Supplements

A Proofs

A. 1 Proof of Theorem 1

We first introduce the following technical lemma.
Lemma 3. Let $g(\boldsymbol{\theta}), f(\boldsymbol{\theta})$, and $h(\boldsymbol{\theta})$ be defined as in Section 2.1. hence $f(\boldsymbol{\theta})$ is convex and differentiable, and $\boldsymbol{\nabla} f(\boldsymbol{\theta})$ is Lipschitz continuous with Lipschitz constant L. Let $\alpha \leq 1 / L$. Let $\boldsymbol{G}_{\alpha}(\boldsymbol{\theta})$ and $\boldsymbol{\Delta} f(\boldsymbol{\theta})$ be defined as in Section 2.2). Then for all $\boldsymbol{\theta}_{1}$ and $\boldsymbol{\theta}_{2}$, the following inequality holds:

$$
\begin{equation*}
g\left(\boldsymbol{\theta}_{1}^{\dagger}\right) \leq g\left(\boldsymbol{\theta}_{2}\right)+\boldsymbol{G}_{\alpha}^{\top}\left(\boldsymbol{\theta}_{1}\right)\left(\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{2}\right)+\left(\boldsymbol{\nabla} f\left(\boldsymbol{\theta}_{1}\right)-\boldsymbol{\Delta} f\left(\boldsymbol{\theta}_{1}\right)\right)^{\top}\left(\boldsymbol{\theta}_{1}^{\dagger}-\boldsymbol{\theta}_{2}\right)-\frac{\alpha}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}_{1}\right)\right\|_{2}^{2}, \tag{16}
\end{equation*}
$$

where $\boldsymbol{\theta}_{1}^{\dagger}=\boldsymbol{\theta}_{1}-\alpha \boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}_{1}\right)$.
Proof. The proof is based on the convergence analysis of the standard proximal gradient method |Vandenberghe, 2016]. $f(\boldsymbol{\theta})$ is a convex differentiable function whose gradient is Lipschitz continuous with Lipschitz constant L. By the quadratic bound of the Lipschitz property:

$$
f\left(\boldsymbol{\theta}_{1}^{\dagger}\right) \leq f\left(\boldsymbol{\theta}_{1}\right)-\alpha \boldsymbol{\nabla}^{\top} f\left(\boldsymbol{\theta}_{1}\right) \boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}_{1}\right)+\frac{\alpha^{2} L}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}_{1}\right)\right\|_{2}^{2} .
$$

With $\alpha \leq 1 / L$, and adding $h\left(\boldsymbol{\theta}_{1}^{\dagger}\right)$ on both sides of the quadratic bound, we have an upper bound for $g\left(\boldsymbol{\theta}_{1}^{\dagger}\right)$:

$$
g\left(\boldsymbol{\theta}_{1}^{\dagger}\right) \leq f\left(\boldsymbol{\theta}_{1}\right)-\alpha \boldsymbol{\nabla}^{\top} f\left(\boldsymbol{\theta}_{1}\right) \boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}_{1}\right)+\frac{\alpha}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}_{1}\right)\right\|_{2}^{2}+h\left(\boldsymbol{\theta}_{1}^{\dagger}\right) .
$$

By convexity of $f(\boldsymbol{\theta})$ and $h(\boldsymbol{\theta})$, we have:

$$
\begin{gathered}
f\left(\boldsymbol{\theta}_{1}\right) \leq f\left(\boldsymbol{\theta}_{2}\right)+\boldsymbol{\nabla}^{\top} f\left(\boldsymbol{\theta}_{1}\right)\left(\boldsymbol{\theta}_{1}-\boldsymbol{\theta}_{2}\right), \\
h\left(\boldsymbol{\theta}_{1}^{\dagger}\right) \leq h\left(\boldsymbol{\theta}_{2}\right)+\left(\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}_{1}\right)-\Delta f\left(\boldsymbol{\theta}_{1}\right)\right)^{\top}\left(\boldsymbol{\theta}_{1}^{+}-\boldsymbol{\theta}_{2}\right),
\end{gathered}
$$

which can be used to further upper bound $g\left(\boldsymbol{\theta}_{1}^{\dagger}\right)$, and results in 16. Note that we have used the fact that $G_{\alpha}\left(\boldsymbol{\theta}_{1}\right)-\Delta f\left(\boldsymbol{\theta}_{1}\right)$ is a subgradient of $h\left(\boldsymbol{\theta}_{1}^{\dagger}\right)$ in the last inequality.

