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A VARIATIONAL PCRL

In this supplement we provide the details of the deriva-
tion of the variational PCRL algorithm.

A.1 UPDATES OF λ̃θ AND φ̃

Thanks to the auxiliary variables s, the collaborative-
specific part of PCRL is conditionally conjugate
(Ghahramani and Beal, 2001): the complete conditional1

of each θuk (sui) and its corresponding variational distri-
bution are in the same exponential family. Thereby, we
can perform the updates of λ̃θ and φ̃ in closed-form.

The complete conditionals over the user preferences θuk
and auxiliary variables sui are respectively:

θuk|X,β, s ∼ Gamma(λsθ +
∑
i suik, λ

r
θ +

∑
i βik)

sui|X,θ,β ∼ Multinomial(xui, logφui).

where φui is a point on the K-simplex, and for all k:
φuik ∝ θukβik.

The optimal coordinate updates for the parameters λ̃θ

and φ̃ are given by the expected natural parameters (w.r.t.
q) of the above conditionals, which yields:

λ̃θuk =
(
λsθ +

∑
i xuiφ̃uik, λ

r
θ +

∑
i
λ̃β,sik
λ̃β,rik

)
,

φ̃uik ∝ exp
(
ψ(λ̃θ,suk )− log λ̃θ,ruk + ψ(λ̃β,sik )− log λ̃β,rik

)
,

where we have used the standard results about the ex-
pectation of Gamma and Multinomial random variables.
That is, if θ ∼ Gamma(λs, λr), then E(θ) = λs

λr and
E(log θ) = ψ(λs) − log λr, with ψ(·) denoting the di-
agamma function. If sui ∼ Multinomial(xui,φui), then
the expectation of the kth component of sui is E(zuik) =
xuiφuik.

1The conditional distribution of a variable given the other
variables and observations

A.2 MONTE CARLO ESTIMATOR OF THE
GRADIENT OF THE ELBO.

In this section, we first review the rejection sampling pro-
cedure and its reparameterized variant. We then, give the
derivation details of equations (10) and (11).

A.2.1 Reparameterized Acceptance-Rejection
Sampling

Rejection sampling (Robert and Casella, 2005) is a
widely used technique to simulate random variables from
complex distributions. To sample from q(β;ω) using
this method, we first introduce a proposal distribution
r(β;ω) that is easy to sample from, and which satisfies
q(β;ω) ≤ Aωr(β;ω) for some constant Aω <∞. Next,
(i) we generate β ∼ r(β;ω) and u ∼ U [0, 1], (ii) if
u > q(β;ω)

Aλr(β;ω)
then we reject β and return to i, (iii) we

accept β, otherwise.

In the reparameterized variant of this procedure (Naes-
seth et al., 2017), we further require that sampling from
the proposal distribution can be carried out using the
reparameterization trick, i.e., β ∼ r(β;ω) is equivalent
to β = G(ε;ω) with ε ∼ t(ε). The accepted samples are
then ε instead of β.

The key to use the reparameterized rejection sampling
to form a Monte Carlo estimator of the gradient of the
ELBO, is the marginal distribution of the accepted sam-
ple ε noted π(ε;ω). Fortunately, this distribution is avail-
able and can be obtained by marginalizing out the uni-
form random variable u as follows

π(ε;ω) =

∫
π(ε, u;λ)du

=

∫
Aωt(ε)1

[
0 < u <

q(G(ε, ω);ω)
Aωr(G(ε, ω);ω)

]
du

= t(ε)
q(G(ε, ω);ω)
r(G(ε, ω);ω)

,

where 1 is the indicator function. The above marginal



follows from the definition of the rejection sampling pro-
cedure, for more details please refer to (Naesseth et al.,
2017).

A.2.2 EXPECTATION WITH RESPECT TO π
AND DERIVATION OF THE GRADIENT

The first step in building the Monte Carlo Estimator is to
rewrite Eq(βi;ω)[log p(ci|W,βi)] as an expectation with
respect to π(εi;ω). The details of this step given below.

Eq(βi;ω)[log p(ci|W,βi)]

=

∫
q(βi;ω)

r(βi;ω)
r(βi;ω) log p(ci|W,βi)dβi

=

∫
q(G(εi, ω);ω)
r(G(εi, ω);ω)

t(εi) log p(ci|W,G(εi, ω))dεi

=

∫
π(εi;ω) log p(ci|W,G(εi, ω))dεi

= Eπ(εi;ω)[log p(ci|W,G(εi, ω))]

The second equality in the above equation holds since:
β = G(ε, ω) with ε ∼ t(ε), is a reparameterization of
β ∼ r(β;ω).

The details of the computation of gradient (11) are as
follows

= ∇ωEπ(εi;ω)[log p(ci|W,G(εi, ω))]

= ∇ω
∫
π(εi;ω) log p(ci|W,G(εi, ω))dεi

a
=

∫
π(εi;ω)∇ω log p(ci|W,G(εi, ω))dεi

+

∫
log p(ci|W,G(εi, ω))∇ωπ(εi;ω)dεi

b
=

∫
π(εi;ω)∇ω log p(ci|W,G(εi, ω))dεi

+

∫
π(εi;ω) log p(ci|W,G(εi, ω))∇ω log π(εi;ω)dεi

c
= Eπ(εi;ω)[∇ω log p(ci|W,G(εi, ω))]
+ Eπ(εi;ω)[log p(ci|W,G(εi, ω))∇ω log π(εi;ω)]

where we pushed the gradient into the integral, assuming
the necessary regularity conditions, and used the deriva-
tive rule of a product in a. In b we made use the log
derivative-trick (also known as REINFORCE) (Glynn,
1990; Williams, 1992), i.e., ∇q = q∇ log q. Finally, we
rewrote integrals as expectations in c.

B Category Labels

The ten top categories retained in each dataset to evaluate
the quality of item representations are listed below.

Office: “Writing & Correction Supplies”, “Paper”,
“Telephones & Accessories”, “Printer Ink & Toner”,
“Desk Accessories & Workspace Organizers”, “Printers
& Accessories”, “Labels, Indexes & Stamps”, “Binders
& Binding Systems”, “Tape, Adhesives & Fasteners”,
“Envelopes, Mailers & Shipping Supplies”.

Automotive: “Bulbs”, “Protective Gear”, “Filters”,
“Towing Products & Winches”, “Exterior Care”, “Light-
ing & Electrical”, “Accessories”, “Parts”, “Shocks Struts
& Suspension”, “Brake System”.

Sports: “Fishing”, “Hunting”, “Accessories”, “Camp-
ing & Hiking”, “Archery”, “Tactical & Duty”, “Airsoft”,
“Men”, “Strength Training Equipment”, “Parts & Com-
ponents”.

Pet Supplies: “Grooming”, “Toys”, “Health Supplies”,
“Food”, “Feeding & Watering Supplies”, “Litter &
Housebreaking”, “Treats”, “Beds & Furniture”, “Collars,
Harnesses & Leashes”, “Apparel & Accessories”.
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