
Appendix: Soft-Robust Actor-Critic Policy-Gradient

A Proofs

A.1 Proposition 3.1

Proof. Fix x, y ∈ X . For any policy π, we denote by p(x, y) the probability of getting from state x to state y, which
can be written as Ea∼π(x)[p(x, a, y)]. Since ω is non-diffuse, there exists p0 such that ω(p0) > 0. Also, by Assumption
3.1, there exists an integer n such that pn0 (x, y) > 0. We thus have

p̄n(x, y) =

(
Ep∼ω[p]

)n
(x, y)

p̄n(x, y) ≥
(
p0ω(p0)

)n
(x, y)

p̄n(x, y) ≥ pn0 (x, y)ω(p0)n > 0

which shows that p̄ is irreducible. Using the same reasoning, we show {n ∈ N : pn0 (x, x) > 0} ⊂ {n ∈ N : p̄n(x, x) >
0} and then use the fact that p0 is aperiodic to conclude that p̄ is aperiodic too.

A.2 Proposition 3.2

This recursive equation comes from the same reasoning as in Lemma 3.1 of Xu and Mannor [2012]. We apply it to the
average reward criterion.

Proof. For every p ∈ P , we can apply the Poisson equation to the corresponding model:

Jp(π) + V πp (x) =
∑
a∈A

π(x, a)

(
r(x, a) +

∑
x′∈X

p(x, a, x′)V πp (x′)

)

By integrating with respect to ω we obtain:

J̄(π) + V̄ π(x) =
∑
a∈A

π(x, a)

(
r(x, a) +

∑
x′∈X

Ep∼ω[p(x, a, x′)V πp (x′)]

)

We then use the statewise independence assumption on ω to make the recursion explicit. We thus have

J̄(π) + V̄ π(x)
(1)
=
∑
a∈A

π(x, a)

(
r(x, a)+

∑
x′∈X

∫
p(x, a, x′)V πp (x′)dωx(px)dωx′(px′)

)
(2)
=
∑
a∈A

π(x, a)

(
r(x, a) +

∑
x′∈X

Epx∼ωx
[p(x, a, x′)]Epx′∼ωx′ [V

π
p (x′)]

)

=
∑
a∈A

π(x, a)

(
r(x, a) +

∑
x′∈X

p̄(x, a, x′)V̄ π(x′)

)
,

where (1) results from the rectangularity assumption on ω. (2) Since p(x, a, x′) is an element of vector px that only
depends on the uncertainty set at state x and V πp (x′) depends on the uncertainty set at state x′, we can split the integrals.
We slightly abuse notation here because a state can be visited multiple times. In fact, we implicitly introduce dummy
states and treat multiple visits to a state as visiting different states. More explicitely, we write ω as ω =

⊗+∞
t=0 ωx,t

where ωx,t = ωx, ωx being the distribution at state x. This representation is termed as the stationary model in Xu and
Mannor [2012].



A.3 Corollary 3.1

Proof. According to Proposition 3.2 and summing up both sides of the equality with respect to the stationary distribution
d̄π , we have

J̄(π) +
∑
x∈X

d̄π(x)V̄ π(x) =
∑
x∈X

d̄π(x)
∑
a∈A

π(x, a)

(
r(x, a) +

∑
x′∈X

Epx∼ωx [p(x, a, x′)]V̄ π(x′)

)

=
∑
x∈X

d̄π(x)
∑
a∈A

π(x, a)

(
r(x, a) +

∑
x′∈X

p̄(x, a, x′)V̄ π(x′)

)

Since d̄π is stationary with respect to p̄, we can then write

J̄(π) +
∑
x∈X

d̄π(x)V̄ π(x) =
∑
x∈X

d̄π(x)
∑
a∈A

π(x, a)r(x, a) +
∑
x′∈X

d̄π(x′)V̄ π(x′).

It remains to simplify both sides of the equality in order to get the result.

A.4 Theorem 4.1

We use the same technique as in Mankowitz et al. [2018]; Sutton et al. [2000] in order to prove a soft-robust version of
policy-gradient theorem.

Proof.

∇θV̄ π(x) = ∇θ
∑
a∈A

π(x, a)Q̄π(x, a)

∇θV̄ π(x) =
∑
a∈A

[
∇θπ(x, a)Q̄π(x, a) + π(x, a)∇θQ̄π(x, a)

]
∇θV̄ π(x)

(1)
=
∑
a∈A

[
∇θπ(x, a)Q̄π(x, a) + π(x, a)∇θ

[
r(x, a)− J̄(π) +

∑
x′∈X

p̄(x, a, x′)V̄ π(x′)

]]
∇θV̄ π(x) =

∑
a∈A

[
∇θπ(x, a)Q̄π(x, a) + π(x, a)

[
−∇θJ̄(π) +

∑
x′∈X

p̄(x, a, x′)∇θV̄ π(x′)

]]
∇θJ̄(π) =

∑
a∈A

[
∇θπ(x, a)Q̄π(x, a) + π(x, a)

[∑
x′∈X

p̄(x, a, x′)∇θV̄ π(x′)

]]
−∇θV̄ π(x)

