
A ADDITIONAL RESULTS

Figure 13: Complex MDP evaluated on-policy with all
step-sizes equal (α = ᾱ = 0.01). Both algorithms
achieve similar results.

Figure 14: Complex MDP. Using traces in the sec-
ondary estimators, but not in the value estimator (TD(λ),
α = ᾱ = 0.01, κ = 0.0, κ̄ = 1.0). There is no sig-
nificant difference in performance between DVTD and
VTD.

Figure 15: Complex MDP estimating V from off-policy
samples (α = ᾱ = 0.01, η = 1, ρ̄ = ρ). Both methods
produce similar results.

B EXTENDED DERIVATION

Lemma 1. For j(s) = E
[
Gλt+1|St = s

]
, i.e., satisfying

the Bellman function b : S ×A× R× S → R,

E[b(St, At, Rt+1, St+1)(Gλt+1 − j(St+1))|St = s] = 0

Proof. Let bt = b(St, At, Rt+1, St+1). By the law of
total expectation:

E
[
bt(G

λ
t+1 − j(St+1))|St = s

]
= E

[
E[bt(G

λ
t+1− j(St+1))|St, At, St+1]|St = s

]

Given St, At, Rt+1 and St+1, bt is constant and can be
moved outside of the expectation. Therefore,

E[bt(G
λ
t+1 − j(St+1))

∣∣∣St, At, Rt+1, St+1]

=E
[
bt
∣∣St, At, Rt+1, St+1

]
× E

[
Gλt+1 − j(St+1)

∣∣St, At, Rt+1, St+1

]
Because

E
[
Gλt+1 − j(St+1)

∣∣St, At, Rt+1, St+1

]
= 0

the result follows.

Theorem 3.

v(s) = E[(ηtδt + (ηt − 1)j(s))2

+ λ2t+1γ
2
t+1η

2
t v(St+1)|St = s]

Proof. The proof is similar to the proof of Theorem 1.

v(s) = E[{Gλt − j(St)}2|St = s]

=E[{ηtRt+1 + ηtγt+1(1− λt+1)j(St+1)

+ ηtγt+1λt+1G
λ
t+1 − j(s)}2|St = s]

=E[{ηtRt+1 + ηtγt+1j(St+1)− ηtj(s) + ηtj(s)

− ηtγt+1λt+1j(St+1)

+ ηtγt+1λt+1G
λ
t+1 − j(s)}2|St = s]

=E[{(ηtδt + (ηt − 1)j(s))

+ ηtγt+1λt+1(Gλt+1 − j(St+1))}2|St = s]

=E[(ηtδt + (ηt − 1)j(s))2

+ η2t γ
2
t+1λ

2
t+1(Gλt+1 − j(St+1))2

+ 2ηtγt+1λt+1(ηtδt + (ηt − 1)j(s))

(Gλt+1 − j(St+1))|St = s]

=E[(ηtδt + (ηt − 1)j(s))2

+ η2t γ
2
t+1λ

2
t+1(Gλt+1 − j(St+1))2

+ 2η2t γt+1λt+1δt(G
λ
t+1 − j(St+1))

+ 2ηtγt+1λt+1(ηt − 1)j(s)(Gλt+1 − j(St+1))|St = s]
(17)

Using Lemma 1, with different fixed functions b, we can
conclude that the last two terms are zero, giving

v(s) = E[(ηtδt + (ηt − 1)j(s))2

+ η2t γ
2
t+1λ

2
t+1(Gλt+1 − j(St+1))2|St = s]

By the law of total expectation

v(s) = E[(ηtδt + (ηt − 1)j(s))2

+ E[η2t γ
2
t+1λ

2
t+1(Gλt+1 − j(s′))2|St+1 = s′]|St = s]

= E[(ηtδt + (ηt − 1)j(s))2

+ η2t γ
2
t+1λ

2
t+1v(St+1)|St = s].

completing the proof.

Theorem 3 gives a Bellman equation for V (s) in the
more general off-policy setting. The resulting TD algo-
rithm uses meta-reward (ηtδt + (ηt − 1)j(s))2 and dis-
counting function η2t γ

2
t+1λ

2.

C FUNCTION APPROXIMATION
DETAILS

In Section 4.6 we showed our results on the domain
shown in Figure 12(a). This domain was previously
investigated by Tamar et al. (2016) for indirectly esti-
mating the variance of the return with LSTD(λ) using
κ̄ = 0.95. We define the RMSVE for a value and vari-
ance estimate on this domain to be

RMSVE(J) =

√√√√ 29∑
i=0

dπ(si)(J(si)− j(si))2

RMSVE(V) =

√√√√ 29∑
i=0

dπ(si)(V (si)− v(si))2

where dπ(si) is the steady state probability of being in
state si.

