteristics, leading to express
each output as

fd(t) =

Q∑

q=1

Sd,q

∫ t

0

Gd(t− τ)uq(τ)dτ,

where there are Q latent functions or forces {uq(t)}Qq=1,
and Sd,q is a sensitivity parameter that accounts for the
influence of force uq(t) over output d. Assuming the

independence of these latent forces and that they all fol-
low Gaussian process priors with covariance functions
kq(t, t

′), it is possible to compute the cross-covariance
functions kfd,fd′ (t, t

′), ∀ d, d′ = 1 . . . , D. The following
general expression can be used to build the covariance
kfd,fd′ (t, t

′) of a LFM

Q∑

q=1

Sd,qSd′,q

∫ t

0

Gd(t− τ)
∫ t′

0

Gd′(t
′ − τ ′)×

kq(τ, τ
′)dτ ′dτ. (2)

Depending on the form for the covariance function for
kq(t, t

′), it is possible to find a closed-form expression
for kfd,fd′ (t, t

′). A common option for kq(τ, τ ′) is the
Exponentiated Quadratic form

kq(τ, τ
′) = exp

[
− (τ − τ ′)2

`2q

]
,

where `q is known as the length-scale parameter.

LFMs have mostly being used for multiple output regres-
sion. In this case, the observed output d, yd(t), is assumed
to follow a Gaussian likelihood, yd(t) = fd(t)+εd,where
εd ∼ N (0, σ2

d).

3 FEATURE EXPANSIONS FOR
KERNELS DERIVED FROM LATENT
FORCE MODELS

In order to scale kernel machines, Rahimi and Recht
[2008] introduced the idea of random Fourier features
to approximate a kernel function using inner products be-
tween basis functions. Parameters of these basis functions
are sampled from a distribution associated to the kernel
function. We are particularly interested in the approxima-
tion for the EQ kernel, which has been commonly used
in LFMs. The idea is to replace the EQ kernel that is usu-
ally assumed for kq(τ, τ ′) by providing a random Fourier
feature representation for it via the Bochner’s theorem,

kq(τ, τ
′) = e

− (τ−τ′)2
`2q =

∫
p(λ)ej(τ−τ

′)λdλ, (3)

where p(λ) = N (λ|0, 2
`2q
). A key insight from Rahimi

and Recht [2008] was to use a finite approximation for
kq(τ, τ

′) by using Monte Carlo sampling to solve the
above integral over λ,

kq(τ, τ
′) ≈ 1

S

S∑

s=1

ejλsτe−jλsτ
′
,

=
1

S

S∑

s=1

v(τ, λs)v
∗(τ, λs),
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where S is the number of Monte Carlo samples, v(τ, λs)
is a basis function with parameter λs, v∗(τ, λs) is the
complex conjugate of v(τ, λs), and λs ∼ p(λ). Since
the kernel function is a real function, the real part of the
product v(τ, λs)v∗(τ, λs) is used instead.

Using the expression for kq(τ, τ ′) in Eq. (3) inside the
expression for the cross-covariance function for the LFM,
kfdfd′ (t, t

′), we get

Q∑

q=1

Sd,qSd′,q

∫ t

0

Gd(t− τ)
∫ t′

0

Gd′(t
′ − τ ′)×

∫
p(λ)ej(τ−τ

′)λdλdτ ′dτ.

Organizing the above expression we obtain

Q∑

q=1

Sd,qSd′,q

∫
p(λ)vd(t, θdλ)v

∗
d′(t
′, θd′ , λ)dλ, (4)

with

vd(t, θd, λ) =

∫ t

0

Gd(t− τ)ejλτdτ,

where θd makes reference to the parameters of the Green’s
function Gd(·). Also, v∗d′(t

′, θd′ , λ) is the complex conju-
gate for vd′(t′, θd′ , λ). The integrals over t and t′ above
can be solved using the Laplace transform L{·}

vd(t, θd, λ) = L−1L
{∫ t

0

Gd(t− τ)ejλτdτ
}

= L−1
{
Gd(s)L

{
ejλτ

}}
,

where Gd(s) is the Laplace transform for Gd(t). The
operator L−1{·} refers to the inverse Laplace transform.
Furthermore, notice that when Gd′(·) is a real function,
we can compute v∗d′(t

′, θd′ , λ) = vd′(t
′, θd′ ,−λ).

Similarly to Rahimi and Recht [2008], we use Monte
Carlo sampling to approximate the integral over λ in Eq.
(4), leading to

Q∑

q=1

Sd,qSd′,q
S

[
S∑

s=1

vd(t, θd, λs)v
∗
d′(t
′, θd′ , λs)

]
,

where λs ∼ p(λ).
The steps to compute a RFF approximation of the LFM
kernel are

1. Compute vd(t, θd, λ) =
∫ t
0
Gd(t− τ)ejλτdτ using

the Laplace transform.

2. Compute the RFF approximation for the LFM co-
variance function kfdfd′ (t, t

′) using

Q∑

q=1

Sd,qSd′,q
S

[
S∑

s=1

vd(t, θd, λs)v
∗
d′(t
′, θd′ , λs)

]
,

where λs ∼ p(λ). The distribution we use to sample
from, p(λ), depends on the kernel assumed for the
latent forces uq(t).

Interestingly, vd(t, θd, λ) represents the response of the
dynamical system to the excitation ejλt up to time t. We
will occasionally refer to this random feature as a random
Fourier response feature (RFRF).

In different applications of LFMs, we need to perform in-
ference over the latent forces uq(t). Inference over uq(t)
requires the evaluation of the cross-covariance functions
kfd,uq (t, t

′). Such cross-covariances are also important
in schemes that reduce computational complexity in con-
volved multiple output Gaussian processes, where the
underlying process uq(t) evaluated at a discrete set of
input locations serve the purpose of inducing variables
[Álvarez et al., 2010, Álvarez and Lawrence, 2011]. The
approximation of kfd,uq (t, t

′) using RFFs is given by

kfd,uq (t, t
′) =

1

S

S∑

s=1

vd(t, θd, λs)e
−jλst′ .

4 HYPERPARAMETER SELECTION
AND COMPUTATIONAL
COMPLEXITY

Let us assume, we are given observations {y,X} =
{yd,Xd}Dd=1 ( each yd ∈ RN and Xd ∈ RN×p), and we
want to learn the hyperparameters of the kernel function,
{{θd, σ2

d}Dd=1, {`q}Qq=1}, that allow us to explain y. With
that in mind, the hyperparamters can be learned from the
log-marginal likelihood [Rasmussen and Williams, 2006]

log p(y|X) =− ND

2
log(2π)− 1

2
y>(Kf ,f + Σ)−1y

− 1

2
log |Kf ,f + Σ| , (5)

where Σ is a diagonal matrix containing the variances
of the noise level per output, and Kf ,f ∈ RND×ND is a
block-wise matrix with blocks calculated using (2). As it
is usual, we can use a gradient-based optimization proce-
dure to estimate the hyperparameters that maximize the
log-marginal likelihood leading to the infamous computa-
tional complexity of O(D3N3).

However, notice that by the elegance of the RFF represen-
tation, the covariance matrix can instead be approximated
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as Kf ,f = R
{
ΦΦH

}
, where Φ ∈ CND×QS has entries

vd(t, θd, λs), and ΦH is the conjugate transpose of Φ.
Furthermore, the covariance matrix can be re-written as
Kf ,f = ΦcΦ

>
c , with Φc = [R{Φ} I{Φ}] ∈ CND×2QS .

Using the matrix inversion and determinant lemmas, we
express the log-marginal likelihood as

log p(y|X) =− 1

2
log |Σ| − 1

2

(
y>Σ−1y −α>A−1α

)

− 1

2
log |A| − ND

2
log(2π), (6)

with A = I+Φ>c Σ−1Φc andα = Φ>c Σ−1y, effectively
reducing computational complexity from O(D3N3) to
O(DNQ2S2), which is now linear with respect to the
data size.

Alternatively, one could couple the computation of the ker-
nel functions kfd,fd′ (t, t

′) and kfd,uq (t, t
′) through ran-

dom Fourier response features, with (i) any of the different
computationally efficient approximations for optimizing
the log-marginal likelihood in convolved multiple-output
Gaussian process [Álvarez and Lawrence, 2011], or (ii)
a lower bound on the log-marginal likelihood through a
variational approximation [Álvarez et al., 2010]. Both
styles of approximations require the specification of K
inducing variables.

5 FAST KERNEL BUILDING FROM
ORDINARY DIFFERENTIAL
EQUATIONS

Let us assume we are interested in analyzing an ODE of
order P given as

D(P )
d {fd(t)} =

Q∑

q=1

Sd,quq(t),

where the differential operator D(P )
d is defined as

D(P )
d = a0

dP

dtP
+ a1

dP−1

dtP−1
+ . . .+ aP−1

d

dt
+ aP .

The Laplace transform of the Green’s function Gd(t) for
the above ODE can be found as

Gd(s) =
1

a0

1

sP + a1
a0
sP−1 + . . .+ aP

a0

(7)

=
1

a0

1

(s− s1)(s− s2) . . . (s− sP )
,

where the si’s represent the roots of the polynomial given
in the denominator of (7). Additionally, the Laplace
transform for L{ejλτ} = 1

s−jλ . We can use a partial-
fraction expansion for Gd(s), and then apply the inverse

Laplace transform over the product Gd(s)L{ejλτ} to find
vd(t, θd, λ).

Interestingly, if all the roots s1, . . . , sP are distinct real
or distinct complex, and sP+1 = jλ (the additional root
obtained from L{ejλτ}), the random Fourier response
feature vd(t, θd, λ) can be expressed as

1

a0
L−1

{
P+1∑

p=1

Ap
(s− sp)

}
=

1

a0

P+1∑

p=1

Ape
spt,

where each coefficient Ap is calculated as

Ap =
1∏

∀i 6=p(sp − si)
, (8)

and, as before, sP+1 = jλ.

Next, we show some examples of the expressions ob-
tained for the random Fourier response features associ-
ated to the ODE of first and second orders. Besides, for
all ODE experiments the hyperparameters are learned us-
ing the variational approach described in Álvarez et al.
[2010] and they were carried out using a single core of
an AMD FX-8350 @ 4.0 GHz. We also include mea-
sures of the time required to evaluate the objective func-
tion and its gradients to compare the time cost induced
by the evaluation of the different covariance functions.
Code to replicate the following experiments is available
at github.com/cdguarnizo/kff_lfm.

5.1 FIRST-ORDER MODEL (ODE1)

For the first-order ODE we have the following equation

D(1)
d {fd(t)} =

dfd(t)

dt
+ γdfd(t) =

Q∑

q=1

uq(t),

from which the Laplace transform is given by Gd(s) =
1

s+γd
. We then have s1 = −γd, and s2 = jλ. The random

Fourier response feature for the d-th output function of a
first-order ODE is obtained as

v
(1)
d (t, θd, λ) = A1e

s1t +A1e
s2t

= − e−γdt

γd + jλ
+

ejλt

γd + jλ

=
ejλt − e−γdt
γd + jλ

.

Next, we compare the performance of the first order ODE
described in Gao et al. [2008] with the kernel obtained
by using the above random Fourier response feature for
interpolation of Air temperature.
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Figure 1: Comparison of the predictive GPs, for the air temperature experiment, using the standard LFM (first column)
and the RFRF approximation for S = 100 (second column) and S = 10 samples (third column). Training data is
represented using red dots and Test data using blue dots. The black line in the mean over the predictive GP function,
and the shaded region denotes two times the standard deviation.

Air temperature Here, we consider the problem of
modeling and predicting air temperature time series from
a network sensor located at the south coast of England.
The dataset consists of temperature measurements at four
locations known as Bramblemet, Sotonmet, Cambermet
and Chimet. 1 The air temperatures are measured during
the period from July 10 to July 15, 2013. Specifically,
we adopt the same experiment (train and test data) used
in Nguyen and Bonilla [2014] and described in Tab. 1.
The variational approach is configured with 200 inducing
variables, six latent forces and the maximum number of
iterations for the optimization procedure is set to 500.

Table 1: Number of training and test data-points consid-
ered on the air temperature experiment.

# Name Training Test
1 Bramblemet 1425 0
2 Cambermet 1268 173
3 Chimet 1235 201
4 Sotonmet 1097 0

Table 2 reports the predictive performance using the co-
variance functions build from the LFM and the proposed
RFRF. Note that for a low number of samples S, the pro-
posed approach presents the worst performance. This is
because the more samples we use the better the mean of
predictive GP is able to fit the coarse behavior from the
observed data, as shown in figure 1. Interestingly, the

1Weather data can be found in http://www.
bramblemet.co.uk.

RFRF starts to outperform the standard one, using only
50 or 100 samples with about half of the time required by
the original covariance function.

Table 2: Results on air temperature data.
Kernel Cambermet Chimet Time

NMSE NLPD NMSE NLPD [s]
ODE1+S10 0.74 3.26 0.58 1.53 1.89
ODE1+S20 0.45 1.95 0.93 1.75 2.09
ODE1+S50 0.08 1.10 0.21 1.08 2.68
ODE1+S100 0.12 1.18 0.12 0.82 3.93

ODE1 0.11 1.37 0.19 0.99 6.28

5.2 SECOND-ORDER MODEL (ODE2)

As a second example of a random Fourier feature represen-
tation of a LFM, we use a second-order ordinary differen-
tial operator D(2)

d {·} that represents, e.g., a mass-spring-
damper system. The second-order operator is given as

D(2)
d = md

d2

dt2
+ cd

d

dt
+ bd,

where md, cd and bd are the mass, damper and spring
constants, respectively. From the above equation, we
obtain the Laplace transform of the Green’s function as

Gd(s) =
1

md

1

s2 + cd
md
s+ bd

md

.

Following the procedure described above, it can be shown
that the random Fourier response feature for the d-th out-
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put is given by

v
(2)
d (t, θd, λ) =

1

md

[
A1e

s1t +A2e
s2t +A3e

s3t

]
,

where

s1, s2 = − cd
2md

±
√

c2d
4m2

d

− bd
md

,

are the roots of the polynomial obtained from the second-
order ODE, and s3 = jλ corresponds to the root in-
duced by the excitation ejλt. Note that the coefficients
A1 and A2 were calculated using (8). Furthermore, if
c2d > 4mdbd then the roots s1 and s2 are real, and the
model’s response is known as “overdamped”. When
c2d < 4mdbd the roots are a pair of complex conjugates,
and the response is known as “underdamped”.

Figure 2 shows the covariance matrices for a two-output
LFM using the standard expression for the covariance
function in Álvarez et al. [2009], and the kernel obtained
by using the random Fourier response features for the
ODE2, v(2)d (t, θd, λ), based on S = 100 samples. In
this example, we consider that the first output follows
an overdamped response, while the second output has
an underdamped response. Additionally, the input times
comprises 100 values in the range from 0s to 3s for each
output. Just to have a quantitative measure of the approx-
imation obtained by the RFRF approach, the Frobenius
norm between the covariance matrices shown in figure 2
is 239.1. However, for S = 105 samples, the Frobenius
norm is 5.8, which states that we are able to reduce the
approximation error by the cost of increasing the number
of samples. Note that the covariance values are similar,

ODE2 ODE2+S100

1.5 3.0 1.5 3.0

1.5

3.0

1.5
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Kf2f1
Kf2f2
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Kf2f2

Figure 2: Comparison of the covariance matrix evaluation
using the standard LFM and the RFRF.

indicating that the correlation between the outputs and
within each output is preserved and well approximated by
the inner products of the random features v(2)d (t, θd, λ).

For the following experiments, we consider two motion
capture (MOCAP) datasets, 2 which consist of measured
joint angles from different types of motions. Additionally,
the variational approach is configured with 25 inducing
variables, six latent forces and the maximum number of
iterations set to 500.

MOCAP - Golf swing In this experiment, we consider
the movement “Golf swing” performed by subject 64
motion 01. From the 62 available channels, we selected 56
each having 448 samples, except for two outputs where 81
consecutive samples were considered for testing purposes.
The complete dataset for training consists of 24926 data-
points.

Table 3: Results for Golf Swing dataset.
Kernel root-Ypos lowerback-Yrot Time

NMSE NLPD NMSE NLPD [s]
ODE2+S10 0.39 -2.23 0.98 2.69 2.20
ODE2+S20 0.24 -2.35 1.49 4.30 3.02
ODE2+S50 0.17 -2.39 0.27 1.17 4.59
ODE2+S100 0.12 -2.45 0.32 1.34 9.31

ODE2 0.11 -2.39 3.19 7.26 28.96

Table 3 reports the predictive performance using the co-
variance functions built from the LFM and the proposed
RFRF. In this experiment, the RFRF approximations fit
better the testing data for output “lowerback-Yrot”, as
shown in figure 3. In contrast, output “root-Ypos” testing
data is best fitted by the standard LFM. In summary, the
models learned using 50 and 100 samples not only per-
formed better than the standard LFM, but also their cost
time is reduced by a fraction of three and six, respectively.

MOCAP - Walk For this experiment, we consider the
movement “walk” from subject 02 motion 01. From the
62 available channels, we selected 48 each having 343
samples, except for 121 and 105 consecutive samples of
two outputs that were considered for testing purposes.
The complete dataset for training consists of 16238 data-
points.

Table 4 reports the predictive performance for the testing
data used in “walk” experiment. Output “lowerback-Yrot”
missing data is best fitted by the standard LFM. However,
the testing data for output “lradius-Xrot” is best fitted
by the proposed RFRF approach, as shown in figure 3.
Interestingly, for this experiment, the observed data are
smooth, which can be fitted with adequate accuracy using
10 or 20 samples using the RFRF approach.

2MOCAP datasets are available at http://mocap.cs.
cmu.edu/.
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Figure 3: Comparison of the predictive GPs, for the Golf swing experiment, using the standard LFM (first column)
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Figure 4: Comparison of the predictive GPs obtained for the the motion “Walk” using the standard LFM (first column)
and the RFF approximation for S = 100 (third column) and S = 10 samples (third column) . Training data is
represented using red dots and Test data using blue dots. The black line in the mean over the predictive GP function,
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We remark that the evaluation of the covariance function
ODE2 is the most expensive one because it requires the
evaluation of the Faddeeva function. Hence, the computa-
tion time per iteration is reduced using the inner product
of v(2)d (t, θd, λ).

6 RANDOM FOURIER FEATURES FOR
CONVOLVED MULTIPLE OUTPUT
GAUSSIAN PROCESSES

Convolution processes can be used to build kernels for
vector-valued functions, as reviewed in Álvarez and
Lawrence [2011]. Following similar expressions to the
ones in section 3, an output fd(x), with x ∈ Rp, can
be modeled as a convolution integral of general smooth-
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Table 4: Results for Walk Dataset.
Kernel lowerback-Yrot lradius-Xrot Time

NMSE NLPD NMSE NLPD [s]
ODE2+S10 0.21 5.05 0.12 1.06 1.45
ODE2+S20 0.22 2.09 0.49 0.87 2.04
ODE2+S50 0.22 4.77 0.19 5.28 3.24
ODE2+S100 0.18 3.35 0.09 3.86 6.09

ODE2 0.02 -0.10 0.99 19.63 19.67

ing kernels {Gid,q(·)}
D,Q,Rq
d=1,q=1,i=1, and latent processes

{uiq(x)}
Q,Rq
q=1,i=1

fd(x) =

Q∑

q=1

Rq∑

i=1

∫

X
Gid,q(x− z)uiq(z)dz,

where, according to Álvarez and Lawrence [2011], the
variable Rq makes reference to the number of latent func-
tions uq that share the same covariance function kq(x, x′),
although are sampled independently. Granted that the
uiq(x) are independent GPs with zero mean and covari-
ance functions cov[uiq(x), u

j
q′(x

′)] = kq(x,x
′)δq,q′δi,j ,

where δq,q′ and δi,j are Kronecker deltas, the cross-
covariance between fd(x), and fd′(x

′), kfd,fd′ (x,x
′),

follows a familiar form

Q∑

q=1

Rq∑

i=1

∫

X
Gid,q(x−z)

∫

X
Gid′,q(x

′−z′)kq(z, z
′)dzdz′.

This covariance function subsumes several other covari-
ance functions proposed in the literature for multiple out-
put GPs, including the linear model of coregionalization
[Álvarez and Lawrence, 2011].

A general purpose expression for kfd,fd′ (x,x
′) can be

obtained by assuming that both Gid,q(·) and kq(·, ·) fol-
low Gaussian forms. The cross-covariance kfd,fd′ (x,x

′)
would then also follow a Gaussian form after solving the
double integration for X = Rp. The authors in Álvarez
and Lawrence [2011] provided a closed-form expression
for kfd,fd′ (x,x

′) for this case, when Rq = 1.

We can also use random Fourier features for kq(·, ·) in the
expression above. For the Gaussian case, since the inte-
grations are over Rp, we use a Fourier transform instead
of a Laplace transform as it was the case for the LFM. Let
us assume that both Gd,q(·) and kq(·, ·) follow Gaussian
forms,

Gd,q(τ ) = exp

[
−Pd

2
τ>τ

]
,

kq(z, z
′) = exp

[
− 1

`2q
(z− z′)>(z− z′)

]
,

where Pd is the inverse-width associated to the smooth-
ing kernel for output d, and `q is the length-scale for
the kernel of the latent function. The cross-covariance
kfd,fd′ (x,x

′) follows as

Q∑

q=1

Sd,qSd,q′

∫

X

∫

X
exp

[
−Pd

2
(x− z)>(x− z)

]

× exp

[
−Pd′

2
(x′ − z′)>(x′ − z′)

]
kq(z, z

′)dzdz′.

Using again the Bochner’s theorem for kq(z, z′),

kq(z, z
′) =

∫
p(λ) exp(jλ>(z− z′))dλ.

Placing this form for kq(z, z′) inside the expression
for kfd,fd′ (x,x

′), and solving the integral over λ using
Monte Carlo, we get that kfd,fd′ (x,x

′) follows

Q∑

q=1

Sd,qSd,q′

S
φ>d (x, Pd,Λq)φ

∗
d′(x

′, Pd′ ,Λq),

where

φd(x, Pd,Λq) = exp

[
− 1

2Pd
bq + jΛqx

]
,

with bq =
∑
j (Λq �Λq)i,j ∈ RS×1, being � the

Hadamard product, and Λq = 1
`q

Z ∈ RS×p, where the
entries of the matrix Z are sampled from N (0, 1). Hy-
perparameters θd and `q can be estimated using similar
procedures to the ones described in section 4.

SARCOS As an illustration of the use of the kernel
above, we performed an experiment on a subset of the
SARCOS dataset described in the book by Rasmussen
and Williams [2006].3 We use a subset of the data in
the file sarcos inv.mat. In particular, we randomly
select 10000 data observations that include two outputs,
corresponding to the first two joint torques, and the first
seven inputs, corresponding to the joint positions. We then
randomly select 1000 observations for the second output
as the test data. We use the remaining 19000 for training,
this is, for hyperparameter optimization. We compare
the performance between the kernel proposed in Álvarez
and Lawrence [2011] (CMOC) and the kernel obtained
using the random Fourier response features for different
values of S. For the CMOC we optimize the marginal
likelihood as in Eq. (5), whereas for the RFRF, we use
the marginal likelihood as in Eq. (6). Table 5 reports the
NMSE and NLPD for the 1000 test observations for the
second output. These experiments were carried out using
a single core of an Intel Xeon E5-2630v3 @ 2.4 GHz.

3Available at http://www.gaussianprocess.org/
gpml/data/
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Table 5: Results for the Sarcos Experiment.
Kernel NMSE NLPD Time [s]

RFF+GG+S50 0.34 3.58 10.14
RFF+GG+S100 0.30 3.52 18.47
RFF+GG+S200 0.26 3.44 38.55
RFF+GG+S500 0.24 3.41 64.62

RFF+GG+S1000 0.22 3.36 85.00
CMOC 0.19 3.21 353.00

We notice that the performance of the approximation
increases with S, and approaches the performance of
CMOC, keeping the computation time per iteration to a
fraction of the original one. As it was also expected, in
higher dimensions, we need a larger number of random
features to approach the performance of the CMOC.

7 RELATED WORK

Random Fourier features have been used in the literature
for Gaussian processes before. For example, in Bonilla
et al. [2016], the authors use RFFs in order to propose a
multi-task GP model that circumvents the scalability prob-
lem of the GPs. Their model for the multiple outputs uses
an affine transformation of the random features, whereas
we use a non-instantaneous transformation via the Green’s
functions. Also in Yang et al. [2015], the authors use a
faster approximation of random Fourier features via the
FastFood kernels [Le et al., 2013], for approximating the
kernel functions of a GP. Their method is not used for
multiple outputs, nor does include dynamical systems.

Latent force models have been also studied using a state-
space formulation [Hartikainen and Särkkä, 2011] and in
that line of research, low-rank approximations for comput-
ing features have also been introduced [Solin and Särkkä,
2014]. Specifically, this work approximates the covari-
ance function using the Laplace operator eigenvalues and
eigenfunctions. This formulation has been used in Svens-
son et al. [2016] to approximate the GP priors that are
placed over the functions that transform the state vector
in the update state and observation equations. Thus, it has
not been considered to approximate the GP model of the
excitation function.

Brault et al. [2016] directly build random Fourier features
for vector-valued kernels using an operator-valued version
of Bochner’s theorem. The construction is applied to the
decomposable kernel, the curl-free kernel and the div-
free kernel. In our construction, rather than starting with
a fixed form for the operator-valued kernel, we use a
general mechanism used to build valid operator kernel
functions and apply linear operators over the random
Fourier features defined for single output kernels.

8 CONCLUSIONS AND FUTURE
WORK

We have shown in this paper how to use random Fourier
features for easing the computation of the kernel func-
tions associated to LFMs. As a by-product, we have
also reduced the computational complexity of working
in multiple-output GPs fromO(D3N3) toO(DNQ2S2).
We showed experiments over datasets of different sizes
for which results with LFM are slow to compute. Our
random Fourier response features reduce computational
time without compromising performance. Also, notice
that by having decoupled the solution of the convolution
integrals from the particular form for the kernel of the
latent functions, we now can easily build kernels for latent
force models with different kernel functions in the GPs
of the latent functions, just by changing the distribution
p(λ) from which we sample from.

These novel representations of latent force models open
the path for different types of future work: the application
of random Fourier response features for building more
efficient versions of sequential LFM [Álvarez et al., 2011]
and hierarchical LFM [Honkela and et al., 2010]; the use
of physically inspired Fourier features in other Gaussian
process models, particularly, deep models [Cutajar et al.,
2017]; the use of more efficient sampling techniques for
obtaining the Fourier features, e.g. Quasi-Monte Carlo
sampling [Avron et al., 2016]. With a more efficient way
to compute kernels for multiple-outputs, we can also use
more expensive model selection approaches, for example,
those based on automatic composition of kernel functions
[Duvenaud and et al., 2013], for building more complex
covariance functions, e.g. combinations of first order
models and second order models, as sums of kernels or
as products of kernels. For the case of convolved mul-
tiple outputs GPs where the input dimension is greater
than three (compared to typical LFMs), the computation
of dense Gaussian matrices can be replaced by the prod-
uct between Hadamard matrices and diagonal Gaussian
matrices, which are faster to compute [Le et al., 2013].
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Abstract

Imitation learning (IL) consists of a set of tools
that leverage expert demonstrations to quickly
learn policies. However, if the expert is subop-
timal, IL can yield policies with inferior per-
formance compared to reinforcement learning
(RL). In this paper, we aim to provide an algo-
rithm that combines the best aspects of RL and
IL. We accomplish this by formulating sev-
eral popular RL and IL algorithms in a com-
mon mirror descent framework, showing that
these algorithms can be viewed as a variation
on a single approach. We then propose LOKI, a
strategy for policy learning that first performs
a small but random number of IL iterations be-
fore switching to a policy gradient RL method.
We show that if the switching time is prop-
erly randomized, LOKI can learn to outperform
a suboptimal expert and converge faster than
running policy gradient from scratch. Finally,
we evaluate the performance of LOKI experi-
mentally in several simulated environments.

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a promis-
ing technique to tackle complex sequential decision
problems. When empowered with deep neural networks,
RL has demonstrated impressive performance in a range
of synthetic domains (Mnih et al., 2013; Silver et al.,
2017). However, one of the major drawbacks of RL is
the enormous number of interactions required to learn a
policy. This can lead to prohibitive cost and slow con-
vergence when applied to real-world problems, such as
those found in robotics (Pan et al., 2017).

Imitation learning (IL) has been proposed as an alter-
nate strategy for faster policy learning that works by

leveraging additional information provided through ex-
pert demonstrations (Pomerleau, 1989; Schaal, 1999).
However, despite significant recent breakthroughs in our
understanding of imitation learning (Ross et al., 2011;
Cheng and Boots, 2018), the performance of IL is still
highly dependent on the quality of the expert policy.
When only a suboptimal expert is available, policies
learned with standard IL can be inferior to the policies
learned by tackling the RL problem directly with ap-
proaches such as policy gradients.

Several recent attempts have endeavored to combine RL
and IL (Ross and Bagnell, 2014; Chang et al., 2015;
Nair et al., 2017; Rajeswaran et al., 2017; Sun et al.,
2018). These approaches incorporate the cost informa-
tion of the RL problem into the imitation process, so
the learned policy can both improve faster than their RL-
counterparts and outperform the suboptimal expert pol-
icy. Despite reports of improved empirical performance,
the theoretical understanding of these combined algo-
rithms are still fairly limited (Rajeswaran et al., 2017;
Sun et al., 2018). Furthermore, some of these algorithms
have requirements that can be difficult to satisfy in prac-
tice, such as state resetting (Ross and Bagnell, 2014;
Chang et al., 2015).

In this paper, we aim to provide an algorithm that com-
bines the best aspects of RL and IL. We accomplish this
by first formulating first-order RL and IL algorithms in a
common mirror descent framework, and show that these
algorithms can be viewed as a single approach that only
differs in the choice of first-order oracle. On the basis
of this new insight, we address the difficulty of com-
bining IL and RL with a simple, randomized algorithm,
named LOKI (Locally Optimal search after K-step Im-
itation). As its name suggests, LOKI operates in two
phases: picking K randomly, it first performs K steps
of online IL and then improves the policy with a pol-
icy gradient method afterwards. Compared with previ-
ous methods that aim to combine RL and IL, LOKI is
extremely straightforward to implement. Furthermore, it
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has stronger theoretical guarantees: by properly random-
izingK, LOKI performs as if directly running policy gra-
dient steps with the expert policy as the initial condition.
Thus, not only can LOKI improve faster than common
RL methods, but it can also significantly outperform a
suboptimal expert. This is in contrast to previous meth-
ods, such as AGGREVATTE (Ross and Bagnell, 2014),
which generally cannot learn a policy that is better than a
one-step improvement over the expert policy. In addition
to these theoretical contributions, we validate the perfor-
mance of LOKI in multiple simulated environments. The
empirical results corroborate our theoretical findings.

2 PROBLEM DEFINITION

We consider solving discrete-time γ-discounted infinite-
horizon RL problems.1 Let S and A be the state and the
action spaces, and let Π be the policy class. The objective
is to find a policy π ∈ Π that minimizes an accumulated
cost J(π) defined as

minπ∈Π J(π), J(π) := Eρπ [
∑∞
t=0 γ

tc(st, at)] , (1)

in which st ∈ S, at ∈ A, c is the instantaneous
cost, and ρπ denotes the distribution of trajectories
(s0, a0, s1, . . . ) generated by running the stationary pol-
icy π starting from s0 ∼ p0(s0).

We denoteQπ(s, a) as the Q-function under policy π and
Vπ(s) = Ea∼πs [Qπ(s, a)] as the associated value func-
tion, where πs denotes the action distribution given state
s. In addition, we denote dπ,t(s) as the state distribu-
tion at time t generated by running the policy π for the
first t steps, and we define a joint distribution dπ(s, t) =
(1 − γ)dπ,t(s)γ

t which has support S × [0,∞). Note
that, while we use the notation Ea∼π , the policy class Π
can be either deterministic or stochastic.

We generally will not deal with the objective function in
(1) directly. Instead, we consider a surrogate problem

min
π∈Π

Es,t∼dπEa∼πs [Aπ′(s, a)], (2)

where Aπ′ = Qπ′ − Vπ′ is the (dis)advantage function
with respect to some fixed reference policy π′. For com-
pactness of writing, we will often omit the random vari-
able in expectation; e.g., the objective function in (2) will
be written as EdπEπ[Aπ′ ] for the remainder of paper.

By the performance difference lemma below, it is easy to
see that solving (2) is equivalent to solving (1).

Lemma 1. (Kakade and Langford, 2002) Let π and π′

be two policies and Aπ′(s, a) = Qπ′(s, a) − Vπ′(s) be

1LOKI can be easily adapted to finite-horizon problems.

the (dis)advantage function with respect to running π′.
Then it holds that

J(π) = J(π′) +
1

1− γEdπEπ[Aπ′ ]. (3)

3 FIRST-ORDER RL AND IL

We formulate both first-order RL and IL methods within
a single mirror descent framework (Nemirovski et al.,
2009), which includes common update rules (Sutton
et al., 2000; Kakade, 2002; Peters and Schaal, 2008; Pe-
ters et al., 2010; Rawlik et al., 2012; Silver et al., 2014;
Schulman et al., 2015b; Ross et al., 2011; Sun et al.,
2017). We show that policy updates based on RL and
IL mainly differ in first-order stochastic oracles used, as
summarized in Table 1.

3.1 MIRROR DESCENT

We begin by defining the iterative rule to update policies.
We assume that the learner’s policy π is parametrized by
some θ ∈ Θ, where Θ is a closed and convex set, and
that the learner has access to a family of strictly convex
functionsR.

To update the policy, in the nth iteration, the learner re-
ceives a vector gn from a first-order oracle, picks Rn ∈
R, and then performs a mirror descent step:

θn+1 = Pn,gn(θn) (4)

where Pn,gn is a prox-map defined as

Pn,gn(θn) := arg min
θ∈Θ

〈gn, θ〉+
1

ηn
DRn(θ||θn). (5)

ηn is the step size, and DRn is the Bregman divergence
associated with Rn (Bregman, 1967): DRn(θ||θn) :=
Rn(θ)−Rn(θn)− 〈∇Rn(θn), θ − θn〉.
By choosing proper Rn, the mirror descent framework
in (4) covers most RL and IL algorithms. Common
choices of Rn include negative entropy (Peters et al.,
2010; Rawlik et al., 2012), 1

2‖θ‖22 (Sutton et al., 2000;
Silver et al., 2014), and 1

2θ
>F (θn)θ with F (θn) as the

Fisher information matrix (Kakade, 2002; Peters and
Schaal, 2008; Schulman et al., 2015a).

3.2 FIRST-ORDER ORACLES

While both first-order RL and IL methods can be viewed
as performing mirror descent, they differ in the choice
of the first-order oracle that returns the update direction
gn. Here we show the vector gn of both approaches can
be derived as a stochastic approximation of the (partial)
derivative of EdπEπ[Aπ′ ] with respect to policy π, but
with a different reference policy π′.
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Table 1: Comparison of First-Order Oracles

Method First-Order Oracle

POLICY GRADIENT (Section 3.2.1) Edπn (∇θEπ) [Aπn ]
DAGGERED (Section 3.2.2) Edπn (∇θEπ) [Eπ∗ [d]]
AGGREVATED (Section 3.2.2) Edπn (∇θEπ) [Aπ∗ ]
SLOLS (Section 6) Edπn (∇θEπ) [(1− λ)Aπn + λAπ∗ ]

THOR (Section 6) Edπn (∇θEπ) [AH,π
∗

πn,t ]

3.2.1 Policy Gradients

A standard approach to RL is to treat (1) as a stochas-
tic nonconvex optimization problem. In this case, gn in
mirror descent (4) is an estimate of the policy gradient
∇θJ(π) (Williams, 1992; Sutton et al., 2000).

To compute the policy gradient in the nth iteration, we
set the current policy πn as the reference policy in (3)
(i.e. π′ = πn), which is treated as constant in θ in
the following policy gradient computation. Because
Eπn [Aπn ] = Eπn [Qπn ]− Vπn = 0, using (3), the policy
gradient can be written as2

(1− γ)∇θJ(π)|π=πn

= ∇θEdπEπ[Aπn ]|π=πn

= (∇θEdπ ) [0] + Edπ (∇θEπ) [Aπn ]|π=πn

= Edπ (∇θEπ) [Aπn ]|π=πn (6)

The above expression is unique up to a change of base-
lines: (∇θEπ) [Aπn ] is equivalent to (∇θEπ) [Aπn + b],
because (∇θEπ) [b(s)] = ∇θb(s) = 0, where b : S→ R
is also called a control variate (Greensmith et al., 2004).

The exact formulation of (∇θEπ) [Aπn ] depends on
whether the policy π is stochastic or deterministic.
For stochastic policies,3 we can compute it with the
likelihood-ratio method and write

(∇θEπ) [Aπn ] = Eπ[Aπn∇θ log π] (7)

For deterministic policies, we replace the expectation as
evaluation (as it is the expectation over a Dirac delta
function, i.e. a = π(s)) and use the chain rule:

(∇θEπ) [Aπn ] = ∇θAπn(s, π) = ∇θπ∇aAπn (8)

Substituting (7) or (8) back into (6), we get the equa-
tion for stochastic policy gradient (Sutton et al., 2000) or
deterministic policy gradient (Silver et al., 2014). Note
that the above equations require the exact knowledge, or

2We assume the cost is sufficiently regular so that the order
of differentiation and expectation can exchange.

3A similar equation holds for reparametrization (Grathwohl
et al., 2017).

an unbiased estimate, of Aπ . In practice, these terms
are further approximated using function approximators,
leading to biased gradient estimators (Konda and Tsitsik-
lis, 2000; Schulman et al., 2015b; Mnih et al., 2016).

3.2.2 Imitation Gradients

An alternate strategy to RL is IL. In particular, we con-
sider online IL, which interleaves data collection and pol-
icy updates to overcome the covariate shift problem of
traditional batch IL (Ross et al., 2011). Online IL as-
sumes that a (possibly suboptimal) expert policy π∗ is
available as a black-box oracle, from which demonstra-
tions a∗ ∼ π∗s can be queried for any given state s ∈ S.
Due to this requirement, the expert policy in online IL
is often an algorithm (rather than a human demonstra-
tor), which is hard-coded or based on additional compu-
tational resources, such as trajectory optimization (Pan
et al., 2017). The goal of IL is to learn a policy that can
perform similar to, or better than, the expert policy.

Rather than solving the stochastic nonconvex optimiza-
tion directly, online IL solves an online learning problem
with per-round cost in the nth iteration defined as

ln(π) = EdπnEπ[c̃] (9)

where c̃ : S × A → R is a surrogate loss satisfying the
following condition: For all s ∈ S and π ∈ Π, there
exists a constant Cπ∗ > 0 such that

Cπ∗Eπ[c̃] ≥ Eπ[Aπ∗ ]. (10)

By Lemma 1, this implies J(πn) ≤ J(π∗)+ Cπ∗
1−γ ln(πn).

Namely, in the nth iteration, online IL attempts to mini-
mize an online upper-bound of J(πn).

DAGGER (Ross et al., 2011) chooses c̃ to be a strongly
convex function c̃(s, a) = Ea∗∼π∗s [d(a, a∗)] that penal-
izes the difference between the learner’s policy and the
expert’s policy, where d is some metric of space A (e.g.,
for a continuous action space Pan et al. (2017) choose
d(a, a∗) = ‖a − a∗‖2). More directly, AGGREVATTE
simply chooses c̃(s, a) = Aπ∗(s, a) (Ross and Bagnell,
2014); in this case, the policy learned with online IL can
potentially outperform the expert policy.
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First-order online IL methods operate by updating poli-
cies with mirror descent (4) with gn as an estimate of

∇θln(πn) = Edπn (∇θEπ) [c̃]|π=πn (11)

Similar to policy gradients, the implementation of (11)
can be executed using either (7) or (8) (and with a control
variate). One particular case of (11), with c̃ = Aπ∗ , is
known as AGGREVATED (Sun et al., 2017),

∇θln(πn) = Edπn (∇θEπ) [Aπ∗ ]|π=πn . (12)

Similarly, we can turn DAGGER into a first-order
method, which we call DAGGERED, by using gn as an
estimate of the first-order oracle

∇θln(πn) = Edπn (∇θEπ)Eπ∗ [d]. (13)

A comparison is summarized in Table 1.

4 THEORETICAL COMPARISON

With the first-order oracles defined, we now compare the
performance and properties of performing mirror descent
with policy gradient or imitation gradient. We will see
that while both approaches share the same update rule
in (4), the generated policies have different behaviors:
using policy gradient generates a monotonically improv-
ing policy sequence, whereas using imitation gradient
generates a policy sequence that improves on average.
Although the techniques used in this section are not com-
pletely new in the optimization literature, we specialize
the results to compare performance and to motivate LOKI
in the next section. The proofs of this section are in-
cluded in Appendix B for completeness.

4.1 POLICY GRADIENTS

We analyze the performance of policy gradients with
standard techniques from nonconvex analysis.

Proposition 1. Let J be β-smooth and Rn be αn-
strongly convex with respect to norm ‖ · ‖. Assume
E[gn] = ∇θJ(πn). For ηn ≤ 2αn

β , it satisfies

E [J(πn+1)] ≤ J(π0) + E
[∑N

n=1
2ηn
αn
‖∇θJ(πn)− gn‖2∗

]

+ 1
2E
[∑N

n=1

(
−αnηn +

βη2n
2

)
‖∇̂θJ(πn)‖2

]

where the expectation is due to randomness of sampling
gn, and ∇̂θJ(πn) := 1

ηn

(
θn − Pn,∇θJ(πn)(θn)

)
is a

gradient surrogate.

Proposition 1 shows that monotonic improvement can be
made under proper smoothness assumptions if the step

size is small and noise is comparably small with the gra-
dient size. However, the final policy’s performance is
sensitive to the initial condition J(π0), which can be
poor for a randomly initialized policy.

Proposition 1 also suggests that the size of the gradient
‖∇̂θJ(πn)‖2 does not converge to zero on average. In-
stead, it converges to a size proportional to the sampling
noise of policy gradient estimates due to the linear depen-
dency of 2ηn

αn
‖∇θJ(πn)−gn‖2∗ on ηn. This phenomenon

is also mentioned by Ghadimi et al. (2016). We note that
this pessimistic result is because the prox-map (5) is non-
linear in gn for general Rn and Θ. However, when Rn
is quadratic and Θ is unconstrained, the convergence of
‖∇̂θJ(πn)‖2 to zero on average can be guaranteed (see
Appendix B.1 for a discussion).

4.2 IMITATION GRADIENTS

While applying mirror descent with a policy gradient can
generate a monotonically improving policy sequence,
applying the same algorithm with an imitation gradient
yields a different behavior. The result is summarized be-
low, which is a restatement of (Ross and Bagnell, 2014,
Theorem 2.1), but is specialized for mirror descent.
Proposition 2. Assume ln is σ-strongly convex with re-
spect to Rn.4 Assume E[gn] = ∇θln(πn) and ‖gn‖∗ ≤
G <∞ almost surely. For ηn = 1

σ̂n with σ̂ ≤ σ, it holds

1
NE

[∑N
n=1 J(πn)

]
≤ J(π∗) + Cπ∗

1−γ (εclass + εregret)

where the expectation is due to randomness of sampling
gn, εclass = sup{πn} infπ∈Π

1
N

∑N
n=1 ln(π) and εregret =

G2(logN+1)
2σ̂N .

Proposition 2 is based on the assumption that ln is
strongly convex, which can be verified for certain prob-
lems (Cheng and Boots, 2018). Consequently, Proposi-
tion 2 shows that the performance of the policy sequence
on average can converge close to the expert’s perfor-
mance J(π∗), with additional error that is proportional
to εclass and εregret.

εregret is an upper bound of the average regret, which is
less than Õ( 1

N ) for a large enough step size.5 This char-
acteristic is in contrast to policy gradient, which requires
small enough step sizes to guarantee local improvement.

εclass measures the expressiveness of the policy class Π.
It can be negative if there is a policy in Π that outper-

4A function f is said to be σ-strongly convex with respect
toR on a setK if for all x, y ∈ K, f(x) ≥ f(y)+〈∇f(y), x−
y〉+ σDR(x||y).

5The step size should be large enough to guarantee Õ( 1
N

)

convergence, where Õ denotes Big-O but omitting log depen-
dency. However, it should be bounded since εregret = Θ

(
1
σ̂

)
.
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Algorithm 1 LOKI

Parameters: d, Nm, NM
Input: π∗
1: Sample K with probability in (15).
2: for t = 1 . . .K do # Imitation Phase
3: Collect data Dn by executing πn
4: Query gn from (11) using π∗

5: Update πn by mirror descent (5) with gn
6: Update advantage function estimate Âπn by Dn
7: end for
8: for t = K + 1 . . . do # Reinforcement Phase
9: Collect data Dn by executing πn.

10: Query gn from (6) f using Âπn
11: Update πn by mirror descent (5) with gn
12: Update advantage function estimate Âπn by Dn
13: end for

forms the expert policy π∗ in terms of c̃. However, since
online IL attempts to minimize an online upper bound
of the accumulated cost through a surrogate loss c̃, the
policy learned with imitation gradients in general cannot
be better than performing one-step policy improvement
from the expert policy (Ross and Bagnell, 2014; Cheng
and Boots, 2018). Therefore, when the expert is subop-
timal, the reduction from nonconvex optimization to on-
line convex optimization can lead to suboptimal policies.

Finally, we note that updating policies with imitation
gradients does not necessarily generate a monotonically
improving policy sequence, even for deterministic prob-
lems; whether the policy improves monotonically is
completely problem dependent (Cheng and Boots, 2018).
Without going into details, we can see this by comparing
policy gradient in (6) and the special case of imitation
gradient in (12). By Lemma 3, we see that

Edπn (∇θEπ) [Aπn ]

= (∇θEdπ )Eπn [Aπ∗ ] + Edπn (∇θEπ) [Aπ∗ ].

Therefore, even with c̃ = Aπ∗ , the negative of the direc-
tion in (12) is not necessarily a descent direction; namely
applying (12) to update the policy is not guaranteed to
improve the policy performance locally.

5 IMITATE-THEN-REINFORCE

To combine the benefits from RL and IL, we propose
a simple randomized algorithm LOKI: first perform K
steps of mirror descent with imitation gradient and then
switch to policy gradient for the rest of the steps. De-
spite the algorithm’s simplicity, we show that, when K
is appropriately randomized, running LOKI has similar
performance to performing policy gradient steps directly
from the expert policy.

5.1 ALGORITHM: LOKI

The algorithm LOKI is summarized in Algorithm 1. The
algorithm is composed of two phases: an imitation phase
and a reinforcement phase. In addition to learning
rates, LOKI receives three hyperparameters (d,Nm,NM )
which determine the probability of random switching at
time K. As shown in the next section, these three hyper-
parameters can be selected fairly simply.

Imitation Phase Before learning, LOKI first randomly
samples a number K ∈ [Nm, NM ] according to the pre-
scribed probability distribution (15). Then it performs K
steps of mirror descent with imitation gradient. In our
implementation, we set the per-round loss as6

ln(π) = Edπn [KL(π∗||π)], (14)

which is the KL-divergence between the two policies.
It can be easily shown that a proper constant C∗ exists
satisfying the requirement in (10) (Gibbs and Su, 2002).
While using (14) does not guarantee learning a policy
that outperforms the expert due to εclass ≥ 0, with an-
other reinforcement phase available, the imitation phase
of LOKI is only designed to quickly bring the initial pol-
icy closer to the expert policy. Compared with choosing
c̃ = Aπ∗ as in AGGREVATED, one benefit of choosing
KL(π∗||π) (or its variants, e.g. Ea∼πEa∗∼π∗ [‖a−a∗‖2])
is that it does not require learning a value function esti-
mator. In addition, the imitation gradient can be calcu-
lated through reparametrization instead of a likelihood-
ratio (Tucker et al., 2017), as now ln is presented as a
differentiable function. Consequently, the sampling vari-
ance of imitation gradient can be significantly reduced,
for example, by using multiple samples of a ∼ πn (with
a single query from the expert policy) and then perform-
ing averaging.

Reinforcement Phase After the imitation phase, LOKI
switches to the reinforcement phase. At this point, the
policy πK is much closer to the expert policy than the
initial policy π0. In addition, an estimate of AπK is also
available. Because the learner’s policies were applied to
collect data in the previous online imitation phase, Aπn
can already be updated accordingly, for example, by min-
imizing TD error. Compared with other warm-start tech-
niques, LOKI can learn both the policy and the advantage
estimator in the imitation phase.

5.2 ANALYSIS

We now present the theoretical properties of LOKI. The
analysis is composed of two steps. First, we show the

6While (14) does not conform with the classical choice
Eπ[c̃] in (9), a bound similar to (10) can be derived.
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performance of J(πK) in Theorem 1, a generalization of
Proposition 2 to consider the effects of non-uniform ran-
dom sampling. Next, combining Theorem 1 and Propo-
sition 1, we show the performance of LOKI in Theorem 2.
The proofs are given in Appendix C.

Theorem 1. Let d ≥ 0, Nm ≥ 1, and NM ≥ 2Nm. Let
K ∈ [Nm, NM ] be a discrete random variable such that

P (K = n) = nd/
∑NM
m=Nm

md. (15)

Suppose ln is σ-strongly convex with respect to Rn,
E[gn] = ∇θln(πn), and ‖gn‖∗ ≤ G <∞ almost surely.
Let {πn} be generated by running mirror descent with
step size ηn = nd/σ̂

∑n
m=1m

d. For σ̂ ≤ σ, it holds that

E [J(πK)] ≤ J(π∗) + ∆,

where the expectation is due to sampling K and
gn, ∆ = Cπ∗

1−γ
(
εwclass + 2−dσ̂DR +G2CNM /σ̂NM

)
,

DR = supR∈R supπ,π′∈ΠDR(π′||π), εwclass :=

sup{wn},{πn} infπ∈Π

∑N
n=1 wnln(π)∑N
n=1 wn

, and

CNM =

{
log(NM ) + 1, if d = 0
8d
3 exp

(
d
NM

)
, if d ≥ 1

SupposeNM � d. Theorem 1 says that the performance
of J(πK) in expectation converges to J(π∗) in a rate of
Õ(d/NM ) when a proper step size is selected. In ad-
dition to the convergence rate, we notice that the per-
formance gap between J(π∗) and J(πK) is bounded by
O(εwclass + 2−dDR). εwclass is a weighted version of the ex-
pressiveness measure of policy class Π in Proposition 2,
which can be made small if Π is rich enough with respect
to the suboptimal expert policy. DR measures the size of
the decision space with respect to the class of regulariza-
tion functions R that the learner uses in mirror descent.
The dependency on DR is because Theorem 1 performs
a suffix random sampling with Nm > 0. While the pres-
ence of DR increases the gap, its influence can easily
made small with a slightly large d due to the factor 2−d.

In summary, due to the sublinear convergence rate of IL,
NM does not need to be large (say less than 100) as long
as NM � d; on the other hand, due to the 2d factor, d is
also small (say less than 5) as long as it is large enough
to cancel out the effects of DR. Finally, we note that,
like Proposition 2, Theorem 1 encourages using larger
step sizes, which can further boost the convergence of
the policy in the imitation phase of LOKI.

Given Proposition 1 and Theorem 1, now it is fairly easy
to understand the performance of LOKI.

Theorem 2. Running LOKI holds that

E [J(πN )] ≤ J(π∗) + ∆

+ E
[∑N

n=K+1
2ηn
αn
‖∇θJ(πn)− gn‖2∗

]

+ 1
2E
[∑N

n=K+1

(
−αnηn +

βη2n
2

)
‖∇̂θJ(πn)‖2

]
,

where the expectation is due to sampling gn and K.

Firstly, Theorem 2 shows that πN can perform better than
the expect policy π∗, and, in fact, it converges to a locally
optimal policy on average under the same assumption as
in Proposition 1. Compare with to running policy gradi-
ent steps directly from the expert policy, running LOKI
introduces an additional gap O(∆ + K‖∇̂θJ(π)‖2).
However, as discussed previously, ∆ and K ≤ NM �
N are reasonably small, for usual N in RL. Therefore,
performing LOKI almost has the same effect as using the
expert policy as the initial condition, which is the best we
can hope for when having access to an expert policy.

We can also compare LOKI with performing usual pol-
icy gradient updates from a randomly initialized pol-
icy. The performance difference can be easily shown as
O(J(π∗) − J(π0) + ∆ + K‖∇̂θJ(π)‖2). Therefore, if
performing K steps of policy gradient from π0 gives a
policy with performance worse than J(π∗) + ∆, then
LOKI is favorable.

6 RELATED WORK

We compare LOKI with some recent attempts to incor-
porate the loss information c of RL into IL so that it
can learn a policy that outperforms the expert policy.
As discussed in Section 4, when c̃ = Aπ∗ , AGGRE-
VATE(D) can potentially learn a policy that is better than
the expert policy (Ross and Bagnell, 2014; Sun et al.,
2017). However, implementing AGGREVATE(D) ex-
actly as suggested by theory can be difficult and ineffi-
cient in practice. On the one hand, while Aπ∗ can be
learned off-policy using samples collected by running
the expert policy, usually the estimator quality is unsat-
isfactory due to covariate shift. On the other hand, if
Aπ∗ is learned on-policy, it requires restarting the system
from any state, or requires performing 1

1−γ -times more
iterations to achieve the same convergence rate as other
choices of c̃ such as KL(π∗||π) in LOKI; both of which
are impractical for usual RL problems.

Recently, Sun et al. (2018) proposed THOR (Trun-
cated HORizon policy search) which solves a trun-
cated RL problem with the expert’s value function as
the terminal loss to alleviate the strong dependency
of AGGREVATED on the quality of Aπ∗ . Their al-
gorithm uses an H-step truncated advantage function
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defined as AH,π
∗

πn,t = Eρπn [
∑t+H−1
τ=t γτ−tc(sτ , aτ ) +

γHVπ∗(st+H)−Vπ∗(st)]. While empirically the authors
show that the learned policy can improve over the expert
policy, the theoretical properties of THOR remain some-
what unclear.7 In addition, THOR is more convoluted to
implement and relies on multiple advantage function es-
timators. By contrast, LOKI has clearer theoretical prop-
erties, while being straightforward to implement with
off-the-shelf learning algorithms.

Finally, we compare LOKI with LOLS (Locally Optimal
Learning to Search), proposed by Chang et al. (2015).
LOLS is an online IL algorithm which sets c̃ = Qπ̂λn ,
where λ ∈ [0, 1] and π̂λn is a mixed policy that at each
time step chooses to run the current policy πn with prob-
ability 1−λ and the expert policy π∗ with probability λ.
Like AGGREVATED, LOLS suffers from the impractical
requirement of estimating Qπ̂λn , which relies on the state
resetting assumption.

Here we show that such difficulty can be addressed by us-
ing the mirror descent framework with gn as an estimate
of ∇θlλn(πn), where lλn(π) := EdπnEπ[(1 − λ)Aπn +
λAπ∗ ]. That is, the first-order oracle is simply a convex
combination of policy gradient and AGGREVATED gra-
dient. We call such linear combination SLOLS (simple
LOLS ) and we show it has the same performance guar-
antee as LOLS.
Theorem 3. Under the same assumption in Proposi-
tion 2, running SLOLS generates a policy sequence, with
randomness due to sampling gn, satisfying

1

N
E

[
N∑

n=1

J(πn)− ((1− λ)J∗πn + λJ(π∗))

]
≤ ελclass + ελregret

1− γ

where (1 − γ)J∗πn = minπ∈Π EdπnEπ[Qπn ] =:
Edπn [V ∗πn ] and ελclass = minπ∈Π

1
N

(
∑N
n=1 EdπnEπ[(1 −

λ)Qπn + λQπ∗ ])− 1
N

(
∑N
n=1 Edπn [(1− λ)V ∗πn + λVπ∗ ]).

In fact, the performance in Theorem 3 is actually a lower
bound of Theorem 3 in (Chang et al., 2015).8 Theorem 3
says that on average πn has performance between the
expert policy J(π∗) and the intermediate cost J∗πn , as
long as ελclass is small (i.e., there exists a single policy in
Π that is better than the expert policy or the local im-
provement from any policy in Π). However, due to the
presence of ελclass, despite J∗πn ≤ J(πn), it is not guar-
anteed that J∗πn ≤ J(π∗). As in Chang et al. (2015),
either LOLS or SLOLS can necessarily perform on aver-
age better than the expert policy π∗. Finally, we note
that recently both Nair et al. (2017) and Rajeswaran et al.

7The algorithm actually implemented by Sun et al. (2018)
does not solve precisely the same problem analyzed in theory.

8The main difference is due to technicalities. In Chang et al.
(2015), ελclass is compared with a time-varying policy.

(2017) propose a scheme similar to SLOLS, but with the
AGGREVATE(D) gradient computed using offline batch
data collected by the expert policy. However, there is no
theoretical analysis of this algorithm’s performance.

7 EXPERIMENTS

We evaluate LOKI on several robotic control tasks from
OpenAI Gym (Brockman et al., 2016) with the DART
physics engine (Lee et al., 2018)9 and compare it with
several baselines: TRPO (Schulman et al., 2015a), TRPO
from expert, DAGGERED (the first-order version of
DAGGER (Ross et al., 2011) in (13)), SLOLS (Section 6),
and THOR (Sun et al., 2018).

7.1 TASKS

We consider the following tasks. In all tasks, the discount
factor of the RL problem is set to γ = 0.99. The details
of each task are specified in Table A in Appendix A.

Inverted Pendulum This is a classic control problem,
and its goal is to swing up an pendulum and to keep it
balanced in a upright posture. The difficulty of this task
is that the pendulum cannot be swung up directly due to
a torque limit.

Locomotion The goal of these tasks (Hopper, 2D
Walker, and 3D Walker) is to control a walker to move
forward as quickly as possible without falling down. In
Hopper, the walker is a monoped, which is subjected to
significant contact discontinuities, whereas the walkers
in the other tasks are bipeds. In 2D Walker, the agent is
constrained to a plane to simplify balancing.

Robot Manipulator In the Reacher task, a 5-DOF
(degrees-of-freedom) arm is controlled to reach a ran-
dom target position in 3D space. The reward consists of
the negative distance to the target point from the finger
tip plus a control magnitude penalty. The actions corre-
spond to the torques applied to the 5 joints.

7.2 ALGORITHMS

We compare five algorithms (LOKI, TRPO, DAGGERED,
THOR, SLOLS) and the idealistic setup of performing
policy gradient steps directly from the expert policy
(Ideal). To facilitate a fair comparison, all the algo-
rithms are implemented based on a publicly available
TRPO implementation (Dhariwal et al., 2017). Further-
more, they share the same parameters except for those

9The environments are defined in DartEnv, hosted at
https://github.com/DartEnv.
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that are unique to each algorithm as listed in Table A in
Appendix A. The experimental results averaged across
25 random seeds are reported in Section 7.3.

Policy and Value Networks Feed-forward neural net-
works are used to construct the policy networks and the
value networks in all the tasks (both have two hidden lay-
ers and 32 tanh units per layer). We consider Gaussian
stochastic policies, i.e. for any state s ∈ S, πs(a) is
Gaussian distributed. The mean of the Gaussian πs(a),
as a function of state, is modeled by the policy network,
and the covariance matrix of Gaussian is restricted to be
diagonal and independent of state. The policy networks
and the value function networks are initialized randomly,
except for the ideal setup (TRPO from expert), which is
initialized as the expert.

Expert Policy The same sub-optimal expert is used by
all algorithms (LOKI, DAGGERED, SLOLS, and THOR).
It is obtained by running TRPO and stopping it before
convergence. The estimate of the expert value function
Vπ∗ (required by SLOLS and THOR) is learned by mini-
mizing the sum of squared TD(0) error on a large sepa-
rately collected set of demonstrations of this expert. The
final explained variance for all the tasks is more than 0.97
(see Appendix A).

First-Order Oracles The on-policy advantage Aπn in
the first-order oracles for TRPO, SLOLS, and LOKI (in the
reinforcement phase) is implemented using an on-policy
value function estimator and Generalized Advantage Es-
timator (GAE) (Schulman et al., 2015b). For DAG-
GERED and the imitation phase of LOKI, the first-order
oracle is calculated using (14). For SLOLS, we use the es-
timate Aπ∗(st, at) ≈ c(st, at) + γV̂π∗(st+1)− V̂π∗(st).
And for THOR, AH,π

∗

πn,t of the truncated-horizon problem
is approximated by Monte-Carlo samples with an on-
policy value function baseline estimated by regressing on
these Monte-Carlo samples. Therefore, for all methods,
an on-policy component is used in constructing the first-
order oracle. The exponential weighting in GAE is 0.98;
the mixing coefficient λ in SLOLS is 0.5; NM in LOKI is
reported in Table A in Appendix A, and Nm =

⌊
1
2NM

⌋
,

and d = 3.

Mirror Descent After receiving an update direction
gn from the first-order oracle, a KL-divergence-based
trust region is specified. This is equivalent to setting
the strictly convex function Rn in mirror descent to
1
2θ
>F (θn)θ and choosing a proper learning rate. In our

experiments, a larger KL-divergence limit (0.1) is se-
lected for imitation gradient (14) (in DAGGERED and in
the imitation phase of LOKI), and a smaller one (0.01)
is set for all other algorithms. This decision follows

the guideline provided by the theoretical analysis in Sec-
tion 3.2.2 and is because of the low variance in calculat-
ing the gradient of (14). Empirically, we observe using
the larger KL-divergence limit with policy gradient led
to high variance and instability.

7.3 EXPERIMENTAL RESULTS

We report the performance of these algorithms on vari-
ous tasks in Figure 1. The performance is measured by
the accumulated rewards, which are directly provided by
OpenAI Gym.

We first establish the performance of two baselines,
which represent standard RL (TRPO) and standard IL
(DAGGERED). TRPO is able to achieve considerable and
almost monotonic improvement from a randomly initial-
ized policy. DAGGERED reaches the performance of the
suboptimal policy in a relatively very small number of it-
erations, e.g. 15 iterations in 2D Walker, in which the
suboptimal policy to imitate is TRPO at iteration 100.
However, it fails to outperform the suboptimal expert.

Then, we evaluate the proposed algorithm LOKI and
Ideal, the performance of which we wish to achieve in
theory. LOKI consistently enjoys the best of both TRPO
and DAGGERED: it improves as fast as DAGGERED at
the beginning, keeps improving, and then finally matches
the performance of Ideal after transitioning into the re-
inforcement phase. Interestingly, the on-policy value
function learned, though not used, in the imitation phase
helps LOKI transition from imitation phase to reinforce-
ment phase smoothly.

Lastly, we compare LOKI to the two other baselines
(SLOLS and THOR) that combine RL and IL. LOKI out-
performs these two baselines by a considerably large
margin in Hopper, 2D Walker, and 3D Walker; but sur-
prisingly, the performance of SLOLS and THOR are in-
ferior even to TRPO on these tasks. The main reason
is that the first-order oracles of both methods is based
on an estimated expert value function V̂π∗ . As V̂π∗ is
only regressed on the data collected by running the ex-
pert policy, large covariate shift error could happen if
the dimension of the state and action spaces are high,
or if the uncontrolled system is complex or unstable. For
example, in the low-dimensional Pendulum task and the
simple Reacher task, the expert value function can gen-
eralize better. As a result, in these two cases, LOLS and
THOR achieve super-expert performance. However, in
more complex tasks, where the effects of covariant shift
amplifies exponentially with the dimension of the state
space, THOR and SLOLS start to suffer from the inac-
curacy of V̂π∗ , as illustrated in the 2D Walker and 3D
Walker tasks.
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Figure 1: Learning curves. Shaded regions correspond to ± 1
2 -standard deviation.

8 CONCLUSION

We present a simple, elegant algorithm, LOKI, that com-
bines the best properties of RL and IL. Theoretically, we
show that, by randomizing the switching time, LOKI can
perform as if running policy gradient steps directly from
the expert policy. Empirically, LOKI demonstrates su-
perior performance compared with the expert policy and
more complicated algorithms that attempt to combine RL
and IL.
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Abstract

The Variational Auto-Encoder (VAE) is one
of the most used unsupervised machine learn-
ing models. But although the default choice
of a Gaussian distribution for both the prior
and posterior represents a mathematically con-
venient distribution often leading to competi-
tive results, we show that this parameterization
fails to model data with a latent hyperspheri-
cal structure. To address this issue we propose
using a von Mises-Fisher (vMF) distribution in-
stead, leading to a hyperspherical latent space.
Through a series of experiments we show how
such a hyperspherical VAE, or S-VAE, is more
suitable for capturing data with a hyperspheri-
cal latent structure, while outperforming a nor-
mal, N -VAE, in low dimensions on other data
types.

1 INTRODUCTION

First introduced by Kingma and Welling (2013); Rezende
et al. (2014), the Variational Auto-Encoder (VAE) is an
unsupervised generative model that presents a principled
fashion for performing variational inference using an auto-
encoding architecture. Applying the non-centered pa-
rameterization of the variational posterior (Kingma and
Welling, 2014), further simplifies sampling and allows to
reduce bias in calculating gradients for training. Although
the default choice of a Gaussian prior is mathematically
convenient, we can show through a simple example that in
some cases it breaks the assumption of an uninformative
prior leading to unstable results. Imagine a dataset on
the circle Z ⊂ S1, that is subsequently embedded in RN
using a transformation f to obtain f : Z → X ⊂ RN .
Given two hidden units, an autoencoder quickly discovers

∗Equal contribution.

the latent circle, while a normal VAE becomes highly
unstable. This is to be expected as a Gaussian prior is con-
centrated around the origin, while the KL-divergence tries
to reconcile the differences between S1 and R2. A more
detailed discussion of this ‘manifold mismatch’ problem
will follow in subsection 2.3.

The fact that some data types like directional data are
better explained through spherical representations is long
known and well-documented (Mardia, 1975; Fisher et al.,
1987), with examples spanning from protein structure, to
observed wind directions. Moreover, for many modern
problems such as text analysis or image classification,
data is often first normalized in a preprocessing step to
focus on the directional distribution. Yet, few machine
learning methods explicitly account for the intrinsically
spherical nature of some data in the modeling process. In
this paper, we propose to use the von Mises-Fisher (vMF)
distribution as an alternative to the Gaussian distribution.
This replacement leads to a hyperspherical latent space
as opposed to a hyperplanar one, where the Uniform dis-
tribution on the hypersphere is conveniently recovered as
a special case of the vMF. Hence this approach allows
for a truly uninformative prior, and has a clear advantage
in the case of data with a hyperspherical interpretation.
This was previously attempted by Hasnat et al. (2017), but
crucially they do not learn the concentration parameter
around the mean, κ.

In order to enable training of the concentration parame-
ter, we extend the reparameterization trick for rejection
sampling as recently outlined in Naesseth et al. (2017) to
allow for n additional transformations. We then combine
this with the rejection sampling procedure proposed by
Ulrich (1984) to efficiently reparameterize the VAE 1.

We demonstrate the utility of replacing the normal dis-
tribution with the von Mises-Fisher distribution for gen-
erating latent representations by conducting a range of
experiments in three distinct settings. First, we show that

1 https://github.com/nicola-decao/s-vae
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our S-VAEs outperform VAEs with the Gaussian varia-
tional posterior (N -VAEs) in recovering a hyperspherical
latent structure. Second, we conduct a thorough com-
parison with N -VAEs on the MNIST dataset through an
unsupervised learning task and a semi-supervised learning
scenario. Finally, we show that S-VAEs can significantly
improve link prediction performance on citation network
datasets in combination with a Variational Graph Auto-
Encoder (VGAE) (Kipf and Welling, 2016).

2 VARIATIONAL AUTO-ENCODERS

2.1 FORMULATION

In the VAE setting, we have a latent variable model for
data, where z ∈ RM denotes latent variables, x is a vector
of D observed variables, and pφ(x, z) is a parameterized
model of the joint distribution. Our objective is to op-
timize the log-likelihood of the data, log

∫
pφ(x, z)dz.

When pφ(x, z) is parameterized by a neural network,
marginalizing over the latent variables is generally in-
tractable. One way of solving this issue is to maximize
the Evidence Lower Bound (ELBO)

log

∫
pφ(x, z)dz ≥ Eq(z)[log pφ(x|z)]+

−KL(q(z)||p(z)), (1)

where q(z) is the approximate posterior distribution, be-
longing to a family Q. The bound is tight if q(z) =
p(z|x), meaning q(z) is optimized to approximate the
true posterior. While in theory q(z) should be optimized
for every data point x, to make inference more scalable
to larger datasets the VAE setting introduces an inference
network qψ(z|x; θ) parameterized by a neural network
that outputs a probability distribution for each data point
x. The final objective is therefore to maximize

L(φ, ψ) = Eqψ(z|x;θ)[log pφ(x|z)]+

−KL(qψ(z|x; θ)||p(z)), (2)

In the original VAE both the prior and the posterior are
defined as normal distributions. We can further efficiently
approximate the ELBO by Monte Carlo estimates, using
the reparameterization trick (Kingma and Welling, 2013;
Rezende et al., 2014). This is done by expressing a sam-
ple of z ∼ qψ(z|x; θ), as z = h(θ, ε,x), where h is a
reparameterization transformation and ε ∼ s(ε) is some
noise random variable independent from θ.

2.2 THE LIMITATIONS OF A GAUSSIAN
DISTRIBUTION PRIOR

Low dimensions: origin gravity In low dimensions,
the Gaussian density presents a concentrated probability

mass around the origin, encouraging points to cluster in
the center. This is particularly problematic when the data
is divided into multiple clusters. Although an ideal latent
space should separate clusters for each class, the normal
prior will encourage all the cluster centers towards the
origin. An ideal prior would only stimulate the variance
of the posterior without forcing its mean to be close to
the center. A prior satisfying these properties is a uniform
over the entire space. Such a uniform prior, however, is
not well defined on the hyperplane.

High dimensions: soap bubble effect It is a well-
known phenomenon that the standard Gaussian distri-
bution in high dimensions tends to resemble a uniform
distribution on the surface of a hypersphere, with the vast
majority of its mass concentrated on the hyperspherical
shell. Hence it would appear interesting to compare the
behavior of a Gaussian approximate posterior with an
approximate posterior already naturally defined on the
hypersphere. This is also motivated from a theoretical
point of view, since the Gaussian definition is based on
the L2 norm that suffers from the curse of dimensionality.

2.3 BEYOND THE HYPERPLANE

Once we let go of the hyperplanar assumption, the pos-
sibility of a uniform prior on the hypersphere opens up.
Mirroring our discussion in the previous subsection, such
a prior would exhibit no pull towards the origin allowing
clusters of data to evenly spread over the surface with no
directional bias. Additionally, in higher dimensions, the
cosine similarity is a more meaningful distance measure
than the Euclidean norm.

Manifold mapping In general, exploring VAE mod-
els that allow a mapping to distributions in a latent
space not homeomorphic to RD is of fundamental in-
terest. Consider data lying in a small M -dimensional
manifoldM, embedded in a much higher dimensional
space X = RN . For most real data, this manifold will
likely not be homeomorphic to RM . An encoder can
be considered as a smooth map enc : X → Z = RD
from the original space to Z . The restriction of the en-
coder to M, enc|M : M → Z will also be a smooth
mapping. However sinceM is not homeomorphic to Z
if D ≤ M , then enc|M cannot be a homeomorphism.
That is, there exists no invertible and globally continuous
mapping between the coordinates ofM and the ones of
Z . Conversely if D > M then M can be smoothly
embedded in Z for D sufficiently large 2 , such that
enc|M : M → enc|M(M) =: emb(M) ⊂ Z is a
homeomorphism and emb(M) denotes the embedding of

2By the Whitney embedding theorem any smooth real M -
dimensional manifold can be smoothly embedded in R2M
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(a) Original (b) Autoencoder (c) N -VAE (d) N -VAE, β = 0.1 (e) S-VAE

Figure 1: Plots of the original latent space (a) and learned latent space representations in different settings, where β is a
re-scaling factor for weighting the KL divergence. (Best viewed in color)

M. Yet, since D > M , when taking random points in
the latent space they will most likely not be in emb(M)
resulting in a poorly reconstructed sample.

The VAE tries to solve this problem by forcingM to be
mapped into an approximate posterior distribution that
has support in the entire Z . Clearly, this approach is
bound to fail since the two spaces have a fundamentally
different structure. This can likely produce two behaviors:
first, the VAE could just smooth the original embedding
emb(M) leaving most of the latent space empty, leading
to bad samples. Second, if we increase the KL term the
encoder will be pushed to occupy all the latent space,
but this will create instability and discontinuity, affecting
the convergence of the model. To validate our intuition
we performed a small proof of concept experiment using
M = S1, which is visualized in Figure 1. Note that as
expected the auto-encoder in Figure 1(b) mostly recovers
the original latent space of Figure 1(a) as there are no dis-
tributional restrictions. In Figure 1(c) we clearly observe
for the N -VAE that points collapse around the origin due
to the KL, which is much less pronounced in Figure 1(d)
when its contribution is scaled down. Lastly, the S-VAE
almost perfectly recovers the original circular latent space.
The observed behavior confirms our intuition.

To solve this problem the best option would be to directly
specify a Z homeomorphic toM and distributions onM.
However, for real data discovering the structure of M
will often be a difficult inference task. Nevertheless, we
believe this shows investigating VAE architectures that
map to posterior distributions defined on manifolds differ-
ent than the Euclidean space is a topic worth exploring.

3 REPLACING GAUSSIAN WITH VON
MISES-FISHER

3.1 VON MISES-FISHER DISTRIBUTION

The von Mises-Fisher (vMF) distribution is often seen

as the Normal Gaussian distribution on a hypersphere.
Analogous to a Gaussian, it is parameterized by µ ∈
Rm indicating the mean direction, and κ ∈ R≥0 the
concentration around µ. For the special case of κ = 0, the
vMF represents a Uniform distribution. The probability
density function of the vMF distribution for a random unit
vector z ∈ Rm (or z ∈ Sm−1) is then defined as

q(z|µ, κ) = Cm(κ) exp (κµT z), (3)

Cm(κ) =
κm/2−1

(2π)m/2Im/2−1(κ)
, (4)

where ||µ||2 = 1, Cm(κ) is the normalizing constant, and
Iv denotes the modified Bessel function of the first kind
at order v.

3.2 KL DIVERGENCE

As previously emphasized, one of the main advan-
tages of using the vMF distribution as an approxi-
mate posterior is that we are able to place a uniform
prior on the latent space. The KL divergence term
KL(vMF(µ, κ)||U(Sm−1)) to be optimized is:

κ
Im/2(k)

Im/2−1(k)
+ log Cm(κ)− log

(
2(πm/2)

Γ(m/2)

)−1
, (5)

see Appendix B for complete derivation. Notice that
since the KL term does not depend on µ, this parameter
is only optimized in the reconstruction term. The above
expression cannot be handled by automatic differentia-
tion packages because of the modified Bessel function in
Cm(κ). Thus, to optimize this term we derive the gradient
with respect to the concentration parameter:

∇κKL(vMF(µ, κ)||U(Sm−1)) =
1

2
k

(Im/2+1(k)

Im/2−1(k)
+

−Im/2(k)
(
Im/2−2(k) + Im/2(k)

)

Im/2−1(k)2
+ 1

)
,

(6)
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Algorithm 1 vMF sampling
Input: dimension m, mean µ, concentration κ
sample v ∼ U(Sm−2)

sample ω ∼ g(ω|κ,m) ∝ exp(ωκ)(1 − ω2)
1
2 (m−3)

{acceptance-rejection sampling}
z′ ← (ω; (

√
1− ω2)v>)>

U ← Householder(e1, µ) {Householder transform}
Return: Uz′

where the modified Bessel functions can be computed
without numerical instabilities using the exponentially
scaled modified Bessel function.

3.3 SAMPLING PROCEDURE

To sample from the vMF we follow the procedure of
Ulrich (1984), outlined in Algorithm 1. We first sam-
ple from a vMF q(z|e1, κ) with modal vector e1 =
(1, 0, · · · , 0). Since the vMF density is uniform in
all the m − 2 dimensional sub-hyperspheres {x ∈
Sm−1 | e>1 x = ω}, the sampling technique reduces
to sampling the value ω from the univariate density
g(ω|κ,m) ∝ exp(κω)(1 − ω2)(m−3)/2, ω ∈ [−1, 1],
using an acceptance-rejection scheme. After getting a
sample from q(z|e1, κ) an orthogonal transformation
U(µ) is applied such that the transformed sample is dis-
tributed according to q(z|µ, κ). This can be achieved
using a Householder reflection such that U(µ)e1 = µ. A
more in-depth explanation of the sampling technique can
be found in Appendix A.

It is worth noting that the sampling technique does not
suffer from the curse of dimensionality, as the acceptance-
rejection procedure is only applied to a univariate distri-
bution. Moreover in the case of S2, the density g(ω|κ, 3)
reduces to g(ω|κ, 3) ∝ exp(kω)1[−1,+1](ω) which can
be directly sampled without rejection.

3.4 N-TRANSFORMATION
REPARAMETERIZATION TRICK

While the reparameterization trick is easily imple-
mentable in the normal case, unfortunately it can only
be applied to a handful of distributions. However a recent
technique introduced by Naesseth et al. (2017) allows to
extend the reparameterization trick to the wide class of dis-
tributions that can be simulated using rejection sampling.
Dropping the dependence from x for simplicity, assume
the approximate posterior is of the form g(ω|θ) and that
it can be sampled by making proposals from r(ω|θ). If
the proposal distribution can be reparameterized we can
still perform the reparameterization trick. Let ε ∼ s(ε),
and ω = h(ε, θ), a reparameterization of the proposal dis-
tribution, r(ω|θ). Performing the reparameterization trick

for g(ω|θ) is made possible by the fundamental lemma
proven in (Naesseth et al., 2017):

Lemma 1. Let f be any measurable function and ε ∼
π(ε|θ) = s(ε)

g(h(ε, θ)|θ)
r(h(ε, θ)|θ) the distribution of the ac-

cepted sample. Then:

Eπ(ε|θ)[f(h(ε, θ))] =

∫
f(h(ε, θ))π(ε|θ)dε

=

∫
f(ω)g(ω|θ)dω = Eg(ω|θ)[f(ω)], (7)

Then the gradient can be taken using the log derivative
trick:

∇θEg(ω|θ)[f(ω)] = ∇θEπ(ε|θ)[f(h(ε, θ))] =

Eπ(ε|θ)[∇θf(h(ε, θ))]+

+ Eπ(ε|θ)
[
f(h(ε, θ))∇θ log

g(h(ε, θ)|θ)
r(h(ε, θ)|θ)

]
, (8)

However, in the case of the vMF a different procedure
is required. After performing the transformation h(ε, θ)
and accepting/rejecting the sample, we sample another
random variable v ∼ π2(v), and then apply a transfor-
mation z = T (h(ε, θ),v; θ), such that z ∼ qψ(z|θ) is
distributed as the approximate posterior (in our case a
vMF). Effectively this entails applying another reparame-
terization trick after the acceptance/rejection step. To still
be able to perform the reparameterization we show that
Lemma 1 fundamentally still holds in this case as well.

Lemma 2. Let f be any measurable function and ε ∼
π1(ε|θ) = s(ε)

g(h(ε, θ)|θ)
r(h(ε, θ)|θ) the distribution of the ac-

cepted sample. Also let v ∼ π2(v), and T a trans-
formation that depends on the parameters such that if
z = T (ω, v; θ) with ω ∼ g(ω|θ), then ∼ q(z|θ):

E(ε,v)∼π1(ε|θ)π2(v) [f (T (h(ε, θ),v; θ))] =∫
f(z)q(z|θ)dz = Eq(z|θ)[f(z)], (9)

Proof. See Appendix C.

With this result we are able to derive a gradient expression
similarly as done in equation 8. We refer to Appendix D
for a complete derivation.

3.5 BEHAVIOR IN HIGH DIMENSIONS

The surface area of a hypersphere is defined as

S(m− 1) = rm
2(πm/2)

Γ(m/2)
, (10)
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(a) R2 latent space of theN -VAE. (b) Hammer projection of S2 latent space of the S-VAE.

Figure 2: Latent space visualization of the 10 MNIST digits in 2 dimensions of both N -VAE (left) and S-VAE (right).
(Best viewed in color)

where m is the dimensionality and r the radius. Notice
that S(m − 1) → 0, as m → ∞. However, even for
m > 20 we observe a vanishing surface problem (see
Figure 6 in Appendix E). This could thus lead to unstable
behavior of hyperspherical models in high dimensions.

4 RELATED WORK

Extending the VAE The majority of VAE extensions
focus on increasing the flexibility of the approximate
posterior. This is usually achieved through normalizing
flows (Rezende and Mohamed, 2015), a class of invertible
transformations applied sequentially to an initial repa-
rameterizable density q0(z0), allowing for more complex
posteriors. Normalizing flows can be considered orthogo-
nal to our approach. While allowing for a more flexible
posterior, they do not modify the standard normal prior
assumption. In (Gemici et al., 2016) a first attempt is
made to extend normalizing flows to Riemannian mani-
folds. However, as the method relies on the existence of a
diffeomorphism between RN and SN , it is unsuited for
hyperspheres.

One approach to obtain a more flexible prior is to use a
simple mixture of Gaussians (MoG) prior (Dilokthanakul
et al., 2016). The recently introduced VampPrior model
(Tomczak and Welling, 2018) outlines several advantages
over the MoG and instead tries to learn a more flexible
prior by expressing it as a mixture of approximate pos-
teriors. A non-parametric prior is proposed in Nalisnick
and Smyth (2017), utilizing a truncated stick-breaking
process. Opposite to these approaches, we aim at using a
non-informative prior to simplify the inference.

The closest approach to ours is a VAE with a vMF distri-
bution in the latent space used for a sentence generation

task by (Guu et al., 2018). While formally this approach
is cast as a variational approach, the proposed model does
not reparameterize and learn the concentration parameter
κ, treating it as a constant value that remains the same
for every approximate posterior instead. Critically, as
indicated in Equation 5, the KL divergence term only
depends on κ therefore leaving κ constant means never
explicitly optimizing the KL divergence term in the loss.
The method then only optimizes the reconstruction error
by adding vMF noise to the encoder output in the latent
space to still allow generation. Moreover, using a fixed
global κ for all the approximate posteriors severely limits
the flexibility and the expressiveness of the model.

Non-Euclidean Latent Space In Liu and Zhu (2018),
a general model to perform Bayesian inference in Rieman-
nian Manifolds is proposed. Following other Stein-related
approaches, the method does not explicitly define a poste-
rior density but approximates it with a number of particles.
Despite its generality and flexibility, it requires the choice
of a kernel on the manifold and multiple particles to have
a good approximation of the posterior distribution. The
former is not necessarily straightforward, while the latter
quickly becomes computationally unfeasible.

Another approach by Nickel and Kiela (2017), capital-
izes on the hierarchical structure present in some data
types. By learning the embeddings for a graph in a
non-euclidean negative curvature hyperbolical space, they
show this topology has clear advantages over embedding
these objects in a Euclidean space. Although they did not
use a VAE-based approach, that is, they did not build a
probabilistic generative model of the data interpreting the
embeddings as latent variables, this approach shows the
merit of explicitly adjusting the choice of latent topology
to the data used.
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Table 1: Summary of results (mean and standard-deviation over 10 runs) of unsupervised model on MNIST. RE and KL
correspond respectively to the reconstruction and the KL part of the ELBO. Best results are highlighted only if they
passed a student t-test with p < 0.01.

Method N -VAE S-VAE
LL L[q] RE KL LL L[q] RE KL

d = 2 -135.73±.83 -137.08±.83 -129.84±.91 7.24±.11 -132.50±.73 -133.72±.85 -126.43±.91 7.28±.14

d = 5 -110.21±.21 -112.98±.21 -100.16±.22 12.82±.11 -108.43±.09 -111.19±.08 -97.84±.13 13.35±.06

d = 10 -93.84±.30 -98.36±.30 -78.93±.30 19.44±.14 -93.16±.31 -97.70±.32 -77.03±.39 20.67±.08

d = 20 -88.90±.26 -94.79±.19 -71.29±.45 23.50±.31 -89.02±.31 -96.15±.32 -67.65±.43 28.50±.22

d = 40 -88.93±.30 -94.91±.18 -71.14±.56 23.77±.49 -90.87±.34 -101.26±.33 -67.75±.70 33.50±.45

A Hyperspherical Perspective As noted before, a dis-
tinction must be made between models dealing with the
challenges of intrinsically hyperspherical data like omni-
directional video, and those attempting to exploit some
latent hyperspherical manifold. A recent example of the
first can be found in Cohen et al. (2018), where spherical
CNNs are introduced. While flattening a spherical im-
age produces unavoidable distortions, the newly defined
convolutions take into account its geometrical properties.

The most general implementation of the second model
type was proposed by Gopal and Yang (2014), who intro-
duced a suite of models to improve cluster performance of
high-dimensional data based on mixture of vMF distribu-
tions. They showed that reducing an object representation
to its directional components increases clusterability over
standard methods like K-Means or Latent Dirichlet Allo-
cation (Blei et al., 2003).

Specific applications of the vMF can be further found
ranging from computer vision, where it is used to infer
structure from motion (Guan and Smith, 2017) in spheri-
cal video, or structure from texture (Wilson et al., 2014),
to natural language processing, where it is utilized in text
analysis (Banerjee et al., 2003, 2005) and topic modeling
(Banerjee and Basu, 2007; Reisinger et al., 2010).

Additionally, modeling data by restricting it to a hyper-
sphere provides some natural regularizing properties as
noted in (Liu et al., 2017). Finally Aytekin et al. (2018)
show on a variety of deep auto-encoder models that
adding L2 normalization to the latent space during train-
ing, i.e. forcing the latent space on a hypersphere, im-
proves clusterability.

5 EXPERIMENTS

In this section, we first perform a series of experiments
to investigate the theoretical properties of the proposed
S-VAE compared to theN -VAE. In a second experiment,
we show how S-VAEs can be used in semi-supervised

tasks to create a better separable latent representation to
enhance classification. In the last experiment, we show
that the S-VAE indeed presents a promising alternative to
N -VAEs for data with a non-Euclidean latent representa-
tion of low dimensionality, on a link prediction task for
three citation networks. All architecture and hyperparam-
eter details are given in Appendix F.

5.1 RECOVERING HYPERSPHERICAL
LATENT REPRESENTATIONS

In this first experiment we build on the motivation devel-
oped in Subsection 2.3, by confirming with a synthetic
data example the difference in behavior of the N -VAE
and S-VAE in recovering latent hyperspheres. We first
generate samples from a mixture of three vMFs on the
circle, S1, as shown in Figure 1(a), which subsequently
are mapped into the higher dimensional R100 by applying
a noisy, non-linear transformation. After this, we in turn
train an auto-encoder, a N -VAE, and a S-VAE. We fur-
ther investigate the behavior of the N -VAE, by training a
model using a scaled down KL divergence.

Results The resulting latent spaces, displayed in Figure
1, clearly confirm the intuition built in Subsection 2.3. As
expected, in Figure 1(b) the auto-encoder is perfectly ca-
pable to embed in low dimensions the original underlying
data structure. However, most parts of the latent space are
not occupied by points, critically affecting the ability to
generate meaningful samples.

In theN -VAE setting we observe two types of behaviours,
summarized by Figures 1(c) and 1(d). In the first we
observe that if the prior is too strong it will force the
posterior to match the prior shape, concentrating the sam-
ples in the center. However, this prevents the N -VAE to
correctly represent the true shape of the data and creates
instability problems for the decoder around the origin. On
the contrary, if we scale down the KL term, we observe
that the samples from the approximate posterior maintain

861



Table 2: Summary of results (mean accuracy and standard-deviation over 20 runs) of semi-supervised K-NN on MNIST.
Best results are highlighted only if they passed a student t-test with p < 0.01.

Method 100 600 1000
N -VAE S-VAE N -VAE S-VAE N -VAE S-VAE

d = 2 72.6±2.1 77.9±1.6 80.8±0.5 84.9±0.6 81.7±0.5 85.6±0.5

d = 5 81.8±2.0 87.5±1.0 90.9±0.4 92.8±0.3 92.0±0.2 93.4±0.2

d = 10 75.7±1.8 80.6±1.3 88.4±0.5 91.2±0.4 90.2±0.4 92.8±0.3

d = 20 71.3±1.9 72.8±1.6 88.3±0.5 89.1±0.6 90.1±0.4 91.1±0.3

d = 40 72.3±1.6 67.7±2.3 88.0±0.5 87.4±0.7 90.3±0.5 90.4±0.4

a shape that reflects the S1 structure smoothed with Gaus-
sian noise. However, as the approximate posterior differs
strongly from the prior, obtaining meaningful samples
from the latent space again becomes problematic.

The S-VAE on the other hand, almost perfectly recovers
the original dataset structure, while the samples from the
approximate posterior closely match the prior distribution.
This simple experiment confirms the intuition that having
a prior that matches the true latent structure of the data, is
crucial in constructing a correct latent representation that
preserves the ability to generate meaningful samples.

5.2 EVALUATION OF EXPRESSIVENESS

To compare the behavior of the N -VAE and S-VAE on a
data set that does not have a clear hyperspherical latent
structure, we evaluate both models on a reconstruction
task using dynamically binarized MNIST (Salakhutdinov
and Murray, 2008). We analyze the ELBO, KL, negative
reconstruction error, and marginal log-likelihood (LL) for
both models on the test set. The LL is estimated using
importance sampling with 500 sample points (Burda et al.,
2016).

Results Results are shown in Table 1. We first note that
in terms of negative reconstruction error the S-VAE out-
performs theN -VAE in all dimensions. Since the S-VAE
uses a uniform prior, the KL divergence increases more
strongly with dimensionality, which results in a higher
ELBO. However in terms of log-likelihood (LL) the S-
VAE clearly has an edge in low dimensions (d = 2, 5, 10)
and performs comparable to the N -VAE in d = 20. This
empirically confirms the hypothesis of Subsection 2.2,
showing the positive effect of having a uniform prior in
low dimensions. In the absence of any origin pull, the
data is able to cluster naturally, utilizing the entire latent
space which can be observed in Figure 2. Note that in Fig-
ure 2(a) all mass is concentrated around the center, since
the prior mean is zero. Conversely, in Figure 2(b) all
available space is evenly covered due to the uniform prior,

resulting in more separable clusters in S2 compared to
R2. However, as dimensionality increases, the Gaussian
distribution starts to approximate a hypersphere, while
its posterior becomes more expressive than the vMF due
to the higher number of variance parameters. Simultane-
ously, as described in Subsection 3.5, the surface area of
the vMF starts to collapse limiting the available space.

In Figure 7 and 8 of Appendix G, we present randomly
generated samples from the N -VAE and the S-VAE, re-
spectively. Moreover, in Figure 9 of Appendix G, we
show 2-dimensional manifolds for the two models. Inter-
estingly, the manifold given by the S-VAE indeed results
in a latent space where digits occupy the entire space and
there is a sense of continuity from left to right.

5.3 SEMI-SUPERVISED LEARNING

Having observed the S-VAE’s ability to increase clus-
terability of data points in the latent space, we wish to
further investigate this property using a semi-supervised
classification task. For this purpose we re-implemented
the M1 and M1+M2 models as described in (Kingma
et al., 2014), and evaluate the classification accuracy of
the S-VAE and the N -VAE on dynamically binarized
MNIST. In the M1 model, a classifier utilizes the latent
features obtained using a VAE as in experiment 5.2. The
M1+M2 model is constructed by stacking the M2 model
on top of M1, where M2 is the result of augmenting the
VAE by introducing a partially observed variable y, and
combining the ELBO and classification objective. This
concatenated model is trained end-to-end 3.

This last model also allows for a combination of the two
topologies due to the presence of two distinct latent vari-
ables, z1 and z2. Since in the M2 latent space the class
assignment is expressed by the variable y, while z2 only
needs to capture the style, it naturally follows that the

3It is worth noting that in the original implementation by
Kingma et al. (2014) the stacked model did not converge well
using end-to-end training, and used the extracted features of the
M1 model as inputs for the M2 model instead.
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(a) R2 latent space of theN -VGAE. (b) Hammer projection of S2 latent space of the S-VGAE.

Figure 3: Latent space of unsupervisedN -VGAE and S-VGAE models trained on Cora citation network. Colors denote
documents classes which are not provided during training. (Best viewed in color)

N -VAE is more suited for this objective due to its higher
number of variance parameters. Hence, besides compar-
ing the S-VAE against the N -VAE, we additionally run
experiments for the M1+M2 model by modeling z1, z2
respectively with a vMF and normal distribution.

Results As can be see in Table 2, for M1 the S-VAE
outperforms the N -VAE in all dimensions up to d = 40.
This result is amplified for a low number of observed
labels. Note that for both models absolute performance
drops as the dimensionality increases, since K-NN used
as the classifier suffers from the curse of dimensionality.
Besides reconfirming superiority of the S-VAE in d <
20, its better performance than the N -VAE for d = 20
was unexpected. This indicates that although the log-
likelihood might be comparable(see Table 1) for higher
dimensions, the S-VAE latent space better captures the
cluster structure.

In the concatenated model M1+M2, we first observe in
Table 3 that either the pure S-VAE or the S+N -VAE
model yields the best results, where the S-VAE almost
always outperforms the N -VAE. Our hypothesis regard-
ing the merit of a S+N -VAE model is further confirmed,
as displayed by the stable, strong performance across
all different dimensions. Furthermore, the clear edge
in clusterability of the S-VAE in low dimensional z1 as
already observed in Table 2, is again evident. As the
dimensionality of z1, z2 increases, the accuracy of the
N -VAE improves, reducing the performance gap with the
S-VAE. As previously noticed the S-VAE performance
drops when dim z2

= 50, with the best result being ob-
tained for dim z1

= dim z2
= 10. In fact, it is worth

noting that for this setting the S-VAE obtains comparable
results to the original settings of (Kingma et al., 2014),
while needing a considerably smaller latent space. Finally,
the end-to-end trained S+N -VAE model is able to reach

a significantly higher classification accuracy than the orig-
inal results reported by Kingma et al. (2014), 96.7±.1.

The M1+M2 model allows for conditional generation.
Similarly to (Kingma et al., 2014), we set the latent vari-
able z2 to the value inferred from the test image by the
inference network, and then varied the class label y. In
Figure 10 of Appendix H we notice that the model is able
to disentangle the style from the class.

Table 3: Summary of results of semi-supervised model
M1+M2 on MNIST.

Method 100
dim z1

dim z2
N+N S+S S+N

5
5 90.0±.4 94.0±.1 93.8±.1

10 90.7±.3 94.1±.1 94.8±.2

50 90.7±.1 92.7±.2 93.0±.1

10
5 90.7±.3 91.7±.5 94.0±.4

10 92.2±.1 96.0±.2 95.9±.3

50 92.9±.4 95.1±.2 95.7±.1

50
5 92.0±.2 91.7±.4 95.8±.1

10 93.0±.1 95.8±.1 97.1±.1

50 93.2±.2 94.2±.1 97.4±.1

5.4 LINK PREDICTION ON GRAPHS

In this experiment, we aim at demonstrating the ability of
the S-VAE to learn meaningful embeddings of nodes in a
graph, showing the advantages of embedding objects in
a non-Euclidean space. We test hyperspherical reparam-
eterization on the recently introduced Variational Graph
Auto-Encoder (VGAE) (Kipf and Welling, 2016), a VAE
model for graph-structured data. We perform training on
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a link prediction task on three popular citation network
datasets (Sen et al., 2008): Cora, Citeseer and Pubmed.

Dataset statistics and further experimental details are sum-
marized in Appendix F.3. The models are trained in an un-
supervised fashion on a masked version of these datasets
where some of the links have been removed. All node
features are provided and efficacy is measured in terms
of average precision (AP) and area under the ROC curve
(AUC) on a test set of previously removed links. We use
the same training, validation, and test splits as in Kipf and
Welling (2016), i.e. we assign 5% of links for validation
and 10% of links for testing.

Table 4: Results for link prediction in citation networks.

Method N -VGAE S-VGAE

Cora AUC 92.7±.2 94.1±.1

AP 93.2±.4 94.1±.3

Citeseer AUC 90.3±.5 94.7±.2

AP 91.5±.5 95.2±.2

Pubmed AUC 97.1±.0 96.0±.1

AP 97.1±.0 96.0±.1

Results In Table 4, we show that our model outperforms
the N -VGAE baseline on two out of the three datasets
by a significant margin. The log-probability of a link is
computed as the dot product of two embeddings. In a hy-
persphere, this can be interpreted as the cosine similarity
between vectors. Indeed we find that the choice of a dot
product scoring function for link prediction is problematic
in combination with the normal distribution on the latent
space. If embeddings are close to the zero-center, noise
during training can have a large destabilizing effect on the
angle information between two embeddings. In practice,
the model finds a solution where embeddings are ”pushed”
away from the zero-center, as demonstrated in Figure 3(a).
This counteracts the pull towards the center arising from
the standard prior and can overall lead to poor modeling
performance. By constraining the embeddings to the sur-
face of a hypersphere, this effect is mitigated, and the
model can find a good separation of the latent clusters, as
shown in Figure 3(b).

On Pubmed, we observe that the S-VAE converges to a
lower score than the N -VAE. The Pubmed dataset is sig-
nificantly larger than Cora and Citeseer, and hence more
complex. TheN -VAE has a larger number of variance pa-
rameters for the posterior distribution, which might have
played an important role in better modeling the relation-
ships between nodes. We further hypothesize that not all
graphs are necessarily better embedded in a hyperspher-

ical space and that this depends on some fundamental
topological properties of the graph. For instance, the
already mentioned work from Nickel and Kiela (2017)
shows that hyperbolical space is better suited for graphs
with a hierarchical, tree-like structure. These considera-
tions prefigure an interesting research direction that will
be explored in future work.

6 CONCLUSION

With the S-VAE we set an important first step in the
exploration of hyperspherical latent representations for
variational auto-encoders. Through various experiments,
we have shown that S-VAEs have a clear advantage over
N -VAEs for data residing on a known hyperspherical
manifold, and are competitive or surpassN -VAEs for data
with a non-obvious hyperspherical latent representation in
lower dimensions. Specifically, we demonstrated S-VAEs
improve separability in semi-supervised classification and
that they are able to improve results on state-of-the-art link
prediction models on citation graphs, by merely changing
the prior and posterior distributions as a simple drop-in
replacement.

We believe that the presented research paves the way for
various promising areas of future work, such as exploring
more flexible approximate posterior distributions through
normalizing flows on the hypersphere, or hierarchical
mixture models combining hyperspherical and hyperpla-
nar space. Further research should be done in increasing
the performance of S-VAEs in higher dimensions; one
possible solution of which could be to dynamically learn
the radius of the latent hypersphere in a full Bayesian
setting.
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Abstract

We consider the weighted model counting task
which includes important tasks in graphical
models, such as computing the partition func-
tion and probability of evidence as special cases.
We propose a novel partition-based bounding al-
gorithm that exploits logical structure and gives
rise to a set of inequalities from which upper
(or lower) bounds can be derived efficiently.
The bounds come with optimality guarantees
under certain conditions and are oblivious in
that they require only limited observations of
the structure and parameters of the problem.
We experimentally compare our bounds with
the mini-bucket scheme (which is also oblivi-
ous) and show that our new bounds are often
superior and never worse on a wide variety of
benchmark networks.

1 INTRODUCTION

Logic and probability theory are formalisms employed for
the task of automated reasoning. Logic facilitates deter-
ministic representations and decisions, while probability
theory accommodates situations where uncertainty arises.
Propositional logic (Boolean satisfiability) is a prominent
construct for performing deductive reasoning, particularly
within a combinatorial setting. Extensive research efforts
have resulted in state-of-the-art satisfiability solvers that
have been successfully deployed in fields such as soft-
ware/hardware model checking, planning and cybersecu-
rity (Zhang and Malik, 2002). Graphical models (GM)
have emerged as an effective scheme for modeling uncer-
tainty. For example, Bayesian networks (Pearl, 1988) have
been used in medical domains, while Markov networks
are widely used in areas such as computer vision and nat-
ural language processing. However, in order to effectively

model problems in real-world domains, it is of great prac-
tical interest to solve the harder problem of developing
models with the capacity to account for knowledge that is
both deterministic and uncertain in an unified manner.

Propositional model counting is the generalization of the
Boolean satisfiability problem. Extending the task of de-
termining satisfiability, the objective is to count the num-
ber of distinct instances that result in satisfiability. This
is also referred to as solution counting. Counting is a fun-
damental aspect to probabilistic computations (sum infer-
ence) and thus propositional model counting provides an
intuitive connection between logic and uncertainty. In this
paper, we address a further extension, namely the problem
of weighted model counting (WMC). WMC allows for
additional probabilistic interpretations of the variables in
the model by associating a weight function either at the
variable level or the clause level (Chavira and Darwiche,
2008; Gogate and Domingos, 2010; Sang et al., 2005).

It is well known that probabilistic inference in GM can be
reduced to WMC (Chavira and Darwiche, 2008). The re-
duction has two main components: (1) encode the GM as
a propositional knowledge base; and (2) leverage state-of-
the-art propositional model counters to develop a WMC-
based algorithm for solving the desired inference task.
However, a major drawback of the aforementioned meth-
ods is that they are computationally intractable for most
real-world problems. Therefore, developing fast, scalable
approximate schemes is a subject of fundamental interest.

While there exists several approaches to propositional
approximate counting, most of those are intrinsically
stochastic (Ermon et al., 2013; Gogate and Dechter, 2007,
2011), and little attention has been given to deterministic
methods that can bound estimates with correctness guar-
antees. In this paper we propose a deterministic bound-
ing scheme for WMC. Our approach is partition-based
(Dechter and Rish, 2003) and gives rise to a novel class of
inequalities from which upper (or lower) bounds can be
derived efficiently. In addition, the bounds are oblivious,
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i.e. they require only limited observations of the structure
and parameters of the problem, which yields fast methods.

Specifically, we extend the work of Gatterbauer and Suciu
(Gatterbauer and Suciu, 2014, 2017), which is applicable
to only monotone SAT formulas, to the task of WMC for
arbitrary (non-monotone) formulas. Our method is related
to the class of bounded complexity inference schemes
such as mini-buckets (MB) (Dechter and Rish, 2003) and
their extensions (Choi et al., 2007; Liu, 2014). MB relaxes
the original problem by decomposing it into local sub-
problems (by splitting/dissociating nodes) that are then
solved exactly. The result is an approximate scheme that
generates bounds for various inference tasks.

We make the following contributions. (1) We analyze the
idea of dissociation based oblivious bounds (Gatterbauer
and Suciu, 2014) using the framework of weighted model
counting and extend it to the general non-monotone case;
(2) we take advantage of logical structure and derive a
novel set of inequalities for bounding methods that dis-
sociate until the formula has a tree structure (namely the
i-bound in MB is equal to 1); (3) we theoretically com-
pare the idea of dissociation with MB and show that MB
bounds are a special case of our bounds and can be quite
inferior; and (4) we empirically demonstrate that dissoci-
ation based bounds are more accurate than MB on several
synthetic and real-world datasets.

2 BACKGROUND

Let X,Y, etc. be sets of propositional variables that take
values (i.e., truth assignments) from the set {false, true}
(or {0, 1}). Given X = {X1, . . . , Xn}, let Ω be the set of
the 2n truth assignments to X. Let x = (x1, . . . , xn) ∈ Ω
be a truth assignment to all variables in X s.t. Xi = xi.
We use the symbol ‘∗’ to denote the case when Xi can
take either values, namely (0 ∨ 1) or otherwise known as
the don’t care condition. Let F be a propositional formula
in conjunctive normal form (CNF) over X, i.e. F is a
conjunction of clauses, where a clause is a disjunction
of literals, and each literal is defined as a variable Xi

(positive literal, +) or its negation Xi (negative literal,
−). Let C be the set of clauses of F . In this paper, we
will focus on arbitrary (non-monotone) CNF.

