
A Proof of Proposition 1

Proposition 2. For any π on Ω as in (1), and any ε > 0,
there are positive constants wi = wi(ε) > 0, and nor-
malized modular functions mi = mi(ε), i ∈ {1, . . . , r},
such that, if we define q(S) :=

∑r
i=1 wi exp(mi(S)),

for all S ∈ Ω, then dTV (π, q) ≤ ε.

Proof. Let r = |Ω|, and let (Si)
r
i=1 be an enumeration

of all sets in Ω. For any i ∈ {1, . . . , r}, and any v ∈ V ,
we define

miv =

{
βi , if v ∈ Si
−βi , otherwise ,

and mi(S) =
∑
v∈Smiv , for all S ∈ Ω. We also define

wi =
π(Si)

Zi
=

π(Si)

(1 + eβi)
|Si| (1 + e−βi)

|V \Si|
.

Then, for all i ∈ {1, . . . , r}, we have

di(β1, . . . , βr) := |π(Si)− q(Si)|

=

∣∣∣∣∣∣π(Si)−
r∑
j=1

π(Sj)
eβj |Sj |(

1 + eβj |Sj |
) (

1 + e−βj |V \Sj |
)
∣∣∣∣∣∣

≤ π(Si)

(
1− eβi|Si|(

1 + eβi|Si|
) (

1 + e−βi|V \Si|
))+

∑
j:Sj 6=Si

π(Sj)
eβj |Si|(

1 + eβj |Sj |
) (

1 + e−βj |V \Sj |
) .

Note that both terms vanish if we let all βj →∞. There-
fore, for any δ > 0, there are βij = βij(δ), for all
j ∈ {1, . . . , r}, such that di(βi1, . . . , βir) ≤ δ.

Finally, choosing β̂j := maxi∈{1,...,r} βij , for all j ∈
{1, . . . , r}, we get

dTV (π, q) =
1

2

r∑
i=0

di(β̂1, . . . , β̂r) ≤ 2n−1δ.

The result follows by choosing δ = ε/2n−1.

B Ising Model on the Complete Graph

B.1 Bounds on Gibbs mixing

Theorem B1 (Theorem 15.3 in (Levin et al., 2008b)). If
β > 1, then the Gibbs sampler on ISINGβ has a bot-
tleneck ratio Φ∗ = O

(
e−c(β)n

)
, where c(β) is a non-

decreasing function of β.

Corollary 1 (cf. Theorem 15.3 in (Levin et al., 2008b)).
For n ≥ 3, the Gibbs sampler on ISING has spectral gap
γG = O (e−cn), where c > 0 is a constant.

Corollary 2 (cf. Theorem 2 in (Ding et al., 2009)).
For all n ≥ 3, the restriction chains PG

i , i = 0, 1, of
the Gibbs sampler on ISING have spectral gap γG

i =

Θ

(
2 ln(n)− 1

n

)
.

B.2 Bounds on M3 mixing

M3 sampler. The proposal distribution can be written
as follows,

q(S) =
1

2

(
exp(−dn(n− 1)|S|)

Z1
+

exp(dn(n− 1)|S|)
Z2

)
,

(4)

where Z1 = (1 + exp(−dn(n− 1)))
n, and Z2 =

(1 + exp(dn(n− 1)))
n.

Lemma B1 (Fact 6 in (Anari et al., 2016)). The spectral
gap of any reversible two-state chain P with stationary
distribution π that satisfies P (0, 1) = c π(1) is c.

Lemma 1. For all n ≥ 10, the projection chain P̄M of
the M3 sampler on ISING has spectral gap γ̄M = Ω(1).

Proof. We define πk =
∑
S∈Ω,|S|=k π(S), and qk =∑

S∈Ω,|S|=k q(S).