For the linear function approximation setting each
of our estimators is simply an inner product of a set
of weights and a feature vector: J(s) = w>J φJ(s),
M(s) = w>MφM (s), and V (s) = w>V φV (s). DVTD
with linear function approximation and accumulating
traces is given by modifying Algorithm 15:

DVTD with Linear Function Approximation

R̄t+1 ← (ηtδt + (ηt − 1)Jt+1(s))2

γ̄t+1 ← γ2t+1λ
2
t+1η

2
t

δ̄t ← R̄t+1 + γ̄t+1Vt(s
′)− Vt(s)

ēt ← ρ̄t(γ̄tκ̄tēt−1 + φt(St))

wV :t+1 ← wV :t + ᾱδ̄tēt

(18)

For DVTD, variance is computed directly as Vt+1(s).

0.00 0.01 0.02 0.03

Step Size

0.0

0.5

1.0

1.5

2.0

2.5

T
ot

al
R

M
S

V
E

×109

VTD

Direct

Figure 16: Random Walk. Sensitivity to the step-size
for VTD and DVTD. Error bars are shown but almost
invisible.

0 10 20 30

State

0

100

200

300

400

V
ar

ia
nc

e

True Variance

VTD

Direct

Figure 17: Random Walk. Average final estimates
of variance reached after 3,000,000 timesteps with 100
runs.

VTD with linear function approximation is given as:

VTD with Linear Function Approximation

Ḡt ← Rt+1 + γt+1(1− λt+1)Jt+1(s′)

R̄t+1 ← η2t Ḡ
2
t + 2η2t γt+1λt+1ḠtJt+1(s′)

γ̄t+1 ← η2t γ
2
t+1λ

2
t+1

δ̄t ← R̄t+1 + γ̄t+1Mt(s
′)−Mt(s)

ēt ← ρ̄t(γ̄tκ̄tēt−1 + φt(St))

wM :t+1(s)← wM :t(s) + ᾱδ̄tēt(s)

(19)

For VTD, variance is computed as Vt+1(s) = Mt+1(s)−
Jt+1(s)2.

While we previously reported our step-size selection
strategy in Section 4.6, in Figure 16 we show the total
RMSVE over 3,000,000 timesteps as a function of the
step-size for the variance learner with the step-size for
the value learner the same as in Section 4.6. Note that
we only show step-sizes that did not lead to numerical
errors and each of the values reported is the mean of
30 runs. Here we see that the direct method was con-

siderably more insensitive to the step-size selection than
VTD.

After 3,000,000 timesteps, and using the best alpha for
VTD from the sweep shown in Figure 16 (αJ = 2−11 ≈
0.0005, αM = αV = 2−9 ≈ 0.002), we obtain the esti-
mates shown in Figure 17. Note that each of the values
reported are the mean of 100 runs.

D ADADELTA STEP-SIZES

The step-sizes generated by the ADADELTA algorithm
in Figure 7 are shown in Figure 18. As we evaluate in
the tabular case at each timestep, only the step-size for
the current state has any impact. Thus, the values shown
here are the average step-size used over each episode.

Figure 18: Chain MDP. The average step-sizes com-
puted by ADADELTA in Figure 7.

E VARIABILITY IN UPDATES

In this section, we show the effective update to Vt(s) on
each timestep for each of the two algorithms in the on-
policy setting. For notational clarity let r = rt+1, α =
αt, γ = γt+1, λ = λt+1, s = st, s′ = st+1, and δt = δ.

For the direct algorithm the change is just:

∆Vt(s) = ᾱ(δ2 + γ̄Vt(s
′)− Vt(s)). (20)

The updates for the VTD algorithm are much more com-
plicated to compute so we will make some assumptions
about the domain to simplify the derivation. First, we
compute the change in the second moment and value es-
timators separately.

We first expand the term δ2 as follows:

δ =r + γJt(s
′)− Jt(s)

δ2 =(r + γJt(s
′))2

− 2(r + γJt(s
′))Jt(s) + Jt(s)

2.

Now we expand the change in the second moment es-
timate, M . To simplify the expansion, we assume that
at each transition the agent moves to a new state, i.e.,
st 6= st+1∀t (this is not required for our algorithm, but
simplifies the expansions below). This assumption holds
for both of the tabular domains examined in this paper.
This allows us to substitute Jt+1(s′) = Jt(s), which
greatly simplifies the updates.

