
A MISSING PROOFS

Lemma 1. Let f be a L-smooth function over a convex compact domain D, and define diam(D) := supx,y2D ||x�y||.
Then C̄f  diam2(D)L.

Proof. Let 8x, s 2 D, � 2 (0, 1], and y = x + �(s � x). The smoothness of f implies that f is continuously
differentiable, hence we have:

���f(y)� f(x)�rf(x)T (y � x)
���

=
���
Z 1

0
(rf(x+ t(y � x))�rf(x))T (y � x) dt

��� (Mean-value theorem)


Z 1

0

���(rf(x+ t(y � x))�rf(x))T (y � x)
��� dt (Triangle inequality)


Z 1

0
||rf(x+ t(y � x))�rf(x)|| · ||y � x|| dt (Cauchy-Schwarz inequality)


Z 1

0
tL�

2||s� x||2 dt  L�
2

2
diam2(D) (Smoothness assumption of f )

It immediately follows that

C̄f  2

�2

L�
2

2
diam2(D) = diam2(D)L

⌅

Theorem 2. Consider the problem (2) where f is a continuously differentiable function that is potentially nonconvex,
but has a finite curvature constant C̄f as defined by (10) over the compact convex domain D. Consider running
Frank-Wolfe (Algo. 1), then the minimal FW gap g̃T := min0tT gt encountered by the iterates during the algorithm
after T iterations satisfies:

g̃T  max{2h0C̄f ,
p

2h0C̄f}p
T + 1

, 8T � 0 (11)

where h0 := f(x(0))�minx2D f(x) is the initial global suboptimality. It thus takes at most O(1/"2) iterations to find
an approximate KKT point with gap smaller than ".

Proof. Let y := x+ �d, where d := s� x is the update direction found by the LMO in Alg. 1. Using the definition of
C̄f , we have:

f(y) = f(y)� f(x)� �rf(x)Td+ f(x) + �rf(x)Td

 f(x) + �rf(x)Td+
��f(y)� f(x)� �rf(x)Td

��

 f(x) + �rf(x)Td+
�
2

2
C̄f

Now using the definition of the FW gap g(x) and for 8C � C̄f , we get:

f(y)  f(x)� �g(x) +
�
2

2
C̄f , 8� 2 (0, 1] (15)

Depending on whether C > 0 or C = 0, the R.H.S. of (15) is a either a quadratic function with positive second order
coefficient or an affine function. In the first case, the optimal �⇤ that minimizes the R.H.S. is �⇤ = g(x)/C. In the
second case, �⇤ = 1. Combining the constraint that �⇤  1, we have �

⇤ = min{1, g(x)/C}. Thus we obtain:

f(y)  f(x)�min

⇢
g
2(x)

2C
,

✓
g(x)� C

2

◆
Ig(x)>C

�
(16)



(16) holds for each iteration in Alg. 1. A cascading sum of (16) through iteration step 1 to T + 1 shows that:

f(x(T+1))  f(x(0))�
TX

t=0

min

⇢
g
2(x(t))

2C
,

✓
g(x(t))� C

2

◆
Ig(x(t))>C

�
(17)

Define g̃T := min0tT g(x(t)) be the minimal FW gap in T + 1 iterations. Then we can further bound inequality (17)
as:

f(x(T+1))  f(x(0))� (T + 1)min

⇢
g̃
2
T

2C
,

✓
g̃T � C

2

◆
Ig̃T>C

�
(18)

We discuss two subcases depending on whether g̃T > C or not. The main idea is to get an upper bound on g̃T by
showing that g̃T cannot be too large, otherwise the R.H.S. of (18) can be smaller than the global minimum of f , which
is a contradiction. For the ease of notation, define h0 := f(x(0)) � minx2D f(x), i.e., the initial gap to the global
minimum of f .

