A MISSING PROOFS

Lemma 1. Let f be a L-smooth function over a convex compact domain \mathcal{D}, and define $\operatorname{diam}(\mathcal{D}):=\sup _{\mathbf{x}, \mathbf{y} \in \mathcal{D}}\|\mathbf{x}-\mathbf{y}\|$. Then $\bar{C}_{f} \leq \operatorname{diam}^{2}(\mathcal{D}) L$.

Proof. Let $\forall \mathbf{x}, \mathbf{s} \in \mathcal{D}, \gamma \in(0,1]$, and $\mathbf{y}=\mathbf{x}+\gamma(\mathbf{s}-\mathbf{x})$. The smoothness of f implies that f is continuously differentiable, hence we have:

$$
\begin{aligned}
&\left|f(\mathbf{y})-f(\mathbf{x})-\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})\right| \\
&=\left|\int_{0}^{1}(\nabla f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))-\nabla f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x}) d t\right| \\
& \leq \int_{0}^{1}\left|(\nabla f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))-\nabla f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x})\right| d t \\
& \leq \int_{0}^{1}\|\nabla f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))-\nabla f(\mathbf{x})\| \cdot\|\mathbf{y}-\mathbf{x}\| d t \\
& \leq \int_{0}^{1} t L \gamma^{2}\|\mathbf{s}-\mathbf{x}\|^{2} d t \leq \frac{L \gamma^{2}}{2} \operatorname{diam}^{2}(\mathcal{D}) \\
& \text { (Triangle inequality) } \\
& \text { (Cauchy-Schwarz inequality) } \\
& \text { (Smoothness assumption of } f \text {) }
\end{aligned}
$$

It immediately follows that

$$
\bar{C}_{f} \leq \frac{2}{\gamma^{2}} \frac{L \gamma^{2}}{2} \operatorname{diam}^{2}(\mathcal{D})=\operatorname{diam}^{2}(\mathcal{D}) L
$$

Theorem 2. Consider the problem (2) where f is a continuously differentiable function that is potentially nonconvex, but has a finite curvature constant C_{f} as defined by 10 over the compact convex domain \mathcal{D}. Consider running Frank-Wolfe (Algo.[1], then the minimal FW gap $\tilde{g}_{T}:=\min _{0 \leq t \leq T} g_{t}$ encountered by the iterates during the algorithm after T iterations satisfies:

$$
\begin{equation*}
\tilde{g}_{T} \leq \frac{\max \left\{2 h_{0} \bar{C}_{f}, \sqrt{2 h_{0} \bar{C}_{f}}\right\}}{\sqrt{T+1}}, \quad \forall T \geq 0 \tag{11}
\end{equation*}
$$

where $h_{0}:=f\left(\mathbf{x}^{(0)}\right)-\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})$ is the initial global suboptimality. It thus takes at most $O\left(1 / \varepsilon^{2}\right)$ iterations to find an approximate KKT point with gap smaller than ε.

Proof. Let $\mathbf{y}:=\mathbf{x}+\gamma \mathbf{d}$, where $\mathbf{d}:=\mathbf{s}-\mathbf{x}$ is the update direction found by the LMO in Alg. 1. Using the definition of \bar{C}_{f}, we have:

$$
\begin{aligned}
f(\mathbf{y}) & =f(\mathbf{y})-f(\mathbf{x})-\gamma \nabla f(\mathbf{x})^{T} \mathbf{d}+f(\mathbf{x})+\gamma \nabla f(\mathbf{x})^{T} \mathbf{d} \\
& \leq f(\mathbf{x})+\gamma \nabla f(\mathbf{x})^{T} \mathbf{d}+\left|f(\mathbf{y})-f(\mathbf{x})-\gamma \nabla f(\mathbf{x})^{T} \mathbf{d}\right| \\
& \leq f(\mathbf{x})+\gamma \nabla f(\mathbf{x})^{T} \mathbf{d}+\frac{\gamma^{2}}{2} \bar{C}_{f}
\end{aligned}
$$

Now using the definition of the FW gap $g(\mathbf{x})$ and for $\forall C \geq \bar{C}_{f}$, we get:

$$
\begin{equation*}
f(\mathbf{y}) \leq f(\mathbf{x})-\gamma g(\mathbf{x})+\frac{\gamma^{2}}{2} \bar{C}_{f}, \quad \forall \gamma \in(0,1] \tag{15}
\end{equation*}
$$