Definition 1. (Monotonicity). A formula F is “monotone
in variable Xi” iff Xi appears in F as either positive or
negative (but not both). A formulaF is “monotone” iff it is
monotone in all variables. Otherwise F is non-monotone.

2.1 WEIGHTED MODEL COUNTING

Given a propositional formula F , a satisfying assignment
or model of F is a truth assignment to all variables in

F such that F evaluates to true (x |= F ). The problem
of determining if there exists a satisfying assignment x
for F is called the Boolean satisfiability problem or SAT.
Propositional model counting or #SAT is the task of com-
puting the number of models of F . This is the canonical
#P-complete problem that generalizes SAT.

Weighted model counting (WMC) (Chavira and Darwiche,
2008; Sang et al., 2005) extends model counting by as-
sociating the following probability distribution (weight
function) φi to each propositional variable Xi:

φi(Xi) =

{
pi if Xi evaluates to 1
pi otherwise

,

where pi ∈ [0, 1] and pi , 1−pi.1 The functions φi yield
a weighted representation F of the CNF F and is called
WCNF. Formally,F is a triple 〈X,Φ,C〉, where X is a set
of n Boolean variables in F , Φ is a set of weight functions
φi associated with each Boolean variable Xi ∈ X and
C is a set of clauses of F . F represents the following
probability distribution

PF (x) =

{
1
ZF

∏n
i=1 φi(Xi = xi) if x |= F

0 otherwise
,

where ZF is the partition function, also referred to as the
weighted model count (WMC) of F , and is given by

ZF =
∑

(x∈Ω∧x|=F )

n∏

i=1

φi(Xi = xi).

When pi = 1/2 for all variables, the product 2nZF equals
the special case of (unweighted) model count of F .

2.2 GRAPHICAL MODELS

Graphical models (GM) provide a compact representation
of joint probability distributions over a set of variables X.
For simplicity, we will focus on pairwise binary Markov
networks since every GM can be converted to this form
(cf. (Koller and Friedman, 2009)). Let I ⊆ A where A
denotes the set of all pairs (i, j) such that i < j and
1 ≤ i, j ≤ n. In a pairwise graphical model, we associate
a potential function ψi,j over each pair (i, j) ∈ I. The
probability distribution is given by

P (x) =
1

Z

∏

(i,j)∈I
ψi,j(xi, xj),

where Z is the normalization constant (partition function)
and (xi, xj) is the projection of x on {Xi, Xj}.

1WMC is typically defined by attaching weights to liter-
als, and the corresponding potential function over each variable
is constructed by exponentiating the weights. We consider an
equivalent representation in which the potential function is nor-
malized to yield a probability distribution.
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Table 1: Clauses for W2CNF Encoding of a GM

(Xi ∨ Yi,j,1) (Xj ∨ Yi,j,1)
(Xi ∨ Yi,j,2) (Xj ∨ Yi,j,2)
(Xi ∨ Yi,j,3) (Xj ∨ Yi,j,3)
(Xi ∨ Yi,j,4) (Xj ∨ Yi,j,4)

2.3 WCNF ENCODING OF A GM

We describe here a possible translation from GM to
WCNF. For more details see (Chavira and Darwiche,
2008; Gogate and Domingos, 2010, 2016). Since we focus
on pairwise binary GMs, we can convert them to WCNFs
in which each clause has at most two literals. We will
refer to such WCNFs as W2CNF.

Given a GM, we can construct an equivalent W2CNF as
follows. We start with a W2CNF F defined over the vari-
ables X of the GM such that the set of clauses C of
F is empty and pXi = 0.5 for each variable Xi ∈ X.
Then, for each pairwise binary potential ψi,j in the GM
such that ψij : Xi = 0, Xj = 0 → wi,j,1, ψij : Xi =
0, Xj = 1 → wi,j,2, ψij : Xi = 1, Xj = 0 → wi,j,3,
ψij : Xi = 1, Xj = 1 → wi,j,4, we add a variable for
each weight to F . We will denote the variables associ-
ated with wi,j,1, wi,j,2, wi,j,3 and wi,j,4 by Yi,j,1, Yi,j,2,
Yi,j,3 and Yi,j,4 respectively. Utilizing these weight vari-
ables, we add the the clauses given in Table 1 to C for
k = 1, . . . , 4. We also add the following probability dis-
tribution for each variable Yi,j,k

φ(yi,j,k) =

{
wi,j,k−1
wi,j,k

if yi,j,k is false or 0
1

wi,j,k
otherwise

.

Note that when wi,j,k < 1, φ(yi,j,k) will be negative. To
avoid this condition, we can easily rescale the potentials
of the GM by multiplying them with an appropriate con-
stant. Also, zero weights can be handled by adding the
corresponding negated assignment as a clause to C. For
example, if wi,j,1 = 0, we add the clause Xi ∨ Xj to
C. Using previous work (Chavira and Darwiche, 2008;
Gogate and Domingos, 2010), it is straight-forward to
show that:

Proposition 2. W2CNF output by Encoding 1 represents
the same probability distribution over X as the input GM.

2.4 MINI-BUCKET ELIMINATION

We can utilize inference algorithms such as bucket or
variable elimination (Dechter, 1996; Zhang and Poole,
1994) to compute the weighted model count of a W2CNF.
However, since the complexity of using such algorithms
is in general exponential in the treewidth, a more prac-
tical approach is to approximate the task by introducing

relaxations techniques that control model complexity (i.e.,
the induced width given a fixed elimination order). Mini-
bucket (MB) (Dechter and Rish, 2003) is one such approx-
imate scheme that builds on bucket elimination (BE) for
generating upper (or lower) bounds on the partition func-
tion or weighted model count. We will use the following
running example to illustrate BE and MB for WMC.
Example 3. Consider the W2CNF F such that X =
{X1, Y2, Y3}, C = {(X1 ∨ Y2), (X1 ∨ Y3)} and Φ =
{φ1, φ2, φ3}. For simplicity we denote φ1 for φ1(X1),
etc. We can convert the clauses and potentials of F to the
following two potentials yielding a more convenient form
for BE.

X1 Y2 ψ12(X1, Y2)
0 0 0
0 1 p1p2

1 0 p1p2

1 1 p1p2

X1 Y3 ψ13(X1, Y3)
0 0 0
0 1 p3

1 0 p3

1 1 p3

Without loss of generality, we assume the elimination
ordering as [X1, Y2, Y3] (although it is clearly not op-
timal, it will help us illustrate the main ideas). BE be-
gins by creating |X| number of buckets and groups the
functions by placing each function involving some vari-
able Xi (or Yi in our example) in a bucket BXi accord-
ing to the position of Xi in the ordering. The resulting
computation is ZBE

F =
∑
Y3

∑
Y2

∑
X1
ψ12ψ13 where

BX1
= {ψ12, ψ13} is first processed by taking the prod-

uct of the two potentials and summing out variable X1.
The resulting new potential ψ′23 is placed in bucket BY2

in
which variable Y2 is summed out. Summing out Y3 from
the subsequent function ψ′3 yields ZBE

F .

MB follows similarly. However, MB partitions each bucket
into two or more so called mini-buckets according to an
input parameter called the i-bound, which defines the
maximum number (i-bound + 1) of variables in each
mini-bucket. The mini-buckets are then processed inde-
pendently. To obtain an upper bound, the sum-product
operation is performed on one of the mini-buckets and
the max-product for the remaining (min-product for lower
bound). Using i-bound = 1, BX1 is split into two mini-
buckets B′X1

= {ψ12} and B′′X1
= {ψ13}. One possible

resulting computation is

∑

Y3Y2

(∑

X1

ψ12

)(
min
X1

ψ13

)

︸ ︷︷ ︸
Z

MB(L)
F

≤
∑

Y3

∑

Y2

∑

X1

ψ12ψ13

≤
∑

Y3Y2

(∑

X1

ψ12

)(
max
X1

ψ13

)

︸ ︷︷ ︸
Z

MB(U)
F

,

where the MB upper bound on the partition function,
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Z
MB(U)
F , is computed by maxing out X1 from ψ13 inde-

pendently from summing out X1 from ψ12. Summing out
Y2 and Y3 from the resulting two new potentials, ψ′2, ψ

′
3,

and taking their product gives the upper bound. The lower
bound, ZMB(L)

F , is computed similarly using min instead
of max.

MB is a fast and simple algorithm for computing upper
(or lower) bounds. The resulting complexity of inference
is exponential in the i-bound. Lower i-bound values trans-
lates to simpler models and provides the trade-off between
complexity and accuracy.

Next, we present the idea of dissociation based oblivious
bounds for the case of monotone W2CNF and extend it to
the non-monotone case by exploiting logical structure in
Section 4. As mentioned earlier, in this paper, we focus
on the case where variables are dissociated until the re-
sulting formula is a tree. In other words, our scheme is
comparable to the case when the i-bound in MB equals 1.

3 DISSOCIATION

Our task is to compute the WMC ZF of a given WCNF
F . Since the problem is computationally intractable in
general (e.g., high treewidth), approximate methods are
required. In this paper we use a bounded inference ap-
proach, where we approximate the original F with F ′
from which the upper (or lower) bounds on ZF can be
computed efficiently. We build upon (Gatterbauer and Su-
ciu, 2014, 2017) which presents a bounding scheme called
dissociation that can be applied to WMC. The derived
bounds are oblivious to the set of weight functions φi, i.e.
they can be calculated by only observing a limited subset
of clauses. However, these bounds only apply to mono-
tone formulas, whereas we are interested in extending the
underlying ideas to more general non-monotone formulas
(Section 4). Here, we first give a general intuition of prior
results followed by the formal definition and then present
optimal oblivious bounds for monotone formulas.

At a high level, dissociation is the process of replac-
ing an existing variable Xi in F with new variables
Xi;1, . . . , Xi;d and assigning them new probability dis-
tributions. The technique is closely related to variable
or node splitting (Choi et al., 2007) in which the new
variables are referred to as clones. The partitioning of
mini-buckets can also be classified under the general no-
tion of variable splitting.

By creating new variables, we are implicitly ignoring (or
relaxing) a set of equality constraints (Choi and Darwiche,
2009). However, we can recover the set by defining and in-
corporating the function ϕ(Xi;1 =xi;1, . . . , Xi;n =xi;d)
which evaluates to 1 iff xi;1 = . . . = xi;d, and 0 other-

wise, for the d copiesXi;j , j ∈ [d] of variableXi, and xi;j
being the corresponding truth assignment. We can also
incorporate equivalence clauses for each new pair of vari-
ables into a formula with the new clauses. For example,
consider the formula F = (X1 ∨ Y1)(X1 ∨ Y2). We can
create the equivalent formula F ′ = (X1;1 ∨ Y1)(X1;2 ∨
Y2)(X1;1 ⇔ X1;2) using copies ofX1 for the unweighted
model counting case. We see two issues arising. First, for
general 2-CNF formulas, we will require d− 1 equality
constraints (equivalence (⇔) formulas). Second, it is not
immediately clear on how to integrate the weight func-
tions so that weighted model counts can be computed
using this scheme.

Dissociation expands on the notion of variable duplication
and provides an algebraic framework to analyze and ap-
proximate the aforementioned set of equality constraints.
The result is a novel class of inequalities to construct up-
per (or lower) bounds on the WMC. We first give the
formal definition of dissociation for W2CNF.

Definition 4. (Dissociation). Let F = 〈X,Φ,C〉. Select
a variable Xi ∈ X and let C(Xi) ⊆ C be the subset
of all clauses that involve variable Xi. We say F ′ =
〈X′,Φ′,C′〉 is a dissociation of F on Xi iff

• X′ = X \Xi ∪Xi;1 ∪ · · · ∪Xi;d with d ≤ |C(Xi)|,
• Φ′ = Φ \ φi ∪ φi;1 ∪ · · · ∪ φi;d, and

• C′[θXi(X
′)] = C[X] with θXi being the substitu-

tion θXi [{(Xi;j/Xi), j ∈ [d]}].
We say a dissociation is full if d = |C(Xi)|.
Example 5. (Dissociation). Consider F from example
3. Dissociating X1 results in adding two new variables,
X′ = X \ X1 ∪ X1;1 ∪ X1;2, and two new associated
weight functions Φ′ = Φ \ φ1 ∪ φ1;1 ∪ φ1;2. Applying
the substitution θX1

[(X1;1/X1), (X1;2/X1)] on C(Xi)
results in C′ = C \C(Xi)∪ (X1;1 ∨Y2)∪ (X1;2 ∨Y3).

Once we have defined the new weight functions (for dis-
sociated variables), the question we are interested in is
how to parameterize the new functions in order to ob-
tain guaranteed upper (or lower) bounds. In particular,
we are interested in oblivious bounds, i.e. when the new
probabilities are chosen independently of the probabili-
ties of all other variables. We achieve that by considering
all possible valuations (or truth assignments) of the non-
dissociated variables, The assignments give rise to a set of
inequalities which are then evaluated to develop necessary
and sufficient conditions for upper (or lower) bounds. We
next illustrate with an example.

Example 6. (Oblivious bounds). Consider the two sets of
clauses, {(X1∨Y2), (X1∨Y3)} and {(X1;1∨Y2), (X1;2∨
Y3)} from examples 3 and 5. We analyze the 22 = 4 pos-
sible truth assignments to the non-dissociated variables
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Table 2: Dissociation valuation analysis (example 6).

Y2 Y3 X1 X1;1 X1;2 φ1 φ1;1, φ1;2

0 0 1 1 1 p1 p1;1p1;2

0 1 1 1 ∗ p1 p1;1

1 0 1 ∗ 1 p1 p1;2

1 1 ∗ ∗ ∗ 1 1

Y2 and Y3. Table 2 shows each possible valuation of Y2

and Y3 and the corresponding assignments to X1, X1;1

and X1;2 required to satisfy the clauses. We also show the
weights (probabilities) of the original (column φ1) and
dissociated formulas (column φ1;1φ1;2).

As example, consider the assignment, Y2 = 0∧Y3 = 1:
The assignment X1 = 1 is required to satisfy F , result-
ing in the term p1p2p3. The assignments (X1;1 = 1 ∧
X1;2 = 0) or (X1;1 = 1 ∧ X1;2 = 1) are required to sat-
isfy F ′, i.e. X1;2 can take any assignment (∗), resulting
in the term p1;1p2p3. Utilizing the two terms, simplifying
by removing the common terms (p2p3) and assuming that
we are interested in computing lower bounds, we create
the inequality p1 ≥ p1;1. Repeating the same analysis
for the three remaining cases results in the inequalities
p1 ≥ p1;1p1;2 and p1 ≥ p1;2. The last case 1 ≥ 1 is
trivially satisfied. Combining the resulting inequalities,
and doing a similar analysis for computing upper bounds
(where we replace ≥ by ≤) gives rise to the following
conditions for oblivious (U)pper and (L)ower bounds:

• U: (p1 ≤ p1;1p1;2) ∧ (p1 ≤ p1;1) ∧ (p1 ≤ p1;2).

• L: (p1 ≥ p1;1p1;2) ∧ (p1 ≥ p1;1) ∧ (p1 ≥ p1;2).

Notice the valuation process creates 2|C(Xi)| inequalities,
one for each truth assignment. However, we can simplify
the conditions by removing subsumed inequalities.

Definition 7. (Subsumed inequality). We say an inequal-
ity Ii subsumes inequality Ij (i 6= j) iff Ii ⇒ Ij , i.e.
satisfying Ii also satisfies Ij .

Example 8. Consider the upper and lower bound con-
ditions in example 6. For the upper bound, clearly
p1 ≤ p1;1p1;2 subsumes the remaining inequalities since
∀p1, p1;1, p1;2 ∈ [0, 1] : (p1 ≤ p1;1p1;2) ⇒ (p1 ≤
p1;1) ∧ (p1 ≤ p1;2). For the lower bound, clearly (p1 ≥
p1;1) ∧ (p1 ≥ p1;2) subsumes the remaining inequal-
ity since ∀p1, p1;1, p1;2 ∈ [0, 1] : ((p1 ≥ p1;1) ∧ (p1 ≥
p1;2)) ⇒ (p1 ≥ p1;1p1;2). Therefore, we can reduce the
required conditions for the oblivious bounds to:

• U: p1 ≤ p1;1p1;2.

• L: (p1 ≥ p1;1) ∧ (p1 ≥ p1;2).

Following the preceding analysis, we can now state the
conditions for oblivious bounds for monotone W2CNF.

Theorem 9. (Gatterbauer and Suciu, 2014) (Oblivious
bounds for monotone W2CNF). Let F be a monotone
W2CNF. Let F ′ be the result of applying a series of dis-
sociation steps on F . For every set of weight functions
defined for a dissociate variable, namely Xi;1, . . . , Xi;d

and {φi;1, . . . , φi;d} with d > 1, we have the following
oblivious bounds:

• U:
∏d
j=1 pi;j ≥ pi.

• L: ∀j : pi;j ≤ pi.

Optimal oblivious bounds are defined as those that are not
dominated, i.e. they cannot be improved without knowl-
edge of the probabilities of all other variables. They are
obtained by replacing inequality with equality. Notice
that optimal oblivious lower bounds are uniquely de-
fined, ∀j : pi;j = pi, whereas there are infinitely many
optimal oblivious upper bounds, e.g. symmetric ones:
∀j : pi;j = d

√
pi, and finding the best one requires ac-

cess to all other probabilities (den Heuvel et al., 2018).

Note that optimal oblivious bounds are different from
augmented mini-buckets (AMB) (Liu, 2014). For exam-
ple, in AMB for computing upper bounds, the potential
over each dissociated variable is initialized to φi;j(Xi;j =
1) = φi(Xi = 1)1/d and φi;j(Xi;j = 0) = φi(Xi =
0)1/d where we have d dissociations. A better initializa-
tion would be φi;j(Xi;j = 1) = φi(Xi = 1)1/d, and
φi;j(Xi;j = 0) = 1− φi(Xi;j = 1)1/d.

3.1 COMPARISON WITH MINI-BUCKET

We use example 3 to analyze the base case bounds for
monotone dissociation (X1 to X1;1 and X1;2) and com-
pare it with MB (i-bound = 1).

Lower bound. Dissociation results in the partition func-
tionZDIS(U)

F ′ = p2p3+p1;1p2p3+p1;2p2p3+p1;1p1;2p2p3.
The two possible partition functions according to MB are
(1)
∑
X1
ψ1 minX1

ψ2 ⇒ Z
MB(L1)
F = p2p3 +p1p2p3; (2)

minX1 ψ1

∑
X1
ψ2 ⇒ Z

MB(L2)
F = p2 min(p1, p1)(1 +

p3). Clearly, ZDIS(L)
F ′ ≥ ZMB(L)

F ∀p1, p1;1, p1;2, p2, p3 ∈
[0, 1].

Upper bound. Notice there exist an infinite number
of settings to p1;1 and p1;2 that satisfy p1;1p1;2 = p1

under dissociation. We analyze two possible cases. (1)
(p1;1 = p1) ∧ (p1;2 = 1) ⇒ Z

DIS(U1)
F ′ = p1;1 + p1;1p2;

(2) (p1;2 = p1) ∧ (p1;1 = 1) ⇒ Z
DIS(U2)
F ′ = p1;2 +

p1;2p3. The two possible partition functions accord-
ing to MB are (1)

∑
X1
ψ1 maxX1

ψ2 ⇒ Z
MB(U1)
F =

p1 + p1p1; (2) maxX1 ψ1

∑
X1
ψ2 ⇒ Z

MB(U2)
F = (1 +

p3)(p2 max(p1, p1) + p1p1). We first observe the bounds
are equivalent between dissociation and MB in setting
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(1) and also for (2) if the functions are unweighted (e.g.,
∀i pi = 1/2 ). However, note there exist more degrees
of freedom (solutions) for dissociation, and this exam-
ple simply demonstrates one such setting for which we
observe equivalency under certain conditions.

4 DISSOCIATION FOR
NON-MONOTONE FORMULAS

In this section, we extend dissociation bounds from the
monotone case to arbitrary non-monotone W2CNFs. Un-
like monotone W2CNFs, we can apply logical inference
techniques such as resolution and unit propagation to re-
duce non-monotone W2CNFs which in turn may improve
our dissociation-based bounds. Moreover, logical prop-
agation can be applied as a pre-processing step before
dissociating a variable Xi.

4.1 PREPROCESSING

We say that a W2CNF F is minimal if the following steps
are applied to its set of clauses C until convergence.

1. (Binary) Resolution: If C contains two clauses of
the form Li ∨Lj and Li ∨Lk, where Li, Lj and Lk
are literals of variables Xi, Xj and Xk respectively,
we add the clause Lj ∨ Lk to C.

2. Unit Resolution: If C contains two clauses of the
form Li ∨ Lj and Li ∨ Lj , where Li and Lj are
literals of variables Xi and Xj respectively, we add
the unit clause Lj to C.

3. Clause Deletion and Reduction: If C contains a
unit clause Li where Li is a literal of Xi then we
delete all clauses of the form Li ∨ Lj and remove
Li from all clauses that mention Li. If C contains
both unit clauses Li and Li, C is inconsistent and
we return a lower/upper bound of 0.2

Example 10 (Minimal formula). Consider C = {(X1 ∨
X2), (X1 ∨X2), (X2 ∨ Y4), (X1 ∨X3), (X3 ∨X5)}. C
is not minimal and we can make it minimal using the
aforementioned steps. After applying Unit Resolution on
the first two clauses, we getC = {(X1), (X1∨X2), (X1∨
X2), (X2 ∨ Y4), (X1 ∨X3), (X3 ∨X5)}. After applying
Clause deletion and Reduction, we get C = {(X1), (X2∨
Y4), (X3 ∨X5)}, which is minimal.

4.2 TYPES OF NON-MONOTONE FORMULAS

In the sequel, we assume that the input W2CNF F to
our algorithm is minimal. To formulate oblivious bounds
for non-monotone W2CNF, we first establish a canonical

2Note that our scheme will return an upper bound of 0 only
when C is inconsistent.

representation that helps us take advantage of symmetry
and reduces the number of cases (inequalities) we need to
consider for our proposed oblivious bounds. Specifically,
given a candidate dissociation variable Xi, we convert
the set of clauses C into a canonical representation:

Definition 11 (Canonical representation). We say that F
is canonical w.r.t. a variable Xi if F is minimal and all
clauses in C(Xi) satisfy the following two properties:

1. If a variable Yj appears only once in C(Xi) then it
only appears positively, i.e. it appears in clauses of
the form Xi ∨ Yj or Xi ∨ Yj (but not of the form
Xi ∨ Y j or Xi ∨ Y j).

2. If a variable Yj appears twice in C(Xi), then it
appears in the following two clauses Xi ∨ Yj and
Xi∨Y j (but not in the clausesXi∨Yj andXi∨Y j).

Note that since F is minimal, Yj cannot appear more than
twice in C(Xi), nor twice with the same sign. If C(Xi)
is not in canonical form, we can easily make it canonical
by using the following procedure:

• If Yj violates either condition (1) or (2) in definition
11, then replace Yj by a new variable Yk in all clauses
of F (where Yj appears) such that Yk = Y j , and set
φ(Yk) = φ(Yj) and φ(Yk) = φ(Yj).

Example 12 (Canonical representation). Consider C =
{(X1∨Y2), (X1∨Y2), (X1∨Y3)}. C is not in canonical
form w.r.t. X1 because Y2 and Y3 violate the second and
first property respectively in definition 11. To convert it to
canonical form, set Y4 = Y2, Y5 = Y3, φ(Y4) = φ(Y2),
φ(Y4) = φ(Y2), φ(Y5) = φ(Y3) and φ(Y5) = φ(Y3).
Thus, the canonical representation of C is the set {(X1 ∨
Y4), (X1 ∨ Y4), (X1 ∨ Y5)}.

We call variables Yj which appear only once in C(Xi)
single-occurrence neighbors of Xi and those which ap-
pear twice two-occurrence neighbors.

4.3 CHARACTERIZING OBLIVIOUS BOUNDS

We now derive oblivious bounds based on whether C(Xi)
has two-occurrence neighbors or not. In the following, let
F denote a W2CNF that is canonical w.r.t.Xi and letF ′ be
the result of applying a series of dissociation steps on F .
Let Yj be a single-occurrence neighbor ofXi. Let S+ and
S− denote the set of indices of the dissociated variables
that appear in clauses (Xi∨Yj) and (Xi∨Yj) respectively
inC(Xi). Let Yk be a two-occurrence neighbor ofXi. Let
T+ and T− denote the set of indices of the dissociated
variables in clauses Xi ∨ Yk and Xi ∨ Y k respectively in
C(Xi). (We use S and T to refer to “single-occurrence”
and “two-occurrence” variables, respectively.)

Example 13 (Indices). Consider C = {(X1 ∨
Y5), (X1 ∨ Y8), (X1 ∨ Y6), (X1 ∨ Y7), (X1 ∨ Y7), (X1 ∨
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Y9), (X1∨Y9)}. After applying dissociation onX1, we get
C(X ′1) = {(X1;1∨Y5), (X1;2∨Y8), (X1;3∨Y6), (X1;4∨
Y7), (X1;5 ∨ Y7), (X1;6 ∨ Y9), (X1;7 ∨ Y9)}. Then S+ =
{1, 2}, S−={3}, T+ = {4, 6}, and T− = {5, 7}.

We next analyze the two possible non-monotone cases
in Theorems 14 and 16. The proofs are presented in an
extended version of the paper.

The first case is when C(Xi) has only single-occurrence
neighbors (but no two-occurrence neighbors). This gen-
eralizes the monotone case, in which only one type of
single-occurrence variables are present. In particular, in
the monotone case either clauses of the form (Xi ∨ Yj)
or (Xi ∨ Yj) are present but not both while in the non-
monotone case both clauses can be present in C(Xi).
Note that bounds given in Theorem 9 are a special case
of the bounds in Theorem 14 presented next.
Theorem 14. (Oblivious bounds for W2CNFs having only
single-occurrence neighbors w.r.t. Xi). For a given vari-
able Xi, if F contains only single-occurrence neighbors
but no two-occurrence neighbors then we have the follow-
ing oblivious bounds for Xi:

• U:
( ∏

j∈S+

pi;j ≥ pi
)
∧
( ∏

j∈S−
pi;j ≥ pi

)

• L: Either of following two conditions hold:

1.
(
∀j ∈ S+ : pi;j ≤ pi

)
∧
(
∀j ∈ S− : pi;j = 0

)

2.
(
∀j ∈ S− : pi;j ≤ pi

)
∧
(
∀j ∈ S+ : pi;j = 0

)

Optimal oblivious bounds are obtained by replacing in-
equality with equality in the bound conditions.
Example 15. Consider C(X ′1) = {(X1;1 ∨ Y2), (X1;2 ∨
Y3), (X1;3 ∨ Y4), (X1;4 ∨ Y5)}. Theorem 14 gives the
conditions for upper and lower oblivious bounds as:

• U:
(
p1;1p1;3 ≥ p1

)
∧
(
p1;2p1;4 ≥ p1

)
.

• L: Either of following two conditions hold:

1.
(
p1;1 ≤ p1

)
∧
(
p1;3 ≤ p1

)
∧
(
p1;2 = p1;4 = 0

)

2.
(
p1;2 ≤ p1

)
∧
(
p1;4 ≤ p1

)
∧
(
p1;1 = p1;3 = 0

)

Our second non-monotone case is when F has at least
one two-occurrence neighbor. Intuitively, dissociated vari-
ables which form clauses with two-occurrence neighbors
are more constrained than those that appear with single-
occurrence neighbors. Thus, there are more constraints
on probabilities associated with two-occurrence neigh-
bors (indexed by T+ and T−) than those associated with
single-occurrence neighbors (indexed by S+ and S−);
see conditions 1. and 2. in Theorem 16.
Theorem 16. (Oblivious bounds for W2CNFs having two-
occurrence neighbors w.r.t. Xi). For a given variable Xi,
if F contains at least one two-occurrence neighbor then
we have the following oblivious bounds for Xi:

Algorithm 1: (DIS) Dissociation Bounds for WMC
Input: W2CNF F = 〈X,Φ,C〉,

Variable ordering o = [X1, X2, . . . , X|X|]
Output: Lower (or upper) bound on the WMC
1. Initialize: ZB = 1 (Bound on the partition function)
2. for i = 1 to |X| do

2a. Convert F to a minimal F
2b. Convert C(Xi) to canonical form
2c. if C is inconsistent then

return 0
else if C(Xi) = {Xi} then

ZB = ZB × pi
else if C(Xi) = {Xi} then

ZB = ZB × pi
else if C(Xi) has two-occurrence neighbors then

Update ZB using Theorem 16
else if C(Xi) has single-occurrence neighbors then

Update ZB using Theorem 14

return ZB

• U:
( ∏

j∈(S+∪T+)

pi;j ≥ pi
)
∧
( ∏

j∈(S−∪T−)

pi;j ≥ pi
)

• L: Either of following three conditions hold:

1.
( ∏

j∈T+

pi;j ≤ pi
)
∧
(
∀j ∈ (S−∪T−) : pi;j = 0

)

2.
( ∏

j∈T−
pi;j ≤ pi

)
∧
(
∀j ∈ (S+∪T+) : pi;j = 0

)

3. If |T+| = |T−| = 1 and T+ = {a}∧T− = {b}:(
pi;a ≤ pi

)
∧
(
∀j ∈ S− : pi;j = 0

)
∧

(
pi;b ≤ pi

)
∧
(
∀j ∈ S+ : pi;j = 0

)

Optimal oblivious bounds are obtained by replacing in-
equality with equality in the bound conditions.

Example 17. Consider C(X ′1) = {(X1;1 ∨ Y3), (X1;2 ∨
Y4), (X1;3 ∨ Y4), (X1;4 ∨ Y5)(X1;5 ∨ Y6)}. Theorem 16
gives the following conditions for upper and lower oblivi-
ous bounds:

• U:
(
p1;1p1;2p1;4 ≥ p1

)
∧
(
p1;3p1;5 ≥ p1

)

• L: Either of the following three conditions hold:

1. (p1;2 ≤ p1) ∧ (p1;3 = p1;5 = 0)

2. (p1;3 ≤ p1) ∧ (p1;1 = p1;2 = p1;4 = 0)

3. (p1;2 ≤ p1)∧(p1;3 ≤ p1)∧(p1;1=p1;4=p1;5 = 0)

Table 3 summarizes the oblivious bound conditions. The-
orems 14 and 16 yield the algorithm given in Algorithm 1
for bounding the partition function of a given W2CNF.
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(a) (b) (c)

Figure 1: Upper bound estimates for dissociation DIS(U) and mini-bucket MB(U), and lower bound estimates for dissociation
DIS(L). Error bound by varying (a) grid size (b) level of determinism for 10×10 grid (c) 20×20 grid. Lower value is better.

Table 3: Summary of oblivious bound conditions. T :
whether C(Xi) has two-occurrence neighbors, S+ and
S−: whether C(Xi) has single-occurrence neighbors
which appear in clauses (Xi ∨ Yj) and (Xi ∨ Yj) re-
spectively. An entry in a cell means that neighbors of the
respective types are either present (

√
), absent (×), or ei-

ther present or absent (∗). Bold text in Case and Solution
columns denote novel contributions of this paper while
normal font text indicates previous work.

S+ S− T Case Solution√ × × Monotone Theorems 9 & 14× √ ×√ √ × Single-occurrence Theorem 14
∗ ∗ √

Two-occurrence Theorem 16

5 EXPERIMENTS

We evaluated the performance of DIS (see Algo-
rithm 1) and compared it with MB on generated syn-
thetic datasets and benchmark datasets from the UAI
2008 probabilistic inference competition repository
(http://graphmod.ics.uci.edu/uai08) for the task of com-
puting upper and lower bounds on the weighted model
count (or partition function). All experiment were con-
ducted on quad-core Intel i7 based machines with 24GB
RAM running Ubuntu.

5.1 SYNTHETIC DATASETS

We generated non-monotone W2CNF formulas encoded as
m×m grid structure graphical models parameterized by
univariate and pairwise binary potentials. We then com-
pared error bound performance of DIS and MB (i-bound
= 1) from the aspects of (1) varying grid sizes under
random weight function settings; and (2) varying weight
function settings according to determinism strength un-
der fixed grid sizes. For each model, we computed the
true weighted model count Z∗. We then compared each
algorithm’s approximated bound Zalgo and calculated the
error bound as log(Z∗/Zalgo) for the lower bound and the

same negated for the upper bound. A lower error bound
value is better. For each setting, we generated 50 random
problem instances and ran DIS and MB 100 times for
each instance. From the 100 solutions, we selected the
best, namely either the lowest upper bound or the highest
lower bound. We then computed the average error bound
across the 50 problem instances.

Grid size. We generated m×m grids using values of
m = {5, 6, 7, . . . , 20}. For the weight function values, we
sampled from an uniform U(0, 1) distribution. We also
uniformly generated the clauses. The results are shown in
Figure 1a. For the upper bound, DIS noticeably begins to
outperform MB starting at around grid size 10×10 and the
performance gap widens as the grid size increases. Since
MB utilizes the max function, it has a higher tendency
to overestimate the upper bound. This was accomplished
only by setting the weight function values to the k-th
root (e.g., pX1;1 = pX1;2 =

√
pX1 for |C(X1)| = 2). We

would expect the performance gap to be wider, favoring
DIS, by optimizing the inequalities. For the lower bound,
MB produced 0 for all problems and thus was not plotted.
MB has a high tendency to converge to the so called
degenerate solution (i.e., 0) due to the min function. The
lower bound for DIS is tighter, as compared to the upper
bounds, since the settings to the lower bound inequalities
do not need to be optimized.

Determinism strength. We analyzed the performance
of DIS and MB according to various levels of determin-
ism, namely the distance from uniform .5 (unweighted)
towards 0 and 1. To accomplish this, we set all weight
functions to the same value pX ∈ {.5, .6, .7, .8, .9}. The
results are shown in Figures 1b and 1c. For the lower
bound, MB produced 0 for all problems and thus was not
plotted. The overall relative performance comparison is
similar to that of varying grid size. Again, the lower bound
performance for DIS is tighter and all bounds had higher
bound error as the determinism strength increased. Intu-
itively, as the gap between pXi and pXi widens, the ten-
dency to overestimate (underestimate) the upper (lower)
bound increases.
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Table 4: The log relative upper bound between dissociation
DIS(U) and mini-bucket MB(U) on UAI 2008 repository prob-
lem instances. Lower value is better for DIS.

Instance log ZDIS(U)

ZMB(U) Instance log ZDIS(U)

ZMB(U)

sg2-17 −277.8 orc111 −87.6
sg7-11 −293.4 orc175 −96.3
sg8-18 −281.9 orc180 −124.4
sg9-24 −292.8 orc203 −111.0
sg17-4 −303.3 orc218 −4.4
smk10 −50.9 orc62 −393.4
smk20 −165.9 orc154 −97.0
orc42 −119.6 orc225 −137.3
orc45 −261.1 orc139 −155.0

Table 5: The log relative lower bound between ground truth and
Dissociation DIS(L) on UAI 2008 repository problem instances.
Lower value is better for DIS.

Instance log Z∗

ZDIS(L) Instance log Z∗

ZDIS(L)

sg2-17 732.4 orc111 209.8
sg7-11 759.4 orc175 342.6
sg8-18 727.3 orc180 375.0
sg9-24 774.5 orc203 346.8
sg17-4 752.1 orc218 18.2
smk10 191.3 orc62 −
smk20 799.8 orc154 354.7
orc42 407.9 orc225 499.7
orc45 747.8 orc139 576.6

5.2 UAI INFERENCE DATASETS

We also compared DIS to MB on the segmentation (sg),
promedas (orc) and smokers (smk) dataset from the UAI
2008 repository. The variables in the models are binary
and the number of variables range from ∼100 to 1000.
We converted the non-pairwise models to pairwise mod-
els and then encoded them as W2CNF. We used i-bound
= 1 for MB. We ran DIS and MB 100 times and sim-
ilarly, we selected the best. For the upper bound, we
evaluated using the log relative upper bound, namely
log(ZDIS(U)/ZMB(U)). Lower value is better for DIS.
The results are shown in Table 4. DIS outperforms MB
by a wide margin on the majority of the datasets. The
solution quality of DIS for sg was quite consistent while
for orc it had higher variance. For the lower bound, we
evaluated dissociation’s lower bound against the ground
truth, namely log(Z∗/ZDIS(L)). MB produced 0 for all
problems and thus was not shown. The results are shown
in Table 5 (orc62 was not tractable).

In summary, DIS performs consistently better than MB
on harder WMC problems. In particular, the lower bounds

output by DIS are always better than MB.

6 CONCLUSION AND FUTURE WORK

We proposed an approximate, oblivious bounding scheme
for WMC, extending the idea of dissociation to non-
monotone formulas and exploiting logical structure. Dis-
sociation yields a novel set of inequalities for which upper
and lower bounds can be derived efficiently. Empirically,
we showed that our method outperforms mini-buckets—a
popular oblivious bounding scheme—on various datasets.
The lower bounds are robust since they do not require
optimization (in the monotone case). For upper bounds,
we utilized naı̈ve settings, namely the k-th root applied to
the parameter of a dissociated variable.

For future work, we are interested in obtaining better
(tighter) upper and lower bounds. To do so, we can lever-
age four powerful complementary techniques described
in literature (cf. (Gogate and Domingos, 2011, 2013; Ih-
ler et al., 2012; Lam et al., 2014; Liu and Ihler, 2011;
Ping et al., 2015)): cost-shifting (or re-parameterization),
higher ibound, quantization and Hölder’s inequality. For
instance, applying Hölder’s inequality to our running
example (see Example 3) gives the optimization prob-
lem minω(pωX1

+ (pX1pY2)ω)1/ω(1 + p
(1−ω)
Y3

)(1/1−ω)

such that 0 ≤ ω ≤ 1. We can also apply Hölder’s
inequality to dissociation which alternatively gives
us the optimization problem minpX1;1

,pX1;2
,ω(pωX1;1

+

(pX1;1
pY2

)ω)1/ω(p
(1−ω)
X1;2

+(pX1;2
pY3

)(1−ω))(1/1−ω) such
that pX1;1

pX1;2
= pX1

and 0 ≤ ω ≤ 1. We are particu-
larly interested in developing algorithms to optimize the
latter problem and to determine which formulation will
consistently yield tighter upper and lower bounds. An-
other line of future work is investigating the utility of our
approach when applied to other inference tasks such as
maximum a posteriori (MAP) estimation and marginal
maximum a posteriori (MMAP) estimation.
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Abstract

Deep neural networks are typically trained by
optimizing a loss function with an SGD vari-
ant, in conjunction with a decaying learning
rate, until convergence. We show that simple
averaging of multiple points along the trajec-
tory of SGD, with a cyclical or constant learn-
ing rate, leads to better generalization than
conventional training. We also show that this
Stochastic Weight Averaging (SWA) procedure
finds much broader optima than SGD, and ap-
proximates the recent Fast Geometric Ensem-
bling (FGE) approach with a single model.
Using SWA we achieve notable improvement
in test accuracy over conventional SGD train-
ing on a range of state-of-the-art residual net-
works, PyramidNets, DenseNets, and Shake-
Shake networks on CIFAR-10, CIFAR-100,
and ImageNet. In short, SWA is extremely
easy to implement, improves generalization,
and has almost no computational overhead.

1 INTRODUCTION

With a better understanding of the loss surfaces for mul-
tilayer networks, we can accelerate the convergence, sta-
bility, and accuracy of training procedures in deep learn-
ing. Recent work [Garipov et al., 2018, Draxler et al.,
2018] shows that local optima found by SGD can be con-
nected by simple curves of near constant loss. Building
upon this insight, Garipov et al. [2018] also developed
Fast Geometric Ensembling (FGE) to sample multiple
nearby points in weight space to create high performing
ensembles in the time required to train a single DNN.

FGE uses a high frequency cyclical learning rate with
SGD to select networks to ensemble. In Figure 1 (left)

∗Equal contribution.

we see that the weights of the networks ensembled by
FGE are on the periphery of the most desirable solu-
tions. This observation suggests it is promising to aver-
age these points in weight space, and use a network with
these averaged weights, instead of forming an ensemble
by averaging the outputs of networks in model space. Al-
though the general idea of maintaining a running aver-
age of weights traversed by SGD dates back to Ruppert
[1988], this procedure is not typically used to train neural
networks. It is sometimes applied as an exponentially de-
caying running average in combination with a decaying
learning rate (where it is called an exponential moving
average), which smooths the trajectory of conventional
SGD but does not perform very differently. However, we
show that an equally weighted average of the points tra-
versed by SGD with a cyclical or constant learning rate,
which we refer to as Stochastic Weight Averaging (SWA),
has many surprising and promising features for training
deep neural networks, leading to a better understanding
of the geometry of their loss surfaces. Indeed, SWA with
cyclical or constant learning rates can be used as a drop-
in replacement for standard SGD training of multilayer
networks — but with improved generalization and essen-
tially no overhead. In particular:

• We show that SGD with cyclical [e.g., Loshchilov
and Hutter, 2017] and constant learning rates tra-
verses regions of weight space corresponding to
high-performing networks. We find that while these
models are moving around this optimal set they
never reach its central points. We show that we can
move into this more desirable space of points by av-
eraging the weights proposed over SGD iterations.

• While FGE ensembles [Garipov et al., 2018] can
be trained in the same time as a single model, test
predictions for an ensemble of k models requires k
times more computation. We show that SWA can
be interpreted as an approximation to FGE ensem-
bles but with the test-time, convenience, and inter-
pretability of a single model.
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Figure 1: Illustrations of SWA and SGD with a Preactivation ResNet-164 on CIFAR-1001. Left: test error surface
for three FGE samples and the corresponding SWA solution (averaging in weight space). Middle and Right: test
error and train loss surfaces showing the weights proposed by SGD (at convergence) and SWA, starting from the same
initialization of SGD after 125 training epochs.

• We demonstrate that SWA leads to solutions corre-
sponding to wider optima than SGD. Keskar et al.
[2017] and Hochreiter and Schmidhuber [1997]
conjecture that the width of the optima is critically
related to generalization. We illustrate that the loss
on the train is shifted with respect to the test er-
ror (Figure 1, middle and right panels, and sections
3, 4). We show that SGD generally converges to
a point near the boundary of the wide flat region
of optimal points. SWA on the other hand is able
to find a point centered in this region, often with
slightly worse train loss but with substantially bet-
ter test error.

• SWA achieves notable improvement for training
a broad range of architectures over several con-
sequential benchmarks. In particular, running
SWA for just 10 epochs on ImageNet we are
able to achieve 0.8% improvement for ResNet-
50 and DenseNet-161, and 0.6% improvement for
ResNet-150. We achieve improvement of over 1.3%
on CIFAR-100 and of over 0.4% on CIFAR-10
with Preactivation ResNet-164, VGG-16 and Wide
ResNet-28-10. We also achieve substantial im-
provement for the recent Shake-Shake Networks
and PyramidNets.

• SWA is extremely easy to implement and has vir-
tually no computational overhead compared to the
conventional training schemes.

• We provide our implementation of SWA at
https://github.com/timgaripov/swa.

2 RELATED WORK

This paper is fundamentally about better understanding
the geometry of loss surfaces and generalization in deep
learning. We follow the trajectory of weights traversed
by SGD, leading to new geometric insights and the in-
tuition that SWA will lead to better results than standard
training. Empirically, we make the discovery that SWA

notably improves training of many state-of-the-art deep
neural networks over a range of consequential bench-
marks, with essentially no overhead.

The procedures for training neural networks are con-
stantly being improved. New methods are being pro-
posed for architecture design, regularization and opti-
mization. The SWA approach is related to work in both
optimization and regularization.

In optimization, there is great interest in how different
types of local optima affect generalization in deep learn-
ing. Keskar et al. [2017] claim that SGD is more likely to
converge to broad local optima than batch gradient meth-
ods, which tend to converge to sharp optima. Moreover,
they argue that the broad optima found by SGD are more
likely to have good test performance, even if the training
loss is worse than for the sharp optima. On the other hand
Dinh et al. [2017] argue that all the known definitions of
sharpness are unsatisfactory and cannot on their own ex-
plain generalization. Chaudhari et al. [2017] propose the
Entropy-SGD method that explicitly forces optimization
towards wide valleys. They report that although the op-
tima found by Entropy-SGD are wider than those found
by conventional SGD, the generalization performance is
still comparable.

The SWA method is based on averaging multiple points
along the trajectory of SGD with cyclical or constant
learning rates. The general idea of maintaining a running
average of weights proposed by SGD was first consid-
ered in convex optimization by Ruppert [1988] and later
by Polyak and Juditsky [1992]. However, this procedure
is not typically used to train neural networks. Practi-

1 Suppose we have three weight vectors w1, w2, w3. We set
u = (w2−w1), v = (w3−w1)−〈w3− w1, w2− w1〉/‖w2−
w1‖2 · (w2 − w1). Then the normalized vectors û = u/‖u‖,
v̂ = v/‖v‖ form an orthonormal basis in the plane contain-
ing w1, w2, w3. To visualize the loss in this plane, we define
a Cartesian grid in the basis û, v̂ and evaluate the networks
corresponding to each of the points in the grid. A point P
with coordinates (x, y) in the plane would then be given by
P = w1 + x · û+ y · v̂.

877



tioners instead sometimes use an exponentially decay-
ing running average of the weights found by SGD with
a decaying learning rate, which smooths the trajectory of
SGD but performs comparably.

SWA is making use of multiple samples gathered through
exploration of the set of points corresponding to high per-
forming networks. To enforce exploration we run SGD
with constant or cyclical learning rates. Mandt et al.
[2017] show that under several simplifying assumptions
running SGD with a constant learning rate is equivalent
to sampling from a Gaussian distribution centered at the
minimum of the loss, and the covariance of this Gaussian
is controlled by the learning rate. Following this expla-
nation from [Mandt et al., 2017], we can interpret points
proposed by SGD as being constrained to the surface of
a sphere, since they come from a high dimensional Gaus-
sian distribution. SWA effectively allows us to go inside
the sphere to find higher density solutions.

In a procedure called Fast Geometric Ensembling (FGE),
Garipov et al. [2018] showed that using a cyclical learn-
ing rate it is possible to gather models that are spatially
close to each other but produce diverse predictions. They
used the gathered models to train ensembles with no
computational overhead compared to training a single
DNN model. In recent work Neklyudov et al. [2018]
also discuss an efficient approach for model averaging
of Bayesian neural networks. SWA was inspired by fol-
lowing the trajectories of FGE proposals, in order to find
a single model that would approximate an FGE ensem-
ble, but provide greater interpretability, convenience, and
test-time scalability.

Dropout [Srivastava et al., 2014] is an extremely popu-
lar approach to regularizing DNNs. Across each mini-
batch used for SGD, a different architecture is created
by randomly dropping out neurons. The authors make
analogies between dropout, ensembling, and Bayesian
model averaging. At test time, an ensemble approach
is proposed, but then approximated with similar results
by multiplying each connection by the dropout rate. At a
high level, SWA and Dropout are both at once regulariz-
ers and training procedures, motivated to approximate an
ensemble. Each approach implements these high level
ideas quite differently, and as we show in our experi-
ments, can be combined for improved performance.

3 STOCHASTIC WEIGHT AVERAGING

We present Stochastic Weight Averaging (SWA) and an-
alyze its properties. In section 3.1, we consider trajec-
tories of SGD with a constant and cyclical learning rate,
which helps understand the geometry of SGD training
for neural networks, and motivates the SWA procedure.
Then in section 3.2 we present the SWA algorithm in

detail, in section 3.3 we derive its complexity, and in
section 3.4 we analyze the width of optima found by
SWA versus conventional SGD training. In section 3.5
we then examine the relationship between SWA and the
recently proposed Fast Geometric Ensembling [Garipov
et al., 2018]. Finally, in section 3.6 we consider SWA
from the perspective of stochastic convex optimization.

We note the name SWA has two meanings: on the one
hand, it is an average of SGD weights. On the other,
with a cyclical or constant learning rate, SGD proposals
are approximately sampling from the loss surface of the
DNN, leading to stochastic weights.

3.1 ANALYSIS OF SGD TRAJECTORIES

SWA is based on averaging the samples proposed by
SGD using a learning rate schedule that allows explo-
ration of the region of weight space corresponding to
high-performing networks. In particular we consider
cyclical and constant learning rate schedules.

The cyclical learning rate schedule that we adopt is in-
spired by Garipov et al. [2018] and Smith and Topin
[2017]. In each cycle we linearly decrease the learning
rate from α1 to α2. The formula for the learning rate at
iteration i is given by

α(i) = (1− t(i))α1 + t(i)α2,

t(i) =
1

c
(mod(i− 1, c) + 1) .

The base learning rates α1 ≥ α2 and the cycle length c
are the hyper-parameters of the method. Here by itera-
tion we assume the processing of one batch of data. Fig-
ure 2 illustrates the cyclical learning rate schedule and
the test error of the corresponding points. Note that un-
like the cyclical learning rate schedule of Garipov et al.
[2018] and Smith and Topin [2017], here we propose to
use a discontinuous schedule that jumps directly from
the minimum to maximum learning rates, and does not
steadily increase the learning rate as part of the cycle.
We use this more abrupt cycle because for our purposes
exploration is more important than the accuracy of indi-
vidual proposals. For even greater exploration, we also
consider constant learning rates α(i) = α1.

We run SGD with cyclical and constant learning rate
schedules starting from a pretrained point for a Preacti-
vation ResNet-164 on CIFAR-100. We then use the first,
middle and last point of each of the trajectories to de-
fine a 2-dimensional plane in the weight space contain-
ing all affine combinations of these points. In Figure 3
we plot the loss on train and error on test for points in
these planes. We then project the other points of the tra-
jectory to the plane of the plot. Note that the trajectories
do not generally lie in the plane of the plot, except for the
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Figure 2: Top: cyclical learning rate as a function of
iteration. Bottom: test error as a function of iteration
for cyclical learning rate schedule with Preactivation-
ResNet-164 on CIFAR-100. Circles indicate iterations
corresponding to the minimum learning rates.

first, last and middle points, showed by black crosses in
the figure. Therefore for other points of the trajectories it
is not possible to tell the value of train loss and test error
from the plots.

The key insight from Figure 3 is that both methods ex-
plore points close to the periphery of the set of high-
performing networks. The visualizations suggest that
both methods are doing exploration in the region of space
corresponding to DNNs with high accuracy. The main
difference between the two approaches is that the indi-
vidual proposals of SGD with a cyclical learning rate
schedule are in general much more accurate than the pro-
posals of a fixed-learning rate SGD. After making a large
step, SGD with a cyclical learning rate spends several
epochs fine-tuning the resulting point with a decreasing
learning rate. SGD with a fixed learning rate on the other
hand is always making steps of relatively large sizes, ex-
ploring more efficiently than with a cyclical learning rate,
but the individual proposals are worse.

Another important insight we can get from Figure 3 is
that while the train loss and test error surfaces are quali-
tatively similar, they are not perfectly aligned. The shift
between train and test suggests that more robust central
points in the set of high-performing networks can lead to
better generalization. Indeed, if we average several pro-
posals from the optimization trajectories, we get a more
robust point that has a substantially higher test perfor-
mance than the individual proposals of SGD, and is es-
sentially centered on the shifted mode for test error. We
further discuss the reasons for this behaviour in sections
3.4, 3.5, 3.6.

3.2 SWA ALGORITHM

We now present the details of the Stochastic Weight Av-
eraging algorithm, a simple but effective modification for
training neural networks, motivated by our observations
in section 3.1.

Following Garipov et al. [2018], we start with a pre-
trained model ŵ. We will refer to the number of epochs
required to train a given DNN with the conventional
training procedure as its training budget and will denote
it by B. The pretrained model ŵ can be trained with the
conventional training procedure for full training budget
or reduced number of epochs (e.g. 0.75B). In the lat-
ter case we just stop the training early without modify-
ing the learning rate schedule. Starting from ŵ we con-
tinue training, using a cyclical or constant learning rate
schedule. When using a cyclical learning rate we capture
the models wi that correspond to the minimum values of
the learning rate (see Figure 2), following Garipov et al.
[2018]. For constant learning rates we capture models
at each epoch. Next, we average the weights of all the
captured networks wi to get our final model wSWA.

Note that for cyclical learning rate schedule, the SWA
algorithm is related to FGE [Garipov et al., 2018], except
that instead of averaging the predictions of the models,
we average their weights, and we use a different type of
learning rate cycle. In section 3.5 we show how SWA
can approximate FGE, but with a single model.

Batch normalization. If the DNN uses batch normal-
ization [Ioffe and Szegedy, 2015], we run one additional
pass over the data, as in Garipov et al. [2018], to compute
the running mean and standard deviation of the activa-
tions for each layer of the network with wSWA weights
after the training is finished, since these statistics are
not collected during training. For most deep learning li-
braries, such as PyTorch or Tensorflow, one can typically
collect these statistics by making a forward pass over the
data in training mode.

The SWA procedure is summarized in Algorithm 1.

3.3 COMPUTATIONAL COMPLEXITY

The time and memory overhead of SWA compared to
conventional training is negligible. During training, we
need to maintain a copy of the running average of DNN
weights. Note however that the memory consumption
in storing a DNN is dominated by its activations rather
than its weights, and thus is only slightly increased by the
SWA procedure, even for large DNNs (e.g., on the order
of 10%). After the training is complete we only need to
store the model that aggregates the average, leading to
the same memory requirements as standard training.
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Figure 3: The L2-regularized cross-entropy train loss and test error surfaces of a Preactivation ResNet-164 on CIFAR-
100 in the plane containing the first, middle and last points (indicated by black crosses) in the trajectories with (left
two) cyclical and (right two) constant learning rate schedules.

Algorithm 1 Stochastic Weight Averaging

Require:
weights ŵ, LR bounds α1, α2,
cycle length c (for constant learning rate c = 1), num-
ber of iterations n

Ensure: wSWA
w ← ŵ {Initialize weights with ŵ}
wSWA ← w
for i← 1, 2, . . . , n do
α← α(i) {Calculate LR for the iteration}
w ← w − α∇Li(w) {Stochastic gradient update}
if mod(i, c) = 0 then
nmodels ← i/c {Number of models}
wSWA ← wSWA·nmodels+w

nmodels+1 {Update average}
end if

end for
{Compute BatchNorm statistics for wSWA weights}

During training extra time is only spent to update the ag-
gregated weight average. This operation is of the form

wSWA ←
wSWA · nmodels + w

nmodels + 1
,

and it only requires computing a weighted sum of the
weights of two DNNs. As we apply this operation at
most once per epoch, SWA and SGD require practically
the same amount of computation. Indeed, a similar op-
eration is performed as a part of each gradient step, and
each epoch consists of hundreds of gradient steps.

3.4 OPTIMA WIDTH

Keskar et al. [2017] and Chaudhari et al. [2017] conjec-
ture that the width of a local optimum is related to gen-
eralization. The general explanation for the importance
of width is that the surfaces of train loss and test error
are shifted with respect to each other and it is thus de-
sirable to converge to the modes of broad optima, which
stay approximately optimal under small perturbations. In
this section we compare the solutions found by SWA and
SGD and show that SWA generally leads to much wider
optima.

Let wSWA and wSGD denote the weights of DNNs trained
using SWA and conventional SGD, respectively. Con-
sider the rays

wSWA(t, d) = wSWA + t · d,
wSGD(t, d) = wSGD + t · d,

which follow a direction vector d on the unit sphere,
starting at wSWA and wSGD, respectively. In Figure 4
we plot train loss and test error of wSWA(t, di) and
wSGD(t, di) as a function of t for 10 random directions
di, i = 1, 2, . . . , 10 drawn from a uniform distribution
on the unit sphere. For this visualization we use a Preac-
tivation ResNet-164 on CIFAR-100.

First, while the loss values on train for wSGD and wSWA
are quite similar (and in fact wSGD has a slightly lower
train loss), the test error for wSGD is lower by 1.5% (at
the converged value corresponding to t = 0). Further,
the shapes of both train loss and test error curves are con-
siderably wider for wSWA than for wSGD, suggesting that
SWA indeed converges to a wider optimum: we have to
step much further away from the solution found by wSWA
to increase error by a given amount. We even see the
error curve for SGD has an inflection point that is not
present for these distances with SWA.

Notice that in Figure 4 any of the random directions from
wSGD increase test error. However, we know that the di-
rection from wSGD to wSWA would decrease test error,
since wSWA has considerably lower test error than wSGD.
In other words, the path from wSGD to wSWA is qualita-
tively different from all directions shown in Figure 4, be-
cause along this direction wSGD is far from optimal. We
therefore consider the line segment connecting wSGD and
wSWA:

w(t) = t · wSGD + (1− t) · wSWA .

In Figure 5 we plot the train loss and test error of w(t)
as a function of signed distance from wSWA for Preacti-
vation ResNet-164 and VGG-16 on CIFAR-100.

We can extract several key insights aboutwSWA andwSGD
from Figure 5. First, the train loss and test error plots
are indeed substantially shifted, and the point obtained
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Figure 5: L2-regularized cross-entropy train loss and test error as a function of a point on the line connecting SWA
and SGD solutions on CIFAR-100. Left: Preactivation ResNet-164. Right: VGG-16.

by minimizing the train loss is far from optimal on test.
Second, wSGD lies near the boundary of a wide flat region
of the train loss. Further, the loss is very steep nearwSGD.

Keskar et al. [2017] argue that the loss near sharp op-
tima found by SGD with very large batches are actually
flat in most directions, but there exist directions in which
the optima are extremely steep. They conjecture that be-
cause of this sharpness the generalization performance
of large batch optimization is substantially worse than
that of solutions found by small batch SGD. Remark-
ably, in our experiments in this section we observe that
there exist directions of steep ascent even for small batch
optima, and that SWA provides even wider solutions (at
least along random directions) with better generalization.

3.5 CONNECTION TO ENSEMBLING

Garipov et al. [2018] proposed the Fast Geometric En-
sembling (FGE) procedure for training ensembles in the
time required to train a single model. Using a cyclical
learning rate, FGE generates a sequence of points that
are close to each other in the weight space, but produce
diverse predictions. In SWA instead of averaging the pre-
dictions of the models we average their weights. How-
ever, the predictions proposed by FGE ensembles and
SWA models have similar properties.

Let f(·) denote the predictions of a neural network

parametrized by weights w. We will assume that f is
a scalar (e.g. the probability for a particular class) twice
continuously differentiable function with respect to w.

Consider points wi proposed by FGE. These points are
close in the weight space by design, and concentrated
around their average wSWA = 1

n

∑n
i=1 wi. We denote

∆i = wi − wSWA. Note
∑n
i=1 ∆i = 0. Ensembling the

networks corresponds to averaging the function values

f̄ =
1

n

n∑

i=1

f(wi).

Consider the linearization of f at wSWA.

f(wj) = f(wSWA) + 〈∇f(wSWA),∆j〉+O(‖∆j‖2),

where 〈·, ·〉 denotes the dot product. Thus, the difference
between averaging the weights and averaging the predic-
tions

f̄ − f(wSWA) =
1

n

n∑

i=1

(
〈∇f(wSWA),∆i〉+O(‖∆i‖2)

)

=

〈
∇f(wSWA),

1

n

n∑

i=1

∆i

〉
+O(∆2) = O(∆2),

where ∆ = maxni=1 ‖∆i‖. Note that the difference be-
tween the predictions of different perturbed networks is

f(wi)− f(wj) = 〈∇f(wSWA),∆i −∆j〉+O(∆2),
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and is thus of the first order of smallness, while the
difference between averaging predictions and averaging
weights is of the second order of smallness. Note that for
the points proposed by FGE the distances between pro-
posals are relatively small by design, which justifies the
local analysis.

To analyze the difference between ensembling and av-
eraging the weights of FGE proposals in practice, we
run FGE for 20 epochs and compare the predictions of
different models on the test dataset with a Preactivation
ResNet-164 [He et al., 2016] on CIFAR-100. The norm
of the difference between the class probabilities of con-
secutive FGE proposals averaged over the test dataset is
0.126. We then average the weights of the proposals
and compute the class probabilities on the test dataset.
The norm of difference of the probabilities for the SWA
model and the FGE ensemble is 0.079, which is substan-
tially smaller than the difference between the probabili-
ties of consecutive FGE proposals. Further, the fraction
of objects for which consecutive FGE proposals output
the same labels is not greater than 87.33%. For FGE
and SWA the fraction of identically labeled objects is
95.26%.

The theoretical considerations and empirical results pre-
sented in this section suggest that SWA can approximate
the FGE ensemble with a single model.

3.6 CONNECTION TO CONVEX
MINIMIZATION

Mandt et al. [2017] showed that under strong simplify-
ing assumptions SGD with a fixed learning rate approx-
imately samples from a Gaussian distribution centered
at the minimum of the loss. Suppose this is the case
when we run SGD with a fixed learning rate for train-
ing a DNN.

Let us denote the dimensionality of the weight space of
the neural network by d. Denote the samples produced
by SGD by wi, i = 1, 2, . . . , k. Assume the points wi
are concentrated around the local optimum ŵ. The SWA
solution is given by wSWA = 1

n

∑k
i=1 wi. The points wi

are samples from a multidimensional GaussianN (ŵ,Σ)
for some covariance matrix Σ defined by the curvature of
the loss, batch size and the learning rate. Note that the
samples from a multidimensional Gaussian are concen-
trated on the ellipsoid

{
z ∈ Rd| ‖Σ− 1

2 (z − ŵ)‖ =
√
d
}
,

and the probability mass for a sample to end up inside the
ellipsoid near ŵ is negligible. On the other hand, wSWA
is guaranteed to converge to ŵ as k →∞.

Moreover, Polyak and Juditsky [1992] showed that aver-
aging SGD proposals achieves the best possible conver-

gence rate among all stochastic gradient algorithms. The
proof relies on the convexity of the underlying problem
and in general there are no convergence guarantees if the
loss function is non-convex [see e.g. Ghadimi and Lan,
2013]. While DNN loss functions are known to be non-
convex [e.g. Choromanska et al., 2015], over the trajec-
tory of SGD these loss surfaces are approximately con-
vex [e.g. Goodfellow et al., 2015]. However, even when
the loss is locally non-convex, SWA can improve gen-
eralization. For example, in Figure 5 we see that SWA
converges to a central point of the training loss.

4 EXPERIMENTS

We compare SWA against conventional SGD training
on CIFAR-10, CIFAR-100 and ImageNet ILSVRC-2012
[Russakovsky et al., 2012]. We also compare to Fast Ge-
ometric Ensembling (FGE) [Garipov et al., 2018], but
we note that FGE is an ensemble whereas SWA corre-
sponds to a single model. Conventional SGD training
uses a standard decaying learning rate schedule (details
in the Appendix) until convergence. We found an ex-
ponentially decaying average of SGD to perform com-
parably to conventional SGD at convergence. We re-
lease the code for reproducing the results in this paper
at https://github.com/timgaripov/swa.

4.1 CIFAR DATASETS

For the experiments on CIFAR datasets we use VGG-
16 [Simonyan and Zisserman, 2014], a 164-layer
Preactivation-ResNet [He et al., 2016] and Wide ResNet-
28-10 [Zagoruyko and Komodakis, 2016] models. Ad-
ditionally, we experiment with the recent Shake-Shake-
2x64d [Gastaldi, 2017] on CIFAR-10 and PyramidNet-
272 (bottleneck, α = 200) [Han et al., 2016] on CIFAR-
100. All models are trained using L2-regularization, and
VGG-16 also uses dropout.

For each model we define budget as the number of
epochs required to train the model until convergence with
conventional SGD training, such that we do not see im-
provement with SGD beyond this budget. We use the
same budgets for VGG, Preactivation ResNet and Wide
ResNet models as Garipov et al. [2018]. For Shake-
Shake and PyramidNets we use the budgets indicated by
the papers that proposed these models [Gastaldi, 2017,
Han et al., 2016]. We report the results of SWA training
within 1, 1.25 and 1.5 budgets of epochs.

For VGG, Wide ResNet and Preactivation-ResNet mod-
els we first run standard SGD training for ≈ 75% of the
training budget, and then use the weights at the last epoch
as an initialization for SWA with a fixed learning rate
schedule. We ran SWA for 0.25, 0.5 and 0.75 budget
to complete the training within 1, 1.25 and 1.5 budgets
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Table 1: Accuracies (%) of SWA, SGD and FGE methods on CIFAR-100 and CIFAR-10 datasets for different training
budgets. Accuracies for the FGE ensemble are from Garipov et al. [2018].

SWA
DNN (Budget) SGD FGE (1 Budget) 1 Budget 1.25 Budgets 1.5 Budgets

CIFAR-100
VGG-16 (200) 72.55± 0.10 74.26 73.91± 0.12 74.17± 0.15 74.27± 0.25

ResNet-164 (150) 78.49± 0.36 79.84 79.77± 0.17 80.18± 0.23 80.35± 0.16
WRN-28-10 (200) 80.82± 0.23 82.27 81.46± 0.23 81.91± 0.27 82.15± 0.27

PyramidNet-272 (300) 83.41± 0.21 – – 83.93± 0.18 84.16± 0.15
CIFAR-10

VGG-16 (200) 93.25± 0.16 93.52 93.59± 0.16 93.70± 0.22 93.64± 0.18
ResNet-164 (150) 95.28± 0.10 95.45 95.56± 0.11 95.77± 0.04 95.83± 0.03
WRN-28-10 (200) 96.18± 0.11 96.36 96.45± 0.11 96.64± 0.08 96.79± 0.05

ShakeShake-2x64d (1800) 96.93± 0.10 – – 97.16± 0.10 97.12± 0.06

respectively.

For Shake-Shake and PyramidNet architectures we do
not report the results in one budget. For these models
we use a full budget to get an initialization for the proce-
dure, and then train with a cyclical learning rate schedule
for 0.25 and 0.5 budgets. We used long cycles of small
learning rates for Shake-Shake, because this architecture
already involves many stochastic components.

We present the details of the learning rate schedules for
each of these models in the Appendix.

For each model we also report the results of conventional
SGD training, which we denote by SGD. For VGG, Pre-
activation ResNet and Wide ResNet we also provide the
results of the FGE method with one budget reported in
Garipov et al. [2018]. Note that for FGE we report the
accuracy of an ensemble of 6 to 12 networks, while for
SWA we report the accuracy of a single model.

We summarize the experimental results in Table 1. For
all models we report the mean and standard deviation
of test accuracy over 3 runs. In all conducted experi-
ments SWA substantially outperforms SGD in one bud-
get, and improves further, as we allow more training
epochs. Across different architectures we see consis-
tent improvement by ≈ 0.5% on CIFAR-10 (excluding
Shake-Shake, for which SGD performance is already ex-
tremely high) and by 0.75-1.5% on CIFAR-100. Amaz-
ingly, SWA is able to achieve comparable or better per-
formance than FGE ensembles with just one model. On
CIFAR-100 SWA usually needs more than one budget
to get results comparable with FGE ensembles, but on
CIFAR-10 even with 1 budget SWA outperforms FGE.

4.2 IMAGENET

On ImageNet we experimented with ResNet-50, ResNet-
152 [He et al., 2016] and DenseNet-161 [Huang et al.,

2017]. For these architectures we used pretrained mod-
els from PyTorch.torchvision. For each of the
models we ran SWA for 10 epochs with a cyclical learn-
ing rate schedule with the same parameters for all models
(the details can be found in the Appendix), and report the
mean and standard deviation of test error averaged over
3 runs. The results are shown in Table 2.

Table 2: Accuracies (%) on ImageNet dataset for SWA
and SGD with different architectures.

SWA
DNN SGD 5 epochs 10 epochs

ResNet-50 76.15 76.83± 0.01 76.97± 0.05
ResNet-152 78.31 78.82± 0.01 78.94± 0.07

DenseNet-161 77.65 78.26± 0.09 78.44± 0.06

For all 3 architectures SWA provides consistent improve-
ment by 0.6-0.9% over the pretrained models.

4.3 EFFECT OF THE LEARNING RATE
SCHEDULE

In this section we explore how the learning rate schedule
affects the performance of SWA. We run experiments on
Preactivation ResNet-164 on CIFAR-100. For all sched-
ules we use the same initialization from a model trained
for 125 epochs using the conventional SGD training. As
a baseline we use a fully-trained model trained with con-
ventional SGD for 150 epochs.

We consider a range of constant and cyclical learning
rate schedules. For cyclical learning rates we fix the cy-
cle length to 5, and consider the pairs of base learning
rate parameters (α1, α2) ∈ {(10−1, 10−3), (5 · 10−2, 5 ·
10−4), (10−2, 10−4), (5 · 10−3, 5 · 10−5)}. Among the
constant learning rates we consider α1 ∈ {10−1, 5 ·
10−2, 10−2, 10−3}.
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Figure 6: Test error as a function of training epoch for
SWA with different learning rate schedules with a Preac-
tivation ResNet-164 on CIFAR-100.

We plot the test error of the SWA procedure for different
learning rate schedules as a function of the number of
training epochs in Figure 6.

We find that in general the more aggressive constant
learning rate schedule leads to faster convergence of
SWA. In our experiments we found that setting the learn-
ing rate to some intermediate value between the largest
and the smallest learning rate used in the annealing
scheme in conventional training usually gave us the best
results. The approach is however universal and can work
well with different learning rate schedules tailored for
particular tasks.

4.4 DNN TRAINING WITH A FIXED
LEARNING RATE
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Figure 7: Test error as a function of training epoch for
constant (green) and decaying (blue) learning rate sched-
ules for a Wide ResNet-28-10 on CIFAR-100. In red we
average the points along the trajectory of SGD with con-
stant learning rate starting at epoch 140.

In this section we show that it is possible to train DNNs
from scratch with a fixed learning rate using SWA. We
run SGD with a fixed learning rate of 0.05 on a Wide
ResNet-28-10 [Zagoruyko and Komodakis, 2016] for
300 epochs from a random initialization on CIFAR-100.

We then averaged the weights at the end of each epoch
from epoch 140 and until the end of training. The final
test accuracy of this SWA model was 81.7.

Figure 7 illustrates the test error as a function of the num-
ber of training epochs for SWA and conventional train-
ing. The accuracy of the individual models with weights
averaged by SWA stays at the level of ≈ 65% which is
16% less than the accuracy of the SWA model. These re-
sults correspond to our intuition presented in section 3.6
that SGD with a constant learning rate oscillates around
the optimum, but SWA converges.

While being able to train a DNN with a fixed learning
rate is a surprising property of SWA, for practical pur-
poses we recommend initializing SWA from a model pre-
trained with conventional training (possibly for a reduced
number of epochs), as it leads to faster and more stable
convergence than running SWA from scratch.

5 DISCUSSION

We have presented Stochastic Weight Averaging (SWA)
for training neural networks. SWA is extremely easy to
implement, architecture-agnostic, and improves general-
ization performance at virtually no additional cost over
conventional training.

There are so many exciting directions for future research.
SWA does not require each weight in its average to corre-
spond to a good solution, due to the geometry of weights
traversed by the algorithm. It therefore may be possible
to develop SWA for much faster convergence than stan-
dard SGD. One may also be able to combine SWA with
large batch sizes while preserving generalization perfor-
mance, since SWA discovers much broader optima than
conventional SGD training. Furthermore, a cyclic learn-
ing rate enables SWA to explore regions of high poste-
rior density over neural network weights. Such learning
rate schedules could be developed in conjunction with
stochastic MCMC approaches, to encourage exploration
while still providing high quality samples. One could
also develop SWA to average whole regions of good
solutions, using the high-accuracy curves discovered in
Garipov et al. [2018].

A better understanding of the loss surfaces for multilayer
networks will help continue to unlock the potential of
these rich models. We hope that SWA will inspire further
progress in this area.
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Abstract

One popular way for lifted inference in proba-
bilistic graphical models is to first merge sym-
metric states into a single cluster (orbit) and
then use these for downstream inference, via
variations of orbital MCMC [Niepert, 2012].
These orbits are represented compactly us-
ing permutations over variables, and variable-
value (VV) pairs, but they can miss several
state symmetries in a domain.

We define the notion of permutations over
block-value (BV) pairs, where a block is a set
of variables. BV strictly generalizes VV sym-
metries, and can compute many more sym-
metries for increasing block sizes. To opera-
tionalize use of BV permutations in lifted in-
ference, we describe 1) an algorithm to com-
pute BV permutations given a block parti-
tion of the variables, 2) BV-MCMC, an exten-
sion of orbital MCMC that can sample from
BV orbits, and 3) a heuristic to suggest good
block partitions. Our experiments show that
BV-MCMC can mix much faster compared to
vanilla MCMC and orbital MCMC.

1 INTRODUCTION

A lifted inference algorithm for probabilistic graphical
models (PGMs) performs inference on a smaller model,
which is constructed by merging together states (or vari-
ables) of the original model [Poole, 2003; de Salvo Braz
et al., 2005; Kimmig et al., 2015]. Two main kinds
of lifted inference algorithms exist: those where lifting
is tied to an existing inference procedure such as belief
propagation [Singla and Domingos, 2008; Kersting et al.,
2009], Gibbs sampling [Venugopal and Gogate, 2012],
weighted model counting [Gogate and Domingos, 2011],

variational inference [Bui et al., 2013] and linear pro-
gramming [Mladenov et al., 2012]; and those that merge
symmetric states/variables independent of the procedure
[Niepert, 2012; Van den Broeck and Niepert, 2015;
Anand et al., 2016].

One approach for generating symmetries is by comput-
ing isomorphism over a graphical representation of the
PGM. This merges symmetric states into a single cluster
(orbit), which is compactly represented as permutations
over a polynomial representation. Permutations over
variables [Niepert, 2012] and over variable-value (VV)
pairs [Anand et al., 2017] have been studied, with lat-
ter being a generalization of the former, capturing many
more state symmetries. While more general, VV permu-
tations clearly do not capture all possible state symme-
tries in a domain. For example, state s1 = (0, 0, 0, 0)
is symmetric to s2 = (0, 1, 1, 1) in Figure 1(b), but VV
permutations cannot represent it.

A natural question arises: are there more general repre-
sentations which can capture (a subset of) these larger set
of symmetries? We note that the problem of computing
all possible symmetries is intractable since there is an ex-
ponential number of permutations over an exponentially
large state space, each of which could be a symmetry
(or not). Nevertheless, we hope there are representations
which can capture additional symmetries compared to
current approaches in bounded polynomial time. More
so, it would be interesting to come up with a representa-
tion that enables computation of larger and larger sets of
symmetries, while paying additional costs, which could
be controlled as a function of a parameter of the repre-
sentation.

As a significant step toward this research question, we
develop the novel notion of symmetries defined over
block-value (BV) pairs. Here, a block is a set of vari-
ables, and its value is an assignment to these vari-
ables. Intuitively, BV pairs can capture all such VV
pairs that are not permuted independently, instead, are
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Figure 1: Block-Value Symmetries (a) BV Symmetries within a block (b) BV Symmetries across blocks

permuted in subsets together. For example, it can cap-
ture symmetry of states s1 and s2 via a BV permutation
which maps {(X1, 0), (X2, 0)} ↔ {(X3, 1), (X4, 1)}
and {(X1, 0), (X2, 1)} ↔ {(X3, 0), (X4, 0)}.
Clearly, symmetries defined over BV pairs are a strict
generalization of those over VV pairs, since each VV
pair is a BV pair with a block of size 1. Our blocks
can be of varying sizes and the size of each block essen-
tially controls the set of symmetries that can be captured;
larger the blocks, more the symmetries, coming at an ad-
ditional cost (exponential in the max size of a block).

In this paper, we formally develop the notion of symme-
tries as permutations defined over a subset of BV pairs.
Some of these permutations will be invalid (when blocks
overlap with each other) and their application may lead
to inconsistent state. In order to ensure valid permuta-
tions, we require that the blocks come from a disjoint
set of blocks, referred to as a block partition. Given a
block partition, we show how to compute the correspond-
ing set of symmetries by reducing the problem to one of
graph isomorphism. We also show that our BV symme-
tries can be thought of as VV symmetries, albeit over
a transformed graphical model, where the new variables
represent the blocks in the original graph.

Next, we show that jointly considering symmetries ob-
tained from different block partitions can result in cap-
turing symmetries not obtainable from any single one.
Since, there is an exponential number of such block par-
titions, we provide an efficient heuristic for obtaining a
promising partition of blocks, referred to as a candidate
set.

Use of BV symmetries in an MCMC framework requires
uniform sampling of a state from each orbit, i.e., a set of
symmetric states. This turns out to be a non-trivial task
when the orbits are defined over symmetries correspond-
ing to different block partitions. In response, we design
an aggregate Markov chain which samples from orbits
corresponding to each (individual) candidate set in turn.

We prove that our aggregate Markov chain converges to
the desired distribution. As a proof of the utility of our
BV symmetries, we show that their usage results in sig-
nificantly faster mixing times on two different domains.

The outline of this paper is as follows. We start with
some background on variable and VV symmetries in
Section 2. This is followed by the exposition of our
symmeteries defined over BV pairs (Section 3). Section
4 describes our algorithm for using BV symmetries in
MCMC. This is followed by our heuristic to compute
promising candidate sets in Section 5. We present our
experimental evaluation (Section 6) and conclude the pa-
per with directions for future work.

2 BACKGROUND

Let X = {X1, X2, . . . , Xn} denote a set of discrete val-
ued random variables. We will use the symbol xi to de-
note the value taken by the variable Xi. We will assume
that each of the variables comes from the same domain
D. A state s ∈ Dn is an assignment to all the variables
in the set X . Further, s(Xi) = xi gives the value of vari-
able Xi in state s. We will use S to denote the set of all
possible states.

A Graphical Model [Koller and Friedman, 2009] is a set
of pairs {(fj , wj)}mj=1 where fj is a feature function de-
fined over the variables in the set X and wj is its associ-
ated weight.

Definition 1. Action of θ on G results in a new graphical
model where the occurrence of Xi in each feature fj in
G is replaced by θ(Xi). Given a graphical model G, a
permutation θ of the variables in X is said to be a vari-
able symmetry of G if the action of θ on G results back
in G.

Given a state s ∈ S, the action of θ on s, denoted by
θ(s), results in a new state s′ such that ∀Xi, Xj ∈ X if
θ(Xi) = Xj and s(Xj) = xj then s′(Xi) = xj .
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The set of all variable symmetries forms a group called
the variable automorphic group of G and is denoted by
Θ. Θ partitions the states into equivalence classes or or-
bits which are as defined below.

Definition 2. Given a variable automorphic group Θ,
the orbit of a state s under the effect of Θ is defined as
ΓΘ(s) = {θ(s)|θ ∈ Θ}.

Intuitively, the orbit of a state s is set of all states reach-
able from s under the action of any permutation in the
automorphic group.

We note that variable symmetries are probability preserv-
ing transformations [Niepert, 2012]. Let P denote the
distribution defined by a graphical model G where P(s)
is the probability of a state s.

Theorem 1. If Θ is a variable automorphic group of G,
then ∀s ∈ S, ∀θ ∈ Θ, P(s) = P(θ(s)).

Anand et al. [2017] extend the notion of variable sym-
metries to those defined over variable value (VV) pairs.
Let (Xi, xi) denote a VV pair and let XV denote the set
of all possible such pairs. Let φ denote a permutation
over the set XV . Action of φ on state s, denoted by
φ(s), results in a state s′, such that ∀ Xi, Xj ∈ X , if
φ(Xi, s(Xi)) = (Xj , xj), then s′(Xj) = xj .

There are some VV permutations which when applied
to a state s may result in an inconsistent state. For in-
stance, let φ(X0, 0) = (X0, 0) , φ(X1, 1) = (X0, 1) and
s = (0, 1), then φ(s) results in an inconsistent state with
multiple values being assigned to X0. Therefore, the no-
tion of valid VV permutation needs to be defined which
when applied to any state s ∈ S always results in a con-
sistent state s′ [Anand et al., 2017].

Definition 3. A VV permutation φ over XV is said to
be a valid VV permutation if whenever there exists a
VV pair (Xi, xi) such that φ(Xi, xi) = (Xj , xj), then
for all the VV pairs of the form (Xi, x

′
i) where x′i ∈ Di,

φ(Xi, xi) = (Xj , x
′
j) where x′j ∈ Dj .

Definition 4. Action of φ on G results in a new graphical
model where the occurrence of (Xi, xi) in each feature
fj in G is replaced by φ(Xi, xi). We say that φ is a VV
symmetry of G, if action of φ on G results back in G.

Similar to variable symmetries, the set of all VV symme-
tries form a group called the VV automorphic group of G
and is denoted by Φ. Analogously, Φ partitions the states
into orbits defined as ΓΦ(s) = {φ(s)|∀φ ∈ Φ}.
In the following, we will often refer to the automorphic
groups Θ and Φ as symmetry groups of G. It can be
easily seen that VV symmetries subsume variable sym-
metries and like variable symmetries, they are also prob-
ability preserving transformations.

Theorem 2. If Φ is a VV automorphic group of G, then
∀s ∈ S, ∀φ ∈ Φ, P(s) = P(φ(s))

The orbits so obtained through variable (VV) symmetries
can then be exploited for faster mixing by Markov Chain
Monte Carlo (MCMC) based methods as described be-
low.

2.1 Orbital-MCMC

Markov Chain Monte Carlo (MCMC) methods [Koller
and Friedman, 2009] are one of the popular algorithms
for approximate inference in Probabilistic Graphical
Models. Starting with a random state, these methods set
up a Markov chain over the state space whose station-
ary distribution is same as the desired distribution. Con-
vergence is guaranteed in the limit of a large number of
samples coming from the Markov chain.

Orbital MCMC and VV-MCMC improve MCMC meth-
ods by exploiting Variable and VV symmetries, respec-
tively. Given a Markov chainM and a symmetry group
Φ, starting from a sample st, any subsequent sample is
obtained in 2 steps: a) An intermediate state s′ is ob-
tained according to M b) The next sample st+1 is ob-
tained by sampling a state uniformly from the orbit (Vari-
able or VV) of the intermediate state s′. Sampling a
state from the orbit of the intermediate state is done using
the Product Replacement Algorithm [Celler et al., 1995;
Pak, 2000]. This two step chain so obtained converges
to the true stationary distribution and has been shown to
have better mixing both theoretically [Niepert, 2012] and
empirically [Niepert, 2012; Anand et al., 2017]. The key
insight exploited by these algorithms is the fact that all
the states in any given orbit have the same probability.

3 BLOCK-VALUE SYMMETRIES

In this section, we will present symmetries defined over
blocks of variables, referred to as BV Symmetries which
strictly generalize the earlier notions of symmetries de-
fined over VV pairs. As a motivating example, Figure
1 shows two Graphical Models G1 and G2. For ease
of explanation these have been represented in terms of
potential tables. These can easily be converted to the
weighted feature representation, as defined previously.
In G1, state (1, 0) has the same joint probability as (1, 1)
and in G2, state (0, 0, 0, 0) has the same joint probability
as (0, 1, 1, 1). However, none of these can be captured
by Variable or VV symmetries. We start with some defi-
nitions.

Definition 5. Let B = {X1, X2, . . . , Xr} denote a set
of variables (Xi ∈ X ) which we will refer to as a block.
Similarly, let b = {x1, x2, . . . , xr} denote a set of (cor-
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responding) assignments to the variables in the block B.
Then, we refer to the pair (B, b) as a Block-Value (BV)
pair.

Definition 6. A BV pair (B, b) is said to be consistent
with a state s if ∀Xi ∈ B, s(Xi) = xi where xi is the
value for variable Xi in block B.

Let ∆r
V denote some subset of all possible BV pairs de-

fined over blocks of size less than equal to r. For ease
of notation, we will drop superscript r and denote ∆r

V

as ∆V where r is a pre-specified constant for maximum
block size. Then, we are interested in defining permu-
tations over the elements of the set ∆V . Considering
any set of block-value pairs in ∆V and allowing per-
mutation among them may lead to inconsistent states.
Consider a graphical model defined over four variables:
{X1, X2, X3, X4}. Let us consider all possible blocks
of size ≤ 2. Then, a BV permutation permuting the
singleton block {X1} to itself (with identity mapping
on values) while at the same time, permuting the block
{X1, X3} to the block {X2, X4} is clearly inconsistent
since X1’s value can not be determined uniquely. A nat-
ural way to avoid this inconsistency is to restrict each
variable to be a part of single block while applying per-
mutations. Therefore, we restrict our attention to sets of
blocks which are non overlapping.

Definition 7. Let ∆ = {B1, B2, . . . , BL} denote a set
of blocks. We define ∆ to be a partition if each variable
Xi ∈ X appears in exactly one block in ∆. For a parti-
tion ∆, we define the block value set ∆V as a set of BV
pairs where each block Bl ∈ ∆ is present with all of its
possible assignments.

We would now like to define permutations over the block
value set ∆V , which we refer to as BV-permutations.
To begin, we define the action of a BV-permutation ψ :
∆V → ∆V on a state s. The action of a BV-permutation
ψ : ∆V → ∆V on a state s results in a state s′ = ψ(s)
such that ∀(B, b) ∈ ∆V , (B, b) is consistent with s if
and only if ψ(B, b) is consistent with s′

However, similar to the case of VV symmetries,
any bijection from ∆V → ∆V may not always
result in a consistent state. For instance, con-
sider a graphical model with 4 variables. Let the
partition ∆ = {(X1, X2), (X3, X4)}. Consider
the state s = (0, 1, 1, 0). In case ψ is de-
fined as ψ({X1, X2}, {0, 1}) = ({X1, X2}, {1, 0}) and
ψ({X3, X4}, {1, 0}) = ({X1, X2}, {1, 1}), the action of
ψ results in an inconsistent state, since the action of ψ
would result in a state with X2 equal to both 0 and 1
simultaneously. To address this issue, we define a BV-
permutation to be valid only under certain conditions.

Definition 8. A BV-permutation ψ : ∆V → ∆V is said

to be valid if ∀(Bi, bi) ∈ ∆V , ψ(Bi, bi) = (Bj , bj) ⇒
∀b′i,∃b′j such that ψ(Bi, b

′
i) = (Bj , b

′
j)

Intuitively a BV-permutation ψ is valid if it maps all as-
signments of a block B to assignments of a fixed block
B′.

Presently, it is tempting to define a new graphical model
where each block is a multi valued variable, with do-
main of this variable describing all of the possible as-
signments. This would be useful in a lucid exposition of
symmetries. To do this we must suitably transform the
set of features as well to this new set of variables. Given
a block partition ∆, we transform the set of features fj
such that for each block either all the variables in this
block appear in the feature or none of them appear in
the feature, while keeping all features logically invariant.
We denote the set of all variables over which feature fj
is defined as V(fj). Further, for a block Bl and a feature
fj , let B̄l = Bl − V(fj) i.e B̄l contains the additional
variables in the block which are not part of feature fj .

Definition 9. Given a variable Xi, which appears in a
block Bl ∈ ∆ and a feature fj , a block consistent rep-
resentation of the feature, denoted by f ′j , is defined over
the variables V(fj) ∪ B̄l, such that, f ′j(xj , b̄l) = fj(xj)

where xj , b̄l denote an assignment to all the variables in
V(fj) and B̄l, respectively.

For instance consider the feature f = (X2). Let the
block Bl be {(X1, X2)}. Then the block consistent fea-
ture f ′ is given by f ′ = (X1 ∧X2) ∨ (¬X1 ∧X2).

We extend the idea of block consistent representation to
get a partition consistent representation f̂j .

Definition 10. A partition consistent representation of
a feature fj , f̂j is defined by iteratively converting the
feature fj to its block consistent representation for each
Xi ∈ V(fj).

The set of partition consistent features {(f̂j , wj)}mj=1 has
the property that for all Bl ∈ ∆, Bl ⊆ V ar(f̂j) or
Bl ∩ V ar(f̂j) = φ, i.e. all variables in each block either
appear completely, or do not appear at all in any given
feature. This property allows us to define a transformed
graphical model Ĝ over a set of multi valued variables Y ,
where each variable Yl ∈ Y represents a block Bl ∈ ∆.
The domain size of Yl is the number of possible assign-
ments of the variables in the blockBl. The set of features
in this new model is simply the set of transformed fea-
tures {(f̂j , wj)}mj=1. As the blocks are non overlapping,
such a transformation can always be carried out.

Since the transformation of features to partition con-
sistent features always preserves logical equivalence, it
seems natural to wonder about the relationship between
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the graphical models G and Ĝ. We first note that each
state s in G can be mapped to a unique state ŝ in Ĝ by
simply iterating over all the blocks Bl ∈ ∆, checking
which BV pair (Bl, bl) is consistent with the state s and
assigning the appropriate value yl to the corresponding
variable Yl. In a similar manner, each state ŝ ∈ Ĝ can be
mapped to a unique state in s ∈ G.

Theorem 3. Let s denote a state in G and let ŝ be the
corresponding state in Ĝ. Then, this correspondence is
probability preserving i.e., P(s) = P̂(ŝ) where P and P̂
are the distributions defined by G and Ĝ, respectively.

Similar to the mapping between states, every BV-
permutation ψ of G corresponds to an equivalent VV-
permutation φ̂ of Ĝ obtained by replacing each BV pair
in G by the corresponding VV pair in Ĝ (and vice-versa).
Since the distributions defined by the two graphical mod-
els are equivalent, we can define BV symmetries in G as
follows:

Definition 11. Under a given partition ∆, a BV-
permutation ψ of a graphical model G is a BV-
symmetry of G if the corresponding permutation φ̂ un-
der Ĝ is a VV-symmetry of Ĝ.

We can now state the following results for BV-
symmetries.

Theorem 4. BV-symmetries are probability preserving
transformations, i.e., for a BV-symmetry ψ, P(s) =
P(ψ(s)) for all states s ∈ S.

It is easy to that the set of all BV symmetries under a
given partition ∆ form a group Ψ. Similar to the VV
orbits, we define the BV orbit of a state s as ΓΨ(s) =
{ψ(s)|ψ ∈ Ψ}.
When the partition ∆ is such that each variable appears
in a block by itself, all the BV-symmetries are nothing
but VV-symmetries.

Theorem 5. Any VV-symmetry can be represented as a
BV-symmetry for an appropriate choice of ∆.

Computing BV Symmetries

Since BV symmetry on a graphical model G is defined in
terms of VV symmetry of a transformed graphical model
Ĝ, BV symmetry can be trivially computed by construct-
ing the transformed graphical model and then computing
VV symmetry on Ĝ as described by Anand et al. [2017].

4 AGGREGATE ORBITAL MARKOV
CHAINS

Given a block partition ∆, BV symmetry group Ψ of G
can be found by computing VV symmetry group Φ in the

auxiliary graphical model Ĝ. We further setup a Markov
chain BV-MCMC(α) over Ψ to exploit BV symmetries
where α ∈ [0, 1] is a parameter.

Definition 12. Given a graphical model G, a Markov
chainM and a BV symmetry group Ψ, one can define a
BV-MCMC(α) Markov chainM′ as follows: From the
current sample st
a) Sample a state s′ from original Markov chainM
b) i) With probability α, sample a state st+1 = ΓΨ(s′)
uniformly from BV orbit of s′ and return st+1 as next
sample.
ii) With probability 1− α, set state st+1 = s′ and return
it as the next sample

BV-MCMC(α) Markov chain is defined similar to VV-
MCMC except that it takes an orbital move only with
probability α instead of taking it always. For α = 1,
it is similar to VV-MCMC, and reduces to the original
Markov chainM for α = 0. When α = 1, sometimes, it
is observed that the gain due to symmetries is overshad-
owed by the computational overhead of the orbital step.
The parameter α captures a compromise between these
two contradictory effects.

Theorem 6. Given a Graphical Model G, if the original
Markov chainM is regular, then, BV-MCMC(α) Markov
chain M′, constructed as above, is regular and con-
verges to the unique stationary distribution of the origi-
nal Markov chainM.

It should be noted that two different block partitions may
capture different BV symmetries and hence may have
different BV symmetry groups. In order to fully utilize
all symmetries which may be present in multiple block
partitions, we propose the idea of Aggregate Orbital
Markov Chain.

Consider K different block partitions ∆1,∆2, . . . ,∆K .
We set up K independent BV-MCMC(α) Markov
chains, where each chain generates samples as per BV-
MCMC(α) corresponding to partition ∆k. Let these
chains beM′1,M′2, · · · ,M′K , and let the correspond-
ing automorphism groups be Ψ1,Ψ2, . . . ,ΨK . Given
an intermediate state s′, we would like to sample uni-
formly from the union of orbits

⋃
k Ψk(s′). Since these

orbits may overlap with each other, sampling a state uni-
formly from the union of orbits is unclear. We circum-
vent this problem by setting up a new Markov chain, Ag-
gregate Orbital Markov Chain. This Aggregate Or-
bital Markov Chain utilizes all available symmetries and
converges to the true stationary distribution.

Definition 13. GivenK different BV-MCMC(α) Markov
chains, M′1,M′2, · · · ,M′K , an Aggregate Orbital
Markov Chain M∗ can be constructed in the fol-
lowing way: Starting from state st a) Sample a
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BV-MCMC(α) Markov chain M′k uniformly from
M′1,M′2, · · · ,M′K b) Sample a state st+1 according
toM′k.

Theorem 7. The aggregate orbital Markov chain M∗
constructed from K BV-MCMC(α) Markov chains,
M′1,M′2, · · · ,M′K , all of which have stationary dis-
tribution π, is regular and converges to the same station-
ary distribution π.

Proof. Given each of BV-MCMC(α) Markov chains
M′k are regular, firstly, we prove that the aggregate
Markov chain is regular. In each step of aggregate chain,
one of the BV-MCMC(α) is applied and since, there is
non-zero probability of returning to the same state in BV-
MCMC(α) chain, there is non-zero probability of return-
ing to the same state inM∗ . Hence, aggregate chain so
defined is regular and therefore, it converges to a unique
stationary distribution. [Koller and Friedman, 2009].
The only fact that remains to be shown is that the station-
ary distribution of M∗ is π. Let T ∗(s → s′) represent
the transition probability of going from state s to s′ in
aggregate chainM∗. We need to show that

π(s′) =
∑

s∈S
π(s) ∗ T ∗(s→ s′) (1)

Let Tk(s → s′) represent the transition probability of
going from state s to s′ inM′k

∑

s∈S
π(s)∗T ∗(s→ s′) =

∑

s∈S
π(s)∗ 1

K
∗
K∑

k=1

Tk(s→ s′)

(2)

=
1

K

K∑

k=1

∑

s∈S
π(s)∗Tk(s→ s′) =

1

K

K∑

k=1

π(s′) = π(s′)

(3)
Equation 2 follows from the definition of aggregate chain
while equation 3 holds sinceM′k converges to stationary
distribution π.

Aggregate Markov chainM∗ so obtained not only con-
verges to the correct stationary distribution but also re-
sults in faster mixing since it can exploit the symmetries
associated with each of the individual orbital Markov
chains.

5 HEURISTICS FOR BLOCK
PARTITIONS

We have so far computed BV symmetries given a specific
block partition. We now discuss our heuristic that sug-
gests candidate block partitions for downstream symme-

try computation (see supplementary material for pseudo-
code). At a high level, our heuristic has the follow-
ing two desiderata. Firstly, it ensures that there are no
overlapping blocks, i.e., one variable is always in one
block. Secondly, it guesses which blocks might exhibit
BV-symmetries, and encourages such blocks in a parti-
tion.

The heuristic takes the hyperparameter r, the maximum
size of a block, as an input. It considers only those blocks
(upto size r) in which for each variable in the block, there
exists at least one other variable from the same block,
such that some clause in G contains both of them. This
prunes away blocks in which variables do not directly
interact with each other, and thus are unlikely to produce
symmetries. Note that these candidate blocks can have
overlapping variables and hence not all can be included
in a block partition.

For these candidate blocks, for each block-value pair,
the heuristic computes a weight signature. The weight
signature is computed by multiplying weights of all the
clauses that are made true by the specific block-value as-
signment. The heuristic then buckets all BV pairs of the
same size based on their weight signatures. The cardi-
nality of each bucket (i.e., the number of BV pairs of the
same size that have the same weight signature) is calcu-
lated and stored.

The heuristic samples a block partition as follows. At
each step it samples a bucket with probability propor-
tional to its cardinality and once a bucket is selected, then
it samples a block from that bucket uniformly at random,
as long as the sampled block doesn’t conflict with exist-
ing blocks in the current partition i.e., it has no variables
in common with them. This process is repeated until all
variables are included in the partition. In the degener-
ate case, if a variable can’t be sampled from any block
of size 2 or higher, then it gets sampled as an indepen-
dent block of size 1. Once a partition is fully sampled,
it is stored and the process is reset to generate another
random block partition.

This heuristic encourages sampling of blocks that are
part of a larger bucket in the hope that multiple blocks
from the same bucket will likely yield BV symmetries
in the downstream computation. At the same time, the
non-conflicting condition and existence of single vari-
able blocks jointly ensure that each sample is indeed a
bona fide block partition.

6 EXPERIMENTS

Our experiments attempt to answer two key research
questions. (1) Are there realistic domains where BV
symmetries exist but VV symmetries do not? (2) For
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Domain Rules Weights Variables

Job Search
∀ x TakesML(x) ∧ GetsJob(x)
∀ x ¬TakesML(x) ∧ GetsJob(x)
∀ (x,y) Connected(x,y) ∧ TakesML(x)⇒ TakesML(y)

+w1

+w2

w3

TakesML(x),
GetsJob(x),
Connected(x,y)

Student
Curriculum

∀ x Maths(x) ∧ CS(x)
∀ x Maths(x) ∧ ¬CS(x)
∀ x ¬Maths(x) ∧ CS(x)
∀ x ¬Maths(x) ∧ ¬CS(x)
∀ (x,y) ∈ Friends, Maths(x)⇒Maths(y)
∀ (x,y) ∈ Friends, CS(x)⇒ CS(y)

+w1

+w2

+w3

+w4

w
w

Maths(x)
CS(x)

Table 1: Description of the two domains used in experiments. A weight of the form +w1 indicates that the weight is
randomly sampled for each object.

such domains, how much faster can an MCMC chain mix
when using BV symmetries compared to when using VV
symmetries or not using any symmetries?

6.1 Domains

To answer the first question, we construct two domains.
The first domain models the effect of an academic course
on an individual’s employability, whereas the second do-
main models the choices a student makes in completing
their course credits. Both domains additionally model
the effect of one’s social network in these settings. Table
1 specifies the weighted first order formulas for both the
domains.

Job Search: In this domain, there are N people on a so-
cial network, looking for a job. Given the AI hype these
days, their employability is directly linked with whether
they have learned machine learning (ML) or not. Each
person x has an option of taking the ML course, which
is denoted by TakesML(x). Furthermore, the variable
Connected(x, y) denotes whether two people x and y
are connected in the social network or not. Finally, the
variable GetsJob(x) denotes whether x gets employ-
ment or not.

In this Markov Logic Network (MLN)[Domingos and
Lowd, 2009], each person x participates in three kinds of
formulas. The first one with weight w1 indicates the (un-
normalized) probability of the person getting a job and
taking the ML course (TakesML(x) ∧ GetsJob(x)).
The second formula with weight w2 indicates the chance
of the person getting a job while not taking the course
(¬TakesML(x) ∧ GetsJob(x)). Our domain assigns
different weights w1 and w2 for each person, modeling
the fact that each person may have a different capacity
to learn ML, and that other factors may also determine
whether they get a job or not. Finally, x is more likely
to take the course if their friends take the course. This
is modeled by an additional formula for each pair (x, y),
with a fixed weight w3.

In this domain, there are hardly any VV symmetries,
since every x will likely have different weights. How-
ever there are intra-block BV symmetries for the block
(TakesML(x), GetsJob(x)) for every x. This is be-
cause within the potential table of this block the block
values (0, 0) and (1, 0) are symmetric and can be per-
muted.

Student Curriculum: In this domain, there are N stu-
dents who need to register for two courses, one from
Mathematics and one from Computer Science to com-
plete their course credits. There are two courses (ba-
sic or advanced) on offer in both disciplines. Vari-
ables Math(x) and CS(x) denote whether the student x
would take the advanced course in each discipline. Since
courses for Mathematics and CS could be related, each
student needs to give a joint preference amongst the 4
available options. This is modeled as a potential table
over (Math(x), CS(x)) with weights chosen randomly
from a fixed set of parameters. Further, some students
may also be friends. Since students are more likely to
register in courses with their friends, we model this as
an additional formula, which increases the probability of
registering for a course in case a friend registers for the
same.

In this domain, VV pairs can only capture symmetries
when the potential tables (over Math and CS) for two
students are exactly the same. However, there are a lot
more inter-block BV symmetries since it is more likely
to find pairs of students, whose potential tables use the
same set of weights, but in a different order.

6.2 Comparison of MCMC Convergence

We now answer our second research question by com-
paring the convergence of three Markov chains – Vanilla-
MCMC, VV-MCMC, and BV-MCMC(α). All three use
Gibbs sampling as the base MCMC chain. All experi-
ments are done on Intel Core i7 machines. Following
previous work, and for fair comparison, we implement
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Figure 2: BV-MCMC(α = 1) and BV-MCMC(α = 0.02) outperforms VV-MCMC and Vanilla MCMC on Job Search
and Student Curriculum domains respectively with different size and evidence variations

all the three Markov chains in group theoretic package -
GAP [GAP, 2015]. This allows the use of off-the-shelf
group theoretic operations. The code for generating can-
didate lists is written in C++. We solve graph isomor-
phism problems using the Saucy software [Darga et al.,
2008]. We release our implementation for future use by
the community 1.

In all experiments, we keep the maximum block size in a
block partition to be two. For each chain we plot the KL
divergence of true marginals and computed marginals for
different runtimes. We estimate true marginals by run-
ning the Gibbs sampling algorithm for a sufficiently long
period of time. Each algorithm is run 20 times to com-
pute error bars indicating 95% confidence interval.

For VV-MCMC and BV-MCMC, the run time on x-axis
includes the pre-processing time of computing symme-
tries as well. For BV-MCMC, this includes the time for
generating candidate lists, running Saucy for each can-
didate list, and initializing the Product Replacement al-
gorithm for each candidate lists. The total preprocessing
time for Job Search domain is around 1.6 sec and for Stu-
dent Curriculum domain is around 0.6 sec.

Figures 2 shows that BV-MCMC substantially outper-
forms VV-MCMC and Vanilla-MCMC in both the do-
mains. The parameter α is set to 1.0 for Job Search Do-

1https://github.com/dair-iitd/bv-mcmc

main and 0.02 for Student Curriculum Domain. Since
these domains do not have many VV-Symmetries, VV-
MCMC only marginally outperforms Vanilla MCMC.
On the other hand BV-MCMC is able to exploit a con-
siderably larger number of symmetries and leads to faster
mixing. BV-MCMC scales well with domain size, signif-
icantly outperforming other algorithms as domain size is
changed from 30 to 50 people in Job Search and 600 to
1200 in Student Curriculum domain. This is particularly
due to more symmetries being captured by BV-MCMC
for larger domain sizes. 2

Figure 2(c) and 2(f) plot the variation with introduction
of 10% evidence in each domain. BV MCMC still out-
performs VV-MCMC and Vanilla-MCMC and is robust
to presence of evidence.

Finally, we also test the sensitivity of BV-MCMC with
the α parameter. Figure 3 plots this variation on both
these domains. We find that for Job Search, a high value
α = 1 performs the best, whereas a lower value is bet-
ter in Student Curriculum. This is because Job Search
mostly has intra-block BV symmetries, which can be
computed and applied efficiently. This makes sampling
an orbital step rather efficient. On the other hand, for Stu-
dent Curriculum, the inter-block symmetry between dif-
ferent pairs of people makes the orbital step costlier, and
reducing the fraction of times an orbital move is taken

2Most of the error-bars are negligible in size.
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Figure 3: Variation on α α < 1 is significantly better than α = 1 in Student-Curriculum domain while α = 1 is best
in Job-Search domains

improves the overall performance.