Case I. If g̃T > C and g̃T � C
2  g̃2

T
2C , from (18), then:

0  f(x(T+1))�min
x2D

f(x)  f(x(0))�min
x2D

f(x)� (T + 1)(g̃T � C

2
) = h0 � (T + 1)(g̃T � C

2
)

which implies

C < g̃T  h0

T + 1
+

C

2
) g̃T  2h0C

T + 1
= O(1/T )

On the other hand, solving the following inequality:

C � C

2
 g̃T � C

2
 g̃

2
T

2C
 4h2

0C
2

(T + 1)2
1

2C

we get
T + 1  2h0

This means that g̃T decreases in rate O(1/T ) only for at most the first 2h0 iterations.

Case II. If g̃T  C or g̃T � C
2 >

g̃2
T

2C . Similarly, from (18), we have:

0  f(x(T+1))�min
x2D

f(x)  f(x(0))�min
x2D

f(x)� (T + 1)
g̃
2
T

2C
= h0 � (T + 1)

g̃
2
T

2C

which yields

g̃T 
r

2h0C

T + 1

Combining the two cases together, we get g̃T  2h0C
T+1 if T + 1  2h0; otherwise g̃T 

q
2h0C
T+1 . Note that for T � 0,

p
T + 1  T + 1, thus we can further simplify the upper bound of g̃T as:

g̃T  max{2h0C,
p
2h0C}p

T + 1

⌅

Lemma 3. Let f(W ) = 1
4 ||P �WW

T ||2F and define r2
f(W ) := @ vecrf(W )/@ vecW . Then:

r2
f(W ) = W

T
W ⌦ In + Ik ⌦ (WW

T � P )

+ (WT ⌦W )Knk (12)

where Knk is a commutation matrix such that Knk vecW = vecWT .



Proof. Using the theory of matrix differential calculus, the Hessian of a matrix-valued matrix function is defined as:

r2
f(W ) :=

@ vecrf(W )

@ vecW

Using the differential notation, we can compute the differential of rf(W ) as:

drf(W ) = d(WW
T � P )W = (dW )WT

W +W (dW )TW +WW
T dW � P dW

Vectorize both sides of the above equation and make use of the identity that vec(ABC) = (CT ⌦A) vecB for A,B,C

with appropriate shapes, we get:

vec drf(W ) = (WT
W ⌦ In) vec dW + (WT ⌦W ) vec dWT + (Ik ⌦ (WW

T � P )) vec dW

Let Knk be a commutation matrix such that Knk vecW = vecWT . We can further simplify the above equation as:

vec drf(W ) =
�
W

T
W ⌦ In + (WT ⌦W )Knk + Ik ⌦ (WW

T � P )
�
vec dW (19)

It then follows from the first identification theorem [Magnus and Neudecker, 1985, Thm. 6] that the Hessian is given by

r2
f(W ) =

�
W

T
W ⌦ In + Ik ⌦ (WW

T � P ) + (WT ⌦W )Knk

�
2 Rnk⇥nk

As a sanity check, the first two terms in r2
f(W ) are clearly symmetric. The third term can be verified as symmetric as

well by realizing that K�1
nk = K

T
nk, and

W ⌦W
T = Knk(W

T ⌦W )Knk

⌅
Lemma 4. sup W�0,

W1k=1n

||WT
W ||2 = n.

Proof. 8W � 0, if W1k = 1n, then by the Courant-Fischer theorem:

||WT
W ||2 := max

v2Rk,
||v||2=1

||WT
Wv||2 (Courant-Fischer theorem)

= max
v2Rk

+,
||v||2=1

||WT
Wv||2 (Perron-Frobenius theorem)

 max
v2Rk

+,
||v||11

||WT
Wv||2 (B2(0, 1) ✓ B1(0, 1))

= ||WT1n||2 (W � 0,W1k = 1n)

 ||WT1n||1 = n

To achieve this upper bound, consider W = 1ne
T
1 , where e1 is the first column vector of the identity matrix Ik.