With Lemma 3. we are now able to prove Theorem 1 In Lemma 3. let $\boldsymbol{\theta}_{1}=\boldsymbol{\theta}_{2}=\boldsymbol{\theta}^{(k)}$. Then by 8), $\boldsymbol{\theta}_{1}^{\dagger}=\boldsymbol{\theta}^{(k+1)}$. The inequality in 16) can then be simplified as:

$$
g\left(\boldsymbol{\theta}^{(k+1)}\right)-g\left(\boldsymbol{\theta}^{(k)}\right) \leq \alpha \boldsymbol{\delta}\left(\boldsymbol{\theta}^{(k)}\right)^{\top} \boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)-\frac{\alpha}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}^{2}
$$

By the Cauchy-Schwarz inequality and the sufficient condition that $\left\|\boldsymbol{\delta}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}<\frac{1}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}$, we can further simplify the inequality and conclude $g\left(\boldsymbol{\theta}^{(k+1)}\right)<g\left(\boldsymbol{\theta}^{(k)}\right)$.

A. 2 Proof of Theorem 2

To prove Theorem 2. we first review Proposition 1 in Schmidt et al. [2011]:
Theorem 7 (Convergence on Average, Schmidt et al. 2011]). Let $\mathcal{K}=\left(\boldsymbol{\theta}^{(0)}, \boldsymbol{\theta}^{(1)}, \boldsymbol{\theta}^{(2)}, \cdots, \boldsymbol{\theta}^{(\kappa)}\right)$ be the iterates generated by Algorithm 3 , then

$$
g\left(\frac{1}{\kappa} \sum_{k=1}^{\kappa} \boldsymbol{\theta}^{(k)}\right)-g(\hat{\boldsymbol{\theta}}) \leq \frac{L}{2 \kappa}\left(\left\|\boldsymbol{\theta}^{(0)}-\hat{\boldsymbol{\theta}}\right\|_{2}+\frac{2}{L} \sum_{k=1}^{\kappa}\left\|\boldsymbol{\delta}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}\right)^{2} .
$$

Furthermore, according to the assumption that $g\left(\boldsymbol{\theta}^{(k+1)}\right) \leq g\left(\boldsymbol{\theta}^{(k)}\right)$ with $k \in\{1,2, \cdots, \kappa\}$, we have: $g\left(\frac{1}{\kappa} \sum_{k=1}^{\kappa} \boldsymbol{\theta}^{(k)}\right) \geq g\left(\boldsymbol{\theta}^{(\kappa)}\right)$. Therefore,

$$
g\left(\boldsymbol{\theta}^{(\kappa)}\right)-g(\hat{\boldsymbol{\theta}}) \leq \frac{L}{2 \kappa}\left(\left\|\boldsymbol{\theta}^{(0)}-\hat{\boldsymbol{\theta}}\right\|_{2}+\frac{2}{L} \sum_{k=1}^{\kappa}\left\|\boldsymbol{\delta}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}\right)^{2}
$$

A. 3 Proof of Theorem 3

A.3.1 Proof of Lemma 1

The rationale behind our proof follow that of Bengio and Delalleau [2009] and Fischer and Igel [2011.
Let $\tilde{\mathbf{x}}_{0} \in\{0,1\}^{p}$ be an initialization of the Gibbs sampling algorithm. Let $\boldsymbol{\theta}$ be the parameterization from which the Gibbs sampling algorithm generates new samples. A Gibbs- τ algorithm hence uses the $\tau^{t h}$ sample, $\tilde{\mathbf{x}}_{\tau}$, generated from the chain to approximate the gradient. Since there is only one Markov chain in total, we have $\mathbb{S}=\left\{\tilde{\mathbf{x}}_{\tau}\right\}$. The gradient approximation of Gibbs- τ is hence given by:

$$
\begin{equation*}
\boldsymbol{\Delta} f(\boldsymbol{\theta})=\boldsymbol{\psi}\left(\tilde{\mathbf{x}}_{\tau}\right)-\mathbb{E}_{\mathbb{X}} \boldsymbol{\psi}(\mathbf{x}) \tag{17}
\end{equation*}
$$

