Appendix

Appendix A Proof Details of the Theoretical Analysis

A. 1 Generalization Error

In this section, we analyze the generalization error on the model learning task. We denote \mathcal{F} and \mathcal{G} as the function spaces of \mathbf{f} and \mathbf{g}, respectively, and the \mathcal{D} as the function space of the $\left\{D_{t}\right\}_{t=0}^{T}$, where T stands for the number of steps, and $\mathbf{g}^{\circ t}\left(x, \xi_{t}\right)=\underbrace{((I+\mathbf{g}) \circ(I+\mathbf{g}) \circ \ldots \circ(I+\mathbf{g}))}_{t}(x)+\xi_{t}$ with $\xi_{t} \sim \mathcal{N}(0, \Delta t)$. We define

$$
\ell(\mathbf{f}, \mathbf{g})=\mathbb{E}_{y_{0: T}, x_{0} \sim p(x), \xi_{0: T}}\left[\sum_{t=0}^{T} \max _{D_{t} \in \mathcal{D}}\left[D_{t}\left(y_{t}\right)-D_{t}\left(\left(\mathbf{f} \circ \mathbf{g}^{\circ t}\left(x_{0}, \xi_{t}\right)\right)\right)\right]\right]:=\ell_{t}(\mathbf{f}, \mathbf{g}),
$$

where

$$
\ell_{t}(\mathbf{f}, \mathbf{g})=\mathbb{E}_{y_{t}, x_{0}, \xi_{0: T}}[\max _{D_{t} \in \mathcal{D}} \underbrace{\left[D_{t}\left(y_{t}\right)-D_{t}\left(\left(f \circ g^{\circ t}\left(x_{0}, \xi_{t}\right)\right)\right)\right]}_{\phi_{t}\left(\mathbf{f}, \mathbf{g}, D_{t}\right)}]
$$

Without the loss of generality, we assume in each timestamp the number of the observations is N. Given the samples $\mathcal{Y}=\left\{\left(y_{t}^{i}\right)_{t=0}^{T}\right\}_{i=1}^{N}$, where $y_{0: T}=\left(y_{t}^{i}\right)_{t=0}^{T}$ are sampled i.i.d. from the underline stochastic processes, and $\mathcal{X}=\left\{x_{0}^{i}\right\}_{i=1}^{N}$, $\Xi=\left\{\xi_{0: T}^{i}\right\}_{i=1}^{N}$ are also i.i.d. sampled, we have the empirical loss function as

$$
\hat{\ell}(\mathbf{f}, \mathbf{g})=\hat{\mathbb{E}}_{\mathcal{Y}} \hat{\mathbb{E}}_{\mathcal{X}}\left[\sum_{t=0}^{T} \max _{D_{t} \in \mathcal{D}}\left[D_{t}\left(y_{t}\right)-D_{t}\left(\left(\mathbf{f} \circ \mathbf{g}^{\circ t}\left(x_{0}, \xi_{t}\right)\right)\right)\right]\right]=\sum_{t=0}^{T} \hat{\ell}_{t}(\mathbf{f}, \mathbf{g})
$$

With the notations defined above, we provide the proof for Theorem 1 as below.
Proof. Denote the $\hat{\mathbf{f}}$ and $\hat{\mathbf{g}}$ are the solutions provided by the algorithm, and \mathbf{f}^{*} and \mathbf{g}^{*} be the optimal solutions, we have

$$
\begin{aligned}
\left|\ell_{t}(\hat{\mathbf{f}}, \hat{\mathbf{g}})-\ell_{t}\left(\mathbf{f}^{*}, \mathbf{g}^{*}\right)\right| & =\left|\mathbb{E}\left[\max _{D_{t} \in \mathcal{D}} \phi_{t}\left(\hat{\mathbf{f}}, \hat{\mathbf{g}}, D_{t}\right)\right]-\mathbb{E}\left[\max _{D_{t} \in \mathcal{D}} \phi_{t}\left(\mathbf{f}^{*}, \mathbf{g}^{*}, D_{t}\right)\right]\right| \\
& \leq\left|\max _{D_{t} \in \mathcal{D}} \mathbb{E}\left[\phi_{t}\left(\hat{\mathbf{f}}, \hat{\mathbf{g}}, D_{t}\right)-\phi_{t}\left(\mathbf{f}^{*}, \mathbf{g}^{*}, D_{t}\right)\right]\right| \\
& \leq 2 \sup _{\mathbf{f} \in \mathcal{F}, \mathbf{g} \in \mathcal{G}, D_{t} \in \mathcal{D}} \mid \hat{\Phi_{t}\left(\hat{\mathbf{f}}, \hat{\mathbf{g}}, D_{t}\right)-\Phi_{t}\left(\mathbf{f}^{*}, \mathbf{g}^{*}, D_{t}\right) \mid},
\end{aligned}
$$

where

$$
\begin{aligned}
\hat{\Phi}_{t}\left(\hat{\mathbf{f}}, \hat{\mathbf{g}}, D_{t}\right) & =\hat{\mathbb{E}}_{y_{t} \in \mathcal{Y}_{t}} \hat{\mathbb{E}}_{x_{0}, \xi_{t}}\left[\phi_{t}\left(\hat{\mathbf{f}}, \hat{\mathbf{g}}, D_{t}\right)\right] \\
\Phi_{t}\left(\mathbf{f}^{*}, \mathbf{g}^{*}, D_{t}\right) & =\mathbb{E}\left[\phi_{t}\left(\mathbf{f}^{*}, \mathbf{g}^{*}, D_{t}\right)\right] .
\end{aligned}
$$