In this case W
T
W = e11T

n1ne
T
1 = ne1e

T
1 , which is a rank one matrix with a positive eigenvalue n. Hence

sup ||WT
W ||2 = n. ⌅

Lemma 5. Let c := ||P ||2. f = 1
4 ||P �WW

T ||2F is (3n+ c)-smooth on D = {W 2 Rn⇥k
+ | W1k = 1n}.

Proof. Recall that the spectral norm || · ||2 is sub-multiplicative and the spectrum of A ⌦ B is the product of the
spectrums of A and B. Using (12), we have:

||r2
f(W )||2 = ||WT

W ⌦ In + Ik ⌦ (WW
T � P ) + (WT ⌦W )Knk||2

 ||WT
W ⌦ In||2 + ||Ik ⌦ (WW

T � P )||2 + ||(WT ⌦W )Knk||2 (Triangle inequality)

= ||WT
W ||2||In||2 + ||Ik||2||WW

T � P ||2 + ||WT ⌦W ||2||Knk||2 (submultiplicativity of || · ||2)

= ||WT
W ||2 + ||WW

T � P ||2 + ||WT ⌦W ||2 (||In||2 = ||Ik||2 = ||Knk||2 = 1)

 3||WT
W ||2 + ||P ||2 (Triangle inequality)

 3n+ c (Lemma 4)

The result then follows from Lemma 2. ⌅



Lemma 6. Let D = {W 2 Rn⇥k
+ | W1k = 1n}. Then diam2(D) = 2n with respect to the Frobenius norm.

Proof.

diam2(D) = sup
W,Z2D

||W � Z||2F

= sup
W,Z2D

X

ij

(Wij � Zij)
2 = sup

W,Z2D

X

ij

W
2
ij + Z

2
ij � 2WijZij

 sup
W,Z2D

X

W,Z2D
W

2
ij + Z

2
ij  sup

W,Z2D

X

W,Z2D
Wij + Zij

= 2n

Note that choosing W = 1eT1 and Z = 1ne
T
2 make all the equalities hold in the above inequalities. Hence diam2(D) =

2n. ⌅
Lemma 7. inf W�0,

W1k=1n

||r2
f(W )||2 � n/k

2 � c.

Proof. For a matrix A, we will use �i(A) to mean the ith largest singular value of A and �max(A), �min(A) to mean the
largest and smallest eigenvalues of A, respectively. Recall r2

f(W ) = W
T
W⌦In+Ik⌦(WW

T�P )+(WT⌦W )Knk.
For W � 0,W1k = 1n, let r = rank(W ). Clearly r � 1. We have the following inequalities hold:

||r2
f(W )||2 = ||WT

W ⌦ In + Ik ⌦ (WW
T � P ) + (WT ⌦W )Knk||2

� �max

�
WW

T ⌦ In + (WT ⌦W )Knk

�
+ �min

�
Ik ⌦ (WW

T � P )
�

(Weyl’s inequality)

� �max(WW
T ⌦ In) + �min

�
(WT ⌦W )Knk

�
+ �min

�
Ik ⌦ (WW

T � P )
�

= �max(WW
T ) + �min(W

T ⌦W ) + �min(WW
T � P )

� �max(WW
T ) + �min(W

T ⌦W ) + �min(WW
T )� �max(P )

= �
2
1(W ) + 2�2

r(W )� �max(P )

� �
2
1(W )� c (||P ||2  ||P ||F )

� 1

r
||W ||2F � c (r · �2

1(W ) � ||W ||2F )

� 1

k
||W ||2F � c (rank(W )  k)

=
1

k

nX

i=1

kX

j=1

W
2
ij � c

� 1

k

nX

i=1

k

 Pk
j=1 Wij

k

!2

� c (Cauchy ineq.)

=
n

k2
� c

where the first three inequalities all follow from Weyl’s inequality. ⌅
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