7 CONCLUSIONS

Permutations defined over variables or variable-value
(VV) pairs miss a significant fraction of state symme-
tries. We define permutations over block-value (BV)
pairs, which enable a subset of variables (block) and their
assignment to jointly permute to another subset. This
representation is exponential in the size of the maximum
block r, but captures more and more state symmetries
with increasing r.

Novel challenges arise when building the framework and
algorithms for BV permutations. First, we recognize that
all BV permutations do not lead to valid state symme-
tries. For soundness, we impose a sufficient condition
that each BV permutation must be defined on blocks with
non-overlapping variables. Second, to compute BV sym-
metries, we describe a graph-isomorphism based solu-
tion. But, this solution expects a block partition as an
input, and we cannot run it over all possible block par-
titions as they are exponential in number. In response,
we provide a heuristic that outputs candidate block parti-
tions, which will likely lead to BV symmetries. Finally,
since the orbits from different block partitions may have
overlapping variables, they cannot be explicitly com-
posed in compact form. This makes it difficult to uni-
formly sample from the aggregate orbit (aggregated over
all block partitions). To solve this challenge, we modify
the Orbital MCMC algorithm so that in the orbital step,
it uniformly samples from the orbit from any one of the
block partitions (BV-MCMC). We prove that this aggre-
gate Markov chain also converges to the true posterior.

Our experiments show that there exist domains in which
BV symmetries exist but VV symmetries may not. We
find that BV-MCMC mixes much more rapidly than base

MCMC or VV-MCMC, due to the additional mixing
from orbital BV moves. Overall, our work provides a
unified representation for existing research on permuta-
tion groups for state symmetries. In the future, we wish
to extend this notion to approximate symmetries, so that
they can be helpful in many more realistic domains as
done in earlier works [Habeeb et al., 2017].
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Abstract

We propose a new way to answer probabilis-
tic queries that span multiple datapoints. We
formalize reasoning about the similarity of dif-
ferent datapoints as the evaluation of the Bayes
Factor within a hierarchical deep generative
model that enforces a separation between the
latent variables used for representation learning
and those used for reasoning. Under this model,
we derive an intuitive estimator for the Bayes
Factor that represents similarity as the amount
of overlap in representation space shared by dif-
ferent points. The estimator we derive relies on
a query-conditional latent reasoning network,
that parameterizes a distribution over the latent
space of the deep generative model. The latent
reasoning network is trained to amortize the
posterior-predictive distribution under a hierar-
chical model using supervised data and a max-
margin learning algorithm. We explore how the
model may be used to focus the data variations
captured in the latent space of the deep genera-
tive model and how this may be used to build
new algorithms for few-shot learning.

1 INTRODUCTION

How do we frame the problem of selecting, from a tar-
get set, an object most similar to a given query set? For
example—given a red chair, a blue chair and a black chair,
we would rank chairs in the target set highly. At the same
time, given a red chair, a red car and a red shirt, we would
rank red objects highly. Between the two tasks, our under-
standing of the data has not changed; what has changed is
our understanding of the task based on the context given
by the query. The query highlights the relevant property
of the data that is needed for solving a specific task. Such

Latent Space

Query

Target

Reasoning in Latent Space

Figure 1: Comparing objects in representational space: On
the left is a target set that will be ranked based on similarity to
the query Q (right). The colour of each object is matched to a
distribution in representation space. In orange is the output of the
latent reasoning network – it represents the common factor of
variation shared byQ. The black chair should rank higher than
the black table; here its distribution (in representation space)
overlaps more with the output of the latent reasoning network.

tasks appear in few-shot learning, where the goal is rank-
ing objects according to their similarity to a given query
set and in healthcare where a task may be finding similar
patients to a given cohort.

To answer such queries, we could train discriminative
models attuned to answering set-conditional queries at
test time (e.g. Vinyals et al. (2016)). Or we could en-
code class separability in the structure of a generative
model (Edwards & Storkey, 2017) and use inference for
prediction. We take a different approach to the problem.

We learn a generic representation space (using unsuper-
vised data) that is warped (using supervised data) for po-
tentially different test-time problems. The task of scoring
objects given a query is decomposed into two subtasks.
The first determines the common property shared by items
in the query set and represents the property as a region
in representation space. In Figure 1, we visualize such
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a hypothetical space. On the right is a query comprising
chairs of different colors and (in orange) a region of space
that characterizes the property (in this case, a likeness to
a chair) common to items in the query. The second task
is to score a target item based on how much it expresses
the region of representation space shared by items in the
query. For the two candidate target points in Figure 1
(left), the black chair would rank rank highly since its
representation has more in common with the property
encapsulated by the query.

Here, we will use the latent space of deep generative mod-
els (Rezende et al. , 2014; Kingma & Welling, 2014) as
our representation space. In such models, one can do
posterior inference to map from raw data to a distribution
in latent space. Then, to find commonalities among query
items, we introduce a latent reasoning network (LRN).
The LRN takes a query as input and constructs a proba-
bility distribution over the latent space that summarizes
the representations of the query points into a single dis-
tribution. Figure 1 (orange) depicts what the output of
the LRN might look like. We design a neural architecture
for the LRN based on Zaheer et al. (2017) so that it does
not dependent on the size of the query set. To score the
latent space of a target item, we propose using the log-
arithm of the Bayes Factor (Jeffreys, 1998). The Bayes
Factor measures how conditioning on the query alters the
likelihood of a target point. Our approach is inspired by
Bayesian Sets Ghahramani & Heller (2005) where data
was assumed to be modeled by a hierarchical exponential
family distribution and the likelihood ratio of the joint
distribution and product of marginals was shown to be a
useful measure of similarity.

The latent (representation) space of a deep generative
models learned with unsupervised data is typically non-
identifiable. i.e. there will exist multiple good (from the
perspective of log-likelihood) representation spaces. Each
corresponds to a different notion of similarity and a dif-
ferent way of grouping points. However, queries provide
extra information: they reveal which points should be
close together in latent space. We take advantage of this
and propose a supervised max-margin learning algorithm
for the LRN such that scores given to items in the query
are larger than scores unrelated to the query.

We obtain a coupled set of models: in which one model
is a deep generative model of the data whilst the other
reshapes the latent space of the first and serves to answer
queries about similarity judgements between datapoints.
We study how the proposed approach can tune the latent
space of deep generative models and be used to build
new types of models for few-shot learning. We begin in
Section 2 by motivating the Bayes Factor as a viable tool
for computing similarity.

xt x1 x2

zt z1 z2

w

(a)

xt

zt

wt

x1 x2

z1 z2

wQ

(b)

Figure 2: Hypothesis testing with Deep Generative Models:
(a) The Reasoning Model, here, depicting the hypothesis that
the set {xt,Q = {x1, x2}} was generated jointly; (b) the two
figures represent the hypothesis that xt andQ were generated
independently under different realizations of w (the random
variable that captures the property shared across datapoints).

2 FROM REPRESENTATION
LEARNING TO REASONING

Here, we consider the problem of scoring elements in
a set based on how similar they are to a given query.
Suppose we are given a datasetD = {x1, . . . , xN}, xi ∈
Rn, xi ∈ D. Then for a queryQ = {x1, . . . , xQ}; |Q| =
Q, we wish to assign to each xt ∈ D a score(xt,Q) that
denotes how similar xt is to elements of the query Q.

2.1 The Data Model

A simple way to quantify how similar objects are (here,
betweenQ and xt) might be to take the pairwise Euclidian
distance between them. For complex, high dimensional
data that do not lie on a Euclidian manifold, such a metric
may fail to capture interesting regularity between data.

Alternatively, we can use a latent variable model to con-
struct a representation of data. The latent variable then
becomes a low-dimensional sufficient statistic the raw
data when quantifying similarity. The simplest latent
variable model we will consider has the following gener-
ative process: z ∼ pdm(z); x ∼ pdm(x; f(z; θ)) where
pdm(z) is a simple distribution such as N (0, I). The use
of MLPs in the conditional distributions allow the model
to fit highly complex data despite the use of a simple
prior. When f is parameterized by a Multi-Layer Per-
ceptron (MLP), the resulting model is a deep generative
model. We will refer to this model (Kingma & Welling,
2014; Rezende et al. , 2014) as the Data Model (with
probabilities denoted with subscript dm).

The generative process assumes datapoints are drawn
independently. Using variational inference with an infer-
ence network (Hinton et al. , 1995) to approximate the
posterior distribution, prm(z|x), the model can be learned
by maximizing a lower bound on the log-likelihood of the
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data obtained using Jensen’s inequality:

log pdm(x; θ) ≥ E
qdm(z|x;φ)

[log pdm(x|z; θ))] (1)

−KL( qdm(z|x;φ)||pdm(z) ) = L(x; θ, φ),

With a Gaussian distribution as the variational ap-
proximation: qdm(z|x;φ) ∼ N (µφ(x),Σφ(x)) where
µφ(x),Σφ(x) are (diferentiable, parameteric, with param-
eters φ) functions of the observation x. Eq. 1 is differen-
tiable in θ, φ (Kingma & Welling, 2014; Rezende et al. ,
2014) and the model parameters (θ, φ) can be learned via
gradient ascent on L(x; θ, φ).

With the variational approximation, qdm(z|x;φ), to map
from data to latent space, would computing overlap in
the posterior distributions of points in Q and xt suffice to
identify similar points? The answer is sometimes. While
unsupervised learning will tend to put similar points to-
gether, the notion of similarity encoded in the latent space
need not correspond to the notion of similarity required
for a task at test time. We require a way to guide the
structure of the latent space to be better suited for a task.

2.2 The Reasoning Model

Introducing hierarchy into the generative process is one
way to guide the structure of latent variables. In Fig-
ure 2 (b) is a simple hierarchical model that makes
explicit the insight that similar datapoints should have
similar latent spaces. It defines the following genera-
tive process for a set of similar objects Q: prm(Q) =∫
w

∫
z
prm(w)

∏Q
q=1 prm(zq|w)prm(xq|zq). The random

variable w defines the context of Q. It may denote the
label or class identity of points in Q but more broadly is
a representation of the properties that points in Q satisfy.
For notational convenience and because we can express
reasoning about similarity as a probabilistic query in this
model, we refer to it as the Reasoning Model.

The Neural Statistician (Edwards & Storkey, 2017) uses
KL(p(w|xt)||p(w|Q)) to quantify the similarity between
xt and Q in a model similar to the one in Figure 2 (b). In
this work, we pose the estimation of similarity between
objects as hypothesis testing in a hierarchical deep gener-
ative model. The conditional independences in Figure 2
(b) enforce that xt is independent of w given zt, i.e. the
per-data-point latent variables serve as a sufficient statis-
tic to quantify comparisons between multiple datapoints.
The conditional density p(xt|zt) is a map from the rep-
resentation space to the data while p(zt|w) dictates how
the latent space of a datapoint behaves as a function of
property encoded in w.

2.3 Bayes Factor

To score the similarity between two objects (in this case
xt and set Q) under the Reasoning Model, we turn to
the likelihood ratio between the joint distribution of xt
and Q and the product of their marginals. If xt and Q
are drawn from the same joint distribution, then there
exists a random variable w that governs the distribution
of the latent spaces zt, z1, . . . , zQ. With slight abuse
of notation 1, Figure 2 (a) depicts this scenario when
Q = {x1, x2}. If xt and Q are not similar, then their
latent spaces will have different distributions, and they
are children of different realizations of w (see Figure 2
(b)). With that in mind, the score function we use to
measure similarity is given by (Bayes Factor):

p(xt,Q)

p(xt)p(Q)
=
p(xt|Q)

p(xt)
= score(xt,Q) (2)

The log-score is the pointwise mutual information (Fano,
1949), a measure of association that is frequently used in
applications such as natural language processing (Church
& Hanks, 1990). The Bayes Factor normalizes the pos-
terior predictive density of the target point conditioned
on the query by the target’s marginal likelihood under the
model. It also has an information theoretic interpretation.
Letting h(x) = − log p(x) denote the self-information
(or surprisal), then log score(xt,Q) = h(xt) − h(xt|Q)
intuitively denotes the surprise (quantified in nats or bits)
from observing xt when having already observed Q.

Similarity in Latent Space: Equation 2 captures an
intuitive notion of similarity but evaluating p(xt), the
marginal density of the target, is typically intractable
(except in hierarchical models that lie in the exponential
family (Ghahramani & Heller, 2005)). Furthermore, an
importance sampling based Monte-Carlo estimator for
p(xt) will involve a high-dimensional integral in the data
xt. We therefore propose the following decomposition of
the score function that evaluates the Bayes Factor in the
target datapoint’s (lower dimensional) latent space:

prm(xt|Q)

prm(xt)
=

1

prm(xt)

∫

zt

prm(xt, zt|Q) (3)

=
1

prm(xt)

∫

zt

prm(xt|zt)prm(zt|Q)

=
1

prm(xt)

∫

zt

prm(zt|xt)prm(xt)

prm(zt)
prm(zt|Q)

=

∫

zt

prm(zt|xt)
prm(zt)︸ ︷︷ ︸

Relative Posterior Likelihood

prm(zt|Q)︸ ︷︷ ︸
Latent Reasoning Network

.

1We re-use Figure 2 to denote both the instantiation of a
hypothesis and the generative process
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The estimator above formalizes the intuition for compar-
ing points laid out in Section 1. The query-conditional
posterior-predictive density over the latent space of the
target datapoint, prm(zt|Q), reasons about points in the
query and represents them as a density in latent space, The
Relative Posterior Likelihood, prm(zt|xt)

prm(zt)
scores how

likely the target point is to have come from the relevant
part of latent space.

3 HIERARCHICAL MODELS WITH
COMPOUND PRIORS

To compute the ratio prm(zt|xt)
prm(zt)

, we need to marginalizewt.
However, under certain assumptions about the conditional
distributions in the Reasoning Model, we will see that
approximating this ratio becomes simpler.
Assumption 1. Priors with Compound Distributions

∫

w

prm(w)prm(z|w)dw = pdm(z)

Assumption 2. Matching conditional likelihoods

prm(x|z) = pdm(x|z)

Lemma 1. Matching posterior marginals

pdm(z|x) = prm(z|x)

Proof. Follows from Bayes rule and Assumption 1, 2.

Lemma 2. Matching marginal likelihoods

Under Assumption 1 and 2:

pdm(x) = prm(x)

Proof.

prm(x) =

∫

w

∫

z

prm(w)prm(z|w)prm(x|z)]dzdw

=

∫

z

pdm(z)pdm(x|z)dz = pdm(x)

The conditions above state when we can take an instance
of the Data Model discussed in Section 2.1 and transform
it into an instance of the Reasoning Model in Section 2.2
while preserving the marginal likelihood of the data.

This transformation has a few implications. The first is
when evaluating the Bayes Factor; if we work in a class
of Reasoning Models that satisfy Assumption 1, then
we can evaluate the Relative Posterior Likelihood using

the prior and posterior distribution of the associated Data
Model. With Lemma 1 and Assumption 1:

prm(xt|Q)

prm(xt)
=

∫

zt

pdm(zt|xt)
pdm(zt)︸ ︷︷ ︸

Relative Posterior Likelihood

prm(zt|Q)︸ ︷︷ ︸
Latent Reasoning Network

where pdm(zt) is typically fixed ahead of time (e.g.
N (0; I)) and we can do inference for pdm(zt|xt) (or ap-
proximate it using the inference network qdm(z|x;φ)).

The second implication is that part of the Reasoning
Model, prm(x|z), can be learned ahead of time. This
gives us the flexibility to warm-start the Reasoning
Model using a pre-trained Data Model whose pdm(z)
can be expressed according to Assumption 1. In this way,
even if we do not know which property will be used to or-
ganize datapoints into sets at test time, we can still learn a
generic low-dimensional representation of the dataset. We
will make use of this when we discuss the learning frame-
work in Section 5. For now, what remains is how we can
specify prm(w), prm(z|w) in order to evaluate prm(zt|Q).

4 LATENT REASONING NETWORKS

Although prm(zt|Q) =
∫
w
prm(zt|w), prm(w|Q)dw, find-

ing prm(w), prm(z|w) that satisfy Assumption 1 may
prove challenging and so we will make use of another
computational trick. To evaluate the Bayes Factor we only
need a way to sample from prm(zt|Q) i.e. the posterior
predictive distribution given the query, of the target’s la-
tent representation. Our strategy therefore, will instead be
to parameterize and learn prm(zt|Q) directly from data.

Without prm(w), prm(z|w), we lose the ability to sample
from the Reasoning Model but by amortizing prm(zt|Q)
we obtain a fast way to evaluate the Bayes Factor at test
time. prm(zt|Q) must reason about how the latent spaces
of points in Q are related and parameterize a distribu-
tion over the latent space of the target datapoint xt; this
distribution must characterize the property represented
by points in Q. Therefore, we refer to this amortizated,
parameteric posterior-predictive distribution as a Latent
Reasoning Network. Since we do not know the functional
form of this distribution we will parameterize it as a non-
linear function of the query Q.

To construct the LRN, we require neural architectures
capable of operating over sets. We make use of two prim-
itives for such neural architectures proposed by Zaheer
et al. (2017). These functions operate over sets of vectors
Q = {x1, . . . , xQ}, xq ∈ Rn. We will use the notation
Rn×|Q| to denote a set of size |Q| where each element is
an n-dimensional vector. We design the LRN, with the
following three properties:
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log

1

|S|
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p(zs)
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(b) Loss function

Figure 3: Latent Reasoning Networks (LRN) and Loss function: On the left is a diagrammatic representation of prm(zt|Q).
On the right is a depiction of Monte-Carlo sampling (with samples from the LRN) to evaluate Bayes factor. xi is a point similar to
those in the queryQ = {x1, x2, x3}, while xns is not. We suppress subscripts in the figure.

A] Parameter Sharing: We share parameters between
the inference network of the Data Model and the LRN.
A direct consequence of this choice is that the LRN now
has the ability to change the way inference is done in the
Data model. The first stage of the LRN uses the inference
network of the Data Model to map from the set Q to a set
of each point’s variational parameters

B] Exchangeability: The output of the LRN must not
depend on the order of elements in Q. We achieve this
by using the functions proposed by (Zaheer et al. , 2017):
g : Rn×|Q| → Rm×|Q| is a permutation equivariant
function that maps from sets of n dimensional vectors
to sets of m dimensional vectors while ensuring that if
the input elements were permuted, then the output ele-
ments would also be permuted identically. The form of g

is given by g(Q) =
[
ρ
(
W eq

1 xq +W eq
2 (
∑
q′ xq′)

)]|Q|
q=1

where W eq
1 ∈ Rm×n, W eq

2 ∈ Rm×n and ρ is an element-
wise nonlinearity. We use compositions of the function
g in the second stage of the LRN to learn about how the
variational parameters between points in Q relate to one-
another and map to a set of intermediate representations.

C] Distributions in latent space: The network must
parameterize a valid density in latent space; this is sat-
isfied by construction. To go from the set of interme-
diate representations to the parameters of p(zt|Q), we
leverage the following permutation invariant function:
f(Q) = ρ

(∑
q(W

invxq + b)
)

, f : Rn×|Q| → Rm

where W inv ∈ Rm×n, b ∈ Rm are linear operators and ρ
is an elementwise non-linearity.

With µ(Q; γ, φ),Σ(Q; γ, φ) as parameteric func-
tions of set Q, we can write prm(zt|Q; γ, φ) =
N (µ(Q; γ, φ),Σ(Q; γ, φ)). γ denotes the parameters of
the permutation equivariant and invariant layers while
φ represent the parameters shared with qdm(z|x;φ). We
visualize the LRN in Figure 3a.

5 LEARNING

The learning procedure we use is based on a combination
of doing unsupervised learning to learn a good represen-
tation alongside a supervised max-margin loss to ground
the representation for a specific task. We discuss each
separately and then highlight how they are combined.

Unsupervised Learning: Since we use Reasoning
Models that satisfy Assumption 1, 2, we make use of
the transformation between the Data Model and Reason-
ing Model in Section 3. We maximize the likelihood of
a given dataset using the lower-bound in Equation 1. A
consequence of doing variational learning of the Data
Model is that we can use qdm(z|x;φ) to approximate the
Bayes Factor.

Max-Margin Learning: We expect that the Bayes Fac-
tor in Equation 3 takes a high value when the target point
xt is similar toQ and a low value when xt is dissimilar to
Q. But how do we know what points form Q? This will
depend on the test-time task. We assume we are given
labels that define the property encompassed in sets of
datapoints.
Assumption 3. For L datapoints in D, we have Y =
{yx1

, . . . , yxL}, yl ∈ {1, . . . ,K} where yxi is the label
for xi that takes one ofK unique labels. We define NQxi =
{xk s.t. yxk ∈ Y & yxk = yxi}, N 6Qxi = {xk s.t. yxk ∈
Y & yxk 6= yxi} to be sets of datapoints that have the
same label as xi and those that do not.

We will assume that a point can only have a single label.
Here, the labels characterize the property we want to base
our similarity judgements on. Therefore, learn the param-
eters of p(zt|Q; γ, φ) using the following (supervised)
loss function:

Lmm(x; γ, φ) = EQ∼NQ
x
EQns∼N 6Q

x

1

|Qns|
∑

xns∈Qns
max(log score(xns,Q)

− log score(x,Q) + ∆, 0). (4)
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The loss function maximizes the difference between the
log-Bayes Factor for points that lie within the set Q and
those that do not (they lie in Qns). The log score(x,Q),
in Equation 3, is evaluated via Monte-Carlo sampling
and the log-sum-exp trick. The expectation is differen-
tiable with respect to γ, φ via the reparameterization trick
(Kingma & Welling, 2014; Rezende et al. , 2014). For the
margin ∆ we use the mean-squared-error between the the
posterior means of x, xns. We provide a visual depiction
of how the loss is evaluated using the LRN in Figure 3.

Combined Loss: With the unsupervised learning objec-
tive for the Data Model and the supervised max-margin
loss function (Equation 4) for the LRN, we obtain the
following loss to jointly learn θ, φ, γ:

min
θ.φ.γ

1

N

N∑

i=1

1

C + 1
[−L(xi; θ, φ)] + (5)

C

C + 1
I[xi ∈ Y]Lmm(xi; γ, φ)

where C is a regularization constant that trades off be-
tween the supervised and the unsupervised loss. The un-
supervised loss learns a representation space constrained
to lie close to the prior while explaining the data under the
generative model. The max-margin loss modifies this rep-
resentation space so that dissimilar points are kept apart.
Note that Equation 5 is no longer a valid bound on the
marginal likelihood of the training set (for C > 0).

6 EVALUATION

The goal of this section is threefold: (1) to study whether
prm(z|Q)is learnable from data using the max-margin
learning objective–we expect this to be challenging since
we learn the parameters of a model that is itself used to
evaluate the the score function in the loss; (2) studying
the role of parameter sharing between the inference net-
work and the LRN – i.e. whether the latter can change
the former in adversarial scenarios; and (3) studying the
utility of the framework for few-shot learning.

We will release code in Keras (Chollet et al. , 2015).
The supplementary material contains detailed informa-
tion on the neural architectures of the deep generative
models used in the evaluation. We learn parameters with
a learning rate of 0.00005 and adaptive momentum up-
dates given by ADAM (Kingma & Ba, 2015). We set the
value C separately for each experiment. When there is a
task to be solved, C can be set using the validation data.
When using a pre-trained Data Model, we found it useful
to anneal C from a higher to a lower value so that the
task-specific supervised term can overcome (potentially)

suboptimal latent spaces learned from unsupervised data.
We use the following datasets for our study:

Synthetic Pinwheel: A synthetic dataset of two-
dimensional points arranged on a pinwheel taken from
the work of Johnson et al. (2016). We depict the raw data
in Figure 4a. The dataset is created with five labels.

MNIST digits: 50000 black and white images of hand-
written digits (LeCun et al. , 1998).

MiniImagenet: A subsampled set of images taken from
the Imagenet repository setup for the task of k-shot learn-
ing by Vinyals et al. (2016). We use the train-validate-test
split kindly provided by Ravi & Larochelle (2016).

6.1 Learning p(z|Q)

As a sanity check, we begin by first training a deep gener-
ative model (without labels and using a one-dimensional
latent space) on the Pinwheel dataset. We visualize the
raw-data and learned aggregate posterior

∑
x qdm(z|x;φ)

in Figure 4a (top row). We see that the unsupervised
learning alone induces class separation in the aggregate
posterior distribution. Using the learned model, we hold
fixed parameters: θ, φ and learn the parameters γ of the
LRN using the loss function in 4 with C = 2000. We
form a kernel density estimate of samples from prm(z|Q)
using randomly constructed sets of points derived from
the red and green clusters. In Figure 4a (bottom row), we
see that samples from the LRN correspond to regions of
the latent space associated with Q. On synthetic exam-
ples, the LRN finds regions of latent space corresponding
to points from a query Q.

6.2 Changing inductive biases at test-time

Previously, we worked with a model where the structure
of the latent space (as seen in the aggregate posterior dis-
tribution) formed during unsupervised learning co-incided
with how points were grouped into sets. Here, we study
what happens where the notion of which points are similar
changes at test time. We relabel the pinwheel dataset so
that the yellow and orange points form one class while
the green, red and blue form the other (see Figure 4b, top
left). This corresponds to an adversarial labelling of the
data since we use a deep generative model in which points
in the same class are far apart in the learned latent space.
If we keep θ, φ fixed then prm(z|Q) (whose output is pa-
rameterized as a unimodal Gaussian distribution) cannot
capture the relevant subspace.

We have two choices here; we can either consider richer
parameterizations for prm(z|Q) that are capable of captur-
ing multi-modal structure in the latent space using tech-
niques proposed by (Rezende & Mohamed, 2015), or we
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Figure 4: Qualitative Evaluation on Pinwheel Data

can instead allow the prm(z|Q) to change the underlying
latent space of the generative model by back-propagating
through the parameters of the inference network. Here,
we opt for the latter though the former is an avenue for
future work.

We minimize Equation 5 while annealing the constant C
from 1000 → 1 linearly through the course of training.
To gain insight into the learning dynamics of the LRN dur-
ing training, we visualize the aggregate posterior of the
generative model (via the fine-tuned inference network)
in Figure 4b through the course of training. The role
of this adversarial scenario is to highlight two important
points (1) unsupervised learning is typically unidentifi-
able and may not learn a representation appropriate to all
tasks and (2) learning with the latent reasoning network
can overcome a suboptimal (relative to the task at hand)
representation and transform it to a more suitable one.

6.3 Modeling High Dimensional Data

Inducing diversity in latent space: Moving beyond low-
dimensional data, we study learning LRNs on MNIST
digits. We use a Data Model with a two-dimensional la-
tent space for this experiment. We begin by training the
model in a fully unsupervised manner and visualize the
learned latent space in the form of the aggregate posterior
(Figure 5a [left]). Although there is some class separa-
bility, we find that the unsupervised learning algorithm
concentrates much of the probability mass together.

We re-learn the same model with the loss in Equation 5
where C is set to 3000 (and annealed to 1). We again
visualize the new aggregate posterior distribution of the
Data Model in Figure 5a (middle and right). When learn-
ing with Equation 5, the inference network uses more of
the latent space in the model because the max-margin loss
pushes points in different classes further apart.

Qualitative Analysis of MNIST digits: To validate our
method, we provide visualizations on the MNIST dataset.
We select a handful of labelled examples Q (Figure 5b,
left) and visualize both their posterior means and samples
from p(z|Q) (Figure 5b, middle). Then, for each sample
from prm(z|Q), we evaluate the fine-tuned pdm(x|z) and
visualize the images in Figure 5b (right). We see that the
generative model fine-tuned with the learning algorithm
retains its ability to generate meaningful samples.

6.4 Few-shot learning with the Bayes Factor

The task of k-shot learning is to identify the class an
object came from given a single example from 5 other
classes (1-shot, 5-way). In the 5-shot, 5-way task. there
are 5 examples provided from each of the 5 potential
classes. We use an LRN with a deep-discriminative model
to obtain near state of the art performance in few-shot
learning on the MiniImagenet dataset.

Following (Bauer et al. , 2017), who show that discrimi-
native models alone form powerful baselines for this task
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Figure 5: Qualitative Evaluation on MNIST

on this dataset, we pretrain an 18 layer Resnet (He et al. ,
2016) convolutional neural network to predict class labels
at training time. We use early stopping on a validation set
based on the nearest neighbor performance of the learned
embeddings (obtained from the final layer of the ResNet)
to identify the best model. Building a good generative
model of the images in MiniImagenet is difficult and so in-
stead, we use the fixed embeddings as a 256 dimensional
proxy for each image. We initialize qdm(z|x;φ) with the
pretrained Resnet and set up a deep generative model to
maximize the likelihood of the fixed embeddings (after
discriminative pre-training).

For this task, when comparing to the many different ap-
proaches proposed, it is challenging to control for both
the depth of the encoder that parameterizes the represen-
tation and the various algorithmic approach used to tackle
the problem using the representation. Therefore, our two
take-aways from Table 1 are: (1) on the 1 shot and 5 shot
task, we outperform a strong nearest neighbors baseline
created using fixed (but learned) embeddings suggesting
that our algorithmic approach bears promise for this task
and (2) the method is competitive with other state of the
art approaches.

Table 1: Accuracy on the 5-way MiniImagenet task

MODEL 1-SHOT 5-SHOT

NEAREST NEIGHBOR 51.4± 0.08 67.5± 0.08
OURS [RESNET18 ENCODER] 53.5± 0.08 68.8± 0.08
MATCHING NETWORKS 46.6 60.0
(VINYALS et al. , 2016)
MAML 48.7 63.1
(FINN et al. , 2017)
PROTOTYPICAL NETS 49.4 68.2
(SNELL et al. , 2017)
METANETS 49.2 *
(MUNKHDALAI & YU, 2017)
TCML 56.7 68.9
(MISHRA et al. , 2018)

7 RELATED WORK

Max Margin Learning: Max margin parameter estima-
tion has been widely used in machine learning (e.g. in
structural SVMs (Yu & Joachims, 2009) and in discrimi-
native Markov networks (Zhu & Xing, 2009)). (Li et al. ,
2015) give a doubly stochastic subgradient algorithm for
regularized maximum likelihood estimation when dealing
with max-margin posterior constraints.
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(Zaheer et al. , 2017) experiment with max-margin learn-
ing using a variant of the DeepSets model to predict a
scalar score conditioned on a set. While (Zaheer et al. ,
2017) cite the estimator in (Ghahramani & Heller, 2005)
as motivation for their model, they do not explicitly use,
parameterize, or differentiate through the Bayes Factor in
a generative model of data.

Inductive Transfer and Metric Learning: Lake et al.
(2013) use probabilistic inference in a hierarchical model
to classify unseen examples by their probability of being
in a new class. Instead of the Bayes Factor, they use the
posterior predictive obtained via the use of a MCMC al-
gorithm to score target points relative to a query. (Ghahra-
mani & Heller, 2005) evaluate the Bayes factor analyti-
cally in exponential family distributions. What we gain in
for sacrificing tractability is the ability to work within a
richer class of models. Though not motivated within the
context of a hierarchical model, (Engel et al. , 2018) use
an adversarial loss to recognize regions of latent space
that correspond to points with a specified class.

Vinyals et al. (2016) learn a parametric K-nearest neigh-
bor classifiers to predict whether a target item is within
the same class as k-others. (Snell et al. , 2017) associate
a point with a prototype within a set and use it to answer
whether an object is in the same class as others. The Neu-
ral Statistician (Edwards & Storkey, 2017) learns a model
similar 2 to the Reasoning Model in Figure 2 (b) by max-
imizing the likelihood of sets Q. Their method does not
use the Bayes Factor to score items; it also does not per-
mit easy initialization with pre-trained Data Models since
the full model is trained with queries.

We tune the latent space of a deep generative model to
enhance class separability for test time tasks. By contrast,
meta learning algorithms learn to tune the parameters of
an algorithm or a model. (Finn et al. , 2017) prime the
parameters of a neural network to have high accuracy at
test time using second order gradient information.

Our work has close parallels with metric-learning; here
the metric learned lies in the latent space of a deep gener-
ative model. (Bar-Hillel et al. , 2005) proposed Relevant
Component Analysis, an optimization problem that jointly
performs (linear) dimensionality reduction and learns a
Mahalanobis metric using queries.

8 DISCUSSION

We seek good, task-specific inductive biases to quantify
how similar a point is to a set. We give new theoretical
and practical constructs towards this goal. We break up

2Their model does not enforce the conditional independence
statement xt || Q|zt

the problem into two parts: learn a good representation
and tune the learned representation for a specific notion
of similarity. Using the latent space in a deep generative
model as our representation, we use the Bayes Factor to
quantify similarity.

We derive conditions under which there exists an equiv-
alence between a generative model where data are gen-
erated independently to a hierarchical model that jointly
generates sets of (similar) points. Using this insight, we
derive an easy-to-evaluate estimator for the Bayes Factor;
the estimator poses the comparison between a point and a
set as overlap in latent space. With the Bayes Factor as a
differentiable scoring mechanism, we give a max-margin
learning algorithm capable of changing the inductive bias
of a (potentially pre-trained) deep generative model. To
evaluate the Bayes Factor, we propose a neural archi-
tecture for a latent reasoning network: a set conditional
density that amortizes the posterior predictive distribution
of a hierarchical model.

Our approach has limitations. By directly parameterizing
the posterior predictive density, and not the prior prm(w)
and conditional prm(z|w), we lose the ability to sample
points from the hierarchical generative model. Working
with a set of models in which Assumption 1 holds may
implicitly only find posterior predictive densities under
relatively simple model families of prm(w) and prm(z|w).
Finally, enforcing that property identity in w is condition-
ally independent of the data x, given the representation z,
may make for a challenging learning problem – z has to
represent both the property and variability in the property
conditional distribution of the data.

An avenue of future work is leveraging vast amounts
of unlabeled data for representation learning informed
by a small amount of supervision to guide either during
learning, or after learning, the structured of the learned
space. Yet another interesting direction would be to learn
LRNs that parameterize distributions over multiple, per-
data-point latent variables.
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Abstract

WTA (Winner Take All) hashing has been suc-
cessfully applied in many large-scale vision
applications. This hashing scheme was tai-
lored to take advantage of the comparative rea-
soning (or order based information), which
showed significant accuracy improvements. In
this paper, we identify a subtle issue with
WTA, which grows with the sparsity of the
datasets. This issue limits the discriminative
power of WTA. We then propose a solution to
this problem based on the idea of Densification
which makes use of 2-universal hash functions
in a novel way. Our experiments show that
Densified WTA Hashing outperforms Vanilla
WTA Hashing both in image retrieval and clas-
sification tasks consistently and significantly.

1 INTRODUCTION

In many important applications like information retrieval
and natural language processing, text documents, and
images data are in high-dimensional representations.
Such high-dimensionality is usually accompanied by ex-
treme data sparsity due to either a large vocabulary or
the use of large image window size. The major reason
we find very sparse datasets almost everywhere results
from the wide adoption of Bag of Words (BoW) repre-
sentation for documents and images. In BoW represen-
tation, the presence or absence of specific features carries
the most information [Chapelle et al., 1999, Jiang et al.,
2007], especially with higher order shingles. The popu-
larity of sparse machine learning [Caiafa et al., 2017, Liu
and Tsang, 2017, Liu et al., 2017, Liu and Tsang, 2016]
and sparse codes [Lee et al., 2006] for image data is an-
other reason for the abundance of sparse datasets in mod-
ern applications. In order to get a sense of this extreme

sparsity, the datasets demonstrated in Google’s Machine
Learning system SIBYL [Canini et al., 2012] have di-
mensions in billions and non-zeros in only a few thou-
sands (even hundreds).

With the advent of the Internet and the explosion in vol-
umes of data, almost all machine learning and data min-
ing applications are constrained by their computational
requirements. Learning with none-liner kernels, by ma-
terializing kernel matrices, which are quadratic in com-
putation and memory, is infeasible [Rahimi and Recht,
2007, Li et al., 2011, Shrivastava, 2015]. Randomized
algorithms, especially those based on Locality Sensitive
Hashing (LSH) [Indyk and Motwani, 1998], have shown
huge promise for reducing computational and memory
requirement in these scenarios. These randomized algo-
rithms lead to drastic gains in computation and memory
for a small, insignificant, amount of approximations.

LSH-based algorithms are quite popular efficient sub-
linear algorithms for near neighbor search [Indyk and
Motwani, 1998]. This is because even a simple linear
scan for near neighbor search, over massive datasets,
becomes prohibitively expensive [Weber et al., 1998].
There are no options but to use hashing approaches for
such scenarios. LSH algorithms can also be used as
cheap random kernel features [Li et al., 2011] for train-
ing large-scale non-linear SVMs without materializing
the expensive kernel matrix, leading to linear time al-
gorithms. Besides, recently a line of work appears to
use LSH as samplers in optimization [Chen et al., 2018]
and deduplication [Chen et al., 2017] problems. They
are embarrassingly parallel, simple and cheap. Owing to
these unique advantages, they are heavily used by com-
mercial search industries for truly large-scale data pro-
cessing systems.

In the last decade, similarities based on relative (or
comparative) attributes have gained huge popularity, es-
pecially in the vision literature [Parikh and Grauman,
2011]. For such similarities, a well-known hashing
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scheme is Winner Take All (or WTA) hashing [Yagnik
et al., 2011]. It is one of the fastest known hashing
scheme, which is much faster than signed random
projection (SRP). SRP requires one pass over the data
vector for computing one hash value. This is expensive
because in practice we need hundreds of hash values,
which results in hundreds of passes over the data. Simi-
larly, even random projections are significantly slow for
many large-scale tasks. On the contrary, WTA can gen-
erate multiple hashes in one pass. It is widely known
that hashing time is the major bottleneck, both in the-
ory and practice, for the task of image retrieval. This is
why Google [Dean et al., 2013] needed WTA for detect-
ing 100,000 objects on a single machine in near-real time
with very respectable accuracy.

Large-scale image retrieval, with low-latency con-
straints, is a reality. We cannot afford to have costly hash
functions since even one pass over the data vector for
hash computation is prohibitively expensive both for en-
ergy and latency. WTA hashing has been quite success-
fully applied to produce superior results on massive-scale
object recognition and information retrieval. This ran-
domized hashing scheme seems quite suitable for taking
advantage of multiple partial order statistics rather than
total orderings of the input vector’s feature dimensions
to produce sparse embedding codes.

Deep Neural Networks are widely-used in vision and
speech tasks. While the network architecture sizes grow
exponentially larger to adapt data complexity, LSH al-
gorithms are recently adopted to reduce the computa-
tion [Spring and Shrivastava, 2017, Vijayanarasimhan
et al., 2014]. Moreover hashing cost and quality are the
critical bottleneck in making such approaches practical.
Our Contributions: In this work, we study the applica-
bility of WTA hashing for very sparse datasets. We found
that WTA hashes are not very informative for sparse
datasets. We further provide a remedy based on the re-
cent idea of Densification [Shrivastava and Li, 2014a]. In
particular, our contributions can be summarized as fol-
lows:

1. We illustrate that the popular WTA hashing scheme
starts losing information for very sparse datasets,
i.e., most of the hash values for very sparse datasets
do not have enough discriminative information.

2. We propose Densified WTA Hashing which com-
bines traditional WTA hashing with the idea of
Densification [Shrivastava, 2017]. We show that
the idea of densification provably fixes the issue
of WTA for sparse datasets. Our proposal makes
novel use of 2-universal hashing, introduced in Sec-
tion 4.1, and requires minimal modifications to the
original WTA hashing. Furthermore, for dense

datasets, our proposal is equivalent to the original
WTA hashes and thus a smooth generalization of
WTA for sparse datasets.

3. We show for the first time that the idea of Densifica-
tion actually leads to significant improvement in the
quality of WTA hashing, informative hashes. Pre-
viously the idea of Densification was only known
to speed up hash functions without losing quality.
Furthermore, this is the first use of densification for
non-binary data.

4. We demonstrate the benefits of our proposal by
showing significant gains in accuracy compared to
WTA on real-world sparse datasets for both retrieval
and classification tasks.

2 REVIEW WTA HASHING

[Parikh and Grauman, 2011] pointed out the impor-
tance of relative attributes in the vision community. It
suggested that for a given vector x, the information
that the attribute xi is dominant over some other at-
tribute xj has stronger discriminative powers compared
to other features. It was further shown in [Yagnik et al.,
2011] that comparative reasoning (or order information)
among attributes is a very informative feature and simi-
larities based on such comparisons lead to superior per-
formances compared to widely adopted measures like L2

distances. However, kernel based (or similarity based)
learning is computationally slow. To mitigate this prob-
lem, WTA (Winner Takes ALL) Hashing was proposed.
The simplicity, scalability, and power of WTA hashing
were quite appealing and it has been successfully used
by commercial big-data companies to scale up the task
of object detection significantly [Dean et al., 2013].

WTA hashing generates a set of random samples of K
attributes, using a random permutation Θ, and stores the
index of the attribute with the maximum weight. It can
be implemented in three lines with Matlab:

f u n c t i o n [ maxval , c ] = wta (X,K)
t h e t a = randperm ( s i z e (X, 2 ) )
[ maxval , c ] = max(X( : , t h e t a ( 1 :K) ) , [ ] , 2 )

2.1 KEY WTA NOTATIONS

We denote Θ(x) to be the K random samples from x
sampled using permutation Θ. For convenience, we drop
the dependence on K as it will remain a fixed constant.
Hwta(Θ(x)) indicates the corresponding WTA hash. We
will also drop Θ and useHwta(x) when it is clear.

As illustrated in the example shown in Table 1, the orig-
inal input vectors x1, x2, x3, x4 are applied with random
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Table 1: WTA Hashing Example with four input vectors x1, x2, x3, x4, K = 3 and one permutation Θ = 4, 1, 2

x1 x2 x3 x4

x 10, 12, 9, 23 8, 9, 1, 12 9, 2, 6, 1 3, 5, 1, 7
Θ(x) 23, 10, 12 12, 8, 9 1, 9, 2 7, 3, 5
Hwta(x) 1 1 2 1

permutation Θ = (4, 1, 2, 3) and first K = 3 attributes
of the permuted vectors are selected (random sample of
size 3), e.g. Vector (a) = [10, 12, 9, 23] will sample
[23, 10, 12]. Then the index of the maximum attribute in
every transformed vector is stored separately, e.g. 1 for
(a), to contribute to the final WTA hash codes. If there
are n such hashes codes for one input vector, we define
Bin i as the space to store the hash code generated
from the ith set of K samples.

It was shown that WTA hashing scheme has locality sen-
sitive hashing property. It implies that collision prob-
ability under this scheme, i.e. for given vectors x and
y, Pr(Hwta(x) = Hwta(y)) = E[IHwta(x)=Hwta(y)] is
some desirable order based similarity measure. It was
later shown that for K = 2 this similarity is the well
known Kendall Tau [Ziegler et al., 2012].

3 SPARSE DATASETS AND ISSUES
WITH WTA HASHING

WTA hashing and the idea of comparative reasoning is
quite appealing and intuitive. In this section, we delve
deeper and show a critical issue with WTA hashing.
We show that for very sparse datasets, which are com-
mon in practice [Li et al., 2011], WTA-based hashes are
not very informative and deviate from the ”relative at-
tribute” intuition. We use the equivalence between hash-
ing and the kernel view to illustrate this issue. With ev-
ery hashing scheme H is an associated positive definite
kernel given by the collision probability Pr(H(x) =
H(y)) = E[IH(x)=H(y)]. For large-scale learning, as
shown in [Yagnik et al., 2011], we can convert these
hashes into random kernel features [Rahimi and Recht,
2007] by converting hash values to indicator vectors.

3.1 SPARSITY MAKES WTA UNINFORMATIVE

Define the sparsity of a dataset X with n samples, with
each sample of dimension d, as

Sx =

∑n
i=1

∑d
j=1[1{Xij = 0}]
n× d (1)

Note that [1{Xij = 0}] is an indicator for the event
Xij = 0. Sx is also the probability that Pr(Xij = 0).
We will show that the kernel associated with WTA hash-
ing becomes uninformative as the sparsity increases.

Consider the example that is shown in Table 2. Given
very sparse input vectors x1, x2, we generate six WTA
hashes with K = 3. In order to do this, we sample K =
3 attributes six different times so that each different bin is
generated using a different permutation. Due to sparsity,
many of these bins contain all zeros. We can see that
in all the bins except Bin 5, Hwta(x1) and Hwta(x2)
collide and therefore the estimated collision probability,
from the hashes, is roughly 5

6 indicating high similarity
(1 is maximum). This seems misleading.

Due to sparsity, it is very likely that for a given x, all
the sampled attributes Θ(x) are zeros for some samples.
We represent this situation by Θ(x) = E (Empty). Con-
sider Bin 1, 4 and 6, they collide only because they are
all zeros. Note, WTA treats all empty bins as collisions
and two empty bins will always lead to a hash colli-
sion. Sparse datasets are common with Bag-of-Words
(or token-based) representation. Empty Bins (1, 4 and
6) indicate the absence of the randomly chosen K to-
kens which is not a strong indicator of similarity. In
BoW analogy, if two documents concurrently lack the
words ”Hashing”, ”Winner” and ”Take”, it does not indi-
cate strong similarity given the large vocabulary and the
sparse nature of the dataset. In sparse BoW representa-
tion, the absence of features is not informative but only
the presence of features is important. Thus, whenever
the bins in both input vectors, under considerations for
WTA, are empty, we observe undesirable collisions.

However, it is also problematic if we treat empty ones
as mismatches. For two identical sparse vector, ideally
they should always collide as they are identical. But if
we treat zeros as mismatches, then even identical vec-
tors would have low collision probability. If hashes do
not collide, it is an indicator that the input vectors are
not similar. Preventing empty bins from colliding will
treat sparsity as dissimilarity, which is again undesirable.
Thus, there is no straightforward fix to this problem.

If we further observe Bin 3, the collision is even worse
because it is meaningless that an empty Bin of x2 col-
lides with a non-empty bin of x1, simply because the
max value in x1 happens to be at index 1. This is ac-
tually a spurious collision and can be easily eliminated
if we assign special values to all empty bins. Therefore,
from the analysis, we ignore this easily fixable but spuri-
ous collision.
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Table 2: WTA with input vectors x1, x2 and six bins generated with six permutations. E denoted an empty sampling.
WTA treats E and E as a match of hash values, which artificially inflates the similarity perceived by the hashes.

x1 0, 0, 5, 0, 0, 7, 6, 0, 0
x2 0, 0, 1, 0, 0, 0, 0, 0, 0

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6
Θ 2, 1, 8 5, 3, 9 6, 2, 4 8, 9, 1 1, 7, 3 2, 4, 5

Θ(x1) 0, 0, 0 (E) 0, 5, 0 7, 0, 0 0, 0, 0 (E) 0, 6, 5 0, 0, 0 (E)
Θ(x2) 0, 0, 0 (E) 0, 1, 0 0, 0, 0 (E) 0, 0, 0 (E) 0, 0, 1 0, 0, 0 (E)
Hwta(x1) 1 (E) 2 1 1 (E) 2 1 (E)
Hwta(x2) 1 (E) 2 1 (E) 1 (E) 3 1 (E)

In Bin 2, neither Θ(x1) nor Θ(x2) are E, so those are in-
formative collisions. This is in line with the original mo-
tivation of WTA. Owing to the presence of empty bins,
sparsity dominates the hash representations of x1, x2 and
leads to high undesirable similarity. We can not simply
ignore empty values because different vectors will have
different occurrences of empty bins. Please refer [Shri-
vastava and Li, 2014a] to see in details why there is no
way to ignore empty values in indexing.

Formally, given vectors x1, x2 and a permutation Θ, de-
fine the indicator vector for empty sampling of both x1
and x2:

Iempty =

{
1 Θ(x1) = Θ(x2) = E
0 otherwise

(2)

Note if any of the Θ(x1) is not empty then Iempty = 0.
Based on this indicator variable, we can define empty and
non-empty collisions as:

kbad(x1, x2) = Pr(Hwta(x1) = Hwta(x2)|Iempty = 1)

kgood(x1, x2) = Pr(Hwta(x1) = Hwta(x2)|Iempty = 0).

As argued, kbad(x1, x2) is not an informative kernel for
very sparse datasets. Using these quantities we can for-
mally write the WTA kernel as

kwta(x1, x2) = Pr(Hwta(x1) = Hwta(x2)) (3)
= akbad(x1, x2) + (1− a)kgood(x1, x2),

where a is the probability of Iempty = 1. Clearly,
for very sparse datasets a will be high and hence
kbad(x1, x2) dominates the WTA kernel making it less
discriminative.

4 OUR PROPOSAL: DENSIFIED WTA
HASHING

4.1 2-UNIVERSAL HASHING

Definition 1. A randomized function hu : [l]→ [k] is 2-
universal if, ∀i, j ∈ [l] with i 6= j, we have the following

property for any z1, z2 ∈ [k]

Pr(hu(i) = z1 and hu(j) = z2) =
1

k2
. (4)

A simple universal hash function example would be, for
random number a and b and a prime number p ≤ k,
compute: hu(x) = (ax+ b mod p) mod k.

4.2 PROPOSAL

In [Shrivastava and Li, 2014b] the authors proposed the
idea of Densification of hashes for obtaining a one-pass
hashing scheme which has the same collision probabil-
ity as the traditional minwise hashing. The idea was
to reassign empty bins, having all zero values, by bor-
rowing values from nearest non-empty bins added with
some constant offset. Furthermore, [Shrivastava, 2017]
showed a better densification schema with optimal vari-
ance. Motivated by this idea, we propose a similar re-
assignment of empty bins generated from WTA. We will
show that the modified WTA, which we call ”Densified
WTA” (DWTA) hashing, produces the right kernel. This
is little surprising because Densification was used in the
literature to speed up the hashing scheme with the same
old property. Here we rather show a first example where
densification improves the hashing scheme by making it
more informative. This is also the first use of densifica-
tion over non-binary data.

Vanilla WTA assigns all empty bins a constant value of
1. Using densification, we assign new random values to
all the empty bins. For a given data vector x, we first
generate a set of WTA hashes and place them one after
the other (See Table 3).

The overall procedure of Densification for reassigning
the empty bins is shown in Algorithm 1. We do not touch
non-empty bins, as we know that WTA hashes are infor-
mative enough. Thus, if a bin is non-empty, its WTA
hash value is the DWTA hash value. The key idea in this
algorithm is that when a bin i is empty, instead of as-
signing it with a constant 1 like what WTA does, it chose
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Table 3: Example densification of WTA hashes shown in Table 2. All the hash values of empty bins are reassigned
(shown in red) by the values of the mapped (using hu(., .) and lookup table in Table 4) non-empty bins with offset
shown by the arrow. This unusual procedure actually is the right fix for WTA as shown by Theorem 1

HDwta(x1) 1+3*C 2 1 2+1*C 2 2+2*C
HDwta(x2) 3+3*C 2 2+3*C 3+4*C 3 2+2*C

Table 4: Results of empty bins re-assignment mapping in
Table 2 running Algorithm 1. i and attempt are the two
arguments for some 2-universal hash function and map
represents the non-empty bin i is mapped to.

i attempt map

x1

1 3 3
4 1 5
6 2 2

x2

1 3 5
3 3 2
4 4 5
6 2 2

some non-empty bin randomly using a 2-universal hash
function, hu and use the value of the chosen non-empty
bin with some appropriate offset that ensures no spurious
collisions. The 2-universal hash function takes in two ar-
guments: 1) the index of the current empty bin and 2) the
number of attempts to reach the first non-empty bin. The
first argument is to ensure that DWTA will produce good
kernels defined in Section 3. Specifically, for instance, in
Table 2, Bin 1s are both empty for x1 and x2. The ideal
collision probability of such empty bins should be the
same as that of two non-empty bins, derived in Equation
3. The second argument, attempts, is to prevent infi-
nite cycles during the process of reaching the non-empty
bin. For instance, when we compute the non-empty bin
mapping for Bin i, if hu only takes in i as an argument
and i = hu(i), then the algorithm would run into an infi-
nite loop. However, with such monotonically increasing
attempts, even under the same i, the sequence of hash
values generated from hu will not run into infinite cy-
cles. Another scenario that can test the randomness of
our algorithm is when j = hu(i, attempt) and bin i and
j are both empty. Under such circumstance, bin i and
j are not guaranteed to be re-assigned with the value of
the same bin because the re-assignments are independent
due to 2-universality of hu(., .).

For each empty bin i, we locate a random (but con-
sistently chosen) non-empty bin j according to a 2-
universal hash function, call it hu. Formally,

HDwta[i] = Hwta[j] + attempt ∗ C. (5)

Algorithm 1 Densified WTA Hashing

input n hashesHwta[] generated from WTA Hashing
input hu(., .), constant C
InitializeHDwta[] = 0
for i = 1 to n do do

ifHwta[i] 6= E then
HDwta[i] = Hwta[i]

else
attempt = 1
next = hu(i, attempt)
whileHwta[next] = E do
attempt+ +
next = hu(i, attempt)

end while
HDwta[i] = Hwta[next] + attempt ∗ C

end if
end for
return HDwta[]

Then the newly assigned value to the empty bin i is ex-
actly the value of j with some appropriate offset. The
offset is mainly the number of attempts such process
make before termination, multiplying by some constant
C > K. Table 3 gives a toy example of how Algo-
rithm 1 works on table 2. For x1, from Table 4, the
mapped non-empty bin for Bin 1 with map function hu
is 3 and Bin 3’s hash value is 1. The total attempts made
for reaching Bin 2 is 3. Therefore, according to equa-
tion 5, the new hash value of Bin 1 would be 1 + 3 ∗ C.
Similarly, Bin 4 is assigned with 2 + 1 ∗ C and Bin 6 is
assigned with 2+2∗C. Reassignments in the same man-
ner happen to x2 but since it is more sparse than x1, more
bins are filled with new hash values. Recall in Issues with
WTA Hashing Section, we discuss that the collisions be-
tweenHwta(x1) andHwta(x2) happened in Bin 1, 4 and
6. After densification, there is no collision in Bin 1 and 4.
Therefore after densification the hash collision similarity
comes down to 2

6 = 0.33.

Formally, let us assume that we want to generate n hash
values. Θi(x) denote bin i. Let hu(i, attempt) be the
first number in the process decribed in Algorithm 1 such
that Θhu(i,attempt)(x) 6= E. We can define the Densified
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Table 5: Each entry displays the Sparsity of VOC2010, LabelMe-12-50k and MSRc datasets in 1000 BoW, 5000 BoW
and 10000 BoW representation. Sparsity shows the Raw Data sparsity of original BoW vectors and Empty Codes
shows the ratio of empty hash codes in resulting WTA Hashing encoding (empty codes means empty sampling). By
increasing dictionary size, Sparsity naturally goes up in all three datasets.

1000 BoW (%) 5000 BoW (%) 10000 BoW (%)

Sparsity Empty
Codes Sparsity Empty

Codes Sparsity Empty
Codes

VOC2010 68.63 23.84 88.18 61.39 92.87 74.81
LabelMe-12-50k 58.07 13.63 82.93 48.18 89.49 64.43

MSRc 69.46 24.66 86.83 56.60 91.54 70.07

WTA,HDwta, as follows
HDwta(Θi(x)) =

{
Hwta(Θi(x)) if Θi(x) 6= E

Hwta(Θhu(i,attempt)(x)) + attempt ∗ C otherwise.

(6)

Based on this definition, we now show our main result
thatHwta precisely fixes the issue of empty bins and get
rid of the bad kernels. Since the result holds for any bin,
we will drop the subscript i. Formally,

Theorem 1. For any given x and y, the collision proba-
bility of ”Densified WTA”HDwta satisfies:

Pr(HDwta(x1) = HDwta(x2)) = kgood(x1, x2)

= kDwta(x1, x2), (7)

Proof: See supplementary material. �
From Theorem 1, it is clear that the new kernel is pre-
cisely the good kernel kgood(x1, x2) with no contribu-
tion of kbad(x1, x2) in kDwta(x1, x2), irrespective of the
sparsity.

4.3 COST OF DENSIFICATION

We can see that we incur an additional cost of densifi-
cation over the generated WTA hashes. The cost comes
from, as shown in Algorithm 1, if the bin is empty, it re-
quires an additional while loop. Let n be the total num-
ber of bins in HDwta(Θ(x)) and nNE be the number of
non-empty bins. The probability of terminating the while
loop in one iteration is p = nNE

n . Therefore the expected
iterations each while loop need to run before termina-
tion will be 1

p . The computation is negligible because it
only involves 1

p hash lookups for every empty bin. We
will show in Section 5.4 that this negligible cost leads to
huge performance gains in practice. This we believe is
one of the many examples where a careful analysis and
some mathematics goes a long way in designing simple
and significantly better algorithms.

4.4 DEALING WITH LARGE HASH VALUES

It can be seen from Equation 6 that the value of
HDwta(Θi(x)) can become large due to the term
attempt∗C. It turns out that this is not a problem. There
is a significant amount of literature to reduce the final
range of hashing scheme [Li and König, 2011]. The
idea is to randomly shrink the range at an insignificant
cost of small constant random collisions. We found that
if we want to constrain the final hash value to a range R
simply taking mod R of the final hash value suffices in
practice. This is what we use during evaluations.

5 EXPERIMENTS

In this section, we compare the performance of Densified
WTA hashing with Vanilla WTA on two tasks: 1) Image
retrieval and 2) classification. The experiments do not
compare with other hashing algorithms because the goal
of this paper is solving the problem of WTA while main-
taining its superiority over other methods mentioned in
the introduction section. They are important tasks of
evaluating the performance of Hashing algorithms, be-
cause hashing has received increasing interests in effi-
cient large-scale image retrieval with the rapid growth of
web images and the classification accuracy can quantify
the discriminative power in hashes.

5.1 DATASETS AND BASELINES

We use three popular publicly available image datasets,
including VOC2010 [Everingham and Winn, 2010],
LabelMe-12-50k [Russell et al., 2008] and MSRc [msr,
2004]:

• The VOC2010 database contains a total of 10103
annotated images of twenty classes, including peo-
ple, animals, vehicles and indoors. The data has
been split into 50% for training and 50% for test-
ing. One image could belong to different classes.

• The LabelMe-12-50k dataset consists of 50,000
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Figure 1: Precision and Recall curves comparing the retrieval performance of Densified WTA vs. WTA on VOC2010,
LabelMe-12-50k and MSRc datasets for 1000, 5000 and 10000 BoW feature representations. The semi-dotted lines are
the vanilla WTA hashes and bold lines are our proposed Densified WTA Hashes. Different colors represent different
number of BoW. We only show 5000 BoW with 64, 256 and 512 hashes (number of hashes used for ranking). Densified
WTA significantly outperforms the corresponding WTA consistently.

JPEG images of twelve classes, 80% for training
and 20% for testing. They are 256×256-pixels pic-
tures extracted from LabelMe.

• The MSRc is a database of thousands of labeled,
high-resolution (680x480 pixels) images of eigh-
teen classes.

The authors of WTA paper used LabelMe for retrieval
tasks and VOC2010 datasets for classification tasks. We
demonstrate both retrieval and classification on both of
the datasets as well as a new MSRc dataset. As described
in Section of Large Hash Values, to reduce the space of
Densified WTA Hashing, we apply mod operation on
hash values of all bins as a fix. Table 5 summarizes the
sparsity of Raw Data, input Bag of Words, and the ratio
of Empty Hash codes, the resulting codes after applying
WTA Hashing to input Bag of Words vectors. We can
see that when the number of BoW increases, sparsity,
highest in 10000 BoW, also goes up in all three datasets.

Note here, we are doing the same tasks as WTA paper,
but we do not apply exactly same settings and the spar-
sities of BoW would thereby be different (they did not
reveal sparsity of their datasets as well). Therefore, we
do not expect the same results on VOC2010 dataset due
to the sparsity difference.

5.2 IMAGE RETRIEVAL

We now compare the performance of our Densified WTA
codes with Vanilla WTA by replicating the retrieval
experiments and studying the standard precision-recall
curves. This is our main task of performance comparison
because like we mentioned in the Introduction section,
WTA is quite appealing for information retrieval. We re-
stress that WTA (and our DTWA) are the fastest known
hashing scheme, significantly faster than plain random
projections. Furthermore hashing cost is a critical bottle-
neck in large-scale retrieval system.
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Figure 2: Densified WTA vs. WTA on the task of Image Classification on three different vision datasets. We used
1000, 5000 and 10000 BoW representation of the images. The y-axis is the mean accuracy and the x-axis is the number
of hashes used as features. The horizontal lines (dotted) are classification based just on the BoW features. The semi-
dotted lines are the vanilla WTA hashes and bold lines are our proposed Densified WTA Hashes. The colors represent
which BoW was used as features. Densified WTA significantly outperforms the corresponding WTA consistently for
all the choices.

For each query image, the nearest-neighbors of each test
data were ranked among training data based on the Ham-
ming distance of the hash codes. Since we had labeled
datasets, all the images with the same label as the query
were treated as the gold standard neighbors. Note, as
mentioned in our proposal, WTA and Densified WTA
leads to two different similarity measures (or kernel).
Therefore, this experiment is comparing which among
these two kernels agrees with the ground truth labels.

Replicating the setting of the original WTA paper, we
first generated standard BoW of local descriptors, com-
puted from the images, using the publicly available
code [Vedaldi and Fulkerson, 2010]. BoW was gener-
ated by extracting local descriptors from the dense grid
over each image and quantizing them using K-means.
We used DSIFT [Kokkinos et al., 2012] as our descriptor
measuring gradient at each key point pixel. The gradi-
ent was represented by a single 128-dimensional vector,

stacked by a three-dimensional (8 × 4 × 4) elementary
feature vector formed by the pixel location (4 × 4) and
the gradient orientation (8). In this experiment, we con-
sider BoW with 1000, 5000, and 10,000 bins to demon-
strate the effect of sparsity. We then generated WTA and
Densified WTA hashes from these images and produce
feature vectors as suggested in the WTA paper. For the
feature generation, we used the fixed recommended set-
ting ofK = 4 for all the datasets which was picked using
the same method described in [Yagnik et al., 2011] and
best for WTA. The precision and recall curves for the
rankings based on different hash codes are shown in Fig-
ure 1. We show plots for 64, 256 and 512 hash codes
of 1000, 5000 and 10000 BoW representations (9 curves
for each dataset per hashing scheme). To average out the
randomness of both Densified and original WTA hash-
ing, every curve on the graphs is averaged from 10 runs.

Densified WTA hashes lead to notably better precision-
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recall compared to Vanilla WTA on all combinations ir-
respective of the choices of the dataset. As with classi-
fication, an increase in BoW leads to larger gap due to
increases in sparsity. This again validates our claims. It
is exciting to see that a small but principle modification
to WTA Hashing can lead to drastic benefits.

5.3 CLASSIFICATION

Our motivation for comparing two Hashing algorithms
using classification accuracy is to quantify the discrimi-
native power in hashes. We use Densified WTA codes to
do the classification task on the VOC2010, LabelMe-12-
50k and MSRc datasets. We don’t compare with those
state-of-the-art methods like a particular type of nonlin-
ear Mercer kernels, e.g. the intersection kernel or the
Chi-square kernel [Yang et al., 2009] in classifying these
datasets. Instead, we apply Densified WTA and original
WTA hashes to a baseline method, sparse BoW of local
descriptors and passing to linear SVM classifier, to show
that the Densified WTA achieve superior improvement
on classification tasks on sparse data.

To compute the classification performance we ran a sim-
ple SVM on BoW features, WTA hashed features, and
Densified WTA hashed features. We varied the number
of hash features over a range of values: 5 × 102, 1 ×
103, 5×103, 1×104, 5×104, 1×105. We again choose
K=4. The C parameter of SVM was tuned using cross-
validation, for every individual run, to ensure the best
possible performance on every combination of the num-
ber of features and the hashing scheme. This ensures
fairness of the comparisons.

Figure 2 compares the mean average precision of classi-
fication tasks using Densified WTA codes, WTA codes
and basic sparse BoW on three datasets. The baseline,
mean average precision for the three BoWs with differ-
ent bins is shown by dashed straight lines. The mean
average precision for WTA feature vectors is shown by
dot-dashed curves and for Densified WTA feature vec-
tors is shown by dot-dashed curves. We observe that as
stated in WTA paper, precision increases when original
BoW bin number increases or the number of codes in-
creases with WTA beating BoW in each case. These ob-
servations are in line with the original WTA paper. We
followed the experiment pipeline from the WTA paper,
while generating BoW using standard package [Vedaldi
and Fulkerson, 2010]. It is not surprising to see exactly
the same trends in classification results with a difference
in relative values.

The Densified WTA consistently outperforms Vanilla
WTA significantly on all the three datasets, irrespective
of the choice of BoW or the number of hashes. More-

Table 6: Average running time comparison among
DWTA, and Sparse Random Projection for three datasets
with 10000 BoW representation and 512 hashes.

SRP (ms) DWTA (ms)
VOC2010 8.578 0.032

LabelMe-12-50k 8.62 0.046
MSRc 8.609 0.04

over, the performance gap increases with the number of
BoW. The increase in BoW rises sparsity of the dataset
and hence this trend validates our hypothesis and theory
in this paper. The gains over WTA are significant and our
results clearly push the boundary of classification perfor-
mance with hashing-based kernels significantly outper-
forming BoW. Note that increasing BoW from 5000 to
10000 leads to no gains in accuracy. But with hashing,
especially Densified WTA, the gains keep climbing.

5.4 RUNNING TIME OF DWTA HASHING

As mentioned in Section 4.3, DWTA hashing only in-
duces negligible cost of densification. We implemented
DWTA and another popular algorithm for sparse data,
Sparse Random Projection [Achlioptas, 2001] (SRP) and
empirically show the average running time comparison
of both algorithms for each data point in Table 6. We
used 10000 BoW representation for three datasets and
512 hashes. The results clearly exhibited the advantage
of DWTA over FRP in running time which further proves
the superiority and Practicality of DWTA in general.

6 CONCLUSIONS

In this work, we revisited the problem of WTA Hashing
for very sparse datasets which are ubiquitous in large-
scale applications. We found a particular issue with WTA
hashing in this regime which makes them uninformative
with an increase in sparsity. We provide a principled so-
lution to this problem using the novel 2-universal hashing
for “Densification”. Our solutions leverage the theoreti-
cal benefits of rank correlation methods and at the same
time successfully resolves the concern of uninformative
hash values produced by WTA Hashing for data with
high sparsity. Evaluation results shown confirm the su-
perior performance of Densified WTA Hashing on both
image retrieval and classification task.
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Abstract

Lifted inference reduces the complexity of in-
ference in relational probabilistic models by
identifying groups of constants (or atoms)
which behave symmetric to each other. A
number of techniques have been proposed in
the literature for lifting marginal as well MAP
inference. We present the first application of
lifting rules for marginal-MAP (MMAP), an
important inference problem in models having
latent (random) variables. Our main contribu-
tion is two fold: (1) we define a new equiv-
alence class of (logical) variables, called Sin-
gle Occurrence for MAX (SOM), and show
that solution lies at extreme with respect to
the SOM variables, i.e., predicate groundings
differing only in the instantiation of the SOM
variables take the same truth value (2) we de-
fine a sub-class SOM-R (SOM Reduce) and
exploit properties of extreme assignments to
show that MMAP inference can be performed
by reducing the domain of SOM-R variables
to a single constant. We refer to our lifting
technique as the SOM-R rule for lifted MMAP.
Combined with existing rules such as decom-
poser and binomial, this results in a power-
ful framework for lifted MMAP. Experiments
on three benchmark domains show significant
gains in both time and memory compared to
ground inference as well as lifted approaches
not using SOM-R.

1 INTRODUCTION
Several real world applications such as those in NLP, vi-
sion and biology need to handle non-i.i.d. data as well
as represent uncertainty. Relational Probabilistic mod-
els (Getoor and Taskar 2007) such as Markov logic net-
works (Domingos and Lowd 2009) combine the power

of relational representations with statistical models to
achieve this objective. The naı̈ve approach to inference
in these domains grounds the relational network into
a propositional one and then applies existing inference
techniques. This can often result in sub-optimal perfor-
mance for a large number of applications since inference
is performed oblivious to the underlying network struc-
ture.

Lifted inference (Kimmig, Mihalkova, and Getoor 2015)
overcomes this shortcoming by collectively reasoning
about groups of constants (atoms) which are identical
to each other. Starting with the work of Poole (Poole
2003), a number of lifting techniques which lift propo-
sitional inference to the first-order level have been pro-
posed in literature. For instance, for marginal infer-
ence, exact algorithms such as variable elimination and
AND/OR search and approximate algorithms such as be-
lief propagation and MCMC sampling have been lifted to
the first-order level (cf. (de Salvo Braz, Amir, and Roth
2005; Gogate and Domingos 2011; G. Van den Broeck
et al. 2011; Kersting, Ahmadi, and Natarajan 2009;
Singla and Domingos 2008; Niepert 2012; Venugopal
and Gogate 2012)). More recently, there has been in-
creasing interest in lifting MAP inference (both exact
and approximate) (Sarkhel et al. 2014; Mittal et al. 2014;
Mladenov, Kersting, and Globerson 2014). Some recent
work has looked at the problem of approximate lifting
i.e., combining together those constants (atoms) which
are similar but not necessarily identical (Van den Broeck
and Darwiche 2013; Singla, Nath, and Domingos 2014;
Sarkhel, Singla, and Gogate 2015).

Despite a large body of work on lifted inference, to
the best of our knowledge, there is no work on lifted
algorithms for solving marginal maximum-a-posteriori
(MMAP) queries. MMAP inference is ubiquitous in real-
world domains, especially those having latent (random)
variables. It is well known that in many real-world do-
mains, the use of latent (random) variables significantly
improves the prediction accuracy (Maaten, Welling, and
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Saul 2011). Moreover, the problem also shows up in the
context of SRL domains in tasks such as plan and activity
recognition (Singla and Mooney 2011). Therefore, effi-
cient lifted methods for solving the MMAP problem are
quite desirable.

MMAP inference is much harder than marginal (sum)
and MAP (max) inference because sum and max opera-
tors do not commute. In particular, latent (random) vari-
ables need to be marginalized out before MAP assign-
ment can be computed over the query (random) variables
and as a result MMAP is NP-hard even on tree graph-
ical models (Park 2002). Popular approaches for solv-
ing MMAP include variational algorithms (Liu and Ihler
2013), AND/OR search (Marinescu, Dechter, and Ihler
2014) and parity solvers (Xue et al. 2016).

In this paper, we propose the first ever lifting algorithm
for MMAP by extending the class of lifting rules (Jha
et al. 2010; Gogate and Domingos 2011; Mittal et al.
2014). As our first contribution, we define a new equiv-
alence class of (logical) variables called Single Occur-
rence for MAX (SOM). We show that the MMAP solution
lies at extreme with respect to the SOM variables, i.e.,
predicate groundings which differ only in the instantia-
tion of the SOM variables take the same truth (true/false)
value in the MMAP assignment. The proof is fairly in-
volved due to the presence of both MAX and SUM opera-
tions in MMAP, and involves a series of problem trans-
formations followed by exploiting the convexity of the
resulting function.

As our second contribution, we define a sub-class of
SOM, referred to as SOM-R (SOM Reduce). Using
the properties of extreme assignments, we show that the
MMAP solution can be computed by reducing the do-
main of SOM-R variables to a single constant. We refer
to this as SOM-R rule for lifted MMAP. SOM-R rule is
often applicable when none of the other rules are, and can
result in significant savings since inference complexity is
exponential in the domain size in the worst case.

Finally, we show how to combine SOM-R rule along
with other lifting rules e.g., binomial and decomposer,
resulting in a powerful algorithmic framework for lifted
MMAP inference. Our experiments on three different
benchmark domains clearly demonstrate that our lifting
technique can result in orders of magnitude savings in
both time and memory compared to ground inference as
well as vanilla lifting (not using the SOM-R rule).

2 BACKGROUND
First-Order Logic: The language of first-order
logic (Russell and Norvig 2010) consists of constant,
variable, predicate, and function symbols. A term is a
variable, constant or is obtained by application of a func-

tion to a tuple of terms. Variables in first-order logic are
often referred to as logical variables. We will simply
refer to them as variables, henceforth. A predicate de-
fines a relation over the set of its arguments. An atom
is obtained by applying a predicate symbol to the corre-
sponding arguments. A ground atom is an atom having
no variables in it. Formulas are obtained by combining
predicates using a set operators: ∧ (and), ∨ (or) and ¬
(not). Variables in a formula can be universally or exis-
tentially quantified using the operators ∀ and ∃, respec-
tively. A first-order theory (knowledge base) is a set of
formulas. We will restrict our attention to function free
finite first-order logic with Herbrand interpretation (Rus-
sell and Norvig 2010) and universally quantified vari-
ables. In the process of (partially) grounding a theory,
we replace all (some) of the universally quantified vari-
ables with the possible constants in the domain. In the
following, we will use capital letters (e.g., X , Y etc.) to
denote logical variables and small case letters to denote
constants. We will use ∆X = {x1, x2, · · · , xm} denotes
the domain of variable X .

Markov Logic: A Markov logic network (Domingos
and Lowd 2009) (MLN) M is defined as a set of pairs
{fi, wi}ni=1 where fi is a formula in first-order logic and
wi is the weight of fi. We will use F (M) to denote the
set of all the formulas in MLN. LetX denote the set of all
the logical variables appearing in MLN. An MLN can be
seen as a template for constructing ground Markov net-
works. Given the domain ∆X for every variable X ∈ X ,
the ground network constructed by MLN has a node for
every ground atom and a feature for every ground for-
mula. Let T denote the set of all the predicates appearing
in M . We will use Tg to denote all the ground atoms cor-
responding to the set T and t to denote an assignment,
i.e. a vector of true/false values, to Tg . The distribution
specified by an MLN is given as:

P (Tg = t) =
1

Z
e
∑n
i=1

∑mi
j=1 wifij(t) (1)

where mi denotes the number of groundings of the ith

formula. fij represents the feature corresponding to the
jth grounding of the ith formula. The feature is on if
the corresponding formula is satisfied under the assign-
ment t off otherwise. Z is the normalization constant.
Equivalently, in the potential function representation, the
distribution can be written as:

P (t) =
1

Z

n∏

i=1

mi∏

j=1

φij(t) (2)

where there is a potential φij for each fij such that
φij(t) = ewifij(t).

Marginal MAP (MMAP): Let the set of all predicates
T be divided into two disjoint subsets Q and S, referred
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to as MAX and SUM predicates, respectively. Let q (resp.
s) denote an assignment to all the groundings of the pred-
icates in Q (resp. S). Note that T = Q ∪ S , and given
assignment t to T , t = q ∪ s. Then, the marginal-MAP
(MMAP) problem for MLNs can be defined as:

arg max
q

∑

s

n∏

i=1

mi∏

j=1

φij(q, s) = arg max
q

WM (q) (3)

where, WM (q) =
∑

s

n∏

i=1

mi∏

j=1

φij(q, s)

WM (q) is referred to as the MMAP objective function
for the MLN M , and its solution q∗ = arg maxqWM (q)
is referred as the MMAP solution. Note that we can get
rid of Z in equation 3, since we are only interested in
finding the maximizing assignment and Z is a constant.

Preliminaries: We will assume that our MLN is in Nor-
mal Form (Mittal et al. 2014) i.e., (a) no constants ap-
pear in any of the formulae (b) if X and Y appear at the
same predicate position in one or more formulae, then
∆X = ∆Y . Any MLN can be converted into normal
form by a series of mechanical operations. We will also
assume that formulas are standardized apart i.e., we re-
name the variables such that the sets of variables appear-
ing in two different formulae are disjoint with each other.
We define an equivalence relation ∼ over the set of vari-
ables such that X ∼ Y if (a) X and Y appear at the
same predicate position OR (b) ∃Z such that X ∼ Z
and Y ∼ Z. We will use X̃ to denote the equivalence
class corresponding to variable X . Variables in the same
equivalence class must have the same domain due to the
normal form assumption. We will use ∆X̃ to refer to the
domain of the variables belonging to X̃ .

Finally, though our exposition in this work is in terms
of MLNs, our ideas can easily be generalized to other
representations such as weighted parfactors (de Salvo
Braz, Amir, and Roth 2005) and probabilistic knowledge
bases (Gogate and Domingos 2011).

3 SINGLE OCCURRENCE FOR MMAP
3.1 Motivation

In this work, we are interested in lifting the marginal-
MAP (MMAP) problem. Since MMAP is a problem
harder than both marginal and MAP inference, a nat-
ural question to examine would be if existing lifting
techniques for MAP and marginal inference can be ex-
tended to the case of MMAP. Or further still, if additional
rules can be discovered for lifting the MMAP problem.
Whereas many of the existing rules such as decomposer
and binomial 1 (Jha et al. 2010; Mittal et al. 2015) extend

1applicable when the binomial predicate belongs to MAX

in a straightforward manner for MMAP, unfortunately
the SO rule (Mittal et al. 2014), which is a powerful rule
for MAP inference, is not directly applicable.

In response, we propose a new rule, referred to as Single
Occurrence for MAX Reduce (SOM-R), which is appli-
cable for MMAP inference. We first define a variable
equivalence class, referred to as SOM, which requires
that (1) no two variables in the class appear in the same
formula (2) at least one of the variables in the class ap-
pears in a MAX predicate. We further define a sub-class
of SOM, referred to as SOM-R, which imposes a third
condition (3) either all the SUM predicates in the theory
contain a SOM variable or none of them does. Our SOM-
R rule states that domain of SOM-R variables can be re-
duced to a single constant for MMAP inference. Con-
sider the following example MLN, henceforth referred
to as M1:

w1 : Frnds(X,Y ) ∧ Parent(Z,X)⇒ Knows(Z, Y )

w2 : Knows(U, V )

SUM : Parent MAX : Frnds,Knows

The equivalence classes in this example are given by
{X}, {Y, V } and{Z,U}. It is easy to see that each
of these equivalence classes satisfy the three conditions
above and hence, SOM-R rule can be applied over them.
This makes the MMAP inference problem independent
of the size of the domain and hence, it can be solved
in O(1) time. Ground inference has to deal with O(m2)
number of ground atoms resulting inO(exp(cm2)) com-
plexity in the worst case 2, where c is a constant. Further,
in the absence of the SOM-R rule, none of the existing
lifting rules apply and one has to resort to partial ground-
ing again resulting in worst case exponential complexity.

We note that conditions for identifying SOM and SOM-
R specifically make use of the structure of the MMAP
problem. Whereas condition 1 is same as Mittal et al.’s
SO condition, condition 2 requires the variables in the
SOM class to belong to a MAX predicate. Condition 3
(for SOM-R) further refines the SOM conditions so that
domain reduction can be applied.

We prove the correctness of our result in two phases.
First, we show that SOM equivalence class implies that
MMAP solution lies at extreme, meaning that predicate
groundings differing only in the instantiation of the SOM
class take the same truth value. Second, for the sub-class
SOM-R, we further show that domain can be reduced to
a single constant for MMAP. Here, we rely on the prop-
erties of extreme assignments.

Our proof strategy makes use of a series of problem
2Inference complexity is exponential in the number of

ground atoms. Here, we assume |∆X | = |∆Y | = |∆Z | = m
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transformations followed by using the convexity of the
resulting function. These algebraic manipulations are
essential to prove the correctness of our result, and are
some of the important contributions of our paper. Next,
we describe each step in detail. The proofs of theorems
(and lemmas) marked with (∗) are in the supplement.

3.2 SOM implies Extreme Solution

We introduce some important definitions. We will as-
sume that we are given an MLN M . Further, we are
interested in solving an MMAP problem over M where
the set of MAX predicates is given by Q.
Definition 1. (Single Occurrence for MAX) We say that
a variable equivalence class X̃ is Single Occurrence for
MAX (SOM) if (a) ∀i, fi ∈ F (M), there is at most one
variable from the set X̃ occurring in fi (b) there exists
a variable X ∈ X̃ and a predicate P ∈ Q, such that X
appears in P .

Next, we define the notion of an extreme assignment.
Definition 2. (Extreme Assignment) Let X̃ be a variable
equivalence class. An assignment q to MAX predicatesQ
lies at extreme (with respect to X̃), if ∀P ∈ Q, all the
groundings of P with the same instantiation to variables
X − X̃ , take the same value in q.

In M1, an extreme assignment with respect to variable
equivalence class {Y, V }will assign the same truth value
to the ground atoms Knows(z , y1 ) and Knows(z , y2 ),
∀z ∈ ∆Z and ∀y1, y2 ∈ ∆Y . We next define the notion
of an MLN variablized with respect to a variable equiva-
lence class.
Definition 3. (Variablized MLN) Let X̃ be an equiva-
lence class. Let MX̃ be the MLN obtained by instantiat-
ing (grounding) the variables in the set X − X̃ . We say
that MX̃ is variablized (only) with respect to the set X̃ .

For instance in M1, variablizing with respect to the
equivalence class {Y, V } results in MLN with formulas
similar to:

w1 : Frnds(x, Y ) ∧ Parent(z, x)⇒ Knows(z, Y )

w2 : Knows(u, V )

where x, z and u are constants belonging to respective
domains. Frnds(x, Y ), Knows(z, Y ) and Knows(u, V )
can be treated as unary predicates over the equivalence
class {Y, V } since x, z and u are constants. Similarly,
Parent(z, x) can be treated as a propositional predicate.

It is important to note that, MX̃ represents the same dis-
tribution as M . Further, MX̃ can be converted back into
normal form by introducing a new predicate for every
combination of constants appearing in a predicate. We
now define one of the main theorems of this paper.

Theorem 1. Let M be an MLN and let X̃ be a SOM
equivalence class. Then, an MMAP solution for M lies
at extreme with respect to X̃ .

We will prove the above theorem by defining a series
of problem transformations. In the following, we will
work with MLN M and X̃ as a SOM variable equiva-
lence class. We will use Q and S to denote set of MAX
and SUM predicates, respectively. q and s will denote
the assignments to respective predicate groundings (see
Background (section 2)).

3.2.1 Problem Transformation (PT) 1
Objective PT1: Convert MMAP objective into a form
which only has unary and propositional predicates.
Lemma 1. Let MX̃ denote the MLN variablized with
respect to SOM equivalence class X̃ . Then, MX̃ con-
tains only unary and propositional predicates. Further,
the MMAP objective can be written as:

arg max
q

WM (q) = arg max
q

WMX̃
(q)

The proof that MX̃ only has unary and propositional
predicates follows immediately from the definition of
MX̃ (defn. 3) and the fact that X̃ is SOM. Further, since
M and MX̃ define the same distribution, we have the
equivalence of the MMAP objectives. Since, MX̃ only
has unary and propositional predicates, we will split the
assignment q to groundings of Q into (qu, qp) where qu
and qp denote the assignments to groundings of unary
and propositional predicates, respectively. Similarly, for
assignment s to groundings of S, we split s as (su, sp).

3.2.2 Problem Transformation 2
Objective PT2: In the MMAP objective, get rid of
propositional MAX predicates.
Lemma 2.* Consider the MMAP problem overMX̃ . Let
qp be some assignment to propositional MAX predicates.
Let M ′

X̃
be an MLN obtained by substituting the truth

value in qp for propositional predicates. Then, if M ′
X̃

has a solution at extreme for all possible assignments of
the form qp then, MX̃ also has a solution at extreme.

Therefore, in order to prove the extrema property for
MX̃ , it is sufficient to prove it for a generic MLN M ′

X̃
,

i.e., without making any assumptions on the form of qp.

For ease of notation, we will drop the prime in M ′
X̃

and
simply refer to it asMX̃ . Therefore, we need to show that
the solution to the following problem lies at extreme:

arg max
qu

WMX̃
(qu)

where the propositional MAX predicates have been gotten
rid of in MX̃ .

920



3.2.3 Problem Transformation 3
Objective PT3: In the MMAP objective, get rid of unary
SUM predicates using inversion elimination (de Salvo
Braz, Amir, and Roth 2005).
First, we note that the MMAP objective:

WMX̃
(qu) =

∑

sp,su

n∏

i=1

mi∏

j=1

φij(qu, sp, su)

can be equivalently written as:

WMX̃
(qu) =

∑

sp,su

n∏

i=1

m∏

j=1

φ′ij(qu, sp, su)

where m = |∆X̃ |. φ′ij(qu, sp, su) = φij(qu, sp, su) if
fi contains a variable from X̃ , else φ′ij(qu, sp, su) =

φij(qu, sp, su)
1
m otherwise. It is easy to see this equiva-

lence since the only variables in the theory are from the
class X̃ . When fi contains a variable from X̃ , it has
exactly mi = m groundings since X̃ is SOM. On the
other hand, if fi does not contain a variable from X̃ , it
only contains propositional predicates. Then we raise it
to power 1

m , and then multiply m times in the latter ex-
pression to get an equivalent form.

Next, we use inversion elimination (de Salvo Braz, Amir,
and Roth 2005) to get rid of unary SUM predicates.
Lemma 3. MMAP problem over MX̃ can be written as:

arg max
qu

WMX̃
(qu) = arg max

qu

∑

sp

m∏

j=1

Θj(qu, sp)

where Θj is a function of unary MAX and propositional
SUM predicates groundings qu and sp, respectively.

Proof. We can write the MMAP objective WMX̃
(qu) as:

=
∑

sp,su

n∏

i=1

m∏

j=1

φ′ij(qu, sp, su)

=
∑

sp,su

m∏

j=1

n∏

i=1

φ′ij(qu, sp, su)

=
∑

sp,su

m∏

j=1

Φj(qu, sp, su)

=
∑

sp

∑

su1 ,su2 ,...,sum

m∏

j=1

Φj(qu, sp, suj )

(apply inversion elimination)

=
∑

sp

m∏

j=1

∑

suj

Φj(qu, sp, suj )

=
∑

sp

m∏

j=1

Θj(qu, sp)

Proof Explanation: Second equality is obtained by in-
terchanging the two products. Third equality is obtained
by defining

∏
i φ
′
ij(qu, sp, su) = Φj(qu, sp, su). In

fourth equality, we have made explicit the dependence
of Φj on suj i.e. the groundings corresponding to the
jth constant.
Inversion Elimination (de Salvo Braz, Amir, and Roth
2006): Since Φj only depends on suj (among su)
groundings, we can use inversion elimination to invert
the sum over suj and product over j in the fifth equality.
Final Expression: We define Θj(qu, sp) =∑
suj

Φj(qu, sp, su).
Note that, at this point, we have only propositional SUM
and unary MAX predicates in the transformed MMAP
objective.

3.2.4 Problem Transformation 4
Objective PT4: Exploit symmetry of the potential func-
tions in the MMAP objective.
We rename qu to q and sp to s for ease of notation in
Lemma 3. The MMAP objective can be written as:

WMX̃
(q) =

∑

s

m∏

j=1

Θj(qj , s) (4)

Here, q = (q1, q2, . . . , qm) and qj represents the assign-
ment to the unary MAX predicate groundings correspond-
ing to constant j. In the expression above, we have made
explicit the dependence of Θj on qj . We make the fol-
lowing two observations.

1) Due to the normal form assumption, all the ground-
ings of a first-order logic formula behave identical to
each other (up to renaming of constants). Hence, the re-
sulting potential function Θj’s are also identical to each
other.

2) If there are r unary MAX predicates inMX̃ , then each
qj can take R = 2r possible values 3.

Therefore, the value of the product
∏m
j=1 Θj(q, s) in the

RHS of Equation 4 depends only on the number of dif-
ferent types of values qj’s take in q (and not on which qj
takes which value). Let {v1, v2, · · · , vR} denote the set
of R different values that qj’s can take. Given a value vl,
let Nl denote the number of times vl appears in q. Next,
we state the following lemma.
Lemma 4. The MMAP problem can be written as:

arg max
q

WMX̃
(q) = arg max

N1,N2,··· ,NR

∑

s

R∏

l=1

fl(s)
Nl

subject to the constraints that ∀l, Nl ≥ 0, Nl ∈ Z and∑
lNl = m. Here, fl(s) = Θj(vl, s).
3since there are r predicate groundings for each j and each

is Boolean valued
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Proof. Proof follows from the fact that Θj’s are sym-
metric to each other and that the qj’s take a total of m
possible (non-unique) assignments since ∆X̃ = m.

We say that an assignment N1, N2, · · · , NR subject to
the constraints: ∀l, Nl ≥ 0 and

∑
lNl = m is at extreme

if ∃l such that Nl = m. Note that for R ≥ 2, extreme
assignment also implies that ∃l, Nl = 0. We have the
following lemma.
Lemma 5. * The solution to the MMAP formulation
arg maxqWMX̃

(q) lies at extreme iff solution to its
equivalent formulation:

arg max
N1,N2,··· ,NR

∑

s

R∏

l=1

fl(s)
Nl

subject to the constraints ∀l, Nl ≥ 0, Nl ∈ Z and∑
lNl = m lies at extreme.

3.2.5 Proving Extreme
Lemma 6. Consider the optimization problem:

arg max
N1,N2,··· ,NR

∑

s

g(s)×
R∏

l=1

fl(s)
Nl

subject to the constraints Nl ≥ 0,
∑
lNl = m. g(s) is

an arbitrary real-valued function independent of l. The
solution of this optimization problem lies at extreme.

Proof. Note that it suffices to prove this theorem as-
suming Nl’s are real-valued. If the solution is at ex-
treme with real-valued Nl’s, it must also be at extreme
when Nl’s are further constrained to be integer val-
ued. We will use induction on R to prove the result.
Consider base case of R = 2, the function becomes
arg maxN1

∑
s f1(s)

N1f2(s)
m−N1 × g(s). This func-

tion is convex and has its maximum value at N1 = m
or N1 = 0 (see supplement for a proof).

Assuming that the induction hypothesis holds forR = k.
We need to show for the case when R = k + 1. We
will prove it by contradiction. Assume that the solu-
tion to this problem does not lie at extreme. Then, in
this solution, it must be the case that Nl 6= 0,∀l. If
not, we can then reduce the problem to a k sized one
and apply our induction hypothesis to get an extreme so-
lution. Also, clearly Nl < m, ∀l. Let Nk+1 has the
optimal value of N∗k+1 in this solution. Then, substitut-
ing the optimal value of this component in the expres-
sion, we can get the optimal value for (N1, N2, · · · , Nk)

by solving arg maxN1,N2··· ,Nk
∑
s g
′(s)×∏R

l=1 fl(s)
Nl ,

subject to
∑k
l=1N

l = m − N∗k+1. Here, g′(s) =

g(s)×fk+1(s)N
∗
k+1 . Using the induction hypothesis, the

solution for this must be at extreme, i.e. ∃l, Nl = 0 since
k ≥ 2. This is a contradiction.

Corollary 1. The solution to the optimization problem

arg max
N1,N2,··· ,NR

∑

s

R∏

l=1

fl(s)
Nl

subject to the constraints ∀l, Nl ≥ 0, Nl ∈ Z and∑
lNl = m lies at extreme.

Theorem 1 (Proof): Corollary 1 combined with
Lemma 5, Lemma 4, Lemma 3, Lemma 2 and Lemma 1
proves the theorem.

3.3 SOM-R Rule for lifted MMAP
We will first define the SOM-R (SOM Reduce) equiva-
lence class which is a sub-class of SOM. Following our
notation, we will use Q and S to denote the set of MAX
and SUM predicates, respectively in the MMAP problem.
Definition 4. We say that an equivalence class of vari-
ables X̃ is SOM-R if (a) X̃ is SOM (b) ∀P ∈ S, P con-
tains a variable from X̃ OR ∀P ∈ S, P does not have a
variable from X̃ .

Note that if |S| = 1, then any SOM equivalence class is
also necessarily SOM-R. Next, we exploit the properties
of extreme assignments to show that domain of SOM-R
variables can be reduced to a single constant for MMAP
inference. We start with the definition of a reduced MLN.
Definition 5. (Reduced MLN) Let {(fi, wi}ni=1 denote
the set of (weighted) formulas in M . Let X̃ be a SOM-R
equivalence class with |∆X̃ | = m. We construct a
reduced MLN Mr by considering the following 2 cases:

CASE 1: ∀P ∈ S,P contains a variable from X̃

• ∀fi ∈ F (M) containing a variable X ∈ X̃ , add
(fi, wi) to Mr.

• ∀fi ∈ F (M) not containing a variable X ∈ X̃ , add
(fi,

1
m × wi) to Mr.

CASE 2: ∀P ∈ S, P does not contain a variable from X̃

• ∀fi ∈ F (M) containing a variable X ∈ X̃ , add
(fi, wi ×m) to Mr.

• ∀fi ∈ F (M) not containing a variable X ∈ X̃ , add
(fi, wi) to Mr.

In each case, we reduce the domain of X̃ to a single con-
stant in Mr.

We are ready to state our SOM-R rule for lifted MMAP.
Theorem 2. (SOM-R Rule for MMAP) Let X̃ be a
SOM-R equivalence class. Let Mr be the reduced MLN
in which domain of X̃ has been reduced to single con-
stant. Then, MMAP problem can be equivalently solved
over Mr.
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Proof. Let Q denote the set of MAX predicates in the
problem. We prove the above theorem in two parts. In
Lemma 7 below, we show that for every extreme assign-
ment (with respect to X̃) q to groundings of Q in M ,
there is a corresponding extreme assignment qr in Mr

(and vice-versa). In Lemma 8, we show that given two
extreme assignments, q and qr for the respective MLNs,
the MMAP value at q (in MX̃ ) is a monotonically in-
creasing function of the MMAP value at qr (in Mr

X̃
).

These two facts combined with the fact that MMAP so-
lution to the original problem is at extreme (using The-
orem 1) prove the desired result. Next we prove each
result in turn.

Lemma 7. Let q (resp. qr) denote the sets of extreme
assignments to the groundings of Q in M (resp. Mr).
There exists a one to one to mapping between q and qr.

Proof. Instead of directly working with M and Mr, we
will instead prove this lemma for the corresponding vari-
ablized MLNs MX̃ and Mr

X̃
. This can be done since

the process of variablization preserves the distribution as
well as the set of extreme assignments. Let q denote an
extreme assignment to MAX predicates in MX̃ . We will
construct a corresponding assignment qr for MAX pred-
icate in Mr

X̃
. Since X̃ is SOM-R, MX̃ has only unary

and propositional predicates, whereas Mr
X̃

is full ground
since the domain of X̃ is reduced to a single constant.

First, let us consider a propositional MAX predicate P in
MX̃ . Since P is ground both in M and Mr, we can as-
sign the value of P in qr to be same as q. Next, let us
consider a unary predicate P . Let the assignments to the
m groundings of P in q be given by the set {qPj} where
1 ≤ j ≤ m. Since q is extreme, each element in the set
{qPj} takes the same truth value. We can simply assign
this value to the ground appearance of P in MX̃ . Hence,
we get a mapping from q to qr. It is easy to see that we
can get a reverse mapping from qr to q in a similar man-
ner. Hence, proved.
Next, we state the relationship between the MMAP val-
ues obtained by the extreme assignments in M and Mr.

Lemma 8. * Let M be an MLN and Mr be the re-
duced MLN with respect to the SOM-R equivalence class
X̃ . Let q and qr denote two corresponding extreme
assignments in M and Mr, respectively. Then, ∃ a
monotonically increasing function g such that WM (q) =
g(WMr (qr)).

The proof of Lemma 8 exploits inversion elimination and
symmetry of potential functions over a variablized MLN
similar to their use in Section 3.2. These combined with
Lemma 7 become our key insights for reducing the com-
plexity of MMAP inference significantly compared to
existing methods (see supplement for details).

Corollary 2. SOM-R rule for MMAP problem subsumes
SO rule for MAP problem given by Mittal et al. (2014).

The corollary follows from the fact that MAP is a special
case of MMAP when all the predicates are MAX.

4 ALGORITHMIC FRAMEWORK
SOM-R rule can be combined with existing lifted infer-
ence rules such as lifted decomposition and condition-
ing (Jha et al. 2010; Gogate and Domingos 2011) (with
minor modifications) to yield a powerful algorithm for
solving MMAP (see Algorithm 1). The algorithm takes
as input an MLN M , the set of MAX predicates Q, SUM
predicates S and a ground MMAP solver gSol . It has six
steps. In the first step, the algorithm checks to see if the
MLN, along withQ and S can be partitioned into disjoint
MLNs that do not share any ground atoms. If this con-
dition is satisfied, then the MMAP solution can be con-
structed by solving each component independently and
simply concatenating the individual solutions. In the next
three steps, we apply the decomposer (Jha et al. 2010),
SOM-R (this work) and binomial rules (Jha et al. 2010;
Gogate and Domingos 2011) in order. The former two
reduce the domain of all logical variables in the equiv-
alence class to a constant and thus yield exponential re-
ductions in complexity. Therefore, they are applied be-
fore the binomial rule which creates O(m) (|∆X̃ | = m)
smaller sub-problems. In the algorithm, Md refers to an
MLN obtained from M by setting the domain of X̃ to a
single constant and we assume that |∆X̃ | = m. Simi-
larly, Mr refers to the MLN obtained from M by apply-
ing the SOM-R rule (see Definition 5).

The binomial rule (steps 4a and 4b) efficiently conditions
on the unary predicates and can be applied over the SUM
as well as MAX predicates. However, care must be taken
to ensure that all MAX predicates are instantiated before
the SUM predicates. Therefore, the binomial rule is ap-
plied over the SUM predicates only when the MLN has no
MAX predicates (Step 4b). In the algorithm, Mk refers to
the MLN obtained from M by setting exactly k ground-
ings of P to true and the remaining to false.

If none of the lifting rules are applicable and the MLN
has only ground atom, we return the solution returned by
the propositional solver gSol . Otherwise, if not all pred-
icates are ground, we resort to partial grounding, namely
we heuristically ground a logical variable and recurse on
the corresponding MLN M ′.

Finally, note that the algorithm returns the exponentiated
weight of the MMAP assignment. The assignment can
be recovered by tracing the recursion backwards.

Heuristics: (a) Binomial: In case of multiple possible
binomial applications, we pick the one which results in
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Algorithm 1 Lifted MMAP
Input: MLN M,Q,S, gSol
Output: MMAP value
Begin:

//1. Disjoint Sub-Theories
ifM can be partitioned into disjoint MLNsM1, . . . ,Mt that
share no atoms then

return
∏t
i=1 liftedMMAP(Mi,Qi,Si)

//2. Decomposer
if there exists a decomposer X̃ in M then

return [liftedMMAP(Md,Q,S,gSol)]m;
//3. SOM-R (see Defn. 5)
if there exists a SOM-R class X̃ in M then

return liftedMMAP(Mr,Q,S,gSol);
//4a. Binomial over MAX
if there exists a unary predicate P ∈ Q then

return maxk liftedMMAP(Mk,Q− {P},S,gSol);
//4b. Binomial over SUM
ifQ = ∅ and there exists a unary predicate P ∈ S then

return
∑m
k=0

(
m
k

)
liftedMMAP(Mk,Q,S −{P},gSol);

//5. Check if fully Ground
if M is fully Ground then

return apply(M ′,Q,S, gSol);
else

//6. Partial Grounding
M ′ = Heuristically ground an equivalence class X̃ in M
return liftedMMAP(M ′,Q,S, gSol);

End.

the application of other lifting rules (in the priority order
described above) using a one step look ahead. In case of
a tie, we pick the one with maximum domain size.

(b) Partial Grounding: We pick the equivalence class
which results in further application of lifting rules (in the
priority order) using a one step look ahead. In case of a
tie, we pick the one which has smallest domain size.

5 EXPERIMENTS
The goal of our experiments is two fold. First, we would
like to examine the efficacy of lifting for MMAP. Sec-
ond, we would like to analyze the contribution of SOM-R
rule in lifting. Towards this end, we compare the follow-
ing three algorithms: (1) Ground: ground inference with
no lifting whatsoever (2) Lifted-Basic: lifted inference
without use of the SOM-R rule 4 (3) Lifted-SOM-R: us-
ing all our lifting rules including SOM-R. For ground in-
ference, we use a publicly available 5 base (exact) solver
built on top of And/Or search developed by Marinescu et
al. (2014).

We experiment with three benchmark MLNs: (1) Stu-

4We use the rules described in Algorithm 1. For Lifted-
Basic, too many applications of the binomial rule led to blow
up. So, we restricted the algorithm to a single binomial appli-
cation and before any partial grounding. Lifted-SOM-R had no
such issues.

5https://github.com/radum2275/merlin

dent (Sarkhel et al. 2014) (2) IMDB (Mittal et al. 2016)
(3) Friends & Smokers (FS) (Domingos and Lowd 2009).
All the datasets are described in the lower part of Figure 1
along with the MAP predicates used in each case; the
remaining predicates are treated as marginal predicates.
Weights of the formulas were manually set.

We compare the performance of the three algorithms on
two different metrics: (a) time taken for inference (b)
memory used. We used a time-out of 30 minutes for each
run. Memory was measured in terms of the number of
formulas in the ground network in each case. We do not
compare the solution quality since all the algorithms are
guaranteed to produce MMAP assignments with same
(optimal) probability. All the experiments were run on
a 2.20 GHz Xeon(R) E5-2660 v2 server with 10 cores
and 62 GB RAM.

Results: For each of the graphs in Figure 1, we plot time
(memory) on y-axis (log-scale) and domain size on x-
axis. Time is measured in seconds. Since we are pri-
marily concerned about the scaling behavior, we use the
number of ground formulae as a proxy for the actual
memory usage. Domain size is measured as a function
of a scaling factor, which is the number by which (all
of) the starting domain sizes are multiplied. We refer to
domain descriptions (Figure 1) for the starting sizes.

Figures 1a and 1d compare the performance of the three
algorithms on the Student dataset. None of the lifting
rules apply for Lifted-Basic. Hence, its performance is
identical to Ground. For Lifted-SOM-R, all the variables
(except teacher(T)) can be reduced to a single constant,
resulting in significant reduction in the size of the ground
theory. Lifted-SOM-R is orders of magnitude better than
Ground and Lifted-Basic for both time and memory.

Figures 1b and 1e compare the three algorithms on
the FS dataset. Here, Lifted-Basic performs identical to
Lifted-SOM-R. This is because binomial rule applies in
the beginning on Smokes, following which theory de-
composes. We never need to apply SOM-R rule on this
domain. Both Lifted-SOM-R and Lifted-Basic perform
significantly better than Ground on this domain (in both
time and memory).

IMDB dataset (Figures 1c and 1f) presents a particu-
larly interesting case of interspersed application of rules.
For Lifted-SOM-R, SOM-R rule applies on movie(M)
variables, simplifying the theory following which bino-
mial rule can be applied on Mov, Dir and Act predicates.
Theory decomposes after these binomial applications.
For Lifted-Basic, though binomial rule can be applied
on Dir, Act the movie variables still remain, eventually
requiring for partial grounding. Surprisingly, Ground
does slightly better than both the lifted approaches for
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(a) Student: time vs domain size (b) FS: time vs domain size (c) IMDB: time vs domain size

(d) Student: mem vs domain size (e) FS: mem vs domain size (f) IMDB: mem vs domain size

Student (Sarkhel et al. 2014)
Teaches(T, C) ∧ Takes(S, C)⇒ JobOffer(S, M)
MAP Predicate: Takes(S, C), JobOffer(S, M)
size: teachr(T):2,course(C):3,comp(M):4,stud(S):6
FS (Domingos and Lowd 2009)
Smokes(P)⇒ Cancer(P);
Smokes(P1) ∧ Friend(P1, P2)⇒ Smokes(P2);
MAP Predicates: Smokes(P), Cancer(P)
size: person(P):5

IMDB (Mittal et al. 2016)
WorksWith(P1,P2)⇒ Act(P1); WorksWith(P1,P2)⇒ Dir(P2);
Dir(P1) ∧ Act(P2) ∧Mov(M,P1) ∧Mov(M,P2)⇒WorksWith(P2,P1);
Dir(P1) ∧ Act(P2) ∧Mov(M,P2) ∧WorksWith(P2,P1)⇒Mov(M,P1);
Dir(P1) ∧ Act(P2) ∧Mov(M,P1) ∧WorksWith(P2,P1)⇒Mov(M,P2);
Dir(P1) ∧ Act(P2)⇒WorksWith(P2,P1);
MAP Predicates: Act(P), Dir(P), Mov(M,P)
size: person(P):3, movie(M):2

Figure 1: Results and rules of Student, FS and IMDB datasets. ”size” gives initial domain sizes for each case.

smaller domains for time. This is due to the overhead of
solving multiple sub-problems in binomial without much
gain since domains are quite small. Lifted-SOM-R has a
much better scaling behavior for larger domains. It also
needs significantly less memory compared to both other
approaches.