∑
x∈X

d̄π(x)∇θJ̄(π)
(2)
=
∑
x∈X

d̄π(x)
∑
a∈A

[
∇θπ(x, a)Q̄π(x, a) +

∑
a∈A

π(x, a)
∑
x′∈X

p̄(x, a, x′)∇θV̄ π(x′)

]
−
∑
x∈X

d̄π(x)∇θV̄ π(x)∑
x∈X

d̄π(x)∇θJ̄(π) =
∑
x∈X

d̄π(x)
∑
a∈A
∇θπ(x, a)Q̄π(x, a) +

∑
x∈X

d̄π(x)
∑
a∈A

π(x, a)
∑
x′∈X

p̄(x, a, x′)∇θV̄ π(x′)

−
∑
x∈X

d̄π(x)∇θV̄ π(x)

∑
x∈X

d̄π(x)∇θJ̄(π)
(3)
=
∑
x∈X

d̄π(x)
∑
a∈A
∇θπ(x, a)Q̄π(x, a) +

∑
x′∈X

d̄π(x′)∇θV̄ (x′)−
∑
x∈X

d̄π(x)∇θV̄ π(x)

∇θJ̄(π) =
∑
a∈A
∇θπ(x, a)Q̄π(x, a)

where (1) occurs thanks to the soft-robust Poisson equation. (2) Multiply both sides of the Equation by
∑
x∈X d̄

π(x). (3)
Since d̄π(x) is stationary with respect to p̄, we have that

∑
x∈X d̄

π(x)
∑
a∈A π(x, a)p̄(x, a, x′) =

∑
x′∈X d̄

π(x′).



A.5 Theorem 4.2

Proof. Recall the mean squared error:

Eπ(w) :=
∑
x∈X

d̄π(x)
∑
a∈A

π(x, a)

[
Q̄π(x, a)− fw(x, a)

]2
with respect to the soft-robust state distribution d̄π(x). If we derive this distribution with respect to the parameters w
and analyze it when the process has converged to a local optimum as in Sutton et al. [2000], then we get:∑

x∈X
d̄π(x)

∑
a∈A

π(x, a)

[
Q̄π(x, a)− fw(x, a)

]
∇wfw(x, a) = 0

Additionally, the compatibility condition∇wfw(x, a) = ∇θ log π(x, a) yields:∑
x∈X

d̄π(x)
∑
a∈A

π(x, a)

[
Q̄π(x, a)− fw(x, a)

]
∇θπ(x, a)

1

π(x, a)
= 0

∑
x∈X

d̄π(x)
∑
a∈A
∇θπ(x, a)

[
Q̄π(x, a)− fw(x, a)

]
= 0

Subtract this quantity from the soft-robust policy gradient (Theorem 4.1). We then have:

∇θJ̄(π) =
∑
x∈X

d̄π(x)
∑
a∈A
∇θπ(x, a)Q̄π(x, a)−

∑
x∈X

d̄π(x)
∑
a∈A
∇θπ(x, a)

[
Q̄π(x, a)− fw(x, a)

]
=

∑
x∈X

d̄π(x)
∑
a∈A
∇θπ(x, a)fw(x, a).

A.6 Convergence Proof for SR-AC

We define as soft-robust TD-error at time t the following random quantity:

δt := rt+1 − Ĵt+1 +
∑
x′∈X

p̄(xt, at, x
′)V̂x′ − V̂xt

where V̂xt
and Ĵt are unbiased estimates that satisfy E[V̂xt

| xt, π] = V̄ π(xt) and E[Ĵt+1 | xt, π] = J̄(π) respectively.
We can easily show that this defines an unbiased estimate of the soft-robust advantage function Āπ [Bhatnagar et al.,
2009]. Thus, using equation (1), an unbiased estimate of the gradient∇θJ̄(π) can be obtained by taking

∇̂θJ(π) := δtψxtat .

Similarly, recall the soft-robust TD-error with linear function approximation at time t:

δt := rt+1 − Ĵt+1 +
∑
x′∈X

p̄(xt, at, x
′)vTt ϕx′ − vTt ϕxt

,

where vt corresponds to the current estimate of the soft-robust value function parameter.

As in regular MDPs, when doing linear TD learning, the function approximation of the value function introduces a bias
in the gradient estimate Bhatnagar et al. [2009].

Define the quantity

Ṽ π(x) =
∑
a∈A

π(x, a)

[
r(x, a)− J̄(π) +

∑
x′∈X

p̄(x, a, x′)vTπ ϕx′

]



where vTπ ϕx′ is an estimate of the value function upon convergence of a TD recursion, that is vπ = limt→∞ vt. Also,
define as δπt the associated error upon convergence:

δπt := rt+1 − Ĵt+1 +
∑
x′∈X

p̄(xt, at, x
′)vTπ ϕx′ − vTπ ϕxt

.

Similarly to Lemma 4 of Bhatnagar et al. [2009], the bias of the soft-robust gradient estimate is given by

eπ :=
∑
x∈X

d̄π(x)

[
∇θṼ π(x)−∇θvTπ ϕx

]
,

that is E[∇̂θJ(π) | θ] = ∇θJ̄(π) + eπ . This error term then needs to be small enough in order to ensure convergence
of the algorithm.