The actual gradient, $\nabla f(\boldsymbol{\theta})$, is given in (3). Therefore, the difference between the approximation and the actual gradient is

$$
\boldsymbol{\delta}(\boldsymbol{\theta})=\boldsymbol{\Delta} f(\boldsymbol{\theta})-\boldsymbol{\nabla} f(\boldsymbol{\theta})=\boldsymbol{\psi}\left(\tilde{\mathbf{x}}_{\tau}\right)-\mathbb{E}_{\boldsymbol{\theta}} \boldsymbol{\psi}(\mathbf{x})=\boldsymbol{\nabla} \log \mathrm{P}_{\boldsymbol{\theta}}\left(\tilde{\mathbf{x}}_{\tau}\right) .
$$

We rewrite

$$
\mathrm{P}_{\tau}\left(\mathbf{x} \mid \tilde{\mathbf{x}}_{0}\right)=\mathrm{P}\left(\tilde{\mathbf{X}}_{\tau}=\mathbf{x} \mid \tilde{\mathbf{x}}_{0}\right)=\mathrm{P}_{\boldsymbol{\theta}}(\mathbf{x})+\epsilon_{\tau}(\mathbf{x})
$$

where $\epsilon_{\tau}(\mathbf{x})$ is the difference between $\mathrm{P}_{\tau}\left(\mathbf{x} \mid \tilde{\mathbf{x}}_{0}\right)$ and $\mathrm{P}_{\boldsymbol{\theta}}(\mathbf{x})$. Consider the expectation of the $j^{\text {th }}$ component of $\boldsymbol{\delta}(\boldsymbol{\theta}), \delta_{j}(\boldsymbol{\theta})$, where $j \in\{1,2, \cdots, m\}$, after running Gibbs- τ that is initialized by $\tilde{\mathbf{x}}_{0}$:

$$
\begin{align*}
\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[\delta_{j}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right] & =\sum_{\mathbf{x} \in\{0,1\}^{p}} \mathrm{P}_{\tau}\left(\mathbf{x} \mid \tilde{\mathbf{x}}_{0}\right) \delta_{j}(\boldsymbol{\theta})=\sum_{\mathbf{x} \in\{0,1\}^{p}}\left(\mathrm{P}_{\boldsymbol{\theta}}(\mathbf{x})+\epsilon_{\tau}(\mathbf{x})\right) \delta_{j}(\boldsymbol{\theta}) \\
& =\sum_{\mathbf{x} \in\{0,1\}^{p}} \epsilon_{\tau}(\mathbf{x}) \delta_{i}(\boldsymbol{\theta})=\sum_{\mathbf{x} \in\{0,1\}^{p}}\left(\mathrm{P}_{\tau}\left(\mathbf{x} \mid \mathbf{x}_{0}\right)-\mathrm{P}_{\boldsymbol{\theta}}(\mathbf{x})\right) \delta_{j}(\boldsymbol{\theta}) \tag{18}\\
& =\sum_{\mathbf{x} \in\{0,1\}^{p}}\left(\mathrm{P}_{\tau}\left(\mathbf{x} \mid \mathbf{x}_{0}\right)-\mathrm{P}_{\boldsymbol{\theta}}(\mathbf{x})\right) \nabla_{j} \log \mathrm{P}_{\boldsymbol{\theta}}\left(\tilde{\mathbf{x}}_{\tau}\right),
\end{align*}
$$

where we have used the fact that $\sum_{\mathbf{x} \in\{0,1\}^{p}} \mathrm{P}_{\boldsymbol{\theta}}(\mathbf{x}) \nabla_{j} \log \mathrm{P}_{\boldsymbol{\theta}}(\mathbf{x})=0$, and $\nabla_{j} \log \mathrm{P}_{\boldsymbol{\theta}}(\mathbf{x})$ represents the $j^{\text {th }}$ component of $\boldsymbol{\nabla} \log \mathrm{P}_{\boldsymbol{\theta}}\left(\tilde{\mathbf{x}}_{\tau}\right)$, with $j \in\{1,2, \cdots, m\}$.
Therefore, from (18),