In none of the above cases, Lifted-SOM-R has to ever
partially ground the theory making a very strong case
for using Lifted-SOM-R for MMAP inference in many
practical applications. Overall, our experiments clearly
demonstrate the utility of SOM-R in the scenarios where
other lifting rules fail to scale.

6 CONCLUSION
We present the first lifting technique for MMAP. Our
main contribution is the SOM-R rule, which states that
the domain of a class of equivalence variables, referred
to as SOM-R, can be reduced to a single constant for the
purpose of MMAP inference. We prove the correctness
of our rule through a series of problem transformations
followed by the properties of what we refer to as extreme

assignments. Our experiments clearly demonstrate the
efficacy of our approach on benchmark domains. Direc-
tions for future work include coming up with additional
lifting rules, approximate lifting and lifting in presence
of constraints (Mittal et al. 2015), all in the context of
MMAP, and experimenting with a wider set of domains.
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Abstract

We consider the problem of predicting plausible
missing facts in relational data, given a set of
imperfect logical rules. In particular, our aim
is to provide bounds on the (expected) number
of incorrect inferences that are made in this
way. Since for classical inference it is in general
impossible to bound this number in a non-trivial
way, we consider two inference relations that
weaken, but remain close in spirit to classical
inference.

1 INTRODUCTION

In this paper we study several forms of logical inference
for predicting plausible missing facts in relational data.
While a variety of approaches have already been stud-
ied for this task, ranging from (relational versions of)
probabilistic graphical models [19, 4] to neural-network
architectures [24, 20] and graph-based methods [15, 16],
logic-based inference has several advantages over these
other forms of inference. For example, logic-based in-
ference is explainable: there is a proof for any derived
statement, which can, in principle, be shown to a human
user. It is also more transparent than most other methods,
in the sense that a knowledge base as a whole can be
understood and modified by domain experts. On the other
hand, classic logical inference can be very brittle when
some of the rules which are used are imperfect, or some
of the initial facts may be incorrect.

Statistical relational learning approaches, such as Markov
logic networks [19] or probabilistic logic programming
[4], offer a solution to this latter problem, but they re-
quire learning a joint probability distribution over the
set of possible worlds. This distribution is typically es-
timated from one or several large examples using maxi-
mum likelihood, which essentially corresponds to finding

a maximum-entropy distribution given by a set of suffi-
cient statistics. However, there are usually no guarantees
on the learned distributions beyond guarantees for the
sufficient statistics (see, e.g., [12]), which means that we
do not have much control over the quality of the predic-
tions. Moreover, these models are not easy to modify, and
are not always easy to explain because the way in which
probabilities are computed can simply be too complex.

In this paper we focus on forms of inference that stay
as close to classical logic as possible while not breaking
completely when the given theory happens to be “mildly”
inconsistent with the data. This problem of reasoning
under inconsistency has a long tradition in the field of
artificial intelligence, with common solutions including
the use of paraconsistent logics [3, 18], belief revision
[8] (and related inconsistency repair mechanisms [11]),
and argumentation-based inference [7, 2]. In contrast to
these approaches, however, our specific aim is to study
forms of inference that can allow us to bound the (ex-
pected) number of mistakes that are made. To this end,
we introduce two inference relations called k-entailment
and voting entailment, both of which are close to classical
logic, and in particular do not require rules to be weighted.
We define them such that errors produced by imperfect
rules would not necessarily propagate too much in the
given relational data.

As our main contribution, we are able to show that in a
relational learning scenario from [12], in which a (large)
training example and a test example are sampled from
a hidden relational structure, there are non-trivial PAC-
type bounds on the number of errors that a theory learned
on the training example produces on the test example.
From this perspective, our work can also be seen as a
relational-learning counterpart of PAC semantics [23].

Technical contributions. The results presented in this
paper rest mainly on the following two technical contri-
butions: (i) the introduction of bounds on the worst case
behavior of the considered inference relations, and (ii)
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new concentration inequalities for sampling from rela-
tional data without replacement that allow us to bound
the (expected) test error as a function of the training error,
in the spirit of classical PAC-learning results [22].

2 PRELIMINARIES

In this paper we consider a function-free first-order logic
language L, which is built from a set of constants Const,
variables Var, and predicates Rel =

⋃
i Reli, where Reli

contains the predicates of arity i. We assume an untyped
language. For a1, ..., ak ∈ Const ∪ Var and R ∈ Relk,
we call R(a1, ..., ak) an atom. If a1, .., ak ∈ Const, this
atom is called ground. A literal is an atom or its negation.
The formula α0 is called a grounding of α if α0 can be
obtained by replacing each variable in α with a constant
from Const. A formula is called closed if all variables
are bound by a quantifier. A possible world ω is defined
as a set of ground atoms. The satisfaction relation |= is
defined in the usual way. A substitution is a mapping
from variables to terms.

3 PROBLEM SETTING

First we describe the learning setting considered in this
paper. It follows the setting from [12],which was used to
study the estimation of relational marginals.

An example is a pair (A, C), with C a set of constants and
A a set of ground atoms which only use constants from C.
An example is intended to provide a complete description
of the world, hence any ground atom over C which is not
contained inA is implicitly assumed to be false. Note that
this is why we have to explicitly specify C, as opposed to
simply considering the set of constants appearing in A.

In practice, we usually only have partial information about
some example of interest. The problems we consider in
this paper relate to how we can then reason about the
probability that a given ground atom is true (i.e. belongs to
the example). To estimate such probabilities, we assume
that we are given a fragment of the example, which we
can use as training data. Specifically, let Υ = (A, C) be
an example and S ⊆ C. The fragment Υ〈S〉 = (B,S)
is defined as the restriction of Υ to the constants in S,
i.e. B is the set of all atoms from A which only contain
constants from S . In a given example, any closed formula
α is either true or false. To assign probabilities to formulas
in a meaningful way, we consider how often the formula
is satisfied in small fragments of the given example.

Definition 1 (Probability of a formula [12]). Let Υ =
(A, C) be an example and k ∈ N. For a closed formula α

without constants, we define its probability as follows1:

QΥ,k(α) = PS∼Unif(C,k) [Υ〈S〉 |= α]

where Unif(C, k) denotes uniform distribution on size-k
subsets of C.

Clearly QΥ,k(α) = 1
|Ck| ·

∑
S∈Ck 1(Υ〈S〉 |= α) where

Ck is the set of all size-k subsets of C.

The above definition is also extended straightforwardly
to probabilities of sets of formulas (which we will also
call theories interchangeably). If Φ is a set of formulas,
we set QΥ,k(Φ) = QΥ,k(

∧
Φ) where

∧
Φ denotes the

conjunction of all formulas in Φ.

Example 1. Let sm/1 be a unary predicate denoting
that someone is a smoker, e.g. sm(alice) means that
alice is a smoker. Let us have an example Υ =
({fr(alice, bob), sm(alice), sm(eve)}, {alice, bob, eve}),
and formulas α = ∀X : sm(X) and β = ∃X,Y :
fr(X,Y ). Then, for instance, QΥ,1(α) = 2/3,
QΥ,2(α) = 1/3 and QΥ,2(β) = 1/3.

Definition 2 (Masking). A masking process is a function
κ from examples to ground conjunctions that assigns to
any Υ = (A, C) a conjunction of ground literals β such
that Υ |= β. We also define κ(Υ)〈S〉 to be the conjunc-
tion consisting of all literals from κ(Υ) that contain only
constants from S.

Unlike examples, masked examples only encode partial
information about the world. This is why they are encoded
using conjunctions of literals, so we can explicitly encode
which atoms we know to be false.

Example 2. Let Υ = {sm(alice), fr(alice, bob),
{alice, bob}}. Then a masking process κ may, for in-
stance, yield κ(Υ) = ¬sm(bob) ∧ sm(alice). In this
case κ(Υ) retains the information that alice is a smoker
and bob is not, but it no longer contains any information
about their friendship relation.

Next we introduce the statistical setting considered in this
paper.

Definition 3 (Learning setting). Let ℵ = (Aℵ, Cℵ) be an
example and κ be a masking function. Let CΥ ⊆ Cℵ and
CΓ ⊆ Cℵ be uniformly sampled subsets of size n and u,
respectively. We call Υ = ℵ〈CΥ〉 the training example
and Γ = ℵ〈CΓ〉 the test example. We assume that the
learner receives Υ in the training phase and κ(Γ) in the
test phase.

With slight abuse of terminology, we will sometimes say
that Υ and Γ are sampled from ℵ.

1We will use Q for probabilities of formulas as defined in
this section, to avoid confusion with other “probabilities” we
deal with in the text.
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In addition to the training example Υ and masked test
example κ(Γ), we will assume that we are given a set of
formulas Φ (which we will also refer to as rules). Our
main focus will be on how these formulas can be used to
recover as much of Γ as possible. Rather than specifying
a loss function that should be minimized, we want to find
a form of inference which allows us to provide bounds
on the (expected) number of incorrect literals that can
be inferred from {κ(Γ)} ∪ Φ. Note that in this case, the
training example Υ is used to estimate the accuracy of the
set of formulas. We also analyze the case where the rules
are learned from the training example Υ (in the spirit of
classical PAC-learning results).

Among others, the setting from Definition 3 is close to
how Markov logic networks are typically used. For in-
stance, when training Markov logic networks, one typi-
cally starts with a training example that contains all facts
(i.e. nothing is unknown about the training set), on which
a model is trained. This model is then used to predict
unknown facts about a test example. However, unlike
for Markov logic networks, we do not attempt to learn a
probability distribution. It was shown in [14] that models
based on classic logical inference, like those considered
in this paper, work well in practice for relational infer-
ence from evidence sets containing a small number of
constants (domain elements). Thus, such models are also
of considerable practical interest.

4 REASONING WITH INACCURATE
RULES

When reasoning with imperfect rules, using classical infer-
ence can have drastic consequences, as we will illustrate
in Section 4.1. Even a single mistake can lead to many
errors, since an incorrectly derived literal can be used as
the basis for further inferences. This means that classi-
cal inference is not suitable for the considered setting,
even in cases where the given rules have perfect accu-
racy on the training example. Intuitively, to allow for
any meaningful bounds to be derived, we need to pre-
vent arbitrarily long chains of inference. To this end, we
propose and motivate the use of a restricted form of in-
ference, called k-entailment, in Section 4.2. A further
restriction on inferences, based on a form of voting, is
subsequently discussed in Section 4.3. In Section 5 we
will then show which bounds can be derived for these two
restricted forms of inference.

4.1 WHEN CLASSICAL REASONING LEADS
TO ERRORS

The next example, which is related to label propagation as
studied e.g. in [26], shows that classic logical reasoning

on the obtained relational sample may produce many mis-
takes even when all the available rules are very accurate.

Example 3. Let k = 2, Γ = {{rare(c1)}, {c1, c2, . . . ,
c1000000}, and α = ∀X,Y : rare(X)⇒ rare(Y ). While
the rule does not intuitively make sense, its accuracy
is actually very high QΓ,k(α) = 1 − 999999/(0.5 ·
1000000 · 999999) = 0.999998. When we apply this
rule with the evidence rare(c1), we derive rare(c2), . . . ,
rare(c1000000), all of which are incorrect (i.e. not in-
cluded in Γ).

Note that in this paper, we are interested in worst-case
behavior, in the sense that the masking process which is
used may be seen as adversarial. The next example further
illustrates how adversarial masking processes can lead to
problems, even for rules with near-perfect accuracy.

Example 4. Let k = 2, Γ = {{rare(c1), e(c1, c2),
e(c2, c3), . . . , e(c999999, c1000000) }, {c1, c2, . . . ,
c1000000}, and α = ∀X,Y : rare(X) ∧ e(X,Y ) ⇒
rare(Y ). In this case, there is only one size-k subset
of CΓ where the formula α does not hold, so the accuracy
is even higher than in the previous example. Yet the ad-
versarial masking process can select evidence consisting
of all true positive literals from Γ, i.e. the evidence will
consist of the rare(c1) literal and all the e/2 literals from
Γ. Then the set of errors that are made when using the
formula α will be the same as in Example 3, despite the
fact that the rule is almost perfect on Γ.

Note that in the examples above, we had perfect knowl-
edge of the accuracy of the rule α on the test example (i.e.
we knew the value of QΓ,k(α)). In practice, this accuracy
needs to be estimated from the training example. In such
cases, it can thus happen that a rule α has accuracy 1 on
the training example Υ, but still produces many errors on
κ(Γ). We will provide PAC-type bounds for this setting
with estimated accuracies in Sections 5. First, however,
in Section 4.2 and 4.3 we will look at how bounds can
be provided on the number of incorrectly derived literals
in the case where QΓ,k(α) is known. As the above ex-
amples illustrate, to obtain reasonable bounds, we will
need to consider forms of inference which are weaker
than classical entailment.

4.2 BOUNDED REASONING USING
k-ENTAILMENT

We saw that even for formulas which hold for almost all
subsets of Γ, the result of using them for inference can be
quite disastrous. This was to a large extent due to the fact
that we had inference chains involving a large number of
domain elements (constants). This observation suggests a
natural way to restrict the kinds of inferences that can be
made when imperfect rules are involved.
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Definition 4 (k-entailment). Let k be a non-negative in-
teger, Υ = (A, C) be an example, κ be a masking pro-
cess, and Φ be a set of closed formulas. We say that
a ground formula ϕ is k-entailed by Φ and κ(Υ), de-
noted {κ(Υ)} ∪ Φ |=k ϕ, if there is a C′ ⊆ C such that
|C′| ≤ k, const(ϕ) ⊆ C′, {κ(Υ)〈C′〉} ∪ Φ is consistent
and {κ(Υ)〈C′〉} ∪ Φ |= ϕ.

In other words, a formula φ is k-entailed by Υ and Φ if it
can be proved using Φ together with a fragment of κ(Υ)
induced by no more than k constants, with the additional
condition that Φ and this fragment are not contradictory.

Example 5. Let

Υ = ({fr(alice, bob), sm(alice)}, {alice, bob, eve})
κ(Υ) = fr(alice ∧ bob) ∧ sm(alice)

Φ = {∀X,Y : fr(X,Y ) ∧ sm(X)⇒ sm(Y )}.

Then ϕ = sm(bob) is 2-entailed from κ(Υ) and Φ but not
1-entailed.

Note that, in the setting of Example 4, k-entailment would
make at most k − 1 mistakes. However, 2-entailment
would already produce many mistakes in the case of Ex-
ample 3. So there are cases where k-entailment produces
fewer errors than classical logic entailment but, quite nat-
urally, also cases where both produce the same number
of errors. Importantly, however, for k-entailment, we can
obtain non-trivial bounds on the number of errors.

Next we state two lemmas that follow immediatelly from
the respective definitions.

Lemma 1. Let Υ = (A, C) be an example, Φ be a set of
constant-free formulas and κ be a masking function. Let
Ck be the set of all size-k subsets of C. Let HX denote
the set of all ground literals which can be derived using
k-entailment from {κ(Υ)}∪Φ and only contain constants
from X . ThenHC =

⋃
S∈Cl HS .

Lemma 2. When Γ〈S〉 |= Φ then all ground literals that
only contain constants from S and that are entailed by
{κ(Γ〈S〉)} ∪ Φ must be true in Γ〈S〉.

We now provide a bound on the number of ground literals
wrongly k-entailed by a given Φ, assuming that we know
its accuracy QΓ,k(Φ) on the example Γ.

Proposition 6. Let Γ = (A, C) be an example, Φ be a
set of constant-free formulas and κ be a masking process.
Next let F(Γ) be the set of all ground literals of a predi-
cate p/a, a ≤ k, which are k-entailed by {κ(Γ)} ∪Φ but
are false in Γ. Then

|F(Γ)| ≤ (1−QΓ,k(Φ))|C|kka.

Proof. First, we note that the number of size-k subsets
is bounded by |C|k and the number of different ground

p/a atoms in each of these subsets is ka. It follows from
Lemma 2 and Lemma 1 that for any literal δ ∈ F there
must be a size-k set S ⊆ C such that Γ〈S〉 6|= Φ. The
number of all such S’s that satisfy Γ〈S〉 6|= Φ is bounded
by (1 − QΓ,k(Φ))|C|k. Hence, we have |F(Γ)| ≤ (1 −
QΓ,k(Φ))|C|kka.

We can notice that when we increase the domain size
|C|, keeping QΓ,k(Φ) fixed and non-zero, the bound even-
tually becomes vacuous for predicates whose arity a is
strictly smaller than k. This is because the number of
all ground literals grows only as |C|a whereas the bound
grows as |C|k. However, if a = k, the bound stays fixed
when we increase the domain size. We will come back to
consequences of this fact in Section 6.

4.3 BOUNDED REASONING USING VOTING

To further restrict the set of entailed ground literals, we
next introduce voting entailment.
Definition 5 (Voting Entailment). Let k be an integer and
γ ∈ [0; 1]. Let Υ = (A, C) be an example, Φ be a set of
constant-free formulas, and κ be a masking process. A
ground literal l of arity a, a ≤ k, is said to be entailed
from Φ and κ(Υ) by voting with parameters k and γ if
there are at least max{1, γ · |C|k−a} size-k sets S ⊆ C
such that l is k-entailed by κ(Υ)〈S〉.

The next example illustrates the use of voting entailment.
Example 7. Let Υ = (A, C), where C =
{alice, bob, eve}, and let κ(Υ) = fr(alice, bob) ∧
fr(eve, bob) ∧ sm(eve). Next, let Φ = {∀X,Y :
fr(X,Y )∧ sm(X)⇒ sm(Y )}. Then sm(bob) is entailed
from Φ and κ(Υ) by voting with the parameters k = 2
and γ = 2/3, as γ · |C|k−a = 2/3 · 32−1 = 2 and there
are two size-2 subsets of C that 2-entail sm(bob).

We now show how the bound from Proposition 6 can be
strengthened in the case of voting entailment.
Proposition 8. Let k be an integer and γ ∈ [0; 1]. Let
Γ = (A, C) be an example, Φ be a set of constant-free
formulas, and κ be a masking process. Let F(Γ) be the
set of all ground literals of a predicate p/a, a ≤ k, that
are entailed by voting from {κ(Γ)} ∪ Φ with parameters
k and γ but are false in Γ. If γ · |C|k−a ≥ 1 then

|F(Γ)| ≤ (1−QΓ,k(Φ))
|C|aka
γ

and otherwise

|F(Γ)| ≤ (1−QΓ,k(Φ)) |C|kka.

Proof. First we define the number of “votes” for a ground
literal l as

#κ(Γ),Φ(l) = | {S ⊆ C ||S|=k, {κ(Γ)〈S〉} ∪ Φ |=k l} |.
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Let L be the set of all ground p/a literals l such that
Γ |= ¬l. Then, since any size-k subset of C can only
contribute ka votes to literals based on the predicate p/a,
we have

∑

l∈L
#κ(Γ),Φ(l) ≤ (1−QΓ,k(Φ)) |C|kka.

Hence |F(Γ)| ≤ (1−QΓ,k(Φ))|C|kka
max{1,γ·|C|k−a} . If γ · |C|k−a ≥ 1

then |F(Γ)| ≤ (1−QΓ,k(Φ)) |C|
aka

γ . The case when
γ · |C|k−a < 1 follows from Theorem 6.

Unlike for k-entailment, the fraction of “wrong” ground
p/a literals entailed by voting entailment does not grow
with an increasing domain size as long as γ · |C|k−a ≥ 1.

5 PROBABILISTIC BOUNDS

We now turn to the setting where the accuracy of the for-
mulas needs to be estimated from a training example Υ.
More generally, we also cover the case where the formu-
las themselves are learned from the training example. In
such cases, to account for over-fitting, we need to con-
sider the (size of the) hypothesis class that was used for
learning these formulas. Specifically, we prove probabilis-
tic bounds for variants of the following learning problem.
We are given a hypothesis setH of constant-free theories,
and we want to compute bounds on the number of incor-
rectly predicted literals which simultaneously hold for all
Φ ∈ H (as a function of QΥ,k(Φ)) with probability at
least 1− δ, where δ is a confidence parameter. Note that
the case where the theory Φ is given, rather than learned,
corresponds toH = {Φ}.
We start by proving general concentration inequalities
in Section 5.1 which we then use to prove bounds for
k-entailment. These bounds are studied for the realizable
case in Section 5.2 and for the general case in Section 5.3.
Bounds for voting entailment are studied in Section 5.4

5.1 CONCENTRATION INEQUALITIES

We will need to bound the difference between the “accu-
racy” of given sets of logic formulas Φ on the training
sample Υ and their accuracy on a test sample Γ (i.e. the
difference between QΥ,k(Φ) and QΓ,k(Φ)). To prove the
concentration inequalities in this section, we will utilize
the following lemma.

Lemma 3 (Kuželka et al. [12]). Let ℵ = (Aℵ, Cℵ) be
an example. Let 0 ≤ n ≤ |Cℵ| and 0 ≤ k ≤ n be
integers. Let X = (S1,S2, . . . ,Sbnk c) be a vector of
subsets of Cℵ, each sampled uniformly and independently
of the others from all size-k subsets of Cℵ. Next let CΥ be
sampled uniformly from all size-n subsets of Cℵ. Finally,

let I ′ = {1, 2, . . . , |Cℵ|} and let Y = (S ′1,S ′2, . . . ,S ′bnk c)
be a vector sampled by the following process:

1. Sample subsets I ′1, . . . , I ′bnk c of size k from I ′.

2. Sample an injective function g :
⋃bn/kc
i=1 I ′i → CΥ

uniformly from all such functions.

3. Define S ′i = g(I ′i) for all 0 ≤ i ≤ bnk c.

Then X and Y have the same distribution.

The next example illustrates the intuition behind the proof
of this lemma, which can be found in [12].

Example 9. Let Cℵ = {1, 2, . . . , 106}. Let us sample
bm/kc size-k subsets of Cℵ uniformly. If this was the
process that generates the data from which we estimate
parameters, we could readily apply Hoeffding’s inequal-
ity to get the confidence bounds. However, in typical SRL
settings (e.g. with MLNs), we are given a complete ex-
ample on some set of constants (objects), rather than a
set of small sampled fragments. So we instead need to
assume that the whole training example is sampled at
once, uniformly from all size-m subsets of Cℵ. However,
when we then estimate the probabilities of formulas from
this example, we cannot use Hoeffding’s bound or any
other bound expecting independent samples. What we can
do2 is to mimic sampling from Cℵ by sampling from an
auxiliary set of constants of the same size as Cℵ and then
specialising these constants to constants from a sampled
size-m subset. Hence the first bm/kc sampled sets will
be distributed exactly as the first bm/kc subsets sampled
i.i.d. directly from Cℵ.

Lemma 3 was used in [12] to prove a bound on expected
error. Here we extend that result and use Lemma 3 to
prove the concentration inequalities stated in the next two
theorems.

Theorem 10. Let ℵ = (Aℵ, Cℵ) be an example and let
0 ≤ n ≤ |Cℵ| and 0 ≤ k ≤ n be integers. Let CΥ be sam-
pled uniformly from all size-n subsets of Cℵ and let Υ =
ℵ〈CΥ〉. Let α be a closed and constant-free formula and
let Ck denote all size-k subsets of CΥ. Let ÂΥ = QΥ,k(α)

and letAℵ = Qℵ,k(α). Then we haveP [ÂΥ−Aℵ ≥ ε] ≤
exp

(
−2
⌊
n
k

⌋
ε2
)
, P [Aℵ − ÂΥ ≥ ε] ≤ exp

(
−2
⌊
n
k

⌋
ε2
)
,

and P
[∣∣∣ÂΥ −Aℵ

∣∣∣ ≥ ε
]
≤ 2 exp

(
−2
⌊
n
k

⌋
ε2
)
.

Proof. First we define an auxiliary estimator Ã(q)
Υ . Let

Y(q) be a vector of bn/kc · q size-k subsets of CΥ where

2Note that we do not need to do this in practice which will
follow from Theorem 10; we only need this mimicking process
to prove that theorem.
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the subsets of CΥ in each of the q non-overlapping size-
bn/kc segments Y

(q)
1 ,Y

(q)
2 , . . . ,Y

(q)
q of Y(q) are sam-

pled in the same way as the elements of the vector Y in
Lemma 3, all with the same CΥ (i.e. Y(q) is the concate-
nation of the vectors Y(q)

1 ,Y
(q)
2 , . . . ,Y

(q)
q ). Let us define

Ã
(q)
Υ = 1

q·bn/kc
∑
S∈Y(q) 1(Υ〈S〉 |= α). We can rewrite

Ã
(q)
Υ as Ã(q)

Υ = 1
q

∑q
i=1

1
bn/kc

∑
S∈Y(q)

i
1(Υ〈S〉 |= α).

Then we can use the following trick (Hoeffding [9], Sec-
tion 5) based on application of Jensen’s inequality and
Markov’s inequality: If T = a1 ·T1+a2 ·T2+· · ·+aq ·Tn,
where ai ≥ 0 and

∑q
i=1 ai = 1, then, for any h > 0,

P [T ≥ ε] ≤ ∑n
i=1 ai · E [exp (h(Ti − ε))]. Note that

the Ti’s do not have to be independent. Next, using Ho-
effding’s lemma (Lemma 1 in [9]), if ai = 1/q and each
of the terms Ti is a sum of independent random zero-
mean variables X(i)

j such that P [a ≤ X(i)
j ≤ b] = 1 and

b− a ≤ 1, then we get:

P [T ≥ ε] ≤
q∑

i=1

1

q
· E [exp (h(Ti − ε))]

≤ e−hε exp

(
m · h2

8

)
= exp

(
−hε+

m · h2

8

)

where m denotes the number of summands of Ti (which,
in our case, is the same for all Ti’s). Note that this func-
tion achieves its minimum at h = 4ε

m . We set Ti :=∑
S∈Y(q)

i
(1(Υ〈S〉 |= α)−Aℵ) (note that E [Ti] = 0

and m = bn/kc). Thus, we get P [
⌊
n
k

⌋
· (Ã(q)

Υ − Aℵ) ≥
ε] ≤ exp

(
−2ε2/

⌊
n
k

⌋)
, and finally

P [Ã
(q)
Υ −Aℵ ≥ ε] ≤ exp

(
−2
⌊n
k

⌋
ε2
)
,

symmetrically also P
[
Aℵ − Ã(q)

Υ ≥ ε
]

≤
exp

(
−2
⌊
n
k

⌋
ε2
)
, and, using union bound, we get

P [|Ã(q)
Υ −Aℵ| ≥ ε] ≤ 2 exp

(
−2
⌊n
k

⌋
ε2
)
.

It follows from the strong law of large numbers (which
holds for any Υ) that P [limq→∞ Ã

(q)
Υ = ÂΥ] = 1. Since

q was arbitrary, the statement of the proposition follows.

As the next theorem shows, the above result can be gener-
alized to the case where we need to bound the difference
between the estimations obtained from two samples.

Theorem 11. Let ℵ = (Aℵ, Cℵ) be an example and let
0 ≤ n, u ≤ |Cℵ| and 0 ≤ k ≤ n be integers. Let CΥ
and CΓ be sampled uniformly from all size-n and size-
u subsets of Cℵ and let Υ = ℵ〈CΥ〉,Γ = ℵ〈CΓ〉. Let
α be a closed and constant-free formula. Let ÂΥ =

QΥ,k(α), ÂΓ = QΓ,k(α), and let Aℵ = Qℵ,k(α). Then

we have P [ÂΥ − ÂΓ ≥ ε] ≤ exp
(

−2ε2

1/bn/kc+1/bu/kc

)
,

and P
[∣∣∣ÂΥ − ÂΓ

∣∣∣ ≥ ε
]
≤ 2 exp

(
−2ε2

1/bn/kc+1/bu/kc

)
.

Proof. See the appendix.

We note that the concentration inequality derived in Theo-
rem 10 improves upon a concentration inequality derived
in [17] (Chapter 10) that contains n/k2 (in our notation)
instead of bn/kc in the exponential.3

Next we prove an inequality for the special case where the
probability of a formula α on Υ is 0. Since we can also
take negations of formulas, this theorem will be useful
to prove bounds for formulas that are perfectly accurate
on training data. As the following theorem shows, in
this case we obtain stronger guarantees, where we have ε
instead of ε2 in the exponential.

Theorem 12. Let ℵ = (Aℵ, Cℵ) be an example and let
0 ≤ n ≤ |Cℵ| and 0 ≤ k ≤ n be integers. Let CΥ
be sampled uniformly from all size-n subsets of Cℵ and
let Υ = ℵ〈CΥ〉. Let α be a closed and constant-free
formula and let Ck denote all size-k subsets of CΥ. Let
ÂΥ = QΥ,k(α) and let Aℵ = Qℵ,k(α) ≥ ε. Then we
have

P
[
ÂΥ = 0

]
≤ exp (−bn/kc ε) .

Proof. Let Y be sampled as in Lemma 3 (i.e. Y is
sampled only using Υ and not directly ℵ). Then us-
ing Lemma 3 we know that the elements of Y are dis-
tributed like bn/kc independent samples (size-k sub-
sets) from Cℵ. Hence we can bound the probability
P [AΥ = 0] ≤ (1 − ε)bn/kc ≤ exp (−bn/kcε). Ob-
viously, adding the rest of the information from size-k
subsets of CΥ that are not contained in Y cannot increase
the bound.

5.2 ZERO TRAINING ERROR CASE

We start by proving a bound for the realizable (i.e. zero
training error) case.

Theorem 13. Let ℵ, Υ, Γ, n, u and κ be as in Definition
3 (i.e. Υ and Γ are sampled from ℵ and n, u are sizes of
Υ’s and Γ’s domains). LetH be a finite hypothesis class
of constant-free formulas. Let F(Γ,Φ) denote the set of
all ground literals of a predicate p/a that are k-entailed
by {κ(Γ)} ∪ Φ but are false in Γ.4 With probability at

3This is essentially due to the fact that we use Hoeffding’s
decomposition whereas Lovasz relies on Azuma’s inequality,
leading to a looser bound compared to our bound.

4Note that here, as well as in the rest of the theorems in the
paper, F(Γ,Φ) is a set-valued random variable.
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least 1− δ, the following holds for all Φ ∈ H that satisfy
QΥ,k(Φ) = 1:

E [|F(Γ,Φ)|] ≤ ln |H|+ ln 1/δ

bn/kc ukka.

Proof. It follows from the linearity of expectation and
from Proposition 6 that, for any Φ, E [|F(Γ,Φ)|] ≤ (1−
Qℵ,k(Φ))ukka. Next, it follows from Theorem 12 and
from the union bound taken over all Φ ∈ H that the
probability that there exists Φ ∈ H such that QΥ,k(Φ) =
1 and ε ≤ 1−Qℵ,k(Φ) is at most |H|·exp (−bn/kcε). If
ε ≥ ln |H|+ln 1/δ

bn/kc then |H| · exp (−bn/kcε) ≤ δ. Hence,
with probability at least 1 − δ, the following holds for
all Φ ∈ H such that QΥ,k(Φ) = 1: E [|F(Γ,Φ)|] ≤
ln |H|+ln 1/δ
bn/kc ukka.

5.3 GENERAL CASE

Next we prove a bound for the general case when the
training error is non-zero.

Theorem 14. Let ℵ, Υ, Γ, n, u and κ be as in Definition
3 (i.e. Υ and Γ are sampled from ℵ and n, u are sizes of
Υ’s and Γ’s domains). LetH be a finite hypothesis class
of constant-free formulas. Let F(Γ,Φ) denote the set of
all ground literals of a predicate p/a that are k-entailed
by {κ(Γ)}∪Φ but are false in Γ. With probability at least
1− δ, for all Φ ∈ H:

E [|F(Γ,Φ)|] ≤


1−QΥ,k(Φ) +

√√√√ ln
(
|H|
δ

)

2bn/kc


ukka.

Proof. First, as in the proof of Theorem 13, we find that,
for any Φ ∈ H, E [|F(Γ)|] ≤ (1 − Qℵ,k(Φ))ukka.
Next, it follows from Theorem 10 and from union
bound that P [∃Φ ∈ H : QΥ,k(Φ)−Qℵ,k(Φ) ≥ ε] ≤
|H| exp

(
−2bn/kcε2

)
. It follows that

P

[
∃Φ ∈ H : QΥ,k(Φ) ≥ Qℵ,k(α) +

√
ln (|H|/δ)

2bn/kc

]
≤ δ.

The theorem then follows straightforwardly from the
above and from Proposition 6.

The previous two theorems provided bounds on the ex-
pected number of errors on the sampled test examples.
The next theorem is different in that it provides a bound
on the actual number of errors.

Theorem 15. Let ℵ, Υ, Γ, and κ be as in Definition 3
(i.e. Υ and Γ are sampled from ℵ and n, u are sizes of
Υ’s and Γ’s domains). LetH be a finite hypothesis class
of constant-free formulas. Let F(Γ,Φ) denote the set of

all ground literals of a predicate p/a that are k-entailed
by {κ(Γ)}∪Φ but are false in Γ. With probability at least
1− δ, for all Φ ∈ H :

|F(Γ,Φ)| ≤
(

1−QΥ,k(Φ)+

√
(bn/kc+ bu/kc) ln (2|H|/δ)

2bn/kcbu/kc

)
ukka

≤
(

1−QΥ,k(Φ) +

√
ln (2|H|/δ)

min(bn/kc, bu/kc)

)
ukka.

Proof. Let us denote Â = QΥ,k(Φ), B̂ = QΓ,k(Φ). Us-
ing Theorem 11 and the union bound over Φ ∈ H, we
get

P [∃Φ ∈ H : |Â−B̂| ≥ ε] ≤ 2|H| exp

(−2ε2bn/kcbu/kc
bn/kc+ bu/kc

)
.

Solving the above for ε that achieves the 1− δ bound, we
obtain that, with probability at least 1− δ, we have for all

Φ ∈ H: |Â − B̂| ≤
√

(bn/kc+bu/kc) ln (2|H|/δ)
2bn/kcbu/kc . Hence,

with probability at least 1 − δ, for all Φ ∈ H it holds

1−QΓ,k(Φ) ≤ 1−QΥ,k(Φ)+
√

(bn/kc+bu/kc) ln (2|H|/δ)
2bn/kcbu/kc .

The validity of the theorem then follows from the above
and from Proposition 6 and the fact that ab

a+b ≥
min(a,b)

2
for any nonnegative a and b.

5.4 BOUNDS FOR VOTING ENTAILMENT

Next we prove a bound for voting entailment, which,
unsurprisingly, is tighter than the respective bound for
k-entailment.

Theorem 16. Let k be an integer and γ ∈ [0; 1]. Let
further ℵ, Υ, Γ and κ be as in Definition 3 (i.e. Υ and
Γ are sampled from ℵ and n, u are sizes of Υ’s and Γ’s
domains). LetH be a finite hypothesis class of constant-
free formulas. Let F(Γ,Φ) denote the set of all ground
literals of a predicate p/a that are entailed by voting from
{κ(Γ)} ∪ Φ with parameters k and γ but are false in Γ.
Then, with probability at least 1− δ, for all Φ ∈ H:

|F(Γ)| ≤
(

1−QΥ,k(Φ) +

√
ln (2|H|/δ)

min {bu/kc, bn/kc}

)
uaka

γ
.

Proof. This follows from the same reasoning as in the
proof of Theorem 15, which gives us the bound on the
difference of QΥ,k(Φ) and QΓ,k(Φ), combined with The-
orem 8.
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Remark 17. The fraction of “wrong” ground p/a liter-
als does not grow with increasing test-set size (u), since,
by rewriting the bound from Theorem 16, we get, with
probability at least 1− δ, for all Φ ∈ H:

|F(Γ)|
ua

≤
(

1−QΥ,k(Φ) +

√
ln (2|H|/δ)

min {bu/kc, bn/kc}

)
ka

γ
.

We note here that one can also easily obtain counterparts
of Theorems 13 and 14 for voting entailment.

6 SUMMARY OF RESULTS

In this section we discuss positive and negative results
that follow from the theorems presented in the preceding
sections. Here, bounds are considered vacuous if they are
not lower than the total number of ground literals. We
first focus on k-entailment in Sections 6.1–6.3, and then
discuss the results for voting entailment in Section 6.4.
Finally, we also make a connection to MAP-entailment in
Section 6.5.

6.1 SMALL TEST EXAMPLES

One case where we have non-vacuous bounds for the
expected number of incorrectly predicted literals with k-
entailment is when the domain of the test examples Γ is
small. Naturally a necessary condition is also that the
given (or learned) theory Φ is sufficiently accurate. The
only way to be confident that Φ is indeed sufficiently
accurate, given that this accuracy needs to be estimated,
is by estimating it on a sufficiently large training example.
This is essentially what Theorems 13 and 14 imply.

Interestingly, this finding agrees with some experimental
observations in the literature. For instance, it has been
observed in [14] that classical reasoning in a relational
setting close to ours worked well for small-size test-set
evidence but was not competitive with other methods for
larger evidence sizes. The analysis in the present paper
thus sheds light on experimental observations like these.

Note that the bounds from Theorems 13 and 14 are for
the expected value of the number of errors. Bounds on
the actual number of errors are provided in Theorem 15.
In this case, to obtain non-vacuous bounds, we also need
to require that the domain of the test example Γ be suf-
ficiently large. This is not unexpected, however, as it is
a known property of statistical bounds for transductive
settings (see e.g., [21]) that the size of the test set affects
confidence bounds, similarly to how the size of the Γ’s
domain affects the bound in Theorem 15.

6.2 PREDICATES OF ARITY K

Another case where we have non-vacuous bounds for k-
entailment is when the arity of the predicted literals is
equal to the parameter k. In this case both the bounds
for the expected error and for the actual error |F(Γ,Φ)|
are non-vacuous. This means that our results cover im-
portant special cases. One such special case is classical
attribute-value learning when k = 1 and we represent
attributes by unary predicates. Another case is link pre-
diction when k = 2 and higher-arity versions thereof.
In link prediction, we have rules such as, for instance,
∀X,Y : CoensFan(X)∧CoensFilm(Y )⇒ likes(X,Y ).

6.3 REALIZABLE SETTING

We can get stronger guarantees when the given (or
learned) theory Φ has zero training error. Keeping the
fraction of the domain-sizes |CΓ|k−a/|CΥ| small, Theo-
rem 13 implies non-vacuous bounds for predicates of arity
a for any size of the domain of Γ. Intuitively, this means
that we can use theories that are completely accurate on
training data for inference using k-entailment. However,
the required size of the domain of the training example
Υ, to guarantee that we will not produce too many er-
rors, grows exponentially with k (for a fixed arity a) and
polynomially with |CΓ|.

6.4 VOTING

When using voting entailment, we can always obtain non-
trivial bounds by making γ large; obviously this comes at
the price of making the inferences more cautious. Voting
entailment is a natural inference method in domains where
one proof is not enough, i.e. where the support from
several proofs is needed before we can be sufficiently
confident in the conclusion; an example of such a domain
is the well-known smokers domain, where knowing that
one friend smokes does not provide enough evidence to
conclude that somebody smokes; only if we have evidence
of several smoker friends is the conclusion warranted that
this person smokes.

6.5 RELATIONSHIP TO MAP INFERENCE

A popular approach to collective classification in rela-
tional domains is MAP-inference in Markov logic net-
works. Therefore a natural question is how this approach
performs in our setting. Perhaps surprisingly, it might
produce as many errors as classical logic reasoning in the
examples from Section 4.1, if the Markov logic network
contains the same rules, all with positive weights, as we
had in these examples. This is because MAP-inference
will predict the same literals as classical logical inference

934



when the rules from the Markov logic network are con-
sistent with the given evidence. Thus, we can see that
our guarantees for both k-entailment and voting entail-
ment are better than guarantees one could get for MAP-
inference. This is also in agreement with the well-known
observations that, for instance, in the smokers domain,
MAP inference often predicts everyone to be a smoker
or everyone to be a non-smoker if there is only a small
amount of evidence.

7 RELATED WORK

Our main inspiration comes from the works on PAC-
semantics by Valiant [23] and Juba [10]. Our work differs
mainly in the fact that we have one large relational struc-
ture ℵ, and a training example Υ and a test example Γ,
both sampled from ℵ, whereas it is assumed in these
existing approaches that learning examples are sampled
i.i.d. from some distribution. This has two important
consequences. First, they could use statistical techniques
developed for i.i.d. data whereas we had to first derive
concentration inequalities for sampling without replace-
ment in the relational setting. Second, since they only
needed to bound the error on the independently sampled
examples, they did not have to consider the number of
incorrectly inferred facts. In contrast, in the relational set-
ting that we considered here, the number of errors made
on one relational example is the quantity that needs to
be bounded. It follows that completely different tech-
niques are needed in our case. Another difference is that,
in their case, the training examples are also masked. In
principle, we could modify our results to accommodate
for masked examples by replacing “accurate” formulas
by sufficiently-often “witnessed” formulas (see [10] for a
definition).

Dhurandhar and Dobra [5] derived Hoeffding-type in-
equalities for classifiers trained with relational data, but
these inequalities, which are based on the restriction on
the independent interactions of data points, cannot be
applied to solve the problems considered in the present
paper. Certain other statistical properties of learning have
also been studied for SRL models. For instance, Xiang
and Neville [25] studied consistency of estimation. How-
ever, guaranteeing convergence to the correct distribution
does not mean that the model would not generate many
errors when used, e.g., for MAP-inference. In [26], they
further studied errors in label propagation in collective
classification. In their setting, however, the relational
graph is fixed and one only predicts labels of vertices
exploiting the relational structure for making the predic-
tions. Here we also note that it is not always possible or
desirable in practice to sample sets of domain elements
uniformly as we assumed to be the case in our analysis.

Other sampling designs for relational data were studied,
e.g. in [1]. A study of PAC guarantees for such other
sampling designs is left as a topic for future work.

There have also been works studying restricted forms of
inference in a purely logical context, e.g. [6]. It is an
interesting question for future work to find out which
existing restricted inference systems would lead to non-
vacuous error bounds in the relational setting.

8 CONCLUSIONS

We have studied the problem of predicting plausible miss-
ing facts in relational data, given a set of imperfect logical
rules, in a PAC reasoning setting. As for the considered
inference methods, one of our main objectives was for
the inference methods to stay close to classical logic. The
first inference method, k-entailment, is a restricted form
of classical logic inference and hence satisfies this ob-
jective. The second inference method, voting entailment,
is based on a form of voting that combines results from
inferences made by k-entailment on subsets of the rela-
tional data. Importantly, the voting is not weighted which
makes voting entailment easier to understand. We were
able to obtain non-trivial bounds for the number of literals
incorrectly predicted by a learned (or given) theory for
both k-entailment and voting entailment. Probably the
most useful results of our analysis lie in the identification
of cases where the bounds for learning and reasoning in
relational data are non-vacuous, which we discussed in
detail in Section 6.

There are many interesting directions in which one could
extend the results presented in this paper. For instance,
as practical means to improve the explainability of in-
ferences made by voting entailment, we could first find
representatives of isomorphism classes of “proofs” that
are aggregated by voting entailment, and only show these
to the user. Another direction is to extend the notion of
implicit learning from [10] into the relational setting. It
would also be interesting to exploit explicit sparsity con-
straints and to study other sampling designs, although
that might also turn out to be analytically less tractable
than the setting considered in the present paper. Finally,
although all bounds presented in this paper assume fi-
nite hypothesis classes, we note that it is also possible to
extend our results to infinite hypothesis classes [13].
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Abstract

Inspired by heavy-tailed distributions in prac-
tical scenarios, we investigate the problem
on pure exploration of Multi-Armed Bandits
(MAB) with heavy-tailed payoffs by breaking
the assumption of payoffs with sub-Gaussian
noises in MAB, and assuming that stochastic
payoffs from bandits are with finite p-th mo-
ments, where p ∈ (1,+∞). The main contri-
butions in this paper are three-fold. First, we
technically analyze tail probabilities of empir-
ical average and truncated empirical average
(TEA) for estimating expected payoffs in se-
quential decisions with heavy-tailed noises via
martingales. Second, we propose two effective
bandit algorithms based on different prior in-
formation (i.e., fixed confidence or fixed bud-
get) for pure exploration of MAB generating
payoffs with finite p-th moments. Third, we
derive theoretical guarantees for the proposed
two bandit algorithms, and demonstrate the ef-
fectiveness of two algorithms in pure explo-
ration of MAB with heavy-tailed payoffs in
synthetic data and real-world financial data.

1 INTRODUCTION
The prevailing decision-making model named Multi-
Armed Bandits (MAB) elegantly characterizes a wide
class of practical problems on sequential learning with
partial feedbacks, which was first formally proposed and
investigated in (Robbins, 1952). In general, a predomi-
nant characteristic of MAB is a trade-off between explo-
ration and exploitation for sequential decisions, which
has been frequently encountered in scientific research
and various industrial applications, e.g., resource alloca-
tion, online advertising and personalized recommenda-
tions (Auer et al., 2002; Bubeck et al., 2012; Chu et al.,
2011; Lattimore et al., 2015; Wu et al., 2016).

Most algorithms in MAB are primarily developed to
maximize cumulative payoffs during a number of rounds
for sequential decisions. Recently, there have been in-
teresting investigations on various variants of the tradi-
tional MAB model, such as linear bandits (Auer, 2002;
Yu et al., 2017b; Zhao and King, 2016), pure explo-
ration of MAB (Audibert and Bubeck, 2010), risk-averse
MAB (Sani et al., 2012; Yu et al., 2017a), cascading ban-
dits (Kveton et al., 2015) and clustering bandits (Korda
et al., 2016; Li et al., 2016).

One non-trivial branch of MAB is pure exploration,
where the goal is to find the optimal arm in a given
decision-arm set at the end of exploration. In this case,
there is no explicit trade-off between exploration and ex-
ploitation for sequential decisions, which means that the
exploration phase and the exploitation phase are sepa-
rated. The problem of pure exploration is motivated by
real scenarios which prefer to identify an optimal arm
instead of maximizing cumulative payoffs. Recent ad-
vances in pure exploration of MAB have found potential
applications in many practical domains including com-
munication networks and commercialized products (Au-
dibert and Bubeck, 2010; Chen et al., 2014).

In previous studies on pure exploration of MAB, a com-
mon assumption is that noises in observed payoffs are
sub-Gaussian. The sub-Gaussian assumption encom-
passes cases of all bounded payoffs and many unbounded
payoffs in MAB, e.g., payoffs of an arm following a
Gaussian distribution. However, there exist non-sub-
Gaussian noises in observed payoffs for bandits, e.g.,
high-probability extreme payoffs in sequential decisions
which are called heavy-tailed payoffs. A practical mo-
tivation example for MAB with heavy-tailed payoffs is
the distribution of delays in end-to-end network rout-
ing (Liebeherr et al., 2012). Pure exploration of MAB
with heavy-tailed payoffs is important, especially for
identifications of the potential optimal investment tar-
get for practical financial applications. It is worth men-
tioning that the case of maximizing cumulative payoffs
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of MAB with heavy tails has been extensively investi-
gated in (Bubeck et al., 2013a; Carpentier and Valko,
2014; Lattimore, 2017; Medina and Yang, 2016; Vakili
et al., 2013). In (Bubeck et al., 2013a), the setting of se-
quential payoffs with bounded p-th moments was investi-
gated for regret minimization in MAB, where p ∈ (1, 2].
Vakili et al. (Vakili et al., 2013) introduced bounded p-
th moments with the support over (1,+∞), and pro-
vided a complete regret guarantee in MAB. In (Med-
ina and Yang, 2016), regret guarantee in linear bandits
with heavy-tailed payoffs was investigated, which is still
scaled by parameters of bounded moments. Recently,
payoffs in bandits with bounded kurtosis were discussed
in (Lattimore, 2017).

In this paper, we investigate the problem on pure explo-
ration of MAB with heavy-tailed payoffs characterized
by the bound of p-th moments. It is surprising to find that
less effort has been devoted to pure exploration of MAB
with heavy-tailed payoffs. Compared with previous work
on pure exploration of MAB, the problem of best arm
identifcation with heavy-tailed payoffs has three chal-
lenges. The first challenge is the estimate of expected
payoffs of an arm in MAB. It might not be sufficient
to adopt an empirical average (EA) of observed payoffs
with heavy-tailed noises for estimating a true mean. The
second challenge is the probability of error for the esti-
mate of expected payoffs, which affects performance of
bandit algorithms in pure exploration of MAB. The third
challenge is to develop effective bandit algorithms with
theoretical guarantees for pure exploration of MAB with
heavy-tailed stochastic payoffs.

To solve the above three challenges, we need to introduce
a general assumption that stochastic payoffs in MAB are
with finite p-th moments, where p ∈ (1,+∞). Note that
the case of p ∈ (1, 2] is weaker than the classic assump-
tion of payoffs with sub-Gaussian noises in MAB. Then,
under the assumption of finite p-th moments, we present
theoretical behaviours of empirical average, and ana-
lyze the estimate of truncated empirical average (TEA).
Based on different prior information, i.e., fixed confi-
dence or fixed budget, we propose two bandit algorithms
in pure exploration of bandits with heavy-tailed pay-
offs. Finally, based on synthetic data with noises from
standard Student’s t-distribution and real-world financial
data, we demonstrate the effectiveness of the proposed
bandit algorithms. To the best of our knowledge, this
is the first systematic investigation on pure exploration
of MAB with heavy-tailed payoffs. For reading conve-
nience, we list contributions of this paper below.
• We technically analyze tail probabilities of EA and

TEA to estimate true mean of arms in MAB with
the general assumption of conditionally indepen-
dent payoffs.

• We propose two bandit algorithms for pure explo-
ration of MAB with heavy-tailed stochastic pay-
offs characterized by finite p-th moments, where
p ∈ (1,+∞).
• We derive theoretical results of the proposed bandit

algorithms, as well as demonstrating effectiveness
of two algorithms via synthetic data and real-world
financial data.

2 PRELIMINARIES
In this section, we first present related notations and def-
initions in this paper. Then, we present assumptions and
the problem definition for pure exploration of MAB with
heavy-tailed payoffs.

2.1 NOTATIONS
Let A be a bandit algorithm for pure exploration of
MAB, which contains K arms at the beginning of ex-
ploration. For pure exploration, let Opt be the true
optimal arm among K arms, where Opt ∈ [K] with
[K] , {1, 2, · · · ,K}. The total number of sequential
rounds for A to play bandits is T , which is also called as
sample complexity. The confidence parameter is denoted
by δ ∈ (0, 1), which means that, with probability at least
1− δ,A generates an output optimal arm Out equivalent
to Opt, where Out ∈ [K]. In other words, it happens
with a small probability δ that Opt 6= Out, and δ can be
also called the probability of error.

There are two settings based on different prior informa-
tion given at the beginning of exploration, i.e., fixed con-
fidence or fixed budget. For the setting of fixed confi-
dence, A receives the information of δ at the beginning,
and A generates Out when a certain condition related to
δ is satisfied. For the setting of fixed budget, A receives
the information of T at the beginning, and A generates
Out at the end of T .

We present the learning process on pure exploration of
MAB as follows. For t = 1, 2, · · · , T , A decides to
play an arm at ∈ [K] with historical information of
{a1, π1(a1), · · · , at−1, πt−1(at−1)}. Then, A observes
a stochastic payoff πt(at) ∈ R with respect to at, of
which the expectation conditional on Ft−1 is µ(at) with
Ft−1 , {a1, π1(a1), · · · , at−1, πt−1(at−1), at} and F0

being an empty set. Based on πt(at), A updates param-
eters to proceed with the exploration at t + 1. We store
time index t of playing arm at in Φ(at), which is a set
with increasing integers.

Given an event E and a random variable ξ, let P[E ] be
the probability of E and E[ξ] be the expectation of ξ. For
x ∈ R, we denote by |x| the absolute value of x, and for
a set S, we denote by |S| the cardinality of S. For an
event E , let 1[E] be the indicator function of E .
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Definition 1. (Heavy-tailed payoffs in MAB) Given MAB
with K arms, let π(k) be a stochastic payoff drawn from
any arm k ∈ [K]. For t = 1, · · · , T , conditional
on Ft−1, MAB has heavy-tailed payoffs with the p-th
raw moment bounded by B, or the p-th central moment
bounded by C, where p ∈ (1,+∞), B,C ∈ (0,+∞)
and k ∈ [K].

2.2 PROBLEM DEFINITION
It is general to assume that payoffs during sequential de-
cisions contain noises in many practical scenarios. We
list the assumptions in this paper for pure exploration of
MAB with heavy-tailed payoffs as follows.

1. Assume that Opt , arg maxk∈[K] µ(k) is unique
for pure exploration of MAB with K arms.

2. Assume that MAB has heavy-tailed payoffs with
the p-th raw or central moment conditional on Ft−1

bounded by B or C, for t = 1, · · · , T .
3. Assume that the sequence of stochastic payoffs

from arm k ∈ [K] has noises with zero mean con-
ditional on Ft−1 in pure exploration of MAB. For
any time instant t ∈ [T ] and the selected arm at,
we define random noise of a true payoff as ξt(at) ,
πt(at)− µ(at), and assume E[ξt(at)|Ft−1] = 0.

Now we present a problem definition for pure explo-
ration of MAB as follows. Given K arms satisfying As-
sumptions 1–3, the problem in this paper is to develop a
bandit algorithm A generating an arm OutT ∈ [K] af-
ter T pullings of bandits such that P[OutT 6= Opt] ≤ δ,
where δ ∈ (0, 1).

We discuss theoretical guarantees in two settings for best
arm identification of bandits. One is to derive the theo-
retical guarantee of T by fixing the value of δ, which is
called fixed confidence. The other is to derive the theo-
retical guarantee of δ by fixing the value of T , which is
called fixed budget.

For simplicity of notations, we enumerate the arms
according to their expected payoffs as a sequence of
µ(1) > µ(2) ≥ · · · ≥ µ(K). In the ranked sequence,
we know that Opt = 1. Note that the ranking opera-
tion does not affect our theoretical guarantees. For any
arm k 6= Opt and k ∈ [K], we define the sub-optimality
as ∆k , µ(Opt) − µ(k), which leads to a sequence of
sub-optimality as {∆k}Kk=2. To obtain K terms in sub-
optimality, which helps theoretical analyses, we further
define ∆1 , ∆2. Inspired by (Audibert and Bubeck,
2010), we define the hardness for pure exploration of
MAB with heavy-tailed payoffs by quantities as

Hp
2 , max

k∈[K]
kp−1∆−pk . (1)

3 RELATED WORK

Pure exploration in MAB, aiming at finding the opti-
mal arm after exploration among a given decision-arm
set, has become an attracting branch in the decision-
making domain (Audibert and Bubeck, 2010; Bubeck
et al., 2009; Chen et al., 2014; Gabillon et al., 2012,
2016; Jamieson and Nowak, 2014). It has been pointed
out that pure exploration in MAB has many applications,
such as communication networks and online advertising.

For pure exploration of MAB with payoffs under sub-
Gaussian noises, theoretical guarantees have been well
studied. Specifically, in the setting of fixed confidence,
the first distribution-dependent lower bound of sample
complexity was developed in (Mannor and Tsitsiklis,
2004), which is

∑
k∈[K] ∆−2

k . Even-Dar et al. (2002)
originally proposed a bandit algorithm via successive
elimination for bounded payoffs with an upper bound
of sample complexity matching the lower bound up to
a multiplicative logarithmic factor. Karnin et al. (2013)
proposed an improved bandit algorithm, which achieves
an upper bound of sample complexity matching the
lower bound up to a multiplicative doubly-logarithmic
factor. Jamieson et al. (2014) proved that it is necessary
to have a multiplicative doubly-logarithmic factor in the
distribution-dependent lower bound of sample complex-
ity. Jamieson et al. also developed a bandit algorithm
via the law of iterated logarithm algorithm for pure ex-
ploration of MAB, which achieved the optimal sample
complexity of the problem.

In the setting of fixed budget with payoffs under sub-
Gaussian noises, (Audibert and Bubeck, 2010) devel-
oped a distribution-dependent lower bound of probabil-
ity of error, and provided two algorithms, which achieve
optimal probability of error up to logarithmic factors.
Gabillon et al. (2012) proposed a unified algorithm for
fixed budget and fixed confidence, which discusses ε-
optimal learning in best arm identification of MAB.
Karnin et al. (2013) proposed a bandit algorithm via se-
quential halving to improve probability of error by a mul-
tiplicative constant. It is worth mentioning that (Kauf-
mann et al., 2016) investigated best arm identification of
MAB under Gaussian or Bernoulli assumption, and pro-
vided lower bounds in terms of Kullback-Leibler diver-
gence. We also notice that there are extensions of best
arm identification of MAB, which is multiple-arm iden-
tification (Bubeck et al., 2013b; Chen et al., 2014).

To the best of our knowledge, there is no investigation
on pure exploration of MAB without the strict assump-
tion of payoffs under sub-Gaussian noises. There are
some potential reasons for this fact. One main reason
can be that, without sub-Gaussian noises, the tail prob-
abilities of estimates for expected payoffs can be heavy
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Table 1: Comparisons on distributional assumptions and theoretical guarantees in pure exploration of MAB. Note we
omit constant factors in the following inequalities, and H1, H2 and H3 can refer to the corresponding work.

setting work assumption on payoffs algorithm theoretical guarantee

Even-Dar et al. (2002) bounded payoffs in [0, 1]
SE P

[
T ≤∑K

k=1 ∆−2
k log

(
K
δ∆k

)]
≥ 1− δ

ME P
[
T ≤ K

ε2
log
(

1
δ

)]
≥ 1− δ

Karnin et al. (2013) bounded payoffs in [0, 1] EGE P
[
T ≤∑K

k=1 ∆−2
k log

(
1
δ log

(
1

∆k

))]
≥ 1− δ

Jamieson et al. (2014) sub-Gaussian noise LILUCB P
[
T ≤ H1 log

(
1
δ

)
+H3

]
≥ 1− 4

√
cδ − 4cδ

fixed δ Kaufmann et al. (2016) two-armed Gaussian bandits α-E P
[
T ≤ (σ1+σ2)2

(µ1−µ2)2
log
(

1
δ

)]
≥ 1− δ

our work finite p-th moments SE-δ(EA) P
[
T ≤∑K

k=1

(
22p+1KC

∆
p
k
δ

) 1
p−1

]
≥ 1− δ

with p ∈ (1, 2] SE-δ(TEA) P


T ≤∑K

k=1

(
20B

1
p

∆k

) p
p−1

log
(

2K
δ

)

 ≥ 1− δ

Audibert and Bubeck (2010) bounded payoffs in [0, 1]
UCB-E P[Out 6= Opt] ≤ TK exp

(
−T−KH1

)

SR P[Out 6= Opt] ≤ K(K − 1) exp
(
− T−K

log(K)H2

)

Gabillon et al. (2012) bounded payoffs in [0, b] UGapEb P[µOut − µOpt ≥ ε] ≤ TK exp
(
−T−KHε

)

Karnin et al. (2013) bounded payoffs in [0, 1] SH P [Out 6= Opt] ≤ log(K) exp
(
− T

log(K)H2

)

fixed T Kaufmann et al. (2016) two-armed Gaussian bandits SS P [Out 6= Opt] ≤ exp

(
− (µ1−µ2)2T

2(σ1+σ2)2

)

our work finite p-th moments SE-T (EA) P[Out 6= Opt] ≤ 2p+1CK(K − 1)Hp2

(
K̄

T−K

)p−1

with p ∈ (1, 2] SE-T (TEA) P[Out 6= Opt] ≤ 2K(K − 1) exp

(
− (T−K)B̄1

K̄K∆p/(1−p)

)

because Chernoff-Hoeffding inequalities of estimates do
not hold in general. The failure of Chernoff-Hoeffding
inequalities of estimates is a big challenge in pure explo-
ration of MAB. In this paper, we investigate theoretical
performance of pure exploration of MAB with heavy-
tailed stochastic payoffs characterized by finite p-th mo-
ments, where p ∈ (1,+∞). We will put more efforts
on p ∈ (1, 2] because the case of p ∈ (2,+∞) enjoys
a similar format of p = 2. To compare our work with
prior studies, we list the distributional assumptions and
theoretical guarantees in pure exploration of MAB in Ta-
ble 1. Finally, it is worth mentioning that the case of
maximizing expected cumulative payoffs of MAB with
heavy tails has been extensively investigated in (Bubeck
et al., 2013a; Carpentier and Valko, 2014; Medina and
Yang, 2016; Vakili et al., 2013).

4 ALGORITHMS AND ANALYSES

In this section, we first investigate two estimates, i.e., EA
and TEA, for expected payoffs of bandits, and derive tail
probabilities for EA and TEA under sequential payoffs.
Then, we develop two bandit algorithms for best arm
identification of MAB in the spirit of successive elim-
ination (SE) and successive rejects (SR). In particular,
SE is for the setting of fixed confidence and SR is for
the setting of fixed budget. Finally, we derive theoreti-

cal guarantees for each bandit algorithm, where we take
advantage of EA or TEA.

4.1 EMPIRICAL ESTIMATES
In SE and SR, it is common forA to maintain a subset of
arms St ⊆ [K] at time t = 1, 2, · · · andA will output an
arm when a certain condition is satisfied, e.g., |St| = 1
in the setting of fixed confidence. Similar to the most fre-
quently used estimates for expected payoffs in MAB, we
consider the following EA to estimate expected payoffs
for any arm k ∈ St:

µ̂t(k) , 1

st,k

∑

i∈Φ(k)

πi(k), (2)

where st,k , |Φ(k)| at time t. Note that the number of
elements in Φ(k) will increase or hold with time evolu-
tion, and the elements in Φ(k) may not successively in-
crease. We also investigate the following estimator TEA
for any arm k ∈ St:

µ̂†t(k) , 1

st,k

∑

i∈Φ(k)

πi(k)1[|πi(k)|≤bi], (3)

where bi > 0 is a truncating parameter, and bi will be
completely discussed in the ensuing theoretical analyses.

We do not discuss the estimator called median of means
(MoM) shown in (Bubeck et al., 2013a), because theo-
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retical guarantees of MoM enjoy similar formats to those
of TEA. Before we prove concentration inequalities for
estimates via martingales, we have results as below.

Proposition 1. (Dharmadhikari et al., 1968; von Bahr
et al., 1965) Let {νi}ti=1 be random variables satisfy-
ing E[|νi|p] ≤ C and E[νi|Fi−1] = 0. If p ∈ (1, 2],

then we have E
[∣∣∣
∑t
i=1 νi

∣∣∣
p]
≤ 2tC. If p ∈ (2,+∞),

then we have E
[∣∣∣
∑t
i=1 νi

∣∣∣
p]
≤ CpCt

p/2, where Cp ,
(
8(p− 1) max(1, 2p−3)

)p
.

Proposition 2. (Seldin et al., 2012) Let {νi}ti=1 be
random variables satisfying |νi| ≤ bi with {bi}ti=1 be-
ing a non-decreasing sequence, E[νi|Fi−1] = 0 and
E[ν2

i |Fi−1] is bounded. Then, with probability 1 − δ,

we have
∣∣∣
∑t
i=1 νi

∣∣∣ ≤ bt log(2/δ) + Vt/bt, and Vt =
∑t
i=1 E[ν2

i |Fi−1].

Lemma 1. In pure exploration of MAB withK arms, for
any t ∈ [T ] and any arm k ∈ St, with probability 1− δ
• for EA, we have





|µ̂t(k)− µ(k)| ≤
(

2C

s
p−1
t,k

δ

) 1
p

, 1 < p ≤ 2,

|µ̂t(k)− µ(k)| ≤
(
CpC

s
p/2
t,k

δ

) 1
p

, p > 2;

• for TEA, we have



|µ̂†t (k)− µ(k)| ≤ 5B

1
p

(
log(2/δ)
st,k

) p−1
p
, 1 < p ≤ 2,

|µ̂†t (k)− µ(k)| ≤ 5B
1
p

(
log(2/δ)
st,k

) 1
2
, p > 2.

Proof. We first prove the results with the estimator µ̂t(k)
with k ∈ St. By Chebyshev’s inequality, we have

P[|µ̂t(k)− µ(k)| ≥ δ] ≤ E[|µ̂t(k)− µ(k)|p]
δp

=
E[|∑i∈Φ(k) πi(k)− µ(k)|p]

spt,kδ
p

, (4)

where δ ∈ (0, 1) and st,k is fixed at time t.

Based on Assumption 2, we have E[|ξi(k)|p] ≤ C and
E[ξi(k)|Fi−1] = 0 for any i ∈ Φ(k) at t. For p ∈ (1, 2],

P[|µ̂t(k)− µ(k)| ≥ δ] ≤
E
[∣∣∣
∑
i∈Φ(k) ξi

∣∣∣
p]

spt,kδ
p

≤ 2C

sp−1
t,k δ

p
,

where we adopt Proposition 1. Thus, for any arm k ∈ St,
with probability at least 1− δ

|µ̂t(k)− µ(k)| ≤
(

2C

sp−1
t,k δ

) 1
p

. (5)

For p ∈ (2,+∞), we have

P[|µ̂t(k)− µ(k)| ≥ δ] ≤ CpC

s
p/2
t,k δ

p
, (6)

where we adopt Proposition 1. With probability 1− δ

|µ̂t(k)− µ(k)| ≤
(
CpC

s
p/2
t,k δ

) 1
p

. (7)

Now we prove the results with the estimator µ̂†t(k),
where k ∈ St. Considering bi in Eq. (3), we de-
fine µ†i (k) , E

[
πi(k)1[|πi(k)|≤bi]|Fi−1

]
, and ζi(k) ,

µ†i (k) − πi(k)1[|πi(k)|≤bi], for any i ∈ Φ(k). We
have |ζi(k)| ≤ 2bi, E[ζi(k)|Fi−1] = 0 and
E
[
πi(k)1[|πi(k)|>bi]|Fi−1

]
≤ B/bp−1

i . Besides, we
also have

µ(k)− µ̂†t(k)

=
1

st,k

∑

i∈Φ(k)

[
µ(k)− µ†i (k)

]

+
1

st,k

∑

i∈Φ(k)

[
µ†i (k)− πi(k)1[|πi(k)|≤bi]

]

=
1

st,k

∑

i∈Φ(k)

(
E
[
πi(k)1[|πi(k)|>bi]|Fi−1

]
+ ζi(k)

)
,

which implies the inequality of µ(k) − µ̂†t(k) ≤
1
st,k

∑
i∈Φ(k)

(
B

bp−1
i

+ ζi(k)
)

. For p ∈ (1, 2], we have

E[ζ2
i (k)|Fi−1] ≤ E

[
π2
i (k)1[|πi(k)|≤bi]|Fi−1

]
≤ B

bp−2
i

.

Based on Proposition 2, with probability at least 1− δ
∣∣∣∣∣∣
∑

i∈Φ(k)

ζi(k)

∣∣∣∣∣∣
≤ 2bt log(2/δ) +

1

2bt

∑

i∈Φ(k)

E[ζ2
i (k)|Fi−1]

≤ 2bt log(2/δ) + st,k
B

2bp−1
t

, (8)

where we adopt the design of {bi}i∈Φ(k) as a non-
decreasing sequence, i.e., b1 ≤ b2 ≤ · · · ≤ bt. Thus,

by setting bt =
(

Bst,k
log(2/δ)

) 1
p

, with probability at least
1− δ, we have

|µ̂†t(k)− µ(k)| ≤ 5B
1
p

(
log(2/δ)

st,k

) p−1
p

, (9)

where we adopt the fact of

1

st,k

∑

i∈Φ(k)

B

bp−1
i

≤ 2B
1
p

(
log(2/δ)

st,k

) p−1
p

. (10)
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For p ∈ (2,+∞), by Jensen’s inequality, we have

E[ζ2
i (k)|Fi−1] ≤ B 2

p . (11)

By converting the condition in p ∈ (2,+∞) to the condi-
tion in p = 2 with Jensen’s inequality and using Eq. (9),
with probability at least 1− δ, we have

|µ̂†t(k)− µ(k)| ≤ 5B
1
p

(
log(2/δ)

st,k

) 1
2

, (12)

which completes the proof.

Remark 1. In (Bubeck et al., 2013a; Vakili et al., 2013),
the Bernstein inequality without martingales is adopted
with an implicit assumption of sampling payoffs of an
arm being independent of sequential decisions, which is
informal. By contrast, in Lemma 1, conditional on Ft−1,
the subset St is fixed, and we adopt Bernstein inequal-
ity with martingales. Thus, we break the assumption
of independent payoffs in previous work, and prove for-
mal theoretical results of tail probabilities of estimators
EA and TEA. Note that the superiority of martingales in
sequential decisions has been fully discussed in (Zhao
et al., 2016).

Remark 2. The concentration results with martingales
in Lemma 1 for p ∈ (1,+∞) can also be applied into re-
gret minimization of heavy-tailed payoffs and other ap-
plications in sequential decisions. In particular, we ob-
serve that the concentration inequality of p = 2 recov-
ers that of payoffs under sub-Gaussian noises. Besides,
when p > 2, the concentration results indicate constant
variations with respect to B. Note that, in Lemma 1,
we analyze concentration results when p > 2, which has
not been analyzed in (Bubeck et al., 2013a). Compared
to (Vakili et al., 2013), the concentration result in our
work for TEA when p > 2 enjoys a constant improve-
ment. Since the case of p ∈ (2,+∞) can be resolved by
p = 2, we will focus on p ∈ (1, 2] in bandit algorithms
for pure exploration of MAB with heavy-tailed payoffs.

4.2 FIXED CONFIDENCE
In this subsection, we present a bandit algorithm for pure
exploration of MAB with heavy-tailed payoffs under a
fixed confidence. Then, we derive upper bounds of sam-
ple complexity of the bandit algorithms.

4.2.1 Description of SE-δ
In fixed confidence, we design our bandit algorithm
for pure exploration of MAB with heavy-tailed payoffs
based on the idea of SE, which is inspired by (Even-Dar
et al., 2002). For SE-δ(EA), the algorithmic procedures
are almost the same as that in (Even-Dar et al., 2002),
which are omitted here. For SE-δ(TEA),Awill output an
arm Out when |St| = 1 with computation details shown

Algorithm 1 Successive Elimination-δ (SE-δ(TEA))
1: input: δ, K, p, B
2: initialization: µ̂†1(k) ← 0 for any arm k ∈ [K], S1 ←

[K], and b1 ← 0
3: t← 1 . begin to explore arms in [K]

4: while |St| > 1 do

5: ct ← 5B
1
p

(
log(2K/δ)

t

) p−1
p

. update confidence bound

6: bt ←
(

Bt
log(2K/δ)

) 1
p

. update truncating parameter

7: for k ∈ St do
8: play arm k and observe a payoff πt(k)

9: µ̂†t (k)← 1
t

∑t
i πi(k)1[|πi(k)|≤bi] . calculate TEA

10: end for
11: at ← arg maxk∈[K] µ̂

†
t (k) . choose the best arm at t

12: St+1 ← ∅ . create a new arm set for t+ 1

13: for k ∈ St do
14: if µ̂†t (at)− µ̂†t (k) ≤ 2ct then
15: St+1 ← St+1 + {k} . add arm k to St+1

16: end if
17: end for
18: t← t+ 1 . update time index
19: end while
20: Out← St[0] . assign the first entry of St to Out
21: return: Out

in Algorithm 1, where δ is a given parameter. The idea
is to eliminate the arm which has the farthest deviation
compared with the empirical best arm in St.

4.2.2 Theoretical Guarantee of SE-δ
We derive upper bounds of sample complexity of SE-δ
with estimators of EA and TEA. Note that T is the time
complexity of SE-δ.

Theorem 1. For pure exploration in MAB with K arms,
with probability at least 1− δ, Algorithm SE-δ identifies
the optimal arm Opt with sample complexity as

• for SE-δ(EA)

T ≤
K∑

k=1

(
22p+1KC

∆p
kδ

) 1
p−1

;

• for SE-δ(TEA)

T ≤
K∑

k=1

(
20B

1
p

∆k

) p
p−1

log

(
2K

δ

)
,

where p ∈ (1, 2].

Proof. We first consider EA in Eq. (2) for estimating the
expected payoffs in MAB. For p ∈ (1, 2], for any arm
k ∈ St, we have

P[|µ̂t(k)− µ(k)| ≥ δ] ≤ 2C

tp−1δp
, (13)
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where we adopt st,k = t in SE-δ(EA). We notice the
inherent characteristic of SE that, for any arm k ∈ St,
we have Φ(k) = {1, 2, · · · , t}.
Based on Lemma 1, for t = 1, 2, · · · , with probability at
least 1− δ/K, the following event holds

Et , {k ∈ St, |µ̂t(k)− µ(k)| ≤ ctk} ,

where ctk =
(

2KC/(tp−1
k δ)

) 1
p

is a confidence interval.
To eliminate a sub-optimal arm k, we need to play any
arm k ∈ [K]\Opt with tk times such that

∆̂k , µ̂tk(Opt)− µ̂tk(k) ≥ 2ctk . (14)

Based on Lemma 1, with a high probability, we have

∆̂k ≥ µ(Opt)− ctk − (µ(k) + ctk) = ∆k − 2ctk ,

where ctk is a confidence interval. To satisfy Eq. (14),
we are ready to set

∆k − 2ctk ≥ 2ctk . (15)

To solve the above inequality, we are ready to have that

tk =
(

22p+1KC
∆p
kδ

) 1
p−1

is sufficient. The total sample

complexity is T = t2 +
∑K
k=2 tk, because the number

of pulling the optimal arm t1 = t2. This implies, with
probability at least 1− δ, we have

T ≤
K∑

k=1

(
22p+1KC

∆p
kδ

) 1
p−1

. (16)

Now we consider TEA in Eq. (3) for estimating the ex-
pected payoffs in MAB. Similarly, for p ∈ (1, 2], with
probability at least 1− δ, we have

T ≤
K∑

k=1

(
20B

1
p

∆k

) p
p−1

log

(
2K

δ

)
, (17)

which completes the proof.
4.3 FIXED BUDGET
In this subsection, we present a bandit algorithm for pure
exploration of MAB with heavy-tailed payoffs under a
fixed budget. Then, we derive upper bounds of probabil-
ity of error for the bandit algorithms.

4.3.1 Description of SR-T
For SR-T (EA), we omit the algorithm because it is al-
most the same as that in (Audibert and Bubeck, 2010).
For SR-T (TEA), we design a bandit algorithm for pure
exploration of MAB with heavy-tailed payoffs based on
the idea of SR, with computation details shown in Algo-
rithm 2, where T is a given parameter. The high-level

Algorithm 2 Successive Rejects-T (SR-T (TEA))
1: input T , K, p, B, ∆ > 0
2: initialization: µ̂†(k) ← 0 for any arm k ∈ [K], S1 ←

[K], n0 ← 0, b← 0 and K̄ ←∑K
i=1

1
i

3: b←
(

3Bp
∆

) 1
p−1

. calculate truncating parameter

4: for k ∈ S1 do
5: Φ(k)← ∅ . construct sets to store time index
6: end for
7: for k ∈ [K − 1] do
8: nk ← d T−K

K̄(K+1−k)
e . calculate nk at stage k

9: n← nk − nk−1 . calculate the number of times to pull arms
10: for y ∈ Sk do
11: for i ∈ [n] do
12: t← t+ 1
13: play arm y, and observe a payoff πt(y)
14: Φ(y)← Φ(y) + {t} . store time index for arm y
15: end for
16: µ̂†k(y)← 1

|Φ(y)|
∑
i∈Φ(y) πi(y)1[|πi(y)|≤b]

17: end for
18: ak ← arg miny∈Sk µ̂

†
t (y) . choose the worst arm at k

19: Sk+1 ← Sk − {ak} . successively reject arm ak
20: end for
21: Out← SK [0] . assign the first entry of SK to Out
22: return: Out

idea is to conduct non-uniform pulling of arms by K − 1
phases, and SR-T rejects a worst empirical arm for each
phase. The reject operation is based on EA or TEA,
and we distinguish the two cases by SR-T (EA) and SR-
T (TEA).

For simplicity, we show SR-T (TEA) in Algorithm 2,
where ∆ > 0 is a design parameter for the estimator
of TEA. The design parameter ∆ helps to calculate the
truncating parameter b in SR-T (TEA). Usually, we set
∆ ≤ ∆k for any k ∈ [K].

4.3.2 Theoretical Guarantee of SR-T
We derive upper bounds of probability of error for SR-T
with estimators of EA and TEA. We have the following
theorem for SR-T .

Theorem 2. For pure exploration in MAB with K arms,
if Algorithm SR-T is run with a fixed budget T , we have
probability of error for p ∈ (1, 2] as

• for SR-T (EA)

P[Out 6= Opt] ≤ 2p+1CK(K − 1)Hp
2

(
K̄

T −K

)p−1

;

• for SR-T (TEA)

P[Out 6= Opt] ≤ 2K(K − 1) exp

(
− (T −K)B̄1

K̄K∆p/(1−p)

)
,

where B̄1 = p−1

4(2p3Bpp)
1
p−1

.
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Proof. We first consider EA in Eq. (2) for estimating the
expected payoffs in MAB. For p ∈ (1, 2], we have

P[Out 6= Opt] ≤
K−1∑

k=1

K∑

i=K+1−k
P [µ̂k(Opt) ≤ µ̂k(i)]

≤
K−1∑

k=1

K∑

i=K+1−k
P [µ̂k(i)− µ(i) + µ(Opt)− µ̂k(Opt) ≥ ∆i]

≤
K−1∑

k=1

K∑

i=K+1−k

4C

np−1
i

(
∆i
2

)p (18)

≤
K−1∑

k=1

2p+2Ck

np−1
k ∆p

K+1−k
, (19)

where the inequality of Eq. (18) is due to the results in
Lemma 1 by setting st,k = nk. Besides, we notice that

np−1
k ∆p

K+1−k ≥
1

Hp
2

(
T −K
K̄

)p−1

,

which implies that

P[Out 6= Opt] ≤ 2p+1CK(K − 1)Hp
2

(
K̄

T −K

)p−1

.

Now we consider TEA in Eq. (3) for estimating the ex-
pected payoffs in MAB. By considering the design of b
in SR-T (TEA), we have a similar result of Lemma 1.
Then, for p ∈ (1, 2], we have probability of error as

P[Out 6= Opt] ≤
K−1∑

k=1

K∑

i=K+1−k
P
[
µ̂
†
k(Opt) ≤ µ̂†k(i)

]

≤
K−1∑

k=1

K∑

i=K+1−k
P
[
µ̂
†
k(i)− µ(i) + µ(Opt)− µ̂†k(Opt) ≥ ∆

]

≤ 2K(K − 1) exp

(
− (T −K)B̄1

K̄K∆p/(1−p)

)
, (20)

which completes the proof.

5 EXPERIMENTS
In this section, we conduct experiments via synthetic
and real-world data to evaluate the performance of the
proposed bandit algorithms. We run experiments in a
personal computer with Intel CPU@3.70GHz and 16GB
memory. For the setting of fixed confidence, we compare
the sample complexities of SE-δ(EA) and SE-δ(TEA).
For the setting of fixed budget, we compare the error
probabilities of SR-T (EA) and SR-T (TEA).

5.1 SYNTHETIC DATA AND RESULTS
For verifications, we adopt two synthetic data (named
as S1-S2) in the experiments, of which statistics are
shown in Table 2. The data are generated from Stu-
dent’s t-distribution with 3 degrees of freedom. In ex-
periments, we run multiple epochs for each dataset, with
each epoch containing ten independent experiments for

Table 2: Statistics of used synthetic data.
dataset #arms {µ(k)} heavy-tailed

{p,B,C}
S1 10 one arm is 2.0 and

nine arms are over
[0.7, 1.5] with a

uniform gap

{2, 7, 3}

S2 10 one arm is 2.0 and
nine arms are over
[1.0, 1.8] with a

uniform gap

{2, 7, 3}

(a) S1 (b) S2

Figure 1: Sample complexity for SE-δ in pure explo-
ration of MAB with heavy-tailed payoffs.

(a) S1 (b) S2

Figure 2: Probability of error for SR-T in pure explo-
ration of MAB with heavy-tailed payoffs.

best arm identification of MAB. Besides, we set the value
of fixed confidence from 0.005 to 0.040 with a uniform
gap of 0.005. We set the value of fixed budget from 400
to 1100 with a uniform gap of 100.

We show experimental results in Figures 1 and 2, where
both proposed algorithms are effective for pure explo-
ration of MAB with heavy-tailed payoffs. In particular,
in fixed-confidence setting, sample complexity decreases
with increasing value of δ. In fixed-budget setting, prob-
ability of error converges to zero with increasing value
of T . Besides, for fixed-confidence setting, SE-δ(TEA)
beats SE-δ(EA) in both datasets with small δ due to a bet-
ter control of confidence interval. The experimental re-
sults also reflect that the concentration properties of EA
are much weaker than those of TEA. For fixed-budget
setting, SR-T (TEA) is comparable to SR-T (EA) due to
the selection of truncating parameter.

5.2 FINANCIAL DATA AND RESULTS
It has been pointed out that financial data show the in-
herent characteristic of heavy tails (Panahi, 2016). We
choose a financial application of identifying the most
profitable cryptocurrency in a given pool of digital cur-
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Table 3: Statistical property of ten selected cryptocur-
rencies with hourly returns from Feb. 3rd, 2018 to Apr.
27th, 2018. KS-test1 denotes Kolmogrov-Smirnov (KS)
test with a null hypothesis that real data follow a Gaus-
sian distribution. KS-test2 denotes KS test with a null
hypothesis that real data follow a Student’s t-distribution.

symbol empirical statistics KS-test1 KS-test2
(mean×103,

variance×103)
(statistic,
p̄-value)

(statistic,
p̄-value)

BTC (0.36, 0.54) (0.08, 0.005) (0.05, 0.20)

ETC (0.29, 1.03) (0.07, 0.02) (0.03, 0.89)

XRP (0.33, 0.94) (0.09, 0.0004) (0.03, 0.61)

BCH (0.78, 0.92) (0.08, 0.001) (0.03, 0.64)

EOS (1.56, 1.18) (0.09, 0.0002) (0.03, 0.88)

LTC (0.68, 0.86) (0.10, 0.0002) (0.04, 0.49)

ADA (0.02, 1.22) (0.07, 0.03) (0.02, 0.99)

XLM (0.62, 0.12) (0.07, 0.02) (0.03, 0.80)

IOT (0.68, 0.11) (0.07, 0.02) (0.04, 0.57)

NEO (−0.31, 1.26) (0.10, 0.0002) (0.04, 0.53)

Table 4: Estimated parameters for ten cryptocurrencies.
symbol degree of freedom (p,B,C) in experiments

BTC 3.50

ETC 3.81

XRP 2.53

BCH 3.00

EOS 2.90

LTC 2.75 (2,1.577×10−3,1.575×10−3)

ADA 3.55

XLM 3.81

IOT 4.66

NEO 3.13

rencies. The identification for the most profitable cryp-
tocurrency among the top ten cryptocurrency in terms of
market value is motivated by the practical scenario that
an investor would like to invest a fixed budget of money
in a cryptocurrency and get return as much as possible.

For experiments, we get hourly price data of the ten se-
lected cryptocurrencies1, and show the statistics of real
data in Table 3. In the table, we conduct a statistical anal-
ysis in hindsight with hourly returns of cryptocurrency
from February 3rd, 2018 to April 27th, 2018. From the
table, we find that the optimal option in hindsight is EOS
in terms of the maximal empirical mean of hourly pay-
offs. Besides, we conduct Kolmogrov-Smirnov (KS) test
to fit real data of a cryptocurrency to a distribution. In
particular, via KS test, we know that the null hypothesis
of real data following a Gaussian distribution is rejected,
because p̄-value is smaller than a significant level of 0.05.
We observe that real data of cryptocurrency are likely to
follow a Student’s t-distribution via KS test in Table 3.

1https://www.cryptocompare.com/

(a) fixed confidence (b) fixed budget

Figure 3: Pure exploration of cryptocurrency.

With the above statistical analyses, we can fit real data of
cryptocurrency to a Student’s t-distribution, and obtain
distribution parameters shown in Table 4. Based on the
property of Student’s t-distribution, we can set p = 2,
and estimate B and C as shown in the table.

Via a similar setting to that of synthetic data, we show the
results on pure exploration of top ten cryptocurrencies in
Figure 3. Note that, due to limitation of data points in
the setting of fixed confidence, we generate payoffs from
Student’s t-distributions fitting to real data. But in the
setting of fixed budget, we adopt exactly real financial
data. We have similar observations as those in synthetic
data. It is worth mentioning that, TEA algorithm out-
performs EA algorithm in fixed-confidence setting when
the value of δ is small. Besides, TEA is comparable to
EA in fixed-budget setting because the truncating param-
eter in Algorithm 2 only has budget information and does
not increase with the number of samples. Overall, with
synthetic and real-world data, we have verified the effec-
tiveness of our two algorithms.

6 CONCLUSION
In this paper, we broke the assumption of payoffs under
sub-Gaussian noises in pure exploration of MAB, and in-
vestigated best arm identification of MAB with a general
assumption that the p-th moments of stochastic payoffs
are bounded, where p ∈ (1,+∞). We have technically
analyzed tail probabilities of empirical average and trun-
cated empirical average for estimating expected payoffs
in sequential decisions. Besides, we proposed two ban-
dit algorithms for pure exploration of MAB with heavy-
tailed payoffs based on SE and SR. Finally, we derived
theoretical guarantees of the proposed bandit algorithms,
and demonstrated the effectiveness of bandit algorithms
in pure exploration of MAB with heavy-tailed payoffs.
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Abstract

Predictive models can fail to generalize from
training to deployment environments because
of dataset shift, posing a threat to model re-
liability in practice. As opposed to previous
methods which use samples from the target
distribution to reactively correct dataset shift,
we propose using graphical knowledge of the
causal mechanisms relating variables in a pre-
diction problem to proactively remove variables
that participate in spurious associations with
the prediction target, allowing models to gen-
eralize across datasets. To accomplish this, we
augment the causal graph with latent counter-
factual variables that account for the underlying
causal mechanisms, and show how we can es-
timate these variables. In our experiments we
demonstrate that models using good estimates
of the latent variables instead of the observed
variables transfer better from training to tar-
get domains with minimal accuracy loss in the
training domain.

1 INTRODUCTION

Supervised machine learning is concerned with predicting
a target output label T from input features X. Classical
learning frameworks assume that training and test data are
independently and identically distributed from a fixed dis-
tribution p(X, T ). When this assumption does not hold,
training with classical frameworks can yield models with
unreliable and, in the case of safety-critical applications
like medicine, dangerous predictions (Dyagilev and Saria,
2015; Caruana et al., 2015; Schulam and Saria, 2017).
For example, prediction systems are often deployed in
dynamic environments that systematically differ from the
one in which the historical training data was collected—
a problem known as dataset shift which results in poor

generalization. Methods for addressing dataset shift are
typically reactive: they use unlabeled data from the target
deployment environment during the learning process (see
Quionero-Candela et al. (2009) for an overview). How-
ever, when the differences in environments are unknown
prior to model deployment (e.g., no available data from
the target environment or target environments that have
not yet been conceived), it is important to understand what
aspects of the prediction problem can change and how we
can train models that will be robust to these changes. We
consider this problem of proactively addressing dataset
shift in this work.

In particular, we will guard against spurious associations
between predictors and the target—non-causal marginal
relationships that often do not generalize due to shifts in
training and test distributions. To illustrate, consider an
example prediction problem of medical screening. The
features (X) are blood pressure (BP) Y and congestive
heart failure C. The label we want to predict is whether or
not a patient has meningitis T . Underlying every predic-
tion problem is a directed acylic graph (DAG), such as the
one in Figure 1a, which describes the causal mechanisms
(general directional knowledge of causes and effects, e.g.,
C → Y : heart failure causes low BP) between the vari-
ables that hold in all environments. In this graph, T and
C are not causally related to each other: C is neither
a causal ancestor nor a causal descendant of T . By d-
separation (Koller and Friedman, 2009), unless we condi-
tion on Y , the two are statistically independent: T ⊥⊥ C.
However, selection bias (Figure 1b) or domain-dependent
confounding by indication (Figure 1c) can introduce a spu-
rious association: T 6⊥⊥ C. We now define these cases of
dataset shift and show how they threaten model reliability.

Selection bias occurs when certain subpopulations (with
respect to T and C) are underrepresented in the train-
ing data (S=1) which can result in inaccurate predic-
tions in the deployment population. For example, sup-
pose patients with heart failure but without meningitis
(C = 1, T = 0) are underrepresented because they rarely
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Figure 1: (a) The DAG capturing causal mechanisms for
the medical screening example. The features are blood
pressure Y and heart failure C. The target label T is
meningitis. (b) Selection bias S is included. (c) Domain-
dependent confounding is shown. C represents narcotics
and D a latent risk factor, brain surgery. Shaded nodes
denote observed variables.

visit this hospital since they manage their chronic condi-
tion using a high quality local chronic care clinic. This
results in a spurious positive association between T and
C, with the strength of the association depending on the
degree of selection bias. Further, the distribution p(T |X)
(i.e., p(T |C, Y ) in our example) in the deployment pop-
ulation can differ from the distribution in the training
population p(T |C, Y, S = 1). For the case of the under-
represented (C = 1, T = 0) subpopulation, the screen-
ing model will be poorly calibrated and overestimate the
risk of meningitis in patients with the chronic condition
(i.e., p(T = 1|C = 1, Y ) predictions will be too high).
These systematic errors on a subpopulation pose a threat
to model reliability.

Domain-dependent confounding, shown in Figure 1c, also
threatens model reliability. Suppose C were instead an
indicator for narcotic pain medications which lower BP.
Doctors sometimes prescribe narcotics after brain surgery
(D in Figure 1c), a risk factor for meningitis that may
not be recorded in the data. The policy p(C|D) doctors
use to prescribe narcotics varies between domains (i.e.,
doctors and hospitals) which also causes p(T |Y,C) to
vary. For example, one hospital may freely prescribe
narcotics (resulting in a positive association between T
and C) while another hospital may carefully restrict the
number of painkiller prescriptions. A model trained on
data from the first hospital will overestimate the risk of
meningitis in patients treated with narcotics at the second
hospital. However, when confounders are observed and
differences in policies are known beforehand, adjustments
can be made by discounting the policies during learning
(e.g., Swaminathan and Joachims (2015); Schulam and
Saria (2017)). Otherwise, instead of learning to predict
using a domain-specific association between the target
and the treatment that will not generalize, we can remove
the treatment information from the model or, as we pro-
pose, retain relevant information by accounting for the
effects of the medication.

In both cases of dataset shift, due to either the collider S
(Figure 1b) or the confounder D (Figure 1c), the graphs
contain the spurious marginal association T 6⊥⊥ C that
does not generalize across datasets. When we do not have
data from the target distribution or the differences in poli-
cies across domains are unknown, we propose modifying
the graph to contain latent counterfactual variables which,
when estimated, allow us to remove the variables that
participate in spurious associations with T (such as C in
Figure 1) from the problem. Specifically, if we somehow
knew an adjusted value of Y , denoted Y (C = ∅)—the
value of Y for which the effects of C were removed (e.g.,
the blood pressure had the patient not had heart failure
or not been given narcotics)—then C would no longer
be causally relevant for predicting T . This concept is
inspired by potential outcomes (Neyman, 1923; Rubin,
1974) in causal inference. However, we do not need to
assume full knowledge of the causal DAG (which also in-
cludes latent factors and intermediate variables), required
for the assumptions of causal inference methods. Instead,
we only use knowledge of the causal mechanisms between
the variables in a prediction problem.

In this paper we make the following contributions. First,
we identify variables in a DAG capturing causal mecha-
nisms which make a statistical model vulnerable to learn-
ing spurious associations that do not generalize across
datasets. Second, we define a node-splitting operation
which modifies the DAG to contain interpretable latent
counterfactual variables which render the vulnerable vari-
ables irrelevant in the prediction problem. Third, we
provide conditions for estimating the latent variables as
adjustments of observed features. Fourth, we explain how
the proposed method can make a classification problem
measurably simpler due to reduced variance of the latent
features. On simulated data we evaluate the quality of
model predictions when the accuracy of the latent variable
estimates changes. Then, on a real world medical classi-
fication task, we demonstrate that the proposed method
allows us to remove vulnerable variables while preserving
relevant information.

2 RELATED WORK

Spurious Associations: Predictive modeling methods
for accounting for spurious associations in data typically
require representative unlabeled samples from the test dis-
tribution. For example, the classic selection bias paradigm
is to detect and correct bias in the training distribution by
using unlabeled test samples to estimate the probability of
selection in the training data so the training examples can
be discounted during learning (see e.g., Heckman (1977);
Zadrozny (2004); Huang et al. (2007); Storkey (2009)).

Beyond predictive modeling, previous work has consid-
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ered estimation of causal models in the presence of se-
lection bias and confounding. For example, Spirtes et al.
(1995) learn the structure of the causal DAG from data
affected by selection bias. Others have studied methods
and conditions for identification of causal effects under
spurious associations due to selection bias and confound-
ing (e.g., Bareinboim and Pearl (2012); Bareinboim and
Tian (2015); Correa et al. (2018)). Most relevantly, Cor-
rea and Bareinboim (2017) determine conditions under
which interventional distributions are identified without
using external data. Our work is concerned with statisti-
cal prediction under selection bias or domain-dependent
confounding without external data.

Transportability: The goal of an experiment is for the
findings to generalize beyond a single study, a concept
known as external validity (Campbell and Stanley, 1963).
Similarly, in causal inference transportability, formalized
in Pearl and Bareinboim (2011), transfers causal effect
estimates from one environment to another. Bareinboim
and Pearl (2013) further generalize this to transfer causal
knowledge from multiple source domains to a single tar-
get domain. Like these works, we assume the structure of
the causal mechanism DAG is the same in the source and
any relevant target domains. However, rather than trans-
fer causal estimates from source to target, the proposed
method learns a single statistical model whose predic-
tions should perform well on the source domain while
also generalizing well to new domains.

Graphical Representations of Counterfactuals: The
node-splitting operation we introduce in Section 3.2.2 is
similar to the node-splitting operation in Single World
Intervention Graphs (SWIGs) (Richardson and Robins,
2013). However, intervening in a SWIG results in a causal
generative graph for a potential outcome with the fac-
tual outcome removed from the graph. By contrast, the
node-splitting operation of the proposed method results
in a modified causal generative graph of the factual out-
comes, with new intermediate counterfactual variables.
Other graphical representations such as twin networks
(Pearl, 2009) and counterfactual graphs (Shpitser and
Pearl, 2007) simultaneously represent factual and coun-
terfactual outcomes, rather than the intermediate counter-
factuals exploited in this work.

3 METHODS

Counterfactual Normalization consists of three steps:
identification of variables that are vulnerable to partic-
ipating in spurious associations with the target that do not
generalize across datasets, a node-splitting operation to
place latent counterfactual variables onto the causal DAG
such that they d-separate the target from the vulnerable
variables, and estimation of the relevant latent variables.

We will first review necessary background about potential
outcomes and structural equation models before introduc-
ing the method.

3.1 BACKGROUND

3.1.1 Potential Outcomes

The proposed method involves the estimation of coun-
terfactuals, which can be formalized using the Neyman-
Rubin potential outcomes framework (Neyman, 1923;
Rubin, 1974). For outcome variable Y and intervention
A, we denote the potential outcome by Y (a): the value
Y would have if A were observed to be a.

In general, the distributions p(Y (a)) and p(Y |A = a) are
not equal. For this reason, estimation of the distribution
of the potential outcomes relies on two assumptions:

Consistency: The distribution of the potential outcome
under the observed intervention is the same as the distribu-
tion of the observed outcome. This implies p(Y (a)|A =
a) = p(Y |A = a).

Conditional Ignorability: Y (a) ⊥⊥ A|X , ∀a ∈ A.
There are no unobserved confounders. This implies
p(Y (a)|X,A = a′) = p(Y (a)|X,A = a).

3.1.2 Counterfactuals and SEMs

Shpitser and Pearl (2008) develop a causal hierarchy con-
sisting of three layers of increasing complexity: asso-
ciation, intervention, and counterfactual. Many works
in causal inference are concerned with estimating aver-
age treatment effects—a task at the intervention layer
because it uses information about the interventional dis-
tribution p(Y (a)|X). In contrast, the proposed method
requires counterfactual queries which use the distribution
p(Y (a)|Y, a′, X) s.t. a 6= a′ 1. That is, given that we
observed an individual’s outcome to be Y under interven-
tion a′, what would the distribution of their outcome have
been under a different intervention a?

In addition to the assumptions for estimating potential out-
comes, computing counterfactual queries requires func-
tional or structural knowledge (Pearl, 2009). We can repre-
sent this knowledge using causal structural equation mod-
els (SEMs). These models assume variables Xi are func-
tions of their immediate parents in the generative causal
DAG and exogenous noise ui: Xi = fi(pa(Xi), ui). Rea-
soning counterfactually at the level of an individual unit
requires assumptions on the form of the functions fi and
independence of the ui, because typically we are inter-

1The distinction is that p(Y (a)|X) reasons about the effects
of causes while p(Y (a)|Y, a′, X) reasons about the causes of
effects (see, e.g., Pearl (2015)).
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Figure 2: (a) The DAG of causal mechanisms for the
medical screening example. (b) The modified DAG after
node-splitting yielding the latent signal value under no
different treatment Y (a). (c) The modified DAG after
node-splitting yielding the latent signal value under no
treatment and no chronic condition Y (a, c).

ested in reasoning about interventions in which the ex-
ogenous noise variables remain fixed. We build on this to
estimate the latent counterfactual variables.

3.2 COUNTERFACTUAL NORMALIZATION

Counterfactual Normalization uses a DAG, G, that lever-
ages any prior knowledge of the causal mechanisms relat-
ing variables in a prediction problem with target variable
T , assumed to be binary for the purposes of explanation.
We further assume that the predictors form a Markov
blanket2 of T in G. To sketch the method, recall that
in the example in Figure 1a we identified that C is vul-
nerable to participating in a spurious association with
T . To retain generalizable information about C we will
estimate Y (C = ∅), the counterfactual blood pressure
if a patient did not have heart failure or did not receive
narcotics. Instead of predicting T by modeling p(T |Y,C)
which likely will not generalize, we will instead model
p(T |Y (∅)) which notably does not contain C as a feature.
To explain the method’s steps in complete detail, we will
consider an expanded version of the meningitis example.
In Figure 2a we have added a variable A to represent med-
ications given to the patient, and a variable X to represent
demographic factors (e.g., age).

3.2.1 Identification of Vulnerable Variables

Spurious associations are marginal non-causal associa-
tions with T in the training data. Since we are using the
Markov blanket of T for prediction, a variable v ∈ G
makes a model vulnerable to learning a spurious associ-
ation if it is neither an ancestor nor a descendant of the
target variable T while being a member of the Markov

2The Markov blanket of a target variable is a set of variables
such that, conditioned on the set, the target is independent of
all other variables not in the set (Koller and Friedman, 2009).
Graphically, these are the target’s parents, children, and other
parents of its children.

Algorithm 1: Node-splitting Operation
Input: Graph G, child of target node Y , observed

parents of Y to intervene upon P
Output: Modified graph G∗
1. Insert counterfactual node Y (P = ∅)
2. Delete edges {x→ Y : x ∈ pa(Y ) \P}
3. Insert edges {x→ Y (P = ∅) : x ∈ pa(Y ) \P}
4. Insert edge Y (P = ∅)→ Y

blanket of T . Thus, vulnerable variables are parents of
children of T that are non-causally associated with the
target variable.

In Figure 2(a), the vulnerable variables are C and A be-
cause they are parents of Y (a child of T ) without being
descendants or ancestors of T .

3.2.2 Node-Splitting

To remove vulnerable variables from the Markov blanket
of T we need to create a modified graph G∗ by adding
latent nodes to G such that the new nodes and the existing
non-vulnerable nodes d-separate the vulnerable variables
from T . We term the process (shown in Algorithm 1) of
generating G∗ node-splitting.

Consider intervening on treatment (A) in Figure 2a. We
assume variables are interventionally set to a “null” value
(e.g., A = ∅ representing the absence of treatment or
C = ∅ representing the absence of the chronic condition).
A is a vulnerable variable because it is not causally asso-
ciated with T and it is a parent of a child of T , namely
blood pressure (Y ). The structural equation of blood pres-
sure is Y = fy(T,X,C,A, uy). Intervening on A results
in the latent variable Y (∅) = fy(T,X,C,A = ∅, uy)
representing the untreated blood pressure value. Unlike
traditional SEM interventions, we retain the factual ver-
sion of the variables we intervene on in the graph. We
visualize this in Figure 2b by placing the resulting latent
outcome variable Y (a) onto the causal graph as a parent
of its factual version Y . The latent version subsumes the
parents (in the original graph G) of its factual version that
were not intervened upon (e.g., X and C). Thus, the new
latent variable represents the value before the observed ef-
fects of the interventional variables occurred. We further
assume that the factual outcome can be recovered as some
invertible function of the counterfactual outcome and the
observed value of the parent, subject to the same values of
the exogenous noise variables: Y = gy(Y (∅), A, uy). As
a result, the new graph G∗ is still a model of the observed
data generating process.

The node-splitting operation naturally extends to simul-
taneous interventions on multiple variables. Figure 2c
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shows the modified DAG when A and C are simultane-
ously intervened upon. Importantly, because we inter-
vened on all vulnerable variables, this graph yields the
conditional independence: T ⊥⊥ Y,A,C|Y (A = ∅, C =
∅), X in which the vulnerable variables A and C are
now irrelevant for predicting T conditioned on the new
Markov blanket which contains the latent variable. Thus,
to d-separate the target from the vulnerable variables V,
we need to compute the latent versions of the shared chil-
dren of T and V in which we intervene and set V = ∅.

3.2.3 Estimating Latent Variables

Under what conditions can we estimate the latent vari-
ables so that we d-separate the vulnerable variables from
the target? First, we need adjusted versions of the assump-
tions required to estimate the distributions of potential
outcomes, namely the previously mentioned conditional
ignorability assumption. We assume we can accurately fit
SEMs with respect to the available features in G. In addi-
tion to no unobserved confounders, we also ideally have
no unobserved exogenous variables. Enumerating more
parents of a variable in its SEM allows us to better fit the
equation and reduce the influence of ui, the exogenous
noise. Additionally, there are structural requirements for
the models used to estimate the latent variables because
of the underlying prediction problem, which results in an
unobserved target variable for test units.

No Interaction with the Target: In the structural equa-
tions, the effects of vulnerable variables V on children
Y shared with the T cannot depend on T . If this were
not the case, then estimating the latent outcome would
require knowing the value of T , defeating the purpose of
the prediction problem.

To compute the hypothetical latent variables, we first pick
arbitrary forms for the generative structural equations of
the children of T satisfying the invertibility and no inter-
action requirements and fit them to the factual outcomes
data (e.g., using maximum likelihood estimation). Then,
we can compute the latent outcome values by performing
the interventions on the fitted structural equations. In our
experiments in Section 5 we demonstrate how to do this
for additive structural equations.

3.2.4 Non-Vulnerable Interventions

As we will explain in Section 4, the proposed method
can result in a measurably simpler classification problem
when the target is binary by decreasing variance in the
children of T due to removing the effects of the vulner-
able variables. A natural question is: are we limited to
intervening only on the vulnerable variables?