∆M(s) =ᾱ[(r + γJt+1(s′))2

− γ̄2Jt+1(s′)2 + γ̄Mt(s
′)−Mt(s)]

=ᾱ[(r + γJt(s
′))2

− γ̄2Jt(s′)2 + γ̄Mt(s
′)−Mt(s)]

=ᾱ[(r + γJt(s
′))2 − 2(r + γJt(s

′))Jt(s)

+ Jt(s)
2 + 2(r + γJt(s

′))Jt(s)− Jt(s)2

− γ̄2Jt(s′)2 + γ̄Mt(s
′)−Mt(s)]

=ᾱ[δ2 + 2(r + γJt(s
′))Jt(s)− Jt(s)2

− γ̄2Jt(s′)2 + γ̄Mt(s
′)−Mt(s)]

Notice that from the definition of the TD error: R +
γJt(s

′) = δ + Jt(s).

=ᾱ[δ2 + 2(δ + Jt(s))Jt(s)− Jt(s)2

− γ̄2Jt(s′)2 + γ̄Mt(s
′)−Mt(s)]

=ᾱ[δ2 + 2δJt(s) + Jt(s)
2 − γ̄2Jt(s′)2

+ γ̄Mt(s
′)−Mt(s)]

=ᾱ[δ2 + (γ̄Mt(s
′)− γ̄Jt(s′)2)

− (Mt(s)− Jt(s)2) + 2δJt(s)− γ̄2Jt(s′)2

+ γ̄Jt(s
′)2]

=ᾱ[δ2 + γ̄Vt(s
′)− Vt(s) + 2δJt(s)

− γ̄2Jt(s′)2 + γ̄Jt(s
′)2]

=ᾱ[δ2 + γ̄Vt(s
′)− Vt(s)]

+ ᾱ[2δJt(s)− γ̄2Jt(s′)2 + γ̄Jt(s
′)2]

The first half of this equation is the same as the update
for the direct algorithm (20). Now we expand the change
in the variance update for VTD.

∆Vt(s) =(Mt+1(s)− Jt+1(s)2)− (Mt(s)− Jt(s)2)

=∆M(s) + Jt(s)
2 − Jt+1(s)2

=∆M(s) + Jt(s)
2 − (αδ + Jt(s))

2

=∆M(s) + Jt(s)
2

− ((αδ)2 + 2αδJt(s) + Jt(s)
2)

=∆M(s)− (αδ)2 − 2αδJt(s).

Table 2: Average updates for various experiments.

Fig. Value 2nd Moment VTD Direct
4(a) 0.00332 0.0157 0.00415 0.00415
4(b) 0.0322 0.0165 0.143 0.00387
4(c) 0.00332 0.156 0.142 0.0419
5 0.0 0.0166 0.0166 0.00381
7 0.0212 0.0306 0.0752 0.00884
13 0.00362 0.00675 0.00381 0.00385
15 0.00362 0.00461 0.00303 0.00307
11 0.00362 0.0110 0.0116 0.00838

Note that in the case that α = ᾱ this last term cancels out
and we’re left with:

∆Vt(s) =α[δ2 + γ̄Vt(s
′)− Vt(s)]+

αJt(s
′)2(γ̄ − γ̄2)− (αδ)2.

This suggests that VTD will deviate from the direct
method more when: α is larger, Jt(s′) is larger, γ̄ = 0.5
and for large values of δ. In general, we expect from
this equation that the updates for the VTD will be larger
than those of the direct method, suggesting a cause for
the higher variance of variance estimates across runs as
observed for VTD under a number of scenarios.

We also empirically tested this hypothesis, with Table 2
showing the updates for the two algorithms across the
tabular experiments. For episodic tasks (chain MDP,
Figures 4(a)-7) the results show the average total abso-
lute change over all states for a given episode averaged
across runs and then averaged across all episodes. For
the continuing case (complex MDP, Figures 13-11) the
results are the average absolute change for a timestep av-
eraged over all runs and then averaged across the entire
run length. The experiments shaded in gray are those
where the two algorithms behaved nearly identically. In
this case, we see that the average magnitude of updates is
nearly identical. For the other experiments, the VTD al-
gorithm showed higher variance in its variance estimates
across runs. For these experiments, we see that the aver-
age magnitude of the VTD updates is much larger than
for the direct algorithm.