Let denote as V̄ (v) := Φv the linear approximation to the soft-robust differential value function defined earlier, where
Φ ∈ Rn×d2 is a matrix and each feature vector ϕx(k) corresponds to the kth column in Φ. We make the following
assumption:
Assumption A.1. The basis functions ϕx ∈ Rd2 are linearly independent. In particular, Φ has full rank. We also have
Φv 6= e for all value function parameters v ∈ Rd2 where e is a vector of all ones.

The learning rates αt and βt (Lines 7 and 8 in Algorithm 1) are established such that αt → 0 slower than βt → 0
as t → ∞. In addition,

∑
t αt =

∑
t βt = ∞ and

∑
t α

2
t ,
∑
t β

2
t < ∞. We also set the soft-robust average reward

step-size ξt = cαt for a positive constant c. The soft-robust average reward, TD-error and critic will all operate on
the faster timescale αt and therefore converge faster. Eventually, define a diagonal matrix D where the steady-state
distribution d̄π forms the diagonal of this matrix. We write the soft-robust transition probability matrix as:

P̄π(x, x′) =
∑
a∈A

π(x, a)p̄(x, a, x′),

where x, x′ ∈ X and p̄ designates the average transition model. By denoting Rπ ∈ Rn the column vector of
rewards (

∑
a∈A π(x1, a)r(x1, a), · · ·

∑
a∈A π(xn, a)r(xn, a))T where (x1, . . . , xn) is a numbered representation of

the state-space and using the following operator T : Rn → Rn, we can express the soft-robust Poisson equation as:

T (J) = Rπ − J̄(π)e+ P̄πJ

The soft-robust average reward iterates (Line 5) and the critic iterates (Line 7) defined in Algorithm 1 converge almost
surely, as stated in the following Lemma which is a straightforward application of Lemma 5 from Bhatnagar et al.
[2009].
Lemma A.1. For any given policy π and {Ĵt}, {vt} as in the soft-robust average reward and critic updates, we have
Ĵt → J̄(π) and vt → vπ almost surely, where

J̄(π) =
∑
x∈X

d̄π(x)
∑
a∈A

π(x, a)r(x, a)

is the average reward under policy π and vπ is the unique solution to

ΦTDΦvπ = ΦTDT (Φvπ)

Thanks to all the previous results, convergence of Algorithm 1 can be established by applying Theorem 2 from Bhatnagar
et al. [2009] which exploits Borkar’s work on two-timescale algorithms [1997]. For simplicity, we assume that the
iterates resulting from the actor update (Line 10 of Algorithm 1) in SR-AC remain bounded, although one could prove
convergence without such an assumption by incorporating an operator that projects any policy parameter to a compact
set, as described in Kushner and Clark [1978]. The resulting actor update would then be the projected value of the
predefined iterate. The convergence result is presented as Theorem A.1.
Theorem A.1. Under all the previous assumptions, given ε > 0, there exists δ > 0 such that for a parameter vector
θt, t ≥ 0 obtained using the algorithm, if supπt

‖eπt‖ < δ, then the SR-AC algorithm converges almost surely to an
ε-neighborhood of a local maximum of J̄ .



B Experiments

B.1 One-step MDP

Model Parameters Value
Nominal probability of success 0.8
Uncertainty set for probabilities of success [0.1, 0.7, 0.8, 0.3, 0.5]
Weighting Distribution 1 [0.47, 0.22, 0.1, 0.09, 0.12]
Weighting Distribution 2 [0.63, 0.04, 0.05, 0.02, 0.26]
Aggressive rewards 105;−105

Soft robust rewards 5000;−100
Robust rewards 2000; 0

Hyperparameters Value
Critic Learning rate α 5e-3
Actor Learning rate β 5e-5
Step size ξ 3α
Number of linear features 5
Number of episodes for training Mtrain 3000
Number of episodes for testing Mtest 600

Figure 1: Average reward for different probabilities of success (distribution 2). Soft-robust policy interpolates between
aggressive and robust strategies.

B.2 Cart-Pole example

Hyperparameters Value
Discount factor γ 0.9
Learning rate 1e-4
Mini-batch size 256
Final epsilon 1e-5
Target update interval 10
Max number of episodes for training Mtrain 3000
Number of episodes for testing Mtest 600

We trained a soft-robust agent on a different weighting over the uncertainty set. Figure 2 shows the performance of the
resulting strategy that presents a similar performance as the robust agent. This stronger form of robustness demonstrates



the flexibility we have on the way we fix the weights, which leads to more or less aggressive behaviors.

Figure 2: Average reward performance for DQN, robust DQN and soft-robust DQN (distribution 2). Soft-robust policy
interpolates between aggressive and robust strategies.

B.3 Pendulum

Hyperparameters Value
Discount factor γ 0.99
Actor learning rate 1e-5
Critic learning rate 1e-3
Mini-batch size 64
Soft target update τ = 0.001
Max number of episodes for training Mtrain 5000
Number of episodes for testing Mtest 800
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