We can intervene on any parent of a child of T (except

T

Y (a, c, x)

X

C

A

Y

Figure 3: The modified DAG after intervening on C,A,
and X .

for T itself). However, unless the parent is a vulnerable
variable, the parent will still be relevant for predicting T .
This is because we cannot change the value of a parent of
T in the structural equation for T , because in evaluation
data T is unobserved. In the meningitis example of Figure
2, suppose we intervene on X (a parent of T and a parent
of a child of T ) in addition toC andA. The resulting DAG
after node-splitting is shown in Figure 3. Note that the
only parent of Y (a, c, x) is T since it is the only parent of
Y in the original DAG that is not intervened upon. Since
the edgeX → T remains unchanged by the node-splitting
operation, X is still a member of the Markov blanket of
T . Thus, we would predict T using p(T |Y (∅, ∅, ∅), X).
While not pictured, we can also intervene on children of T
that are parents of other children of T . For example, if we
added a variable Z to Figure 2a with edges T → Z → Y ,
we could intervene on Z. We would not, however, be able
to remove Z from the Markov blanket of T because the
edge T → Z remains.

Even though these variables remain relevant for predict-
ing T after intervening on them, there are still potential
benefits to removing their effects on the children of T be-
cause it can measurably lower variance in these variables
as we now discuss.

4 COMPLEXITY METRICS

Beyond guarding against vulnerabilities, what are other
benefits of the proposed method? For binary prediction
problems, the geometric complexity (on the basis of eu-
clidean distance) of the class boundary of a dataset can
decrease when using the latent variables instead of the fac-
tual outcome and vulnerable variables. This is similar to
the work of Alaa and van der Schaar (2017) who use the
smoothness of the treated and untreated response surfaces
to quantify the difficulty of a causal inference problem.
To measure classifier-independent geometric complexity
we will use two types of metrics developed by Ho and
Basu (2000, 2002): measures of overlap of individual
features and measures of separability of classes.

For measuring feature overlap, we use the maximum
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Fisher’s discriminant ratio of the features. For a single
feature, this measures the spread of the means for each
class (µ1 and µ2) relative to their variances (σ2

1 and σ2
2):

(µ1−µ2)
2

σ2
1+σ

2
2

. Since the proposed method uses latent vari-
ables in which we have adjusted for the effects of the
vulnerable variables (and any other variables we inter-
vene on), this also removes sources of variance in the
outcome. Thus, we expect the variances of each class to
reduce resulting in increased feature separability and a
corresponding increased Fisher’s discriminant ratio.

One measure of separability of classes is based off of a
test (Friedman and Rafsky, 1979) for determining if two
samples are from the same distribution. First, compute
a minimum spanning tree (MST) that connects all the
data points regardless of class. Then, the proportion of
nodes which are connected to nodes of a different class
is an approximate measure of the proportion of examples
on the class boundary. Higher values of this proportion
generally indicate a more complex boundary, and thus a
more difficult classification problem.

However, this metric is only sensitive to which class neigh-
bors are closer, and not the relative magnitudes of intra-
class and interclass distances. Another measure of class
separability is the ratio between the average intraclass
nearest neighbor distance and the average interclass near-
est neighbor distance. This measures the relative magni-
tudes of the dispersion within classes and the gap between
classes. While we do not necessarily expect Counterfac-
tual Normalization to increase the gap between classes,
we do expect intraclass distances to decrease because the
data units are transformed to have the same value of the
vulnerable variables, reducing sources of variance (e.g.,
less variance in counterfactual untreated BP than in fac-
tual BP). While the MST metric may not decrease, we
expect the intraclass-interclass distance ratio to decrease.

We can now state more specifically the benefits of the
proposed method. Based on the assumptions in Section
3, we know that the vulnerable variables are not causally
related to the target variable and that their effects on the
outcome variables are not dependent on the target variable.
These variables add variance to the prediction problem
and, given that we can account for their effects on the
children of T , are irrelevant to it. Thus, the proposed
method can directly increase the signal-to-noise ratio of
the classification problem. With respect to the geometric
complexity of the class boundary, this manifests itself
through reductions in the variance within a class, as we
will demonstrate in our simulated experiments.

Table 1: Simulated Experiment Results
Method Source AUROC Target AUROC
Baseline 0.66 0.67
Baseline (vuln) 0.94 0.87
CFN 0.96 0.96
CFN (vuln) 0.97 0.95

5 EXPERIMENTS

The proposed method allows us to learn accurate pre-
diction models that generalize across datasets. We first
consider simulated experiments in which we know the
true counterfactual outcomes to illustrate how the quality
of predictions depends on the accuracy of the counter-
factual estimates. Then we apply the method to a real
medical classification task and demonstrate how we can
use the proposed method to train a model that does not
rely on vulnerable variables while retaining relevant in-
formation. In all experiments we train models using only
source data and evaluate on test data from both the the
source and target domains.

5.1 SIMULATED EXPERIMENTS

5.1.1 Cross Hospital Transfer

We consider a simulated version of the medical screening
problem in Figure 2(a), but removeX from the graph. We
let A represent the time since treatment and simulate the
exponentially decaying effects of the treatment as f(A) =
2 exp(−0.08A) where the treatment policy depends on
C. In this example, C and A are vulnerable variables.

We simulate data for patients from two hospitals. In the
source hospital, we directly introduce a spurious associ-
ation between C and T , which leads to an association
between A and T . At this hospital shorter times since
treatment are correlated with having the target condition.
For this hospital the data are generated as follows:

T ∼ Bernoulli(0.4)
C|T = 1 ∼ Bernoulli(0.8)
C|T = 0 ∼ Bernoulli(0.3)
A|C = 1 ∼ 24 ∗Beta(0.5, 2.1)
A|C = 0 ∼ 24 ∗Beta(0.7, 0.2)
Y ∼ N (−0.5T +−0.3C + f(A), 0.22)

f(A) = 2 exp(−0.08A)

We remove the spurious correlation between T and C in
the target hospital: p(C = 1|T ) = p(C = 1) = 0.75.
We also change the after-treatment measurement policy
parameters to 1.7 and 1.1 such that p(A|C) = p(A).

We assume that the T and C coefficients (in the struc-
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Table 2: Simulated Classification Complexity Metrics
Method Fisher’s Distance MST
Baseline (vuln) 0.86 0.11 0.54
CFN 3.51 0.02 0.19

tural equation for Y ), the treatment response amplitude
and timescale parameters, and noise scale parameter are
unknown and need to be learned through maximum likeli-
hood estimation, optimized using BFGS (Chong and Zak,
2013). We generate 800 patients from the source hospital,
using 600 to learn the parameters and holding out 200 to
evaluate performance on the source hospital. We evaluate
cross hospital transfer on 600 patients generated from the
second hospital.

As we identified in Section 2, the target latent variable
is Y (A = ∅, C = ∅): the patient’s blood pressure value
if they had not been treated and did not have heart fail-
ure. Once the model parameters are learned, comput-
ing the latent variable is straightforward due to the ad-
ditive structural equation of Y : Yi(A = ∅, C = ∅) =

Yi − β̂Ci − f̂(si)3 which can be computed for every in-
dividual i at both hospitals without observing T . We
consider counterfactual (CFN) p(T |Y (∅, ∅)) and base-
line factual models p(T |Y ) and corresponding versions
with the vulnerable variables (p(T |Y (∅, ∅), A,C) and
p(T |Y,A,C)) using logistic regression and measure pre-
dictive accuracy with the area under the Receiver Operat-
ing Characteristic curve (AUROC).

The results of evaluation on the patients from the source
and target are shown in Table 1. The accuracy of the
baseline model using the vulnerable variables does not
transfer across hospitals. However, simply discarding
the vulnerable features results in consistently poor per-
formance at both hospitals. Instead, the counterfactually
normalized models both transfer well while maintaining
high performance. The latent features also capture most
of the relevant information from the vulnerable variables,
since adding the vulnerable variables results in marginal
improvements at the source hospital.

The increased separability in the latent variables is shown
in Figure 4, in which the factual blood pressure distribu-
tions (solid lines) contain significant overlap. However,
once we normalize the blood pressures for treatment and
chronic condition, the separability by class is increased.
We also measure the increase through the classification
complexity metrics in Table 2, computed using the source
hospital training data. The feature with the maximum
Fisher’s Discriminant Ratio in the baseline model is C,
but this is much smaller than the ratio for the latent fea-

3∧ denotes an estimated value.

Figure 4: The distribution of factual (solid line) and es-
timated counterfactual (dashed line) blood pressures at
the source hospital in the simulated experiment. It is eas-
ier to discriminate T from counterfactual BP than from
observed BP due to decreased overlap in the distributions.

Figure 5: Performance as the accuracy of counterfactual
estimates decreases. Secondary y-axis measures correla-
tion between predictions using vulnerable variables and
predictions without using them. The error bars denote the
standard error of 50 runs.

ture. The large decrease in the MST metric indicates
fewer examples lies on the class boundary in the normal-
ized problem, and the decrease in intraclass-interclass
is due to a combination of increased separability and re-
duced intraclass variance of the latent variables visible in
the reduced spread of the distributions in Figure 4.

5.1.2 Accuracy of Counterfactual Estimates

In this experiment, we examine how the accuracy of coun-
terfactual estimates affects the quality of model predic-
tions. If the counterfactual estimates are accurate, then
we expect the conditional independence of the vulner-
able variables in the modified DAG to hold. We mea-
sure the degree of independence using the correlation
between the predictions with (p(T |Y (∅, ∅))) and without
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Figure 6: Real data experiment DAG of causal mecha-
nisms. The outcome Y is INR and the target T is sepsis.

(p(T |Y (∅, ∅), C,A)) using vulnerable variables.

We bias the true counterfactual values by adding normally
distributed noise of increasing scale. Then, we train the
counterfactual logistic regressions (with and without vul-
nerable variables) to predict T and evaluate the AUROC
on the source and target hospital patients. We vary the
standard deviation of the perturbations from 0.05 to 1 in
increments of 0.05, repeating the process 50 times for
each perturbation.

The results, shown in Figure 5, demonstrate what we ex-
pect: as the mean squared error (MSE) of the estimated
latent variables increases, predictive performance on both
populations worsens and the correlations of the predic-
tions with and without vulnerable variables decreases.
Since the model using vulnerable variables is biased by
a spurious association that does not transfer (since the
noisy adjustment is not capturing the relevant informa-
tion), that model consistently underperforms at the target
hospital. The counterfactual model without the vulnera-
ble variables performs equally well at both hospitals, but
the noise removes both the information captured by the
adjustment and the information contained in Y itself.

5.2 REAL DATA: SEPSIS CLASSIFICATION

5.2.1 Problem and Data Description

We apply the proposed method to the task of detecting
sepsis, a deadly response to infection that leads to organ
failure. Early detection and intervention has been shown
to result in improved mortality outcomes (Kumar et al.,
2006) which has resulted in recent applications of ma-
chine learning to build predictive models for sepsis (e.g.,
Henry et al. (2015); Soleimani et al. (2017); Futoma et al.
(2017)).

We consider a simple cross-sectional version of the sepsis
detection task as follows using electronic health record
(EHR) data from our institution’s hospital. Working with
a domain expert, we determined the primary factors in
the causal mechanism DAG (Figure 6) for the effects
of sepsis on a single physiologic signal Y : the interna-

tional normalized ratio (INR), a measure of the clotting
tendency of blood. The target variable T is whether or
not the patient has sepsis due to hematologic dysfunction.
We use chronic liver disease and sickle cell disease as
conditions C affecting INR that are risk factors for sepsis
(Goyette et al., 2004; Booth et al., 2010). We consider five
types of relevant treatments A: anticoagulants, aspirin,
nonsteroidal anti-inflammatory drugs (NSAIDs), plasma
transfusions, and platelet transfusions, where Aij = 1
means patient i has received treatment j in the last 24
hours. Finally, we include a demographic risk factor, age
X . For each patient, we take the last recorded measure-
ments while only considering data up until the time sepsis
is recorded in the EHR for patients with T = 1.

27,633 patients had at least one INR measurement, 388
of whom had sepsis due to hematologic dysfunction. We
introduced spurious correlation through selection bias as
follows. First, we took one third of the data as a sample
from the original target population for evaluation. Second,
we subsample the remaining data such that it only contains
patients who are flagged in the EHR for having high INR.
Third, we split the subsampled data into a random two
thirds/one third train/test splits for training on biased data
and evaluating on both the biased and unbiased data to
measure transferability. We repeated the three steps 50
times. We normalize INR in all experiments.

5.2.2 Experimental Setup

We apply the proposed method by fitting an additive struc-
tural equation for Y using the Bayesian calibration form
of Kennedy and O’Hagan (2001):

Yi = β0 + β1Ti + β
T
2 Ai + β

T
3 Ci + β4Xi

+ δ(Ti,Ai,Ci, Xi) + ε

δ(·) ∼ GP(0, γ2Krbf )

ε ∼ N (0, σ2)

where δ(·) is a Gaussian process (GP) prior (with RBF
kernel) on the discrepancy function since our linear re-
gression model is likely misspecified.

Due to the selection bias in the training data, all patients
have high INR making it difficult to calibrate the regres-
sion parameters. For this reason we place informative
priors on β1, β2, and β3 using N (1, 0.1) for features that
increase INR (e.g., T and anticoagulants) andN (−1, 0.1)
for features that decrease INR (e.g., sickle cell disease
and plasma transfusions). For full specification of the
other priors please consult the supplement. We compute
point estimates for the parameters using MAP estimation
and the FITC sparse GP (Snelson and Ghahramani, 2006)
implementation in PyMC3 (Salvatier et al., 2016).

While the counterfactual Y (A = ∅) is sufficient for d-
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Figure 7: Results for models trained and tested on the
selection biased data. In order the average AUROCs are
0.71, 0.75, and 0.78 and the average AUPRCs are 0.34,
0.36, and 0.39. Error bars denote 50 run 95% intervals.
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Figure 8: Results for models trained on biased data and
tested on unbiased data. In order the average AUROCs
are 0.96, 0.94, and 0.88 and the average AUPRCs are 0.26,
0.29, and 0.28. Error bars denote 50 run 95% intervals.

separating A from T in Figure 6 after node splitting, we
additionally normalize the effects of C and X:

Yi(∅,∅, ∅) = Yi − β̂T2 Ai − β̂T3 Ci − β̂4Xi (1)

We consider three logistic regression models trained
on the biased data for predicting T : a base-
line that does not use the vulnerable variables
p(T |C, Y,X), a baseline that uses the vulnerable vari-
ables p(T |A,C, Y,X), and a counterfactually normal-
ized model p(T |C, Y (∅,∅, ∅), X). We evaluate predic-
tion accuracy on biased and unbiased data using AUROC
and the area under the precision-recall curve (AUPRC).

5.2.3 Results

The resulting AUCs when predicting on biased data are
shown in Figure 7. The counterfactually normalized
model (CFN) outperforms the baseline model in which the

vulnerable variables are removed, but performs slightly
worse than the normalized model which includes the vul-
nerable variables. This indicates that the latent variable
estimates have captured some, but not all, of the relevant
information in the vulnerable variables.

The results when predicting on unbiased data are shown
in Figure 8. Since most of the examples in the unbiased
data are negative (only 1.4% are positive), the AUPRC is
a more interesting measurement because it is sensitive to
false positives. As we expect, the baseline model without
vulnerable variables has the lowest AUPRC because it has
less statistically relevant information to use. Somewhat
surprisingly, despite being trained on finite samples of bi-
ased data, the model with the vulnerable variables is able
to learn a conditional distribution with the vulnerable vari-
ables that carries over to the unbiased population. Addi-
tionally, the counterfactual model without non-vulnerable
variables has similar performance to the vulnerable model
with respect to AUPRC indicating that it also captured a
relationship of the vulnerable variables that generalizes.
These results are encouraging because we were able to
learn a counterfactually normalized model that transfers
while clearly retaining non-spurious information about
the vulnerable variables.

6 CONCLUSION

Using properties of DAGs encoding causal mechanisms,
we have identified variables in prediction problems that
are vulnerable to participating in spurious associations
that can cause models to fail to generalize from training to
deployment settings. As opposed to previous approaches
which rely on unlabeled samples from the target distribu-
tion, we proposed a solution which allows us to identify
latent variables that, when estimated, can allow a model
to generalize by removing the vulnerable variables from
the prediction problem. Because of their causal interpre-
tations, we believe these latent variables are more intelli-
gible for human experts than existing adjustment-based
methods. For example, we think it is easier to reason
about “the blood pressure if the patient had not been
treated” than interaction features or kernel embeddings—
we would like to test this in a future user study. In our
experiments we demonstrated that we can successfully
remove vulnerable variables at prediction time with mini-
mal accuracy loss.
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Abstract

Decentralized planning under uncertainty for
agent teams is a problem of interest in many
domains including (but not limited to) disas-
ter rescue, sensor networks and security pa-
trolling. Decentralized MDPs, Dec-MDPs have
traditionally been used to represent such decen-
tralized planning under uncertainty problems.
However, in many domains, agents may not
be dedicated to the team for the entire time
horizon. For instance, due to limited availabil-
ity of resources, it is quite common for police
personnel leaving patrolling teams to attend to
accidents. Such non-dedication can arise due
to the emergence of higher priority tasks or
damage to existing agents. However, there is
very limited literature dealing with handling
of non-dedication in decentralized settings. To
that end, we provide a general model to rep-
resent problems dealing with cooperative and
decentralized planning for non-dedicated agent
teams. We also provide two greedy approaches
(an offline one and an offline-online one) that
are able to deal with agents leaving the team
in an effective and efficient way by exploiting
the submodularity property. Finally, we demon-
strate that our approaches are able to obtain
more than 90% of optimal solution quality on
benchmark problems from the literature.

1 INTRODUCTION

Decentralized planning for a team of agents is required
in a wide variety of problems such as target tracking by
a team of sensors [Nair et al., 2005; Kumar and Zilber-
stein, 2011; Chapman and Varakantham, 2014], securing
targets from unknown attackers using a team of defend-
ers [Brown et al., 2014; Shieh et al., 2014; Varakantham

et al., 2013], rescuing of victims by a team of robots dur-
ing disaster [Melo and Veloso, 2011; Varakantham et al.,
2009, 2014; Velagapudi et al., 2011] and analysing under-
water samples using a team of underwater vehicles [Yin
and Tambe, 2011], etc.

These domains have the following common characteris-
tics: (a) A decentralized team of agents (sensors, ambu-
lances, fire-trucks, etc.) that coordinate plans to achieve
a goal; (b) There is transition uncertainty in planning
problems of individual agents, either due to travelling
on roads (due to traffic) or due to physical constraints
(sensors, robots, etc.) (c) The agents are independent and
collaborate through a global reward (save victims, prevent
attacks, etc.); and most importantly (d) The individual
agents have a chance of leaving the team at any time step
to address a higher priority task. For example, in the case
of patrolling, agents (e.g., coast guard boats, traffic police)
can be forced to leave their assignment to attend to an
accident or incident (e.g., incursion, smuggling, accident).

We are interested in application problems with the above
mentioned characteristics and specifically teams in which
agents are non-dedicated and may leave the team due to
higher priority tasks or damage to agents. Non-dedication
has been explored by Agrawal and Varakantham [2017]
for centralized planning. Further, Shieh et al. [2014] con-
sidered non-dedicated teams in decentralized settings, but
they provide an exhaustive offline approach that is not
scalable. Our contributions differ in providing quick so-
lutions by exploiting reward submodularity for decentral-
ized planning such that remaining agents can reconfigure
their policies to attend to tasks of leaving agents.

Submodularity has been exploited by Kumar and Zilber-
stein [2009]; Satsangi et al. [2015] for centralized plan-
ning model while Kumar et al. [2017] focus on decen-
tralized planning in cooperative teams. Our contributions
differ from this line of work in considering non dedicated
agent teams with multiple agent exits from the team while
still considering joint submodular reward functions for
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decentralized planning. Another closely related thread
of research is on adaptive submodularity [Golovin and
Krause, 2011], where a sequence of decisions are taken
by accounting for the observations of past decisions. Our
work differs from this thread because we consider a multi-
stage submodular problem (which introduces a partition
matroid constraint) where at every decision epoch, we
have a new submodular problem1 with fewer number of
agents.

To that end, we provide a general model to represent the
class of problems dealing with a team of independently
collaborating non-dedicated agents. A key contribution
of our work lies in establishing connections between non-
dedicated agent teams and submodularity. We show that
with monotone submodular reward functions subject to
the matroid constraint, greedy solutions computed at every
decision epoch are still submodular with fewer number of
agents and provide an a priori guarantee of at least 50%
from the optimal and much better posterior guarantees.
Another main contribution includes our two greedy ap-
proaches to efficiently deal with agent exits before the end
of horizon. In our first approach, we exploit lazy greedy to
obtain a unique offline policy for every agent irrespective
of the agent exits from the team. The second approach is
an offline-online approach where the offline phase creates
a fixed number of joint policies to be used in the online
phase. Finally, our experiments demonstrate the improved
performance of our approaches on benchmark problems
from literature.

2 BACKGROUND

2.1 Monotone Submodularity and Matroids

Definition 1 Given a finite set, Π, a submodular func-
tion is a set function, g : 2Π → R, where 2Π is the power
set corresponding to Π. More importantly, ∀X,Y ⊆ Π
with X ⊆ Y and for every i ∈ Π \ Y , we have:

g(X ∪ i)− g(X) ≥ g(Y ∪ i)− g(Y )

A submodular function g is monotone if g(Y ) ≥ g(X)
for X ⊆ Y .

Monotone submodular functions are interesting because
maximizing a submodular function to pick a fixed number
of elements (say k) from the finite set (Π) while difficult
can be approximated efficiently with a strong quality guar-
antee. Specifically, a greedy algorithm that incrementally
generates the solution set by maximizing marginal utility
provides solutions that are at least 63% (1 − 1

e ) of the
optimal solution.

1This is unlike in adaptive submodularity, where there is one
submodular problem with updated information on sensor state.

If we have a submodular function under a specific con-
straint on the finite set (Π) and the elements that are
picked, the constraint is specified using a partition ma-
troid. In this paper, we are also interested in maximizing a
submodular function, however, under a specific constraint
on the finite set (Π) and the elements that are picked.
Specifically, the constraint is specified using a partition
matroid. We provide the formal definitions below:

Definition 2 For a finite ground set Π, let P be a non-
empty collection of subsets of Π. The system Γ = (Π,P)
is a matroid if it satisfies the following two properties:

• The hereditary property: P1 ∈ P ∧ P2 ⊂ P1 =⇒
P2 ∈ P . In other words, all the subsets of P1 must be
in P .

• The exchange property: ∀P1,P2 ∈ P : |P1| <
|P2| =⇒ ∃x ∈ P2 \ P1;P1 ∪ x ∈ P .

We are specifically interested in a ground set that is parti-
tioned as Π = Π1∪Π2∪ . . .∪Πk. The family of subsets,
P = {P ⊆ Π : ∀i, |P ∩Πi| ≤ 1} forms a matroid called
a partition matroid. This family of subsets denotes that
any solution can include at most one element from each
ground set partition where the ground set partitions repre-
sent the policy space of each agent and exactly one policy
must be picked for each agent.

2.2 Submodular TI-Dec-MDP

Submodular Transition Independent Decentralized
Markov Decision Process (TI-Dec-MDP) model [Ku-
mar et al., 2017] is characterized by the tuple:〈
Ag, S,A, {Pi}i∈Ag, R,H, α

〉
, where

• Ag is the set of agents.
• S is the factored joint state space. S = S1 ×
S2 . . . S|Ag|, where Si is the state space correspond-
ing to each individual agent i. We can also have a
global unaffected state feature Su.

• A is the joint action space. A = ×i∈AgAi, where Ai
is the action space corresponding to each agent i.

• Pi is the individual agent transition function.
Pi(s

′
i|si, ai) indicates the transition probability of

moving from si to s′i on taking action ai.
• R is the monotone submodular joint reward, with
R(s, a) representing the reward for taking joint action
a in joint state s. In security domains [Shieh et al.,
2014], reward is both monotonically increasing and
submodular. It is defined as follows:

R(s, a) =
∑

τ

yτ · fτ (σ(s, a, τ)) (1)

yτ indicates the value of target τ and hence is a non-
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negative number. fτ (.) is a monotone submodular
function referred to as the effectiveness of patrolling
a target τ . Effectiveness of patrols at a target τ de-
pends on the number of agents patrolling the target.
σ(s, a, τ) counts the number of agents at target τ if
the current joint state is s and joint action is a. Let ε
(0 < ε ≤ 1) represent the effectiveness of one agent
visiting a target. Then, the effectiveness of σ agents
visiting the same target τ in the joint state s is given by
the usual definition of f(.) for effectiveness parameter
ε is f(σ) = 1− (1− ε)σ.

• H is the time horizon and α is the starting state distri-
bution.

The goal is to obtain a joint policy π∗ = 〈π1, π2, . . . , 〉
(with one policy, πi for each agent i) that maximizes
expected reward or value defined as follows:

V (π) =
∑

s

α(s) · V H(s, π) (2)

V t(s, π) = R
(
s,
〈
πt1(s1), . . . , π

t
|Ag|(s|Ag|)

〉 )
+

∑

s′

[ ∏

i∈Ag
Pi
(
s′i|πti(si), si

)]
· V t−1(s′, π) (3)

3 SUBMODULAR ND-TI-Dec-MDP

We extend Submodular TI-Dec-MDPs to Non-Dedicated
TI-Dec-MDPs (ND-TI-Dec-MDPs) in order to model non-
dedicated teams. The model is characterised by the fol-
lowing tuple:

〈Ag, {∆i}i∈Ag, S,A, {Pi}i∈Ag, R,H, α〉

The main change to the Submodular TI-Dec-MDP is ∆i.
∆i is the vector of probabilities for agent i leaving the
system at different times. Specifically, ∆t

i represents
the probability of agent i leaving the team at time t and∑
t ∆t

i = 1. We use the global state Su to represent
the dead state (i.e., the state that agents enter when they
move out of the system ). The individual agent transition
function P ti (s′i|si, ai) is modified to P ti (s′i|si, ai,∆i) and
is described as following:

P ti (s′i|si, ai,∆i) = P ti (s′i|si, ai) · (1−∆t
i) (4)

P ti (Su|si, ai,∆i) = ∆t
i (5)

If ∆t
i = 0, it implies that the agent transitions to

the expected state according to its transition probabil-
ity P ti (s′i|si, ai). Otherwise, if ∆t

i 6= 0, the transitions
depend on the agent’s probability of staying in the system
(i.e., 1−∆t

i). Furthermore, an agent transitions to the dead
state from any other state with probability ∆t

i. Note that
once an agent transitions to the dead state Su, it stays there

until the end of horizon (i.e., P ti (Su|Su, ai,∆i) = 1) ir-
respective of the action taken. The joint reward function
R(s, a) however remains unchanged since the computa-
tion of reward only requires the count of agents present
in the joint state s. In addition, there is no reward as-
sociated with agents present in Su and we simply have
R(Su, a) = 0. The goal of submodular ND-TI-Dec-MDP
is to obtain a joint policy π that maximizes the expected
value V t(s, π) over all agents with an additional con-
straint that the agents may leave the team.

3.1 Properties of ND-TI-Dec-MDP

We now describe the important properties of ND-TI-Dec-
MDPs with a joint reward function that is monotonically
increasing and submodular. Let us first consider the case
of a dedicated team where no agent leaves the system
(represented as ∆H

i = 1 for all agents). In this case, the
state of the system is fixed (i.e., no agents leaving) and al-
ready known to the decision maker, and hence, the policy
of every agent can be determined in advance. However,
in a non-dedicated agent team, agents may leave the team
midway requiring reconfiguration of the remaining agent
policies. The timestep at which an agent leaves the team
is referred to as observation timestep, t′ and the set of
agents leaving the system at t′ represent the observation
ψ. All the agents that have left until t′ constitute the ob-
servation set ψt′ . The joint policy for a ND-TI-Dec-MDP
is a concatenated policy which is formally defined for one
observation timestep as following.

Definition 3 Policy Concatenation: Let πψ0
be the joint

policy over all agents until the first observation at time t′

and πψt′ be the joint policy with observation set ψt′ . The
concatenated policy π̂ is represented as:

π̂ = [πψ0
]
t<t′

t=0 +
[
πψt′

]t=H
t=t′

Proposition 1 [Kumar et al., 2017]: For a TI-Dec-MDP,
V H(s, π) is monotonically increasing and submodular
if the joint reward, R is monotonically increasing and
submodular.

At t = 0, ND-TI-Dec-MDP is similar to TI-Dec-MDP
and is solved for |Ag| agents and H timesteps. The value
function, V H(s, π) is a monotone and submodular being
the case of dedicated agent team. Similarly, for every
observation timestep t′, ND-TI-Dec-MDP is solved as
a new TI-Dec-MDP problem with Ag \ ψt′ agents and
H−t′ timesteps where ψt′ represents the set of agents that
have left until t′. The value function, V H−t

′
(s, π) at t′

is also monotonically increasing and submodular. Hence,
for a single observation ψt′ , the joint policy comprises of
two components (as per definition 3) where the second
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component is guaranteed to be submodular but not the first
component. This is because submodularity of the value
function V H(π) holds for [t]

H
0 but for ND-TI-Dec-MDP,

we consider only timesteps [t]
t′

0 for the first component.
Hence, the value function V H(π̂) for ND-TI-Dec-MDP
is not guaranteed to be submodular for π̂, however, it is
submodular for every TI-Dec-MDP sub-problem.

The goal in ND-TI-Dec-MDPs is to maximize the ex-
pected value by obtaining a correct joint policy (i.e.,
exactly one policy per agent). Formally, the goal is
to maximize V H(π) for every individual TI-Dec-MDP
problem given the partition matroid Γ = (Π, I) where
I = {X ⊆ Π : |X ∩ Πi| = 1}. Intuitively, the partition
matroid enforces that we can only have one policy for
each agent.

Proposition 2 [Fisher et al., 1978]: Greedy algorithm
for maximizing a monotone submodular function subject
to a partition matroid yields solutions that are at least
50% of the optimal solution.

For a non-dedicated agent team, the a priori bounds for
every TI-Dec-MDP sub-problem at any t′ is guaranteed
to be at least 50% of optimal in the worst case. However,
these bounds are quite loose since the solution provided
by greedy is much better in most cases. Therefore, we
compute online bounds by adding the marginal value
of the best policy for every agent in the solution set to
provide a tighter upper bound on the optimum. The online
bound for a monotonically increasing and submodular
value function is represented as below:

Proposition 3 [Kumar et al., 2017]: For any joint policy,
π:

V (π∗) ≤ V (π) +
∑

i∈Ag
δi(π)

where δi(π) = maxπi∈Πi V (π ∪ πi)− V (π)

Here, π∗ is the optimal joint policy with optimal individ-
ual policies for every agent. For any joint policy π, we
get an upper bound on the value of the optimal policy by
adding the individual policies, πi that yield best marginal
values for each agent. In the context of ND-TI-Dec-MDP,
at every observation timestep t′, we solve a new TI-Dec-
MDP problem with Ag \ψt′ agents and H − t′ timesteps
where any policy πψt′ provides an upper bound on the
optimal policy π∗ψt′ . However, any concatenated policy
π̂ is not guaranteed to provide an upper bound on the
optimal concatenated policy π̂∗ since submodularity may
not hold for πψ0

. We still compute the online bound for
the concatenated policy as following.

V (π̂∗) ≤
[
V (πψ0) +

∑

i∈Ag
δi(πψ0)

]t<t′

t=0

+ (6)


V (πψt′ ) +

∑

i∈Ag\ψt′
δi(πψt′ )



t=H

t=t′

Algorithm 1 ND-GREEDY (Ag, S,A, P,R,H −
t′, α, ψt′ )

1: Z ← ∅
2: π∗i ← ∅,∀i ∈ Ag \ ψt′
3: repeat
4: for all i ∈ Ag \ {ψt′ ∪ Z} do
5: π∗i ← maxπi Vi(πi, α

t′
i |π∗Z)

6: 〈i∗, Vi∗〉 ← maxi∈Ag\ψt′∪Z Vi(π
∗
i , α

t′
i |π∗Z)

7: Z ← Z ∪ {i∗}
8: until Ag \ {ψt′ ∪ Z} = ∅
9: return {Z, π∗ ← {π∗i }i∈Ag\ψt′}

where δi(πψt) = max
πi∈Πi

V (πψt ∪ πi)− V (πψt), t ∈ {0, t′}

The expression in the first square bracket bounds the
value of the optimal concatenated policy V H(π̂∗) from
t = 0 to t ≤ t′ for the policy πψ0

(however, it is not a
guaranteed online bound), while the second expression
provides a guaranteed online bound on the value of the
optimal concatenated policy from t ≥ t′ to t = H . For
our experiments, we compute online bounds for ND-TI-
Dec-MDP using Equation 6.

4 APPROACHES

In this section, we provide enhancements to the exist-
ing approaches in literature along with an offline and an
offline-online approach for solving ND-TI-Dec-MDPs.
We extend the existing lazy greedy algorithm for TI-Dec-
MDPs to provide solutions for non-dedicated agent teams.
We further provide a lazy greedy extension for the bench-
mark heuristics in non-dedicated teams [Agrawal and
Varakantham, 2017] to provide bounds on the solution
quality of ND-TI-Dec-MDPs.

4.1 Greedy and Lazy Greedy

For dedicated agent teams, greedy has been well explored
in the context of Dec-MDPs [Shieh et al., 2014; Agrawal
et al., 2016; Kumar et al., 2017] while for non-dedicated
agent teams, it has been explored only in centralized set-
tings [Agrawal and Varakantham, 2017]. Therefore, we
extend the previous work by [Kumar et al., 2017] to pro-
vide a lazy greedy extension for non-dedicated teams in
decentralized settings.

Algorithm 1 provides the pseudocode for a non-dedicated
greedy algorithm that is solved at every observation
timestep, t′ where |ψt′ | agents leave the team and H − t′
timesteps are remaining. The algorithm is initially in-
voked at the starting timestep (i.e., t = t′ = 0 and
ψt′=0 = ∅) after which it is invoked only for timesteps
where ψt′ 6= ∅. ND-Greedy builds the solution set by
incrementally adding a policy for every agent that has not
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been assigned a policy. Initially, we start with an empty
solution set Z (line 1). At every iteration, for each agent
in the set of remaining agents, Ag \ ψt′ that has not been
assigned a policy (line 4), we compute a policy with the
highest marginal value given the current solution set (line
5) by constructing and solving an MDP (similar to the
TI-Dec-MDP. Among those highest marginal value poli-
cies, we choose the one with the highest value and add
it to the solution set (lines 6-7). This process is repeated
until all Ag \ ψt′ agents have been assigned a policy to
collectively provide the joint policy π∗ (Every agent is
assigned exactly one policy with the help of partition ma-
troid constraint). Finally, the agents in Z are present in
decreasing order of their marginal values. We refer this
solution set Z as selection order of the agents.

ND-Greedy evaluates the marginal value for all the agents
at every iteration, thereby affecting the scalability of the
algorithm with increasing agents. Interestingly, submod-
ularity of the value function V H() can be exploited to
implement an accelerated version of classical greedy algo-
rithm, otherwise known as Lazy Greedy [Minoux, 1978].
Instead of computing the marginal gain for all agents, lazy
greedy allows a lazy evaluation of marginal benefits by
storing the upper bounds µ(i) on the marginal gain for all
agents i ∈ Ag sorted in descending order. This reduces
the marginal gain computation as the submodularity of
value/objective function guarantees that the marginal gain
for an agent is always equal to or lower than the previous
iteration. Intuitively, for each iteration, lazy greedy evalu-
ates the agent on the top of the list, say i, and updates its
upper bound, µ(i). If µ(i) ≥ µ(i′),∀i′ 6= i, submodular-
ity guarantees that agent i has the highest marginal gain.
Therefore, lazy greedy leads to significant reduction in
running times compared to the classical greedy.

Why is the new policy recomputation needed: The
recomputation of a new joint policy at every observation
timestep t′ is important because the contribution of re-
wards by agents at every timestep may vary. This means
that an agent may have higher rewards at earlier timesteps
compared to later timesteps. In security games, if the
remaining agents continue with their initial policies even
after few agents leave, the coverage of important targets
may be missed, making the system vulnerable to attacks.
This creates an urgency for policy recomputation and
therefore, we use lazy greedy to obtain a new selection
order for agents by considering the reward contributions
from the current timestep to the end of planning horizon.
For example, let the selection order of agents at t = 0 be
[A2(555), A3(545), A1(500), A4(490)] with the reward
values for agents specified alongside. Let a1 leave the
system at t = 1. The total value for agents at t = 1
could be [A2(500), A3(505), A4(490)] on recomputation
of reward for the remaining agents. This creates a change

in order of selection of the agents because the contribu-
tion at t = 0 dominated the contribution over remaining
timesteps for agents A2 and A3. Hence, the change in
order contributes to the change in marginal gain, and
therefore, agents must rearrange their policies to adapt to
the change in system.

4.2 Benchmarking Heuristics

The existing benchmark heuristics for non dedicated agent
teams [Agrawal and Varakantham, 2017] are centralized
approaches and incapable of computing joint policy and
joint reward for the agent team. Hence, we provide a lazy
greedy extension for the existing benchmarks to be able
to solve ND-TI-Dec-MDPs.

Ignore the leaving agent, Dec-ILA: We start with a lazy
greedy solution for the dedicated team and whenever
agents leave the team, the remaining agents continue with
the execution of their existing policies. However, due to
the presence of joint reward for the system, we recom-
pute the joint reward over the remaining agents whenever
agents leave. This provides a good lower bound on so-
lution quality that has to be achieved. For example, in
security games domain, ignoring the targets covered by
leaving defender agent is not the best choice since the
leaving agent may be protecting a target of high impor-
tance. Hence, it is important for the remaining agents to
modify their policies to provide an improved coverage
to the targets that would become vulnerable to attacks.
Similarly, in sensor domain, the sensors in the vicinity of
a spoilt sensor should be able to change their policies and
sense the target locations assigned to the spolit sensor for
better observation of any spatial phenomenon.

Offline Optimal, Dec-OPT: This heuristic assumes that
the sample information (details of agents leaving the sys-
tem) is received beforehand. Mixed integer program pro-
vides an optimal solution, but is not a suitable approach
for finding the joint policy and the joint reward compu-
tation for a decentralized team of heterogeneous agents.
Hence, we use lazy greedy for finding the agent policies
where the agents are selected sequentially in the decreas-
ing order of their values. Since the agents leaving the
system have a shorter timespan compared to non-leaving
agents, the marginal gain for such agents will be lowest.
Hence, non-leaving agents are provided least preference
in the selection process by greedy. Although not an ex-
actly optimal approach, this heuristic provides a good
upper bound on the solution quality.

Online Revamp, Dec-O-Rev: Similar to Dec-ILA, for
this heuristic, we start with the initial lazy greedy solu-
tion until one or more agents leave the system. At the
observation timestep t′, the problem is solved again for
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Algorithm 2 OFFLINE-GREEDY (ξ,Ag,W )
1: Z ← ∅, O ← ∅
2: Vi ← 0,∀i ∈ Ag
3: for all ξk ∈ ξ do
4: V k ← Dec-OPT(Ag, S,A, P,R,H, α, ξk)
5: Vi ← Vi +W k · V ki
6: for all i ∈ Ag do
7: Vi∗ ← maxi∈Ag\O Vi
8: O ← O ∪ i∗
9: for all o ∈ O do

10: 〈π∗o , V ∗o 〉 ← Vo(π
∗
o , α

0
o|π∗Z)

11: Z ← Z ∪ {o}
12: π∗ ← {π∗o}o∈O
13: return 〈π∗, O〉

the remaining agents Ag \ ψt′ and remaining timesteps
H − t′. The starting distribution of the remaining agents
is recomputed at t′ and is input to the lazy greedy algo-
rithm along with the information of leaving agents, ψt′ .
The new joint policy obtained for the remaining agents
is executed by the agent team until there is a change in
the system (i.e., an agent leaves the system). Dec-O-Rev
provides a good upper bound on the desired performance
for our proposed approaches but suffers from some limi-
tations. Although the running time reduction due to lazy
greedy is significant compared to classical greedy, the
total number of function evaluations with lazy greedy can-
not be predicted beforehand to provide the exact running
cost. This makes the complete recomputation of selec-
tion order at observation timesteps time consuming and
difficult to be evaluated on the fly. Secondly, if there is a
requirement of recomputation at every timestep t, revamp
would become infeasible since at least Ag \ ψt rounds of
sequential computation for agents will be required.

4.3 Offline-Greedy Approach

Offline-Greedy is a sampling-based approach that com-
putes an offline selection order,O and a single joint policy
π∗ over multiple scenarios of agent availability. Since it
is impossible to consider all the samples of agent avail-
ability on larger problems, we choose a smaller training
set for the joint policy computation. The sample set is
represented as ξ and has |K| samples. Due to repeti-
tion of samples, we assign frequency-specific weights
W k,∀k ∈ K and select 20 best samples in decreasing
order of weights. Every sample of agent availability, ξk is
generated by sampling from a biased coin with probabil-
ity pi independently for every agent i. At every timestep
t, the coin is tossed to decide whether agent i leaves or
stays in the team depending on the value of associated
probability in ∆i. Hence, for every sample ξk, we know
the available horizon ξk(i) for every agent i.

Algorithm 2 provides the pseudocode for Offline-Greedy

Algorithm 3 OFFLINE-ONLINE (Ag,N )
1: for all n ∈ N do
2: Z ← ∅
3: πni ← ∅,∀i ∈ Ag
4: repeat
5: ri ← Random(Ag \ Z)
6: πnri ← V nri (πri , α

0
ri |πnZ)

7: Z ← Z ∪ {ri}
8: until Ag \ Z = ∅
9: πn ← {πni }i∈Ag

10: Π← Π ∪ {πn}
11: return Π

with the training set ξ, the agent set Ag and the vector
of frequency weights over all samples W as inputs. The
agent selection set, Z and the selection order O are initial-
ized as empty sets and the total value of every agent over
all samples Vi is set to 0 (line 1-2). For every sample ξk

in the training set, the available horizon of every agent is
already known, and therefore, we use Dec-OPT heuristic
to obtain the total value, V k for every ξk ∈ ξ (line 4). The
total value for every agent Vi is computed as the weighted
sum of values over the sample set (i.e., W k · V ki ) (line 5).
The selection orderO is computed by sorting the agents in
decreasing order of their values Vi (line 6-9) such that the
agents with higher probability of staying in the system are
added before the agents with higher probability of leaving.
For all the agents in the selection order, highest marginal
value policy for an agent given the current solution set
(line 10) is computed by constructing and solving an MDP
(similar to TI-Dec-MDP) and the computed agent is then
added to the solution set (line 11). Finally, we return the
best selection order O and the offline joint policy π∗ over
all agents and all training samples.

For every test sample, the agents are assigned their indi-
vidual policies from the offline joint policy π∗. However,
irrespective of the observations obtained at different ob-
servation timesteps, the agents continue with their pre-
assigned policies while the joint reward is recomputed
for the remaining agents. This approach saves the online
recomputation of policy at observation timesteps but with
a compromise in the solution quality.

4.4 Offline-Online Approach

In this section, we present our Offline-Online algorithm
which is a randomized greedy algorithm with an offline
and an online phase. The offline phase focuses on the
generation of multiple agent(s) selection orders to handle
the different possibilities of scenarios, while the online
phase focuses on choosing the best selection order for
remaining agents depending on the current observation
(availability of agents). We note that having multiple se-
lection orders is better than having one fixed selection
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order for all scenarios (as present in Offline-Greedy) be-
cause the total value of a selection order can change at
different observation timesteps due to the dominance of
rewards in previous timesteps (explained in details in sec-
tion 4.1). We generate a fixed number of selection orders
for the agent set since the total number of orderings pos-
sible with |Ag| agents is |Ag|! orders which is difficult to
maintain with increasing agents. At every decision stage,
we choose the best/closest selection order such that the
position of the leaving agent is towards the end of the se-
lection order, thereby, avoiding the recomputations. The
time complexity of the offline phase is linear in the num-
ber of agents (or O(|Ag|)) while it takes constant time for
the online phase. The main difference with respect to lazy
greedy (used in all the above approaches) is that instead
of choosing the agent with highest marginal gain at every
iteration, we randomly pick an agent and add it to the se-
lection set. However, due to the joint reward computation
and the presence of submodular rewards, the total utility
always improves with addition of agents iteratively.

Algorithm 3 shows the offline phase of Offline-Online
algorithm where the input to the algorithm is the agent
count |Ag|, and the number of selection orders to be
generated (N). For computing every order n, we start with
an empty agent selection set Z and add one agent at a time
by randomly selecting agents from the set of remaining
agents Ag \ Z. The policy and value of every agent is
obtained by solving an MDP and is stored in πn. Finally,
we return Π that represents the set of policies for all the
N selection orders.

The online phase of our algorithm does not require any
computation and only reacts to a situation by choosing the
best order from the set of offline orders for the remaining
agents and providing a new policy for every agent from
the observation timestep t′ until the end of horizon. The
selection criteria for choosing the best order for the de-
fender team whenever any agent leaves the team depends
on the number of exact matching and closest matching se-
lection orders. For example, let us assume that there are 4
agents in the system {a1, a2, a3, a4} and the available set
of selection order contains three orders,O1 = {3, 2, 1, 4},
O2 = {4, 2, 3, 1} and O3 = {3, 2, 4, 1} with total utility
of {200, 150, 100} for the orders respectively. Let us
consider two case studies:

• Agent a1 leaves the system: In this case, O2

and O3 are the best suitable orders since they
require no re-evaluation but the order with high-
est utility is given preference and hence,O2 is chosen.

• Agent a3 leaves the system: In this case, none of the
matches are exact and therefore, we find the closest
match. We choose O2 to assign policies to the remain-
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Figure 1: Quality Comparison w.r.t. (a) Agents and (b) Targets

ing agents since it requires minimal updates to agent
policies. At the observation timestep, the previous
policy of a1 is replaced by the existing policy of a3,
but after considering the change in state distribution
of the agents since a1 and a3 are not guaranteed to be
in the same state at the considered timestep. However,
due to the replacement of agent policies, a1 would
now become the third agent in the system, assuming
the presence of two agents. Policy recomputation
is not required because the offline joint policy (of
every selection order) computes the V t(s, π) values
for all states at all intermediate timesteps (i.e., joint
value after selection of every agent in the selection
order). Furthermore, no reward recomputation is re-
quired since the joint reward considers only the count
of agents (and not the identity of agents) at any state
due to the monotone submodular reward structure for
the joint reward.

In this manner, the online phase improves the value of
solution roughly the same as Dec-O-Rev, but very quickly.

5 EXPERIMENTS

We evaluate2 the performance of our greedy approaches
and compare them with the benchmark approaches men-
tioned in section 4.2 on the security games domain pro-
vided by Shieh et al. [2014] and the sensor network do-
main provided by Kumar et al. [2017]. The performance
is evaluated on the following metrics: (a) solution quality;
(b) runtime; (c) quality of online bounds. We generate
1500 samples of agent availability (defenders in security
domain and sensors in sensor domain) and divide it into
training and testing sets of 1000 and 500 samples, respec-
tively. To obtain a fair comparison over all approaches,
we compare the solutions on the same test set.

5.1 Security Games Domain

In this domain, there are a set of targets (train stations) on
the metro rail network which must be defended by a set of
decentralized (yet cooperative) defenders in the presence

2All our optimization problems are run on CPLEX v12.7
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(a) H = 10, ε = 0.5 (b) H = 10, ε = 0.7 (c) H = 10, ε = 0.9

Figure 2: Comparison of Online Bound w.r.t. Effectiveness

of transition uncertainty. We constructed the metro rail
graphs by connecting the stations together in lines of
length 5 and then randomly adding |τ |/2 edges between
targets, to resemble train systems in the real world with
complex loops. The reward is a joint reward which is a
function of the number of active defenders and the targets
for a joint state s (see Section 2.2 for details). The test
results were averaged over 15 randomly generated metro-
based graph networks and the rewards were generated
randomly in the range of [0,100]. We run the scenarios
with a probability delay of .2 and a maximum of 5 agents
(varies from 10% to 25% across scenarios) with an ability
to leave the system, defined by probability vector ∆. The
defender agents are homogeneous (due to same reward
and transition function) but differ from each other in their
starting states (generated randomly for every agent) and
their capability to leave the system.

Solution Quality: We compare different approaches with
respect to average team utility in Figure 1(a) as the num-
ber of defenders |Ag| is increased. Specifically, we con-
sider a metro network with targets τ = 40, horizon
H = 20 and effectiveness parameter ε = 0.7. Similarly,
in Figure 1(b), we vary the targets, τ for a fixed number
of agents |Ag| = 20, horizon H = 10 and effectiveness
parameter ε = 0.7. The key observations are summarized
as following:
(1) The average team utility increases with increasing
defenders for a fixed number of targets and planning hori-
zon due to the submodular reward structure. Similarly,
the team utility increases with increasing targets due to
increased number of choices for obtaining better rewards.
(2) Dec-ILA provides low team utility solutions since the
remaining agents continue with existing policies even af-
ter agents leave. This impacts the scope of improvement
in rewards and is a cause of serious concern in security
domain since it allows easy access to an adversary to plan
an attack in unprotected areas.
(3) Offline-Greedy provides similar or better solutions
than Dec-ILA. We observe that with fewer agents and
targets, and smaller planning horizon, Offline-Greedy per-
forms almost similar to Dec-O-Rev as agent exits are
given due importance during the offline policy design but

the performance degrades quickly with increasing count
of agents and the planning horizon. In the worst case, the
solution quality was seen to be even lower than Dec-ILA.
(4) Offline-Online provides a steady performance, almost
at par with the upper bound benchmarks (Dec-O-Rev and
Dec-OPT) even with increasing problem sizes. Due to the
random selection of agents at different observation times
and the presence of submodular reward function, in the
best case, Offline-Online could provide better team utility
than Dec-O-Rev (uses lazy Greedy).
(5) Dec-OPT provides a good upper bound but is not
always guaranteed to provide better utility compared to
Dec-O-Rev due to the dominance of rewards in earlier
timesteps explained in the section 4.1. However, on av-
erage, Dec-OPT provides slightly better solution quality
compared to Dec-O-Rev after having the knowledge of
samples before-hand.

Solution Runtime: With respect to runtime, we com-
pare only online runtime since the offline runtimes do
not matter. Due to decentralized planning of agents, in-
dividual agent planning time varies from 100 ms to 5000
ms from the smallest problem instance (20 targets and
10 timesteps) to the largest instance (40 targets and 20
timesteps). For Dec-O-Rev, due to the use of lazy greedy
approach at every timestep of revamp, the revamp time
varies from 15 seconds to 1700 seconds depending on the
number of defenders and the problem size per defender.
Further, there can be multiple revamps for one planning
scenario making Dec-O-Rev infeasible for providing new
policies quickly. However, our Offline-Online approach
uses a proactive offline planning which reduces the online
execution time to milliseconds, even in the worst case
(although it requires offline training time). Similarly, the
online runtime is minimal for Dec-ILA, Dec-OPT and
Offline-Greedy.

Online Bound Comparison: For the online bound com-
parison, we use a consistent reward structure for every
randomly generated metro network. For every metro
network, we generate various scenarios of agents avail-
abilities for different number of defenders and varying
effectiveness of defenders. We compute the online bound
for every scenario using Equation 6 and average the online
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Grid-Size Sensors,Targets
Global States

ε
.3 .5 .7

5× 5 5, 1, 10 58.3 64.5 71.5
5× 5 5, 2, 6*6 58.6 65 71.5
10× 5 6, 3, 14*10*10 57.4 61.2 64.2
10× 5 6, 4, 5*5*5*5 57.3 61.6 63.7
10× 5 6, 5, 6*5*5*5*5 55.7 61.3 65.3
10× 5 10, 3, 14*10*10 58.5 63.5 69
10× 5 10, 4, 5*5*5*5 55.5 58.5 61.7
10× 5 10, 5, 6*5*5*5*5 55.9 61.5 67.7
10× 10 10, 4, 6*5*5*5 58.7 64.5 71.2
10× 10 15, 4, 6*5*5*5 58.5 63.8 72.2
10× 10 20, 4, 6*5*5*5 58.9 65.5 72.7
10× 10 10, 5, 5*5*5*5*5 55.5 61.2 67.3

Table 1: Online Bound Comparison for Sensor Domain

bounds over all test samples and all randomly generated
graphs. This leads to the inference that the online guar-
antees are significantly better than the a priori guarantees
(of 50% from optimal), with the best case of atleast 90%
from optimal for different values of effectiveness param-
eter. Figure 2 compares the online (or posterior) quality
guarantees obtained by Dec-O-Rev for different values of
agents (Ag), targets (τ ) and effectiveness parameter (ε). It
shows that the online guarantees improve with increasing
agents and decreasing targets over varying effectiveness,
with highest guarantee being reported for 10 targets and
40 agents. Further, with increasing effectiveness of agents,
the optimal bound increases with highest quality guaran-
tees (up to 99%) observed for ε = 0.9. To avoid clutter,
we do not plot the quality guarantees provided by policies
generated using Offline-Online in the same graph. How-
ever, Offline-Online fared slightly lower than Dec-O-Rev
in terms of guarantees and provided a guarantee that was
0.7% lower than Dec-O-Rev in the best case, while in the
worst case, it was 2 % lower than Dec-O-Rev.

5.2 Sensor Network Domain

We use the similar settings as Kumar et al. [2017] for this
domain. The environment is modelled as a grid and a
submodular reward function with n-ary interactions (any
number of sensors can track a target) is used where the
reward of tracking a target is dependent on the number of
sensors tracking it. The sensors are randomly placed at
junctions of cells on the grid and can track four target cells
surrounding the sensor. However, due to wear and tear
or due to unforeseen conditions, some sensors may get
spoilt and the neighbouring sensors must track the targets
of damaged sensors to maximize the reward. Therefore,
reconfiguration of sensors after one or more sensors are
spoilt is important. The targets move stochastically (ac-
cording to some fixed distribution) in the grid and follow
a path of fixed length for movement. The product of path

lengths of all available targets defines the total number of
global states for the sensor domain.

Online Bound Comparison: Table 1 shows the online
guarantees obtained for offline-online by varying the grid-
size, number of sensors and their effectiveness, number
of targets and the number of global states. We vary the ef-
fectiveness parameter from 0.3 to 0.7 and observe that the
online bounds vary from 55% to 73% for Offline-Online,
while the guarantees provided by Dec-O-Rev were 4%
and 1.8% better than Offline-Online in the worst case
and best case, respectively. An important observation is
that with increasing targets, the number of global states
increases exponentially, leading to memory issues. We
note that 5 targets for a 10 × 10 grid with every target
having a path-length of 5 was very difficult instance to
solve with 55 or 3125 global states. However, increasing
the number of sensors with a fixed number of targets was
comparatively easier to solve since every sensor agent
problem was solved independent of other agents due to
the decentralized settings. With respect to runtime, the
time taken by any sensor agent for individual planning
varies from few milliseconds to 10 seconds with increas-
ing number of targets and the global states. Due to lazy
greedy evaluations for Dec-O-Rev, every revamp may
take time ranging from less than a minute to 40 minutes
depending on the complexity of the problem being solved.
This makes the usage of Dec-O-Rev infeasible in online
settings. Further, there can be multiple revamps for every
scenario to worsen the situation. Similar to the security
domain, the performance of Offline-Greedy is very simi-
lar to Dec-ILA while Dec-OPT provides results similar
to Dec-O-Rev. More interestingly, our Offline-Online
approach continues to perform gracefully with increasing
number of sensors, targets and the grid size, while tak-
ing minimal time (in milliseconds) for solving the largest
problem. Finally, we conclude from the experiments that
Offline-Online is the best choice considering the trade-off
of running time and compromise in solution quality.

6 CONCLUSION

In this work, we focussed on cooperative decentralized
stochastic planning for non-dedicated agent teams. We
provided a general model for decentralized non dedicated
agent teams. Our offline greedy based approach provided
good results in small instances while our Offline-Online
approach provided the best results even in large instances
in an effective manner. Finally, our extensive experiments
on benchmark problems demonstrate that our Offline-
Online approach provides the best solutions that are on
par with benchmarks that provide an upper bound on
the performance while taking negligible online runtime
making it effective even for taking decisions at every step.
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Abstract

Coordinate ascent variational inference is an
important algorithm for inference in proba-
bilistic models, but it is slow because it updates
only a single variable at a time. Block coordi-
nate methods perform inference faster by up-
dating blocks of variables in parallel. How-
ever, the speed and convergence of these algo-
rithms depends on how the variables are par-
titioned into blocks. In this paper, we give a
convergent parallel algorithm for inference in
deep exponential families that doesn’t require
the variables to be partitioned into blocks. We
achieve this by lower bounding the ELBO by a
new objective we call the forest mixture bound
(FM bound) that separates the inference prob-
lem for variables within a hidden layer. We
apply this to the simple case when all random
variables are Gaussian and show empirically
that the algorithm converges faster for models
that are inherently more forest-like.

1 INTRODUCTION

Inference in directed models like deep exponential fam-
ilies (DEF’s) [Ranganath et al., 2015] is complicated by
the “explaining away effect”: for a directed model with
observed variables x ∈ Rn and latent variables y ∈ Rm,
independent “causes” yj become dependent given an ob-
served “effect” xi. To handle this, the coordinate as-
cent variational inference (CAVI) algorithm iteratively
updates the variational distribution for a single latent
variable yj while holding the variational distribution for
all other latent variables fixed [Blei et al., 2017].

Though the yj’s are not conditionally independent given
x except in exceedingly simple models, in many cases
the yj’s are nearly conditionally independent. Is there a

way to perform parallel inference in such models, or do
we have to resort to the serial coordinate algorithm?

Block methods provide one avenue for parallel infer-
ence. These algorithms work by first partitioning the
latent variables into a collection of blocks, and then it-
eratively updating a variable from each block in par-
allel. However, the speed (as in MCMC methods
[Terenin et al., 2015]) or convergence (as in Hogwild
methods [Recht et al., 2011]) of the resulting algorithm
will depend on how the variables are blocked, and find-
ing a good choice of blocking for an arbitrary model can
be difficult.

The main contribution of this paper is a novel lower
bound on log-likelihood we call the forest mixture bound
(FM bound) that separates the problem of inference for
each variable in a hidden layer. This allows all the vari-
ables in a layer to be updated in parallel, without the use
of blocks. We call the resulting parallel inference algo-
rithm the forest mixture algorithm (FM algorithm).

We study in detail the case when all the random vari-
ables in the DEF are Gaussian. We then demonstrate on
both synthetic and real-world data the proposed method
achieves faster convergence compared to existing meth-
ods.

2 RELATED WORK

Hogwild Block Methods There are two types of
block methods for inference. The first is Hogwild-
type algorithms [Recht et al., 2011][Sa et al., 2016]
[Wang and Banerjee, 2014] [Zhao et al., 2014]. After
partitioning the variables into blocks, these algorithms
iteratively choose a single variable from each block
and update as in CAVI, but in parallel [Sa et al., 2016].
These algorithms are guaranteed to converge only in
certain cases, e.g., when the blocks are conditionally
independent [Johnson et al., 2013].
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Convergent Block Methods Instead of making
CAVI updates in parallel, block algorithms may
achieve convergence by making small parallel updates
[Sontag and Jaakkola, 2009]. For example, “exact”
asynchronous Gibbs sampling randomly rejects each
block update according to an MCMC rejection ra-
tio [Terenin et al., 2015]. If the blocks are chosen
poorly, the rejection rate will increase and the rate of
convergence will decrease [Singh et al., 2017].

In either type of block method, the performance of the
algorithm depends on how the variables are blocked. In
a distributed computation setting, blocking is necessary
since each worker can only store a fraction of all vari-
ables in local memory. In this case, the FM bound pro-
vides a method for updating variables within a block or
worker in parallel, instead of updating only a single vari-
able in each block at a time.

Amortized Inference Instead of treating inference as
an inverse problem that has to be solved for each ob-
servation, VAE’s train inference network (encoder) so
the cost of inference is amortized over many observa-
tions [Kingma and Welling, 2013]. Once the encoder is
trained, inference for any observation can be performed
quickly with a single pass through the inference network.
Encoder-free methods like ours may still be useful in the
case when we have a trained generative model (decoder)
but no trained encoder and want to perform inference for
only a few samples or, more likely, for when we want
to improve the solution produced by the encoder at test
time.

Undirected Models Besides directed models, there is
a wide literature for fast inference in undirected models
[Baqué et al., 2016] [Singh et al., 2010]. Note that infer-
ence in undirected models like Deep Restricted Boltz-
mann Machines [Salakhutdinov and Hinton, 2009] can
already be parallelized: non-consecutive layers can be
updated in parallel in red-black fashion. In fact, the
same degree of parallelization can be achieved in a di-
rected model using our technique. While there is also
a wide literature on bounding the log-partition function
of an undirected model [Wainwright et al., 2005], we de-
rive the FM bound by lower bounding the log-partition
function of a directed model. The technique we use may
be applicable to undirected models, but that is not ex-
plored in this paper.

Structure Learning The FM bound we derive is
closely related to an interesting family of models called
forest mixture models. These models may be applicable
to the problem of structure learning, where the task is
to infer the graphical structure of the underlying model

from data [Chow and Liu, 1968]. However, in this paper
we narrowly focus on the problem of inference in a given
generative model, not on training a new one.

3 PRELIMINARIES

Vector-valued variables are written in bold. The
component-wise product of two vectors u and v is de-
noted u � v. Unless stated otherwise, all expectations,
including the variance Var[·], standard deviation Std[·],
and conditional entropy H(y|x), are taken with respect
to the variational distribution q(y|x), though we some-
times write this explicitly for emphasis.

An exponential family of distributions is a family of dis-
tributions of the form

p(x) = exp{g(x) + t(x) · η − a(η)} (1)

Where g is the log-base measure, t are the sufficient
statistics, η are the natural parameters, and a is the log-
partition function. When η is a function of another ran-
dom variable y, e.g., η = b +w · y, we will sometimes
write η = η(y) for emphasis.

We denote the Gaussian probability density function with
mean µ and variance σ2 as N (µ, σ2). When we write
log p(x) ∝ f(x), we mean log p(x) = f(x)+constant.

3.1 FOREST MIXTURE MODELS

Consider a general directed model with a single layer of
observed variables x ∈ Rn and latent variables y ∈ Rm.
The joint distribution p(x,y) takes the form

p(x,y) =



m∏

j=1

p(yj)



[
n∏

i=1

p(xi|y)

]
(2)

A directed model is a forest model if each xi has exactly
one parent in the model’s directed dependency graph;
they are so-named because the resulting graphical model
is a forest with one tree per latent variable yj . These
models are particularly simple because the yj’s are con-
ditionally independent given x. Let ei ∈ Im be the one-
hot vector indicating the parent of xi, so eij = 1 if and
only if yj is the parent of xi. Then we can write

p(xi|y) =

m∏

j=1

p(xi|yj)eij (3)

Suppose we want to fit a forest model to data, but we
don’t know which xi’s should be the children of which
yj’s. One way to handle this uncertainty is to treat the
ei’s as independent latent random variable that have to
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Figure 1: Visualization of sampling from a forest mixture model. (a) In a forest mixture model, the edges between x
and y are unknown random variables. (b) To sample from the model, first the parent of each xi is chosen independently
at random according to p(ei). In this visualization, each p(ei) is uniform over the latent variables. (c) After sampling
a forest structure from p(e), x and y are sampled according to the resulting forest model.

be inferred, just like y. To do this, we must first define
a prior p(ei) for each i. Given such a prior, the joint
distribution over x, y, and e ≡ {ei}ni=1 is

p(x,y, e) =

[
n∏

i=1

p(ei)

]

m∏

j=1

p(yj)



[
n∏

i=1

p(xi|y, ei)
]

(4)

The resulting model is a forest mixture model (FMM): to
sample from this model, we first draw a random forest
structure by sampling from the prior p(e); then, x and y
are sampled from the selected forest model.

Though the yj’s are no longer conditionally independent
given x, they are independent given x and e. Similarly,
the ei’s are conditionally independent given x and y. To
see this, define p̂(xi|yj) ≡ p(xi|yj , eij = 1). Then the
joint distribution can be written

p(x,y, e) =

[
n∏

i=1

p(ei)

]

m∏

j=1

p(yj)




n∏

i=1

m∏

j=1

p̂(xi|yj)eij

(5)

In the next section, we will use the mean-field variational
ELBO for this model, which for a given variational dis-
tribution q(y, e|x) is

log p(x) ≥ E[log p(x|y, e)]−DKL(q(y, e|x)‖p(y, e))

=
n∑

i=1

m∑

j=1

E[eij ]E[log p̂(xi|yj)]

−
m∑

j=1

DKL(q(yj |x)‖ p(yj))

−
n∑

i=1

DKL(q(ei|x)‖ p(ei)) (6)

4 THE FOREST MIXTURE BOUND

For simplicity, we only consider shallow models in this
section. The extension to deep models is straightforward
(see Appendix C).

A single-layer deep exponential family (DEF) model is a
directed model with a single layer of observed variables
x ∈ Rn and hidden variables y ∈ Rm, where the condi-
tional distribution is in an exponential family. The joint
distribution p(x,y) takes the form

p(x,y) =



m∏

j=1

p(yj)



[
n∏

i=1

p(xi|y)

]
(7)

p(xi|y) = exp {g(xi) + t(xi)ηi(y)− a(ηi(y))} (8)

Suppose we are given an observation x and want
to approximately infer the posterior p(y|x) by max-
imizing the variational ELBO, and suppose the yj’s
are conditionally independent given x, so p(x,y) =
p(x)

∏m
j=1 p(yj |x). Then the mean-field variational

ELBO is

log p(x) ≥ max
q(y|x)

E[log p(x,y)] +H(y|x) (9)

≡ max
q(y|x)

m∑

j=1

E [log p(yj |x)] +H(yj |x) (10)

=

m∑

j=1

max
q(yj |x)

E [log p(yj |x)] +H(yj |x) (11)

In the second line, log p(x) is constant with respect to
q(y|x) and can be removed without changing the opti-
mization problem. In this case, the ELBO separates into
a sum of terms, each of which involves only a single yj .
This allows us to optimize the ELBO by updating each
q(yj |x) independently and in parallel.

970



In a general DEF, the yj’s are not conditionally indepen-
dent and the objective does not separate. However, with-
out much manipulation, much of the ELBO does sepa-
rate: for a single-layer DEF, the ELBO can be written

log p(x) ≥ E[log p(x,y)] +H(y|x) (12)

=

n∑

i=1

E[log p(xi|y)] +

m∑

j=1

E[log p(yj)] +H(yj |x)

(13)

So only the E[log p(xi|y)] terms aren’t separable. How-
ever, if ηi is an affine function of y, so ηi ≡ bi +wi · y
for some bi ∈ R andwi ∈ Rm, then each E[log p(xi|y)]
term can be expanded

E[log p(xi|y)] = g(xi) + t(xi)E[ηi]− E[a(ηi)] (14)
= g(xi) + t(xi) (bi +wi · E[y])− E[a(bi +wi · y)]

(15)

From this we can see the only term left preventing
the entire ELBO from separating is Eq(y|x)[−a(ηi(y))],
a high-dimensional expectation of the non-linear log-
partition function. The one thing we know about the log-
partition function in exponential families is that it’s con-
vex. This suggests we use Jensen’s inequality to bound
E[−a(ηi)]. Note that using Jensen’s to bring the expec-
tation over q inside a gives an inequality in the wrong di-
rection because−a(ηi) is concave; to get a lower bound,
we need to pull an expectation out from the inside of a.
The derivation of the ELBO gives a hint on how to do
this: recall

log p(x) = log

∫
p(x, y)dy (16)

= log

∫
q(y|x)

q(y|x)
p(x, y)dy (17)

= logEq(y|x)
[
p(x, y)

q(y|x)

]
(18)

≥ Eq(y|x)
[
log

p(x, y)

q(y|x)

]
(19)

In the same way, we will introduce a variational or auxil-
iary distribution inside the concave function −a(η), then
use Jensen’s to pull it out. For each i, introduce an auxil-
iary discrete distribution over m categories εi ∈ ∆m−1,
so

m∑

j=1

εij = 1 εij ≥ 0 ∀j ∈ [m] (20)

Injecting this inside the log-partition function gives

E[−a(bi +wi · y)] = E


−a


bi +

m∑

j=1

εij
wijyj
εij






(21)

To use Jensen’s inequality, we first need to bring bi in-
side the sum, which we can do using bi =

∑m
j=1 εijbi.

This partitions the bias bi into m parts according to εi.
However, to get a sufficiently tight bound, we’ll need to
consider more general splittings: introduce another set
of auxiliary parameters b̂i ∈ Rm with the constraint
bi =

∑m
j=1 εij b̂ij . Then

E[−a(bi +wi · y)] = E


−a




m∑

j=1

εij

(
b̂ij +

wijyj
εij

)




≥
m∑

j=1

εijE
[
−a
(
b̂ij +

wijyj
εij

)]
(22)

Bounding this term for each i separates the entire ELBO
into a sum of terms, each of which involves only a single
yj . Plugging this in directly to get a final bound on log-
likelihood results in an unwieldy expression, so first we
will introduce new notation to simplify the bound.

4.1 CONNECTION WITH FMM

To demonstrate the relation of the above bound and forest
mixture models, let us define

η̂ij ≡ b̂ij +
wijyj
εij

(23)

p̂(xi|yj) ≡ exp {g(xi) + t(xi)η̂ij − a(η̂ij)} (24)

Then ηi =
∑m
j=1 εij η̂ij and the bound can be rewritten

as follows:

E [−a (ηi)] ≥
m∑

j=1

εijE [−a (η̂ij)] (25)

This expression can be used to impose bounds on each
E[log p(xi|y)]:

E[log p(xi|y)] = g(xi) + t(xi)E[ηi]− E[a(ηi)] (26)

≥ g(xi) + t(xi)E[ηi]−
m∑

j=1

εijE[a(η̂ij)] (27)

=
m∑

j=1

εij (g(xi) + t(xi)E[η̂ij ]− E[a(η̂ij)]) (28)

=
m∑

j=1

εijE[log p̂(xi|yj)] (29)
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input : An observation x ∈ Rn and model parameters
W ∈ Rn×m, b ∈ Rn, σ2

y ∈ R and σ2
x ∈ R.

output: The mean-field variational distribution
q(y|x) ≡∏m

j=1 q(yj |x)

initialize (µ0)j and (σ0)2j for each j ∈ [m]

for t = 0 to T − 1 do
for i = 1 to n do

for j = 1 to m do
(εt)ij =

|wij |(σt)j∑m
j′=1

|wij′ |(σt)2j′

(b̂t)ij = (bi +
∑m
j=1 wij(µt)j)−

wij(µt)j
(εt)ij

end
end
for j = 1 to m do

(µt+1)j ≡
∑m
i=1 wij(xi−(b̂t)ij)
σ2x
σ2y

+
∑m
j=1

w2
ij

(εt)ij

(σt+1)2j ≡ 1

1
σ2y

+ 1
σ2x

∑m
j=1

w2
ij

(εt)ij

end
end
return q(yj |x) = N ((µT )j , (σT )2j ) for j ∈ [m]
Algorithm 1: The FM algorithm in the Gaussian case.

Finally, plugging the above expression into the ELBO
gives

log p(x) ≥ E[log p(x,y)] +H(y|x)

≥
n∑

i=1

m∑

j=1

εijE[log p̂(xi|yj)]

−
m∑

j=1

DKL(q(y|x)‖p(y)) (30)

Comparing (30) with (6) confirms that this bound is iden-
tical to the ELBO of a forest mixture model with the
same p̂(xi, yj) and q(yj |x), with q(eij = 1|x) = εij (so
that E[eij ] = εij) and p(ei) = q(ei|x) (so that the sec-
ond KL term of the FMM ELBO is zero and disappears
entirely). For this reason, we call this bound the forest
mixture bound (FM bound). Note this bounds the DEF
ELBO by the ELBO of each FMM in a large family of
FMM’s parameterized by ε ≡ {εi}ni=1 and b̂ ≡ {b̂i}ni=1.

5 ALGORITHM

To optimize the FM bound, we propose an alternating
maximization algorithm: in the first step, update all
q(yj |x) in parallel while holding all εij and b̂ij fixed;
in the second step, update all εij and b̂ij in parallel while
holding all q(yj |x) fixed. In this section, we will derive
the optimal updates for q(yj |x), εij , and b̂ij in the case
when each xi and yj are Gaussian with known variance:

p(yj) = N (0, σ2
y) p(xi|y) = N (ηi(y), σ2

x)

(31)

We will derive the updates for the auxiliary parameters
first since this will help simplify the update for the vari-
ational distribution later.

5.1 AUXILIARY PARAMETER UPDATES

Maximizing the FM bound over ε and b̂ is equivalent
to maximizing Li ≡

∑m
j=1 εijE[−a(η̂ij)] over εi and

b̂i for each i, since these are the only terms in the FM
bound that depend on ε and b̂. In the Gaussian case,
−a(η̂ij) = − 1

2σ2
x
η̂2ij and

Li =
m∑

j=1

εijE
[
− 1

2σ2
x

η̂2ij

]
(32)

= − 1

2σ2
x

m∑

j=1

εij

(
Var [η̂ij ] + E [η̂ij ]

2
)

(33)

= − 1

2σ2
x

m∑

j=1

w2
ijVar[yj ]
εij

+ εij

(
b̂ij +

wijE[yj ]

εij

)2

(34)

Theorem 1 Holding q(yj |x) constant, the choice of b̂i
and εi that maximizes Li is b̂i = b̂∗i and εi = ε∗i , where

b̂∗ij = E[ηi]−
wijE[yj ]

ε∗ij
ε∗ij =

|wij |Std[yj ]∑m
j′=1 |wij′ |Std[yj′ ]

(35)

For a proof, see Appendix A. Note that these computa-
tions can be parallelized across i and j.

5.2 VARIATIONAL UPDATES

Holding the auxiliary parameters fixed, each variational
distribution q(yj |x) can be updated in parallel:

Theorem 2 For a fixed ε and b̂, the choice for the next
variational distribution qt+1(yj |x) that maximizes the
FM bound is qt+1(yj |x) = N ((µ∗t+1)j , (σ

∗
t+1)2j ), where

(µ∗t+1)j ≡
(x− Eqt [η]) ·wj + Eqt [yj ]

∑n
i=1

w2
ij

εij

σ2
x

σ2
y

+
∑n
i=1

w2
ij

εij

(36)

(σ∗t+1)2j ≡
1

1
σ2
y

+ 1
σ2
x

∑n
i=1

w2
ij

εij

(37)

For a proof, see Appendix B.

972



6 DISCUSSION

Tightness We derived the FM bound by using Jensen’s
inequality to lower bound the ELBO. For a given vari-
ational distribution q, the gap between the two bounds
is

GAP ≡
n∑

i=1

E[−a(ηi)]−
n∑

i=1

m∑

j=1

εijE[−a(η̂ij)] (38)

In the Gaussian case, for an optimal choice of auxiliary
parameters (see Appendix A),

m∑

j=1

εijE[−a(η̂ij)] = − 1

2σ2
x

‖wi � Std[y]‖21 −
1

2σ2
x

E[ηi]
2

(39)

E[−a(ηi)] = − 1

2σ2
x

‖wi � Std[y]‖22 −
1

2σ2
x

E[ηi]
2

(40)

GAP =
1

2σ2
x

n∑

i=1

‖wi � Std[y]‖21 − ‖wi � Std[y]‖22

(41)

Since
∑n
i=1 ‖wi‖21 ≥

∑n
i=1 ‖wi‖22, the FM bound

imposes a stronger regularization on the variance of
the variational distribution compared to the variational
ELBO. For this reason, the variational distribution q that
maximizes the FM bound generally has a smaller vari-
ance compared to the variational distribution that maxi-
mizes the ELBO.

The FM bound tightly bounds the ELBO when p is a for-
est model, so that wij has exactly one non-zero element
in the component j(i) corresponding to the parent of xi.
In this case,

‖wi � Std[y]‖21 = w2
ij(i)Var[yj(i)] = ‖wi � Std[y]‖22

(42)

The bound is also tight when Var[y] = 0, but in this case
both the ELBO and the FM bound yield −∞ because of
the conditional entropy term H(y|x).

Speed of Convergence Let’s examine the role of ε

in the update for q(yj |x). If
∑m
j=1

w2
ij

εij
is large, then

Eqt+1 ≈ Eqt [yj ], and so the FM algorithm makes

a small update for yj . If
∑m
j=1

w2
ij

εij
is small, then

Eqt+1 [yj ] makes a large step in the direction of the resid-
ual x− E[η]. In fact, if for some j, εij = 1 for all i
where wij is non-zero, then the FM algorithm updates

q(yj |x) exactly as CAVI would. In this sense, ε acts
like an attention parameter that selects which q(yj |x) to
change and by how much.

If p is a forest model, then the FM algorithm chooses
εi to be the one-hot vector indicating the parent of xi.
In this case, the FM algorithm makes coordinate updates
for all j in parallel and converges in one iteration. If p is
forest-like, i.e., |wj | · |wj′ | is small for j 6= j′, then εi
is close to one-hot and the FM algorithm makes damped,
nearly-CAVI updates in parallel. In this sense, the speed
at which the FM algorithm converges depends on how
inherently forest-like the model p is.

7 EXPERIMENTS

Recall that we derived the FM bound by lower bound-
ing the ELBO. Algorithms that optimize the ELBO like
CAVI will generally provide a superior lower bound
on log-likelihood compared to the FM algorithm. For
a more fair comparison, we can instead measure how
quickly these algorithms converge to the optimal mean.
In the Gaussian case, optimizing the mean of the mean-
field variational distribution is equivalent to minimizing
a ridge regression objective:

1

2σ2
x

n∑

i=1

(xi − (bi +wi · E[y]))
2

+
1

2σ2
y

m∑

j=1

E[yj ]
2

(43)

To evaluate each algorithm on the ridge regression prob-
lem, we must first choose a x, b, and a set of wij . All
the algorithms we consider in this section are guaranteed
to converge to the optimal solution, so we are only in-
terested in comparing how quickly each algorithm con-
verges to that optimal solution. This is measured by
recording the objective value achieved by the mean of
the variational distribution Eqt [y] in the ridge regression
problem across 200 iterations.

In the first experiment, we choose x to be a vectorized
sample from the MNIST dataset, with pixel values scaled
to lie in the interval [−1, 1]; we choose b to be the aver-
age of 1000 randomly chosen MNIST samples; and we
construct a synthetic wij as follows: given an integer
window side length s, we construct all possible square
s × s windows of pixels. For windows that overlap the
border of the 28 × 28 MNIST image region, we clip the
window so that it lies entirely inside the image region,
resulting in a rectangular window. For each window, we
add a latent variable yj to the model and a correspond-
ing wj , where wij = 1 if pixel i lies in window j, and
wij = 0 otherwise. The resulting model is more forest-
like for smaller choices of s: if s = 1, the windows are

973



0 100 200

101

102

iterations

ri
dg

e
re

gr
es

si
on

lo
ss

s = 15 s = 7 s = 3

(a) FM algorithm on synthetic
windows of different sizes

0 100 200
101

102

iterationsk = 3 k = 5 k = 7

(b) FM algorithm on CNN kernels of
different sizes

0 100 200

101

102

iterationsCAVI blocks FM

(c) CAVI, block, and FM comparison

Figure 2: The ridge regression objective over 200 iterations.

disjoint and the graphical model is exactly a forest. Fig-
ure 2a demonstrates the rate of convergence of the FM
algorithm for various choices of s. As we expect, the
FM algorithm converges faster for more forest-like mod-
els, i.e., smaller s. Note that the objective value achieved
by the optimal solution to the ridge regression problem
changes as wij changes.

The second experiment is similar to the first, except it
uses x from the CIFAR-10 dataset, b = 0, and instead
of uniform windows, uses the first layer kernels from
a convolutional neural net trained several times chang-
ing only the width of the first layer kernels. Figure 2b
demonstrates the FM algorithm converges faster for more
forest-like models even using real-world data.

Our last experiment compares the convergence of the FM
algorithm with CAVI and block coordinate ascent. Here
we choose x and b the same as in the first experiment,
but we choose wij differently to make blocking the la-
tent variables easy: first we partition the 28× 28 MNIST
image region into 16 regions, each of size 7×7. Then, we
construct all possible 7×7 windows (as in the first exper-
iment with s = 7), then clip them to fit in the first region.
This is repeated for each region. If we block the latent
variables according to which region the corresponding
windows were clipped to, then the blocks will be condi-
tionally independent, since windows clipped to different
regions must be disjoint. Blocking in this way guaran-
tees that the block coordinate algorithm will converge to
the optimal solution. Figure 2c compares the rate of con-
vergence for CAVI, block coordinate ascent, and the FM
algorithm. The figure shows our block-free method can
outperform the block coordinate method, even when the
blocking is quite good.

8 CONCLUSION

In this paper we derived a forest mixture bound on the
log-likelihood of deep exponential families. This bound
gets around the “explaining away effect” by using a set of
auxiliary parameters to separate the problem of inference
for each latent variable in the same layer, allowing us to
make parallel updates. We then made a deep dive into the
simple case where all variables are Gaussian: we derived
the exact variable updates, then tested the algorithm on
both synthetic and real-world data. Our promising re-
sults show that fast, parallel inference in deep exponen-
tial families is possible without the use of blocks.

A AUXILIARY PARAMETER UPDATES

Proof of Theorem 1: First, we will find the optimal
choice of b̂i for any given εi. Since b̂i is constrained
by
∑m
j=1 εij b̂ij = bi, let’s first parameterize b̂i by a set

of unconstrained parameters: let γi ∈ Rm and write

b̂ij = bi − γij + εi · γi (44)

So for any choice of γi, the constraint bi =
∑m
j=1 εij b̂ij

is satisfied. Now we can differentiate the bound with
respect to γij , set to zero and solve. We will need the
following partial derivatives:

∂b̂ij
∂γij

= −1 + εij
∂b̂ij′

∂γij
= εij ∀j′ 6= j (45)

Now setting the partial derivative of Li with respect to
γij to zero,
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0 =
∂

∂γij
Li = − 1

σ2
x

m∑

j′=1

εij′E[η̂ij′ ]
∂b̂ij′

∂γij
(46)

=
εij
σ2
x


E[η̂ij ]−

m∑

j′=1

εij′E[η̂ij′ ]


 (47)

The derivative is zero for all j in particular when the
choice of b̂ij makes E[η̂ij ] constant across j. We can ver-
ify this is satisfied by the choice γij =

wij
εij

E[yj ], which

makes b̂ij = b̂∗ij :

E[η̂ij ] = E
[
b̂ij +

wij
εij

yj

]
(48)

= E
[
E[ηi]−

wij
εij

E[yj ] +
wij
εij

yj

]
(49)

= E[ηi] (50)

Plugging this choice into Li yields

Li = − 1

2σ2
x

m∑

j=1

(
w2
ijVar[yj ]
εij

+ εijE[ηi]
2

)
(51)

= − 1

2σ2
x




m∑

j=1

w2
ijVar[yj ]
εij


− 1

2σ2
x

E[ηi]
2 (52)

Now let’s try to find the optimal choice of εij . Since εij
is constrained by εi ∈ ∆m−1, we’ll also parameterize
εij by a set of unconstrained parameters τi ∈ Rm:

εij = exp{τij}/
m∑

j′=1

exp{τij′} (53)

We will need the following partial derivatives:

∂εij
∂τij

= εij(1− εij)
∂εij′

∂τij
= −εijεij′ ∀j′ 6= j (54)

Now setting the partial derivative of Li with respect to
τij to zero,

0 =
∂

∂τij
Li =

1

2σ2
x

m∑

j′=1

w2
ij′Var[yj′ ]
ε2ij′

∂εij′

∂τij
(55)

=
1

2σ2
x

m∑

j′=1

Var[η̂ij′ ]
∂εij′

∂τij
(56)

=
εij
2σ2

x


Var[η̂ij ]−

m∑

j′=1

εij′Var[η̂ij′ ]




(57)

The derivative is zero for all j in particular when
the choice of εij makes Var[η̂ij ] constant across j.
We can verify this is satisfied by the choice τij =
log |wijStd[yj ]|, which makes εij = ε∗ij :

Var[η̂ij ] =
w2
ijVar[yj ]
ε2ij

(58)

=
w2
ijVar[yj ]

w2
ijVar[yj ]/

(∑m
j′=1 |wij′ |Std[yj′ ]

)2 (59)

= ‖wi � Std[y]‖21 (60)

Plugging this choice into Li yields

Li = − 1

2σ2
x

m∑

j=1

|wij |Std[yj ]




m∑

j′=1

|wij |Std[yj ]




− 1

2σ2
x

E[ηi]
2

(61)

= − 1

2σ2
x




m∑

j=1

|wij |Std[yj ]




2

− 1

2σ2
x

E[ηi]
2 (62)

= − 1

2σ2
x

‖wi � Std[y]‖21 −
1

2σ2
x

E[ηi]
2 (63)

B VARIATIONAL UPDATES

Proof of Theorem 2: First, note that for any DEF, the
optimal update equation is as follows:

log qt+1(yj |x) ∝ log p(yj)+

n∑

i=1

εij log p̂t(xi|yj) (64)
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In the Gaussian case, we have

log p(yj) ∝ −
1

2σ2
y

y2j (65)

log p̂(xi|yj) ∝ −
1

2σ2
x

(xi − η̂ij)2 (66)

∝ − 1

2σ2
x

(
xi −

(
b̂ij +

wij
εij

yj

))2

(67)

∝ 1

σ2
x

(xi − b̂ij)wij
εij

yj −
1

2σ2
x

w2
ij

ε2ij
y2j (68)

Plugging this in yields

log q(yj |x) ∝ 1

σ2
x

(
(x− b̂j) ·wj

)
yj

− 1

2
y2j

(
1

σ2
y

+
1

σ2
x

n∑

i=1

w2
ij

εij

) (69)

∝ − 1

σ2
x

(
(x− b̂j) ·wj

)
yj −

1

2(σ∗t+1)2j
y2j (70)

∝ − 1

2(σ∗t+1)2j


yj −

1
σ2
x

(x− b̂j) ·wj
1
σ2
y

+ 1
σ2
x

∑n
i=1

w2
ij

εij




2

(71)

∝ − 1

2(σ∗t+1)2j


yj −

(x− b̂j) ·wj
σ2
x

σ2
y

+
∑n
i=1

w2
ij

εij




2

(72)

After substituting b̂ij = E[ηi]− wij
εij

Eqt [yj ] and rearrang-
ing, we get log qt+1(yj |x) ∝ N ((µ∗t+1)j , (σ

∗
t+1)2j ).

C EXTENSION TO DEEP MODELS

A DEF model with observed variables y(0) ∈ Rm0 and
L layers of latent variables {y(`)}L`=1 with y(`) ∈ Rm`
has joint distribution

p({y(`)}L`=0) =

[
L−1∏

`=0

m∏̀

i=1

p(y
(`)
i |y(`+1))

][
mL∏

i=1

p(y
(L)
i )

]

(73)

p(y
(`)
i |y(`+1)) = exp

{
g(y

(`)
i ) + t(y

(`)
i )η

(`)
i − a(η

(`)
i )
}

(74)

η
(`)
i ≡ b

(`)
i +w

(`)
i · y(`+1) (75)

The ELBO for this model is

log p(y(0)) ≥
m0∑

i=1

E[log p(y
(0)
i |y(1))] (76)

+
L−1∑

`=1

m∑̀

i=1

E[log p(y
(`)
i |y(`+1))] +H

q
(y

(`)
i |y(0))

(77)

+

mL∑

i=1

p(y
(L)
i ) +H

q
(y

(L)
i |y(0)) (78)

For each ` ∈ {0, . . . , L− 1}, introduce the auxiliary pa-
rameters {ε(`)i }m`i=1 and {b̂(`)i }m`i=1, with ε(`)i ∈ ∆m`+1−1

and b̂(`)i ∈ Rm`+1 constrained by b(`)i =
∑m`+1

j=1 ε
(`)
ij b̂

(`)
ij .

For all ` ∈ {0, . . . , L − 1}, i ∈ [m`], and j ∈ [m`+1],
define

η̂
(`)
ij ≡ b̂

(`)
ij +

w
(`)
ij

ε
(`)
ij

y
(`+1)
j (79)

p̂(y
(`)
i |y

(`+1)
j ) ≡ exp{g(y

(`)
i ) + t(y

(`)
i )η̂

(`)
ij − a(η̂

(`)
ij )}

(80)

Then by (25),

E[log p(y
(`)
i |y(`+1))] ≥

m`+1∑

j=1

ε
(`)
ij E[log p̂(y

(`)
i |y

(`+1)
j )]

(81)

Plugging this into the ELBO yields

log p(y(0)) ≥
m0∑

i=1

m1∑

j=1

ε
(`)
ij E[log p̂(y

(0)
i |y

(1)
j )] (82)

+

L−1∑

`=1

m∑̀

i=1

m`+1∑

j=1

ε
(`)
ij E[log p̂(y

(`)
i |y

(`+1)
j )] +H

q
(y

(`)
i |y(0))

(83)

+

mL∑

i=1

p(y
(L)
i ) +H

q
(y

(L)
i |y(0)) (84)

This objective separates as a sum of terms, each of which
involves no more than one latent variable in the same
layer. This allows any group of variables forming an in-
dependent set in the model graph to be updated in paral-
lel, the same as for undirected models.
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Abstract

Assessing the magnitude of cause-and-effect
relations is one of the central challenges found
throughout the empirical sciences. The prob-
lem of identification of causal effects is con-
cerned with determining whether a causal ef-
fect can be computed from a combination of
observational data and substantive knowledge
about the domain under investigation, which
is formally expressed in the form of a causal
graph. In many practical settings, however, the
knowledge available for the researcher is not
strong enough so as to specify a unique causal
graph. Another line of investigation attempts
to use observational data to learn a qualita-
tive description of the domain called a Markov
equivalence class, which is the collection of
causal graphs that share the same set of ob-
served features. In this paper, we marry both
approaches and study the problem of causal
identification from an equivalence class, repre-
sented by a partial ancestral graph (PAG). We
start by deriving a set of graphical properties of
PAGs that are carried over to its induced sub-
graphs. We then develop an algorithm to com-
pute the effect of an arbitrary set of variables
on an arbitrary outcome set. We show that
the algorithm is strictly more powerful than the
current state of the art found in the literature.

1 INTRODUCTION

Science is about explaining the mechanisms underlying a
phenomenon that is being investigated. One of the marks
imprinted by these mechanisms in reality is cause and
effect relationships. Systematically discovering the ex-
istence, and magnitude, of causal relations constitutes,

therefore, a central task in scientific domains. The value
of inferring causal relationships is also tremendous in
other, more practical domains, including, for example,
engineering and business, where it is often crucial to un-
derstand how to bring about a specific change when a
constrained amount of controllability is in place. If our
goal is to build AI systems that can act and learn au-
tonomously, formalizing the principles behind causal in-
ference, so that these systems can leverage them, is a fun-
damental requirement (Pearl and Mackenzie, 2018).

One prominent approach to infer causal relations lever-
ages a combination of substantive knowledge about the
domain under investigation, usually encoded in the form
of a causal graph, with observational (non-experimental)
data (Pearl, 2000; Spirtes et al., 2001; Bareinboim and
Pearl, 2016). A sample causal graph is shown in
Fig. 1a such that the nodes represent variables, directed
edges represent direct causal relation from tails to heads,
and bi-directed arcs represent the presence of unob-
served (latent) variables that generate a spurious asso-
ciation between the variables, also known as confound-
ing bias (Pearl, 1993). The task of determining whether
an interventional (experimental) distribution can be com-
puted from a combination of observational and experi-
mental data together with the causal graph is known as
the problem of identification of causal effects (identifi-
cation, for short). For instance, a possible task in this
case is to identify the effect of do(X=x) on V4=v4, i.e.
Px(v4), given the causal graph in Fig. 1a and data from
the observational distribution P (x, v1, ..., v4).

The problem of identification has been extensively stud-
ied in the literature, and a number of criteria have been
established (Pearl, 1993; Galles and Pearl, 1995; Kuroki
and Miyakawa, 1999; Tian and Pearl, 2002; Huang and
Valtorta, 2006; Shpitser and Pearl, 2006; Bareinboim and
Pearl, 2012), which include the celebrated back-door cri-
terion and the do-calculus (Pearl, 1995). Despite their
power, these techniques require a fully specified causal
graph, which is not always available in practical settings.
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Another line of investigation attempts to learn a qual-
itative description of the system, which in the ideal
case would lead to the “true” data-generating model,
the blueprint underlying the phenomenon being inves-
tigated. These efforts could certainly be deemed more
“data-driven” and aligned with the zeitgeist in machine
learning. In practice, however, it is common that only an
equivalence class of causal models can be consistently
inferred from observational data (Verma, 1993; Spirtes
et al., 2001; Zhang, 2008b). One useful characterization
of such an equivalence class comes under the rubric of
partial ancestral graphs (PAGs), which will be critical to
our work. Fig. 1 shows the PAG (right) that can be in-
ferred from observational data that is consistent with the
true causal model (left). The directed edges in a PAG sig-
nify ancestral relations (not necessarily direct) and circle
marks stand for structural uncertainty.

In this paper, we analyze the marriage of these two lines
of investigation, where the structural invariance learned
in the equivalence class will be used as input to iden-
tify the strength of causal effect relationships, if pos-
sible. Identification from an equivalence class is con-
siderably more challenging than from a single diagram
due to the structural uncertainty regarding both the di-
rect causal relations among the variables and the pres-
ence of latent variables that confounds causal relations
between observed variables. Still, there is a growing in-
terest in identifiability results in this setting (Maathuis
et al., 2010). Zhang (2007) extended the do-calculus to
PAGs. In practice, however, it is in general computa-
tionally hard to decide whether there exists (and, if so,
find) a sequence of applications of the rules of the gener-
alized calculus to identify the interventional distribution.
Perković et al. (2015) generalized the back-door criterion
to PAGs, and provided a sound and complete algorithm
to find a back-door admissible set, should such a set ex-
ist. However, in practice, the back-door criterion is not
as powerful as the do-calculus, since no adjustment set
exists for many identifiable causal effects. Jaber et al.
(2018b) generalized the work of (Tian and Pearl, 2002)
and devised a graphical criterion to identify causal effects
with singleton interventions in PAGs.1

Building on this work, we develop here a decomposi-
tion strategy akin to the one introduced in (Tian, 2002)
to identify causal effects given a PAG. Our proposed ap-
proach is computationally more attractive than the do-
calculus as it provides a systematic procedure to identify

1Another possible approach is based on SAT (boolean con-
straint satisfaction) solvers (Hyttinen et al., 2015). Given its
somewhat distinct nature, a closer comparison lies outside the
scope of this paper. We note, however, that an open research
direction would be to translate our systematic approach into
logical rules so as to help improving the solver’s scalability.

V1

V2

X V3

V4

(a)

V1

V2

X V3

V4

◦

◦
v

v
◦
◦

(b)

Figure 1: A causal model (left) and the inferred PAG (right).

a causal effect, if identifiable. It is also more powerful
than the generalized adjustment criterion, as we show
later. More specifically, our main contributions are:

1. We study some critical properties of PAGs and show
that they also hold in induced subgraphs of a PAG
over an arbitrary subset of nodes. We further study
Tian’s c-component decomposition and relax it to
PAGs (when only partial knowledge about the an-
cestral relations and c-components is available).

2. We formulate a systematic procedure to compute
the effect of an arbitrary set of intervention variables
on an arbitrary outcome set from a PAG and obser-
vational data. We show that this algorithm is strictly
more powerful than the adjustment criterion.

2 PRELIMINARIES

In this section, we introduce the basic notation and ma-
chinery used throughout the paper. Bold capital letters
denote sets of variables, while bold lowercase letters
stand for particular assignments to those variables.

Structural Causal Models. We use the language of
Structural Causal Models (SCM) (Pearl, 2000, pp. 204-
207) as our basic semantic framework. Formally, an
SCM M is a 4-tuple 〈U, V, F, P (u)〉, where U is a set
of exogenous (latent) variables and V is a set of en-
dogenous (measured) variables. F represents a collec-
tion of functions F = {fi} such that each endogenous
variable Vi ∈ V is determined by a function fi ∈ F ,
where fi is a mapping from the respective domain of
Ui ∪ Pai to Vi, Ui ⊆ U , Pai ⊆ V \ Vi. The uncer-
tainty is encoded through a probability distribution over
the exogenous variables, P (u). A causal diagram associ-
ated with an SCM encodes the structural relations among
V ∪ U , in which an arrow is drawn from each member
of Ui ∪ Pai to Vi. We constraint our results to recur-
sive systems, which means that the corresponding dia-
gram will be acyclic. The marginal distribution over the
endogenous variables P (v) is called observational, and
factorizes according to the causal diagram, i.e.:

P (v) =
∑

u

∏

i

P (vi|pai, ui)P (u)
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Within the structural semantics, performing an action
X=x is represented through the do-operator, do(X=x),
which encodes the operation of replacing the original
equation forX by the constant x and induces a submodel
Mx. The resulting distribution is denoted by Px, which is
the main target for identification in this paper. For details
on structural models, we refer readers to (Pearl, 2000).

Ancestral Graphs. We now introduce a graphical rep-
resentation of equivalence classes of causal diagrams. A
mixed graph can contain directed (→) and bi-directed
edges (↔). A is a spouse of B if A ↔ B is present. An
almost directed cycle happens when A is both a spouse
and an ancestor of B. An inducing path relative to L
is a path on which every node V /∈ L (except for the
endpoints) is a collider on the path (i.e., both edges in-
cident to V are into V ) and every collider is an ances-
tor of an endpoint of the path. A mixed graph is an-
cestral if it doesn’t contain a directed or almost directed
cycle. It is maximal if there is no inducing path (relative
to the empty set) between any two non-adjacent nodes. A
Maximal Ancestral Graph (MAG) is a graph that is both
ancestral and maximal. MAG models are closed under
marginalization (Richardson and Spirtes, 2002).

In general, a causal MAG represents a set of causal mod-
els with the same set of observed variables that entail
the same independence and ancestral relations among the
observed variables. Different MAGs may be Markov
equivalent in that they entail the exact same indepen-
dence model. A partial ancestral graph (PAG) represents
an equivalence class of MAGs [M], which shares the
same adjacencies as every MAG in [M] and displays all
and only the invariant edge marks.
Definition 1 (PAG). Let [M] be the Markov equivalence
class of an arbitrary MAGM. The PAG for [M], P , is a
partial mixed graph such that:

i. P has the same adjacencies asM (and hence any
member of [M]) does.

ii. An arrowhead is inP iff shared by all MAGs in [M].

iii. A tail is in P iff shared by all MAGs in [M].

iv. A mark that is neither an arrowhead nor a tail is
recorded as a circle.

A PAG is learnable from the conditional independence
and dependence relations among the observed variables
and the FCI algorithm is a standard method to learn such
an object (Zhang, 2008b). changeIn short, a PAG rep-
resents an equivalence class of causal models with the
same observed variables and independence model.

Graphical Notions. Given a DAG, MAG, or PAG, a
path between X and Y is potentially directed (causal)

from X to Y if there is no arrowhead on the path point-
ing towards X . Y is called a possible descendant of
X and X a possible ancestor of Y if there is a poten-
tially directed path from X to Y . A set A is (descen-
dant) ancestral if no node outside A is a possible (de-
scendant) ancestor of any node in A. Y is called a pos-
sible child of X , i.e. Y ∈ Ch(X), and X a possible
parent of Y , i.e. X ∈ Pa(Y ), if they are adjacent and
the edge is not into X . For a set of nodes X, we have
Pa(X) = ∪X∈XPa(X) and Ch(X) = ∪X∈XCh(X).
Given two sets of nodes X and Y, a path between them
is called proper if one of the endpoints is in X and the
other is in Y, and no other node on the path is in X or
Y. For convenience, we use an asterisk (*) to denote any
possible mark of a PAG (◦, >,−) or a MAG (>,−). If
the edge marks on a path between X and Y are all cir-
cles, we call the path a circle path.

A directed edge X → Y in a MAG or PAG is visible
if there exists no DAG D(V,L) in the corresponding
equivalence class where there is an inducing path be-
tween X and Y that is into X relative to L. This implies
that a visible edge is not confounded (X ← Ui → Y
doesn’t exist). Which directed edges are visible is easily
decidable by a graphical condition (Zhang, 2008a), so we
simply mark visible edges by v. For brevity, we refer to
any edge that is not a visible directed edge as invisible.

Identification Given a Causal DAG. Tian and Pearl
(2002) presented an identification algorithm based on a
decomposition strategy of the DAG into a set of so-called
c-components (confounded components).
Definition 2 (C-Component). In a causal DAG, two ob-
served variables are said to be in the same c-component
if and only if they are connected by a bi-directed path,
i.e. a path composed solely of such bi-directed treks as
Vi ← Uij → Vj , where Uij is an exogenous variable.

For convenience, we often refer to a bi-directed trek like
Vi ←Uij→ Vj as a bi-directed edge between Vi and Vj
(and Uij is often left implicit). For any set C ⊆ V, we
define the quantity Q[C] to denote the post-intervention
distribution of C under an intervention on V \C:

Q[C] = Pv\c(c) =
∑

u

∏

{i|Vi∈C}
P (vi|pai, ui)P (u)

The significance of c-components and their decomposi-
tion is evident from (Tian, 2002, Lemmas 10, 11), which
are the basis of Tian’s identification algorithm.

3 REVISIT IDENTIFICATION IN DAGS

We revisit the identification results in DAGs, focusing on
Tian’s algorithm (Tian, 2002). Our goal here is to have an
amenable algorithm that allows the incorporation of the
structural uncertainties arising in the equivalence class.
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Let DA denote the (induced) subgraph of a DAG
D(V,L) over A ⊆ V and the latent parents of A (i.e.
Pa(A) ∩ L). The original algorithm (Alg. 5 in (Tian,
2002)) alternately applies Lemmas 10 and 11 in (Tian,
2002) until a solution is derived or a failure condition is
triggered. We rewrite this algorithm with a more local,
atomic criterion based on the following results.

Definition 3 (Composite C-Component). Given a DAG
that decomposes into c-components S1, . . . , Sk, k ≥ 1,
a composite c-component is the union of one or more of
these c-components.

Lemma 1. Given a DAG D(V,L), X ⊂ T ⊆ V, and
Pv\t the interventional distribution of V \ T on T. Let
SX denote a composite c-component containing X in
DT. If X is a descendant set in DSX , then Q[T \ X]
is identifiable and given by

Q[T \X] =
Pv\t
Q[SX]

×
∑

x

Q[SX] (1)

Proof. By (Tian, 2002, Lemma 11), Q[T] decomposes
as follows.

Q[T] = Q[T \ SX]×Q[SX] =
Q[T]

Q[SX]
×Q[SX]

Q[SX] is computable from Pv\t using Lemma 11 in
(Tian, 2002), and Q[SX \X] is computable from Q[SX]
using (Tian, 2002, Lemma 10) as X is a descendant set
in DSX . Therefore,

Q[T \X] =
Pv\t
Q[SX]

·Q[SX \X] =
Pv\t
Q[SX]

·
∑

x

Q[SX]

The next result follows directly when X is a singleton.

Corollary 1. Given a DAG D(V,L), X ∈ T ⊆ V, and
Pv\t. If X is not in the same c-component with a child
in DT, then Q[T \ {X}] is identifiable and given by

Q[T \ {X}] = Pv\t
Q[SX ]

×
∑

x

Q[SX ] (2)

where SX is the c-component of X in DT.