$$
\begin{align*}
\left|\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[\delta_{j}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right]\right| & \leq \sum_{\mathbf{x} \in\{0,1\}^{p}}\left|\mathrm{P}_{\tau}\left(\mathbf{x} \mid \mathbf{x}_{0}\right)-\mathrm{P}_{\boldsymbol{\theta}}(\mathbf{x})\right| \cdot\left|\nabla_{j} \log \mathrm{P}_{\boldsymbol{\theta}}\left(\tilde{\mathbf{x}}_{\tau}\right)\right| \\
& \leq \sum_{\mathbf{x} \in\{0,1\}^{p}}\left|\mathrm{P}_{\tau}\left(\mathbf{x} \mid \mathbf{x}_{0}\right)-\mathrm{P}_{\boldsymbol{\theta}}(\mathbf{x})\right|=2\left\|\mathrm{P}_{\tau}\left(\mathbf{x} \mid \tilde{\mathbf{x}}_{0}\right)-\mathrm{P}_{\boldsymbol{\theta}}(\mathbf{x})\right\|_{\mathrm{TV}} \tag{19}
\end{align*}
$$

where we have used the fact that $\left|\nabla_{j} \log \mathrm{P}_{\boldsymbol{\theta}}\left(\tilde{\mathbf{x}}_{\tau}\right)\right| \leq 1$ when $\boldsymbol{\psi}(\mathbf{x}) \in\{0,1\}^{m}$, for all $\mathbf{x} \in\{0,1\}^{p}$.
Therefore, by 19,

$$
\begin{aligned}
\left\|\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[\boldsymbol{\delta}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right]\right\|_{2} & =\sqrt{\sum_{j=1}^{m}\left|\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[\delta_{j}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right]\right|^{2}} \leq \sqrt{m \times\left(2\left\|\mathrm{P}_{\tau}\left(\mathbf{x} \mid \mathbf{x}_{0}\right)-\mathrm{P}_{\boldsymbol{\theta}}(\mathbf{x})\right\|_{\mathrm{TV}}\right)^{2}} \\
& =2 \sqrt{m}\left\|\mathrm{P}_{\tau}\left(\mathbf{x} \mid \mathbf{x}_{0}\right)-\mathrm{P}_{\boldsymbol{\theta}}(\mathbf{x})\right\|_{\mathrm{TV}}
\end{aligned}
$$

A.3.2 Proof of Lemma 2

Let $j \neq i$ be given. With $\xi_{i j}=\theta_{\min \{i, j\}, \max \{i, j\}}$, consider

$$
\begin{aligned}
\mathrm{P}_{\boldsymbol{\theta}}\left(X_{i}=1 \mid \mathbf{X}_{-i}\right) & =\frac{\mathrm{P}_{\boldsymbol{\theta}}\left(X_{i}=1, \mathbf{X}_{-i}\right)}{\mathrm{P}_{\boldsymbol{\theta}}\left(X_{i}=0, \mathbf{X}_{-i}\right)+\mathrm{P}_{\boldsymbol{\theta}}\left(X_{i}=1, \mathbf{X}_{-i}\right)} \\
& =\frac{1}{1+\exp \left(-\theta_{i i}-\sum_{k \neq i} \xi_{i, k} X_{k}\right)} \\
& =\frac{1}{1+\exp \left(-\theta_{i i}-\sum_{k \neq i, k \neq j} \xi_{i, k} X_{k}\right) \exp \left(-\xi_{i, j} X_{j}\right)} \\
& =g\left(\exp \left(-\xi_{i, j} X_{j}\right), b_{1}\right),
\end{aligned}
$$

where

$$
b=\exp \left(-\theta_{i i}-\sum_{k \neq i, k \neq j} \xi_{i, k} X_{k}\right) \in[r, s],
$$

with

$$
r=\exp \left(-\theta_{i i}-\sum_{k \neq i, k \neq j} \xi_{i, k} \max \left\{\operatorname{sgn}\left(\xi_{i, k}\right), 0\right\}\right), \quad s=\exp \left(-\theta_{i i}-\sum_{k \neq i, k \neq j} \xi_{i, k} \max \left\{-\operatorname{sgn}\left(\xi_{i, k}\right), 0\right\}\right) .
$$

