
Supplementary Material:
Block-Value Symmetries in Probabilistic Graphical Models

Gagan Madan, Ankit Anand, Mausam and Parag Singla
Indian Institute of Technology Delhi

gagan.madan1@gmail.com, {ankit.anand, mausam, parags}@cse.iitd.ac.in

Algorithmic and Implementation Details for
Finding Block Partitions

This section provides algorithmic and implementation
details for the heuristic used to find the candidate set of
block partitions (Section 5). There are three broad steps
for obtaining a good candidate set and each one of them
is described below in turn.

Algorithm 1: Procedure Get Useful Blocks takes a
parameter r and computes potentially useful blocks with
maximum block-size r. It iterates over each of the fea-
tures in turn and selects all possible subsets of size ≤ r
of variables which are part of that feature (lines 2-7).
This automatically eliminates all r (or less) sized blocks
which are composed of variables that never appear to-
gether in any feature in the graphical model.

Algorithm 1 Get Useful Blocks(G, r)
1: useful blocks← {}
2: for f ∈ features(G) do
3: for all b ⊂ Var(f) and Size(b)≤ r do
4: useful blocks← useful blocks ∪ b
5: end for
6: end for
7: return useful blocks

Algorithm 2: For the useful blocks obtained above, our
heuristic constructs a weight signature for each of the
block-value pairs. Procedure Get Weight Sign com-
putes a weight signature for all the features consistent
with the input BV pair(B, b). We define the Feature
Blanket of a variable Xj ∈ B as the set of features in
which Xj appears. In line 1, we construct feature blan-
ket of a block B by taking union of the feature blankets
of all the variables appearing in the block. Line 2 initial-
izes the signature as an empty multi-set. We construct
weight signature by iterating over features present in fea-
ture blanket of this block. For each feature fj , we check

whether the given BV pair (B, b) is consistent with fj ,
i.e., whether the feature is satisfied by the block-value
pair. The weight of fj is inserted in the signature if the
consistency requirement is met (line 5). The complete
weight-signature so obtained after iterating over all the
features in the blanket is returned as the weight-signature
for the BV pair (B, b).

Algorithm 2 Get Weight Sign(G, B, b)
1: feature blanket(B)←

⋃
Xj∈B

FeatureBlanket(Xj)

2: signature← {}
3: for f ∈ feature blanket do
4: if (B, b) is consistent with f then
5: Insert weight(f) in signature
6: end if
7: end for
8: return signature

Algorithm 3: This makes use of the two procedures de-
scribed above and outlines the complete process for gen-
erating multiple block partitions. It takes as input a
Graphical Model G and maximum block-size r. After
obtaining useful blocks, a weight signature dictionary is
constructed with key as weight-signature and value as a
list of blocks. For each block Bi ∈ useful blocks, we
iterate over all value assignments of that block (V(Bi))
to form all possible BV pairs (lines 3,4). For each
BV pair, Procedure Get Weight Sign computes the
weight-signature Sj for that BV pair (line 5). If Sj has
already been seen in dictionary, the current block is ap-
pended to the list of blocks corresponding to the signa-
ture (lines 6,7). Else, a new weight-signature along with
the list of singleton block is added to the dictionary (lines
8-10).

Once the weight-signature dictionary is built, we gen-
erate useful candidate lists by picking blocks using the
weight signature dictionary (loop at line 14). Line 15 ini-
tializes an empty candidate list. Blocks are added to the

candidate list in iterative fashion until all the variables
are included (line 16). A two step sampling procedure
is used. The first step samples a weight-signature with a
probability proportional to the size of its corresponding
list of blocks (line 17). The second step samples a block
uniformly from the list of blocks sampled in the first step.
The sampled block is added to the current candidate list
if it does not overlap with pre-existing blocks (lines 19-
21) otherwise a new block is sampled as above. Once all
variables are added, the candidate list is complete and the
process is run again till max candidate list number of
lists are generated.

Algorithm 3 Generate Block Partitions(G, r)
1: useful blocks← Get Useful Blocks(G, r)
2: Weight Sign Dict← {}
3: for all Bi ∈ useful blocks do
4: for all bi ∈ V(Bi) do
5: Si ← Get Weight Sign(G, Bi, bi)
6: if Si ∈Weight Sign Dict then
7: Append Bi to Weight Sign Dict[Si]
8: else
9: Insert [Si, [Bi]] to Weight Sign Dict

10: end if
11: end for
12: end for
13: Candidate List← []
14: for i← 1→ max candidate lists do
15: CL← { }
16: while All variables not included in CL do
17: Sample Sj with probability ∝
|Weight Sign Dict[Sj]|

18: Sample a block b uniformly from
Weight Sign Dict[Sj]

19: if Variables(b) ∩ CL = φ then
20: CL← CL ∪ b
21: end if
22: end while
23: Candidate List← Candidate List ∪ CL
24: end for
25: return Candidate List