The significance of Corol. 1 stems from the fact that it
can be used to rewrite the identification algorithm in a
step-wise fashion, which is shown in Algorithm 1. The
same is equivalent to the original algorithm since neither
one of Lemmas 10 nor 11 in (Tian, 2002) is applicable
whenever Corol. 1 is not applicable, which is shown by
Lemmas 2 and 3. This result may not be surprising since
Corol. 1 follows from the application of these lemmas.

Algorithm 1: ID(x,y) given DAG G
input : two disjoint sets X,Y ⊂ V
output: Expression for Px(y) or FAIL

1. Let D = An(Y)GV\X

2. Let the c-components of GD be Di, i = 1, . . . , k

3. Px(y) =
∑

d\y
∏
i Identify(Di,V, P )

Function Identify(C, T, Q = Q[T]):
if C = T then

return Q[T];
end
/* Let SB be the c-component of {B} in GT */

if ∃B ∈ T \C such that SB ∩ Ch(B) = ∅ then
Compute Q[T \ {B}] from Q; // Corollary 1

return Identify(C,T \ {B}, Q[T \ {B}]);
else

throw FAIL;
end

Lemma 2. Given a DAG D(V,L), C ⊂ T ⊆ V. If
A = An(C)DT

6= T, then there exist some node X ∈
T \A such that X is not in the same c-component with
any child in DT.

Proof. If A 6= T, then T \A is a non-empty set where
none of the nodes is an ancestor of A. Since the graph
is acyclic, then at least one node of T \ A is with no
children. Hence, the above conclusion follows.

Lemma 3. Given a DAG D(V,L), C ⊂ T ⊆ V, and
assume DC is a single c-component. If DT partitions
into c-components S1 . . .Sk, where k > 1, then there
exists some node X ∈ Si such that C 6⊆ Si and X is not
in the same c-component with any child in DT.

Proof. SubgraphDSi is acyclic, so there must exist some
node (X) that doesn’t have any children inDSi . Since Si
is one of the c-components in DT, then X is not in the
same c-component with any of its children in DT.

The revised algorithm requires checking an atomic
criterion at every instance of the recursive routine
Identify. This might not be crucial when the pre-
cise causal diagram is known and induced subgraphs
preserve a complete graphical characterization of the
c-components and the ancestral relations between the
nodes. The latter, unfortunately, doesn’t hold when the
model is an equivalence class represented by a PAG.2

2We thank a reviewer for bringing to our attention a similar
formulation of Alg. 1 (Richardson et al., 2017, Thm. 60).
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Figure 2: Example for properties discussed in Section 4

4 PAG-SUBGRAPH PROPERTIES

Evidently, induced subgraphs of the original causal
model play a critical role in identification (cf Alg. 1).
It is natural to expect that in the generalized setting we
study here, induced subgraphs of the given PAG will also
play an important role. An immediate challenge, how-
ever, is that a subgraph of a PAG P over V induced by
A ⊆ V is, in general, not a PAG that represents a full
Markov equivalence class. In particular, if D(V,L) is a
DAG in the equivalence class represented by P , PA is in
general not the PAG that represents the equivalence class
of DA. To witness, let D and P denote the DAG and
the corresponding PAG in Figure 1, respectively, and let
A = {V1, V2, X, V4}. The induced subgraph of P over
A (Fig. 2a) does not represent the equivalence class of
the corresponding induced subgraph of D (Fig. 2b). De-
spite this subtlety, we establish a few facts below show-
ing that for any A ⊆ V and any DAG D in the equiv-
alence class represented by P , some information about
DA, which is particularly relevant to identification, can
be read off from PA.

Proposition 1. Let P be a PAG over V, andD(V,L) be
any DAG in the equivalence class represented by P . Let
X 6= Y be two nodes in A ⊆ V. If X is an ancestor of
Y in DA, then X is a possible ancestor of Y in PA.

Proof. If X is an ancestor of Y in DA, then there is a
path p in DA composed of nodes 〈X = V0, . . . , Y =
Vm〉, m ≥ 1 such that Vi ∈ A and Vi → Vi+1,
0 ≤ i < m. Path p is obviously also present in D, and
consequently the corresponding MAGM. Hence, p cor-
responds to a possibly directed path in P . Since all the
nodes along p are in A, then p is present in PA and so X
is a possible ancestor of Y in PA.

This simple proposition guarantees that possible-
ancestral relationship in PA subsumes ancestral relation-
ship in DA for every D in the class represented by P .
This is illustrated by DA and PA in Figures 2a and 2b.

Given an induced subgraph of a PAG, PA, a directed
edge X → Y in PA is said to be visible if for every
DAG D in the class represented by P , there is no induc-
ing path in DA between X and Y relative to the latent
nodes in DA that is into X .

Lemma 4. Let P be a PAG over V, and PA be an in-
duced subgraph of P over A ⊆ V. For every X → Y in
PA, if it is visible in P , then it remains visible in PA.

Proof. Let D(V,L) be any causal model in the equiva-
lence class represented by P , and letX → Y be a visible
edge in P , X,Y ∈ A. Then, there is no inducing path
between X and Y relative to L that is into X in D. It
follows that no such inducing path (relative to the latent
nodes in DA) exists in the subgraph DA.

Visibility is relevant for identification because it im-
plies absence of confounding, which is the major obsta-
cle to identification. Lemma 4 shows that an edge in
an induced subgraph that is visible in the original PAG
also implies absence of confounding in the induced sub-
graphs. Interestingly, note that a directed edge X → Y
in PA, visible or not, does not imply that X is an ances-
tor of Y inDA for everyD in the class represented by P .
For example, X is not an ancestor of V4 in Fig. 2b, even
though X → V4 is a visible edge in Fig. 2a.

Definition 4 (PC-Component). In a MAG, a PAG, or any
of its induced subgraphs, two nodes X and Y are in
the same possible c-component (pc-component) if there
is a path between the two nodes such that (1) all non-
endpoint nodes along the path are colliders, and (2) none
of the edges is visible.

As alluded earlier, a c-component in a causal graph plays
a central role in identification. The following proposition
establishes a graphical condition in an induced subgraph
PA that is necessary for two nodes being in the same
c-component in DA for some DAG D represented by P .

Proposition 2. Let P be a PAG over V, and D(V,L)
be any DAG in the equivalence class represented by P .
For any X,Y ∈ A ⊆ V, if X and Y are in the same
c-component in DA, then X and Y are in the same pc-
component in PA.

Proof Sketch. If X and Y are in the same c-component
in DA, then there is a path p in DA composed of nodes
〈X = V0, . . . , Y = Vm〉, m ≥ 1, such that Vi ∈ A and
Vi ← Li,i+1 → Vi+1, 0 ≤ i < m. We prove that X and
Y are in the same pc-component inM, the MAG of D
over V, due to a path p′ over a subsequence of p. We then
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show that X and Y are in the same pc-component in P ,
the PAG ofM, due to a path p∗ over a subsequence of p′.
Since all the nodes along p∗ are in A, then p∗ is present
in PA, and so X and Y are in the same pc-component
in PA. Due to space constraints, the complete proofs are
provided in (Jaber et al., 2018a).

This result provides a sufficient condition for not belong-
ing to the same c-component in any of the relevant causal
graphs. In Fig. 2a, for example, V1 and V4 or X and
V4 are not in the same pc-component, which implies by
Prop. 2 that they are not in the same c-component in DA

for any DAG D in the equivalence class represented by
the PAG in Fig. 1b.

As a special case of Def. 4, we define the following no-
tion, which will prove useful later on.

Definition 5 (DC-Component). In a MAG, a PAG, or
any of its induced subgraphs, two nodes X and Y are in
the same definite c-component (dc-component) if they are
connected with a bi-directed path, i.e. a path composed
solely of bi-directed edges.

One challenge with the notion of pc-component is that
it is not transitive as c-component is. Consider the PAG
V1 ◦−◦ V2 ◦−◦ V3. Here, V1 and V2 are in the same
pc-component, V2 and V3 are in the same pc-component,
however, V1 and V3 are not in the same pc-component.
Hence, we define a notion that is a transitive closure of
the notion of pc-component, which will prove instrumen-
tal to our goal.

Definition 6 (CPC-Component). Let P denote a PAG
or a corresponding induced subgraph. Nodes X and
Y are in the same composite pc-component in P , de-
noted cpc-component, if there exist a sequence of nodes
〈X = V0, . . . , Y = Vm〉, m ≥ 1, such that Vi and Vi+1

are in the same pc-component, 0 ≤ i < m.

It follows from the above definition that a PAG or an in-
duced subgraph P can be decomposed into unique sets
of cpc-components. For instance, the cpc-components in
Fig. 2a are S1 = {V1, V2, X} and S2 = {V4}. The sig-
nificance of a cpc-component is that it corresponds to a
composite c-component in the relevant causal graphs as
shown in the following proposition.

Proposition 3. Let P be a PAG over V, D(V,L) be
any DAG in the equivalence class represented by P , and
A ⊆ V. If C ⊆ A is a cpc-component in PA, then C is
a composite c-component in DA.

Proof. According to Definition 6, C includes all the
nodes that are in the same pc-component with some node
in C in PA. If follows from the contrapositive of Prop. 2
that no node outside C is in the same c-component with

Algorithm 2: PTO Algorithm
input : PAG P over V
output: PTO over P
1- Create singleton buckets Bi each containing Vi ∈ V.
2- Merge buckets Bi and Bj if there is a circle edge
between them (Bi 3 X ◦−◦ Y ∈ Bj).

3- while set of buckets (B) is not empty do
(i) Extract Bi with only arrowheads incident on it.
(ii) Remove edges between Bi and other buckets.

end
4- The partial order is B1 < B2 < · · · < Bm in reverse
order of the bucket extraction. Hence, B1 is the last
bucket extracted and Bm is the first bucket extracted.

any node in C in DA. Hence, set C represents a com-
posite c-component in DA by Definition 3.

Recall that the algorithm for identification given a DAG
uses a topological order over the nodes. Similarly, the
algorithm we design for PAGs will depend on some (par-
tial) topological order. Thanks to the possible presence
of circle edges (◦−◦) in a PAG, in general, there may be
no complete topological order that is valid for all DAGs
in the equivalence class. Algorithm 2 presents a proce-
dure to derive a partial topological order over the nodes
in a PAG, using buckets of nodes that are connected with
circle paths (Jaber et al., 2018b). This algorithm remains
valid over an induced subgraph of a PAG. To show this,
the following lemma is crucial:

Lemma 5. Let P be a PAG over V, and PA be the in-
duced subgraph over A ⊆ V. For any three nodes A,
B, C, if A∗→ B ◦−∗C, then there is an edge between A
and C with an arrowhead at C, namely, A∗→ C. Fur-
thermore, if the edge between A and B is A → B, then
the edge between A and C is either A → C or A◦→ C
(i.e., it is not A↔ C).

Proof. Lemma 3.3.1 of (Zhang, 2006) establishes the
above property for every PAG. By the definition of an
induced subgraph, the property is preserved in PA.

Thus, a characteristic feature of PAGs carries over to
their induced subgraphs. It follows that Algorithm 2 is
sound for induced subgraphs as well.

Proposition 4. Let P be a PAG over V, and let PA be
the subgraph of P induced by A ⊆ V. Then, Algo-
rithm 2 is sound over PA, in the sense that the partial
order is valid with respect to DA, for every DAG D in
the equivalence class represented by P .
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Proof. LetD be any DAG in the equivalence class repre-
sented by P . By Prop. 1, the possible-ancestral relations
in PA subsume those present in DA. Hence, a partial
topological order that is valid with respect to PA is valid
with respect to DA. The correctness of Alg. 2 with re-
spect to a PAG in (Jaber et al., 2018b) depends only on
the property in Lemma 5, a proof of which is given in the
Supplementary Materials for completeness. Therefore,
thanks to Lemma 5, the algorithm is also sound with re-
spect to an induced subgraph PA.

For example, for PA in Fig. 2a, a partial topological or-
der over the nodes is V1 < V2 < X < V4, which is valid
for all the relevant DAGs.

With these results about induced subgraphs of a PAG, we
are ready to develop a recursive approach for identifica-
tion given a PAG, to which we now turn.

5 IDENTIFICATION IN PAGS

We start by formally defining the notion of identification
given a PAG, which generalizes the model-specific no-
tion (Pearl, 2000, pp. 70).

Definition 7. Given a PAG P over V and a query Px(y)
where X,Y ⊂ V, Px(y) is identifiable given P if and
only if Px(y) is identifiable given every DAG D(V,L)
in the Markov equivalence class represented by P , and
with the same expression.

We first derive an atomic identification criterion analo-
gous to Corollary 1. As seen in the algorithm for con-
structing a partial order (Alg. 2), a bucket or circle com-
ponent in a PAG is for our purpose analogous to a single
node in a DAG. Therefore, the following criterion targets
a bucket X rather than a single node.

Theorem 1. Given a PAG P over V, a partial topolog-
ical order B1 < · · · < Bm with respect to P , a bucket
X=Bj⊂T⊆V, for some 1≤j≤m, and Pv\t (i.e. Q[T]),
Q[T \X] is identifiable if and only if there does not exist
X ∈ X such that X has a possible child C /∈ X that
is in the same pc-component as X in PT. If identifiable,
then the expression is given by

Q[T \X] =
Pv\t∏

{i|Bi⊆SX} Pv\t(Bi|B(i−1))
× (3)

∑

x

∏

{i|Bi⊆SX}
Pv\t(Bi|B(i−1)),

where SX =
⋃
X∈X S

X , SX being the dc-component of
X inPT, and B(i−1) denoting the set of nodes preceding
bucket Bi in the partial order.

Proof Sketch. (if) Let D be any DAG in the equivalence
class represented byP ,DT be the induced subgraph over
T, and S′ be the smallest composite c-component con-
taining X in DT. We show that X is a descendant set
in DS′ . Suppose otherwise for the sake of contradiction.
Then, there is a node C ∈ S′ \X such that C is a child
of Xi and is in the same c-component with Xj , where
Xi, Xj ∈ X and possibly i = j. By Prop. 2, Xj is in the
same pc-component with C in PT. Let Ti be the node
closest to Xj along the collider path in PT between Xj

and C consistent with Def. 4. If the edge between Xj

and Ti in PT is not into Xj , then Xj is in the same pc-
component with a possible child as the edge is not visi-
ble. This violates the criterion stated in the theorem. Oth-
erwise, the edge is Xj ↔ Ti and there exist a bi-directed
edge between Ti and every node in X (which follows
from Lemma 5). Hence, Xi is in the same pc-component
with a possible child C in PT (Prop. 1), and the crite-
rion stated in the theorem is violated again. Therefore,
X is a descendant set inDS′ and Q[T\X] is identifiable
from Q[T] by Lemma 1. It remains to show that Eq. 3
is equivalent to Eq. 1 for D. The details for this step are
left to the Supplementary Material.

(only if) Suppose the criterion in question is not satis-
fied. Then some Xi ∈ X is in the pc-component with a
possible child C /∈ X in PT. The edge between Xi and
C isXi∗→ C as C is outside of X. If the edge is not vis-
ible in PT, then this edge is not visible in P (Lemma 4).
Hence, we can construct a DAG D in the equivalence
class of P where C is a child of Xi and the two nodes
share a latent variable. The pair of sets F = {Xi, C} and
F′ = {C} form a so-called hedge for Q[T \X] and the
effect is not identifiable in D (Shpitser and Pearl, 2006,
Theorem 4), and hence not identifiable given P .

Otherwise, Xi → C is visible in PT. So, there is a col-
lider path between Xi and C consistent with Def. 4 such
that the two nodes are in the same pc-component. Let p=
〈Xi=T0, T1, . . . , Tm=C〉 denote the shortest such path
inPT. If the edge betweenXi and T1 is not intoXi, then
T1 is a child of Xi and the proof follows as in the previ-
ous case. Otherwise, we haveXi ↔ T1 and we can show
thatXi is the only node along p that belongs to X (details
in the Supplementary Material). In P , path p is present
with Xi → C visible. Hence, we can construct a DAG
D in the equivalence class of P such that C is a child
of Xi and both are in the same c-component through a
sequence of bi-directed edges along the corresponding
nodes of p. The pair of sets F = {Xi, T1, . . . , Tm = C}
and F′ = {T1, . . . , Tm = C} form a hedge for Q[T\X]
and the effect is not identifiable in D, and hence it is not
identifiable given P .

Note that the above result simplifies into computing the
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Figure 3: Sample PAG P (left) and induced subgraphs used to identify Q[{Y1, Y2}].

interventional distribution Px whenever the input dis-
tribution is the observational distribution, i.e. T =
V. Consider the query Px(v \ {x}) over the PAG in
Fig. 1b. The intervention node X is not in the same pc-
component with any of its possible children (V3 and V4),
hence the effect is identifiable and given by

Px(v \ {x}) =
P (v)

P (x|v1, v2)
×
∑

x′

P (x′|v1, v2)

= P (v1, v2)P (v4, v5|v1, v2, x)

Putting these observations together leads to the proce-
dure we call IDP, which is shown in Alg. 3. In words,
the main idea of IDP goes as follows. After receiv-
ing the sets X,Y, and a PAG P , the algorithm starts
the pre-processing steps: First, it computes D, the set
of possible ancestors of Y in PV\X. Second, it uses PD

to partition set D into cpc-components. Following the
pre-processing stage, the procedure calls the subroutine
Identify over each cpc-component Di to compute
Q[Di] from the observational distribution P (V). The
recursive routine basically checks for the presence of a
bucket B in PT that is a subset of the intervention nodes,
i.e. B ⊆ T\C, and satisfies the conditions of Thm. 1. If
found, it is able to successfully compute Q[T \B] using
Eq. 3, and proceed with a recursive call. Alternatively,
if such a bucket doesn’t exist in PT, then IDP throws a
failure condition, since it’s unable to identify the query.
We show next that this procedure is, indeed, correct.

Theorem 2. Algorithm IDP (Alg.3) is sound.

Proof. Let G(V,L) be any causal graph in the equiva-
lence class of PAG P over V, and let V′ = V \X. We
have

Px(y) =
∑

v′\y
Px(v

′) =
∑

v′\y
Q[V′] =

∑

v′\d

∑

d\y
Q[V′]

By definition, D is an ancestral set in PV′ , and hence it
is ancestral in GV′ by Prop. 1. So, we have the following
by (Tian, 2002, Lemma 10):

Px(y) =
∑

d\y

∑

v′\d
Q[V′] =

∑

d\y
Q[D] (4)

Algorithm 3: IDP(x,y) given PAG P
input : two disjoint sets X,Y ⊂ V
output: Expression for Px(y) or FAIL

1. Let D = An(Y)PV\X

2. Let the cpc-components of PD be Di, i = 1, . . . , k

3. Px(y) =
∑

d\y
∏
i Identify(Di,V, P )

Function Identify(C, T, Q = Q[T]):
if C = T then

return Q[T];
end
/* In PT, let B be a bucket, and CB be the

pc-component of B */

if ∃B ⊆ T \C such that CB ∩ Ch(B) ⊆ B then
Compute Q[T \B] from Q; // Theorem 1

return Identify(C,T \B, Q[T \B]);
else

throw FAIL;
end

Using Prop. 3, each cpc-component in PD corresponds
to a composite c-component in GD. Hence, Eq. 4 can be
decomposed as follows by (Tian, 2002, Lemma 11).

Px(y) =
∑

d\y
Q[D] =

∑

d\y

∏

i

Q[Di] (5)

Eq. 5 is equivalent to the decomposition we have in step
3 of Alg. 3, where we attempt to compute each Q[Di]
from P . Finally, the correctness of the recursive routine
Identify follows from that of Theorem 1.

5.1 ILLUSTRATIVE EXAMPLE

Consider the query Px1,x2
(y1, y2, y3) given P in Fig. 3a.

We have D = {Y1, Y2, Y3}, and the cpc-components in
PD are D1 = {Y1, Y2} and D2 = {Y3}. Hence, the
problem reduces to computing Q[{Y1, Y2}] ·Q[{Y3}].
We start with the call Identify(D1,V, P ). Consider
the singleton bucket Y3 the pc-component of which in-
cludes all the nodes in P . This node satisfies the condi-
tion in Identify as it has no children, and we compute
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Q[V \ {Y3}] using Theorem 1.

Q[V \ {Y3}] =
P (v)

P (y1, y2, y3, x1, x2|v1, v2)
×

∑

y3

P (y1, y2, y3, x1, x2|v1, v2)

= P (v1, v2) · P (y1, y2, x1, x2|v1, v2)
= P (y1, y2, x1, x2, v1, v2) (6)

In the next recursive call, T1 = V \ {Y3}, Py3 corre-
sponds to Eq. 6, and the induced subgraph PT1 is shown
in Fig. 3b. Now, X2 satisfies the criterion and we can
compute Q[T1 \ {X2}] from Py3 = Q[T1], i.e.,

Q[T1 \ {X2}] =
Py3

Py3(y1, y2, x1, x2|v1, v2)
×

∑

x2

Py3(y1, y2, x1, x2|v1, v2)

= P (y1, y2, x1, v1, v2) (7)

Let T2 = T1 \ {X2}, where the induced subgraph PT2

is shown in Fig. 3c. Now, X1 satisfies the criterion and
we can compute Q[T2 \ {X1}] from Eq. 7,

Q[T2 \ {X1}] =
Py3,x2

Py3,x2
(x1|v1, v2)

×
∑

x1

Py3,x2
(x1|v1, v2)

=
P (v1, v2) · P (y1, y2, x1, v1, v2)

P (x1, v1, v2)

= P (v1, v2) · P (y1, y2|x1, v1, v2)

Choosing V1 and V2 in the next two recursive calls, we
finally obtain the simplified expression:

Q[{Y1, Y2}] = P (y1, y2|x1)

Next, we solve for Q[D2] and we get an expression anal-
ogous to that of Q[D1]. Hence, the final solution is:

Px1,x2
(y1, y2, y3) = P (y1, y2|x1)× P (y3|x2)

5.2 COMPARISON TO STATE OF THE ART

In the previous section, we formulated an identification
algorithm in PAGs for causal queries of the form Px(y),
X,Y ⊂ V. A natural question arises about the expres-
siveness of the IDP in comparison with the state-of-the-
art methods. One of the well established results in the lit-
erature is the adjustment method (Perković et al., 2015),
which is complete whenever an adjustment set exists.

In the sequel, we formally show that the proposed algo-
rithm subsumes the adjustment method.

V1 X

V2

V3
V4

Z Y◦
v

v

v

v
v

Figure 4: Query Px(y) is identifiable by IDP.

Theorem 3. Let P be a PAG over set V and let Px(y)
be a causal query where X,Y ⊂ V. If the distribution
Px(y) is not identifiable using IDP (Alg. 3), then the
effect is not identifiable using the generalized adjustment
criterion in (Perković et al., 2015).

Proof Sketch. Whenever IDP fails to identify some
query, it is due to one of the recursive calls to
Identify. We use the failing condition inside this call
to systematically identify a proper definite status non-
causal path from X to Y in P that is m-connecting given
set Adjust(X,Y,P) (Perković et al., 2016, Def. 4.1). As
this set fails to satisfy the adjustment criterion, then there
exist no adjustment set relative to the pair (X,Y) in P
(Perković et al., 2016, Cor. 4.4). The details of the proof
are left to the Supplementary Material.

Based on this result, one may wonder whether these al-
gorithms are, after all, just equivalent. In reality, IDP
captures strictly more identifiable effects than the adjust-
ment criterion. To witness, consider the PAG in Fig. 4
and note that the causal distribution Px(y) is identifiable
by IDP but not by adjustment in this case.

6 CONCLUSION
We studied the problem of identification of interventional
distributions in Markov equivalence classes represented
by PAGs. We first investigated graphical properties for
induced subgraphs of PAGs over an arbitrary subset of
nodes with respect to induced subgraphs of DAGs that
are in the equivalence class. We believe that these results
can be useful to general tasks related to causal inference
from equivalence classes. We further developed an iden-
tification algorithm in PAGs and proved it to subsume the
state-of-the-art adjustment method.
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Emilija Perković, Johannes Textor, Markus Kalisch, and
Marloes H. Maathuis. A complete generalized adjust-
ment criterion. In Proceedings of the Thirty-First Con-
ference on Uncertainty in Artificial Intelligence, pages
682–691, 2015.
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Abstract

Hierarchical Bayesian methods can unify
many related tasks (e.g. k-shot classification,
conditional and unconditional generation) as
inference within a single generative model.
However, when this generative model is ex-
pressed as a powerful neural network such as
a PixelCNN, we show that existing learning
techniques typically fail to effectively use la-
tent variables. To address this, we develop
a modification of the Variational Autoencoder
in which encoded observations are decoded
to new elements from the same class. This
technique, which we call a Variational Ho-
moencoder (VHE), produces a hierarchical la-
tent variable model which better utilises la-
tent variables. We use the VHE framework to
learn a hierarchical PixelCNN on the Omniglot
dataset, which outperforms all existing models
on test set likelihood and achieves strong per-
formance on one-shot generation and classifi-
cation tasks. We additionally validate the VHE
on natural images from the YouTube Faces
database. Finally, we develop extensions of
the model that apply to richer dataset structures
such as factorial and hierarchical categories.

1 INTRODUCTION

Learning from few examples is possible only with strong
inductive biases. In machine learning these biases can be
hand designed, such as a model’s parametrisation, or can
be the result of a meta-learning algorithm. Furthermore
they may be task-specific, as in discriminative modelling,
or may describe the world causally so as to be naturally

A PyTorch implementation of the Variational Homoen-
coder can be found at github.com/insperatum/vhe.

reused across many tasks. Recent work has approached
one- and few-shot learning from all of these perspectives.

Much research has focused on developing neural archi-
tectures for few-shot classification (Koch, 2015; Vinyals
et al., 2016; Snell et al., 2017; Santoro et al., 2016).
These discriminatively-trained networks take as input a
test example and a ‘support set’ of examples from sev-
eral novel classes, and determine the most likely clas-
sification of the test example within the novel classes.
A second approach, as explored in Ravi & Larochelle
(2016); Finn et al. (2017), is to use only a standard clas-
sification network but adapt its parameters to the support
examples with a learned initialisation and update rule. In
either case, such discriminative models can achieve state-
of-the-art few-shot classification performance, although
they provide no principled means for transferring knowl-
edge to other tasks.

An alternative approach centers on few-shot learning of
generative models, from which good classification ought
to come for free. Much recent work on meta-learning
aims to take one or a few observations from a set D
as input, and produce a distribution over new elements
p(x|D) by some learning procedure, expressed either
as a neural network (Rezende et al., 2016; Bartunov &
Vetrov, 2016; Reed et al., 2017) or by adapting the pa-
rameters of an unconditional model (Reed et al., 2017).

A promising route to learning generative models is hi-
erarchical Bayesian inference, which aims to capture
shared structure between instances through shared la-
tent variables. A recent example is developed in Lake
et al. (2015): a compositional, causal generative model
of handwritten characters which achieves state-of-the-art
results at few-shot character classification, alphabet clas-
sification, and both conditional and unconditional gen-
eration. However, this model was hand engineered for
the Omniglot domain, and so leaves open the challenge
of how to learn such hierarchical Bayesian models using
only a generic architecture. The recently proposed Neu-
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Figure 1: Single step of gradient training in various models. A VAE treats all datapoints as independent, so only a
single random element need be encoded (with q(z;x)) and decoded (with p(x|z)) each step. A Neural Statistician
instead feeds a full set of elements X through both encoder (q(c;X)) and decoder (p(X|c)) networks, in order to
share a latent variable c. In a VHE, we bound the full likelihood p(X) using only random subsamples D and x for
encoding/decoding. Optionally, the decoder p(x|c) may be defined through a local latent variable z.

ral Statistician (Edwards & Storkey, 2016) offers one
means towards this, using amortised variational infer-
ence to support learning in a deep hierarchical generative
model.

In this work we aim to learn generative models, ex-
pressed using high capacity neural network architectures,
from just a few examples of a concept. To this end we
propose the Variational Homoencoder (VHE), combin-
ing several advantages of the models described above:

1. Like conditional generative approaches (e.g.
Rezende et al. (2016)), we train on a few-shot
generation objective which matches how our model
may be used at test time. However, by introducing
an encoding cost, we simultaneously optimise a
likelihood lower bound for a hierarchical generative
model, in which structure shared across elements is
made explicit by shared latent variables.

2. Edwards & Storkey (2016) has learned hierarchical
Bayesian models by applying Variational Autoen-
coders to sets, such as classes of images. However,
their approach requires feeding a full set through the
model per gradient step (Figure 1), rendering it in-
tractable to train on very large sets. In practice, they
avoid computational limits by training on smaller,
random subsets. In a VHE, we instead optimise
a likelihood bound for the complete dataset, while
constructing this bound by subsampling. This ap-
proach can not only improve generalisation, but also
departs from previous work by extending to models
with richer latent structure, for which the joint like-
lihood cannot be factorised.

3. As with a VAE, the VHE objective includes both
an encoding- and reconstruction- cost. However,
by sharing latent variables across a large set of el-
ements, the encoding cost per element is reduced

significantly. This facilitates use of powerful au-
toregressive decoders, which otherwise often suffer
from ignoring latent variables (Chen et al., 2016).
We demonstrate the significance of this by applying
a VHE to the Omniglot dataset. Using a PixelCNN
decoder (Oord et al., 2016), our generative model
is arguably the first with a general purpose archi-
tecture to both attain near state-of-the-art one-shot
classification performance and produce high qual-
ity samples in one-shot generation.

2 BACKGROUND

2.1 VARIATIONAL AUTOENCODERS

When dealing with latent variable models of the form
p(x) =

∫
z
p(z)p(x|z)dz, the integration is necessary

for both learning and inference but is often intractable
to compute in closed form. Variational Autoencoders
(VAEs, Kingma & Welling (2013)) provide a method for
learning such models by utilising neural-network based
approximate posterior inference. Specifically, a VAE
comprises a generative network pθ(z)pθ(x|z) alongside
a separate inference network qφ(z;x). These are trained
jointly to maximise a single objective:

LX(θ, φ) =
∑

x∈X

[
log pθ(x)− DKL

(
qφ(z;x) ‖ pθ(z|x)

)]
(1)

=
∑

x∈X

[
E

qφ(z;x)
log pθ(x|z)− DKL

(
qφ(z;x) ‖ pθ(z)

)]

(2)

As can be seen from Equation 1, this objective LX is
a lower bound on the total log likelihood of the dataset
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Algorithm 1: Minibatch training for the Variational Homoencoder. Minibatches are of size M . Stochastic inference
network q uses subsets of size N .

initialize (θ, φ) Parameters for decoder p and encoder q
repeat

sample (xk, ik) for k = 1, . . . ,M Minibatch of elements with corresponding class labels
sample Dk ⊆ Xik for k = 1, . . . ,M where |Dk| = N
sample ck ∼ qφ(c;Dk) for k = 1, . . . ,M
(optional) sample zk ∼ qφ(z; ck, xk) for k = 1, . . . ,M
g ≈ 1

M

∑
k∇Lθ,φ(xk;Dk, |Xik |) Reparametrization gradient estimate using c, z

(θ, φ)← (θ, φ) + λg Gradient step, e.g SGD
until convergence of (θ, φ)

∑
x∈X log pθ(x), while qφ(z;x) is trained to approxi-

mate the true posterior pθ(z|x) as accurately as possi-
ble. If it could match this distribution exactly then the
bound would be tight so that the VAE objective equals
the true log likelihood of the data. In practice, the result-
ing model is typically a compromise between two goals:
pulling pθ towards a distribution that assigns high likeli-
hood to the data, but also towards one which allows accu-
rate inference by qφ. Equation 2 provides a formulation
for the same objective which can be optimised stochasti-
cally, using Monte-Carlo integration to approximate the
expectation. For brevity, we will omit subscripts θ, φ for
the remainder of this paper.

2.2 VARIATIONAL AUTOENCODERS OVER
SETS

The Neural Statistician (Edwards & Storkey, 2016) is a
Variational Autoencoder in which each item to be en-
coded is itself a set, such as the set X(i) of all images
with a particular class label i:

X(i) = {x(i)1 , x
(i)
2 , · · · , x(i)n } (3)

The generative model for sets, p(X), is described by in-
troduction of a corresponding latent variable c. Given c,
individual x ∈ X are conditionally independent:

p(X) =

∫

c

p(c)
∏

x∈X
p(x|c)dc (4)

The likelihood is again intractable to compute, but it can
be bounded below via:

log p(X) ≥ LX =

E
q(c;X)

[∑

x∈X
log p(x|c)

]
− DKL

(
q(c;X) ‖ p(c)

)
(5)

Unfortunately, calculating the variational lower bound
for each set X requires evaluating both q(c;X) and
p(X|c), meaning that the entire set must be passed

through both networks for each gradient update. This
can become computationally challenging for classes with
hundreds of examples. Instead, previous work (Edwards
& Storkey, 2016) ensures that sets used for training are
always of small size by maximising a log-likelihood
bound for randomly sampled subsets D ⊂ X:

E
D⊂X

[
E

q(c;D)

[∑

x∈D
log p(x|c)

]
− DKL

(
q(c;D) ‖ p(c)

)
]

(6)

As we demonstrate in section 4, this subsampling de-
creases the model’s incentive to capture correlations
within a class, reducing utilisation of the latent vari-
ables. This poses a significant challenge when scaling
up to more powerful generative networks, which require
a greater incentive to avoid simply memorising the global
distribution. Our work addresses this by replacing the
variational lower-bound in Equation 6 with a new objec-
tive, which better incentivises the use of latent variables,
leading to improved generalisation.

3 VARIATIONAL HOMOENCODERS

Rather than bound the likelihood of subsamples D from
a set, as in Edwards & Storkey (2016), we instead use
subsampling to construct a lower bound on the com-
plete setX . We use a constrained variational distribution
q(c;D), D ⊆ X for posterior inference and an unbiased
stochastic approximation log p(x|c), x ∈ X for the like-
lihood. This bound will typically be loose due to stochas-
ticity in samplingD, and we view this as a regularization
strategy: we aim to learn latent representations that are
quickly inferable from a small number of instances, and
the VHE objective is tailored for this purpose.
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Figure 2: Application of VHE framework to hierarchical (left) and factorial (right) models. Given an element x such
that x ∈ X1 and x ∈ X2, an approximate posterior is constructed for the corresponding shared latent variables c1, c2
using subsampled sets D1 ⊂ X1, D2 ⊂ X2.

3.1 STOCHASTIC LOWER BOUND

We would like to learn a generative model for sets X of
the form

p(X) =

∫
p(c)

∏

x∈X
p(x|c)dc (7)

We will refer our full dataset as a union of disjoint sets
X = X1 t X2 t . . . t Xn, and use X(x) to refer to the
set Xi 3 x. Using the standard consequent of Jensen’s
inequality, we can lower bound the log-likelihood of each
set X using an arbitrary distribution q. In particular, we
give q as a fixed function of arbitrary data.

log p(X) ≥ E
q(c;D)

log p(X|c)− DKL
[
q(c;D) ‖ p(c)

]
,

∀D ⊂ X
(8)

Splitting up individual likelihoods, we may rewrite

log p(X) ≥ E
q(c;D)

[ ∑

x∈X
log p(x|c)

]

− DKL
[
q(c;D) ‖ p(c)

]
, ∀D ⊂ X

(9)

=
∑

x∈X

[
E

q(c;D)
log p(x|c)

− 1

|X|DKL
[
q(c;D) ‖ p(c)

]]
, ∀D ⊂ X

(10)
def
=
∑

x∈X
L(x;D, |X|), ∀D ⊂ X

(11)

Finally, we can replace the universal quantification with
an expectation under any distribution of D (e.g. uniform

sampling from X without replacement):

log p(X) ≥ E
D⊂X

∑

x∈X
L(x;D, |X|) (12)

=
∑

x∈X
E

D⊂X
L(x;D, |X|) (13)

log p(X ) ≥
∑

x∈X
E

D⊂X(x)

L(x;D, |X(x)|) (14)

This formulation suggests a simple modification to the
VAE training procedure, as shown in Algorithm 1. At
each iteration we select an element x, use resampled ele-
ments D ⊂ X(x) to construct the approximate posterior
q(c;D), and rescale the encoding cost appropriately.

VHE objective:

E
x∈X
D⊂X(x)

[
E

q(c;D)
log p(x|c)− 1

|X(x)|
DKL

[
q(c;D) ‖ p(c)

]
]

(15)

If the generative model p(x|c) also describes a separate
latent variable z for each element, we may simply in-
troduce a second inference network q(z; c, x) in order to
further bound the reconstruction error of Equation 15:

VHE objective with per-element latent variables:

E
x∈X
D⊂X(x)

[
E

q(c;D)
q(z;c,x)

log p(x|c, z)− DKL
[
q(z; c, x) ‖ p(z|c)

]

− 1

|X(x)|
DKL

[
q(c;D) ‖ p(c)

]
]

(16)

3.2 APPLICATION TO STRUCTURED
DATASETS

The above derivation applies to a dataset partitioned into
disjoint subsetsX = X1tX2t. . .tXn, each with a cor-
responding latent variable ci. However, many datasets
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offer a richer organisational structure, such as the hierar-
chical grouping of characters into alphabets (Lake et al.,
2015) or the factorial categorisation of rendered faces by
identity, pose and lighting (Kulkarni et al., 2015).

Provided that such organisational structure is known
in advance, we may generalise the training objective
in Equation 14 to include a separate latent variable ci
for each group Xi within the dataset, even when these
groups overlap. To do this we first rewrite this bound
in its most general form, where c collects all latent vari-
ables:

log p(X ) ≥ E
Q(c;D)

[ ∑

x∈X
log p(x|c)

]

− DKL
[
Q(c;D) ‖ P (c)

]
(17)

As shown in Figure 2, a separate Di ⊂ Xi may be sub-
sampled for inference of each latent variable ci, so that
Q(c) =

∏
i qi(ci;Di). This leads to an analogous train-

ing objective (Equation 18), which may be applied to
data with factorial or hierarchical category structure. For
the hierarchical case, this objective may be further mod-
ified to infer layers sequentially, derived in Supplemen-
tary Material.

log p(X ) ≥
∑

x∈X
E

Di⊂Xi
for each
i:x∈Xi

[
E

qi(ci;Di)
for each
i:x∈Xi

log p(x|c)

−
∑

i:x∈Xi

1

|Xi|
DKL

(
qi(ci;Di) ‖ p(ci)

)
]

(18)

3.3 POWERFUL DECODER MODELS

As evident in Equation 10, the VHE objective provides
a formal motivation for KL rescaling in the variational
objective (a common technique to increase use of la-
tent variables in VAEs) by sharing these variables across
many elements. This is of particular importance when
using autoregressive decoder models, for which a com-
mon failure mode is to learn a decoder p(x|z) with no
dependence on the latent space, thus avoiding the encod-
ing cost. In the context of VAEs, this particular issue has
been discussed by Chen et al. (2016) who suggest crip-
pling the decoder as a potential remedy.

The same failure mode can occur when training a VAE
for sets, particularly when the sets D are of small size
and thus have low total correlation. Variational Homoen-
coders suggest a potential remedy to this, encouraging
use of the latent space by reusing the same latent vari-
ables across a large set X . This allows a VHE to learn
useful representations even with |D| = 1, while at the

Figure 3: PixelCNN VHE architecture used for Om-
niglot and Youtube Faces. A spatial transformer net-
work q(c;D) encodes a subset D of a character class
into a class latent variable c with the same width and
height as the input image. A separate encoder q(z;x),
parametrized by a convolutional network, encodes posi-
tion information in the target image into a latent variable
z. A PixelCNN prior is used for c, and a Gaussian prior
for z. During decoding, c and z are combined by a spatial
transformer and used to condition a PixelCNN decoder
network p(x|STN(c, z)).

same time utilising a powerful decoder to achieve highly
accurate density estimation. In our experiments, we ex-
ploit the VHE’s ability to use powerful decoders: specif-
ically, we learn a generative model with a PixelCNN de-
coder, which is not possible with previous frameworks.

4 EXPERIMENTAL RESULTS

4.1 HANDWRITTEN CHARACTER CLASSES

To demonstrate that the VHE objective can facilitate
learning with more expressive generative networks, we
trained a variety of models on the Omniglot dataset ex-
ploring the interaction between model architecture and
training objective. We consider two model architectures:
a standard deconvolutional network based on Edwards &
Storkey (2016), and a hierarchical PixelCNN architec-
ture inspired by the PixelVAE (Gulrajani et al., 2016).
For each, we compare models trained with the VHE ob-
jective against three alternative objectives.

For our hierarchical PixelCNN architecture (Figure 3)
each character class is associated with a spatial latent
variable c (a character ‘template’) with a PixelCNN prior,
and each image x is associated with its own latent vari-
able z (its ‘position’) with a Gaussian prior. To gener-
ate x, a Spatial Transformer Network (STN) (Jaderberg
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Table 1: Comparison of VHE, Neural Statistician, and
intermediate objectives with both deconvolutional and
PixelCNN architectures. Rescaling encourages use of the
latent space, while resampling encourages generalisation
from the support set. The VHE is able to utilise the Pix-
elCNN to achieve the highest classification accuracy.

KL / nats* Accuracy
(5-shot)

Deconvolutional Architecture

Neural Statistician [3] 31.34 95.6%
Resample (Eq 19) 25.74 94.0%
Rescale (Eq 20) 477.65 95.3%
VHE (resample + rescale, Eq 16) 452.47 95.6%

PixelCNN Architecture

Neural Statistician 14.90 66.0%
Resample 0.22 4.9%
Rescale 506.48 62.8%
VHE (resample + rescale) 268.37 98.8%

*DKL
(
q(c;D) ‖ p(c)

)
, train set

et al., 2015) applies z to the class template c, and the re-
sult is input to a Gated PixelCNN p(x|STN(c, z)) (Oord
et al., 2016). The position encoder q(z;x) is given by a
CNN, and the class encoder q(c;D) by an STN averaged
over D. Both produce diagonal Gaussian distributions.

Using both PixelCNN and deconvolutional architectures,
we trained models by several objectives. We compare a
VHE model against a Neural Statistician baseline, with
each trained on sampled subsets D ⊂ X with |D| = 5
(as in Edwards & Storkey (2016)). Secondly, since the
VHE introduces both data-resampling and KL-rescaling
as modifications to this baseline, we separate the contri-
butions of each using two intermediate objectives:

Resample only:

E
D⊂X
x∈X︸︷︷︸

resample
decoded
element

[
E

q(c;D)
log p(x|c)− 1

|D|DKL
[
q(c;D) ‖ p(c)

]
]

(19)

Rescale only:

E
D⊂X
x∈D

[
E

q(c;D)
log p(x|c)− 1

|X|︸︷︷︸
rescale KL

DKL
[
q(c;D) ‖ p(c)

]
]

(20)

Table 2: Comparison of classification accuracy with pre-
vious work. The VHE objective allows us to use a pow-
erful decoder network, yielding state-of-the-art few-shot
classification amongst deep generative models.

Classification Accuracy (20-way)
1-shot 5-shot

Generative models, log p(X)
Generative Matching Networks [1] 77.0% 91.0%
Neural Statistician [3] 93.2% 98.1%
VHE 95.2% 98.8%

Discriminative models, log q(y;x,X, Y )
Matching Networks [21] 93.8% 98.7%
Convnet with memory module [9] 95.0% 98.6%
mAP-DLM [20] 95.4% 98.6%
Model-Agnostic Meta-learning [4] 95.8% 98.9%
Prototypical Networks [19] 96.0% 98.9%

(VHE, within-alphabet1) 81.3% 90.3%

All models were trained on a random sample of 1200
Omniglot classes using images scaled to 28x28 pix-
els, dynamically binarised, and augmented by 8 rota-
tions/reflections to produce new classes. We addition-
ally used 20 small random affine transformations to cre-
ate new instances within each class. Models were opti-
mised using Adam (Kingma & Welling, 2013), and we
used training error to select the best parameters from
5 independent training runs. We also implemented the
‘sample dropout’ trick of Edwards & Storkey (2016), but
found that this had no effect on performance. At test time
we classify an example x by Monte Carlo estimation of
the expected conditional likelihood under the variational
posterior Eq(c;D)p(x|c), with 20 samples from q(c;D).
x is then classified to class with support set D that max-
imises this expected conditional likelihood.

Table 1 collects classification results of models trained
using each of the four alternative training objectives, for
both architectures. For a deconvolutional architecture,
we find little difference in classification performance be-
tween all four training objectives, with the Neural Statis-
tician and VHE models achieving equally high accuracy.

1The few-shot classification task defined by Lake et al.
(2015) is to identify an image to one of 20 character classes,
where all 20 classes belong to the same (unseen) alphabet.
However, most work since has evaluated on an easier one-shot
classification task, in which the 20 support characters are drawn
from the entire test set (so are typically more dissimilar). We
find that our model performs significantly worse on the within-
alphabet variant, and so include results to facilitate future com-
parison on this more challenging task. Attaining near-human
classification accuracy on this variant remains an open chal-
lenge for neural network models.
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Figure 4: 5-shot samples generated by each model (more in Supplement). With a PixelCNN architecture, both Neural
Statistician and Resample objectives lead to underutilisation of the latent space, producing unfaithful samples.

For the hierarchical PixelCNN architecture, however,
significant differences arise between training objectives.
In this case, a Neural Statistician learns a strong global
distribution over images but makes only minimal use of
latent variables c. This means that, despite the use of a
higher capacity model, classification accuracy is much
poorer (66%) than that achieved using a deconvolutional
architecture. For the same reason, conditional samples
display an improved sharpness but are no longer identi-
fiable to the cue images on which they were conditioned
(Figure 4). Our careful training suggests that this is not
an optimisation difficulty but is core to the objective, as
discussed in Chen et al. (2016).

By contrast, a VHE is able to gain a large benefit from
the hierarchical PixelCNN architecture, with a 3-fold re-
duction in classification error (5-shot accuracy 98.8%)
and conditional samples which are simultaneously sharp
and identifiable (Figure 4). This improvement is in part
achieved by increased utilisation of the latent space, due
to rescaling of the KL divergence term in the objective.
However, our results show that this common technique
is insufficient when used alone, leading to overfitting to
cue images with an equally severe impairment of classi-
fication performance (accuracy 62.8%). Rather, we find
that KL-rescaling and data resampling must be used to-
gether in order for the benefit of the powerful PixelCNN
architecture to be realised.

Table 2 lists the classification accuracy achieved by
VHEs with both |D| = 1 and |D| = 5, as compared
to existing deep learning approaches. We find that both
networks are not only state-of-the-art amongst deep gen-
erative models, but also competitive against the best dis-
criminative models trained directly for few-shot classi-
fication. Unlike these discriminative models, a VHE
is also able to generate new images of a character in
one shot, producing samples which are both realistic and
faithful to the class of the cue image (Figure 5).

As our goal is to model shared structure across images,
we evaluate generative performance using joint log like-

Figure 5: One-shot same-class samples generated by our
model. Cue images were sampled from previously un-
seen classes.

lihood of the entire Omniglot test set (rather than sepa-
rately across images). From this perspective, a single el-
ement VAE will perform poorly as it treats all datapoints
as independent, optimising a sum over log likelihoods for
each element. By sharing latents across elements of the
same class, a VHE can improve upon this considerably.

For likelihood evaluation, our most appropriate compar-
ison is with Generative Matching Networks (Bartunov &
Vetrov, 2016) as they also model dependencies within a
class. Thus, we trained models under the same train/test
split as them, with no data augmentation. We evaluate the
joint log likelihood of full character classes from the test
set, normalised by the number of elements, using impor-
tance weighting with k=500 samples from q(c;X). As
can be seen in Tables 3 and 4, our hierarchical PixelCNN
architecture is able to achieve state-of-the-art log likeli-
hood results only when trained using the VHE objective.
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Table 3: Joint NLL of Omniglot test set, compared
across architectures and objectives.

Test NLL per image

Deconvolutional Architecture

NS [3] 102.84 nats
Resample 110.30 nats
Rescale 109.01 nats
VHE (resample + rescale) 104.67 nats

PixelCNN Architecture

NS 73.50 nats
Resample 66.42 nats
Rescale 71.37 nats
VHE (resample + rescale) 61.22 nats

Table 4: Comparison of deep generative models by joint NLL
of Omniglot test set.

Test NLL per image

Independent models 1
n log

∏
i p(xi)

DRAW [5] < 96.5 nats
Conv DRAW [6] < 91.0 nats
VLAE [2] 89.83 nats

Conditional models 1
n log

∏
i p(xi|x1:i−1)

Generative Matching Networks [1] 62.42 nats2

Shared-latent models 1
n log Ep(c)

∏
i p(xi|c)

Variational Homoencoder 61.22 nats

4.2 YOUTUBE FACES

To confirm that our approach can be used to produce nat-
uralistic images, we compare VHE and Neural Statisti-
cian models trained on images from the YouTube Faces
Database(Wolf et al., 2011), comprising 3,425 videos of
1,595 celebrities downloaded from YouTube. For our ex-
periments, we use the aligned and cropped to face ver-
sion, additionally cropping each image by 50% in both
height and width, and rescale to 40x40 pixels. Our train-
ing, validation, and test sets consist of one video per per-
son and 48 images per video. We use 954 videos for the
training set and 641 videos for the test set.

We consider two architectures: the hierarchical Pixel-
CNN network used for Omniglot experiments, and the
deconvolution network used to model faces in Edwards
& Storkey (2016). As above, we train each model using
both VHE and NS objectives with |D| = 5.

Table 5: Classification results for YouTube faces dataset.
The VHE PixelCNN utilises the latent space most effec-
tively, and therefore achieves the highest few-shot classi-
fication accuracy and test image NLL.

Test NLL Accuracy (200-way)
per image 1-shot 5-shot

Deconvolutional
Neural Statistician 12512.4 39.2% 49.0%
VHE 12717.6 37.2% 44.8%

PixelCNN
Neural Statistician 4229.8 92.1% 98.5%
VHE 4091.3 92.5% 98.9%

2We thank the authors of Bartunov & Vetrov (2016) for pro-
viding us with this comparison.

Classification results for trained models are shown in Ta-
ble 5, and conditionally generated samples in Figure 6.
As with Omniglot experiments, we find that the VHE
objective improves use of the hidden layer c, leading to
more accurate classification and conditional generation
than the Neural Statistician. While the deconvolutional
architecture is capable of producing realistic images (see
Edwards & Storkey (2016)), our results show that it is
not powerful enough to perform accurate few-shot clas-
sification. On the other hand, the PixelCNN architecture
trained using the Neural Statistician objective achieves
accurate few-shot classification, but generates poor im-
ages. The only network able to produce realistic im-
ages and perform accurate classification is the PixelCNN
trained using our VHE objective.

4.3 MODELLING RICH CATEGORY
STRUCTURE

To demonstrate how the VHE framework may apply to
models with richer category structure, we built both a hi-
erarchical and a factorial VHE (Figure 2) using simple
modifications to the above architectures. For the hier-
archical VHE, we extended the deconvolutional model
with an extra latent layer a using the same encoder and
decoder architecture as c. This was used to encode al-
phabet level structure for the Omniglot dataset, learning
a generative model for alphabets of the form

p(A) =
∫
p(a)

∏

Xi∈A

∫
p(ci|a)

∏

xij∈Xi
p(xij |ci, a)dcida

(21)

Again, we trained this model using a single objective,
using separately resampled subsets Da and Dc to infer
each latent variable (see Supplement). We then tested
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Figure 6: 5-shot samples of YouTube faces generated using both PixelCNN and deconvolutional architectures. Note
that, for accurate comparison, we sample images from the decoder rather than taking the conditional mode as is
common. For the deconvolutional models, this leads to images which appear more noisy than shown in previous work.

Figure 7: Conditional samples from character (top) and
alphabet (bottom) levels of the same hierarchical model.

our model at both one-shot character generation and 5-
shot alphabet generation, using samples from previously
unseen alphabets. Our single trained model is able to
learn structure at both layers of abstraction (Figure 7)

For the factorial VHE, we extended the Omniglot dataset
by assigning each image to one of 30 randomly gener-
ated styles (independent of its character class), modify-
ing both the colour and pen stroke characteristics of each
image. We then extended the PixelCNN model to include
a 6-dimensional latent variable s to represent the style of
an image, alongside the existing c to represent the char-
acter. We used a CNN for style encoder q(s;Ds), and
for each image location we condition the PixelCNN de-
coder using the outer product s⊗ cij .
We then test this model on a style transfer task by feeding
separate images into the character encoder q(c;Dc) and
style encoder q(s;Ds), then rendering a new image from
the inferred (c, s) pair. We find that synthesised samples
are faithful to the respective character and style of both
support images (Figure 8), demonstrating the ability of a

Figure 8: Previously unseen characters redrawn with
both the colour and stroke width of a second character.
For each group, the top two images denote the content
(left) and style (right).

factorial VHE to successfully disentangle these two im-
age factors using separate latent variables.

5 CONCLUSION

We introduce the Variational Homoencoder: a hierarchi-
cal Bayesian approach to learning expressive generative
models from few examples. We test the VHE by training
a hierarchical PixelCNN on the Omniglot dataset, and
achieve state-of-the-art results: our model is arguably the
first which uses a general purpose architecture to both
produce high quality samples and attain near state-of-
the-art one-shot classification performance. We further
validate our approach on a dataset of face images, and
find that the VHE significantly improves the visual qual-
ity and classification accuracy achievable with a Pixel-
CNN decoder. Finally, we show that the VHE framework
extends naturally to models with richer latent structure,
which we see as a promising direction for future work.
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van den Oord, SM Eslami, Danilo Rezende, Oriol
Vinyals, and Nando de Freitas. Few-shot autoregres-
sive density estimation: Towards learning to learn dis-
tributions. arXiv preprint arXiv:1710.10304, 2017.

[17] Danilo Rezende, Ivo Danihelka, Karol Gregor, Daan
Wierstra, et al. One-shot generalization in deep gen-
erative models. In Proceedings of The 33rd Interna-
tional Conference on Machine Learning, pp. 1521–
1529, 2016.

[18] Adam Santoro, Sergey Bartunov, Matthew
Botvinick, Daan Wierstra, and Timothy Lillicrap.
One-shot learning with memory-augmented neural
networks. arXiv preprint arXiv:1605.06065, 2016.

[19] Jake Snell, Kevin Swersky, and Richard S Zemel.
Prototypical networks for few-shot learning. arXiv
preprint arXiv:1703.05175, 2017.

[20] Eleni Triantafillou, Richard Zemel, and Raquel Ur-
tasun. Few-shot learning through an information re-
trieval lens. In Advances in Neural Information Pro-
cessing Systems, pp. 2252–2262, 2017.

[21] Oriol Vinyals, Charles Blundell, Tim Lillicrap,
Daan Wierstra, et al. Matching networks for one shot
learning. In Advances in Neural Information Process-
ing Systems, pp. 3630–3638, 2016.

[22] Lior Wolf, Tal Hassner, and Itay Maoz. Face recog-
nition in unconstrained videos with matched back-
ground similarity. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, pp.
529–534. IEEE, 2011.

997



Probabilistic Collaborative Representation Learning
for Personalized Item Recommendation

Aghiles Salah and Hady W. Lauw
School of Information Systems

Singapore Management University, Singapore
{asalah, hadywlauw}@smu.edu.sg

Abstract

We present Probabilistic Collaborative Repre-
sentation Learning (PCRL), a new generative
model of user preferences and item contexts.
The latter builds on the assumption that rela-
tionships among items within contexts (e.g.,
browsing session, shopping cart, etc.) may un-
derlie various aspects that guide the choices
people make. Intuitively, PCRL seeks repre-
sentations of items reflecting various regulari-
ties between them that might be useful at ex-
plaining user preferences. Formally, it relies
on Bayesian Poisson Factorization to model
user-item interactions, and uses a multilayered
latent variable architecture to learn represen-
tations of items from their contexts. PCRL
seamlessly integrates both tasks within a joint
framework. However, inference and learn-
ing under the proposed model are challenging
due to several sources of intractability. Rely-
ing on the recent advances in approximate in-
ference/learning, we derive an efficient varia-
tional algorithm to estimate our model from
observations. We further conduct experiments
on several real-world datasets to showcase the
benefits of the proposed model.

1 INTRODUCTION

With pervasive digitization of marketplaces and services,
we now make most of our consumption choices on-
line. Relieved from the inventory limitation of a phys-
ical storefront, online providers are able to offer a mind-
boggling array of choices numbering in the thousands to
millions. To help users in navigating this sea of choices,
modern applications rely heavily on recommender sys-
tems to deliver a personalized ranking or selection of
items to each user according to her preferences.

There are various approaches to recommender systems,
including memory-based and model-based approaches
(Sarwar et al., 2001). At the heart of the more prevalent
model-based approach is learning a latent representation
for every user and every item. Such a latent represen-
tation places a user or an item in the “feature” space of
preferences, such that when two related items share sim-
ilar representations or “features”, a user who prefers one
likely also prefers the other. Further recommendation
predictions are based on these latent representations.

Much of the previous work seek to learn these repre-
sentations from historical behavioral data, such as rat-
ings, clicks, purchases, etc. (usually organized into a
user-item interaction or preference matrix). For instance,
the widespread Matrix Factorization (MF) (Mnih and
Salakhutdinov, 2008; Hu et al., 2008; Koren et al., 2009)
derives user and item latent representations in the form of
low dimensional vectors by decomposing the preference
matrix. The bilinear combination of user and item’s la-
tent factors can be used to predict unknown preferences.

The limitation of learning these representations from his-
torical behaviors is the sparsity of such data. The long-
tail effect (Park and Tuzhilin, 2008) means that most
items have been adopted by few users. Moreover, given
the rapid expansion of catalogues, there are continually
new items with scant record of historical consumption.
One consequence of this sparsity is that closely related
items may not be mapped to the same direction in the la-
tent space, as they might not have been rated by the same
users. As such, historical consumption data alone may
not suffice for learning effective item representations.

In some real-world scenarios, there may be known some
auxiliary information on how items are likely related to
one another. For example, a user interested in a particular
shirt may also be interested in a matching pair of jeans.
Moreover, such relatedness among items may not have
to be explicitly stated, and could be implicitly inferred
from such indicative events as whether items are placed
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within the same shopping carts, are browsed within the
same session, etc. Such item-item relationships consti-
tute valuable information that would otherwise not easily
be derivable from similarities in product attributes alone.
We thus seek to enrich the learned item representation to
also incorporate such item-item relationships, to supple-
ment the sparse user-item interactions.

Representation learning (Bengio et al., 2013) is of in-
terest to learn features or representations from different
data, such as images, text, etc. Recent techniques rely
on deep neural networks to learn compositional repre-
sentations. While inspired by this promising approach,
our work is set apart in that we are interested not only on
extracting objective features of items, but more impor-
tantly also those that could help describe user preferences
effectively. Therefore, instead of relying on representa-
tion learning solely or separately, given the efficacy of
probabilistic models for collaborative filtering, we pro-
pose to conjoin the representation learning from item-
item contextual relationships, and collaborative filtering
from user-item interactions, within a unified model.

In this paper, we develop Probabilistic Collaborative
Representation Learning (PCRL), which seeks to learn
item representations both contextually based on their re-
latedness with other items, as well as collaboratively
based on their interactions/adoptions by users. For the
former, PCRL uses a multilayered (hierarchical) latent
variable structure, with a Poisson likelihood and Gamma
distributed layers, to model the item’s context (e.g., shop-
ping cart, session). For the latter, PCRL relies on Poisson
Factorization (PF) for decomposing users’ interactions
with items. As shown in (Gopalan et al., 2015), PF real-
istically models user preferences, fits well to sparse data
thanks to the Poisson’s mathematical form, and it sub-
stantially outperforms previous state-of-the-art Gaussian
likelihoods-based MF models (Mnih and Salakhutdinov,
2008; Shan and Banerjee, 2010; Koren et al., 2009) for
item recommendation.

PCRL joins both sources of data through a shared item
latent space within a probabilistic generative model. In-
tuitively, the collaborative PF component can guide the
contextual representation learning process to focus on
extracting features that are relevant for predicting the
preference information. The contextual representation
learning component in turn will encourage the PF part to
rely on items’ contexts to explain user preferences, which
would supplement the lack of user-item interactions.

Exact inference under the PCRL model is very challeng-
ing due to various sources of intractability. To overcome
this difficulty we rely on recent innovations in approx-
imate inference/learning and derive an efficient varia-
tional algorithm to estimate PCRL from observed user

preferences and item contexts. Empirical results on sev-
eral real-world datasets reflect the benefits of PCRL in
terms of both personalized recommendation and item
representation learning.

2 RELATED WORK

The sparsity of preference data has driven many to extend
Matrix Factorization (MF) models (Mnih and Salakhut-
dinov, 2008; Hu et al., 2008; Koren et al., 2009) beyond
user-item interactions, and leverage auxiliary informa-
tion, such as social networks (Ma et al., 2008; Zhou et al.,
2012; Rao et al., 2015), product taxonomy (Koenigstein
et al., 2011), item content (Wang and Blei, 2011), etc.
However, these are mostly still within the framework of
MF. For instance, Collective Matrix Factorization (Singh
and Gordon, 2008), which co-factorized multiple data
matrices, is a popular approach in the recommendation
literature to jointly model several sources of information.

Yet other approaches, similarly to ours, use graphi-
cal models to join different modalities. Wang and
Blei (2011) developed Collaborative Topic Regression
(CTR), which composes a topic model, Latent Dirichlet
Allocation (LDA), with probabilistic matrix factorization
to model texts (articles) and user (reader) preferences.
Along the same line, Wang et al. (2015); Li and She
(2017) proposed alternatives to CTR where probabilistic
auto-encoder, is substituted for LDA for modeling text.

We focus on incorporating item relatedness, a modal-
ity mostly neglected by previous personalized recom-
mendation models. Notable exceptions include CoFactor
(Liang et al., 2016) and Matrix Co-Factorization (MCF)
(Park et al., 2017), which used the principle of collective
MF based on Gaussian likelihoods. In contrast, we build
on Bayesian Poisson Factorization (PF), and we further
investigate another architecture for leveraging the item’s
contexts with new modeling perspectives. In experi-
ments, we compare to the more recent MCF that learns
from item network as a baseline. CoFactor learns not
from an external auxiliary source, but rather from item-
item relations induced from the user-item interactions.

Since (Gopalan et al., 2015), there is a growing body of
work on applying PF (Canny, 2004; Cemgil, 2009) to
recommender systems. Gopalan et al. (2014a) developed
non-parametric PF. Chaney et al. (2015) incorporated so-
cial interactions. Charlin et al. (2015) accounted for user
and item evolution over time. Notably, Gopalan et al.
(2014b) proposed Collaborative Topic Poisson Factor-
ization (CTPF) to model both article contents and reader
preferences. In contrast to CTPF that uses PF to model
both the user preferences and auxiliary item information
(text), we adopt PF for the user-item interactions only,
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and we use a multilayered latent variable structure to
learn item representations from auxiliary data (item con-
texts). The benefits of our modeling architecture would
be reflected in the experiments with CTPF as a baseline.

3 PROBABILISTIC COLLABORATIVE
REPRESENTATION LEARNING

The observed data that we would learn from are user
preferences and item contexts respectively. The former
are organized into a user-item preference matrix of size
U × I , denoted X = (xui), where xui is the integer rat-
ing1 that user u gave to item i, or zero if no preference
was expressed. The contextual interactions among items
are encoded in an item-context matrix C = (cij), of size
I × J , where cij = 1 if item j belongs to the context2

of i, and cij = 0 otherwise. The ith row of this matrix
is represented by a vector ci = (ci1, . . . , ciJ)

>, where>
denotes the transpose. We will refer to the set of items j
such that cij > 0 as the context of item i.

We now describe Probabilistic Collaborative Represen-
tation Learning or PCRL, a new probabilistic latent vari-
able model for jointly modeling user preferences and
item contexts. The intuition is to learn item representa-
tions reflecting various contextual relationships between
them that are useful for explaining user preferences. Fig-
ure 1 depicts PCRL in plate notation.

Contextual Representation Learning. To model rep-
resentations due to the item contexts (refer to the left
portion of Figure 1) we use a multilayer structure sim-
ilar to Deep Exponential Families (Ranganath et al.,
2015). More precisely, PCRL assumes L layers of hid-
den variables per item: Zi = {zi,1, . . . , zi,L}, such that
zi,` ∈ RK`+ . For a reason that will be clear shortly, we
denote zi,L+1 = βi. Along with these variables, PCRL
has L + 1 layers of latent weights shared across items,
W = {W0, . . . ,WL}, where W` is a matrix of size
K`+1×K`, with K0 = J , and its kth column is denoted
by w`,k. Effectively, each hidden layer models repre-
sentations for items based on their contexts. Intuitively,
a higher layer encodes a higher level of representational
abstraction; βi is the most abstract representation.

The components zi,`,k at each hidden layer are Gamma
distributed. Note that this choice is not a limitation of
our modeling framework. Depending on specific require-
ments, other types of zi,`,k are possible, e.g., Gaussian,
and these might differ across layers.

1Other user-item interactions indicative of preferences are
also possible, e.g., number of clicks.

2The definition of “context” is scenario-dependent, e.g., an-
other item j is found in the same shopping cart as item i.

xui

θu

βizi,L. . .zi,1ci

wL,k. . .w1,kw0,k

λθ

λβ

ξwL. . .ξw1
ξw0

λsz
. . .

λsz

KLK1J

UI

Figure 1: The proposed model PCRL in plate representation, ξ
and λ = (λs, λr) stand for Gaussian and Gamma parameters.

To capture various correlations across layers, including
negative ones, we let the weights W` be real valued
with Gaussian priors. These latent variables interact
with each other to explain the contextual relationships
among items. While several interaction schemes are pos-
sible, we mimic neural networks (multilayer perceptron
or MLP), and let the mean of the local variable at the
current layer to be driven by the current weights and the
previous layer as follows:

E(zi,`|W`, zi,`+1) = a`(z
>
i,`+1W`) (1)

where a`(x) is a function that maps x into the right mean
space. Following the nomenclature in the neural network
literature, we call it the activation function.

Conditional on the lowest layer, zi,1, the components of
the item-context vector ci are independent Poisson vari-
ables, i.e., ci ∼ p(ci|zi,1,W) =

∏
j p(cij |zi,1,W), and

p(cij |Z,W,β) = Poisson(z>i,1w0,j) (2)

where w0,j denotes the jth column of the matrix W0.

Collaborative Poisson Factorization. To model user
preferences (refer to the right portion of Figure 1), PCRL
relies on Poisson factorization, i.e.,

xui|θ,β ∼ Poisson(θ>u βi), (3)

where θ>u ∈ RK+ and β>i ∈ RK+ are latent variables
referred to as the vectors of user preferences and item
attributes respectively. Similar to the original Bayesian
Poisson factorization, we let the user preferences θuk
and item attributes βik be Gamma random variables—
throughout the paper, we use the shape and rate parame-
terization of the Gamma distribution.

Unified Generative Model. The intuition behind this
multilayer architecture and sharing β between the col-
laborative and contextual parts, is to let the latent vari-
ablesZ andW , at the intermediate layers, absorb various
item-context patterns encoded in C, while encouraging
the item latent attributes β to capture only those patterns
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which are useful for explaining user preferences. The
corresponding generative process is as follows:

1. Draw user preferences: θuk ∼ Gamma(λsθ, λ
r
θ).

2. For each item i

(a) Draw its attributes: βik ∼ Gamma(λsβ , λ
r
β)

(b) For each layer `, for k ∈ {1, . . . ,K`}:
i. Draw w`,k ∼ N (µ`,σ

2
` IK`+1

)

ii. Draw zi,`,k ∼ Gamma(λsz,
λsz

a`(z>
`+1w`,k)

)

(c) For j ∈ {1, . . . , J},
i. Draw w0,j ∼ N (µ0,σ

2
0IK1

)

ii. Draw cij ∼ Poisson(a0(z>i,1w0,j))

3. For each user-item pair (u,i) sample a preference:
xui ∼ Poisson(θ>u βi),

where IK stands for the identity matrix of size K. In
practice, we use the standard multivariate isotropic Gaus-
sian as the prior over each variable w`,k. Further, for ef-
ficiency purposes, we will make the latent variables zi,`
for ` ∈ {1, . . . , L} deterministic by taking λsz to infinity.

In principle PCRL should place high probability on item
factors β reflecting various item relationship patterns
that are useful at explaining user preferences.

Connections to Existing Models. In unifying item con-
texts and user-item preferences, PCRL effectively gener-
alizes and subsumes other more restricted formulations.

For one, as evident from the construction of PCRL, if
we remove the context-specific components, Z , W and
C, then PCRL collapses to the original Bayesian Poisson
factorization (Cemgil, 2009; Gopalan et al., 2015) that
would learn from user-item preferences alone.

For another, if we drop the collaborative filtering com-
ponents, namely X and θ, then we would recover an in-
stance of Deep Exponential Families (DEFs) (Ranganath
et al., 2015) for unsupervised feature learning. However
it should be noted that our composition of Gamma dis-
tributed layers and Gaussian weights has not been in-
vestigated previously in (Ranganath et al., 2015). The
PCRL’s representation learning component is also re-
lated to the Poisson Gamma Belief Network (PGBN)
(Zhou et al., 2016). The key differences are: PGBN uses
Dirichlet weights, it factorizes and chains the Gamma
shape instead of the rate parameters.

If we further take the shape parameter λsz to infinity, than
PCRL is reduced to a Bayesian deep “decoder” neural
network, with a stochastic Gamma top layer β. Fur-
thermore, starting from PCRL we can derive a Bayesian
Gamma-Poisson variant of the variational auto-encoder

(Kingma and Welling, 2014). To our knowledge, such
neural networks with Gamma stochastic layers have not
been studied in prior literature.

4 INFERENCE & LEARNING

So far we describe PCRL as a generative model. In
practice, we are given X and C, and we are inter-
ested in reversing the above generative process to in-
fer the posterior distribution of the latent variables, i.e.,
p(θ,β,W|X,C) that would be the most likely to gen-
erate the observations. This allows us to explore data in
different ways as well as predict unknown ratings for rec-
ommendations. Note that by taking λsz to infinity the in-
termediate latent variables Z become deterministic; this
is why they are not considered in the above posterior.

As in many Bayesian models, the above posterior is
intractable. We therefore resort to approximate infer-
ence. In particular, we rely on Variational Inference (VI)
(Bishop, 2006; Blei et al., 2017), which is widely used in
statistical learning to fit complex Bayesian models.

4.1 THE VARIATIONAL FAMILY

The key to variational inference is to introduce a tractable
family of distributions q, governed by a set of variational
parameters ν. The objective is then to find the closest,
typically in terms of the Kullback-Leibler (KL) diver-
gence, member of this family to the true posterior.

We can ease inference in the collaborative part of PCRL
by introducing an additional layer of auxiliary latent vari-
ables, leaving the original model intact when marginal-
ized out. As in (Cemgil, 2009), we add K variables
suik ∼ Poisson(θukβik) for each observed rating xui,
such that xui =

∑
k suik. The marginal distribution of

xui is preserved thanks to the additive property of Pois-
son random variables (Kingman, 1993). As the suik’s are
not random when xui is zero, we need to consider these
variables for the non-zero elements in X only.

One main source of intractability in our model is the cou-
pling between the different latent variables. To overcome
this difficulty, we adopt a mean-field variational family
(Jordan et al., 1999), q(·|ν) = q(θ, β, s,W|ν), which
factorizes with respect to the latent variables:

q(·|ν,C) =
∏
u q(θu|λ̃θu)

∏
i q(βi|λ̃

β
i )∏

u,i q(sui|φ̃ui)
∏L
`=0 q(W`|ξ̃`) (4)

where ν = {λ̃, ξ̃, φ̃}. Note that the variational distri-
butions in the above equation are fully factorized, e.g.,
q(θu|λ̃θu) =

∏
k q(θuk|λ̃θuk). Each variational distri-

bution is in the same family as the model distribution.
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That is, the factors over the Gamma variables, θ and β,
are also Gamma distributions variational parameters λ,
e.g., λ̃θuk = (λ̃θ,suk , λ̃

θ,r
uk ). For the item attributes, we fur-

ther amortize computations by using an inference net-
work. More precisely, we let λ̃βi = (λ̃β,si , λ̃β,ri ) =
fω(ci), where fω(ci) is a deep “encoder” neural net-
work (MLP), parameterized by ω, whose input is ci,
λ̃β,si = (λ̃β,sik , . . . , λ̃

β,s
iK ) and λ̃β,ri = (λ̃β,rik , . . . , λ̃

β,r
iK ).

Note that, the variational parameters over the item fac-
tors q(β) become ω.

The factors over sui are Multinomial distributions with
free parameters φ̃. This follows from the fact that the
conditional distribution of a set of Poisson variables
given their sum is a Multinomial (Cemgil, 2009).

The variational factor over W` takes this form:
q(W`|ξ̃`) =

∏K`
k=1 q(w`,k|ξ̃k` ), where ξ̃k` =

{µ̃k` , (σ̃k` )2IK`+1
} indexes a multivariate Gaussian with

a diagonal covariance structure.

Fitting the variational parameters ν by minimizing the
KL divergence between q and the true posterior is akin
to maximizing the Evidence Lower BOund (ELBO), i.e.,

L = Eq[log p(X,C,W,β,θ, s)− log(q(·|ν))] (5)

Next we derive an algorithm to maximize (5).

4.2 COORDINATE ASCENT LEARNING

We now derive a variational algorithm to estimate PCRL
form data. The principle is to alternate the update of each
variational parameter while holding the others fixed.

Updates for λ̃θ and φ̃. Thanks to the auxiliary vari-
ables s, λ̃θ and φ̃ have the following closed-form up-
dates,

λ̃θuk =

(
λsθ +

∑
i xuiφ̃uik, λ

r
θ +

∑
i

λ̃
β,s
ik

λ̃
β,r
ik

)
, (6)

φ̃uik ∝ exp
(
ψ(λ̃θ,suk )− log λ̃θ,ruk + ψ(λ̃β,sik )− log λ̃β,rik

)
(7)

where ψ(·) denotes the diagamma function. These up-
dates are identical to those of Bayesian PF (Cemgil,
2009; Gopalan et al., 2015). For more details, please re-
fer to the supplementary material (A.1).

Parameter update for q(β) and q(W). The remaining
variational parameters do not admit closed-form updates.
We therefore rely on stochastic steepest gradient ascent
to optimize the ELBO according to these parameters.

Keeping only terms which are function of W or β, the
ELBO can be rewritten, for each item i, as follows

Li = Eq[log p(s|θ,βi)] + Eq[log p(ci|W,βi)]

− KL(q(βi)||p(βi))− KL(q(W)||p(W)) + const (8)

with L =
∑
i Li. While the first expectation and KL

terms in (8) are available analytically, the second ex-
pectation over log p(ci|W,βi) is intractable for general
PCRL with respect to both W and βi. We cannot al-
ways push the expectations inward non-linear activa-
tion functions a`. This makes the direct evaluation of
the gradient of Li problematic. To overcome this dif-
ficulty we build a Monte Carlo estimator of the gradi-
ent of Eq[log p(ci|W,βi)]. To this end, we rely on the
recent Rejection Sampling Variational Inference (RSVI)
method (Naesseth et al., 2017), which generalizes the
reparameterization trick (Kingma and Welling, 2014;
Rezende et al., 2014).

RSVI requires continuous latent variables, and its ap-
plicability depends on whether we can sample from the
variational distribution q(β;ω) using the following repa-
rameterization: (i) draw ε ∼ π(ε;ω), (ii) β = G(ε, ω),
where G is a deterministic function (mapping) that must
be differentiable with respect to ω, and the distribution
π(ε;ω), defined by a rejection sampling algorithm, takes
the following form,

π(ε;ω) = t(ε)
q(G(ε, ω);ω)
r(G(ε, ω);ω) , (9)

where r and t are respectively the proposal and original
distributions of ε used in rejection sampling. In this pro-
cedure, some samples from t are not valid (and therefore
rejected), here we are interested in the distribution of the
accepted samples π(ε;ω). For more details, please refer
to the supplementary material (A.2.1) where we provide
a brief review of the reparametrized acceptance-rejection
algorithm in our notations.

Assuming that we have a reparameterized acceptance-
rejection sampling procedure to simulate from q(βik;ω),
the next step is to rewrite Eq(βi;ω)[log p(ci|W,βi)] as an
expectation with respect to π(εi;ω) as follows

Eq(βi;ω)[log p(ci|W,βi)]

= Eπ(εi;ω)[log p(ci|W,G(εi, ω))] (10)

where, εi = {εi1, . . . , εiK}, and π fully factorizes
over the components of εi. The form of G(εi, ω)
will be given shortly. Based on (10) the gradient of
Eq(βi;ω)[log p(ci|W,βi)] is

∇ωEq(βi;ω)[log p(ci|W,βi)]

= Eπ(εi;ω)[log p(ci|W,G(εi, ω))∇ω log π(εi;ω)]
+ Eπ(εi;ω)[∇ω log p(ci|W,G(εi, ω))] (11)

where we have pushed the gradient into the integral, used
the log derivative-trick or REINFORCE (Glynn, 1990;
Williams, 1992), and expressed integrals as expectations.
All the derivations details of equations (11) and (10) are
given in the supplementary material (A.2.2).
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We can now form an unbiased Monte Carlo estimate of
the above gradient as follows:

∇ωEq(βi;ω)[log p(ci|W,βi)]

' 1

M

M∑

m=1

log p(ci|W,βmi )∇ω log
q(G(εmi , ω);ω)
r(G(εmi , ω);ω)

+
1

M

M∑

m=1

∇ω log p(ci|W,βmi ) (12)

where βmi = {βmi1 , . . . , βmiK}, and βmik = G(εmik, ω), with
εmik ∼ π(εik, ω). In practice we set M = 1.

Following Naesseth et al. (2017), for the Gamma ran-
dom variables, we use the reparameterization proposed
by Marsaglia and Tsang (2000). For a Gamma(λsω, λ

r
ω),

such that λsω ≥ 1, we use:

G(ε, ω) = 1

λrω

(
λsω −

1

3

)(
1 +

ε√
9λsω − 3

)
(13)

with ε ∼ t(ε) = N (0, 1). When the shape parameter
is less than 1, λsω < 1, we use the shape augmentation
technique (Marsaglia and Tsang, 2000). That is, if β̃ ∼
Gamma(λs + 1, λr), and β = u

1
λs β̃ with u ∼ U [0, 1],

then β ∼ Gamma(λs, λr).

Approximating the gradient of the ELBO with respect
to ξ̃ is simpler since the Gaussian satisfies the require-
ments of the original reparameterization trick (Kingma
and Welling, 2014; Rezende et al., 2014). Roughly, the
second expectation in (11) vanishes since the marginal
distribution of the samples ε is independent of the vari-
ational parameters ξ̃. Hence, the Monte Carlo estimator
of∇ξ̃Eq(W)[log p(ci|W,βi)] takes this form:

∇ξ̃Eq(W;ξ̃)[log p(ci|W,βi)]

' 1

M

M∑

m=1

∇ξ̃ log p(ci|Wm,βi) (14)

whereWm = {Wm
1 , . . . ,W

m
L }, wm

`,k = T (ηm, ξ̃k` ) =
µ̃k` + σ̃

k
` �ηm, and ηm ∼ N (0, I), the notation� refers

to the Hadamard product.

Putting it all together, our Monte Carlo estimator for the
gradient of the ELBO, is given by:

∇ω,ξ̃Li ' I∇ω (Eq[log p(s|θ,βi)]− KL(q(βi)||p(βi)))

+
I

M

M∑

m=1

∇ω,ξ̃ log p(ci|Wm,βmi )

+
I

M

M∑

m=1

log p(ci|Wm,βmi )∇ω log
q(G(εmi , ω);ω)
r(G(εmi , ω);ω)

−∇ξ̃KL(q(W)||p(W)) (15)

With the estimator (15) in place, we perform stochas-
tic gradient ascent over the parameters ω and ξ̃. We
use backpropagation to evaluate the gradients over the
weights of the inference network ω. In particular, we use
RMSProp to scale the gradients before applying them.
In practice, we take several stochastic gradient steps to
nearly optimize the ELBO with respect to ω and ξ̃, be-
fore to perform coordinate ascent step to update λ̃θ and
φ̃. More precisely, after each epoch of stochastic gradi-
ent ascent we update λ̃θ and φ̃.

4.3 MISSING RATINGS ESTIMATION

Once PCRL is fit to the obsevations, we can estimate the
unknown ratings for each user u and item i as follows

x̂ui = Eq(θ>u βi) = Eq(θu)>Eq(βi), (16)

Note that this expectation in intractable with respect to
the true posterior. These predicted values are then used
to rank unrated items for each user so as to provide her
with a recommendation list.

4.4 DESIRABLE PROPERTIES

The variational PCRL enjoys several desirable proper-
ties. In terms of efficiency, the operations involving user-
item and item-context interactions need to be carried out
only for the non-zero entries in X and C. It can be shown
that the computational time complexity of the variational
PCRL algorithm (its batch version) is linear in the num-
ber of non-zeros entries in X and C.

The main intuition behind PCRL is to learn item rep-
resentations encoding various contextual regularities
among items that are good at explaining the user be-
haviour. Interestingly, this intuition is reflected theoret-
ically, as seen in the proposition below. Note that this
result arises naturally from our formulation.

Proposition 1 Let q(βi;ω) be the variational distribu-
tion over the item factor in PCRL. Then, for fixed λ̃θ,
φ̃ and ξ̃, maximizing the ELBO (5) with respect to ω is
equivalent to maximizing the following criterion:
∑
i Eq[log p(ci|W,βi)]− KL(q(βi;ω)||q̃(βi)). (17)

where q̃(βi) denotes the optimal mean-field varitional
distribution over the item attributes in Bayesian Pois-
son factorization. That is, q̃(βi) =

∏
k q̃(βik), and

q̃(βik) = Gamma(λsβ +
∑
u xuiφ̃uik, λ

r
β +

∑
u
λ̃suk
λ̃ruk

).

The proof is given below. The KL term in the above
proposition can be viewed as a regularizer which encour-
ages PCRL’s variational factor over the items, q(βi;ω) to
look like its optimal mean-field counterpart in Bayesian

1003



Poisson factorization q̃(βi). Recall that q̃(βi) is indepen-
dent of the item context C, and puts high probability on
configurations of βi that explain user preferences. This
makes it clear how the collaborative PF component in
PCRL guides or encourages the representation learning
part to focus on extracting contextual features that might
be useful for explaining user preferences. From this per-
spective, PCRL can be interpreted as regularizing a deep
generative model with Bayesian Poisson Factorization.

Proof. If we fix all the variational parameters except ω,
then maximizing the ELBO with respect to the latter is
equivalent to maximizing

Li = Eq[log p(s|θ,βi) + log p(βi)]

+ Eq[log p(ci|W,βi)− log q(βi;ω)] + const. (18)

In particular, we have

log p(βik) ∝ (λsβ − 1) log(βik)− λrββik, and,

log p(suik|θuk,βik) ∝ suik log(βik)− θukβik.
Therefore we get

Eq(θ,s)[log p(s|θ,βi) + log p(βi)] = −(λrβ +
∑
u

λ̃suk
λ̃ruk

)βik

+ (λsβ +
∑
u xuiφ̃uik − 1) log βik + const, (19)

where we recognize the log (up to the normalizing con-
stant) of the following Gamma(λsβ +

∑
u xuiφ̃uik, λ

r
β +

∑
u
λ̃suk
λ̃ruk

) distribution. Adding the normalizing constant
(which is independent of ω) and plugin (19) into (18),
completes the proof.�

5 EXPERIMENTS

In this section, we study the impact of item context, and
our modeling assumptions, on personalized item recom-
mendation as well as item representation learning.

Datasets. We use five datasets from Amazon.com3,
provided by McAuley et al. (2015b,a). They include both
user-item interactions and the “Also Viewed” lists that
we treat as item contexts. We preprocess all datasets so
that each user (resp. item) has at least ten (resp. two)
ratings, and the sets of row and column items in C are
identical. Table 1 reports the resulting statistics.

Comparative Models. We benchmark PCRL4 against
strong comparable generative factorization models.

• MCF: Matrix Co-Factorization (Park et al., 2017) in-
corporates item-item relationships into Gaussian MF.

3http://jmcauley.ucsd.edu/data/amazon/
4source code available at: https://cornac.preferred.ai/

Datasets
Characteristics

#Users #Items #Ratings nzX (%) #nzC nzC (%)

Office 3,703 6,523 53,282 0.22 108,466 0.25

Grocery 8,938 22,890 148,735 0.07 480,300 0.09

Automotive 7,280 15,635 63,477 0.05 365,634 0.15

Sports 19,049 24,095 211,582 0.04 531,148 0.09

Pet Supplies 16,462 20,049 164,017 0.05 631,102 0.16

Table 1: Statistics of the Datasets.

• PF: Bayesian Poisson Factorization (Gopalan et al.,
2015) arises as a special case of our model without
the context-specific components. Comparison to PF
allows us to assess the impact of item contexts.

• CTPF: Collaborative Topic Poisson Factorization
(Gopalan et al., 2014b) was developed for content-
based recommendation, but can serve as baseline by
substituting item-word matrix with item-context C.

• CoCTPF: Content-only CTPF (Gopalan et al., 2014b)
is a variant of CTPF without the document topic off-
sets; please refer to (Gopalan et al., 2014b) for details.
Comparison to CoCTPF allows us to assess the impact
of our modeling choice of multilayered representation
learning, as opposed to PF, for item context.

• RL+PF: Representation Learning + PF is a two-stage
pipelined approach, which models item context inde-
pendently from user preferences. First, it infers q(β)
from C using PCRL’s representation learning-spesifc
part. Second, it performs PF on X to infer q(θ) while
holding the item factors fixed. Comparison to RL+PF
allows us to assess the benefit of our unified modeling.

Experimental Setup. For each dataset, we randomly se-
lect 80% of the ratings as training data and the remaining
20% as test data. Random selection is carried out three
times independently on each dataset. The reported result
is the average performance over the three samples.

Following previous works (Gopalan et al., 2014a, 2015),
we set the number of latent dimensions for user pref-
erences θ and item attributes β to 100. In all ex-
periments, we use a two-layer PCRL (z1,β) with di-
mensions (100, 300) in the item representation learn-
ing component. The activation functions at the layers
(c, z1) are set to (sigmoid, relu). Similarly, we use
a two-layer inference network (encoder) with dimen-
sions (300, 100 + 100)—recall that this network outputs
Gamma variational parameters, a total of 100 (shape)
+ 100 (rate) parameters—and activation functions (relu,
sofplus). When necessary we add a small offset to ensure
strict positivity, e.g., the rate of the Poisson, the shape
and rate of the Gamma, all must be positive. To encour-
age sparse latent representations, we set Gamma prior
parameters (λs, λr) to (0.3, 0.3)—resulting in exponen-
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Table 2: Average recommendation accuracy.

Metric MCF PF CTPF CoCTPF RL+PF PCRL

O
ffi

ce
Pr

od
. nDCG 0.1525 0.1663 0.1718 0.1806 0.1551 0.1974

MRR 0.0239 0.0414 0.0467 0.0558 0.0237 0.0708
Pre@20 0.0041 0.0096 0.0111 0.0129 0.0048 0.0156
Rec@20 0.0293 0.0541 0.0615 0.0768 0.0325 0.0873

Pre50 0.0033 0.0077 0.0075 0.0095 0.0039 0.0116
Rec50 0.0569 0.0970 0.1021 0.1392 0.0654 0.1627

G
ro

ce
ry

nDCG 0.1286 0.1568 0.1553 0.1717 0.1295 0.1801
MRR 0.0145 0.0452 0.0429 0.0529 0.0098 0.0652
Pre20 0.0024 0.0095 0.0095 0.0116 0.0017 0.0134
Rec20 0.0191 0.0571 0.0591 0.0739 0.0109 0.0751
Pre50 0.0019 0.0070 0.0072 0.0086 0.0015 0.0098
Rec50 0.0353 0.1021 0.1090 0.1213 0.0234 0.1339

A
ut

om
ot

iv
e nDCG 0.1186 0.1123 0.1124 0.1417 0.1225 0.1453

MRR 0.0121 0.0100 0.0103 0.0337 0.0111 0.0350
Pre20 0.0022 0.0015 0.0016 0.0058 0.0017 0.0063
Rec20 0.0228 0.0132 0.0143 0.0566 0.0147 0.0536
Pre50 0.0016 0.0010 0.0012 0.0038 0.0016 0.0043
Rec50 0.0393 0.0233 0.0262 0.0920 0.0325 0.0913

Sp
or

ts

nDCG 0.1122 0.1179 0.1189 0.1398 0.1190 0.1524
MRR 0.0071 0.0122 0.0119 0.0297 0.0073 0.0375
Pre20 0.0011 0.0018 0.0022 0.0054 0.0014 0.0070
Rec20 0.0096 0.0143 0.0170 0.0431 0.0113 0.0507
Pre50 0.0009 0.0013 0.0017 0.0038 0.0013 0.0051
Rec50 0.0192 0.0273 0.0318 0.0759 0.0298 0.0942

Pe
tS

up
pl

ie
s nDCG 0.1201 0.1288 0.1317 0.1585 0.1210 0.1626

MRR 0.0136 0.0207 0.0237 0.0441 0.0094 0.0461
Pre20 0.0022 0.0029 0.0034 0.0079 0.0019 0.0088
Rec20 0.0237 0.0271 0.0314 0.0752 0.0167 0.0776
Pre50 0.0016 0.0021 0.0028 0.0055 0.0016 0.0063
Rec50 0.0397 0.0481 0.0561 0.1301 0.0359 0.1455

tially shaped Gamma distributions with mean equal to 1.
For an illustration, please refer to Figure 2 in (Cemgil,
2009). We follow the same strategy, grid search, as in
(Park et al., 2017) to set the different hyperparameters of
MCF. In order for the comparisons to be fair, we use the
same random parameters to initialize all PF-based mod-
els, where it is possible.

Item Recommendation. Here we look into the quality
of item recommendation, and discuss item representation
later. We assess the recommendation accuracy on a set
of held-out items—the test set. We retain four widely
used measures for top-M recommendation, namely the
Normalized Discount Cumulative Gain (nDCG), Mean
Reciprocal Rank (MRR), Precision@M (P@M ) and
Recall@M (R@M ), where M is the number of items
in the recommendation list (Bobadilla et al., 2013). Intu-
itively, nDCG and MRR measures the ranking quality of
a model, while Precision@M and Recall@M assess the
quality of a user’s top-M recommendation list. These
measures vary from 0.0 to 1.0 (higher is better).

Table 2 depicts the average performances5 of the compet-
ing models in terms of different metrics, over all datasets.
For the sake of completeness we also report, in Table 3,
the average log-likelihood values for the Poisson models,
i.e., log p(X|θ,β), where we set θ and β to their mean
values under the corresponding variational distribution.

5Most of the standard deviation values are of order 1e-3/1e-
4, we do not report them to fit Table 2 into one column.

Table 3: Comparison of Poisson log-likelihood.

Models Office Prod. Grocery Automotive Sports Pet Supplies
PF -210522 -680546 -355671 -1187849 -838712
CTPF -208633 -681832 -354239 -1180927 -838910

CoCTPF -207840 -656676 -336319 -1138744 -786326
RL+PF -227454 -761403 -341730 -1178502 -887624
PCRL -199066 -649054 -322889 -1061088 -760935

The main points from these results are as follows.

Item context is useful for personalized recommendation.
The proposed PCRL substantially outperforms the other
competing models in virtually all cases. In particular, the
major difference between the original PF and our pro-
posed PCRL as well as CTPF or CoTPF is that the latter
models incorporate item context. We can therefore at-
tribute the performance improvements reached by those
over PF to the modeling of the item context.

Poisson Factorization performs better than its Gaussian
counterpart. Effectively CoCTPF is the closest Poisson
alternative to the Gaussian MCF. The former outperforms
the latter in all cases. Even when augmented with contex-
tual item information, the Poisson remains a better alter-
native than the Gaussian for modeling user preferences,
which is in line with the findings of previous work on PF.

The hierarchical (multilayered) structure in PCRL is use-
ful. The model PCRL can be viewed as an alternative
to CoCTPF, where a multilayered generative model is
substituted for PF to model item contexts. From Tables
2 and 3, we note that PCRL substantially outperforms
CoCTPF on almost all datasets and across all metrics,
except in terms of recall on Automotive. Since the main
difference between the two approaches lies in how they
model item context, these results suggest that our multi-
layered architecture does a better job than PF in extract-
ing latent features from item’s contexts.

Joint modeling or learning is beneficial. A key point
to PCRL is to model user preferences and item contexts
jointly. As Tables 2 and 3 show, PCRL outperforms the
two-stage pipelined model RL+PF. Quite surprisingly,
the latter performs even worse than PF on almost all
datasets. This demonstrates the importance of joint mod-
eling, and suggests that the PCRL’s collaborative compo-
nent plays an important role in guiding item representa-
tion learning towards extracting contextual features that
are relevant for explaining user preferences. Whereas
modeling the item context independently yields item rep-
resentations that capture other item aspects, which are
not necessarily as good for predicting user preferences.

To gain further insight into the results, especially the lat-
ter two points above, we conduct another series of exper-
iments where we compare the quality of the item repre-
sentations produced by the different models.
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Figure 2: Average NMI over different datasets.
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Figure 3: Average Recall@50 over different datasets.

Item Representations. Evaluating the quality of item
representations is a challenging task. Here, we propose
to make such an evaluation in terms of clustering. We
seek to assess how well the representations produced by
each model are good at organizing items into meaning-
ful clusters. As evaluation measure, we use Normalized
Mutual Information (NMI) (Strehl and Ghosh, 2002). In-
tuitively, NMI quantifies how much the estimated clus-
tering is informative about the true clustering. As the
“true” clustering, we retain the ten most frequent item
categories (classes) in each datasest; these categories per
dataset are listed in the supplementary material (B). We
do not consider Grocery in this experiment, since its cat-
egory labels are not available.

To form clusters based on learned item representations,
we use the spherical k-means (Skmeans) (Dhillon and
Modha, 2001). We perform fifty runs of (Skmeans),
with different initial random points, and report the aver-
age NMI of the ten best runs—in terms of the Skmeans’
criterion—as the final results. The fifty random starting
points used by Skmeans are the same across all models.

Figure 2 reports the clustering results. For reference, Fig-
ure 3 reproduces the Recall@50 (the results are consis-
tent across all metrics) on the item recommendation task.

PF that relies solely on user-item interactions obtains the
worst clustering results. Such sparse information is not
rich enough to allow PF infer relationships among items.
The other models that use contextual information per-
form better. In particular, we note that PCRL produces
representations that are better suited to organize items
into categories than the CoCTPF models. This provides
additional empirical support for the importance of our
hierarchical architecture to model items’ contexts.

Interestingly, RL+PF performs relatively well on cluster-
ing (Figure 2) even as it performs rather poorly on rec-
ommendation (Figure 3). One possible explanation of

this phenomenon is that RL+PF focuses on item simi-
larity. While this is beneficial for clustering, this might
not always be useful for recommendation. Hypotheti-
cally, two similar items may be alternatives. Instead of
recommending alternatives to an item that a user has pur-
chased, it may be useful to recommend complementary
items (which may not belong to the same category).

6 DISCUSSION

PCRL composes Bayesian Poisson factorization with a
multilayered latent variable model to join both sources of
data: user preferences and item contexts. Empirical re-
sults provide strong support for the benefits of our mod-
eling framework and reflect the underlying assumption
in PCRL, namely: the collaborative component guides
the item representation learning towards extracting con-
textual features that are useful for the recommendation
task, whereas the representation learning encourages the
collaborative part to rely on item’s contexts to explain
recommendations, alleviating data sparsity.

While our focus here has been on item context, PCRL
could potentially be extended to learn item representa-
tions from other modalities, e.g., text, images, etc. An-
other interesting direction of future work, is to investi-
gate deeper variants of PCRL which would improve the
feature learning.

We make PCRL’s implementation publicly available as
part of the CORNAC6 recommendation library.
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Abstract

Generative models, while not new, have taken
the deep learning field by storm. However,
the widely used training methods have not
exploited the substantial statistical literature
concerning parametric distributional testing.
Having sound theoretical foundations, these
goodness-of-fit tests enable parts of the black
box to be stripped away. In this paper we use
the Shapiro-Wilk and propose a new multivari-
ate generalization of Shapiro-Wilk to respec-
tively test for univariate and multivariate nor-
mality of the code layer of a generative autoen-
coder. By replacing the discriminator in tradi-
tional deep models with the hypothesis tests,
we gain several advantages: objectively evalu-
ate whether the encoder is actually embedding
data onto a normal manifold, accurately define
when convergence happens, explicitly balance
between reconstruction and encoding training.
Not only does our method produce competitive
results, but it does so in a fraction of the time.
We highlight the fact that the hypothesis tests
used in our model asymptotically lead to the
same solution of the L2-Wasserstein distance
metrics used by several generative models to-
day.

1 INTRODUCTION

Recently a large variety of generative models have been
proposed such as generative adversarial networks and
generative autoencoders. A widely-used way to construct
such a network requires training of a generator and a
discriminator. There are great needs to understand the
statistical foundation of these generative models. On the
other hand, there exists substantial statistical literature

concerning parametric distributional hypothesis testing
with a solid theoretical base. One particular group of deep
generative models which, we show in this study, can ben-
efit from hypothesis testing is the generative autoencoder
(GAE). The objective of these models is to reconstruct
the input as accurately as possible, while constraining
the code layer to a specified distribution, usually normal.
Often times once training has ended, this code layer dis-
tribution does not in fact match the required distribution.
The spirit of these models is to embed data into a distribu-
tion that matches the prior to enable sampling, and thus
it is of utmost importance we have ways to assess the
quality of the fit. In other words, if the embedded distri-
bution does not match the prior that is used to sample and
generate instances, the method does not work in theory.

In this paper we propose to use goodness-of-fit hypothesis
tests of normality on the code layer of an autoencoder as
a new type of critic in both the univariate and multivariate
case. Doing so leads to an adversary-free optimization
problem. These hypothesis tests provide a more direct
way to measure if the data representation, the latent code
layer, matches a pre-specified distribution. More specifi-
cally, we test for normality using a composite test:

H0 : X ∈ G vs H1 : X 6∈ G (1)

where G = {π : π = N (µ,Σ),−∞ < µ <
∞,Σ is positive semi-definite (p.s.d)}. Many tests for
comparing two distributions can be used in our model1.
We specifically focus on the well studied univariate
Shapiro-Wilk test (Shapiro and Wilk, 1965) and propose
a new multivariate generalization of the Shapiro-Wilk test
to demonstrate the effectiveness of the new method. We
further highlight a link between these methods and those
based on the Wasserstein distance by drawing attention to
the fact that the Shapiro-Wilk test and the L2-Wasserstein
distance lead to the same asymptotic solution.

The remainder of the paper follows as such. Section 2
covers existing work that is most closely related to our
method. In section 3 we present the basics of hypothe-

1009



sis testing followed by a recap of the Shapiro-Wilk test
and propose its multivariate generalization. Section 4
describes the new method in detail, followed by theoret-
ical analysis in Section 5 where we explore the linkage
between the hypothesis tests and several distance-based
methods of training. Section 6 discusses the empirical re-
sults. Section 7 presents a discussion of the new method,
followed by a conclusion section 8.

Notation. Boldface capital letters, e.g., Y, denote ma-
trices while boldface lower case, e.g., y, denote vectors.
Scalar values are denoted by lower case letters and no
font change, such as yi. Upper case without font change
denote test statistics. Calligraphic capital letters, e.g., Y ,
denote sets. Probability density functions (PDF) are rep-
resented as p(z), while cumulative distribution functions
are the upper case version P (z). Any modifications to
this are explained in their respective context.

2 RELATED WORK

The original generative adversarial network (GAN)
(Goodfellow et al., 2014) sparked a surge in generative
models, parameterized by neural networks, that has yet
to abate. As this paper is focused on autoencoders, GAN
can be thought of as just the decoder part of a regular au-
toencoder. This decoder, G(·), endeavors to learn a map-
ping from the sampled prior, p(z), to the data distribution
p(x). An auxillary network called the discriminator,D(·),
serves to discern how close the generated data distribu-
tion, pg(z), is to the true data distribution p(x). Training
a GAN amounts to the widely known two-player minimax
game minG maxD V (D,G) = Ex∼pd(x)[logD(x)] +
Ez∼p(z)[log(1−D(G(z)))].

Using an autoencoder styled network to train a generative
model is not new; the main goal being to understand the
code layer distribution given data, q(z|x), while minimiz-
ing a reconstruction error. These GAEs tend to fall into
several classes dictated by their training and generating
mechanisms, and include adversarial methods, variational
methods, MCMC based procedures, and the most closely
related to our work, statistical hypothesis tests.

The adversarial autoencoder (AAE) (Makhzani et al.,
2015) is a modification of the original GAN in which
an encoder network is included, and where the discrim-
inator is shifted from the decoder network to the latent
code space. The encoder creates the encoding distribution
q(z|x) which defines an aggregated posterior distribution
q(z) =

∫
x
q(z|x)pdata(x)dx where pdata(x) is the in-

put data distribution. As in GAN, training the AAE, in
part, amounts to a minimax game between a generator
network, G(·), and a discriminator network, D(·) where
the objective is to have q(z) match p(z), the specified

prior distribution defined over the latent space Z . The
decoder maps back to data space X giving p(x|z). A
reconstruction loss is minimizes as usual.

However, aside from possible mode collapse issues, there
are questions regarding how the generator and discrimina-
tor should be balanced during training, the issue of when
to stop still has not been satisfactorily addressed. Within
the adversarially trained autoencoders it is possible to
vary the loss function used in the discriminator. One pos-
sible change is to use a Wasserstein loss (Arjovsky et al.,
2017) (WGAN) which alieviates the vanishing gradient
problem. Improvements to the WGAN include the ad-
dition of a gradient penalty (Gulrajani et al., 2017). In
(Tolstikhin et al., 2017) the authors modify the AAE to
use a Wasserstein distance between the target distribution
and the model distribution.

Variational autoencoder (VAE) methods include the work
of (Kingma and Welling, 2013; Rezende et al., 2014;
Mnih and Gregor, 2014). Despite being some of the most
successful methods for generation, they have been found
to produce unrealistic or blurry samples (Dosovitskiy and
Brox, 2016). The VAE model makes use of a random
decoder mapping p(x|z). Moreover, there is no auxillery
network needed for discriminaion. A third line of thought
comes from modification of the traditional autoencoder
paradigm so as to recover the density using MCMC. These
include (Rifai et al., 2012; Bengio et al., 2013b, 2014)
and attempt to use contraction operators, or denoising
criteria in order to generate a Markov chain by repeated
perturbations during the encoding phase. However, it
has been a challenge to ensure adequate mixing in that
process (Bengio et al., 2013a).

To the best of our knowledge there is only one method,
aside from our work, that falls into the class of statistical
hypothesis tests for training generative networks. It is
based on the maximum mean discrepancy (MMD) (Gret-
ton et al., 2007, 2012). Two works utilizing the MMD
for training came out simultaneously (Li et al., 2015) and
(Dziugaite et al., 2015), each taking a different approach.
Li et al. used the MMD on features learned from the
autoencoder to shape the distribution of the output layer
of the network to create a generative moment matching
network (GMMN). On the other hand, Dziugaite et al. ap-
plied the MMD to directly compare the generated against
true data. This latter method is the closest to our work.
When using the MMD, the bandwidth parameter in the
kernel plays a crucial role in determining the statistical
efficiency of MMD, and it is still an open problem how to
find its optimal value. Moreover, using kernels in MMD
requires that the computation of the objective function
scales quadratically with the amount of data. This is due
to the requirement of a linear increase in sample size as
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dimensionality increases, and is necessary to ensure the
power, covered next, goes to 1 as n → ∞. In (Li et al.,
2017) the authors propose to mitigate the bandwidth prob-
lem by using adversarial kernel learning to replace the
fixed Gaussian kernel in the GMMN, while in (Sutherland
et al., 2016) the authors propose to maximize the power
of the statistical test based on the MMD.