Depending on whether $C>0$ or $C=0$, the R.H.S. of (15) is a either a quadratic function with positive second order coefficient or an affine function. In the first case, the optimal γ^{*} that minimizes the R.H.S. is $\gamma^{*}=g(\mathbf{x}) / C$. In the second case, $\gamma^{*}=1$. Combining the constraint that $\gamma^{*} \leq 1$, we have $\gamma^{*}=\min \{1, g(\mathbf{x}) / C\}$. Thus we obtain:

$$
\begin{equation*}
f(\mathbf{y}) \leq f(\mathbf{x})-\min \left\{\frac{g^{2}(\mathbf{x})}{2 C},\left(g(\mathbf{x})-\frac{C}{2}\right) \mathbb{I}_{g(\mathbf{x})>C}\right\} \tag{16}
\end{equation*}
$$

(16) holds for each iteration in Alg. A cascading sum of (16) through iteration step 1 to $T+1$ shows that:

$$
\begin{equation*}
f\left(\mathbf{x}^{(T+1)}\right) \leq f\left(\mathbf{x}^{(0)}\right)-\sum_{t=0}^{T} \min \left\{\frac{g^{2}\left(\mathbf{x}^{(t)}\right)}{2 C},\left(g\left(\mathbf{x}^{(t)}\right)-\frac{C}{2}\right) \mathbb{I}_{g\left(\mathbf{x}^{(t)}\right)>C}\right\} \tag{17}
\end{equation*}
$$

Define $\tilde{g}_{T}:=\min _{0 \leq t \leq T} g\left(\mathbf{x}^{(t)}\right)$ be the minimal FW gap in $T+1$ iterations. Then we can further bound inequality 17) as:

$$
\begin{equation*}
f\left(\mathbf{x}^{(T+1)}\right) \leq f\left(\mathbf{x}^{(0)}\right)-(T+1) \min \left\{\frac{\tilde{g}_{T}^{2}}{2 C},\left(\tilde{g}_{T}-\frac{C}{2}\right) \mathbb{I}_{\tilde{g}_{T}>C}\right\} \tag{18}
\end{equation*}
$$

We discuss two subcases depending on whether $\tilde{g}_{T}>C$ or not. The main idea is to get an upper bound on \tilde{g}_{T} by showing that \tilde{g}_{T} cannot be too large, otherwise the R.H.S. of (18) can be smaller than the global minimum of f, which is a contradiction. For the ease of notation, define $h_{0}:=f\left(\mathbf{x}^{(0)}\right)-\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})$, i.e., the initial gap to the global minimum of f.

Case I. If $\tilde{g}_{T}>C$ and $\tilde{g}_{T}-\frac{C}{2} \leq \frac{\tilde{g}_{T}^{2}}{2 C}$, from 18, then:

$$
0 \leq f\left(\mathbf{x}^{(T+1)}\right)-\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x}) \leq f\left(\mathbf{x}^{(0)}\right)-\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})-(T+1)\left(\tilde{g}_{T}-\frac{C}{2}\right)=h_{0}-(T+1)\left(\tilde{g}_{T}-\frac{C}{2}\right)
$$

which implies

$$
C<\tilde{g}_{T} \leq \frac{h_{0}}{T+1}+\frac{C}{2} \Rightarrow \tilde{g}_{T} \leq \frac{2 h_{0} C}{T+1}=O(1 / T)
$$

On the other hand, solving the following inequality:

$$
C-\frac{C}{2} \leq \tilde{g}_{T}-\frac{C}{2} \leq \frac{\tilde{g}_{T}^{2}}{2 C} \leq \frac{4 h_{0}^{2} C^{2}}{(T+1)^{2}} \frac{1}{2 C}
$$

we get

$$
T+1 \leq 2 h_{0}
$$

This means that \tilde{g}_{T} decreases in rate $O(1 / T)$ only for at most the first $2 h_{0}$ iterations.
Case II. If $\tilde{g}_{T} \leq C$ or $\tilde{g}_{T}-\frac{C}{2}>\frac{\tilde{g}_{T}^{2}}{2 C}$. Similarly, from 18, we have:

$$
0 \leq f\left(\mathbf{x}^{(T+1)}\right)-\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x}) \leq f\left(\mathbf{x}^{(0)}\right)-\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})-(T+1) \frac{\tilde{g}_{T}^{2}}{2 C}=h_{0}-(T+1) \frac{\tilde{g}_{T}^{2}}{2 C}
$$

which yields

$$
\tilde{g}_{T} \leq \sqrt{\frac{2 h_{0} C}{T+1}}
$$

Combining the two cases together, we get $\tilde{g}_{T} \leq \frac{2 h_{0} C}{T+1}$ if $T+1 \leq 2 h_{0}$; otherwise $\tilde{g}_{T} \leq \sqrt{\frac{2 h_{0} C}{T+1}}$. Note that for $T \geq 0$, $\sqrt{T+1} \leq T+1$, thus we can further simplify the upper bound of \tilde{g}_{T} as:

$$
\tilde{g}_{T} \leq \frac{\max \left\{2 h_{0} C, \sqrt{2 h_{0} C}\right\}}{\sqrt{T+1}}
$$

Lemma 3. Let $f(W)=\frac{1}{4}\left\|P-W W^{T}\right\|_{F}^{2}$ and define $\nabla^{2} f(W):=\partial \operatorname{vec} \nabla f(W) / \partial \operatorname{vec} W$. Then:

$$
\begin{align*}
\nabla^{2} f(W) & =W^{T} W \otimes I_{n}+I_{k} \otimes\left(W W^{T}-P\right) \\
& +\left(W^{T} \otimes W\right) K_{n k} \tag{12}
\end{align*}
$$

where $K_{n k}$ is a commutation matrix such that $K_{n k} \operatorname{vec} W=\operatorname{vec} W^{T}$.

Proof. Using the theory of matrix differential calculus, the Hessian of a matrix-valued matrix function is defined as:

$$
\nabla^{2} f(W):=\frac{\partial \operatorname{vec} \nabla f(W)}{\partial \operatorname{vec} W}
$$

Using the differential notation, we can compute the differential of $\nabla f(W)$ as:

$$
\mathrm{d} \nabla f(W)=\mathrm{d}\left(W W^{T}-P\right) W=(\mathrm{d} W) W^{T} W+W(\mathrm{~d} W)^{T} W+W W^{T} \mathrm{~d} W-P \mathrm{~d} W
$$

Vectorize both sides of the above equation and make use of the identity that $\operatorname{vec}(A B C)=\left(C^{T} \otimes A\right)$ vec B for A, B, C with appropriate shapes, we get:

$$
\text { vec d } \nabla f(W)=\left(W^{T} W \otimes I_{n}\right) \operatorname{vec} \mathrm{d} W+\left(W^{T} \otimes W\right) \operatorname{vec} \mathrm{d} W^{T}+\left(I_{k} \otimes\left(W W^{T}-P\right)\right) \operatorname{vec} \mathrm{d} W
$$

Let $K_{n k}$ be a commutation matrix such that $K_{n k} \operatorname{vec} W=\operatorname{vec} W^{T}$. We can further simplify the above equation as:

$$
\begin{equation*}
\operatorname{vec} \mathrm{d} \nabla f(W)=\left(W^{T} W \otimes I_{n}+\left(W^{T} \otimes W\right) K_{n k}+I_{k} \otimes\left(W W^{T}-P\right)\right) \operatorname{vec} \mathrm{d} W \tag{19}
\end{equation*}
$$

It then follows from the first identification theorem Magnus and Neudecker 1985. Thm. 6] that the Hessian is given by

$$
\nabla^{2} f(W)=\left(W^{T} W \otimes I_{n}+I_{k} \otimes\left(W W^{T}-P\right)+\left(W^{T} \otimes W\right) K_{n k}\right) \in \mathbb{R}^{n k \times n k}
$$

As a sanity check, the first two terms in $\nabla^{2} f(W)$ are clearly symmetric. The third term can be verified as symmetric as well by realizing that $K_{n k}^{-1}=K_{n k}^{T}$, and

$$
W \otimes W^{T}=K_{n k}\left(W^{T} \otimes W\right) K_{n k}
$$

Lemma 4. $\sup _{W \geq 0}^{W \geq 0,}\left\|W^{T} W\right\|_{2}=n$.