Therefore,

$$
\begin{aligned}
C_{i j} & =\max _{\mathbf{X}, \mathbf{Y} \in N_{j}} \frac{1}{2}\left|\mathrm{P}_{\boldsymbol{\theta}}\left(X_{i}=1 \mid \mathbf{X}_{-i}\right)-\mathrm{P}_{\boldsymbol{\theta}}\left(Y_{i}=1 \mid \mathbf{Y}_{-i}\right)\right|+\frac{1}{2}\left|\mathrm{P}_{\boldsymbol{\theta}}\left(X_{i}=0 \mid \mathbf{X}_{-i}\right)-\mathrm{P}_{\boldsymbol{\theta}}\left(Y_{i}=0 \mid \mathbf{Y}_{-i}\right)\right| \\
& =\max _{\mathbf{X}, \mathbf{Y} \in N_{j}}\left|\mathrm{P}_{\boldsymbol{\theta}}\left(X_{i}=1 \mid \mathbf{X}_{-i}\right)-\mathrm{P}_{\boldsymbol{\theta}}\left(Y_{i}=1 \mid \mathbf{Y}_{-i}\right)\right| \\
& =\max _{\mathbf{X}, \mathbf{Y} \in N_{j}}\left|g\left(\exp \left(-\xi_{i, j} X_{j}\right), b\right)-g\left(\exp \left(-\xi_{i, j} Y_{j}\right), b\right)\right| \\
& =\max _{\mathbf{X}, \mathbf{Y} \in N_{j}} \frac{\left|\exp \left(-\xi_{i, j} X_{j}\right)-\exp \left(-\xi_{i, j} Y_{j}\right)\right| b}{\left(1+b \exp \left(-\xi_{i, j} X_{j}\right)\right)\left(1+b_{1} \exp \left(-\xi_{i, j} Y_{j}\right)\right)} \\
& =\max _{\mathbf{X}, \mathbf{Y} \in N_{j}} \frac{\left|\exp \left(-\xi_{i, j}\right)-1\right| b}{\left(1+b \exp \left(-\xi_{i, j}\right)\right)(1+b)}
\end{aligned}
$$

Then following the Lemma 15 in Mitliagkas and Mackey [2017], we have

$$
\begin{equation*}
C_{i j} \leq \frac{\left|\exp \left(-\xi_{i, j}\right)-1\right| b^{*}}{\left(1+b_{1}^{*} \exp \left(-\xi_{i, j}\right)\right)\left(1+b^{*}\right)} \tag{20}
\end{equation*}
$$

with $b^{*}=\max \left\{r, \min \left\{s, \exp \left(\frac{\xi_{i, j}}{2}\right)\right\}\right\}$.

A. 4 Proof of Theorem 4

We are interested in concentrating $\|\boldsymbol{\delta}(\boldsymbol{\theta})\|_{2}$ around $\left\|\mathbb{E}_{\tilde{\mathbf{x}}_{\boldsymbol{\tau}}}\left[\boldsymbol{\delta}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right]\right\|_{2}$. To this end, we first consider concentrating $\delta_{j}(\boldsymbol{\theta})$ around $\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[\delta_{j}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right]$, where $j \in\{1,2, \cdots, m\}$. Let q defined in Algorithm 2 be given. Then q trials of Gibbs sampling are run, resulting in $\left\{\delta_{j}^{(1)}(\boldsymbol{\theta}), \delta_{j}^{(2)}(\boldsymbol{\theta}), \cdots, \delta_{j}^{(q)}(\boldsymbol{\theta})\right\}$, and $\left\{\psi_{j}^{(1)}(\boldsymbol{\theta}), \psi_{j}^{(2)}(\boldsymbol{\theta}), \cdots, \psi_{j}^{(q)}(\boldsymbol{\theta})\right\}$ defined in Section 4.2. one element for each of the q trials. Since all the trials are independent, $\delta_{j}^{(i)}(\boldsymbol{\theta})$'s can be considered as i.i.d. samples with mean $\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[\delta_{j}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right]$. Furthermore, $\delta_{j}^{(i)}(\boldsymbol{\theta})=\nabla_{j} \log \mathrm{P}_{\boldsymbol{\theta}}\left(\tilde{\mathbf{x}}_{\tau}\right) \in[-1,1]$ when $\boldsymbol{\psi}(\mathbf{x}) \in\{0,1\}^{m}$, for all $\mathbf{x} \in\{0,1\}^{p}$. Let $\beta_{j}>0$ be given; we define the adversarial event:

$$
\begin{equation*}
E_{j}^{q}\left(\epsilon_{j}\right)=\left|\frac{1}{q} \sum_{i=1}^{q} \delta_{j}^{(i)}(\boldsymbol{\theta})-\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[\delta_{j}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right]\right|>\epsilon_{j} \tag{21}
\end{equation*}
$$

with $j \in\{1,2, \cdots, m\}$.
Define another random variable $Z_{j}=\frac{1+\delta_{j}(\boldsymbol{\theta})}{2}$ with samples $Z_{j}^{(i)}=\frac{1+\delta_{j}^{(i)}(\boldsymbol{\theta})}{2}$ and the sample variance $V_{Z_{j}}=\frac{V_{\delta_{j}}}{4}=\frac{V_{\psi_{j}}}{4}$.
Considering $Z \in[0,1]$, we can apply Theorem 4 in Maurer and Pontil 2009] and achieve

$$
\mathrm{P}\left(\left|\frac{1}{q} \sum_{i=1}^{q} Z_{j}^{(i)}-\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[Z_{j} \mid \tilde{\mathbf{x}}_{0}\right]\right|>\frac{\epsilon_{j}}{2}\right) \leq 2 \beta_{j}
$$

where

$$
\frac{\epsilon_{j}}{2}=\sqrt{\frac{2 V_{Z_{j}} \ln 2 / \beta_{j}}{q}}+\frac{7 \ln 2 / \beta_{j}}{3(p-1)}=\sqrt{\frac{V_{\psi_{j}} \ln 2 / \beta_{j}}{2 q}}+\frac{7 \ln 2 / \beta_{j}}{3(p-1)}
$$

That is to say

$$
\mathrm{P}\left(E_{j}^{q}\left(\epsilon_{j}\right)\right) \leq 2 \beta_{j} .
$$

Now, for all $j \in\{1,2, \cdots, m\}$, we would like $\frac{1}{m} \sum_{i=1}^{m} \delta_{j}^{(i)}(\boldsymbol{\theta})$ to be close to $\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[\delta_{j}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right]$. i.e.,

$$
\left|\frac{1}{q} \sum_{i=1}^{q} \delta_{j}^{(i)}(\boldsymbol{\theta})-\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[\delta_{j}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right]\right| \leq \epsilon_{j} .
$$

This concentrated event will occur with probability:

$$
1-\mathrm{P}\left(E_{j}\left(\epsilon_{j}\right)\right) \geq 1-\mathrm{P}\left(E_{j}^{q}\left(\epsilon_{j}\right)\right) \geq 1-2 \beta_{j}
$$

When all the concentrated events occur for each j,

$$
\begin{aligned}
\|\boldsymbol{\delta}(\boldsymbol{\theta})\|_{2}-\left\|\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[\boldsymbol{\delta}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right]\right\|_{2} & \leq\left\|\boldsymbol{\delta}(\boldsymbol{\theta})-\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[\boldsymbol{\delta}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right]\right\|_{2}=\left\|\frac{1}{q} \sum_{i=1}^{q} \boldsymbol{\delta}^{(i)}(\boldsymbol{\theta})-\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[\boldsymbol{\delta}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right]\right\|_{2} \\
& =\sqrt{\sum_{j=1}^{m}\left(\frac{1}{q} \sum_{i=1}^{q} \delta_{j}^{(i)}(\boldsymbol{\theta})-\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[\delta_{j}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right]\right)^{2}} \leq \sqrt{\sum_{j=1}^{m} \epsilon_{j}^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\|\boldsymbol{\delta}(\boldsymbol{\theta})\|_{2} & \leq\left\|\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[\boldsymbol{\delta}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right]\right\|_{2}+\sqrt{\sum_{j=1}^{m} \epsilon_{j}^{2}} \leq 2 \sqrt{m}\left\|\mathrm{P}_{\tau}\left(\mathbf{x} \mid \tilde{\mathbf{x}}_{0}\right)-\mathrm{P}_{\boldsymbol{\theta}}(\mathbf{x})\right\|_{\mathrm{TV}}+\sqrt{\sum_{j=1}^{m} \epsilon_{j}^{2}} \\
& \leq 2 \sqrt{m}\left(\mathscr{G}\left(\mathbf{B}^{\tau}\right)+\sqrt{\frac{\sum_{j=1}^{m} \epsilon_{j}^{2}}{4 m}}\right) .
\end{aligned}
$$