3 STATISTICAL HYPOTHESIS TESTS

Distinguishing between two distributions is often carried
out in the form of a hypothesis test. Suppose θ is a quan-
tity of interest, the format of a hypothesis test between
the null, H0, and the alternative, H1, is: H0 : θ ∈ Θ0

vs H1 : θ ∈ Θc
0. To understand a hypothesis test the

concept of statistical power is required. Two types of
errors associated with hypothesis testing exist: type I, and
type II. A type I error occurs when the null is rejected
when it is true; the rate of this is called α. A type II error
occurs when the null is not rejected when the alternative
is true, its rate defined as β. Power is defined to be 1− β.
It is not possible to control both type I and type II errors;
therefore it is necessary to pre-specify the α one is willing
to tolerate. The more powerful the test, the better. By
utilizing information about the null distribution, a test
statistic can be computed such that, for a given α, if its
value is unlikely to be observed, then H0 is rejected in
favor of the alternative hypothesis’ conclusion. This dis-
cerning threshold is called the critical value, and comes
from the null distribution of the test statistic. When this
distribution is known, a p-value, which is the observed sig-
nificance level of the test, can be calculated. The p-value
is bounded between 0 and 1, and can be interpretted as
the probability the test statistic being at least as extreme
as the test statistic calculated on the sample under H0.
The p-value affords the ability for different users to judge
whether to reject or fail to reject H0.

Testing for goodness-of-fit takes up the task of testing
whether the underlying data distribution belongs to some
given family of distribution functions. One such exam-
ple is determining if a sample x1, ..., xn is normally dis-
tributed or not, for which the hypothesis test is denoted
in Eq.(1). For a more thorough discussion of hypothesis
testing and goodness-of-fit see (Casella and Berger, 2002;
Lehmann and Romano, 2006).

Hypothesis testing techniques fall into several sub-
categoriess. (Seier, 2002) describes these sub-categories
as those tests belonging to: skewness and kurtosis tests,
empirical distribution function tests, regression and cor-
relation tests, and others. Hypothesis tests can also be
split into parametric vs non-parametric. Parametric hy-
pothesis tests make assumptions about the underlying
distribution while non-parametric hypothesis tests (also

called distribution-free tests) do not. In this paper we
focus on a test containing a parametric null hypothesis.

3.1 UNIVARIATE: SHAPIRO-WILK TEST

A goodness-of-fit test for normality is the Shapiro-Wilk
(SW) test. In a Monte Carlo simulation by (Razali et al.,
2011) the authors compared the power of the SW test to
several non-parametric tests on various alternative distri-
butions concluding it was the most powerful. The SW test
is a composite parametric test to determine if a univari-
ate data sample comes from a normal distribution. The
original SW test was limited to a sample size between 3
and 50, but (Royston, 1982) extended the approach to use
up to 2000 samples. The SW original test statistic, W , is
calculated as

W =
(
∑n
i=i aix(i))

2

∑n
i=1(xi − x̄)2

. (2)

In the Eq.(2) x(i) represents the ith ordered statistic of the
sample. The constants ai are given by (a1, a2, ..., an) =

mTV−1

(mTV−1V−1m)1/2
, where m is a vector consisting of the

n expected values of the order statistics of independent
and identically distributed random variables samples from
the standard normal distribution. V is the covariance ma-
trix of those order statistics. The most extreme order
statistics are weighted the largest, and decrease when ap-
proaching the median. This property of the SW test will
be important in later sections. Calculation of the constants
ai can be computationally demanding, prompting Roys-
ton in (Royston, 1992) to approximate these coefficients.
He found that for 12 ≤ n ≤ 2000 a two-parameter log-
normal distribution fitted the upper half of the empirical
distribution of 1−W . The associated p-value for W is
referred to the upper tail ofN (0, 1). Using the hypothesis
test defined in Eq.(1), the SW test fails to reject H0 if
W > Wα, or the p-value is larger than α, where Wα is
the critical value based on the chosen confidence level.
Three analytical properties that will become useful in the
later sections, originally presented as lemmas in (Shapiro
and Wilk, 1965), are cited as follows:

Lemma 3.1. W is scale and origin invariant.

Lemma 3.2. W has a maximum value of 1

Lemma 3.3. The minimum value of W is na21
(n−1)

As our approach makes use of this test as a new loss
function, one must be cognizant of its computational com-
plexity. Enjoying the benefits of a strong test at the cost of
long run time may not be appealing. However, the ai are
calculated a single time prior to training and are stored.
The actual time complexity of the SW test during training
is O(nlog(n)).
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3.2 A NEW MULTIVARIATE
GENERALIZATION OF SHAPIRO-WILK

Definition 3.1. (Multivariate Normal (Rao et al., 1973))
A d-dimensional random variable u, that is, a random
variable u taking values in Ed (Euclidean space of d-
dimensions) is said to have a d-variate normal distribution
Nd if and only if every linear function of u has a univari-
ate normal distribution.

In a review by (Mecklin and Mundfrom, 2005) the authors
noted more than 50 methods for testing multivariate nor-
mality. However, finding a multivariate test that is both
powerful, and has low time complexity proved challeng-
ing. This necessitated the creation of a new multivariate
hypothesis test that was able to make use of the strengths
of SW, and relies on a well-known characterization of the
multivariate normal (MVN) distribution.

Proposition 3.4. x ∼ Nd(µ,Σ) if and only if z =

Σ−
1
2 (x− µ) ∼ Nd(0, I).

Letting x̄ and S be respectively the sample mean and
covariance matrix, define S−

1
2 as the symmetric posi-

tive definite square root of the inverse of S. Therefore,
when x1,x2, ...,xn ∼ Nd(µ,Σ), then zi = S−

1
2 (xi −

x̄) ∀i = 1, ..., n should be approximatelyNd(0, I). Un-
der the assumption that observations are independent, and
writing zi = (zi1, zi2, ..., zid)

T , then zij ∼ N (0, 1) ap-
proximately for each j = 1, ..., d and i = 1, ..., n.

To test the null hypothesis that the sample x1,x2, ...,xn is
from Nd(µ,Σ) where µ and Σ are unknown we propose
to vectorize the entire Z matrix as zvec = vec(z) =
(z11, z12, ..., znd)

T , and then use the SW test statistic of
Eq.(2) on zvec. Under H0, W is expected to be close to
1. This multivariate generalization of the Shapiro-Wilk
test (MSW) does not require any corrections for multiple
testing, nor any simulation to calculate new critical values.
Furthermore, it inherits the same good power properties
while keeping the test complexity at O(ndlog(nd)).

3.3 SHAPIRO-WILK ASYMPTOTICS

For years after the original (Shapiro and Wilk, 1965)
paper, the distribution of W remained unknown. While
variations of the originalW statistic were proposed, it was
the modification by (De Wet et al., 1972) that produced
the first correlation normality test with known asymptotic
distribution. The de Wet-Venter statistic W ? is defined as

W ? =
∑

i

(
x(i) − x̄
sn

− Φ−1

[
i

(n+ 1)

])2

, (3)

where Φ−1(·) is the inverse normal cumulative density
function. In their paper it was shown that W ? converges

in distribution to

2n(1−W ?
1
2 )− an D−→ ξ, (4)

where ξ =
∑∞

3
y2i−1
i , {yi, i ≥ 1} is a sequence of inde-

pendent and identically distributed N (0, 1) random vari-

ables, and with an = 1
n+1

{
∑n
i=1

j(1−j)
(φ{Φ−1(j)})2 − 3

2

}
,

where j = i
n+1 , and φ(·) is the standard normal den-

sity. (Verrill and Johnson, 1983; Fotopolous et al., 1984)
showed that the Shapiro-Francia (Shapiro and Francia,
1972) statistic W † and the de Wet-Venter statistic W ?

were asymptotically equivalent via convergence in prob-

ability n(W ?
1
2 −W †

1
2 )
P−→ 0. (Leslie et al., 1986) pro-

duced the final result connecting Shapiro-Wilk to Shapiro-

Francia showing that n(W
1
2 −W †

1
2 )
P−→ 0.

4 PROPOSED GENERATIVE MODEL

We propose to replace the discriminator neural network
with a goodness-of-fit hypothesis test; specifically the
Shapiro-Wilk hypothesis test, and its multivariate general-
ization. As the main idea here, maximizing the associated
test statistic forces the encoder to encode data to a distri-
bution (from which the decoder learns to generate data)
so that the null hypothesis is not rejected, hence allow-
ing q(z) to be indistinguishable from the true distribution
p(z). Lemma 3.2 gives a target value for maximization,
and from lemma 3.1 it can be seen that maximizing W to
W ≥ Wα results in the encoding distribution q(z|x) in-
distinguishable from the family G = {π : π = N (µ,Σ)}.
Constraining the network to map q(z|x) to a specific dis-
tribution in the Gaussian class, for instance N (0, I), as
is often done, is not necessary. It may present challenges
when generating data if the decoder is not robust to de-
viations from the prior, p(z). Our new model allows the
network to find the right q(z) = π? ∈ G = {π : π =
N (µ,Σ)} that minimizes the reconstruction loss without
requiring a specific prior as long as it is in the class. In
the univariate case, SW is directly applied to the encoded
data, and the decoder works off of this code layer. When
training is complete, (µ̂, Σ̂) are estimated using all data
and the decoder generates data from N (µ̂, Σ̂). In the
multivariate case, however, we include a whitening step
in the code layer, which is necessary in order to use the
proposed multivariate SW. In other words, let y be the
encoded data of k samples, and (ȳ,S) be the respective
sample mean and covariance, we whiten the encoded data
as S−

1
2 (y − ȳ). Then, Prop.3.4 allows the decoder to

work off samples coming from N (0, I). In our empirical
evaluation, we found that this whitening step also helped
when other hypothesis tests were used in the proposed
approach (see the supplement).
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Now the presence of normality for q(z) can be directly
tested, i.e., cannot be rejected if W passes a critical value
Wα. The overall optimization problem that our neural
network solves is formulated as

min ||X− Fψ(Gθ(X))||22 s.t. W (Gθ(X)) > Wα, (5)

where Gθ(·) is the encoder, and Fψ(·) is the decoder, re-
spectively parameterized by θ and ψ. Using the mathemat-
ically equivalent multi-objective loss, we can also find the
solution G?θ, F

?
ψ = arg minGθ,Fψ ||X−Fψ(Gθ(X))||22−

λW (Gθ(X)) for some proper value of λ > 0 although
we propose an algorithm that directly solves Eq.(5).

4.1 OPTIMIZATION OF W

Eq.(5) is commonly optimized using a flavor of gradient
descent with mini-batches, e.g., Adam (Kingma and Ba,
2014) which is used in Alg.1. The following proposition
characterizes how to compute the gradient of W .

Proposition 4.1. Let k be the size of the mini-batch. For
any layer `, denote Y` = Θ`Y(`−1), where Y(`−1) is an
(n× k) matrix of arbitrary activation from layer (`− 1),
Y` is an (m× k) matrix of linear activation for layer `,
and Θ` is the (m× n) matrix of parameters connecting
the layers. Let y be the (mk × 1) ascendingly sorted vec-
torization of Y`. Then, y can be computed by Aθ where
A and θ are the re-organized Y`−1 and the vectorization
of Θ`. Specifically, A is an (mk×mn) matrix with each
row containing the relevant Y(`−1) data for a particular
node’s activation. The gradient of W can be computed by

∇θW =
2aTAθ

θTZθ
aTA

[
I− θθTZ

θTZθ

]
, (6)

where Z = A(I− J
mk )AT , I is mk-dimensional identity

matrix, and J is a (mk ×mk) matrix of ones.

Unlike the adversarial framework the hypothesis testing
model is straightforward to train. As shown in the pseudo-
code for this method in Alg.1, only the encoder part of
the GAE updates when H0 is rejected (by re-optimizing
Gθ to reach W > Wα or a p-value if available). When
whitening is used, and if W > Wα, the decoder can
generate new data by sampling with respect to N (0, I).
It must be reiterated that failure to reject does not imply
normality, however in practice this procedure works well.

4.2 INNER LOOP TERMINATION

Alg.1 follows a conditional alternating optimization pro-
cedure, or can also be referred to as a feasible direction
method. The outer loop seeks to minimize the reconstruc-
tion loss, whereas the inner loop evaluates the hypoth-
esis testing and identifies the updates of θ that satisfy:

Algorithm 1 Hypothesis Testing Autoencoder

Require: X=training data, N=number of iterations,
Wα=critical value, λ=regularization coefficient,
m=size of mini-batch > d = dimension of latent code
layer to be tested

1: Initialize: θ, ψ
2: for i = 0 to N do
3: Sample next mini-batch from training data Xm

4: (θ, ψ)← Adam(∇(θ,ψ)||Xm − Fψ(Gθ(Xm))||22)
5: Compute W (Gθ(Xm))
6: while W (Gθ(Xm)) ≤Wα do
7: Sample next mini-batch from training data Xm

8: θ ← Adam(∇(θ)(−λW (Gθ(Xm))))
9: Compute W (Gθ(Xm))

10: end while
11: end for
12: Estimate (µ̂d, Σ̂d) (Not necessary if whitened)

W > Wα, a constraint that implies failure to reject H0.
Note that the inner loop is activiated only when the con-
dition is not already met. A fundamental question is
whether this “while” loop will terminate given we solve
a highly non-convex optimization problem (ultimately,
whether we can find a θ such that the q(z) stays within
the Gaussian class). In (Bottou, 1991a) results were given
for a general non-convex setting and show that under
specific conditions the computation will converge. The
following theorem is cited from that paper for which the
proof can be found in (Bottou, 1991b).

Theorem 4.2. For any measure dP (z), if the cost
C(θ) = E(J(z, θ)) is differentiable up to the third deriva-
tives where J is an objective function to be optimized, with
bounded second and third derivatives, and if the following
assertions are true,

(i) ∀θ,E(H(θ)) = ∇θC(θ)

(ii)
∑∞
t=1 εt =∞, ∑∞

t=1 ε
2
t <∞

(iii) ∃A,B, ∀θ, E(H(θ)2) < A+BC(θ)

(iv) ∃Cmin, ∀θ, Cmin < C(θ)

then C(θt) converges with probability 1 and ∇θC(θt)
converges to 0 with probability 1.

In our case, W (θ) is C, thus H(θ)) ≡ ∇θW (θ), and εt
is the learning rate. The inner loop terminates according
to Thm.4.2 if its conditions are all satisfied (the detailed
proof is given in a supplement). Using the same argument
of (Bottou, 1991b) regarding the similarity of simulated
annealing, denoting qt(θ) the density of probability that
θt follows, by Thm.4.2 the support of qt(θ) converges to
the set of extrema of W (θ), i.e., θt → {θ|W (θ) = 1}
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thus W (θt)→ 1. In fact, it is not necessary to train until
W (θ) = 1, so the procedure exits once W > Wα.

5 THEORETICAL EQUIVALENCY

There exists a link between a distance based method for
comparing the goodness-of-fit of two distributions and
hypothesis testing discovered in (del Barrio et al., 1999).
The general class of Wasserstein distances is studied in
(Villani, 2008). We recite the definition here.

Definition 5.1. (Wasserstein Distances) Let (χ, d) be a
Polish metric space, and let p ∈ [1,∞). For any two
probability measures µ, ν on χ, the Wasserstein distance
of order p between µ and ν is defined by

Wp(µ, ν) =

(
infπ∈Π(µ,ν)

∫
χ
d(x, y)pdπ(x, y)

) 1
p

= inf

{[
Ed(X,Y )p

] 1
p

, law(X) = µ, law(Y ) = ν

}
,

where Π(µ, ν) is the set of all joint probability measures.
When the Polish metric space under consideration is the
one-dimensional Euclidean space, W (µ, ν) = W2(µ, ν).

Of primary interest is the L2-Wasserstein distance. It is
possible to consider the distance between distributions
P1 and P2, defined by W(P1, P2) =

[ ∫ 1

0
(F−1

1 (t) −

F−1
2 (t))2dt

] 1
2

, where F−1
1 and F−1

2 are the quantile

functions of P1 and P2 defined to be F−1
i (t) = inf{s :

Fi(s) ≥ t} for i = 1, 2. The distance between a distri-
bution with cumulative distribution function (CDF) F ,
mean µ0 and standard deviation σ0, and the class of
all normal distributions can be written asW2(F,G′) =
inf{W2(F, π), π ∈ G′}, where G′ = {π : π =

Φ
(
x−µ
σ

)
,−∞ < µ <∞, σ > 0}.

By expressing a normal random variable with mean µ
and variance σ2 as F−1(p) = µ + σΦ−1(p), it can be

shown that W
2(F,G′)
σ2
0

= 1−

(
∫ 1
0

(F−1(t))Φ−1(t)dt

)2

σ2
0

. With
a random sample of data, x1, x2, ..., xn, with underlying
CDF F , defineRn = W2(Fn,G′)

S2
n

= 1− σ̂2

S2
n

, where σ̂n =
∫ 1

0
F−1
n (t)Φ−1(t)dt and S2

n is the sample variance. Rn
can be utilized as a test statistic for testing the composite
null hypothesis that the data are normally distributed, and
it belongs to the class of minimum distance tests.

5.1 L2-WASSERSTEIN ASYMPTOTICS

To study the null asymptotics ofRn, assuming normality,
(del Barrio et al., 1999) used approximations of quantile
processes by Brownian bridges, B(t). Under normal-

ity del Barrio et al. show that there exist constants an
such that nRn − an

D−→
∫ 1

0
B̂2(t) − EB̂2(t)dt where

B̂ = (B−〈B,1〉1−〈B,Φ−1〉Φ−1

φ(Φ−1) . By applying principle com-
ponent decomposition, (del Barrio et al., 1999) obtains
the final result and is repeated here for clarity.
Theorem 5.1. Let {Xn}n be a sequence of i.i.d normal
random variables. Then

Rn − an D−→ −
3

2
+
∞∑

j=3

Y 2
j − 1

j
,

where {Yn}n is a sequence of i.i.d N (0, 1) random vari-

ables with an =
∫ n

(n+1)
1

(n+1)

t(1−t)
(φ(Φ−1(t)))2 dt

Cross referencing the asymptotics in Section 3.3, we find
the L2-Wasserstein normality test to be equivalent to the
Shapiro-Wilk test, thus attaining similar power properties.

6 EMPIRICAL EVALUATION

We evaluated our method, the hypothesis testing based
autoencoder using univariate Shapiro-Wilk (HTAE-SW),
and its multivariate generalization (HTAE-MSW) on the
standard MNIST digits dataset (LeCun et al., 1998), com-
paring it against the models believed to be the most closely
related: the adversarial autoencoder (Makhzani et al.,
2015) (AAE), the adversarial autoencoder with Wasser-
stein discriminator loss (WAAE), and autoencoder with
maximum mean discrepancy loss for the critic (MMDAE
as the model is not adversarial). We note that MMD
constitutes a true hypothesis test where an α-level test
may be performed by way of permutation or approxi-
mation tests. Using it as such would lead to the HTAE-
MMD model, a variant of our model. However, we used
it as others did by simply optimizing it for comparison
against the HTAE. To further evaluate the proposed ap-
proach, four additional goodness-of-fit tests were used
to replace the (M)SW test. A supplementary material
provided more results and discussion on Royston’s H
(Royston, 1983) (HTAE-R), Mardia’s Skewness (Mar-
dia, 1970) (HTAE-M), Malkovich-Afifi (Malkovich and
Afifi, 1973) (HTAE-MA), and Henze-Zirkler (Henze and
Zirkler, 1990) (HTAE-HZ). All models used ||x − x̂||22
for the reconstruction loss.

The network architecture was a fully connected class
conditional autoencoder with conditioning done at the
code layer. Two hidden layers are used between the in-
put and code layer, each consisting of 784 nodes. The
decoder contained the same structure. For AAE and
WAAE, discriminators contained 2 layers each of 784
nodes with their respective losses. Models requiring
sampling from p(z) used Gaussian priors of appropri-
ate dimension p(z) = Nd(0, I). Dropout (Srivastava
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et al., 2014) was used with a “keep” probability equal
to 0.9. The Adam optimizer was used with β1 = 0.9,
β2 = 0.999, ε = 10−8, and η = 0.001. The hypothesis
test was computed at the mini-batch level consisting of
100 samples. The hypothesis tests require an α to be set.
While techinically a hyperparameter, it is the level of the
test with a clear meaning that training proceeds with re-
spect to this level of confidence. A more stringent α-level
tends to increase inner loop iterations. We found the com-
monly used α = 0.05 to work well. Two experiments
were conducted to guage the efficacy of the hypothesis
testing method: a univariate and multivariate test.

Several criteria were used to assess each model: recon-
struction loss, generative quality, normality constraints,
prior matching (where applicable), and run-time. We
generated images of hand-written digits, and monitored
the reconstruction loss during training. By considering
the hypothesis test statistic as an objective measure for
rejecting normality, the test statistic was monitored for
each iteration, and its corresponding p-value was plot-
ted, during training for all models. In particular, the null
hypothesis was rejected when the p-value was less than
0.05; larger p-values were preferred. Q-Q plots were
also provided. By plotting the theoretical quantiles of the
normal distribution against the empirical quantiles of the
data in a Q-Q plot, any departure from the straight line
provides evidence against normality. This can be used as
a diagnostic measure after training has completed. The
run times are included in Table 1.

6.1 UNIVARIATE: SHAPIRO-WILK

There was only a single node in the latent code layer in
the univariate case. Results from the univariate case can
be seen in Fig.1. Along with the plots mentioned above,
the univariate case presented an opportunity to monitor
the trajectory of (µ̂, σ̂). Initial (µ̂, σ̂) were calculated us-
ing the initialized network weights. By monitering the
p-values, it appeared that the q(z) distributions from many
other methods were not in fact normal. Of the Q-Q plots,
only HTAE-SW maintained close enough proximity to
the straight line. Based on the final batch, WAAE and
MMDAE were able to match the prior distribution (µ, σ)
parameters fairly closely, however neither maintained nor-
mality. AAE could neither match parameters nor maintain
normality. As HTAE-SW was not restricted to a specific
normal, it had the opportunity to explore the normal class
for an optimal distribution for the given data.

6.2 MULTIVARIATE GENERALIZATION OF
SHAPIRO-WILK

For the multivariate methods a latent code dimension of
8 was used. By employing the new multivariate gener-

alization of the SW test (MSW) it was possible to use
Q-Q plots to lend visual support to the p-value outcome,
however trajectory plots were no longer an option. Each
model was run for 100,000 iterations with plots shown
in Fig.2, and run time shown in Table 1 when the code
layer had 8 nodes. The generated images seemed to get
visually better the higher the simple moving average of
the p-values was. Q-Q plots for the last mini-batch show
improper tail behaviors, for normality, in all models but
HTAE-MSW. As before, the p-value should be greater
than α = 0.05 to fail to reject the null; again the higher
the p-value the better. For models that failed to reject H0

but had poor generative quality, this suggested several
possibilities: training time needed to be increased, more
focus should be given to reconstruction, or the network
size should be increased. As can be seen in Table 1 HTAE
methods were substantially faster in all cases.

Table 1: Run time in seconds for 105 iterations in the 1-D
and 8-D cases using an NVIDIA GTX 1080Ti GPU.

Method 1-D 8-D
AAE 765.39 982.61
WAAE 904.95 1092.19
MMDAE 597.67 756.69
HTAE-(M)SW 346.16 548.08

7 DISCUSSION

Our empirical results suggest that substituting a hypoth-
esis test, notably W and its the new multivariate gener-
alization, which do not require pre-specifying a mean
and covariance, may be a competitive alternative to other
members of the GAE class. Allowing q(z) to deviate in
the feasible space, G, during training means sampling is
done with respect to q(z) = π̂ = N (µ̂, Σ̂) ∈ G where
(µ̂, Σ̂) are estimated (or when whitening is used in the
multivariate case, with respect toN (0, I)). Consequently,
there is less need to worry about discrepancy between the
distribution we want to sample from, and the distribution
we are sampling from, as we tacitly interpret failure to
reject as within the class of normals. This need not be
the case in the other models. However, as HTAE-MSW
does make use of whitening, ensuring enough samples to
adequately estimate Σ̂−

1
2 and µ̂ is a necessity.

The AAE and WAAE both require training of a discrim-
inator network. This network, with size on the order of
the encoder or decoder, increases training time. More-
over, training of the discriminator needs to be scheduled
in balance with that of the generator, and how exactly this
should be done is still an open problem. On the other
hand, using the hypothesis test abolishes this problem
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Figure 1: Row one illustrates sample digits generated by each model. Row two shows the reconstruction loss, and
the simple moving average (SMA) of the p-value for a batch size of 100, along with the final mini-batch terminating
p-value. Row three contains the Q-Q plots, and row four plots the trajectory of (µ̂, σ̂) over the course of training.

completely. By utilizing the critical values (or p-values)
for the test statistic it is now possible to know precisely
when to alternate between enforcing prior constraints,
and minimizing the reconstruction loss. In our empirical
evaluation, we also observed that using a parametric hy-
pothesis test could improve gradient updates by utilizing
information about the null distribution. A full exploration
into this mechanism is left for future investigation.

A concern may be raised that Thm.4.2 merely guarantees
the “while” loop will terminate, yet provides no indication
of when it terminates. In all experiments, the speed never
proved to be an issue. The inner loop was able to ensure
q(z) ∈ G in a very small number of iterations as can be

seen in Fig.3 in supplementary materials. We attempt to
understand why this is the case in the near future.

We experimented with four other goodness-of-fit tests (see
the supplement please), but none provided the benefits
that the Shapiro-Wilk and its generalization did. Issues
included longer run times, and weaker power. The search
for greater power motivates the following conjecture.

Conjecture 1. The more powerful the hypothesis test, the
more precise the null distribution information contained
within the test statistic that can be transmitted to the en-
coder to update θ via the gradient.

A trade-off between the power of the test, time complex-
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Figure 2: Similar to Fig.1, the top row plots random samples generated from each model. Row two contains the p-values
with a 100 batch SMA. Row three are Q-Q plots associated with MSW.

ity and reconstruction quality likely exists. What is the
cheapest computational complexity of a hypothesis test
available for a given power? We expect that future re-
search will reveal more on these questions.

8 CONCLUSION AND FUTURE WORK

In this paper we have proposed a new method for training
generative autoencoders by explicitly testing the distribu-
tion of the code layer output via univariate and multivari-
ate parametric hypothesis tests. We have shown a number
of benefits to using such an approach including: objec-
tively verifying if training has indeed pushed q(z) ∈ G,
the ability to utilize the critical value of a hypothesis test
as a threshold for determining when to switch between
reconstruction and encoding iterations. Our method pro-
duces competitive results while showing computational
efficiency. Moreover, we explored the link between the
Shapiro-Wilk hypothesis test and the L2-Wasserstein dis-
tance between two distributions.

Given the large numbers of univariate and multivariate

parametric hypothesis tests available, it remains to be seen
how others compare when used in a generative autoen-
coder. In fact, any distribution for which a hypothesis
test can be derived can be used for training a latent code
layer. Furthermore, the proposed method of training can
be applied to any of the models that takes a generative
autoencoder style network. This initial work brings up
additional interesting problems, so our future work will
dive into the questions raised. It is also worth asking how
other hypothesis testing methods can be included into
neural network training.

Acknowledgments

We thank Vladamir Pozdnyakov for insightful discussions,
especially regarding the multivariate test. This work was
supported by National Science Foundation (NSF) grants:
IIS-1320586, CCF-1514357, and IIS-1718738. J. Bi was
also supported by National Institutes of Health (NIH)
grants: R01DA037349 and K02DA043063 as well as
NSF grants: DBI-1356655 and IIS-1447711.

1017



References

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan.
arXiv preprint arXiv:1701.07875, 2017.
Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai. Better
mixing via deep representations. In International Confer-
ence on Machine Learning, pages 552–560, 2013a.
Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized
denoising auto-encoders as generative models. In Ad-
vances in Neural Information Processing Systems, pages
899–907, 2013b.
Y. Bengio, E. Laufer, G. Alain, and J. Yosinski. Deep
generative stochastic networks trainable by backprop. In
International Conference on Machine Learning, pages
226–234, 2014.
L. Bottou. Stochastic gradient learning in neural networks.
Proceedings of Neuro-Nımes, 91(8):0, 1991a.
L. Bottou. Une Approche Theorique de L’Apprentissage
Connexionniste et Applications A La Reconnaissance de
la Parole. PhD thesis, 1991b.
G. Casella and R. L. Berger. Statistical inference, vol-
ume 2. Duxbury Pacific Grove, CA, 2002.
J. De Wet et al. Asymptotic distributions of certain test
criteria of normality. South African Statistical Journal, 6
(2):135–149, 1972.
E. del Barrio, J. A. Cuesta-Albertos, C. Matrán, and J. M.
Rodrı́guez-Rodrı́guez. Tests of goodness of fit based on
the l2-wasserstein distance. Annals of Statistics, pages
1230–1239, 1999.
A. Dosovitskiy and T. Brox. Generating images with
perceptual similarity metrics based on deep networks.
In Advances in Neural Information Processing Systems,
pages 658–666, 2016.
G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Train-
ing generative neural networks via maximum mean dis-
crepancy optimization. arXiv preprint arXiv:1505.03906,
2015.
S. Fotopolous, J. Leslie, and M. Stephens. Errors in ap-
proximations for expected normal order statistics with an
application to goodness-of-fit. Technical report, Technical
Report, 1984.
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.
A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf,
and A. J. Smola. A kernel method for the two-sample-
problem. In Advances in neural information processing
systems, pages 513–520, 2007.
A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf,
and A. Smola. A kernel two-sample test. Journal of

Machine Learning Research, 13(Mar):723–773, 2012.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. C. Courville. Improved training of wasserstein gans.
In Advances in Neural Information Processing Systems,
pages 5769–5779, 2017.

N. Henze and B. Zirkler. A class of invariant consis-
tent tests for multivariate normality. Communications in
Statistics-Theory and Methods, 19(10):3595–3617, 1990.

D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

D. P. Kingma and M. Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

E. L. Lehmann and J. P. Romano. Testing statistical
hypotheses. Springer Science & Business Media, 2006.

J. Leslie, M. A. Stephens, and S. Fotopoulos. Asymptotic
distribution of the shapiro-wilk w for testing for normality.
The Annals of Statistics, pages 1497–1506, 1986.

C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Póczos.
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Abstract

Whereas optimizing deep neural networks us-
ing stochastic gradient descent has shown great
performances in practice, the rule for setting
step size (i.e. learning rate) of gradient de-
scent is not well studied. Although it appears
that some intriguing learning rate rules such
as ADAM (Kingma and Ba, 2014) have since
been developed, they concentrated on improv-
ing convergence, not on improving generaliza-
tion capabilities. Recently, the improved gen-
eralization property of the flat minima was re-
visited, and this research guides us towards
promising solutions to many current optimiza-
tion problems. In this paper, we analyze the
flatness of loss surfaces through the lens of ro-
bustness to input perturbations and advocate
that gradient descent should be guided to reach
flatter region of loss surfaces to achieve gen-
eralization. Finally, we suggest a learning rate
rule for escaping sharp regions of loss surfaces,
and we demonstrate the capacity of our ap-
proach by performing numerous experiments.

1 INTRODUCTION

Overfitting is a core issue in the domain of machine
learning. When it comes to deep learning, it becomes
even more important, because of its high dimensionality.
Owing to the huge number of parameters, deep learn-
ing models show some strange behaviors. For exam-
ple, deep models easily fit random labeling of training
data and furthermore training data replaced with random
noise input (Zhang et al., 2016). A peculiar phenomenon
called “fooling deep neural networks (DNNs)” was also
reported in (Nguyen et al., 2015; Szegedy et al., 2013).
These kinds of unexpected behavior might be a potential

risk when adopting DNNs for applications which require
high precision. Classic DNN regularization methods in-
clude placing a Gaussian or Laplacian prior on param-
eters, called weight decays (Figueiredo, 2003; Bishop,
2006). A weight decay assumes that the desirable solu-
tions of the parameters are placed near zero, and there-
fore does not consider solutions which may lie a bit far
from zero but possibly show better test performance. Nu-
merous interesting works are still being proposed, in-
cluding Stochastic Gradient Langevin Dynamics(SGLD)
(Raginsky et al., 2017), parametrization method for re-
ducing overfitting for genomics (Romero et al., 2016),
employing stochastic effects; randomly dropping fea-
tures (Hinton et al., 2012) or using stochastic depth
(Huang et al., 2016). Some interesting works analyzed
these stochastic effects in the view of a L2-regularization
(Wager et al., 2013) or an ensemble method (Singh et al.,
2016).

The concept of generalization via achieving flat min-
ima was first proposed in (Hochreiter et al., 1995), and
its importance has recently been revisited in the domain
of deep learning optimization (Chaudhari et al., 2016),
(Keskar et al., 2016). This another viewpoint of think-
ing generalization may become a promising direction for
investigating the weight space property of DNNs; more-
over, DNN loss surface property analysis has become a
popular issue (Sagun et al., 2016; Swirszcz et al., 2016;
Littwin and Wolf, 2016; Im et al., 2016). Recently,
achieving generalization via flat minima is investigated
in terms of optimizing PAC-Bayes bound (Dziugaite and
Roy, 2017a,b; Neyshabur et al., 2017).

A stochastic gradient descent (SGD) walks around loss
surfaces in DNNs, and its behavior can be controlled
by learning rates. It leads us to an interesting question:
“Is it possible to seek flatter valleys of loss surfaces by
controlling learning rate schedules?”. We show the re-
lation of learning rates and flatness of the loss surface,
then show that a nonmonotonic scheduling of learning
rates with an intermediate large learning rate stages are
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beneficial to discover flat minima and therefore leads to
improved generalization. On the scheduling of learning
rates, recent studies achieve great convergence rates on
training data, but they are prone to overfit, showing some
degradation of test performance. Therefore, even state-
of-the-art DNN models (Simonyan and Zisserman, 2014;
Szegedy et al., 2014; He et al., 2016) have continued to
use simple step or exponentially-decaying learning step
sizes. Thus, our work has great implications on improv-
ing the theory of learning rates. To the best of our knowl-
edge, this is the first work that pays substantial attention
to learning rates with regard to generalization and over-
fitting of deep neural networks. We cite selected note-
worthy work on learning rates; however, again note that
none of the work concerns what we consider through-
out the paper. Regarding fast convergence of given train-
ing data: RMSprop (Tieleman and Hinton, 2012), Ada-
grad (Duchi et al., 2011), Adadelta (Zeiler, 2012), Adam
(Kingma and Ba, 2014), and an interesting work that
searches for optimal adaptive learning rates without man-
ual tuning (Schaul et al., 2012).

In this paper, we begin with robustness in the input space,
which is a traditional way of explaining generalization.
Then, we find the relation of robustness in the input per-
turbation and that in weight perturbation to show why flat
minima work better (Section 2). Next, we explain how
large learning rates can guide gradient descent to flatter
losses (Section 3). Then, a simple nonmonotonic learn-
ing rate scheduling technique is introduced for adopt-
ing larger learning rates. Finally, our claims are demon-
strated by performing numerous experiments.

2 THE RELATION OF ROBUSTNESS
IN INPUT SPACE AND WEIGHT
SPACE

In this section, we show that generalization can be
achieved through robustness with respect to input per-
turbations, input perturbations can be equivalently trans-
ferred to weight perturbations, and therefore generaliza-
tion can be achieved through robustness with respect to
weight perturbations.

Generalization can be stated as the uniformity of the loss
function with respect to input change (See Supplemen-
tary Material A). Denote x ∈ Rn×1 as input, w ∈ Rd as
the vectorized weight of the model and L(w;x) as the
loss function of the neural network. Then, input pertur-
bations δx ∈ Rn×1 should result in a small change in the
loss function:

|L(w;x + δx)− L(w;x)| < ε,

A similar interpretation of generalization in DNNs can be
found in (Rifai et al., 2011), where the authors attempted
to reduce |f(w;x + δx) − f(w;x)| for f , which is an
auto-encoder.

Now, the generalization capability of the model is eval-
uated for the change of the loss function with respect to
perturbations on the weight vector δw.

Lemma 1. Let δx and δw be input and weight per-
turbations, respectively. For a single-layer neural net-
work, the input perturbations δx can be transferred to
the weight perturbations δw. More formally, suppose
we have weight matrix W ∈ Rm×n and weight per-
turbations δW ∈ Rm×n. Then for any W and x that
satisfy x 6= 0 and W 6= 0, there exists δW such that
(W + δW)x = W(x + δx). Consequently, |L(W +
δW;x)− L(W;x)| = |L(W;x + δx)− L(W;x)|.

Proof. The proof can be accomplished by finding δW

which satisfies

δWx = Wδx (1)

The following choice of δW satisfies (1):

δW =
Wδx

x>x
x> =

Wδx

‖x‖2
x> (2)

Proposition 1. Suppose |L(W+δW;x)−L(W;x)| <
ε holds for any δW such that

∥∥∥δW
∥∥∥
F
< δ, δ > 0 and

ε > 0. Then |L(W;x + δx) − L(W;x)| < ε holds for
any δx such that ‖δ

x‖
‖x‖ < δ

σmax(W) , where σmax(W) is
the maximum singular value of W.

Proof. For any δx such that ‖δ
x‖
‖x‖ < δ

σmax(W) , if we

choose δW as in (2), then from the result of Lemma 1,
we have

|L(W;x + δx)− L(W;x)|
= |L(W + δW;x)− L(W;x)| (3)

Then, corresponding bound on
∥∥∥δW

∥∥∥
F

can be derived
by

∥∥∥δW
∥∥∥
2

F
=
‖Wδx‖2

∥∥x>∥∥2

(x>x)
2 ≤ σ2

max(W) ‖δx‖2

‖x‖2
< δ2,

(4)

where we used
∥∥ab>∥∥2

F
= ‖a‖2 ‖b‖2 and ‖Wδx‖ ≤

σmax(W ) ‖δx‖.
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Figure 1: Conjectured illustration showing the relation of learning rate to loss surface. (a) A nonmonotonic scheduling
of learning rates with an intermediate large learning rate stages lets the model escape from the steep valleys with high
curvature. (b) Concept of what we call ‘wide valleys’. The scale of perturbation should be large enough so that the
loss surface can effectively cope with proper perturbations.

Therefore, we have

|L(W;x+δx)− L(W;x)|
= |L(W + δW;x)− L(W;x)| < ε (5)

According to Lemma 1, for an arbitrary input perturba-
tion, the first layer’s weight matrix can be perturbed so
that W(x + δx) = (W + δW)x, i.e. the first layer’s
responses are the same for the two cases. Thus, the re-
maining layer’s responses are also the same throughout,
and the results in Lemma 1 and Proposition 1 are applica-
ble to general DNNs. In Supplementary Material B, we
provide additional analysis that shows how to distribute
weight perturbations to all DNN layers to match the input
perturbations.

Now that we can transfer the perturbations of input to
those of weight, generalization can be interpreted on the
loss surface. Reduction of the effects on the loss function
with respect to perturbations on the input, requires us to
reduce the effects with respect to perturbations on the
weight vector. Finally, we propose the relation of the
loss surface and a measure for generalization as follows:

Conjecture 1. Given the same cost value, if the loss sur-
face is flatter, then it is more likely for neural networks to
be more generalized.

3 THE RELATION OF LEARNING
RATES AND GENERALIZATION

High-dimensional loss surfaces are regarded as non-
convex and extremely difficult to visualize. Let us con-
sider the SGD algorithm, which corresponds well to cur-
rent large-scale problems. Not only are there abundant
pathways that the SGD can follow, but the pathways are

also highly dependent on learning rates. We can expect
the loss surface of the model to have many locally convex
areas and the learning rates to largely affect the outcome
achieved by the algorithm. We justify this situation by
evaluating the stationary characteristic of the stochastic
gradients as the mean of the given values as follows:

L̄(w;x) := Exi∼D[L(w;xi)], (6)

where the training data xi ∈ Rn×1 are drawn from a
distribution D. We can fit a quadratic approximation of
the entire loss surface surrounding the local optimum w∗

using the positive definite Hessian matrix

L̄(w;x) ≈ L̄(w∗;x) +
1

2
(w −w∗)>H∗(w −w∗),

(7)

where H∗ is the mean (overD) of the Hessian of the loss
function at w∗. Let us denote γt as the learning rate at the
iteration t. Then, the gradient descent can be calculated
as follows:

wt+1 = wt − γt∇L̄(w;x) (8)
≈ wt − γtH∗(wt −w∗). (9)

wt+1 −w∗ ≈ (I − γtH∗)(wt −w∗). (10)

If we assume small and smooth changes of the learn-
ing rate during some epochs (equivalently, ts ≤ t ≤ tf
where |γt−γts | < εγ), providing constant γts , the weight
vector can be measured by both the optimal and the ini-
tial points:

wt ≈ w∗ + (I − γtsH∗)t−ts(wts −w∗) (11)

Then, we can strictly obtain the range of the learning rate
capable of enforcing the convergence. If H∗ is diagonal
as (Schaul et al., 2012), and hmax is the maximum value
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amongst the second-order gradients, the convergence cri-
teria are expressed by the condition1

|1− γtshmax| < 1, (12)

which is equivalent to

0 < hmax <
2

γts
, (13)

which provides the relationship of the learning rate and
the curvature of the surface necessary to converge. A
large learning rate has the critical requirement that the
curvature of the surface should be sufficiently low to
avoid diverging. Therefore, we anticipate that the SGD
having a large learning rate allows for locating a smooth
area.

Our remarks on the relationship between learning
rates and generalization address “which local minimum
should be chosen” as conceptually illustrated in Figure 1.
Recent studies on loss surfaces, such as (Dauphin et al.,
2014) and (Choromanska et al., 2015), both theoretically
and empirically discovered that local minima are more
likely to be located only where train losses are very close
to those of the global minimum. Based on these results,
we consider that the loss surface has basins of local min-
ima that occur only at the bottom of the loss surface, i.e.,
|L(w∗;x)−Lgmin| ≈ ε where Lgmin is the global min-
imum. When such a basin has a high curvature hmax
violating (13), w keeps drifting from w∗ because of (11)
until it reaches another basin with a smaller curvature, a
flatter region satisfying (13).

Additionally, once it reaches the entrance of a basin of
smaller curvature, it is more likely to converge to a flat-
ter local minimum. This is discussed in Section 6.3 im-
plying that the average slope of the loss surface depends
on the width of the basin’s entrance. Finally, we pro-
pose the following chain of effects showing how general-
ization can be achieved via nonmonotonic learning rates
scheduling:

High learning rate⇒ escape from high curvature val-
leys in weight space ⇒ smooth region in weight space
⇒ smooth region in input space⇒ improved general-
ization.

4 LEARNING RATES AND
STOCHASTIC VARIANCE

The major claim of our work is that learning rates should
be set large to escape sharp loss surface valleys. For set-
ting large learning rates, curvature of loss surfaces is the

1(12) is still a valid condition for a non-diagonal H∗ with
the maximum eigenvalue hmax

ത𝐿 𝐰𝒐𝒑𝒕; 𝐱

ത𝐿 𝐰𝒑𝒆𝒂𝒌; 𝐱
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ത𝐿 𝐰𝒊𝒏𝒊𝒕; 𝐱

Figure 2: An illustration of the occurrence of maximum
gradients. As the loss at random initial weights is signifi-
cantly large, maximum gradients are most likely to occur
near initial weights.

only constraint in plain gradient descent cases. However,
stochastic variance (Reddi et al., 2016) further interferes
with convergence in SGD cases. Stochastic variance is
an inherent variance of gradients caused by minibatch se-
lection in SGD. When stochastic variance is large, learn-
ing rates should be set smaller to prevent divergence.
Therefore, the maximum learning rate can be achieved
when the stochastic variance is small.

Stochastic variance is relatively large when the gradients
are large (Johnson and Zhang, 2013). Therefore, learning
rates should be set large after the occurrence of the max-
imum gradients. As in Figure 2, suppose the randomly
initialized weights are winit for which L̄(winit;x) will
be large (e.g. around log (nclass) in the case of cross-
entropy loss where nclass is the number of classes). wopt

is a local minimum that is closest to winit and wpeak is
a weights of local maximum which is the closest to wopt

and under the condition L̄(winit;x) � L̄(wpeak;x).
We constrain our claims under

|L̄(winit;x)− L̄(wopt;x)|
|L̄(wpeak;x)− L̄(wopt;x)| �

‖winit −wopt‖
‖wpeak −wopt‖

(14)

and consider other cases to be beyond the scope of this
paper. In practice, L̄(winit;x) � L̄(wpeak;x). There-
fore (14) is a probable condition. If we divide the loss
surfaces into subspaces of basins and assume Lipschitz
continuity, then we get the lower bound of maximum gra-
dients during the optimization gLB as follows.

gLB =
|L̄(winit;x)− L̄(wopt;x)|

‖winit −wopt‖
(15)

which makes maximum gradients mostly occur near the
initial weights.
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5 PEAK LEARNING STAGE :
NONMONOTONIC LEARNING
RATES SCHEDULING

To experimentally show that high learning rates are bene-
ficial to discovering flatter loss surfaces, we propose non-
monotonic learning rate schedules to utilize larger learn-
ing rates. Adopting larger learning rates presents the
risk of learning to diverge because of (13) and Section
4. Rather than placing the maximum learning rate at the
start of the learning, we place maximum learning rate in
the middle, so the initial stage can stabilize learning(i.e.
reduce stochastic variance) and prepare for the consec-
utive large learning rates. This learning rate schedule is
motivated by the neurological phenomenon called criti-
cal period or sensitive period—a period in which learn-
ing plasticity reaches its peak (Wiesel et al., 1963; Ge
et al., 2007). The plasticity gradually increases if biolog-
ical systems are prepared to learn, after which plasticity
is reduced over time. Considering the stabilization of
learning, it is not surprising that plasticity gradually and
slowly grows to a certain degree once it is switched on.
We tried two nonmonotonic learning rate schedules, γt
at normalized iteration t, as follows2:

• Gaussian Shape: γt = γmax ∗ exp(−(t−0.5)
2

σ2 ).

• Laplacian Shape: γt = γmax ∗ exp(− |t−0.5|λ ).

Here, γmax is the peak or maximum learning rate; γmin
is the final or minimum learning rate; and γstart is the
starting learning rate. Also, σ2 for the Gaussian-shaped
schedule and λ for the Laplacian-shaped schedule is de-
fined as−0.25 ∗ 1

ln(γmin/γmax)
and−0.5∗ 1

ln(γmin/γmax)
,

respectively. Because the function starts with a value
that is too small, we use a truncated function that is cut
at the appropriate offset, toffset, for faster convergence.
The offset toffset is 0.5−

√
−σ2 ln(γstart/γmax) in the

Gaussian schedules and 0.5 + λ ln(γstart/γmax) in the
Laplacian schedules.

The total number of iterations determines not only the
total number of weight updates but also the sampling
frequency from the continuous peak-shaped function.
The sampling frequency controls the smoothness of the
change in learning rate. By setting γmax larger than
the maximum learning rate of the classical learning rate
schedule within convergence, the local optimum can be
found in the flatter basin. We found both two peak
shaped learning rates worked well, but the Gaussian-
shaped learning rates worked slightly better than the

2For notation simplicity, the iteration t is normalized be-
tween 0 and 1.

Laplacian-shaped ones as shown in Figure 6. Therefore,
we used Gaussian-shaped scheduling for most of the ex-
periments. Note that a Gaussian-shaped curve is not the
only way but just one way to implement the proposed
peak learning stages.

SLOW START Because of (13) and stochastic vari-
ance of the SGD, learning rates that are too large cause
the learning to diverge. If we start with a too large learn-
ing rate, the learning either diverges or finds a poor crit-
ical point. Therefore, considering the stability of opti-
mization, learning should commence with a small learn-
ing rate. However, we verified experimentally that start-
ing with a learning rate that is too small does not lead to
success. Thus, adopting toffset in the learning rate rules
is required to eliminate the redundant initial phase.

DECAYING LEARNING RATES The peak learning
stage induces some divergence to escape from the sharp
minima. Thus, the learning rate must be decayed for
the final convergence. Considering conventional meth-
ods, this stage is intuitively acceptable. It is noteworthy
that most DNNs are optimized using SGD, which im-
plies loss surfaces are substantially fluctuating for each
minibatch. Therefore decaying stages are necessary for
achieving stability of optimization results.

6 EVALUATING THE FLATNESS OF
LOSS SURFACES

Evaluation of the effect of the learning rate inevitably
requires its behavior on the loss surface to be analyzed.
However, in neural networks, the loss surface is high-
dimensional so that optimization trajectory on the loss
function becomes difficult to visualize. First, we tracked
the local property of high-dimensional loss surfaces by
measuring the magnitude of the gradient. Throughout
this paper, the magnitude of the gradient refers to the 2-
norm of the gradient vector which represents the local
steepness of loss surfaces.

However, because the gradient (or Hessian) of the loss is
computed at a specified location in the weight space, its
application is limited to a local area of the loss surface.
Therefore, we visualize large-scale properties of loss sur-
faces by adopting the linear path experiments introduced
by (Goodfellow and Vinyals, 2014). The linear path ex-
periments measure the loss surface by sweeping the tra-
jectory between two points in high-dimensional spaces.
By visualizing a single cross section of the loss surface,
we indirectly measure its large-scale flatness.
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(a) (b) (c)
Figure 3: Linear path experiments in Section 6. (a) Loss versus weight perturbation along the line path, which
follows the trajectory between the final state weight and peak stage weight. The model trained using the proposed
learning rate clearly shows flatter loss surface. Each color represents different learning rates. Maximum and minimum
losses are also presented from different models trained by random initialization. (b) Loss versus randomly generated
input perturbation. Each transparent line represents different random noise directions, and the bold line indicates the
ensemble average of these transparent lines. The model trained using the proposed learning rate shows smaller loss
for the same perturbation, indicating that our method is more robust to input perturbations. (c) Loss versus input
perturbations in the directions of training to validation data. Each transparent line represents different perturbation
decided by the selection of nearby validation data. The bold line indicates the ensemble average of the transparent
lines. This also shows that the loss surface determined by our method is flatter with respect to input perturbations.

6.1 LOSS WITH RESPECT TO WEIGHT
PERTURBATIONS

Because our learning rate rule has a peak stage that is
not considered in existing methods, we analyzed its ef-
fects by performing linear path experiments which fol-
low the trajectory between the final state weight, wfinal,
and peak stage weight, wpeak. That is, we calculated
L(w;x), where w = wfinal + α

wpeak−wfinal

‖wpeak−wfinal‖ and
α > 0. We reported the flatness over a training set S.
Thus, the average of losses, 1

|S|
∑

x∈S L(w;x), was cal-
culated. We also tested weight perturbations in random
directions and fooling directions (Szegedy et al., 2013).

6.2 LOSS WITH RESPECT TO INPUT
PERTURBATIONS

We also applied the linear path experiments to input
spaces. Flatter loss surfaces can be easily expected to be
robust, regarding random perturbations. Thus, we calcu-
lated L(w;x), where x = xtrain + αxnoise, given that
xnoise is randomly generated from the Normal distribu-
tion and then normalized to ‖xnoise‖ = 1. Moreover,
what the generalization tries to achieve is higher accu-
racy on the validation data. Therefore, we performed
further experiments generating perturbations in the direc-
tion of validation data from training data. Thus, we cal-
culated L(w;x), where x = xtrain + α(xval − xtrain).
In this case, xval was randomly selected from the ten
closest validation candidates placed near xtrain for each
trial. Finally, the average of losses over training set is

calculated.

6.3 THE FLATNESS OF LOSS SURFACES

The notion of flatness of a loss surface can be defined
as follows. Let us consider a basin of a loss surface
with local minimum w∗i , and define level set SLi =
{w|L(w;x) = c} where c is the loss at the entrance of
the basin. Choose any w0 ∈ SLi , and then the average
slope of the surface along the line from w∗i to w0 can be
determined as c−ε

‖w∗
i−w0‖ , where ε is the loss at w∗i . If

this slope is small, then we call the loss surface is flat.

7 EXPERIMENTS
Here, we verify the roles of these peak-shaped learn-
ing rates on baseline convolutional neural networks
(Krizhevsky et al., 2012), which we call “small model”,
and (Springenberg et al., 2014), which we call “large
model” with the CIFAR-10 dataset. Hereinafter, all the
experimental results are based on these settings, except
for those in Section 7.2. We compared step decay, ratio-
nal decay (γt = γ0(1 + λt)−1), and RMSprop (Tiele-
man and Hinton, 2012) as adaptive step size schedules
and Gaussian-shaped schedules. For the “small model”,
the best validation error was 18.79 % with the baseline
step decaying learning rates. This result was reduced to
16.48% after adding our learning rate method. For the
“large model”, the validation error, 9.53%, of the base-
line method was reduced to 8.68%. We tried numerous
random settings of hyperparameters (e.g., total number
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Figure 4: Measuring effects of various weight perturbations (at t = 1) was introduced in Section 6. The x and y axes
indicate the loss of the model trained by Gaussian and stepped learning rates, respectively. Because all graphs are tilted
toward the y-axis, we can see that the nonmonotonic learning rate technique leads to flatter region of loss surfaces with
less loss for weight perturbation. (a) Random weight perturbations are added to the first layer. (b) Random weight
perturbations are added to the entire layers. (c) Weight perturbations along the fooling direction are added to the entire
layers.
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Figure 5: Examples of learning process of each learning rate schedule. (a), (b) and (c) :“small model” results, (d), (e)
and (f) :“large model” results. (a), (b) and (c), or (d), (e) and (f) show learning rates, gradient magnitude, train and
validation errors of each learning rate schedule (step, rational and Gaussian learning rates), respectively. All given
values are calculated after each epoch. For the Gaussian learning case, the magnitude of the gradient peaks at the
initial phase. Afterwards, it gradually decreases until the learning rate peaks. Other plots are provided for comparison.

of iterations, weight decay, momentum, and initial or
peak learning rate) on the “small model” and confirmed
that our methods are robust to selection of those settings
(see Figure 7). However, we would like to clarify some
experimental details on hyperparameters.

STARTING OFFSET This parameter can be ignored
if the training time does not matter. It is safe to set
toffset = 0. However, going through all these extremely
small learning rates is not necessary for achieving good
performance. toffset is controlled by γstart and setting
this value as maximum learning rate from the step decay-
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Figure 6: Comparisons of Gaussian-shaped and
Laplacian-shaped learning rates, in terms of final vali-
dation error at s = 1. Horizontal axis is the total num-
ber of epochs. “Continuous” refers to learning rates that
are updated at each iteration, whereas “Discrete” refers
learning rates that are only updated at the beginning of
each epoch.

ing scheduling is predominantly a good choice.

MAXIMUM LEARNING RATE Because we are
claiming that a large learning rate increases the gener-
alization capability of the model, it is necessary to in-
crease the peak learning rate more than three times of the
original maximum learning rate reported in the baseline
model. Three times the conventional maximum learning
rate is most often safe. However, one can further increase
γmax if enough epochs are taken.

MINIMUM LEARNING RATE Generally, using
learning rates that are too small presents the risk of over-
fitting. However, because we regularize for the smooth
loss surface in the peak learning stages, setting γmin
smaller than the conventional value does not harm the
performance. It sometimes results in further perfor-
mance improvement during trials. We experimentally
found that setting γmin = γmax/10000 works well.

THE NUMBER OF EPOCHS Our method spends
times on peak learning rate, which does not reduce train-
ing loss. Therefore, we were required to take more
epochs than the conventional schedule to get the best
performance. However, even with the same number
of epochs, our method can surpass other learning rate
schedules, as reported in Section 7.2. Furthermore, we
compared the performance of our method to the step-
decaying learning rate using the model ensemble in Table
1. To reproduce the same performance as our method, the
step decaying learning rate rule needs five model ensem-
bles. Therefore, whereas Gaussian learning rate requires
more epochs, our method is still practically efficient.

Figure 7: Prediction on test error with cost and `2-norm
of gradients.

ROBUSTNESS TO HYPERPARAMETER TUNING
We reported the experimental results with several values
for the peak learning rate, γmax, and the total number of
iterations in Figure 7. This clearly shows our method is
robust to variations in the hyperparameter. For a wide
range of γmax, from 0.002 to 0.015, the worst validation
error was 18.15%, which is still better than the baseline
error (18.79%).

7.1 EVALUATING FLATNESS OF THE LOSS
GUIDED BY PEAK LEARNING STAGES

Using the techniques presented in Section 6, we eval-
uated the flatness of the loss trained by peak learning
stages. Peak learning stage showed robustness with re-
spect to random input perturbations (Figure 3(b)) and
flatness in the direction of train to validation data (Fig-
ure 3(c)). In terms of weight perturbations, our method
showed flatness in the direction of wfinal to wpeak (Fig-
ure 3(a)). It also showed flatness along random direc-
tions (Figure 4(a), (b)) and even with fooling directions
(Figure 4(c)). Thus, our theory of flattening loss surface
using peak learning stages is well supported by numer-
ous experimental results.

Method Error (%)
Step learning rate Gaussian learning rate

1 CNN 18.79(360 epochs) 16.91(360 epochs)
2 CNNs 17.49 15.98
3 CNNs 17.13 15.37
4 CNNs 17.09 14.88
5 CNNs 16.75 14.89

Table 1: Model Ensemble.

7.2 PERFORMANCE EVALUATION

In what follows, all test error rates are evaluated at the
last epoch, not at the best validation epoch. The per-
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formance of our learning rate schedule(Gaussian-shaped
learning rates) is compared to the state-of-the-art models
(Zeiler and Fergus, 2013; Lin et al., 2013; Goodfellow
et al., 2013; Lee et al., 2014; He et al., 2016).

MNIST For MNIST, we set the γmax = 0.3, σ2 =
2∗0.082 (this value makes Gaussian-shape visually looks
good) of the Gaussian shaped-learning schedule with to-
tal 167 epochs. We considered that the training time is
not the issue in case of MNIST because training time
is significantly short. Throughout our proposed learning
rate policy, without any modification of loss functions
and architectures, the accuracy already surpasses the pre-
vious works. Table 2 summarizes the result.

METHOD ERROR (%)
CNN 0.53

STOCHASTIC POOLING 0.47
NIN 0.47

MAXOUT NETWORKS 0.45
DEEPLY SUPERVISED NET 0.39

NIN + ours 0.34
Table 2: Test error rates for the MNIST dataset (without
data augmentation).

CIFAR-10 and CIFAR-100 On the hyperparameter
tuning, we followed same settings as in MNIST, ex-
cept 720 total epochs for NIN (Lin et al., 2013), 270
epochs for ResNet (He et al., 2016). We preprocess the
images similar to (Lin et al., 2013; Zeiler and Fergus,
2013; Goodfellow et al., 2013). Color jittering is also
added in the ResNet experiment. For CIFAR-100, ex-
periments on DenseNet (Huang et al., 2017) and Wide
ResNet (Zagoruyko and Komodakis, 2016) are also per-
formed. In case of Wide ResNet, we exceptionally set
the peak learning rate twice as large as the start learn-
ing rate (this model adopts large dropout rate 0.3 and ex-
ceptionally small number of epochs, which interfere with
convergence). Table 3 summarizes the result.

ImageNet Because ImageNet classification requires
huge computational cost, we reduced shape of the
Gaussian-shaped learning rate scheduling by adopting
toffset. We tested with the model of (Krizhevsky et al.,
2012) and (Szegedy et al., 2014), which is well-reported
and widely used as baseline model. First, we tried learn-
ing rate schedules with toffset = 0, σ2 = 0.0128 and
total 270 epochs (Naive version). Then, to make train-
ing efficient, we adopt γstart = 0.01, γmax = 0.03 and
γmin = 0.000003, as suggested in the section 7. Finally,
we report validation errors in Table 4.

METHOD
ERROR (%)

CIFAR-10 CIFAR-100
MAXOUT NETWORKS 9.38 -

DROPCONNECT 9.32 -
NIN 8.81 -

DEEPLY SUPERVISED NET 8.22 -
NIN + APL UNITS 7.51 -

RESNET(110-DEPTH) 6.41±0.21 27.815±0.15
DENSENET-BC
(L=100, K=12) - 22.47

DENSENET-BC
(L=190, K=40) - 17.18

WIDE RESNET
(WRN-28-10-DROPOUT) - 18.44

NIN + ours 7.22 -
ResNet(110-depth) + ours 5.34±0.11 25.71±0.07

DenseNet-BC
(L=100, k=12) + ours - 22.17

DenseNet-BC
(L=190, k=40) + ours - 16.86

Wide ResNet
(WRN-28-10-dropout) + ours - 18.03

Table 3: Test error rates for CIFAR-10 and CIFAR-100.

METHOD ERROR (%)
ALEXNET(90 EPOCHS) 19.81

GOOGLENET(80 EPOCHS) 10.82
BATCHNORMALIZATION (80 EPOCHS) 9.05

AlexNet + ours(90 epochs) 19.67
AlexNet + ours(180 epochs) 19.06

AlexNet + ours(Naive version, 270 epochs) 18.89
GoogLeNet + ours(80 epochs) 10.39

BatchNormalization + ours(80 epochs) 8.68
Table 4: Validation error rates for the ImageNet dataset.

8 CONCLUSION

We showed why a flatter loss generalizes better in the
view of robustness. Then we presented the relation-
ship of flat losses and learning rates. Inspired by neu-
roscience, we further proposed peak learning stages for
improving high-dimensional DNNs. We thoroughly ana-
lyzed how such learning rates affect conventional deep
networks. To the best of our knowledge, the work
presented in this paper is the first work in this line
of research bridging the gap between the learning rate
scheduling and the regularization theory of deep learn-
ing.
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Abstract

A large number of objectives have been proposed
to train latent variable generative models. We
show that many of them are Lagrangian dual
functions of the same primal optimization prob-
lem. The primal problem optimizes the mutual
information between latent and visible variables,
subject to the constraints of accurately model-
ing the data distribution and performing correct
amortized inference. By choosing to maximize
or minimize mutual information, and choosing
different Lagrange multipliers, we obtain differ-
ent objectives including InfoGAN, ALI/BiGAN,
ALICE, CycleGAN, beta-VAE, adversarial au-
toencoders, AVB, AS-VAE and InfoVAE. Based
on this observation, we provide an exhaustive
characterization of the statistical and computa-
tional trade-offs made by all the training objec-
tives in this class of Lagrangian duals. Next,
we propose a dual optimization method where
we optimize model parameters as well as the La-
grange multipliers. This method achieves Pareto
optimal solutions in terms of optimizing informa-
tion and satisfying the constraints.

1 INTRODUCTION

Latent variable generative models are designed to accom-
plish a wide variety of tasks in computer vision (Rad-
ford et al., 2015; Kuleshov & Ermon, 2017), natural lan-
guage processing (Yang et al., 2017), reinforcement learn-
ing (Li et al., 2017b), compressed sensing Dhar et al.
(2018),etc. Prominent examples include Variational Au-
toencoders (VAE, Kingma & Welling (2013); Rezende
et al. (2014)), with extensions such as β-VAE (Higgins
et al., 2016), Adversarial Autoencoders (Makhzani et al.,
2015), and InfoVAE (Zhao et al., 2017); Generative Ad-
versarial Networks (Goodfellow et al., 2014), with exten-
sions such as ALI/BiGAN (Dumoulin et al., 2016a; Don-

ahue et al., 2016), InfoGAN (Chen et al., 2016a) and AL-
ICE (Li et al., 2017a); hybrid objectives such as CycleGAN
(Zhu et al., 2017), DiscoGAN (Kim et al., 2017), AVB
(Mescheder et al., 2017) and AS-VAE (Pu et al., 2017).
All these models attempt to fit an empirical data distribu-
tion, but differ in multiple ways: how they measure the
similarity between distributions; whether or not they allow
for efficient (amortized) inference; whether the latent vari-
ables should retain or discard information about the data;
and how the model is optimized, which can be likelihood-
based or likelihood-free (Mohamed & Lakshminarayanan,
2016; Grover et al., 2018).

In this paper, we generalize existing training objectives
for latent variable generative models. We show that all
the above training objectives can be viewed as Lagrangian
dual functions of a constrained optimization problem (pri-
mal problem). The primal problem optimizes over the pa-
rameters of a generative model and an (amortized) infer-
ence distribution. The optimization objective is to max-
imize or minimize mutual information between latent and
observed variables; the constraints (which we term “consis-
tency constraints”) are to accurately model the data distri-
bution and to perform correct amortized inference. By con-
sidering the Lagrangian dual function and different settings
of the Lagrange multipliers, we can obtain all the afore-
mentioned generative modeling training objectives. Sur-
prisingly, under mild assumptions, the aforementioned ob-
jectives can be linearly combined to produce every possible
primal objective/multipliers in this model family.

In Lagrangian dual optimization, the dual function is max-
imized with respect to the Lagrange multipliers, and mini-
mized with respect to the primal parameters. Under strong
duality, the optimal parameters found by this procedure
also solve the original primal problem. However, the afore-
mentioned objectives use fixed (rather than maximized)
multipliers. As a consequence, strong duality does not gen-
erally hold.

To overcome this problem, we propose a new learning ap-
proach where the Lagrange multipliers are also optimized.
We show that strong duality holds in distribution space,
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so this optimization procedure is guaranteed to optimize
the primal objective while satisfying the consistency con-
straints. As an application of this approach, we propose
Lagrangian VAE, a Lagrangian optimization algorithm for
the InfoVAE (Zhao et al., 2017) objective. Lagrangian VAE
can explicitly trade-off optimization of the primal objective
and consistency constraint satisfaction. In addition, both
theoretical properties (of Lagrangian optimization) and em-
pirical experiments show that solutions obtained by La-
grangian VAE Pareto dominate solutions obtained with In-
foVAE: Lagrangian VAE either obtains better mutual in-
formation or better constraint satisfaction, regardless of the
hyper-parameters used by either method.

2 BACKGROUND

We consider two groups of variables: observed variables
x ∈ X and latent variables z ∈ Z . Our algorithm receives
input distributions q(x), p(z) over x and z respectively.
Each distribution is either specified explicitly through a
tractable analytical expression such as N (0, I), or implic-
itly through a set of samples. For example, in latent variable
generative modeling of images (Kingma & Welling, 2013;
Goodfellow et al., 2014), X is the space of images, and Z
is the space of latent features. q(x) is a dataset of sam-
ple images, and p(z) is a simple “prior” distribution, e.g.,
a Gaussian; in unsupervised image translation (Zhu et al.,
2017), X and Z are both image spaces and q(x), p(z) are
sample images from two different domains (e.g., pictures
of horses and zebras).

The underlying joint distribution on (x, z) is not known,
and we are not given any sample from it. Our goal is
to nonetheless learn some model of the joint distribution
rmodel(x, z) with the following desiderata:

Desideratum 1. Matching Marginal The marginals of
rmodel(x, z) over x, z respectively match the provided dis-
tributions q(x), p(z).

Desideratum 2. Meaningful Relationship rmodel(x, z)
captures a meaningful relationship between x and z. For
example, in latent variable modeling of images, the latent
variables z should correspond to semantically meaningful
features describing the image x. In unsupervised image
translation, rmodel(x, z) should capture the “correct” pair-
ing between x and z.

We address desideratum 1 in this section, and desideratum
2 in section 3. The joint distribution rmodel(x, z) can be
represented in factorized form by chain rule. To do so,
we define conditional distribution families {pθp(x|z), θp ∈
Θp} and {qθq (z|x), θq ∈ Θq}. We require that for any z
we can both efficiently sample from pθp(x|z) and com-
pute log pθp(x|z), and similarly for qθq (z|x). For com-
pactness we use θ = (θp, θq) to denote the parameters of
both distributions pθ and qθ. We define the joint distribu-

tion rmodel(x, z) in two ways:

rmodel(x, z)
def
= pθ(x, z)

def
= p(z)pθ(x|z) (1)

and symmetrically

rmodel(x, z)
def
= qθ(x, z)

def
= q(x)qθ(z|x) (2)

Defining the model in two (redundant) ways seem unusual
but has significant computational advantages: given x we
can tractably sample z, and vice versa. For example, in la-
tent variable models, given observed data x we can sample
latent features from z ∼ qθ(z|x) (amortized inference),
and given latent feature z we can generate novel samples
from x ∼ pθ(x|z) (ancestral sampling).

If the two definitions (1), (2) are consistent, which we
define as pθ(x, z) = qθ(x, z), we automatically satisfy
desideratum 1:

rmodel(x) =

∫

z

rmodel(x, z)dz =

∫

z

qθ(x, z)dz = q(x)

rmodel(z) =

∫

x

rmodel(x, z)dx =

∫

x

pθ(x, z)dx = p(z)

Based on this observation, we can design objectives that en-
courage consistency. Many latent variable generative mod-
els fit into this framework. For example, variational au-
toencoders (VAE, Kingma & Welling (2013)) enforce con-
sistency by minimizing the KL divergence:

min
θ
DKL(qθ(x, z)‖pθ(x, z))

This minimization is equivalent to maximizing the evi-
dence lower bound (LELBO) (Kingma & Welling, 2013):

max
θ
−DKL(qθ(x, z)‖pθ(x, z)) (3)

= −Eqθ(x,z) [log(qθ(z|x)q(x))− log(pθ(x|z)p(z))]

= Eqθ(x,z)[log pθ(x|z)] +Hq(x)
−Eq(x) [DKL(qθ(z|x)‖p(z))]

≡ Eqθ(x,z)[log pθ(x|z)]
−Eq(x) [DKL(qθ(z|x)‖p(z))]

}
LELBO (4)

where Hq(x) is the entropy of q(x) and is a constant that
can be ignored for the purposes of optimization over model
parameters θ (denoted ≡).

As another example, BiGAN/ALI (Donahue et al., 2016;
Dumoulin et al., 2016b) use an adversarial discriminator to
approximately minimize the Jensen-Shannon divergence

min
θ
DJS(qθ(x, z)‖pθ(x, z))

Many other ways of enforcing consistency are possible.
Most generally, we can enforce consistency with a vector of
divergences D = [D1, . . . , Dm], where each Di takes two
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probability measures as input, and outputs a non-negative
value which is zero if and only if the two input measures are
the same. Examples of possible divergences include Maxi-
mum Mean Discrepancy (MMD, Gretton et al. (2007)), de-
notedDMMD; Wasserstein distance (Arjovsky et al., 2017),
denoted DW; f -divergences (Nowozin et al., 2016), de-
noted Df ; and Jensen-Shannon divergence (Goodfellow
et al., 2014), denoted DJS.

Each Di can be any divergence applied to a pair of prob-
ability measures. The pair of probability measures can be
defined over either both variables (x, z), a single variable
x, z, or conditional x|z, z|x. If the probability measure is
defined over a conditional x|z, z|x, we also take expecta-
tion over the conditioning variable with respect to pθ or qθ.
Some examples of Di are:

Eqθ(z)[DKL(qθ(x|z)‖pθ(x|z))]
DMMD(qθ(z)‖p(z))

DW(pθ(x, z)‖qθ(x, z))

Eq(x)[Df (qθ(z|x)‖pθ(z|x))]

DJS(q(x)‖pθ(x))

We only require that

Di = 0,∀i ∈ {1, . . . ,m} ⇐⇒ pθ(x, z) = qθ(x, z)

so D = 0 implies consistency. Note that each Di implic-
itly depends on the parameters θ through pθ and qθ, but
notationally we neglect this for simplicity.

Enforcing consistency pθ(x, z) = qθ(x, z) by D = 0
satisfies desideratum 1 (matching marginal), but does not
directly address desideratum 2 (meaningful relationship).
A large number of joint distributions can have the same
marginal distributions p(z) and q(x) (including ones where
z and x are independent), and only a small fraction of them
encode meaningful models.

3 GENERATIVE MODELING AS
CONSTRAINT OPTIMIZATION

To address desideratum 2, we modify the training objec-
tive and specify additional preferences among consistent
pθ(x, z) and qθ(x, z). Formally we solve the following
primal optimization problem

min
θ
f(θ) subject to D = 0 (5)

where f(θ) encodes our preferences over consistent distri-
butions, and depends on θ through pθ(x|z) and qθ(x|z).

An important preference is the mutual information between
x and z. Depending on the downstream application, we
may maximize mutual information (Chen et al., 2016b;
Zhao et al., 2017; Li et al., 2017a; Chen et al., 2016a) so
that the features (latent variables) z can capture as much

information as possible about x, or minimize mutual in-
formation (Zhao et al., 2017; Higgins et al., 2016; Tishby
& Zaslavsky, 2015; Shamir et al., 2010) to achieve com-
pression. To implement mutual information preference we
consider the following objective

fI(θ;α1, α2) = α1Iqθ (x; z) + α2Ipθ (x; z) (6)

where Ipθ (x; z) = Epθ(x,z)[log pθ(x, z)− log pθ(x)p(z)]
is the mutual information under pθ(x, z), and Iqθ (x; z) is
their mutual information under qθ(x, z).

The optimization problem in Eq.(5) with mutual informa-
tion f(θ) in Eq.(6) has the following Lagrangian dual func-
tion:

α1Iqθ (x; z) + α2Ipθ (x; z) + λ>D (7)

where λ = [λ1, . . . , λm] is a vector of Lagrange multi-
pliers, one for each of the m consistency constraints in
D = [D1, . . . , Dm].

In the next section, we will show that many existing train-
ing objectives for generative models minimize the La-
grangian dual in Equation 7 for some fixed α1, α2, D and
λ. However, dual optimization requires maximization over
the dual parameters λ, which should not be kept fixed. We
discuss dual optimization in Section 5.

4 GENERALIZING OBJECTIVES WITH
FIXED MULTIPLIERS

Several existing objectives for latent variable generative
models can be rewritten in the dual form of Equation 7 with
fixed Lagrange multipliers. We provide several examples
here and provide more in Appendix A.

VAE (Kingma & Welling, 2013) Per our discussion in
Section 2, the VAE training objective commonly written
as ELBO maximization in Eq.(4) is actually equivalent
to Equation 3. This is a dual form where we set D =
[DKL(qθ(x, z)‖pθ(x, z)], α1 = α2 = 0 and λ = 1. Be-
cause α1 = α2 = 0, this objective has no information pref-
erence, confirming previous observations that the learned
distribution can have high, low or zero mutual information
between x and z. Chen et al. (2016b); Zhao et al. (2017).

β-VAE (Higgins et al., 2016) The following objective
Lβ−VAE is proposed to learn disentangled features z:

−Eqθ(x,z)[log pθ(x|z)] + βEq(x) [DKL(qθ(z|x)‖p(z))]

This is equivalent to the following dual form:

Lβ−VAE

≡ Eqθ(x,z)

[
log

qθ(x|z)q(x)

pθ(x|z)qθ(x|z)
+ β log

qθ(z|x)qθ(z)

qθ(z)p(z)

]

≡ (β − 1)Iqθ (x; z) (primal)
+βDKL(qθ(z)‖p(z))) (consistency)
+Eqθ(z)[DKL(qθ(x|z)‖pθ(x|z))]
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f(p, q) Likelihood Based Unary Likelihood Free Binary Likelihood Free
0 VAE (Kingma & Welling, 2013) VAE-GAN (Makhzani et al., 2015) ALI (Dumoulin et al., 2016b)

α1Iq β-VAE (Higgins et al., 2016) InfoVAE (Zhao et al., 2017) ALICE (Li et al., 2017a)
α2Ip VMI (Barber & Agakov, 2003) InfoGAN (Chen et al., 2016a) -

α1Iq + α2Ip - CycleGAN (Zhu et al., 2017) AS-VAE (Pu et al., 2017)

Table 1: For each choice of α and computability class (Definition 2) we list the corresponding existing model. Several
other objectives are also Lagrangian duals, but they are not listed because they are similar to models in the table. These
objectives include DiscoGAN (Kim et al., 2017), BiGAN (Donahue et al., 2016), AAE (Makhzani et al., 2015), WAE
(Tolstikhin et al., 2017).

where we use ≡ to denote “equal up to a value that does
not depend on θ”. In this case,

α1 = β − 1, α2 = 0

λ = [β, 1]

D = [KL(qθ(z)‖p(z))),Eqθ(z)[DKL(qθ(x|z)‖pθ(x|z))]

When α1 > 0 or equivalently β > 1, there is an incentive
to minimize mutual information between x and z.

InfoGAN (Chen et al., 2016a) As another example, the
InfoGAN objective 1 :

LInfoGAN = DJS(q(x)‖pθ(x))− Epθ(x,z)[log qθ(z|x)]

is equivalent to the following dual form:

LInfoGAN ≡ Epθ(x,z)[− log pθ(z|x) + log p(z)

+ log pθ(z|x)− log qθ(z|x)] +DJS(q(x)‖pθ(x))

≡ −Ipθ (x; z) (primal)
+Epθ(x)[DKL(pθ(z|x)‖qθ(z|x))] (consistency)
+DJS(q(x)‖pθ(x))

In this case α1 = 0, and α2 = −1 < 0, the model maxi-
mizes mutual information between x and z.

In fact, all objectives in Table 1 belong to this class2.
Derivations for additional models can be found in Ap-
pendix A.

4.1 ENUMERATION OF ALL OBJECTIVES

The Lagrangian dual form of an objective reveals its mu-
tual information preference (α1, α2), type of consistency
constraints (D), and weighting of the constraints (λ). This
suggests that the Lagrangian dual perspective may unify
many existing training objectives. We wish to identify and
categorize all objectives that have Lagrangian dual form as
in Eq.7). However, this has two technical difficulties that
we proceed to resolve.

1For conciseness we use z to denote structured latent vari-
ables, which is represented as c in (Chen et al., 2016a).

2Variational Mutual Information Maximization (VMI) is not
truly a Lagrangian dual because it does not enforce consistency
constraints (λ = 0).

1. Equivalence: Many objectives appear different, but
are actually identical for the purposes of optimization (as
we have shown). To handle this we characterize “equiva-
lent objectives” with a set of pre-specified transformations.

Definition 1. Equivalence (Informal): An objective L is
equivalent to L′ when there exists a constant C, so that for
all parameters θ, L(θ) = L′(θ) + C. We denote this as
L ≡ L′.
L and L′ are elementary equivalent if L′ can be obtained
fromL by applying chain rule or Bayes rule to probabilities
in L, and addition/subtraction of constants Eq(x)[log q(x)]
and Ep(z)[log p(z)].

A more formal but verbose definition is in Appendix B,
Definition 1.

Elementary equivalences define simple yet flexible trans-
formations for deriving equivalent objectives. For exam-
ple, all the transformations in Section 4 (VAE, β-VAE and
InfoGAN) and Appendix A are elementary. This implies
that all objectives in Table 1 are elementary equivalent to a
Lagrangian dual function in Eq.(7) . However, these trans-
formations are not exhaustive. For example, tranforming
Epθ [g(x)] into Eqθ [g(x)pθ(x)/qθ(x)] via importance sam-
pling is not accounted for, hence the two objectives are not
considered to be elementary equivalent.

2. Optimization Difficulty: Some objectives are easier to
evaluate/optimize than others. For example, variational au-
toencoder training is robust and stable, adversarial training
is less stable and requires careful hyper-parameter selec-
tion (Kodali et al., 2018), and direct optimization of the
log-likelihood log pθ(x) is very difficult for latent variable
models and almost never used Grover et al. (2018).

To assign a “hardness score” to each objective, we first
group the “terms” (an objective is a sum of terms) from
easy to hard to optimize. An objective belongs to a “hard-
ness class” if it cannot be transformed into an objective
with easier terms. This is formalized below:

Definition 2. Effective Optimization: We define
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1. Likelihood-based terms as the following set

T1 = {Epθ(x,z)[log pθ(x|z)],Epθ(x,z)[log pθ(x, z)],

Epθ(z)[log p(z)],Epθ(x,z)[log qθ(z|x)]

Eqθ(x,z)[log pθ(x|z)],Eqθ(x,z)[log pθ(x, z)],

Eqθ(z)[log p(z)],Eqθ(x,z)[log qθ(z|x)]}

2. Unary likelihood-free terms as the following set

T2 = {D(q(x)‖pθ(x)), D(qθ(z)‖p(z))}

3. Binary likelihood-free terms as the following set

T3 = {D(qθ(x, z)‖pθ(x, z))}

where each D can be f -divergence, Jensen Shannon diver-
gence, Wasserstein distance, or Maximum Mean Discrep-
ancy. An objective L is likelihood-based computable if L is
elementary equivalent to some L′ that is a linear combina-
tion of elements in T1; unary likelihood-free computable if
L′ is a linear combination of elements in T1 ∪ T2; binary
likelihood-free computable if L′ is a linear combination of
elements in T1 ∪ T2 ∪ T3.

The rationale of this categorization is that elements in
T1 can be estimated by Monte-Carlo estimators and opti-
mized by stochastic gradient descent effectively in practice
(with low bias and variance) (Kingma & Welling, 2013;
Rezende et al., 2014). In contrast, elements in T2 are op-
timized by likelihood-free approaches such as adversarial
training (Goodfellow et al., 2014) or kernelized methods
such as MMD (Gretton et al., 2007) or Stein variational
gradient (Liu & Wang, 2016). These optimization pro-
cedures are known to suffer from stability problems (Ar-
jovsky et al., 2017) or cannot handle complex distributions
in high dimensions (Ramdas et al., 2015). Finally, elements
in T3 are over both x and z, and they are empirically shown
to be even more difficult to optimize (Li et al., 2017a). We
do not include terms such as Eq(x)[log pθ(x)] because they
are seldom feasible to compute or optimize for latent vari-
able generative models.

Now we are able to fully characterize all Lagrangian dual
objectives in Eq.( 7) that are likelihood-based / unary like-
lihood free / binary likelihood free computable in Table 1.

In addition, Table 1 contains essentially all possible models
for each optimization difficulty class in Definition 2. This is
shown in the following theorem (informal, formal version
and proof in Appendix B, Theorem 3,4,5)
Theorem 1. Closure theorem (Informal): Denote a La-
grangian objectives in the form of Equation 7 where all
divergences are DKL a KL Lagrangian objective. Under
elementary equivalence defined in Definition 1,

1) Any KL Lagrangian objective that is elementary equiv-
alent to a likelihood based computable objective is equiva-
lent to a linear combination of VMI and β-VAE.

2) Any KL Lagrangian objective that is elementary equiv-
alent to a unary likelihood computable objective is equiva-
lent to a linear combination of InfoVAE and InfoGAN.

3) Any KL Lagrangian objective that is elementary equiva-
lent to a binary likelihood computable objective is equiva-
lent to a linear combination of ALICE, InfoVAE and Info-
GAN.

We also argue in the Appendix (without formal proof) that
this theorem holds for other divergences including DMMD,
DW, Df or DJS.

Intuitively, this suggests a rather negative result: if a new
latent variable model training objective contains mutual in-
formation preference and consistency constraints (defined
through DKL, DMMD, DW, Df or DJS), and this objec-
tive can be effectively optimized as in Definition 1 and
Definition 2, then this objective is a linear combination
of existing objectives. Our limitation is that we are re-
stricted to elementary transformations and the set of terms
defined in Definition 2. To derive new training objectives,
we should consider new transformations, non-linear com-
binations and/or new terms.

5 DUAL OPTIMIZATION FOR LATENT
VARIABLE GENRATIVE MODELS

While existing objectives for latent variable generative
models have dual form in Equation 7, they are not solving
the dual problem exactly because the Lagrange multipliers
λ are predetermined instead of optimized. In particular,
if we can show strong duality, the optimal solution to the
dual is also an optimal solution to the primal (Boyd & Van-
denberghe, 2004). However if the Lagrange multipliers are
fixed, this property is lost, and the parameters θ obtained
via dual optimization may be suboptimal for minθ f(θ), or
violate the consistency conditions D = 0.

5.1 RELAXATION OF CONSISTENCY
CONSTRAINTS

This observation motivates us to directly solve the dual op-
timization problem where we also optimize the Lagrange
multipliers.

max
λ≥0

min
θ
f(θ) + λTD

Unfortunately, this is usually impractical because the con-
sistency constrains are difficult to satisfy when the model
has finite capacity, so in practice the primal optimization
problem is actually infeasible and λ will be optimized to
+∞.

One approach to this problem is to use relaxed consistency
constraints, where compared to Eq.(5) we require consis-
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tency up to some error ε > 0:

min
θ
f(θ) subject to D ≤ ε (8)

For a sufficiently large ε, the problem is feasible. This has
the corresponding dual problem:

max
λ≥0

min
θ
f(θ) + λ>(D − ε) (9)

Whenλ is constant (instead of maximized), Equation 9 still
reduces to existing latent variable generative modeling ob-
jectives since λ>ε is a constant, so the objective simply
becomes

min
θ
f(θ) + λTD + constant

In contrast, we propose to find λ∗, θ∗ that optimize the La-
grangian dual in Eq.(9). If we additionally have strong du-
ality, θ∗ is also the optimal solution to the primal problem
in Eq.(8).

5.2 STRONG DUALITY WITH MUTUAL
INFORMATION OBJECTIVES

This section aims to show that strong duality for Eq.(8)
holds in distribution space if we replace mutual informa-
tions in f with upper and lower bounds. We prove this via
Slater’s condition (Boyd & Vandenberghe, 2004), which
has three requirements: 1. ∀D ∈ D, D is convex in θ;
2. f(θ) is convex for θ ∈ Θ; 3. the problem is strictly
feasible: ∃θ s.t. D < ε. We propose weak conditions to
satisfy all three in distribution space, so strong duality is
guaranteed.

For simplicity we focus on discrete X and Z . We param-
eterize qθ(z|x) with a parameter matrix θq ∈ R|X ||Z| (we
add the superscript q to distinguish parameters of qθ from
that of pθ) where

qθ(z = j|x = i) = θqij ,∀i ∈ X , j ∈ Z (10)

The only restriction is that θq must correspond to valid
conditional distributions. More formally, we require that
θq ∈ Θq , where

Θq =



θ

q ∈ R|X ||Z| s.t. 0 ≤ θqij ≤ 1,
∑

j

θqij = 1




(11)

Similarly we can define θp ∈ Θp for pθ. We still use

θ = [θq, θp], Θ = Θq ×Θp (12)

to denote both sets of parameters.

1) Constraints D ∈ D are convex: We show that some
divergences used in existing models are convex in distribu-
tion space.

Lemma 1 (Convex Constraints (Informal)). DKL, DMMD,
or Df over any marginal distributions on x or z or joint
distributions on (x, z) are convex with respect to θ ∈ Θ as
defined in Eq.(12).

Therefore if one only uses these convex divergences, the
first requirement for Slater’s condition is satisfied.

2) Convex Bounds for f(θ): f(θ) = α1Iqθ (x; z) +
α2Ipθ (x; z) is not itself guaranteed to be convex in general.
However we observe that mutual information has a convex
upper bound, and a concave lower bound, which we denote
as Iqθ and Iqθ respectively:

Iqθ (x; z) (13)

= Eq(x)[DKL(qθ(z|x)‖p(z))] convex upper bound Iqθ
−DKL(qθ(z)‖p(z)) bound gap Iqθ − Iqθ

= Eqθ(x,z)[log pθ(x|z)] +Hq(x) concave lower bound Iqθ
+Ep(z)DKL(q(x|z)‖pθ(x|z)) bound gap Iqθ − Iqθ

The convexity/concavity of these bounds is shown by the
following lemma, which we prove in the appendix
Lemma 2 (Convex/Concave Bounds). Iqθ is convex with
respect to θ ∈ Θ as defined in Eq.(12), and Iqθ is concave
with respect to θ ∈ Θ.

A desirable property of these bounds is that if we look at
the bound gaps (difference between bound and true value)
in Eq.(13), they are 0 if the consistency constraint is satis-
fied (i.e., pθ(x, z) = qθ(x, z)). They will be tight (bound
gaps are small) when consistency constraints are approx-
imately satisfied (i.e., pθ(x, z) ≈ qθ(x, z)). In addition
we also denote identical bounds for Ipθ as Ipθ and Ipθ
Similar bounds for mutual information have been discussed
in (Alemi et al., 2017).

3) Strict Feasibility: the optimization problem has non
empty feasible set, which we show in the following lemma:
Lemma 3 (Strict Feasibility). For discrete X and Z , and
ε > 0, ∃θ ∈ Θ such that D < ε.

Therefore we have shown that for convex/concave upper
and lower bounds on f , all three of Slater’s conditions are
satisfied, so strong duality holds. We summarize this in the
following theorem.
Theorem 2 (Strong Duality). If D contains only diver-
gences in Lemma 1, then for all ε > 0:

If α1, α2 ≥ 0 strong duality holds for the following prob-
lems:

min
θ∈Θ

α1Iqθ + α2Ipθ subject to D ≤ ε (14)

If α1, α2 ≤ 0, strong duality holds for the following prob-
lem

min
θ∈Θ

α1Iqθ + α2Ipθ subject to D ≤ ε (15)
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Algorithm 1 Dual Optimization for Latent Variable Gen-
erative Models

Input: Analytical form for p(z) and samples from q(x);
constraints D; α1, α2 that specify maximization / mini-
mization of mutual information; ε > 0 which specifies
the strength of constraints; step size ρθ, ρλ for θ and λ.
Output: θ (parameters for pθ(x|z) and qθ(z|x)).

Initialize θ randomly
Initialize the Lagrange multipliers λ := 1
if α1, α2 > 0 then
f(θ)← α1Iqθ + α2Ipθ

else
f(θ)← α1Iqθ + α2Ipθ

end if
for t = 0, 1, 2, . . . do
θ ← θ − ρθ(∇θf(θ) + λ>∇θD)
λ← λ+ ρλ(D − ε)

end for

5.3 DUAL OPTIMIZATION

Because the problem is convex in distribution space and
satisfies Slater’s condition, the θ∗ that achieves the saddle
point

λ?, θ? = arg maxλ≥0arg minθf(θ) + λT (D − ε) (16)

is also a solution to the original optimization problem
Eq.(8) (Boyd & Vandenberghe, 2004)(Chapter 5.4). In ad-
dition the max-min problem Eq.(16) is convex with respect
to θ and concave (linear) with respect to λ, so one can
apply iterative gradient descent/ascent over θ (minimize)
and λ (maximize) and achieve stable convergence to saddle
point (Holding & Lestas, 2014). We describe the iterative
algorithm in Algorithm 1.

In practice, we do not optimize over distribution space and
{pθ(x|z)}, {qθ(z|x)} are some highly complex and non-
convex families of functions. We show in the experimental
section that this scheme is stable and effective despite non-
convexity.

6 LAGRANGIAN VAE

In this section we consider a particular instantiation of
the general dual problem proposed in the previous section.
Consider the following primal problem, with α1 ∈ R:

min
θ
α1Iqθ (x; z) (17)

subject to DKL(qθ(x, z)‖pθ(x, z))) ≤ ε1
DMMD(qθ(z)‖p(z)) ≤ ε2

For mutual information minimization / maximization, we
respectively replace the (possibly non-convex) mutual in-
formation by upper bound Iqθ if α1 ≥ 0 and lower bound

Iqθ if α1 < 0. The corresponding dual optimization prob-
lem can be written as:

max
λ≥0

min
θ

{
α1Iqθ + λ>(DInfoVAE − ε), α1 ≥ 0
α1Iqθ + λ>(DInfoVAE − ε), α1 < 0

(18)

where ε = [ε1, ε2], λ = [λ1, λ2] and

DInfoVAE = [DKL(qθ(x, z)‖pθ(x, z))),

DMMD(qθ(z)‖p(z))]

We call the objective in 18 Lagrangian (Info)VAE (Lag-
VAE). Note that setting a constant λ for the dual function
recovers the InfoVAE objective (Zhao et al., 2017). By
Theorem 2 strong duality holds for this problem and finding
the max-min saddle point of LagVAE in Eq.(18) is identi-
cal to finding the optimal solution to original problem of
Eq.(17).

The final issue is choosing the ε hyper-parameters so that
the constraints are feasible. This is non-trivial since select-
ing ε that describe feasible constraints depends on the task
and model structure. We introduce a general strategy that
is effective in all of our experiments. First we learn a pa-
rameter θ∗ that satisfies the consistency constraints “as well
as possible” without considering mutual information max-
imization/minimization. Formally this is achieved by the
following optimization (for any choice of λ > 0),

θ∗ = arg min
θ

λTDInfoVAE (19)

This is the original training objective for InfoVAE with
α1 = 0 and can be optimized by

min
θ
λTDInfoVAE

=λ1DKL(qθ(x, z)‖pθ(x, z))) + λ2DMMD(qθ(z)‖p(z))

≡λ1LELBO(θ) + λ2DMMD(qθ(z)‖p(z)) (20)

where LELBO(θ) is the evidence lower bound defined in
Eq.(4). Because we only need a rough estimate of how
well consistency constraints can be satisfied, the selection
of weighing λ1 and λ2 is unimportant. The recommenda-
tion in (Zhao et al., 2017) works well in all our experiments
(λ1 = 1, λ2 = 100).

Now we introduce a “slack” to specify how much we are
willing to tolerate consistency error to achieve higher/lower
mutual information. Formally, we define ε̂ as the diver-
gences DInfoVAE evaluated at the above θ∗. Under this ε̂
the following constraint must be feasible (because θ∗ is a
solution):

DInfoVAE ≤ ε̂
Now we can safely set ε = γ + ε̂, where γ > 0, and the
constraint

DInfoVAE ≤ ε
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must still be feasible (and strictly feasible). γ has a very
nice intuitive interpretation: it is the “slack” that we are
willing to accept. Compared to tuning α1 and λ for Info-
VAE, tuning γ is much more interpretable: we can antici-
pate the final consistency error before training.

Another practical consideration is that the one of the con-
straints DKL(qθ(x, z)‖pθ(x, z)) is difficult to estimate.
However, we have

DKL(qθ(x, z)‖pθ(x, z)) = −LELBO −Hq(x)

where LELBO is again, the evidence lower bound in Eq.(4)
of Section 2, and Hq(x) is the entropy of the true distri-
bution q(x). LELBO is empirically easy to estimate, and
Hq(x) is a constant irrelevant to the optimization prob-
lem. The optimization problem is identical if we replacing
the more difficult constraintDKL(qθ(x, z)‖pθ(x, z)) ≤ ε1
with the easier-to-optimize/estimate constraint−LELBO ≤
ε′1 (where ε′1 = ε1 +Hq(x)). In addition, ε′1 can be selected
by the technique in the previous paragraph.

7 EXPERIMENTS

We compare the performance of LagVAE, where we learn
λ automatically, and InfoVAE, where we set λ in advance
(as hyperparameters). Our primal problem is to find solu-
tions that maximize / minimize mutual information under
the consistency constraints. Therefore, we consider two
performance metrics:

• Iq(x, z) the mutual information between x and z. We
can estimate the mutual information via the identity:

Iq(x; z) = Eqθ(x,z) [log qθ(z|x)− log qθ(z)] (21)

where we approximate qθ(z) with a kernel density es-
timator.

• the consistency divergences DKL(qθ(x, z)‖pθ(x, z))
and DMMD(qθ(z)‖p(z)). As stated in Section 6, we
replace DKL(qθ(x, z)‖pθ(x, z)) with the evidence
lower bound LELBO.

In the remainder of this section we demonstrate the follow-
ing empirical observations:

• LagVAE reliably maximizes/minimizes mutual infor-
mation without violating the consistency constraints.
InfoVAE, on the other hand, makes unpredictable and
task-specific trade-offs between mutual information
and consistency.

• LagVAE is Pareto optimal, as no InfoVAE hyper-
parameter choice is able to achieve both better mu-
tual information and better consistency (measured by
DMMD and LELBO) than LagVAE.

7.1 VERIFICATION OF DUAL OPTIMIZATION

We first verify that LagVAE reliably maximizes/minimizes
mutual information subject to consistency constraints. We
train LagVAE on MNIST according to Algorithm 1. ε is se-
lected according to Section 6, where we first compute ε̂ =
(ε̂1, ε̂2) without information maximization/minimization
by Eq.(20). Next we choose slack variables γ = (γ1, γ2),
and set ε = ε̂ + γ. For γ1 we explore values from 0.1 to
4.0, and for γ2 we use the fixed value 0.5ε̂2.

The results are shown in Figure 1, where mutual informa-
tion is estimated according to Eq.(21). For any given slack
γ, setting α1 to positive values and negative values re-
spectively minimizes or maximizes the mutual information
within the feasible set D ≤ ε. In particular, the absolute
value of α1 does not affect the outcome, and only the sign
matters. This is consistent with the expected behavior (Fig-
ure 1 Left) where the model finds the maximum/minimum
mutual information solution within the feasible set.

7.2 VERIFICATION OF PARETO
IMPROVEMENTS

In this section we verify Pareto optimality of LagVAE.
We evaluate LagVAE and InfoVAE on the MNIST dataset
with a wide variety of hyper-parameters. For LagVAE,
we set ε1 for LELBO to be {83, 84, . . . , 95} and ε2 for
DMMD to be 0.0005. For InfoVAE, we set α ∈ {1,−1},
λ1 ∈ {1, 2, 5, 10} and λ2 ∈ {1000, 2000, 5000, 10000} 3.

Figure 2 plots the mutual information and LELBO achieved
by both methods. Each point is the outcome of one hyper-
parameter choice of LagVAE / InfoVAE. Regardless of the
hyper-parameter choice of both models, no InfoVAE hyper-
parameter lead to better performance on both mutual infor-
mation and LELBO on the training set. This is expected be-
cause LagVAE always finds the maximum/minimum mu-
tual information solution out of all solutions with given
consistency value. The same trend is true even on the test
set, indicating that it is not an outcome of over-fitting.

8 CONCLUSION

Many existing objectives for latent variable generative
modeling are Lagrangian dual functions of the same type
of constrained optimization problem with fixed Lagrangian
multipliers. This allows us to explore their statistical and
computational trade-offs, and characterize all models in
this class. Moreover, we propose a practical dual optimiza-
tion method that optimizes both the Lagrange multipliers
and the model parameters, allowing us to specify inter-
pretable constraints and achieve Pareto-optimality empir-
ically.

3Code for this set of experiments is available at https://
github.com/ermongroup/lagvae
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Feasible Set

minimize mutual information

maximize mutual information

D > εD ≤ ε

Figure 1: Left: Effect of α1 and γ1 on the primal objective (mutual information). When α1 is positive we minimize
mutual information within the feasible set, and when α1 is negative we maximize mutual information. When α1 is zero
the preference is undetermined, and mutual information varies depending on initialization. Note that mutual information
does not depend on the absolute value of α1 but only on its sign. Right: An illustration of this effect. Lagrangian dual
optimization finds the maximum/minimum mutual information solution in the feasible set D ≤ ε.

Figure 2: LagVAE Pareto dominates InfoVAE with respect
to Mutual information and consistency (LELBO values) on
train (top) and test (bottom) set. Each point is the out-
come of one hyper-parameter choice for LagVAE / Info-
VAE. When we maximize mutual information (α1 < 0),
for any given LELBO value, LagVAE always achieve simi-
lar or larger mutual information; when we minimize mutual
information (α1 > 0), for any given ELBO value, LagVAE
always achieve similar or smaller mutual information.

In this work, we only considered Lagrangian (Info)VAE,
but the method is generally applicable to other Lagrangian
dual objectives. In addition we only considered mutual in-
formation preference. Exploring different preferences is a
promising future directions.
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Abstract

Automatic design via Bayesian optimization
holds great promise given the constant increase
of available data across domains. However, it
faces difficulties from high-dimensional, poten-
tially discrete, search spaces. We propose to
probabilistically embed inputs into a lower di-
mensional, continuous latent space, where we
perform gradient-based optimization guided by
a Gaussian process. Building on variational au-
toncoders, we use both labeled and unlabeled
data to guide the encoding and increase its ac-
curacy. In addition, we propose an adversar-
ial extension to render the latent representa-
tion invariant with respect to specific design
attributes, which allows us to transfer these at-
tributes across structures. We apply the frame-
work both to a functional-protein dataset and
to perform optimization of drag coefficients di-
rectly over high-dimensional shapes without in-
corporating domain knowledge or handcrafted
features.

1 INTRODUCTION

Developing enhanced designs is an overarching goal
across engineering disciplines ranging from the optimiza-
tion of planes in aeronautics (Simpson et al., 2001) and
batteries for electric vehicles (Grover et al., 2018) to the
development of proteins in bioengineering (Damborsky
and Brezovsky, 2014). The different optimization ef-
forts often face the same challenges in form of search-
space complexity and costly design evaluations which ren-
der naive exhaustive search infeasible and make human-
expert knowledge a key success factor. The ever increas-
ing amounts of experimental data have to be considered,
however, pose new challenges to manual analysis.

Increasing amounts of data open new opportunities for
statistical design approaches. In this context Bayesian op-
timization has emerged as a data-driven tool for automated
design optimization (Shahriari et al., 2016). Bayesian op-
timization is a model-based approach with a prescribed
prior belief on the functional score of designs. Given data,
we sequentially update this belief and optimize a surrogate
function to our true objective. The choice of this surrogate
function thereby trades exploration vs. exploitation in the
design space.

By leveraging the problem structure, Bayesian optimiza-
tion can be much more sample efficient than random
search (Snoek et al., 2012b), but it is not immune to
the curse of dimensionality. Signal is often sparse in
high-dimensional input spaces of many real-world design
problems. In addition, desirable target applications like
drug or material design involve optimization over dis-
crete structures, where even optimizing the model-based
surrogate is difficult.

We target the input-space challenges of high-
dimensionality and discrete designs by combining
Bayesian optimization with deep generative modeling.
Specifically, we built on the architecture by Gómez-
Bombarelli et al. (2016a; 2016b) combining a variational
autoencoder (VAE) and Gaussian process (GP) regression.
VAEs (Kingma and Welling, 2013) are probabilistic mod-
els which map high-dimensional, possibly discrete inputs
to a lower dimensional continuous space. The encoder
consists of a neural network whose feature-construction
ability is leveraged for dimensionality reduction. We
learn a GP on top of the latent space as its predictions
enjoy uncertainty estimates such that we can explore
the design space based on a confidence measure. At the
same time, the continuous space now allows us to use
gradient-based methods for optimization.

In this work we make the following contributions: (i)
We propose to use parametric label-guidance for the au-
toencoder and demonstrate how this results in increased
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label-prediction accuracy for the datasets we consider. (ii)
We present a corresponding graphical model and derive
a variational lower bound on the marginal log-likelihood.
The variational bound provides us with a principled way
of incorporating unlabeled data in the joint training proce-
dure. We show that incorporating unlabeled data results
in enhanced reconstruction accuracy for our datasets. (iii)
We perform Bayesian design optimization on two differ-
ent domains: proteins and shapes in laminar flow. Having
access to a physics simulator, we show the validity of the
approach in the hydrodynamics setting. (iv) We propose
an adversarial model extension to render the latent rep-
resentation invariant with respect to specific, real-valued
design attributes. To compensate for the loss of informa-
tion, we provide these attributes as additional arguments
to the decoder. This allows us to transfer attributes across
designs when we generate a design from its latent repre-
sentation.

2 PROBLEM SETUP

We consider the setting of a high-dimensional, possibly
discrete input space of designs X . Each design x is as-
sociated with a real-valued score y ∈ R drawn from a
conditional distribution p∗(y|x).

Our goal is to find a design x ∈ X that maximizes the
expectation E[y|x]. We are given access to an oracle
providing a sample of y ∼ p∗(·|x), however, we assume
that obtaining a sample (evaluating y for a given design x)
is expensive. For example, it might require an expensive
simulation or conducting a lab experiment.

Furthermore, we assume to have access to samples Du =
{x1, · · · , xNu} from X , and a (small) number of labeled
examples D` = {(x1, y1), · · · , (xN` , yN`)}. where each
pair (x, y) corresponds to a design and a measurement of
its score. We assume that labeled and unlabeled examples
are sampled from the same marginal distribution.