$$
W \mathbf{1}_{k}=\mathbf{1}_{n}
$$

Proof. $\forall W \geq 0$, if $W \mathbf{1}_{k}=\mathbf{1}_{n}$, then by the Courant-Fischer theorem:

$$
\begin{array}{rlrl}
\left\|W^{T} W\right\|_{2} & :=\max _{\substack{\mathbf{v} \in \mathbb{R}^{k},\|\mathbf{v}\|_{2}=1}}\left\|W^{T} W \mathbf{v}\right\|_{2} & & \text { (Courant-Fischer theorem) } \\
& =\max _{\substack{\mathbf{v} \in \mathbb{R}_{+}^{k},\|\mathbf{v}\|_{2}=1}}\left\|W^{T} W \mathbf{v}\right\|_{2} & & \text { (Perron-Frobenius theorem) } \\
& \leq \max _{\substack{\mathbf{v} \in \mathbb{R}_{+}^{k},\|\mathbf{v}\|_{\infty} \leq 1}}\left\|W^{T} W \mathbf{v}\right\|_{2} & & \left(B_{2}(0,1) \subseteq B_{\infty}(0,1)\right) \\
& =\left\|W^{T} \mathbf{1}_{n}\right\|_{2} & \left(W \geq 0, W \mathbf{1}_{k}=\mathbf{1}_{n}\right) \\
& \leq\left\|W^{T} \mathbf{1}_{n}\right\|_{1}=n &
\end{array}
$$

To achieve this upper bound, consider $W=\mathbf{1}_{n} e_{1}^{T}$, where e_{1} is the first column vector of the identity matrix I_{k}. In this case $W^{T} W=e_{1} \mathbf{1}_{n}^{T} \mathbf{1}_{n} e_{1}^{T}=n e_{1} e_{1}^{T}$, which is a rank one matrix with a positive eigenvalue n. Hence $\sup \left\|W^{T} W\right\|_{2}=n$.
Lemma 5. Let $c:=\|P\|_{2} . f=\frac{1}{4}\left\|P-W W^{T}\right\|_{F}^{2}$ is $(3 n+c)$-smooth on $\mathcal{D}=\left\{W \in \mathbb{R}_{+}^{n \times k} \mid W \mathbf{1}_{k}=\mathbf{1}_{n}\right\}$.
Proof. Recall that the spectral norm $\|\cdot\|_{2}$ is sub-multiplicative and the spectrum of $A \otimes B$ is the product of the spectrums of A and B. Using (12), we have:

$$
\begin{aligned}
\left\|\nabla^{2} f(W)\right\|_{2} & =\left\|W^{T} W \otimes I_{n}+I_{k} \otimes\left(W W^{T}-P\right)+\left(W^{T} \otimes W\right) K_{n k}\right\|_{2} & & \\
& \leq\left\|W^{T} W \otimes I_{n}\right\|_{2}+\left\|I_{k} \otimes\left(W W^{T}-P\right)\right\|_{2}+\left\|\left(W^{T} \otimes W\right) K_{n k}\right\|_{2} & & \text { (Triangle inequality) } \\
& =\left\|W^{T} W\right\|_{2}\left\|I_{n}\right\|_{2}+\left\|I_{k}\right\|_{2}\left\|W W^{T}-P\right\|_{2}+\left\|W^{T} \otimes W\right\|_{2}\left\|K_{n k}\right\|_{2} & & \text { (submultiplicativity of } \left.\|\cdot\|_{2}\right) \\
& =\left\|W^{T} W\right\|_{2}+\left\|W W^{T}-P\right\|_{2}+\left\|W^{T} \otimes W\right\|_{2} & & \left(\left\|I_{n}\right\|_{2}=\left\|I_{k}\right\|_{2}=\left\|K_{n k}\right\|_{2}=1\right)
\end{aligned}
$$

$$
\leq 3\left\|W^{T} W\right\|_{2}+\|P\|_{2}
$$

$$
\leq 3 n+c
$$

The result then follows from Lemma 2

Lemma 6. Let $\mathcal{D}=\left\{W \in \mathbb{R}_{+}^{n \times k} \mid W \mathbf{1}_{k}=\mathbf{1}_{n}\right\}$. $\operatorname{Then}_{\operatorname{diam}}{ }^{2}(\mathcal{D})=2 n$ with respect to the Frobenius norm.
Proof.