That is to say, we can conclude that 13 holds provided that all the concentrated events occur. Thus, the probability that $\sqrt{13}$ holds follows the inequality below:

$$
\mathrm{P}\left(\|\boldsymbol{\delta}(\boldsymbol{\theta})\|_{2} \leq 2 \sqrt{m}\left(\mathscr{G}\left(\mathbf{B}^{\tau}\right)+\sqrt{\frac{\sum_{j=1}^{m} \epsilon_{j}^{2}}{4 m}}\right)\right) \geq 1-\mathrm{P}\left(\bigcup_{j=1}^{m} E_{j}\left(\epsilon_{j}\right)\right) \geq 1-\sum_{j=1}^{m} \mathrm{P}\left(E_{j}^{q}\left(\epsilon_{j}\right)\right) \geq 1-2 \sum_{j=1}^{m} \beta_{j} .
$$

A. 5 Proof of Theorem 5

We consider the probability that the achieved objective function value decreases in the $k^{t h}$ iteration provided that the criterion TAY-CRITERION is satisfied:

$$
\mathrm{P}\left(g\left(\boldsymbol{\theta}^{(k+1)}\right)<g\left(\boldsymbol{\theta}^{(k)}\right) \left\lvert\, 2 \sqrt{m} \mathscr{G}\left(\mathbf{B}^{\tau}\right)<\frac{1}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}\right.\right) .
$$

Since $\left\|\boldsymbol{\delta}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2} \leq \frac{1}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}$ provided in Theorem 1 is a sufficient condition for $g\left(\boldsymbol{\theta}^{(k+1)}\right) \leq g\left(\boldsymbol{\theta}^{(k)}\right)$, we have:

$$
\begin{aligned}
& \mathrm{P}\left(g\left(\boldsymbol{\theta}^{(k+1)}\right) \leq g\left(\boldsymbol{\theta}^{(k)}\right) \left\lvert\, 2 \sqrt{m} \mathscr{G}\left(\mathbf{B}^{\tau}\right)<\frac{1}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}\right.\right) \\
\geq & \mathrm{P}\left(\left.\left\|\boldsymbol{\delta}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2} \leq \frac{1}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2} \right\rvert\, 2 \sqrt{m} \mathscr{G}\left(\mathbf{B}^{\tau}\right)<\frac{1}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}\right) \\
= & 1-\mathrm{P}\left(\left.\left\|\boldsymbol{\delta}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}>\frac{1}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2} \right\rvert\, 2 \sqrt{m} \mathscr{G}\left(\mathbf{B}^{\tau}\right)<\frac{1}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}\right) \\
\geq & 1-\mathrm{P}\left(\left.\left\|\boldsymbol{\delta}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}-\left\|\mathbb{E}_{\tilde{\mathbf{x}}_{\tau}}\left[\boldsymbol{\delta}(\boldsymbol{\theta}) \mid \tilde{\mathbf{x}}_{0}\right]\right\|_{2}>\frac{1}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}-2 \sqrt{m} \mathscr{G}\left(\mathbf{B}^{\tau}\right) \right\rvert\, 2 \sqrt{m} \mathscr{G}\left(\mathbf{B}^{\tau}\right)<\frac{1}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}\right)
\end{aligned}
$$

$$
\geq 1-\sum_{j=1}^{m} \mathrm{P}\left(\left.E_{j}^{q}\left(\frac{1}{2 \sqrt{m}}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}-2 \mathscr{G}\left(\mathbf{B}^{\tau}\right)\right) \right\rvert\, 2 \sqrt{m} \mathscr{G}\left(\mathbf{B}^{\tau}\right)<\frac{1}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}\right)
$$

where $E_{j}^{q}\left(\frac{1}{2 \sqrt{m}}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}-2 \mathscr{G}\left(\mathbf{B}^{\tau}\right)\right)$ is defined in 21 and in the $4^{t h}$ line we apply 12 . As q approaches infinity, by the weak law of large numbers, we have

$$
\lim _{q \rightarrow \infty} \mathrm{P}\left(E_{j}^{q}\left(\left(\frac{1}{2 \sqrt{m}}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}-2 \mathscr{G}\left(\mathbf{B}^{\tau}\right)\right)\right)=0\right.
$$