2.1 BAYESIAN OPTIMIZATION

Bayesian optimization is a data-driven tool to optimize
expensive black-box functions. In this model-based ap-
proach we start with a prior belief on the functional re-
lationship between inputs and outputs, and update it se-
quentially as new data is acquired. As actual function
evaluations are expensive, we aim to optimize a surrogate
or acquisition function instead. A popular choice of acqui-
sition function is expected improvement (EI) (Jones et al.,
1998) which strikes to balance exploration vs. exploitation
in the search space. To calculate EI we require a predic-
tion with uncertainty for the black-box function values.
Gaussian processes (GPs) provide uncertainty quantifica-
tion and as such they are a standard model in Bayesian

optimization. In the framework of GPs we assume that
given a finite number of n inputs x1:n, the function val-
ues f (x1:n) are jointly Gaussian and the observations
y1:n are normally distributed given f (Rasmussen and
Williams, 2006). Because of the GP guidance, it can
be more sample efficient than random search, however,
Bayesian optimization still faces the challenges of data
sparsity when operating in high dimensions. In addition,
gradient-based optimization of the (EI) surrogate is not a
priori applicable for discrete inputs. Finally, the benefit
of uncertainty quantification comes at a price, as learning
in the nonparametric GP model is cubic in the number
of inputs. To circumvent this bottleneck, different sparse
approximations have been developed. One approach to
reduce the computational complexity is to calculate the co-
variance matrix with respect to m inducing points instead
of n data points and typically m � n with complexity
O
(
m2n

)
(Titsias, 2009; McIntire et al., 2016).

2.2 VARIATIONAL AUTOENCODERS

A variational autoencoder is a generative model defining
a joint probability distribution between a latent variable z
and inputs x. We commonly assume a simple Gaussian
prior distribution p(z) and model the input data distribu-
tion as a more complex conditional distribution pΨ (x|z)
where Ψ are the parameters of a neural network. Di-
rectly optimizing the marginal likelihood is intractable
as it requires integration over the latent space. Kingma
and Welling (2013) circumvent this obstacle by proposing
an auxiliary inference distribution qΦ (z|x) and derive a
variational lower bound on the log likelihood

LELBO = E
qΦ(z|x)

[log pΨ (x|z)]−DKL (qΦ (z|x) ||p(z))

≤ log p (x)
(1)

Maximizing this objective can be naturally interpreted
as minimizing the reconstruction loss of a probabilistic
autoencoder and regularizing the posterior distribution
towards the prior. Kingma et al. (2014) extend this work
to the semi-supervised setting considering both labeled
and unlabeled data.

3 BAYESIAN OPTIMIZATION AND A
SHAPED LATENT SPACE

We address the optimization challenges of high dimen-
sions and discrete spaces in Bayesian Optimization by
combining Gaussian process regression with variational
autoencoding. In addition, we further shape the latent
space through adversarial training. By learning an invari-
ant latent representation regarding input-specific attributes
we are able to transfer these attributes across inputs.
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We consider the directed graphical model of inputs x,
corresponding labels y and latent variables z shown in
Figure 1. Given z, we assume x and y to be independent:

p (x, y|z) = pΨ (x|z) pΘ (y|z) . (2)

The data distribution pΨ (x|z) is modeled as either multi-
nomial (protein dataset) or multivariate normal with fixed
covariance (shape dataset). The discriminative pΘ (y|z)
is modeled as standard normal N (µθ(z), 1). Both distri-
butions are parametrized through neural networks with
parameters Ψ and Θ.

Figure 1: Graphical model connecting input space x with
latent variable z and label y. The model assumes condi-
tional independence of x and y given z. The gray shading
marks observed quantities.

3.1 SEMI-SUPERVISED LEARNING

Given labeled and unlabeled dataD` andDu, respectively,
we aim to optimize the likelihoods p (x, y) and p (x). As
in the case of the VAE this is intractable to compute due
to integration over z and we instead resort to variational
lower bounds.

z

x

y

q
Φ
(z|x)

p
Θ
(y|z)

p
Ψ
(x|z)

z

x

q
Φ
(z|x)

p
Ψ
(x|z)

unlabeled datalabeled data

Figure 2: Illustration of the parametrized distributions
involved in the derivation of the variational lower bounds.

Introducing the auxiliary model qΦ (z|x) and using
Jensen’s inequality, we derive a variational lower bound
on the log-likelihood of labeled data (x, y). The indepen-
dence of the proposal distribution regarding y reflects the
view that x contains all information on y. An illustration

of the parametrized distributions is shown in Figure 2.

log p (x, y) = log

∫
p (x, y|z) p(z)dz

= log

∫
p (x, y|z)
qΦ (z|x)

qΦ (z|x) p (z) dz

= log E
z∼qΦ(z|x)

[
p (x, y|z) p(z)

qΦ (z|x)

]

≥ E
z∼qΦ(z|x)

[log p (x, y|z)]

−DKL (qΦ (z|x) ||p(z))
= E
z∼qΦ(z|x)

[log pΨ (x|z) + log pΘ (y|z)]

−DKL (qΦ (z|x) ||p(z))
≡ L`

(3)
where DKL indicates Kullback-Leibler divergence.

In contrast, we find in the case of unlabeled data

log p (x) = log

∫ ∫
p (x, y|z) p(z)dz dy

= log

∫ ∫
qΘ (y|z) p (x, y|z)

qΘ (y|z)

qΦ (z|x)
p(z)

qΦ (z|x)
dz dy

≥ E
z∼qΦ(z|x)

[log pΨ (x|z)]

−DKL (qΦ (z|x) ||p(z))
≡ Lu

(4)

where we recover the ELBO objective of the VAE. Mod-
eling the proposal distribution qΦ (z|x) as multivariate
Gaussian and assuming a Gaussian prior p(z) = N (0, I)
results in an analytic expression for the divergence term.
Together Lu and L` form a joint lower bound in the
semi-supervised setting. During training we optimize
a weighted sum of the two bounds. Specifically, labeled
and unlabeled data share the same encoder qΦ (z|x) and
decoder pΨ (x|z).

3.2 DESIGN OPTIMIZATION ON THE LATENT
SPACE

After the designs are embedded in a lower dimensional
continuous latent space we can now use a GP to perform
Bayesian optimization. The algorithm for the joined pro-
cedure of latent embedding and following optimization is
outlined in pseudocode in Algorithm 1.

For each (xi, yi) pair from the labeled set, we can com-
pute the mean value of qΦ(z|xi) that we denote zi. This
effectively embeds the labeled inputs from D` in the
lower-dimensional latent space. We can then fit a GP on
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the set D′` := {(zi, yi)}i≤N` . Depending on the dataset
size this is either a full GP or a sparse approximation
with inducing points (Titsias, 2009). Subsequently we
perform iterative optimization by sampling points from
the latent prior p(z) and maximizing expected improve-
ment via gradient ascent. Next, we generate new designs
corresponding to the latent points with largest EI value
using the decoder, leveraging the generative capability of
a VAE. Finally we evaluate the black-box function for
these designs. The new data is appended to our dataset
and we continue ad libitum. For simplicity, we do not
retrain the VAE with each dataset expansion.

Algorithm 1 VAE-guided Bayesian Optimization
Input: Unlabeled data Du, labeled data D` =
{(xi, yi)}i≤N` , fitness function f , parameters
α, β, κ.
ymax ← maxi≤N` yi
TrainVAE:

minimizeΘ,Φ,Ψ αLu (Du) + βL` (D`)
D′` ← {(zi, yi)}i≤N` with zi mean of qΦ(·|xi)

loop:
GP← FitGP (D′`;κ)
parallel loop:

sample z0
i ∼ N (0, I)

(z∗i , f
∗
i )← maxzEI

(
z, z0 = z0

i , ymax, GP
)

ẑ ← zb with b← arg maxi f
∗
i

x̂← decoderΦ (ẑ) . Create design
ŷ ← f (x̂) . Evaluate design x̂
Add (x̂, ŷ) to D` and (ẑ, ŷ) to D′`
ymax ← max{ymax, ŷ}

return D`

3.3 ADJUSTING ATTRIBUTES AT TIME OF
DECODING

We consider a setting in which we have successfully used
our Bayesian optimization framework to find an enhanced
design x which we generated by decoding its correspond-
ing latent representation z. In addition, let a be a real-
valued attribute intrinsic to a given input design x which
is uncorrelated to the functional score y of the design.
Taking the case of car designs as an example, y could be a
measure of the car’s aerodynamic properties and a reflect
the car’s color.

The joint probability distribution p(a, x, y, z) factorizes
as

p(a, x, y, z) = pΨ(x|a, z)pγ(a|z)pΘ(y|z)p(z) (5)

with the additional inference network pγ(a|z) (Figure 3).
We assume that the input design x and the attribute a
are observed variables, and that the label y is sometimes
observed (i.e. the semi-supervised setting).

The question we consider is whether we can transfer an
attribute across designs, i.e., can we decode our optimized
latent representation to designs which share the optimal
score but differ with respect to the value of attribute a. Re-
ferring again to our example of car designs, the attribute
adjustment would consist in changing a car’s color after
finding an aerodynamically optimal design.

Our strategy to enable attribute adjustment is to enforce
a latent representation which is invariant to a. If the
latent space contains no information on the attribute, the
decoder pΨ (x|z, a) is forced to learn how to impose a on
z in order to achieve proper design reconstruction. We
can then adjust attributes by decoding optimized latent
points with an attribute value of our choice.

To enforce this invariance, we add adversarial training to
the training objective. We formalize this in the following
maxmin expression:

max
Φ

min
γ

E
x∼q(x)

E
z∼qΦ(z|x)

[
(a(x)− âγ (z))

2
]

(6)

Here a is the attribute we want to be invariant to, and âγ
is an estimator of a given the latent set z. The notation
a(x) emphasizes the fact that every design x has an in-
trinsic attribute value a. We model pγ (a|z) as Gaussian
with fixed covariance and predict the mean using a neu-
ral network with parameters γ. If we assume that pγ is
expressive enough and the network trained such that it
can take advantage of all information z has on a, then the
objective minimizes the mutual information I(a; z) and
pγ is forced to settle on mean prediction. Note that this
adversarial training objective does not depend on the ob-
servation of the label y and can thus leverage both labeled
and unlabeled data.

unlabeled datalabeled data
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Figure 3: The augmented architecture with adversarial
network pγ (a|z) mapping from latent space z to attribute
a. Providing a as additional input to the decoder encour-
ages an a-invariant latent representation.
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4 DATASETS

We empirically evaluate the performance of our method
on two datasets.

4.1 PROTEIN-FITNESS LANDSCAPE

Proteins are of paramount importance for biological sys-
tems and in industrial applications such as food process-
ing or biomass conversion. As such the ability to design
enhanced proteins is desirable. Proteins form both a high-
dimensional as well as discrete design space as a protein
is defined by an amino-acid sequence with alphabet size
20.

Protein optimization is especially challenging as (i) the
number of target amino-acid sequences grows exponen-
tially with the number of considered amino-acid muta-
tions and (ii) only a very small fraction of all amino-
acid sequences results in a functional protein (Keefe and
Szostak, 2001).

We base our protein-optimization approach on a large
fitness-landscape exploration study of the green fluores-
cent protein from Aequorea victoria (avGFP) (Sarkisyan
et al., 2016). GFP is a widely used label-protein in fluo-
rescence microscopy with a sequence of 237 amino acids.
Our specific dataset consists of 51, 715 different protein
sequences D` generated by random mutagenesis from
the avGFP sequence and associated fluorescence values
y as measured by fluorescence-activated cell sorting. On
average each protein sequence contains 3.7 mutations
compared to avGFP.

Amino acid sequences of the avGFP variants are encoded
in a one-hot-style manner through a matrix of size 20×
237 – accounting for the 20 essential amino acids and the
sequence length of avGFP. All entries of the columns are
0 except for one 1 encoding the amino acid at the specific
sequence position.

4.2 DRAG IN LAMINAR FLUID FLOW

The second dataset consists of 5100 two-dimensional
shapes x and scalar drag coefficients y associated with the
resistance these shapes experience in a constant fluid flow.
We consider the case of laminar flow around an object in
two dimensions as it allows us to generate training and
test data, and perform Bayesian optimization at relatively
low computational cost.

We generate the dataset by numerically solving the Navier-
Stokes equations (Lifshitz and Landau, 1959) which pro-
vide a theoretical description of fluid flow around objects.
Figure 4 shows example simulations from the dataset gen-
eration. Generated shapes are resized to 42 × 56 pixels

to reduce memory requirements. Further details on the
hydrodynamics simulation can be found in the appendix.

Figure 4: Finite-element simulations of fluid flow around
random shapes in two dimensions. The left wall defines
the fluid inlet.

5 EXPERIMENTS

In a first set of experiments we investigate the effect label-
guided encoding and training with additional unlabeled
data have on inference and autoencoder reconstruction
error. The second part is concerned with design optimiza-
tion of proteins and shapes. Finally, we demonstrate how
we can use invariant learning to adjust shape attributes,
namely area, with little effect on the drag coefficient.

5.1 INFERENCE AND RECONSTRUCTION
ERROR

We consider the effect of label-guided encoding and
adding unlabeled data to the training on 1) inference
of y and 2) autoencoder reconstruction error as defined
through the first term in the ELBO objective for the test
set.

Tables 1 and 2 summarize the results for the protein and
shape dataset, respectively. Details on the model architec-
tures can be found in the appendix.

In general, we notice the positive effect label-guided en-
coding has on test set prediction. Column ‘NN’ shows
the relative prediction error when using pΘ (y|z) for in-
ference. In absence of unlabeled data (NU = 0) we
consider two settings whose corresponding values are
separated by a backslash: i) training pΘ (y|z) and the au-
toencoder jointly (left value) and ii) training autoencoder
and discriminative network sequentially (right value). We
observe that the discriminative network guides the dimen-
sionality reduction such that label-relevant information
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Table 1: Protein dataset: Normalized test set prediction
errors for different allocations of labeled (NL) and un-
labeled (NU ) training data. NN, GP-NN and GP-LAT
describe the neural network parametrized by Θ and GPs
trained on the neural-network features and the latent space,
respectively. REC describes relative reconstruction error
for test set designs.

NL/ NU NN GP-NN GP-LAT REC

30K/10K 1.04 2.43 1.82 1.00
30K/0 1.00/1.48 2.45 1.79 1.03
15K/15K 1.22 2.49 1.93 1.14
15K/0 1.31/1.57 2.58 2.18 1.64
5K/5K 1.18 2.62 1.89 1.90
5K/0 1.44/1.70 2.58 1.97 3.11

Table 2: Hydrodynamic dataset: Normalized test set pre-
diction errors for different allocations of labeled (NL)
and unlabeled (NU ) training data. NN, GP-NN and GP-
LAT describe the neural network parametrized by Θ and
GPs trained on the neural-network features and the latent
space, respectively. REC describes relative reconstruction
error for test set designs.

NL/ NU NN GP-NN GP-LAT REC

2500/2000 1.00 1.41 1.02 1.00
2500/0 1.21/1.38 1.44 1.22 1.04
1500/2000 1.10 1.31 1.24 1.07
1500/0 1.19/1.41 1.19 1.07 1.17
500/2000 1.91 1.64 1.79 1.31
500/0 2.05/1.98 1.61 2.02 1.82

in the amino-acid sequence or shape is encoded with en-
hanced accuracy.

In addition, we also observe a positive effect of adding
unlabeled data with respect to the reconstruction error
(REC). The effect is more pronounced when less labeled
data is available. Incorporating unlabeled data is also
beneficial for NN prediction error in almost all cases.

In order to obtain uncertainty measures for the predic-
tions we train and compare two GP models with squared-
exponential kernel. Model 1 is trained on the latent-space
embedding of the training data (GP-LAT). Model 2 is
trained on the features learned by the discriminative neu-
ral network pΘ (y|z) (GP-NN). Both models consider the
situation in which pΘ (y|z) and the autoencoder have pre-
viously been trained jointly.

We account for dimension-specific length scales in the
covariance function such that the Gaussian process can
filter irrelevant dimensions. For the protein dataset we
use a sparse approximation with 500 inducing points such

that the prediction performance of both GP models is
impaired compared to the neural network (NN columns
in the Tables). Comparing the GPs among each other we
note the in general much better performance of the GP
trained on the latent-space coordinates.

5.2 OPTIMIZATION OF PROTEIN AND SHAPE
DESIGNS

We follow the algorithm outlined in Algorithm 1 to opti-
mize shape and protein designs.

5.2.1 Design of New Protein Variants

A schematic of the optimization framework is shown
in Figure 5A. To find the best local EI maxima we in-
dependently sample 20,000 start points from the prior
p (z) ∼ N (0, I) and perform gradient ascent for each
point. Figure 5B visualizes amino-acid mutation sites
apparent in the highest-ranked protein variants on the
structure of avGFP.

While only experimental verification can provide a pre-
cise assessment of the model performance, comparison
with the data from literature on development of GFP vari-
ants shows that genotypes predicted by our model are free
from known deleterious mutations such as mutations in
the chromophore-forming amino acids and catalytically
active E222 residue (Chudakov et al., 2010). Most of the
mutated amino acid side chains in predicted genotypes
are oriented towards the solvent in the protein beta barrel
structure, in accordance with experimental observations
(Sarkisyan et al., 2016) and with the evolutionary conser-
vation of internally oriented residues (Chudakov et al.,
2010). Moreover, some predicted genotypes carry com-
binations of substitutions known to increase brightness
of avGFP, such as the F99S/M153T pair of substitutions
that in combination with mutation V163A was reported to
result in avGFP being 42 times brighter when expressed
in vivo (Battistutta et al., 2000).

5.2.2 Design of Drag-reduced Shapes

The time and resources required for protein synthesis and
functional testing render it expensive to use this applica-
tion for several rounds of Bayesian optimization given
the purpose of this paper and to explore technical model
aspects in more detail. For this reason we use a set of two-
dimensional shapes and the drag these shapes face under
laminar flow conditions. We can calculate the drag forces
based on the Navier-Stokes equations in a physics simula-
tion. As such we can perform closed-loop optimization
with the goal of finding drag-reduced shapes.

Figure 6 shows a schematic of the optimization procedure
which is analogous to the protein case. We generate
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Figure 5: (A) Schematic illustrating the optimization of
amino-acid sequences to generate variants of the green
fluorescent protein (GFP) with enhanced brightness. (B)
The structure of GFP annotated with the distribution of
mutations among 100 sequences suggested by the design
algorithm. The main chromophore complex is shown in
green.

new object shapes by optimizing EI with respect to the
smallest drag coefficient in our training set. Promising
latent points are decoded to shape images and their drag
coefficients evaluated in our hydrodynamics simulator.

Figure 6: Schematic of the Bayesian optimization proce-
dure to design drag-reduced shapes.

To illustrate the benefits of the joint autoencoder-GP
framework we compare three different strategies for
Bayesian optimization. In the first setting, we sample
random points from the Gaussian prior distribution p(z)
and for each point optimize EI via gradient ascent. We
contrast this with optimization working directly at the
level of shapes. Inputs are random shapes generated in
the same way as our training dataset. We consider train-
ing the GP directly on the input space (GP (x)) as well
as including the intermediary mapping of the encoder
(GP (z(x))). To be able to optimize EI via gradient as-
cent we relax the assumption of binary pixel values to
continuous values in [0, 1].

Figure 7 shows the best drag coefficient generated as a
function of shape evaluations for the three strategies. In

all cases we sample 600 starting points for gradient ascent
and evaluate the resulting 100 shapes corresponding to
the largest EI values in our simulator. All models share
the same GP kernel function (squared-exponential), opti-
mization parameters and stopping criteria.

Optimizing the acquisition function over the latent space
consistently yields the largest reduction in drag coeffi-
cient for all rounds of Bayesian optimization. Optimizing
the acquisition function over shapes does not improve
upon directly simulating the drag coefficient for the ran-
dom shapes which are chosen as gradient-ascent start
points. The GP kernel is unable to extract drag-relevant
features from the pixel input. As a consequence of the
high-dimensionality of the pixel space, mean predictions
for unknown shapes are close to the Gaussian prior and
the EI gradient vanishes. We can recover part of the per-
formance by using the ‘deep kernel’ of the encoder while
still optimizing directly on shape images. We reason that
the remaining performance gap is due to to the relaxation
of continuous pixel values.

Another advantage of the latent-space optimization con-
sists in the fact that we can generate gradient-ascent start-
ing points by simply sampling from z ∼ N (0, I). In
contrast, optimization on the input space requires us to
have access to new valid structures, i.e. shapes, as naive
sampling in the [0, 1]42×56 pixel space breaks the opti-
mization routine as expected.

Figure 8 shows examples of drag-reduced shapes over
the course of 500 calls to the hydrodynamics simulator
during optimization.

Figure 7: Best relative drag coefficient as a function of
number of shape evaluations. The plot compares opti-
mization based on random shapes (x) versus latent points
(z). Error bars indicate standard deviation from three
independent experiments.
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Figure 8: The Bayesian optimization routine produces
shapes of reduced drag (< 1) compared to the smallest
drag coefficient in the training set (= 1). Shape inputs to
the hydrodynamic simulator (top) and corresponding flow
fields (bottom).

5.3 ATTRIBUTE ADJUSTMENT ACROSS
SHAPES

Given a set of shape designs with a real-valued attribute
a our goal is for the decoder to learn how to generate
a design with a given attribute value based on a latent
coordinate z.

We consider two scalar attributes for our shape dataset:
color and surface area. To introduce ‘color’ we create a
separate channel for each shape which contains the binary
mask multiplied by a random number from [0, 1]. During
training we provide the true attribute value for each shape
to the adversarial network and decoder. To make the
learning more stable we slowly fade in the adversarial
loss over half the number of maximal training epochs.
Early stopping is only considered after this point.

At test time we take a given latent point and feed it
along with a desired attribute value from the aforemen-
tioned range to the decoder. Figure 9 shows five example
shapes decoded each with four different attribute values
[0.2, 0.4, 0.6, 0.8] resulting in a specific black-white in-
tensity.

Adjusting color is a relatively easy task as the additionally
introduced color channel is entirely orthogonal to the
drag coefficient - the quantity our discriminative model
pΘ (y|z) promotes to be accurately encoded in the latent
space. For this reason we consider the area of a shape
as another more challenging attribute value to control
for. Invariance to shape size requires the architecture to
apply a non-trivial geometric transformation or to learn
and store the shape information in the latent space in a
more abstract way, e.g. through scale-invariant Fourier
descriptors.

Figure 10 shows a selection of five latent points and their
associated drag coefficients decoded with four different
area values in analogy to the color-adjustment example.

Figure 9: Shapes generated from five exemplary latent
points z1...z5 and four different color-attribute values
each.

The shapes are not cherry-picked. It is difficult to name
an exact drag coefficient for the very small shapes due to
the necessary shape rescaling, smoothing and boundary
point extraction before any finite-element simulation can
be performed. The simulations indicate that the drag
coefficient of the scaled shapes stay within 25% of their
original values with the largest deviations occurring at
the smallest scale. At the same time area values change
consistently for all shapes by about 300% (compare Table
3). The consistency of the scaling is remarkable as less
than 4.5% of training shapes have an area smaller or larger
than 67 and 175 pixels, respectively.

Figure 10: Shapes generated from five exemplary latent
points z1...z5 and four different area-attribute values each.

6 RELATED WORK

Our approach draws on a broad basis of prior work and
is generally related to conditional VAEs (Kingma et al.,
2014) and hybrid models bridging generative and discrim-
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Table 3: Pixel areas corresponding to shapes generated
from latent points z1...z5 and four different area-attribute
values each (compare Figure 10)

z1 z2 z3 z4 z5

60 67 64 64 64
91 91 90 89 89
149 143 149 152 152
174 175 176 177 177

inative architectures (Maaløe et al., 2016; Shu et al., 2016;
Kuleshov and Ermon, 2017). In contrast to the conditional
VAE, we choose a label-independent encoder distribution
stressing the perspective on the latent space as continuous
embedding of inputs X .

Using neural-network learned features as input to a GP
model in the context of autoencoders dates back to Ben-
gio et al. (2007). More recently, Snoek et al. (2012a)
proposed non-parametric autoencoder guidance. Wilson
et al. (2016a) present deep-kernel learning in which a
stacked architecture of neural network and GP is trained
jointly. Wilson et al. (2016b) and Huang et al. (2015) tar-
get the scalability of these hybrid GP models. Successful
optimization within our framework depends on the ability
to encode high-dimensional designs in a continuous latent
space of lower dimensionality. This assumption is similar
to the notion of low effective dimensionality in Wang et al.
(2013) and related to Garnett et al. (2014). We considered
joint training of GP and autoencoder in the case of the
hydrodynamic dataset (5.2.2) but did not find this to out-
perform the sequential setting in which we train the GP
on the latent space after parametric label guidance.

The idea of attribute adjustment draws on learning of
fair representations, notably the fair VAE (Louizos et al.,
2015). Purushotham et al. (2016) and recently Lample
et al. (2017) explore enforcing invariance for adaptation
in time-series data and natural images. We propose an
adversarial objective based on mean-squared error max-
imization and demonstrate that attribute adjustment is
feasible concurrent with Bayesian optimization.

GPs have been used for protein design and shape opti-
mization - the two domains considered in our datasets.
Romero et al. (2013) demonstrated the application of GPs
to navigate the fitness landscape of proteins given limited
data. The GP model is directly trained on amino acid se-
quences through a kernel function which relates sequence
similarity to the spatial distance of amino acid positions
in the folded protein structure. Previous works demon-
strating the successful application of GP regression for
the optimization of parametric designs in aerodynamic
applications include (Simpson et al., 2001; Martin and

Simpson, 2005; Jeong et al., 2005; Jouhaud et al., 2007).
The aforementioned publications leverage domain knowl-
edge for optimization. In contrast, the approach presented
here is solely data-driven and based on deep-generative
models.

7 DISCUSSION

Bayesian optimization is a data-efficient approach to op-
timize complex black-box functions without the need to
supply gradients. Nevertheless discrete, high-dimensional
input spaces pose a challenge to successful design opti-
mization.

In this work we explore a framework combining varia-
tional autoencoding and Gaussian process regression to
approach this challenge. We present a variational bound
for the underlying graphical model and show how label-
guidance enhances the predictive performance and incor-
porating unlabeled data leads to an increase in reconstruc-
tion accuracy.

We apply the optimization framework to the design of
enhanced functional proteins. One round of Bayesian
optimization proposes meaningful new protein variants
which are free of known deleterious mutations.We fur-
ther introduce a physics-based dataset of two-dimensional
shapes and associated drag coefficients in laminar flow.
Having access to a simulator allows us to perform closed-
loop Bayesian optimization, such that after five rounds we
improve by about 30% on the best value in the training
set. We demonstrate that optimization based in the latent
space outperforms optimization in the design space.

Finally, we consider an adversarial extension to our model.
By forcing the latent space to be invariant w.r.t. an at-
tribute value of choice, we are able to select this attribute
value when decoding a latent point and impose it on our
design. The combination of label-guidance and attribute-
adversarial training shapes the information encoded in the
latent space. We envision that the adversarial-model ex-
tension might be a fruitful approach to transfer functional
groups or domains across molecules. In addition, the per-
formance of discriminative models trained on the latent
space could benefit when uninformative factors of varia-
tion are removed from the latent code based on domain
knowledge.
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Abstract

We introduce a new decomposition method for
bounding the maximum expected utility of in-
fluence diagrams. While most current schemes
use reductions to the Marginal Map task over a
Bayesian Network, our approach is direct, aim-
ing to avoid the large explosion in the model
size that often results by such reductions. In
this paper, we extend to influence diagrams the
principles of decomposition methods that were
applied earlier to probabilistic inference, uti-
lizing an algebraic framework called valuation
algebra which effectively captures both multi-
plicative and additive local structures present
in influence diagrams. Empirical evaluation on
four benchmarks demonstrates the effectiveness
of our approach compared to reduction-based
approaches and illustrates significant improve-
ments in the upper bounds on maximum ex-
pected utility.

1 INTRODUCTION

An influence diagram (ID)[Howard and Matheson, 2005]
is a graphical model for sequential decision-making un-
der uncertainty that compactly captures the local structure
of the conditional independence of probability functions
and the additivity of utility functions. Its structure is
captured by a directed acyclic graph (DAG) over nodes
representing the variables (decision and chance variables).
The standard query on an ID is finding the maximum
expected utility (MEU) and an optimal policy, at each
decision subject to the history of observations and deci-
sions. Our focus is on computing an upper bound on the
MEU in a single agent sequential decision-making sce-
nario when we assume perfect recall. The computation of
upper bounds is desirable not only because exact compu-
tation is exponential in the number of variables appearing

in the history, but also because it can be used as a building
block of algorithmic frameworks such as heuristic search
and sampling.

Earlier work. One early work that yields bounds on
many inference tasks in an anytime manner is the mini-
bucket elimination (MBE) scheme that provides upper and
lower bounds of graphical model queries by enforcing
problem decomposition during the variable elimination
process [Dechter and Rish, 2003]. In particular, Dechter
[2000] presented an MBE algorithm for influence dia-
grams. A different principle for generating bounds on the
MEU is to relax the constraints imposed on the informa-
tion available at each stage and for each decision (thus
making more observations visible to each decision). This
information relaxation scheme relaxes the constraints im-
posed on the information available at each stage and it also
permits variable reordering during processing [Nilsson
and Hohle, 2001]. In particular, Yuan et al. [2010] pre-
sented an AND/OR depth-first branch and bound search
algorithm guided by upper bounds generated by such
flexible variable orderings.

An alternative set of schemes exploit translations be-
tween the maximum a posteriori inference (MMAP) in a
Bayesian network (BN) and the MEU inference in an ID
[Mauá, 2016]. The idea is to compute the upper bound of
the MMAP of the BN translated from an input ID. How-
ever, the number of auxiliary variables introduced by the
translation is exponential in the size of the history under
the perfect recall assumption. If all utility functions were
multiplicative, an ID could be treated as an unnormal-
ized distribution and MMAP inference would be applied
directly. Liu and Ihler [2012] presented a variational for-
mulation for computing the MEU and message passing
algorithms for such IDs where the additive utilities are
converted into multiplicative utilities by introducing a
latent selector variable. However, such a translation can
make it difficult to exploit decompositions present in the
additive utility functions.
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Contributions. We develop a decomposition scheme
applied directly to IDs. It extends the decomposition
scheme for MMAP [Ping et al., 2015] to IDs to accommo-
date multiplicative and additive terms. In particular, the
upper bound is generated by relaxing the sequential struc-
ture of an ID to locally coupled decision subproblems.
Subsequently, we present a message passing algorithm
derived from the optimization framework that tightens the
upper bound over various parameters including the repa-
rameterization of both probability and utility functions.
In summary:
• We present a new graphical model decomposition

bound specialized for IDs called join graph decom-
position bounds for IDs (JGDID), and a message
passing algorithm that optimizes the bound.
• The proposed algorithm is compared empirically

with current schemes on four benchmarks, showing
a significant improvement in the quality of the upper
bounds.

2 PRELIMINARIES

2.1 INFLUENCE DIAGRAMS

An ID is a tupleM :“ xC,D,P,U,Oy of a set of dis-
crete random variables C “ tCi|i P ICu, a set of discrete
decision variables D “ tDi|i P IDu, a set of conditional
probability functions P “ tPi|Pi P IPu , and a set of
real-valued additive utility functions U “ tUi|Ui P IUu.
We use IS “ t0, 1, ¨ ¨ ¨ , |S| ´ 1u to denote the set of
indices of each element in a set S, where |S| is the car-
dinality of S. As illustrated in Figure 1(a), an ID can
be associated with a DAG of three types of nodes: the
chance nodes C drawn as circles, the decision nodes D
drawn as squares, and the value nodes U drawn as di-
amonds. There are also three types of directed edges:
edges directed into a chance node Ci from its parents
papCiq Ă CYD representing the conditional probabil-
ity function PipCi|papCiqq, edges directed into a value
node Ui denoting the utility function UipXiq from its
scope Xi Ă C Y D, and informational arcs (dashed
arrows in Figure 1(a)) directed from chance nodes to a
decision node. The set of parent nodes associated with
a decision node Di is called the information set Ii, and
denotes chance nodes that are assumed to be observed
immediately before making decision Di. The constrained
variable ordering O obeys a partial ordering which al-
ternates between information sets and decision variables
tI0 ăD0 ă ¨ ¨ ¨ă I|D|´1 ăD|D|´1 ă I|D|u. The partial
elimination ordering should ensure the regularity of the ID
(a decision can only be preceded by at most one decision),
and dictates the available information at each decision Di

so that the non-forgetting agent makes decisions in multi-
staged manner based on the history available at each stage

(a) Factored MDP as Influence Diagram

(b) Computing Maximum Expected Utility

Figure 1: Influence Diagram Example. A 2-step factored MDP
is represented by an influence diagram, and the lower figure
shows a schematic trace of the variable elimination with the
valuation algebra.

i, HpDiq :“ Yik“0tDku Y Yik“0Ii. The standard task of
solving Influence Diagrams is computing the maximum
expected utility ErřUiPU Ui|∆∆∆s and finding a set of op-
timal policies ∆∆∆ “ t∆i|∆i : RpDiq ÞÑ Di,@Di P Du,
where ∆i is a deterministic decision rule for Di and
RpDiq Ď HpDiq is the subset of history called requi-
site information to Di, namely, the only relevant history
for making a decision [Nielsen and Jensen, 1999].

2.2 COMPUTING EXPECTED UTILITY

Unlike probabilistic graphical models, Influence Dia-
grams hold two type of functions combined by different
operators: a product of probability functions, and a sum-
mation of utility functions. Jensen et al. [1994] presented
a variable elimination algorithm that avoids the complica-
tion of dealing with two types of functions by generalizing
the combination and marginalization operators such that
operators act on a pair of probability and utility functions
called a potential. The valuation algebra is an algebraic
framework for computing the expected utility values, or
values for short, based on the combination and marginal-
ization on potentials [Mauá et al., 2012]. Here, we briefly
summarize the essence of valuation algebra since it is
what we use for developing the decomposition scheme.
Let a valuation ΨpXq be a pair of probability and value
functions pP pXq, V pXqq over a set of variables X called
its scope. Occasionally, we will abuse the notation by
dropping the scope from a function, e.g., writing P1pX1q
as P1. The combination and marginalization operators
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are defined as follows.

Definition 1. (combination of two valuations)
Given two valuations Ψ1pX1q:“pP1pX1q, V1pX1qq and
Ψ2pX2q:“pP1pX2q, V1pX2qq, the combination of the two
valuations over X1 YX2 is defined by

Ψ1pX1q bΨ2pX2q :“ pP1P2, P1V2 ` P2V1q.

Following Definition 1, the identity is p1, 0q and the in-
verse of pP pXq, V pXqq is p1{P pXq,´V pXq{P 2pXqq.
Definition 2. (marginalization of a valuation) Given a
valuation ΨpXq :“pP pXq, V pXqq, marginalizing over
Y Ď X by summation or maximization are defined by

ÿ

Y

ΨpXq :“ p
ÿ

Y

P pXq,
ÿ

Y

V pXqq,

max
Y

ΨpXq :“ pmax
Y

P pXq,max
Y

V pXqq.

An IDM can be compactly represented by the valuation
algebra asM1

:“ xX,ΨΨΨ,Oy, where X “ C Y D and
ΨΨΨ “ tpPi, 0q|Pi P Pu Y tp1, Uiq|Ui P Uu. The MEU
can be written as

ÿ

I0

max
D0

¨ ¨ ¨
ÿ

I|D|´1

max
D|D|´1

ÿ

I|D|

â
αPIΨ

ΨαpXαq, (1)

where Xα denotes the scope of Ψα.

The following example illustrates the variable elimination
algorithm with the valuation algebra.

Example 1. Figure 1(b) shows a schematic trace of the
variable elimination algorithm [Dechter, 1999] using the
valuation algebra. We use O : tD1, S2, S3, D0, S0, S1u
as a legal elimination ordering. The first eliminated vari-
able is D1, so the variable elimination algorithm collects
all valuations whose scope includes D1 in Bucket D1.
Then it generates the outgoing message pλD1 , ηD1q and
sends it to Bucket S2. Bucket S2 combines the preallo-
cated valuations and the incoming message, and gener-
ates the outgoing message pλS2 , ηS2q. This elimination
process continues until we obtain the MEU. We refer to
Mauá et al. [2012] for more details.

2.3 JOIN GRAPH DECOMPOSITION

A probabilistic graphical model G :“ xX,Fy is a tuple
of a set of discrete variables X and a set of non-negative
real valued functions F “ tFαpXαq|α P IFu, where
Xα Ă X is the scope of Fα. Graphical model inference
tasks can be viewed as eliminating a set of variables from
the joint function by either summation or maximization.
The MMAP task computes the mode of the marginal of
the joint function by

maxXM

ř
XS

ś
αPIF FαpXαq, (2)

Figure 2: Join Graph Decomposition Example. Figure shows
a join graph of the influence diagram in Figure 1(a). The join
graph is generated by limiting the maximum cluster size from 4
to 3. The scope from a node labeling function χpCiq is shown
inside each nodeCi and functions (valuations) are also allocated
by ψpCiq. Separators SCi,Cj are shown next to edge (Ci, Cj).

where XM denotes the maximization variables and XS

denotes the summation variables. The relevance relation
between variables is captured by an undirected graph
Gp “ pV,Eq called primal graph, where the set of nodes
V represents variables, and an edge e P E connects two
nodes if both variables associated with those nodes appear
in the scope of some function. A tree decomposition of
Gp produces a tree of clusters that captures the underlying
structure of non-serial dynamic programming subject to
the sequence of variable elimination operations. Namely,
each cluster collects a set of functions that should be pro-
cessed together. The worst-case space and time complex-
ity of an inference query is exponential in the maximum
cluster size called induced width w of Gp.

Join graph decomposition [Mateescu et al., 2010] is an
approximation scheme that further decomposes clusters
in a join tree into a possibly loopy graph of finer grained
clusters and, hence, it can control the complexity by lim-
iting the maximum number of variables that are allowed
to appear in cluster nodes.

Definition 3. (join graph decomposition) A join graph
decomposition of a graphical model G is a tuple D :“
xGJ , χ, ψy, where GJ “ pC,Sq is a graph with nodes C
and edges S, and χ and ψ are labeling function that χ
maps a node C P C to a set of variables χpCiq “ XC ,
and ψ allocates each function Fα exclusively to a node
C P C such that Xα Ď XC . An edge pCi, Cjq P S is
associated with a subset of variables shared between the
two clusters χpCiqXχpCjq, called separator SCi,Cj . The
labeling function should ensure the running intersection
property; for each variable Xi P X, the set tC P C|Xi P
ψpCqq induces a connect subgraph.

A valid join graph can be systematically structured from a
mini bucket tree produced by the MBE algorithm with the
bounding parameter i-bound that controls the maximum
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cluster size [Dechter and Rish, 2003]. The following
example illustrates a join graph decomposition of the ID
shown in Figure 1(a).
Example 2. Figure 2 shows a join graph decomposition
D : xGJ , χ, ψy of the ID in Figure 1(a). The primal Gp of
an ID can be obtained by removing all informational arcs
before moralization and then removing the value nodes.
From the Gp and a legal variable elimination ordering
compatible with the MEU query, a join graph GJ can be
generated by standard methods. The labeling functions χ
and ψ are displayed inside nodes and separators SCi,Cj
are displayed next to edges. Compared with the join
tree shown in Figure 1(b), we see that the additional
cluster node C2 contains a function P pS3|D0, S0q that
was included in Bucket S3 in the join tree.

2.4 DECOMPOSITION BOUNDS

Decomposition methods for bounding graphical model
inference queries are based on two techniques. Namely,
the graphical model decomposition with some auxiliary
parameters and the optimization procedure that optimizes
the parameters to improve the bound. For example, dual
decomposition for MAP optimizes the dual variables, cor-
responding to Lagrange multipliers enforcing a set of
local consistency constraints defined on the factor graph
[Sontag et al., 2011]. Various decomposition bounds are
available in the literature depending on decomposition
schemes, methods of parameterization, and optimization
frameworks. The common characteristic of such decom-
position bounds is that they decompose the original graph-
ical model to a relaxed lower complexity model, compute
the global bound from decomposed local bounds and op-
timize the bound by additional local computations.

We review the generalized dual decomposition (GDD)
bound for MMAP [Ping et al., 2015] that our bounding
scheme is built upon. First, define a powered-sum elimi-
nation operator

řw
X by

řw
X fpXq “ r

ř
X |fpXq|1{wsw, (3)

which generalizes maximization and summation with a
weight 0 ď w ď 1 for the variable X . Note that the
powered-sum elimination operator reduces to maximiza-
tion and summation when wÑ0 and w“1, respectively.
Given a graphical model G : xX,Fy, the MMAP task in
Eq. (2) can be expressed by the powered-sum elimination
operator as, řw

X

ś
αPIF FαpXαq, (4)

where each weight wi P w of a variable Xi P X is
assigned 0 for the maximization variables and 1 for the
summation variables. The bounding scheme of GDD is
based on the generalization of the Hölder’s inequality,

řw
X

ś
αPIF FαpXαq ď ś

αPIF
řwα

Xα
FαpXαq, (5)

where IF is the index set of functions F, w is the set of
weights that are either 0 or 1, wα is the set of non-negative
weights distributed to Xα such that wi “ ř

αPIF w
α
i .

Note that the upper bound on the right-hand side of Eq. (5)
combines local MMAP values only computed from a sub-
set of variables Xα. The upper bounds of the MMAP in
Eq. (5) can be formulated as an optimization problem by
introducing cost-shifting parameters defined over a join
graph decomposition xGJpC,Sq, χ, ψy by the following
equation,

ź

CiPC

wCiÿ

XCi

r
ź

αPψpCiq
FαpXCiqsr

ź

pCi,CjqPS
δCi,Cj pSCi,Cj qs, (6)

where each cluster node Ci in the join graph GJ collects
a set of functions mapped by χpCiq, and the cost-shifting
parameters δCj ,CipSCi,Cj q and δCi,Cj pSCi,Cj q are intro-
duced on the separators SCi,Cj P S such that the costs
on the both sides cancel each other. The complexity of
computing the upper bound is bounded by the maximum
number of variables appearing in the cluster nodes. The
optimization framework takes Eq. (6) as an objective
function with weights wCi and cost-shifting functions
δCi,Cj pSCi,Cj q as optimization parameters. Since the
objective function is convex after taking log on Eq. (6),
efficient optimization procedures are available for tight-
ening the upper bound.

3 DECOMPOSITION BOUNDS FOR
INFLUENCE DIAGRAMS

3.1 DECOMPOSING INFLUENCE DIAGRAMS

In this section, we develop a decomposition bound for
IDs based on the valuation algebra. First, we generalize
the powered-sum elimination operator in Eq. (3) to the
valuation algebra.
Definition 4. (powered-sum elimination for a valua-
tion) The powered-sum elimination operator for a val-
uation ΨpXq :“ pP pXq, V pXqq is defined by

pw,Aqÿ

X

ΨpXq:“p
wÿ

X

P pXq,
wÿ

X

hpP pXq, V pXq, Aqqbp1,́ Aq (7)

with the activation function h that adds an arbitrary
utility constant A to the normalized expected utility value
V pXq
P pXq and clips negative expected utility value as

hpP pXq,V pXq,Aq“
#
P pXqpV pXq

P pXq`Aq if V pXq
P pXq`Aą0

0, otherwise.
(8)

Since the powered-sum elimination applies to the ab-
solute values of a function, we introduce the activa-
tion function h so that the powered-sum elimination
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on the value component converges to the usual sum-
elimination with a constant shift by A when weights w
are close to 1 and the value V pXq is negative. Namely,
rřw

X hpP pXq, V pXqqsÑ
ř
X V pxq`A when wÑ1 and

A`minpV pXqP pXq qě0.

Next, we define the comparison operator for the valuation
algebra as a partial order as follows.

Definition 5. (comparison of two valuations) Given two
valuations Ψ1 :“ pP1, V1q and Ψ2 : pP2, V2q, we define
inequality Ψ1 ď Ψ2 iff. P1 ď P2 and V1 ď V2.

Equipped with the powered-sum elimination and com-
parison operator for the valuation algebra, we state the
decomposition bounds for IDs as follows.

Theorem 1. (decomposition bounds for IDs) Given an
IDM1

:“ xX,ΨΨΨ,Oy, the MEU can be bounded by

wÿ

O
bαPIΨΨΨΨαpXαq ď bαPIΨΨΨ

pwα, Aqÿ

O
ΨαpXαq. (9)

The left-hand side is the MEU in Eq. (1), by rewriting the
sequence of elimination operators as the powered-sum

elimination operators
řwI0

I0

řwD0

D0
¨ ¨ ¨řw

I|D|
I|D| following

the partial ordering O, where the weights wIk are 1 for
the summation variables, and wDk are 0 for the maxi-
mization variables. The right-hand side switches the or-
der of the elimination and combination operators, hence
it combines fully eliminated local valuations to the global
valuation with weights wα that are distributed from w
such that wi “ ř

αPIΨ
wαi , where wi is the weight of

Xi P X and wαi is the weight of Xi at Ψα.

Proof. The decomposition bound can be obtained by ap-
plying Minkowski’s inequality in Eq. (10) and Hölder’s
inequality in Eq. (11) to the probability and value func-
tions of the valuations.

řw
X fpXq ` gpXq ď

řw
X fpxq `

řw
X gpXq (10)

řw
X fpXqgpXq ď

řw1

X fpxqřw´w1

X gpXq (11)

The probability component in the left-hand side of Eq. (9)
can be bounded by applying Hölder’s inequality as shown
in Eq. (12).

řw
O

ś
iPIΨΨΨ Pi ď

ś
iPIΨΨΨ

řwi

O Pi. (12)

The value component can be bounded by the following
steps. We rewrite the MEU by introducing constant util-
ities Ai as shown in Eq. (13), and bound the MEU by
the activation function hi defined in Eq. (8) as shown in
Eq. (14). The non-constant term in Eq. (14) can be further
bounded by applying Minowski’s inequality and Hölder’s

Figure 3: Optimization Parameters for Join Graph Decom-
position Bounds. Figure shows the optimization parameters
introduced in Proposition 1. The cost-shifting valuations are dis-
played next to the separators SCi,Cj as pλCi,Cj , ηCi,Cj q, and
utility constants ACi are attached next to each cluster node Ci.

inequality as shown in Eq. (15) and (16), respectively.
řw

O
ř
iPIΨΨΨ

rVi ` PipAi ´Aiqsrśj‰i Pjs (13)

ď
wÿ

O

ÿ

iPIΨΨΨ

hipPi, Vi, Aiqr
ź

j‰i
Pjs ´

ÿ

iPIΨΨΨ

Ai (14)

ď
ÿ

iPIΨΨΨ

r
wÿ

O
hipPi, Vi, Aiqsr

ź

j‰i
Pjs ´

ÿ

iPIΨΨΨ

Ai (15)

ď
ÿ

iPIΨΨΨ

r
wiÿ

O
hipPi, Vi, Aiqr

ź

j‰i

wjÿ

O
Pjs ´

ÿ

iPIΨΨΨ

Ai (16)

Note that the weights wi assigned to each valuation Ψi

in Eq. (12) and Eq. (16) are the same. The final result
can be obtained by combining the upper bound on the
probability component in Eq. (12) and the upper bound
on the value component in Eq. (16) as a valuation with the
powered-sum elimination operator for a valuation.

3.2 OPTIMIZING THE UPPER BOUNDS

The following Proposition 1 presents the parameterized
decomposition bounds based on the Theorem 1 by intro-
ducing optimization parameters relative to a join graph
decomposition. Then, the partial derivatives of the param-
eterized decomposition bounds are derived to be used in
the first order optimization framework.
Proposition 1. (parameterized decomposition bounds
for IDs) Given an ID M1

:“ xX,ΨΨΨ,Oy and its join
graph decomposition D :“ xGJpC,Sq, χ, ψy, the decom-
position bounds in Theorem 1 can be parameterized rela-
tive to a join graph decomposition GJ as a pair of upper
bounds on the probability component and the value com-
ponent pLMMAP, LMEUq as follows.

LMMAP“ś
CiPC

řwCi

O P 1Ci , (17)

LMEU“
ÿ

CiPC
r
wCiÿ

O
hCipP 1Ci , V 1Ciqsr

ź

Cj‰Ci

w
Cjÿ

O
P 1Cj ś ACi . (18)
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In Proposition 1, the P 1Ci and V 1Ci are probability and
value functions after incorporating cost-shifting parame-
ters that can be written as

P 1Ci “ PCi
ś
pCi,CjqPS λCi,Cj , (19)

V 1Ci “ P 1Cir
VCi
PCi

`ř
pCi,CjqPS

ηCi,Cj
λCi,Cj

s. (20)

Each node CiPC of the GJ collects the probability and
value functions by the labeling function ψ, and each
edge pCi, CjqPS introduces a cost-shifting parameters
δCi,Cj“pλCi,Cj , ηCi,Cj q over the variables SCi,Cj such
that δCi,Cj b δCj ,Ci“p1, 0q. The utility constant param-
eters ACi is introduced through the activation function
hCi , and the weight parameters wCi are distributed from
w such that wX “ ř

CiPC w
Ci
X for all X P χpCiq. Note

that the reparameterized decomposition bound for IDs
subsumes the GDD bound for MMAP in Eq. (6) at the
probability component, LMMAP, and the new parameter-
ized upper bound for the MEU at the value component,
LMEU. Note that the LMEU in Eq. (20) is non-convex.

The following example illustrates the optimization param-
eters for the ID shown in Figure 1(a).
Example 3. Figure 3 illustrates the optimization pa-
rameters introduced by the join graph decomposition
D :“ xGJpC,Sq, χ, ψy of Example 2. The valuations
at each node Ci P C is displayed inside each node and
the utility constant ACi is attached next to the node. The
cost-shifting valuation pλCi,Cj , ηCi,Cj q is shown next to
the directed edges from Ci to Cj implying that the cost
is moving from Ci to Cj , and hence δCi,Cj and δCj ,Ci
cancel each other.

Next, we present the first-order optimization procedures
for tightening the parameterized decomposition bounds,
LMEU in Eq. (18). For efficiency and simplicity, we ap-
ply a block coordinate method that cycles through a sub-
set of optimization parameters associated with the nodes
and edges of the join graph GJ , which we call the in-
ner optimization problems. To optimize cost-shifting
parameters tδCi,Cj |pCi, Cjq P Su and utility constants
tACi |Ci P Cu, we use gradient descent with line search
[Wright and Nocedal, 1999] by

xt`1 “ xt ´ s ¨ r∇fpxtqs, (21)

where f is the objective function, s is the step size, xt

is the optimization parameter at the t-th iteration. The
weights twCi |Ci P Cu are updated by exponentiated gra-
dient descent [Kivinen and Warmuth, 1997] by

wCi,t`1 “ wCi,t expr´s¨r∇
wCi

LMEUpwCi,tqssř
CiPC wCi,t expr´s¨r∇

wCi
LMEUpwCi,tqss . (22)

Now, we define pseudo marginals and some useful expres-
sions before deriving the gradients of each subset of the
optimization parameters.

Definition 6. (pseudo marginals) Given a non-negative
real-valued function Z0pX1:nq over a set of variables
X1:n“tX1 ,̈ ¨ ¨ ,Xnu, and the weights w “ tw1, ¨ ¨ ¨ , wnu
associated with X1:n, we define a partial powered-sum
elimination of variables X1:i from Z0pX1:nq by

ZipXi`1:nq “ řwi
xi
Zi´1pXi:nq.

The pseudo marginal of Z0pX1:nq is defined by

ΛpZ0pX1:nqq “ rZn´1pXnq
Zn

s1{wn ¨ ¨ ¨ rZ0pX1:nq
Z1pX2:nq s1{w1 .

Note that ΛpZ0pX1:nqq is a normalized distribution over
X1:n, and each rZi´1pXi:nq

ZipXi`1:nq s1{wi is a conditional distribu-
tion over Xi given Xi`1:n.

Let’s define a selector FCj |Ci that selects a probability or
a value component depending on the indices i and j by

FCj |Ci“
#
hCj pPCj , V Cj q, if j “ i

PCj , otherwise.
(23)

By using Eq. (23), the upper bound of the expected utility
value at Ci can be expressed by

ΘCi “
ś
CjPC

řw
Cj

O FCj |Ci . (24)

In the following, we summarize the gradients of LMEU,
∇LMEU with respect to subsets of parameters.

∇LMEUpwCik q“
ÿ

CjPC
ρCjHpXk|Xi`1:|O|;FCj |Ciq (25)

∇LMEUpACiq“ΘCi

ÿ

XCizSCi,Cj

PCiΛphCipPCi , V Ciqq
hCipPCi , V Ciq

´ 1 (26)

∇LMEUpλCi,Cj q“
ÿ

CkPC
ΘCk r

ÿ

XCj
zSCi,Cj

ΛpFCi|Ck q´
ÿ

XCizSCi,Cj
ΛpFCj |Ck qs (27)

∇LMEUpηCi,Cj q“ΘCj

ÿ

XCjzSCi,Cj

PCjΛphCj pPCi , V Cj qq
hCj pPCi , V Cj q

´

ΘCi

ÿ

XCizSCi,Cj

PCiΛphCipPCi , V Ciq
hCipV Ciq

(28)

The term HpXk|Xi`1:|O|;FCj |Ciq in Eq. (25) is the con-
ditional entropy HpXk|Xi`1:|O|q of the pseudo marginal
of the function selected by FCj |Ci .

3.3 MESSAGE PASSING ALGORITHM

Applying the parameterized decomposition bounds for
IDs and the first order optimization procedures described
in Section 3.2, we develop an iterative message passing al-
gorithm that updates the optimization parameters defined
relative to a join graph decomposition.
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Algorithm 1 Join Graph Decomposition for IDs (JGDID)
Require: Influence diagramM1 “ xX,ΨΨΨ,Oy, initial weights

wi associated with a variable Xi P X, i-bound, total itera-
tion limit M1, iteration limit M2 for updating weights and
costs before updating utility constants.

Ensure: an upper bound of the MEU, LMEU,
1: generate a join graph decompositionD “ xGJpC,Sq, χ, ψy

by MBE with i-bound and assign valuations to nodes by
labeling function ψ.

2: execute single pass cost-shifting by messages generated by
MBE algorithm based on the valuation algebra (MBE-VA)

3: initialize weights wCi ,@Ci P C by uniform weights.
4: iter=0, LMEU “ inf
5: while iter ăM1 or LMEU is not converged do
6: for each variable Xi P X do
7: LMEU Ðmin(LMEU, UPDATE-WEIGHTS(GJ , Xi))
8: end for
9: for each edge pCi, Cjq P S do

10: LMEU Ðmin(LMEU, UPDATE-COSTS(GJ , tCi, Cju))
11: end for
12: if iter ąM2 then
13: for each node Ci P C do
14: LMEU Ðmin(LMEU, UPDATE-UTIL-CONST(GJ , Ci))
15: end for
16: end if
17: iter “ iter ` 1
18: end while

Algorithm 1 outlines the procedure for updating the
parameters, the Join Graph Decomposition Bound for
IDs (JGDID). Given an input ID M1 :“ xX,ΨΨΨ,Oy,
we first generate a join graph decomposition D “
xGJpC,Sq, χ, ψy by executing the MBE algorithm with
an input i-bound. For details on how to structure a join
graph decomposition, see Mateescu et al. [2010]. Then,
we assign valuations to the nodes in C by labeling func-
tion ψ and run a single pass cost-shifting over the join
graph using the messages generated by the MBE algo-
rithm [Dechter and Rish, 2003] based on valuation algebra
(MBE-VA). In our empirical evaluation, this preliminary
step significantly improves the speed of convergence and
the quality of the upper bound. The initial weights wCi

at each node Ci P C for the summation variables are
uniform, and a small constant ε « 10´6 initializes the
weights for the maximization variables.

The block coordinate method updates the subset of the pa-
rameters by solving inner optimization problems follow-
ing the structure of GJ . The UPDATE-WEIGHTS routine
in line 7 updates the weights wCji for a variable Xi over
@Cj P C by Eq. (22) with the gradient in Eq. (25), the
UPDATE-COSTS routine in line 10 updates cost-shifting
valuations δCi,Cj over each edge pCi, Cjq P S by the gra-
dient descent with the gradients in Eq. (27) and in Eq. (28),
and the UPDATE-UTIL-CONST routine in line 14 up-
dates the utility constants ACi for each node Ci P C by
the gradient descent with the gradient in Eq. (26). Since

Table 1: Benchmark statistics. Table shows the minimum,
median, and maximum instance statistics from 10 instances. n
is the number of chance and decision variables, f is the number
of probability and utility functions, k is the maximum domain
size, s is the maximum scope size, and w is the induced width.

Domain n f k s w

FH-MDP 25, 110, 170 30, 143, 170 2, 3, 5 4, 7, 9 5, 25, 43
FH-POMDP 15, 51, 96 18, 61, 140 2, 2, 3 3, 5, 9 10, 27, 47
RAND 22, 57, 91 22, 57, 91 2, 2, 2 3, 3, 3 6, 18, 41
BN 54, 100, 115 54, 100, 115 2, 2, 2 6, 8, 10 18, 28, 45

the optimization objective function LMEU is non-convex,
the block coordinate method with our first-order optimiza-
tion procedures is not guaranteed to provide a globally
minimum bound, yet often performs well in practice.

In our empirical evaluation, we set the hyperparameters
for the number of gradient updates for the inner optimiza-
tion to 10, and the number of updates M2 for the weights
and costs before updating utility constants to 20 and 50,
which yielded a good convergence behavior.

4 EXPERIMENTS

We empirically compare the performance of our proposed
algorithm JGDID with earlier approaches for bounding
the MEU on four problem domains.

Benchmarks. The benchmarks are generated as follows.
(1) Factored FH-MDP instances are generated from two
stage factored MDP templates by controlling the num-
ber of state and action variables, the scope of functions,
and the time horizon. (2) Factored FH-POMDP instances
are generated similarly to FH-MDP instances, but we
incorporate partial observability. (3) Random influence
diagram (RAND) instances are generated by randomly
generating influence diagram topology given the number
of chance, decision, and value nodes. (4) BN instances
are converted to ID from existing Bayesian networks used
in the UAI-2006 probabilistic inference competitions by
adding utility functions and randomly selecting decision
variables. We generated 10 instances for each bench-
mark with increasing difficulty; Table 1 summarizes the
instance statistics of the 4 benchmarks.

Algorithms. The first approach we compare against is
the upper bounding algorithms for MMAP using the re-
duction from ID to MMAP. The reduction of Mauá [2016]
generates standard MMAP instances, while Liu and Ih-
ler [2012] generates MMAP instances with interleaved
max and sum operators, which we call mixed MMAP.
For the standard MMAP instances, we applied weighted
mini-bucket with moment matching (WMBMM) [Liu and
Ihler, 2011; Marinescu et al., 2014], and for the mixed
MMAP instances, we applied GDD [Ping et al., 2015].

The second set of algorithms are applied directly to the In-
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Table 2: Instance statistics of MMAP translation. Table shows
the minimum, median, and maximum instance statistics of the
standard MMAP reduction (MM) and the mixed MMAP reduc-
tion (MI).

Domain Trans n k w

FH-MDP ID 25, 110, 170 2, 3 ,5 5, 25, 43
MI 26, 111, 171 10, 27, 80 15, 86, 160
ID 15, 51, 96 2, 3, 2 10, 27, 47

FH-POMDP MM 28, 188, 5277 6, 16, 48 14, 141, 5192
MI 16, 52, 97 6, 16 ,48 10, 28, 48
ID 22, 57, 91 2, 2, 2 6, 18, 41

RAND MM 29, 79, 142 2, 8, 21 8, 25, 58
MI 23, 58, 92 2, 8, 21 6, 20, 42
ID 54, 100, 115 2, 2, 2 18, 28, 45

BN MM 69, 126, 202 3, 6, 12 20, 40, 92
MI 55, 101, 116 3, 6, 12 19, 29, 46

fluence Diagram. One scheme is based on the mini-bucket
idea which bounds the induced width by the i-bound, and
then applies variable elimination using valuation algebra,
yielding algorithm MBE-VA. The second is an informa-
tion relaxation scheme, which relaxes the constrained
variable ordering, denoted IR-SIS. [Nilsson and Hohle,
2001; Yuan et al., 2010]. The information relaxation is
orthogonal to approximate elimination, and so both can
be applied together; when we apply MBE-VA and JGDD
together with the relaxed ordering of IR-SIS we call the
hybrid algorithms MBE-VA+IR-SIS ad JGDID-IR-SIS.

In summary, we evaluated 6 algorithms. We have JGDID
and MBE-VA applied directly to the input IDs assuming
only constrained ordering. We have JGDID+IR-SIS and
MBE-VA+IR-SIS applied to the IDs but allowing relaxed
ordering by IR-SIS, and finally we have WMBMM and
GDD that are applied to MMAP reductions from IDs.

Performance measure. We report the quality of upper
bounds for individual instances, and the average quality of
the upper bounds by the mean of the ratio between the best
upper bound found by all configurations (6 algorithms
with i-bounds 1 and 15) and the upper bound of each
under comparison; the closer the value to 1.0, the better
the quality.

4.1 COMPARING AGAINST MMAP
TRANSLATIONS

Next, we compare our JGDID approach with WMBMM
and GDD bounds based on MMAP translations.

Impact of MMAP translation. Table 2 summarizes the
changes in the number of variables, the maximum domain
size, and the induced widthw due to the translation. When
computing the induced width, we used the randomized
min-fill algorithm. The reduction from ID to MMAP
for the FH-MDP benchmark is not shown in the table
because the translation was not feasible for most of the
instances. Note that the standard MMAP reduction (MM)

Table 3: Average Quality of Upper Bounds.

Algorithm FH-MDP FH-POMDP RAND BN
JGDID+IR-SIS(i=1) NA 0.88 0.87 0.99
JGDID+IR-SIS(i=15) NA 0.76 0.85 0.64
JGDID(i=1) 0.88 0.38 0.86 0.89
JGDID(i=15) 0.49 0.38 0.85 0.64
MBE-VA+IR-SIS(i=1) NA 0.03 0.01 0.00
MBE-VA+IR-SIS(i=15) NA 0.54 0.46 0.15
MBE-VA(i=1) 0.00 0.00 0.00 0.00
MBE-VA(i=15) 0.40 0.29 0.46 0.17
GDD(i=1) 0.87 0.03 0.11 0.24
GDD(i=15) 0.22 0.11 0.15 0.05
WMBMM(i=1) 0.00 0.00 0.01 0.01
WMBMM(i=15) 0.01 0.23 0.35 0.24

inflates all input statistics. The number of variables is
exponential in the size of the largest information set, the
maximum domain size is increased to the total number
of utility functions, and the induced width also increased
significantly higher than input IDs. The mixed MMAP
translation (MI) increases the number of variables by 1
which has domain size equal to the total number of utility
functions. The induced width is increased by 1 except for
the FH-MDP domain.

Upper bounds from individual instances. Figure 4 il-
lustrates the quality of the obtained upper bounds for
instances having the largest induced width in each bench-
mark. We ran JGDID and GDD algorithms up to 2000
iterations or until convergence. We can see from Figure
4 that JGDID dominates GDD and WMBMM on all in-
stances except pomdp8. Comparing the upper bounds
across i-bounds, JGDID and GDD do not show notable
improvement on the speed of convergence with higher
i-bounds due to the large overhead of a single iteration.
We see that JGDID shows the step-wise improvement of
upper bounds when it optimizes the utility constants.

Average quality of upper bounds. Table 3 shows the
average quality of upper bounds. We see that the average
quality of JGDID dominates both GDD and WMBMM
in all benchmarks. Comparing JGDID and GDD, both
generated upper bounds with similar quality on average
in the FH-MDP benchmark. However, bounds from GDD
are significantly worse than JGDID in other benchmarks.
The upper bounds from WMBMM(i=1) is so large that
the average ratios for all instances are close to 0.0.

4.2 COMPARING AGANIST DIRECT
ALGORITHMS

In this section we compare JGDID, MBE-VA, JGDID+IR-
SIS, and MBE-VA+IR-SIS that are applied directly to IDs.
They are all obtained by relaxing the input IDs either by
decomposing graphical model or information relaxation.

Impact of IR-SIS. The IR-SIS relaxation often produces
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(a) n=99, f=120, wc=43 wmi=81 (b) n=94, f=140, wc=47, wmm=2057, wmi=48, wr=26

(c) n=91, f=91, wc=41, wmm=58, wmi=42, wr=42 (d) n=115, f=115, wc=45, wmm=92, wmi=46, wr=54

Figure 4: Upper Bounds of the MEU. Each plot shows the convergence of upper bounds over time. We draw horizontal lines for the
bounds computed by non-iterative algorithms. The wc, wmm, wmi, and wr are the induced width of the input ID, standard MMAP
reduction, mixed MMAP reduction, and relaxed ID with IR-SIS, respectively.

IDs with a lower induced width by reordering the vari-
ables in the information sets. It is shown to be very ef-
fective for FH-POMDP instances because IR-SIS trans-
forms POMDP instances to MDP. The minimum, the
median and the maximum induced width of FH-POMDP
instances decreased from 10 to 3, 27 to 14, and 47 to 35,
respectively via this relaxation. In other benchmarks, the
improvement was negligible and often IR-SIS increased
induced width.

Upper bounds from individual instances. Figure 4 il-
lustrates also upper bounds obtained by direct algorithms.
Comparing JGDID with MBE-VA, we see in the figure
that JGDID improved the quality of the upper bound sig-
nificantly in all instances. IR-SIS often significantly im-
proves the quality of the bounds when the upper bounds
from decomposition methods is still weak. In case of
pomdp8, we see that the JGDID+IR-SIS improved the
upper bound significantly compared to JGDID.

Average quality of upper bounds. Table 3 also shows
the average quality of the upper bounds for the 4 direct
algorithms. We see that the average quality of JGDID
dominates MBE-VA. The average quality of the upper
bounds obtained from MBE-VA(i=1) are so weak that
their value is closed to 0.0 in all benchmarks. Both JG-
DID and MBE-VA improve the average quality of the
upper bounds when they are combined with IR-SIS, and

JGDID+IR-SIS presents the best average quality overall.

5 CONCLUSIONS

We present a new algorithm, Join Graph Decomposition
for solving Influence Diagrams, called JGDID, using the
valuation algebra. Our scheme subsumes the decomposi-
tion bounds for marginal MAP, and also provide a bound
for the MEU. Our experiments show the effectiveness of
the translation free approach and the significant improve-
ment in the quality of upper bounds compared with earlier
state-of-the-art approaches. We also demonstrate that a
join graph decomposition scheme can be combined with
information relaxation scheme to yield superior bounds.
The principle of decomposing a sequence of decision
problems to a collection of weakly coupled subproblems
can be further developed by incorporating advanced opti-
mization frameworks, and the resulting, effective upper
bounding schemes can be applied to probabilistic plan-
ning and stochastic programming.
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Abstract

Causal discovery methods aim to recover the
causal process that generated purely observa-
tional data. Despite its successes on a number
of real problems, the presence of measurement
error in the observed data can produce seri-
ous mistakes in the output of various causal
discovery methods. Given the ubiquity of
measurement error caused by instruments or
proxies used in the measuring process, this
problem is one of the main obstacles to reli-
able causal discovery. It is still unknown to
what extent the causal structure of relevant
variables can be identified in principle. This
study aims to take a step towards filling that
void. We assume that the underlining pro-
cess or the measurement-error free variables
follows a linear, non-Guassian causal model,
and show that the so-called ordered group
decomposition of the causal model, which con-
tains major causal information, is identifiable.
The causal structure identifiability is further
improved with different types of sparsity con-
straints on the causal structure. Finally, we
give rather mild conditions under which the
whole causal structure is fully identifiable.

1 INTRODUCTION

Understanding and using causal relations among vari-
ables of interest has been a fundamental problem in var-
ious fields, including biology, neuroscience, and social
sciences. Since interventions or controlled randomized
experiments are usually expensive or even impossible
to conduct, discovering causal information from obser-
vational data, known as causal discovery (Spirtes et al.,
2001; Pearl, 2000), has been an important task and
received much attention in computer science, statistics,
and philosophy. Roughly speaking, methods for causal

discovery are categorized into constraint-based ones,
such as the PC algorithm (Spirtes et al., 2001), and
score-based ones, such as Greedy Equivalence Search
(GES) (Chickering, 2002).

Almost all current causal discovery methods assume
that the recorded values are realizations of the variables
of interest. Typically, however, the measured values
are not identical to the values of the variables that they
are intended to measure. The measuring process may
involve nonlinear distortion, as already address by the
post-nonlinear causal model (Zhang & Hyvärinen, 2009;
Zhang & Chan, 2006), and may introduce a lot of error.
For instance, in neuroscience the measured brain sig-
nals obtained by functional magnetic resonance (fMRI)
usually contain error introduced by instruments. In
this paper, we consider the so-called random measure-
ment error model, as defined by Scheines & Ramsey
(2017), in which observed variables Xi, i = 1, ..., n, are
generated from the underlying measurement-error-free
variables X̃i with additive measurement errors Ei:

Xi = X̃i + Ei. (1)

We further assume that the errors Ei are mutually
independent and independent from X̃i. Putting the
causal model for X̃i and the random measurement
error model together, we have the whole process that
generates the measured data. We call this process the
CAusal Model with Measurement Error (CAMME).

Generally speaking, because of the presence of mea-
surement errors, the d-separation patterns among Xi

are different from those among the underlying vari-
ables X̃i. This generating process has been called
the random measurement error model in (Scheines
& Ramsey, 2017). According to the causal Markov
condition (Spirtes et al., 2001; Pearl, 2000), observed
variables Xi and the underlying variables X̃i may have
different conditional independence/dependence rela-
tions and, as a consequence, the output of approaches
to causal discovery that exploit conditional indepen-
dence and dependence relations are unreliable in the
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presence of such errors, as demonstrated in (Scheines
& Ramsey, 2017). In Section 2 we will give an example
to show how conditional independence/dependence be-
tween the variables is changed by measurement error,
and discuss its implication in applications of causal dis-
covery to real problems. Furthermore, because of the
measurement error, the structural equation models ac-
cording to which the measurement-error-free variables
X̃i are generated usually do not hold for the observed
variables Xi. (In fact, Xi follow error-in-variables mod-
els, for which the identifiability of the underlying causal
relation is not clear.) Hence, approaches based on struc-
tural equation models, such as the linear, non-Gaussian,
acyclic model (LiNGAM (Shimizu et al., 2006)), will
generally fail to find the correct causal direction.

In this paper, we aim to estimate the causal model un-
derlying the measurement-error-free variables X̃i from
their observed values Xi contaminated by random mea-
surement error. We assume linearity of the causal
model and causal sufficiency relative to {X̃i}n

i=1. We
particularly focus on the case where the causal struc-
ture for X̃i is represented by a Directed Acyclic Graph
(DAG), although this condition can be weakened. In
order to develop principled causal discovery methods
to recover the causal model for {X̃i}n

i=1 from observed
values of {Xi}n

i=1, we have to address theoretical issues
include 1) whether the causal model of interest is com-
pletely or partially identifiable from the contaminated
observations and 2) what are the precise identifiability
conditions.

There exist causal discovery methods, such as the Fast
Causal Inference (FCI) algorithm (Spirtes et al., 2001),
to deal with confounders, i.e., hidden direct common
causes. However, they cannot estimate the causal rela-
tions among the “latent" variables, which is what we
aim to recover in this paper. Silva et al. (2006) and
Kummerfeld et al. (2014) have provided algorithms for
recovering latent variables and their causal relations
when each latent variable has multiple measured effects;
Shimizu et al. (2011a) further applied LiNGAM to the
recovered latent variables to improve the estimated
causal relations between them. Their problem is dif-
ferent from the measurement error setting we consider,
where clustering for latent common causes is not re-
quired and each measured variable is the direct effect
of a single "true" variable. As discussed in Section 3,
their models can be seen as special cases of our setting.

2 EFFECT OF MEASUREMENT
ERROR

Suppose we observe variables X1, X2, and X3, which
are generated from measurement-error-free variables
X̃i according to the structure given in Figure 1. By

the Markov condition and Faithfulness assumption, all
three of the X̃i variables are dependent on one another,
while X̃1 and X̃3 are conditionally independent given
X̃2. That conditional independence does not hold for
Xi, the variables actually observable. The measure-
ment error E2 produces the trouble. We will treat the
distributions as Gaussian purely for illustration; again,
the point is general.

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME to demonstrate the effect
of measurement error on conditional independence and
dependence relationships. For simplicity, we consider
the special case where there is measurement error only
in X2, i.e., X2 = X̃2 + E2, but X1 = X̃1 and X3 = X̃3.

Let ⇢̃12 be the correlation coefficient between X̃1 and
X̃2 and ⇢̃13,2 be the partial correlation coefficient be-
tween X̃1 and X̃3 given X̃2, which is zero. Let ⇢12

and ⇢13,2 be the corresponding correlation coefficient
and partial correlation coefficient in the presence of
measurement error. We let ⇢̃12 = ⇢̃23 = ⇢̃ to make the
argument simpler, but the point is quite general. So
we have ⇢13 = ⇢̃13 = ⇢̃12⇢̃23 = ⇢̃2. Let � = Std(E2)

Std(X̃2)
. For

the data with measurement error, we have

⇢12 =
Cov(X1, X2)

Var1/2(X1)Var1/2(X2)

=
Cov(X̃1, X̃2)

Var1/2(X̃1)(Var(X̃2) + Var(E2))1/2

=
⇢̃

(1 + �2)1/2
;

⇢13,2 =
⇢13 � ⇢12⇢23

(1� ⇢2
12)

1/2(1� ⇢2
23)

1/2

=
⇢̃13 � ⇢̃12⇢̃23

1+�2

�
1� ⇢̃2

(1+�2)

�1/2�
1� ⇢̃2

(1+�2)

�1/2

=
r2⇢̃2

1 + �2 � ⇢̃2
.

As the variance of the measurement error in X2 in-
creases, � become larger, and ⇢12 decreases and finally
goes to zero; in contrast, ⇢13,2, which is zero for the
measurement-error-free variables, is increasing and fi-
nally converges to ⇢̃2. See Figure 2 for an illustration.
In other words, in this example as the variance of the
measurement error in X2 increases, X1 and X2 be-
come more and more independent, while X1 and X3

are conditionally more and more dependent given X2.
However, for the measurement-error-free variables, X̃1

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. The PC algorithm and
other methods that explicitly or implicitly exploit con-
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ditional independence and dependence relations will
find an edge between X1 and X3 that does not exist
between X1 and X3 . Multiple regression of X3 on
X1 and X2, or X1 on X3 and X2, will make the same
error.

0 2 4 6 8 10
� = S td(E 2)/S td(X̃2)

 

 

⇢ 12

⇢ 13,2

⇢̃ 2

⇢ 12

⇢ 13,2

⇢̃ 2

⇢̃

Figure 2: The correlation coefficient ⇢12 between X1

and X2 and partial correlation coefficient ⇢13,2 between
X1 and X3 given X2 as functions of �, the ratio of the
standard deviation of measurement error to the that of
X̃2. We have assumed that the correlation coefficient
between X̃1 and X̃2 and that between X̃2 and X̃3 are
the same (denoted by ⇢̃), and that there is measurement
error only in X2.

Roughly speaking, originally conditionally independent
(or dependent) variables will become less independent
(or dependent), due to the effect of measurement error.
In order to correctly detect conditional independence re-
lations between measurement-error-free variables from
the observed noisy values, one may use a very small
significance level (or type I error level, ↵) when per-
forming conditional independence tests–the smaller the
significance level, the less often the independence null
hypothesis is rejected, and more pairs of variables are
likely to be considered as conditionally independent.
This, inevitably, risks high type II errors (i.e., con-
ditionally dependent variable pairs are likely to be
considered as independent), especially when the sam-
ple size is relatively small. Therefore it is desirable to
develop principled causal discovery methods to deal
with measurement error.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations. The effect of
measurement error on causal direction identification in
the two-variable case was also studied by Wiedermann
et al. (2018) under some further assumptions.

3 MODEL CANONICAL
REPRESENTATION

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
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from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃ + Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.
Equation (3) can be rewritten as

X̃ = ANLẼNL + ALẼL = X̃⇤ + ALẼL, (4)

where X̃⇤ , ANLẼNL, ANL and AL are n ⇥ (n � l)
and n ⇥ l matrices, respectively. Here both AL and
ANL have specific structures. All entries of AL are 0
or 1; for each column of AL, there is only one non-zero
entry. In contrast, each column of ANL has at least
two non-zero entries, representing the influences from
the corresponding non-leaf noise term.

We give a more formal way to derive the above result
and make it clear how ANL and AL depend on B. For
any graph G̃ there always exists a suitable permutation
matrix, denoted by ⌦, such that the last l elements of
the permuted variables ⌦X̃ are all leaf nodes. Hence,

⌦Ẽ =


ẼNL

ẼL

�
. Accordingly, (2) implies that

⌦X̃ = B⌦ · ⌦X̃ + ⌦Ẽ, (5)

where B⌦ = ⌦B⌦|. Since the last l variables in ⌦X̃
are leaf nodes, the last l columns of B⌦ are zero. Let
BNL

⌦ be the causal influence matrix for the non-leaf
nodes and BL

⌦ denote the causal influence from non-

leaf nodes to leaf nodes. We have B⌦ =


BNL

⌦ 0
BL

⌦ 0

�
.

Consequently,

(I�B⌦)�1 =


(I�BNL)�1 0

BL(I�BN )�1 I

�
. (6)

Combining (5) and (6) gives

X̃ = ⌦|(I�B⌦)�1⌦Ẽ

= ⌦| ·


I
BL

�
· (I�BNL)�1

| {z }
ANL

ẼNL + ⌦|


0

ẼL

�

| {z }
ALẼL

.

Further consider the generating process of observed
variables Xi. Combining (1) and (4) gives

X = X̃⇤ + ALẼL + E = ANLẼNL + (ALẼL + E)

= ANLẼNL + E⇤ (7)

=
⇥

ANL I
⇤
·


ẼNL

E⇤

�
, (8)

where E⇤ = ALẼL + E and I denotes the identity
matrix. To make it more explicit, we give how X̃⇤i and
E⇤i are related to the original CAMME process:

X̃⇤i =

(
X̃i, if X̃i is not a leaf node in G̃;

X̃i � Ẽi, otherwise;
, and

(9)

E⇤i =

(
Ei, if X̃i is not a leaf node in G̃;

Ei + Ẽi, otherwise.

Clearly E⇤i s are independent across i, and as we shall
see in Section 4, the information shared by difference
Xi is still captured by X̃⇤. For each CAMME specified
by (2) and (1), there always exists an observationally
equivalent representation in the form of (7). We call
the representation (7) the canonical representation of
the CAMME (CR-CAMME).

Example Set 1 Consider the following example with
three observed variables Xi, i = 1, 2, 3, for which X̃1 !
X̃2  X̃3, with causal relations X̃2 = aX̃1 + bX̃3 + Ẽ2.
That is,

B =

2
4

0 0 0
a 0 b
0 0 0

3
5 , and A =

2
4

1 0 0
a 1 b
0 0 1

3
5 .

Therefore,

X = X̃ + E = X̃⇤ + E⇤

=

2
4

1 0
a b
0 1

3
5 ·

Ẽ1

Ẽ3

�
+

2
4

E1

Ẽ2 + E2

E3

3
5

=

2
4

1 0 1 0 0
a b 0 1 0
0 1 0 0 1

3
5 ·

2
66664

Ẽ1

Ẽ3

E1

Ẽ2 + E2

E3

3
77775

.

In causal discovery from observations in the presence
of measurement error, we aim to recover information
of the measurement-error-free causal model G̃. Let us
define a new graphical model, G̃⇤. It is obtained by
replacing variables X̃i in G̃ with variables X̃⇤i . In other
words, it has the same causal structure and causal
parameters (given by the B matrix) as G̃, but with
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variables X̃⇤i as its nodes. If we manage to estimate
the structure of and the involved causal parameters in
G̃⇤, then the causal model of interest, G̃, is recovered.
We defined the graphical model G̃⇤ because we cannot
fully estimate the distribution of measurement-error-
free variables X̃, but might be able to estimate that of
X̃⇤ under proper assumptions, as shown in Section 4.

Compared to G̃, G̃⇤ involves some deterministic causal
relations because each leaf node is a deterministic
function of its parents (the noise in leaf nodes has
been removed; see (9)). For instance, suppose in G̃⇤,
PA(X̃⇤3 ) = {X̃⇤1 , X̃⇤2}, where PA(X̃⇤3 ) denotes the set of
parents of X̃⇤3 in G̃⇤, and that X̃3 is a leaf node. Then
each of X̃1, X̃2, and X̃3 is a deterministic function of
the remaining two. More generally, let X̃⇤l be a leaf
node in the causal graph G̃⇤; then each of the variables
in {X̃⇤l } [ PA(X̃⇤l ), denoted by X̃⇤k , is a deterministic
function of the remaining variables.

To make it possible to identify the structure of G̃ from
the distribution of X, in what follows we assume the
distribution of X̃⇤ satisfies the following assumption.

A0. The causal Markov condition holds for G̃ and
the distribution of X̃i is faithful w.r.t. G̃.
Furthermore, the distribution of X̃⇤i is non-
deterministically faithful w.r.t. G̃⇤, in the sense
that if there exists S, a subset of {X̃⇤k : k 6= i, k 6=
j}, such that neither of X̃⇤i and X̃⇤j is a determin-
istic function of S and X̃⇤i ?? X̃⇤j |S holds, then
X̃⇤i and X̃⇤j (or X̃i and X̃j) are d-separated by S

in G̃⇤.

This non-deterministically faithfulness assumption ex-
cludes a particular type of parameter coupling in the
causal model for X̃i. in Figure 4 we give a causal
model in which the causal coefficients are carefully
chosen so that this assumption is violated: because
X̃⇤3 = aX̃⇤1 + bX̃⇤2 and X̃⇤4 = 2aX̃⇤1 + 2bX̃⇤2 + E⇤4 , we
have X̃⇤4 = 2X̃⇤3 + E⇤4 , implying X̃⇤4 ?? X̃⇤1 | X̃⇤3 and
X̃⇤4 ?? X̃⇤2 | X̃⇤3 , which are not given by the causal
Markov condition on G̃. We note that this non-
deterministic faithfulness is defined for the distribution
of the constructed variables X̃⇤i , not the measurement-
error-free variables X̃i. (Bear in mind their relationship
given in (9).) This assumption is generally stronger
than the faithfulness assumption for the distribution of
X̃i. In particular, in the causal model given in Figure 4,
the distribution of X̃i is still faithful w.r.t. G̃. Below
we call the conditional independence relationship be-
tween X̃⇤i and X̃⇤j given S where neither of X̃⇤i and
X̃⇤j is a deterministic function of S non-deterministic
conditional independence.

Now we have two concerns. One is whether essential
information of the CR-CAMME is identifiable from

X̃4X̃2 X̃5X̃1

X̃3

2b dc

a b

2a

Figure 4: A specification of the causal model G̃ in
which X̃⇤i are not non-deterministically faithful w.r.t.
G̃ because of parameter coupling.

observed values of X. The other is what information of
the original CAMME, in particular, the causal model
over X̃i, can be estimated from the above identifiable
information of the CR-CAMME. Although the transfor-
mation from the original CAMME to a CR-CAMME is
straightforward, without further knowledge there does
not necessarily exist a unique CAMME corresponding
to a given CR-CAMME: first, the CR-CAMME does
not tell us which nodes X̃i are leaf nodes in G̃; second,
even if X̃i is known to be a leaf node, it is impossible to
separate the measurement error Ei from the noise Ẽi in
E⇤i . Fortunately, we are not interested in everything of
the original CAMME, but only the causal graph G̃ and
the corresponding causal influences B. Accordingly, in
the next section we will explore what information of the
CR-CAMME is identifiable from the observations of X
and how to further reconstruct necessary information
of the original CAMME.

In the measurement error model (1) we assumed that
each observed variable Xi is generated from its own la-
tent variable X̃i. We note that in case multiple observed
variables are generated from a single latent variable
or a single observed variable is generated by multiple
latent variables (see, e.g., Silva et al. (2006)), we can
still use the CR-CAMME to represent the process. In
the former case, certain rows of ANL are identical. For
instance, if X1 and X2 are generated as noisy obser-
vations of the same latent variable, then in (7) the
first two rows of ANL are identical. (More generally,
if one allows different coefficients to generate them
from the latent variable, the two rows are proportional
to each other.) Let us then consider an example in
the latter case. Suppose X3 is generated by latent
variables X̃1 and X̃2, for each of which there is also
an observable counterpart. Write the causal model as
X3 = f(X̃1, X̃2)+E3 and introduce the latent variable
X̃3 = f(X̃1, X̃2), and then we have X3 = X̃3 + E3.
The CR-CAMME formulation then follows.

4 IDENTIFIABILITY IN THE
LINEAR, NON-GAUSSIAN CASE

The CR-CAMME (7) has a form of the factor analysis
model (FA) (Everitt, 1984), which has been a funda-
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mental tool in data analysis. Accordingly, one can
study the identifiability for CAMME by making use
of the identifiability of FA, as reported by Zhang et al.
(2017). The identifiability of FA, however, replies heav-
ily on the assumption that there are a relatively large
number of leaf variables in the causal graph G̃ (Bekker
& ten Berge, 1997), which seems rather strong. More-
over, it has been shown that second-order statistics
usually is not informative enough to recover a unique
causal model (Spirtes et al., 2001). Interestingly, we
show that the identifiability results can greatly benefit
from the non-Gaussianity assumption on the data. In
this paper we make the following assumption on the
distribution of Ẽi:

A1. All Ẽi are non-Gaussian.

We note that under the above assumption, ANL in (8)
can be estimated up to the permutation and scaling
indeterminacies (including the sign indeterminacy) of
the columns, as given in the following lemma. This
can be achieved by using overcomplete Independent
Component Analysis (ICA) (Hyvärinen et al., 2001).

Lemma 1. Suppose assumption A1 holds. Given X
which is generated according to (8), ANL is identifiable
up to permutation and scaling of columns as the sample
size N !1.

Proof. This lemma is implied by Theorem 10.3.1 in
(Kagan et al., 1973) or Theorem 1 in (Eriksson &
Koivunen, 2004).

What information of the causal structure G̃ can we re-
cover? Can we apply existing methods for causal discov-
ery based on LiNGAM, such as ICA-LiNGAM (Shimizu
et al., 2006) and Direct-LiNGAM (Shimizu et al.,
2011b), to recover it? LiNGAM assumes that the
system is non-deterministic: each variable is generated
as a linear combination of its direct causes plus a non-
degenerate noise term. As a consequence, the linear
transformation from the vector of observed variables to
the vector of independent noise terms is a square ma-
trix; ICA-LiNGAM applies certain operations to this
matrix to find the causal model, and Direct-LiNGAM
estimates the causal ordering by enforcing the property
that the residual of regressing the effect on the root
cause is always independent from the root cause.

In our case, ANL, the essential part of the mixing
matrix in (8), is n ⇥ r, where r < n. In other words,
for some of the variables X̃⇤i , the causal relations are
deterministic. (In fact, if X̃k is a leaf node in G̃, X̃⇤k is
a deterministic function of X̃k’s direct causes.) As a
consequence, unfortunately, the above causal analysis
methods based on LiNGAM, including ICA-LiNGAM

and Direct-LiNGAM, do not apply. We will see how to
recover information of G̃ by analyzing the estimated
ANL.

We will show that some group structure and the group-
wise causal ordering in G̃ can always be recovered.
Before presenting the results, let us define the follow-
ing ordered group decomposition according to causal
structure G̃.

Definition 2 (ordered group decomposition).
Consider the causal model G̃⇤. Decompose all involved
nodes into disjoint groups in the following way. First
put all leaf nodes which share the same direct-and-only-
direct cause in the same group; further incorporate the
corresponding direct-and-only-direct cause in the same
group. Here we say a node X̃⇤i is the “direct-and-only-
direct" cause of X̃⇤j if and only if X̃⇤i is a direct cause
of X̃⇤j and there is no other directed path from X̃⇤i to
X̃⇤j . After forming all groups each of which involves at
least one leaf node, each of the remaining nodes forms a
separate group. Each node is guaranteed to be in
one and only one group. We call the set of all such
groups ordered according to the causal ordering
of the non-leaf nodes in DAG G̃⇤ an ordered group
decomposition of G̃⇤, denoted by GG̃⇤ .

X̃1 X̃2 X̃3 X̃4

X̃5 X̃6 X̃7

X̃8
G̃A :

(a)

X̃1X̃2 X̃3

X̃4

G̃B :

(b)

X̃4X̃2 X̃5

X̃6

X̃1

X̃3

G̃C (solid lines as its edges):
G̃D (all lines as its edges):

(c)

X̃3X̃2 X̃6

X̃7

X̃8X̃1

X̃5

X̃4
G̃E :

(d)

Figure 5: A set of causal DAGs G̃ as illustrative exam-
ples. (a) DAG G̃A. (b) G̃B. (c) Two DAGs G̃C and
G̃D. (d) G̃E .

Example Set 2 As seen from the process of ordered
group decomposition, each non-leaf node is in one and
only one ordered group, and it is possible for multi-
ple leaf nodes to be in the same group. Therefore,
in total there are (n � l) ordered groups. For ex-
ample, for G̃A given in Figure 5(a), a corresponding
group structure for the corresponding G̃⇤ is GG̃⇤A

=

({X̃⇤1} ! {X̃⇤2 , X̃⇤5} ! {X̃⇤3 , X̃⇤6} ! {X̃⇤4 , X̃⇤7 , X̃⇤8}),
and for G̃B in Figure 5(b), there is only one group:
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GG̃⇤B
= ({X̃⇤1 , X̃⇤2 , X̃⇤3 , X̃⇤4}). For both G̃C and G̃D,

given in Figure 5(c), an ordered group decomposition
is ({X̃⇤1}! {X̃⇤2 , X̃⇤3}! {X̃⇤4}! {X̃⇤5 , X̃⇤6}).

Note that the causal ordering and the ordered group
decomposition of given variables according to the graph-
ical model G̃⇤ may not be unique (this will actually
give rise to the possibility of distinguishing between the
non-leaf and leaf node in the group, as shown next). For
instance, if G̃⇤ has only two variables X̃⇤1 and X̃⇤2 which
are not adjacent, both decompositions ({X̃⇤1}! {X̃⇤2})
and ({X̃⇤2} ! {X̃⇤1}) are correct. Consider G̃⇤ over
three variables, X̃⇤1 , X̃⇤2 , X̃⇤3 , where X̃⇤1 and X̃⇤2 are
not adjacent and are both causes of X̃⇤3 ; then both
({X̃⇤1}! {X̃⇤2 , X̃⇤3}) and ({X̃⇤2}! {X̃⇤1 , X̃⇤3}) are valid
ordered group decompositions.

We first present a procedure to construct the ordered
group decomposition and the causal ordering among
the groups from the estimated ANL. We will further
show that the recovered ordered group decomposition
is always asymptotically correct under assumption A1.

4.1 Construction and Identifiability of
ordered Group Decomposition

First of all, Lemma 1 tells us that ÂNL in (8) is identi-
fiable up to permutation and scaling columns. Let us
start with the asymptotic case, where the columns of
the estimated ANL from values of Xi are a permuted
and rescaled version of the columns of ANL. In what
follows the permutation and rescaling of the columns
of ANL does not change the result, so below we just
work with the true ANL, instead of its estimate.

X̃⇤i and X̃i follow the same causal DAG, G̃, and X̃⇤i are
causally sufficient, although some variables among them
(corresponding to leaf nodes in G̃⇤) are determined by
their direct causes. Let us find the causal ordering
of X̃⇤i . If there are no deterministic relations and
the values of X̃⇤i are given, the causal ordering can
be estimated by recursively performing regression and
checking independence between the regression residual
and the predictor (Shimizu et al., 2011b). Specifically,
if one regresses all the remaining variables on the root
cause, the residuals are always independent from the
predictor (the root cause). After detecting a root cause,
the residuals of regressing all the other variables on the
discovered root cause are still causally sufficient and
follow a DAG. One can repeat the above procedure to
find a new root cause over such regression residuals,
until no variable is left.

However, in our case we have access to ANL but not
the values of X̃⇤i . Fortunately, the independence be-
tween regression residuals and the predictor can still be
checked by analyzing ANL. Recall that X̃⇤ = ANLẼNL,

where the components of ẼNL are independent. With-
out loss of generality, here we assume that all com-
ponents of ẼNL are standardized, i.e., they have a
zero mean and unit variance. Denote by ANL

i· the
ith row of ANL. We have E[X̃⇤j X̃⇤i ] = ANL

j· ANL|
i· and

E[X̃⇤2i ] = ANL
i· ANL|

i· = ||ANL
i· ||2. The regression model

for X̃⇤j on X̃⇤i is

X̃⇤j =
E[X̃⇤j X̃⇤i ]

E[X̃⇤2i ]
X̃⇤i + Rj i =

ANL
j· ANL|

i·
||ANL

i· ||2 X̃⇤i + Rj i.

Here the residual can be written as

Rj i = X̃⇤j �
ANL

j· ANL|
i·

||ANL
i· ||2 X̃⇤i

=
�
ANL

j· �
ANL

j· ANL|
i· ANL

i·
||ANL

i· ||2
�

| {z }
,↵j i

ẼNL. (10)

If for all j, Rj i is either zero or independent from X̃⇤i ,
we consider X̃⇤i as the current root cause and put it
and all the other variables which are deterministically
related to it in the first group, which is a root cause
group. Now the problem is whether we can check for
independence between nonzero residuals Rj i and the
predictor X̃⇤i . Interestingly, the answer is yes, as stated
in the following proposition.

Proposition 3. Suppose assumption A1 holds. For
variables X̃⇤ generated by (7), regression residual Rj i

given in (10) is independent from variable X̃⇤i if and
only if ���

���↵j i �ANL
i·

���
���
2

= 0, (11)

where � denotes entrywise product.

So we can check for independence between the predictor
and regression residual as if the values of X̃⇤ were given.
Consequently, we can find the root cause group.

We then consider the residuals of regressing all the
remaining variables X̃⇤k on the discovered root cause as
a new set of variables. Note that like the variables X̃⇤j ,
these variables are again linear mixtures of Ẽi. Repeat-
ing the above procedure on this new set of variables
will give the second root cause and its ordered group.
Applying this procedure repeatedly until no variable
is left finally discovers all ordered groups following
the causal ordering. The constructed ordered group
decomposition is asymptotically correct, as stated in
the following proposition. We denote by OICA+Reg the
above two-stage procedure: we first apply overcomplete
ICA to find an estimate of ANL, and then do regression
and check for independence between the residuals and
the current candidate root cause by analyzing ANL.
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Proposition 4. (Identifiable ordered group de-
composition) Let Xi be generated by the CAMME
with the corresponding measurement-error-free vari-
ables generated by the causal DAG G̃ and suppose as-
sumptions A0 and A1 hold. The ordered group decom-
position constructed by the above procedure is asymp-
totically correct, in the sense that as the sample size
N !1, if non-leaf node X̃i is a cause of non-leaf node
X̃j , then the ordered group which X̃i is in precedes the
group which X̃j belongs to. However, the causal or-
dering among the nodes within the same ordered group
may not be identifiable.

The result of Proposition 4 applies to any DAG struc-
ture G̃. Clearly, the identifiability can be naturally
improved if additional assumptions on the causal struc-
ture G̃ hold. In particular, to recover information of
G̃, it is essential to answer the following questions.

• Can we determine which nodes in an ordered group
are leaf nodes?

• Can we find the causal edges into a particular
node?

Below we will show that under rather mild assumptions,
the answers to both questions are yes.

4.2 Identifying Leaf Nodes and Individual
Causal Edges

If for each ordered group we can determine which vari-
able is the non-leaf node, the causal ordering among the
variables X̃⇤i is then fully known. The causal structure
in G̃⇤ as well as the causal model can then be read-
ily estimated by regression: for a leaf node, its direct
causes are those non-leaf nodes that determine it; for
a non-leaf node, we can regress it on all non-leaf nodes
that precede it according to the causal ordering, and
those predictors with non-zero linear coefficients are
its parents. This way the structure can be estimated
uniquely under Assumption A0, although whether the
causal parameters in the causal model are uniquely
identifiable is another issue for investigation.

Now the goal is to see whether it is possible to find out
which variables in a given ordered group are leaf nodes;
if all leaf nodes are found, then the remaining one
is the (only) non-leaf node in the considered ordered
group. Below we will show that it is possible to find
leaf nodes by “looking backward" or “looking forward";
the former makes use of the parents of the variables in
the considered group, and the latter exploits the fact
leaf nodes do not have any child.

Proposition 5. (Leaf node determination by
“looking backward") Suppose the observed data were

generated by the CAMME where Assumptions A0 and
A1 hold.1 Let the sample size N ! 1. Then if as-
sumption A2 holds, leaf node O is correctly identified
from observations of X (more specifically, from the
estimated ANL or the distribution of X̃⇤).

A2. According to G̃⇤, for leaf node O in the considered
ordered group g(k), at least one of its parents is
not a parent of the non-leaf node in g(k) or some
other leaf node in g(k).

Example Set 3 Suppose Assumptions A0 and A1
hold.

• For G̃A in Figure 5(a), assumption A2 holds for
X̃⇤7 and X̃⇤8 in the ordered group {X̃⇤4 , X̃⇤7 , X̃⇤8}:
each of them has a parent which is not a parent of
the other; so both of them are identified to be leaf
nodes from the estimated ANL or the distribution
of X̃⇤, and X̃⇤4 can then be determined as a non-
leaf node.

• For G̃B, we cannot detect which node is a leaf
node or a non-leaf node.

• For both G̃C and G̃D in Figure 5(c), X̃⇤6 , in the
ordered group {X̃⇤5 , X̃⇤6}, follows assumption A2
and can be found to be a leaf node from the matrix
ANL; accordingly, X̃⇤5 has to be a non-leaf node.

• For G̃E in Figure 5(d), assumption A2 holds for
all leaf nodes, X̃⇤4 , X̃⇤5 , and X̃⇤8 , which can then
be found to be leaf nodes.

We can also determine leaf nodes by looking at the
relationships between the considered variables and the
variables causally following them, as stated in the fol-
lowing proposition.
Proposition 6. (Leaf node determination by
“looking forward") Suppose the observed data were
generated by the CAMME where Assumptions A0 and
A1 hold. Then as the sample size N !1, we can cor-
rectly identify the leaf node U in the considered ordered
group g(k) from values of X if assumption A3 holds for
it:

A3. For leaf node U in g(k), there exists at least one
node causally following g(k) that 1) is d-separated
from U by a subset of variables in g(1) [ g(2)... [
g(k) \ {U} which does not include all parents of U
and 2) is a child of the non-leaf node in g(k) .

1In this non-Gaussian case (implied by assumption A1),
the result reported in this proposition may still hold if
one avoids the non-deterministic faithfulness assumption
and assumes a weaker condition; however, for simplicity
of the proof we currently still assume non-deterministic
faithfulness.
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Example Set 4 Let Assumptions A0 and A1 hold.

• For data generated by G̃A in Figure 5(a), we al-
ready found X̃⇤4 in ordered group {X̃⇤4 , X̃⇤7 , X̃⇤8}
to be a non-leaf node because of Proposition 5.
Proposition 6 further indicates that X̃⇤2 (in group
{X̃⇤2 , X̃⇤5}) and X̃⇤3 (in group {X̃⇤3 , X̃⇤6}) are non-
leaf nodes, and all leaf nodes are identified.

• For G̃B in Figure 5(b), there is only one ordered
group, and it does not provide further information
by looking “backward" or “forward", and it is im-
possible to find the non-leaf node with Proposition
5 or 6.

• For both G̃C and G̃D in Figure 5(c), X̃⇤6 was found
to be a leaf node due to Proposition 5; thanks to
Proposition 6, the other leaf node, X̃⇤3 , was also
detected. In particular, in G̃C , for leaf node X̃⇤3
both X̃⇤4 and X̃⇤6 satisfy the two conditions in
Assumption A3; however, in G̃D, for leaf node
X̃⇤3 only X̃⇤4 satisfies them. All leaf nodes were
successfully found.

• For G̃E in Figure 5(d), Proposition 5 already al-
lows us to identify all leaf nodes, X̃⇤4 , X̃⇤5 , and
X̃⇤8 . The assumptions in Propositions 5 and 6 are
not exclusive: Assumption A3 also holds for X̃⇤4
(for it X̃⇤7 satisfies the two conditions), we can
alternatively identify this leaf node by making use
of Proposition 6.

For contaminated data generated by any of G̃A, G̃C ,
G̃D, and G̃E , now we can find all leaf nodes in
the measurement-error-free causal model. One can
then immediately estimate the whole structure of the
measurement-error-free model.

The above two propositions are about the identifiably of
leaf nodes in the measurement-error-free causal model.
By applying them to all leaf nodes, we have (sufficient)
conditions under which the causal graph of G̃ is fully
identifiable.
Proposition 7. (Full identifiability) Suppose the
observed data were generated by the CAMME where
Assumptions A0 and A1 hold. Assume that for each
leaf node in G̃⇤, at least one of the the two assumptions,
A2 and A3, holds. Then as the sample size N ! 1,
the causal structure G̃ is fully identifiable from the
observations with random measurement error.

In the general case, the causal structure G̃ might not be
fully identifiable, and the above propositions may allow
partial identifiability of the underlying causal structure.
Roughly speaking, the ordered group decomposition is
identifiable in the non-Gaussian case; with Propositions
5 and 6 one can further identify some leaf nodes as well
as their parents.

5 CONCLUSION AND
DISCUSSIONS

The measured values of variables of interest in various
fields, including the social sciences, neuroscience, and
biology, are often contaminated by measurement error.
Unfortunately, the output of existing causal discovery
methods is sensitive to the existence of measurement
error, and it is desirable to develop causal discovery
methods that can estimate the causal model for the
measurement-error-free variables without using much
prior knowledge about the measurement error. To this
end, this paper investigates identifiability conditions for
the underlying measurement-error-free causal structure
given contaminated observations. We have shown that
under appropriate conditions, the causal structure of
interest is partially or even fully identifiable.

We formulated four assumptions. Assumption A0 is
about the Markov condition and non-deterministic
faithfulness assumption for causal model G̃⇤. Assump-
tion A1 is about the distribution of the underlying noise
terms in the causal process. The remaining two are
about particular types of “sparsity" of the underlying
causal graph. We note that in principle, all assump-
tions except A0 are testable from the observed data.
This suggests that it is possible to develop practical
causal discovery methods to deal with measurement er-
ror that are able to produce reliable information at least
in the asymptotic case. In addition, it is worth not-
ing that some involved assumptions may be weakened.
For instance, faithfulness is not required to find the
correct ordered group decomposition, but just needed
for detecting leaf nodes in the ordered groups. Sup-
pose Assumptions A0 and A1 hold; we conjecture that
the necessary and sufficient condition for the non-leaf
node to be identifiable is that at least one of the two
assumptions, A2 and A3, holds. To falsify or prove this
conjecture is part of our future work.

It is worth noting that various kinds of background
knowledge of the causal model may further help im-
prove the identifiability of the measurement-error-free
causal model. For instance, if one knows that all
causal coefficients are smaller than one in absolute
value, then the measurement-error-free causal model
in Figure 5(b) is immediately identifiable from contam-
inated data. Our future research further includes 1)
establishing identifiability conditions that allow cycles
in the measurement-error-free causal model in light of
ubiquity of cycles in causal models, 2) developing com-
putationally efficient algorithms for causal discovery
under measurement error based on the established the-
ory, and 3) proposing efficient methods for particular
cases where each measurement-error-free variable has
multiple measured effects or multiplied measurement-
error-free variables generate a single measured effect.
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