$$
\begin{aligned}
\operatorname{diam}^{2}(\mathcal{D}) & =\sup _{W, Z \in \mathcal{D}}\|W-Z\|_{F}^{2} \\
& =\sup _{W, Z \in \mathcal{D}} \sum_{i j}\left(W_{i j}-Z_{i j}\right)^{2}=\sup _{W, Z \in \mathcal{D}} \sum_{i j} W_{i j}^{2}+Z_{i j}^{2}-2 W_{i j} Z_{i j} \\
& \leq \sup _{W, Z \in \mathcal{D}} \sum_{W, Z \in \mathcal{D}} W_{i j}^{2}+Z_{i j}^{2} \leq \sup _{W, Z \in \mathcal{D}} \sum_{W, Z \in \mathcal{D}} W_{i j}+Z_{i j} \\
& =2 n
\end{aligned}
$$

Note that choosing $W=1 e_{1}^{T}$ and $Z=\mathbf{1}_{n} e_{2}^{T}$ make all the equalities hold in the above inequalities. Hence $\operatorname{diam}^{2}(\mathcal{D})=$ $2 n$.

Lemma 7. inf $\underset{W \mathbf{1}_{k}=\mathbf{1}_{n}}{W \geq 0,}\left\|\nabla^{2} f(W)\right\|_{2} \geq n / k^{2}-c$.
Proof. For a matrix A, we will use $\sigma_{i}(A)$ to mean the i th largest singular value of A and $\lambda_{\max }(A), \lambda_{\min }(A)$ to mean the largest and smallest eigenvalues of A, respectively. Recall $\nabla^{2} f(W)=W^{T} W \otimes I_{n}+I_{k} \otimes\left(W W^{T}-P\right)+\left(W^{T} \otimes W\right) K_{n k}$. For $W \geq 0, W \mathbf{1}_{k}=\mathbf{1}_{n}$, let $r=\operatorname{rank}(W)$. Clearly $r \geq 1$. We have the following inequalities hold:

$$
\begin{array}{rlr}
\left\|\nabla^{2} f(W)\right\|_{2} & =\left\|W^{T} W \otimes I_{n}+I_{k} \otimes\left(W W^{T}-P\right)+\left(W^{T} \otimes W\right) K_{n k}\right\|_{2} & \\
& \geq \lambda_{\max }\left(W W^{T} \otimes I_{n}+\left(W^{T} \otimes W\right) K_{n k}\right)+\lambda_{\min }\left(I_{k} \otimes\left(W W^{T}-P\right)\right) & \\
& \geq \lambda_{\max }\left(W W^{T} \otimes I_{n}\right)+\lambda_{\min }\left(\left(W^{T} \otimes W\right) K_{n k}\right)+\lambda_{\min }\left(I_{k} \otimes\left(W W^{T}-P\right)\right) & \\
& =\lambda_{\max }\left(W W^{T}\right)+\lambda_{\min }\left(W^{T} \otimes W\right)+\lambda_{\min }\left(W W^{T}-P\right) & \\
& \geq \lambda_{\max }\left(W W^{T}\right)+\lambda_{\min }\left(W^{T} \otimes W\right)+\lambda_{\min }\left(W W^{T}\right)-\lambda_{\max }(P) & \\
& =\sigma_{1}^{2}(W)+2 \sigma_{r}^{2}(W)-\lambda_{\max }(P) & \\
& \geq \sigma_{1}^{2}(W)-c & \\
& \geq \frac{1}{r}\|W\|_{F}^{2}-c & \left(\|P\|_{2} \leq\|P\|_{F}\right) \\
& \geq \frac{1}{k}\|W\|_{F}^{2}-c & \left(r \cdot \sigma_{1}^{2}(W) \geq\|W\|_{F}^{2}\right) \\
& =\frac{1}{k} \sum_{i=1}^{n} \sum_{j=1}^{k} W_{i j}^{2}-c & \\
& \geq \frac{1}{k} \sum_{i=1}^{n} k\left(\frac{\sum_{j=1}^{k} W_{i j}}{k}\right)^{2}-c & \\
& =\frac{n}{k^{2}}-c & \\
\text { (Cauchy ineq. }(W) \leq k)
\end{array}
$$

where the first three inequalities all follow from Weyl's inequality.