Bounding πk. By definition, we can write πk = π̂k/Z,
where π̂0 = 1, and for k > 0 we have

π̂k :=

(
n

k

)
exp

(
−2 ln(n)

n
k(n− k)

)
=

(
n

k

)
n−

2k
n (n−k)

≤
(en
k

)k
n−

2k
n (n−k)

=
( e
k

)k
n−k+ 2k2

n .

It follows that

ln(π̂k) ≤ −k ln

(
k

e

)
+

(
2k2

n
− k
)

ln(n). (5)

It is easy to verify that for all n ≥ 10 and 3 ≤ k ≤
bn/2c, it holds that (2k−n) ln(n) ≤ 0.5n ln(k/e). Sub-
stituting this into (5), we get

ln(π̂k) ≤ −0.5k ln

(
k

e

)
⇒ π̂k ≤ exp(−0.5k ln(k/e)).



Noting that, for all k, π̂k ≤ 1, and using the fact that
π̂n−k = π̂k, we get

Z =

n∑
k=0

π̂k

≤ 2

bn/2c∑
k=0

π̂k

= 2(π̂0 + π̂1 + π̂2 +

bn/2c∑
k=3

π̂k)

≤ 3 +

bn/2c∑
k=3

exp(−0.5k ln(k/e))

≤ c1, (6)

where c1 is a constant.

Bounding qk. First, it is easy to see that, for all n ≥ 1,
Z1 ≤ 3.

qk =
∑

S∈Ω,|S|=k

q(S)

≥
∑

S∈Ω,|S|=k

1

2

exp(−dn(n− 1)|S|)
Z1

(by (4))

≥ 1

6

(
n

k

)
exp(−dn(n− 1)|S|)

Bounding the spectral gap. For the projection chain
P̄M, we have

P̄M(0, 1) =
1

π̄(0)

∑
S∈Ωi
R∈Ωj

π(S)PM(S,R)

≥ 2π0qn (π̄(0) = 1/2 by symmetry of π)
= 2π0q0 (by symmetry of q)

≥ 2
π̂0

Z

1

6
(q0 ≥ 1

6 )

≥ 2
1

c1

1

6
(π̂0 = 1)

= cπ̄(1),

where c = (2/3)c1.

Finally, it follows from Lemma B1 that the spectral gap
of P̄M is c.

B.3 Bounds on combined sampler mixing

Lemma B2. For all n ≥ 10, the projection chain P̄C

of the combined chain on ISING has spectral gap γ̄C =
Ω(1).

Proof. By definition, P̄C(S,R) ≥ αP̄M(S,R), there-
fore a simple comparison argument (e.g., Lemma 13.22
in (Levin et al., 2008b)) combined with the result of
Lemma 1 gives us γ̄C ≥ αγ̄M = Ω(1).

Lemma B3. For all n ≥ 3, each of the restriction chains
PC
i of the combined chain on ISING has spectral gap

γC
i = Θ

(
2 ln(n)− 1

2n

)
.

Proof. By definition, PC
i (S,R) ≥ αPG

i (S,R), there-
fore, using a comparison argument like above to-
gether with Lemma 2 gives us γC

i ≥ αγG
i =

Θ

(
2 ln(n)− 1

2n

)
.

Theorem B2 (Theorem 1 in (Jerrum et al., 2004)). Given
a reversible Markov chain P , if the spectral gap of its
projection chain P̄ is bounded below by γ̄, and the
spectral gaps of its restriction chains Pi are uniformly
bounded below by γmin, then the spectral gap of P is
bounded below by

γ = min

{
γ̄

3
,

γ̄γmin

3Pmax + γ̄

}
,

where pmax := max
i∈{0,1}

max
S∈Ωi

∑
R∈Ω\Ωi

P (S,R).

Theorem 2. For all n ≥ 10, the combined chain PC on
ISING has spectral gap

γC = Ω

(
2 ln(n)− 1

2n

)
.

Proof. The result follows directly by combining the
spectral gap bounds of Lemmas B2 and B3 in Theorem
B2, and noting that Pmax ≤ 1.
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