Then,

$$
\begin{aligned}
& \lim _{q \rightarrow \infty} \mathrm{P}\left(g\left(\boldsymbol{\theta}^{(k+1)}\right)<g\left(\boldsymbol{\theta}^{(k)}\right) \left\lvert\, 2 \sqrt{m} \mathscr{G}\left(\mathbf{B}^{\tau}\right)<\frac{1}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}\right.\right) \\
\geq & 1-\lim _{q \rightarrow \infty} \sum_{j=1}^{m} \mathrm{P}\left(\left.E_{j}^{q}\left(\frac{1}{2 \sqrt{m}}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}-2 \mathscr{G}\left(\mathbf{B}^{\tau}\right)\right) \right\rvert\, 2 \sqrt{m} \mathscr{G}\left(\mathbf{B}^{\tau}\right)<\frac{1}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}\right)=1 .
\end{aligned}
$$

A. 6 Proof of Theorem 6

According to Theorem 2, we only need to show

$$
\lim _{q \rightarrow \infty} \mathrm{P}\left(g\left(\boldsymbol{\theta}^{(k+1)}\right) \leq g\left(\boldsymbol{\theta}^{(k)}\right)\right)=1
$$

for $k=1,2, \cdots, \kappa-1$.
By a union bound, the following inequality is true:

$$
\lim _{q \rightarrow \infty} \mathrm{P}\left(g\left(\boldsymbol{\theta}^{(k+1)}\right) \leq g\left(\boldsymbol{\theta}^{(k)}\right)\right) \leq 1-\sum_{k=1}^{\kappa-1} \lim _{q \rightarrow \infty} \mathrm{P}\left(g\left(\boldsymbol{\theta}^{(k+1)}\right)>g\left(\boldsymbol{\theta}^{(k)}\right)\right)
$$

Notice that, following TAY, we always have:

$$
\mathrm{P}\left(2 \sqrt{m} \mathscr{G}\left(\mathbf{B}^{\tau}\right)<\frac{1}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}\right)=1
$$

suggesting

$$
\lim _{q \rightarrow \infty} \mathrm{P}\left(g\left(\boldsymbol{\theta}^{(k+1)}\right)>g\left(\boldsymbol{\theta}^{(k)}\right)\right)=\lim _{q \rightarrow \infty} \mathrm{P}\left(g\left(\boldsymbol{\theta}^{(k+1)}\right)>g\left(\boldsymbol{\theta}^{(k)}\right) \left\lvert\, 2 \sqrt{m} \mathscr{G}\left(\mathbf{B}^{\tau}\right)<\frac{1}{2}\left\|\boldsymbol{G}_{\alpha}\left(\boldsymbol{\theta}^{(k)}\right)\right\|_{2}\right.\right)=0
$$

where the equality is due to Theorem 5 .
Finally, with Theorem 2, we can finish the proof.

B Experiments

B. 1 Comparison with SPG-based Methods

In this section, we consider the effect of the regularization parameter λ. Specifically, we apply the methods mentioned the Section 7.1 with different $\lambda \mathrm{s}$. The results are reported in Figure 4 and Figure 5 .

Figure 4: Area under curve (AUC) and the steps of Gibbs sampling (τ) for the structure learning of a 10-node network with different λ 's.

Figure 5: Area under curve (AUC) and the steps of Gibbs sampling (τ) for the structure learning of a 20-node network with different λ 's.

B. 2 Comparison with the Pseudo-likelihood Method

We compare TYA with the pseudo-likelihood method (Pseudo) under the same parameter configuration introduced in Section 7.1 Note that the two methods achieve a comparable performance: Pseudo is slightly better with 10 nodes and TAY outperforms a little with 20 nodes. This is consistent with the theoretical result that the two inductive principles are both sparsistent.

Figure 6: Area under curve (AUC) and for the structure learning of a 20-node network.