Assume $\mathcal{D} \in \mathcal{L}_{k}$, where \mathcal{L}_{k} denotes the k-Lipschitz function space, and $|\mathcal{Y}|_{\infty}=C_{\mathcal{Y}}$, we have,

$$
\begin{aligned}
& \sup _{\mathbf{f} \in \mathcal{F}, \mathbf{g} \in \mathcal{G}, D_{t} \in \mathcal{D}}\left|\hat{\Phi}_{t}\left(\hat{\mathbf{f}}, \hat{\mathbf{g}}, D_{t}\right)-\Phi_{t}\left(\mathbf{f}^{*}, \mathbf{g}^{*}, D_{t}\right)\right| \leq 2 \mathbb{E}\left[\sup _{\mathbf{f} \in \mathcal{F}, \mathbf{g} \in \mathcal{G}, D_{t} \in \mathcal{D}}\left|\frac{1}{N} \sum_{i=1}^{N} \tau_{i} \phi_{t}\left(\mathbf{f}, \mathbf{g}, D_{t}\right)\right|\right] \\
\leq & 2 \mathbb{E}\left[\sup _{D_{t} \in \mathcal{D}}\left|\frac{1}{N} \sum_{i=1}^{N} \tau_{i} D_{t}\left(y_{i}\right)\right|\right]+2 \mathbb{E}\left[\sup _{\mathbf{f} \in \mathcal{F}, \mathbf{g} \in \mathcal{G}, D_{t} \in \mathcal{D}}\left|\frac{1}{N} \sum_{i=1}^{N} \tau_{i} D_{t}\left(\left(\mathbf{f} \circ \mathbf{g}^{\circ t}\left(x_{0}, \xi_{t}\right)\right)\right)\right|\right] \\
\leq & \left.2 \frac{k C}{\sqrt{N}}+2 k \mathbb{E} \left\lvert\, \frac{1}{N} \sum_{i=1}^{N} \tau_{i} \mathbf{f} \circ \mathbf{g}^{\circ t}\left(x_{0}, \xi_{t}\right)\right.\right) \left\lvert\,=2 \frac{k C}{\sqrt{N}}+2 k \mathfrak{R}\left(\mathcal{F} \circ \mathcal{G}^{\circ t}\right)\right.,
\end{aligned}
$$

where the $\mathfrak{R}\left(\mathcal{F} \circ \mathcal{G}^{\circ t}\right)$ denotes the Rademacher complexity of the function space $\mathcal{F} \circ \mathcal{G}^{\circ t}$. Therefore, we have

$$
\frac{1}{T} \ell(\mathbf{f}, \mathbf{g}) \leq \frac{1}{T} \hat{\ell}(\mathbf{f}, \mathbf{g})+\frac{4 k C}{\sqrt{N}}+4 \frac{k \sum_{i=1}^{T} \mathfrak{R}\left(\mathcal{F} \circ \mathcal{G}^{\circ t}\right)}{T}
$$

A. 2 Convergence Analysis

Inspired by (Dai et al., 2017), we can see that once we obtain the D_{t}^{*}, the Algorithm 1 can be understood as a special case of stochastic gradient descent for non-convex problem. We prove the Theorem 2 as below.

Proof. We compute the gradient of $\ell(\mathbf{f}, \mathbf{g})$ w.r.t. \mathbf{f}, the same argument is also for gradient w.r.t. $g b$.

$$
\begin{align*}
\nabla_{\mathbf{f}} \ell(\mathbf{f}, \mathbf{g}) & =\nabla_{\mathbf{f}} \mathbb{E}\left[\sum_{t=0}^{T} \phi_{t}\left(\mathbf{f}, \mathbf{g}, D_{t}^{*}\right)\right]=\mathbb{E}\left[\sum_{t=0}^{T} \nabla_{\mathbf{f}} \phi_{t}\left(\mathbf{f}, \mathbf{g}, D_{t}^{*}\right)\right] \tag{34}\\
& =\mathbb{E}[\sum_{t=0}^{T}(\nabla_{\mathbf{f}} \phi_{t}\left(\mathbf{f}, \mathbf{g}, D_{t}^{*}\right)+\underbrace{\nabla_{D_{t}^{*}} \phi_{t}\left(\mathbf{f}, \mathbf{g}, D_{t}^{*}\right) \nabla_{\mathbf{f}} D_{t}^{*}\left(\mathbf{f} \circ \mathbf{g}^{\circ t}\right)}_{0})] \tag{35}\\
& =-\mathbb{E}\left[\sum_{t=0}^{T} \nabla_{\mathbf{f}} D_{t}^{*}\left(\mathbf{f} \circ \mathbf{g}^{\circ \circ}\right)\right] \tag{36}
\end{align*}
$$

The second term in the last second line is zero due to the optimality of D^{*}. Therefore, we achieve the unbiasedness of the gradient estimators.

As long as the gradient estimator for \mathbf{f} and \mathbf{g} are unbiased, the convergence rate in Theorem 2 will be automatically hold from (Ghadimi \& Lan, 2013).

