
A SAMPLING PROCEDURE

Figure 4: Overview of von Mises-Fisher sampling procedure. Note that as ω is a scalar, the procedure does not suffer
from the curse of dimensionality.

The general algorithm for sampling from a vMF has been outlined in Algorithm 1. The exact form of the distribution of
the univariate distribution g(ω|k) is:

g(ω|k) =
2(πm/2)

Γ(m/2)
Cm(k)

exp(ωk)(1− ω2)
1
2 (m−3)

B(1
2 ,

1
2 (m− 1))

, (11)

Samples from this distribution are drawn using an acceptance/rejection algorithm when m 6= 3. The complete procedure
is described in Algorithm 2. The Householder reflection (see Algorithm 3 for details) simply finds an orthonormal
transformation that maps the modal vector e1 = (1, 0, · · · , 0) to µ. Since an orthonormal transformation preserves
the distances all the points in the hypersphere will stay in the surface after mapping. Notice that even the transform
Uz′ = (I− 2uu>)z′, can be executed in O(m) by rearranging the terms.

Figure 5: Geometric representation of a single sample in S2, where ω ∼ g(ω|k) and v ∼ U(S1).

Algorithm 2 g(ω|k) acceptance-rejection sampling
Input: dimension m, concentration κ
Initialize values:

b←
−2k +

√
4k2 + (m− 1)2

m− 1

a←
(m− 1) + 2k +

√
4k2 + (m− 1)2

4

d← 4ab

(1 + b)
− (m− 1) ln(m− 1)

repeat
Sample ε ∼ Beta(1

2 (m− 1), 12 (m− 1))

ω ← h(ε, k) =
1− (1 + b)ε

1− (1− b)ε

t← 2ab

1− (1− b)ε
Sample u ∼ U(0, 1)

until (m− 1) ln(t)− t+ d ≥ ln(u)
Return: ω

Algorithm 3 Householder transform
Input: mean µ, modal vector e1
u′ ← e1 − µ
u← u′

||u′||
U ← I− 2uu>

Return: U

Table 5: Expected number of samples needed before acceptance, computed using Monte Carlo estimate with 1000
samples varying dimensionality and concentration parameters. Notice that the sampling complexity increases in κ, but
decreases as the dimensionality, d, increases.

κ = 1 κ = 5 κ = 10 κ = 50 κ = 100 κ = 500 κ = 1000 κ = 5000 κ = 10000

d = 5 1.020 1.171 1.268 1.398 1.397 1.426 1.458 1.416 1.440
d = 10 1.008 1.094 1.154 1.352 1.411 1.407 1.369 1.402 1.419
d = 20 1.001 1.031 1.085 1.305 1.342 1.367 1.409 1.410 1.407
d = 40 1.000 1.011 1.027 1.187 1.288 1.397 1.433 1.402 1.423
d = 100 1.000 1.000 1.006 1.092 1.163 1.317 1.360 1.398 1.416

B KL DIVERGENCE DERIVATION

The KL divergence between a von-Mises-Fisher distribution q(z|µ, k) and an uniform distribution in the hypersphere

(one divided by the surface area of Sm−1) p(x) =

(
2(πm/2)

Γ(m/2)

)−1
is:

KL[q(z|µ, k) || p(z)] =

∫
Sm−1

q(z|µ, k) log
q(z|µ, k)

p(z)
dz (12)

=

∫
Sm−1

q(z|µ, k)
(
log Cm(k) + kµT z− log p(z)

)
dz (13)

= kµ Eq[z] + log Cm(k)− log

(
2(πm/2)

Γ(m/2)

)−1
(14)

= k
Im/2(k)

Im/2−1(k)
+
(
(m/2− 1) log k − (m/2) log(2π)− log Im/2−1(k)

)
(15)

+
m

2
log π + log 2− log Γ(

m

2
),

B.1 GRADIENT OF KL DIVERGENCE

Using

∇kIv(k) =
1

2
(Iv−1(k) + Iv+1(k)) , (16)

and

∇k log Cm(k) = ∇k
(
(m/2− 1) log k − (m/2) log(2π)− log Im/2−1(k)

)
(17)

= −
Im/2(k)

Im/2−1(k)
, (18)

then

∇κKL[q(z|µ, k) || p(z)] = ∇κk
Im/2(k)

Im/2−1(k)
+∇k log Cm(k) (19)

=
Im/2(k)

Im/2−1(k)
+ k∇k

Im/2(k)

Im/2−1(k)
−
Im/2(k)

Im/2−1(k)
(20)

=
1

2
k

(
Im/2+1(k)

Im/2−1(k)
−
Im/2(k)

(
Im/2−2(k) + Im/2(k)

)
Im/2−1(k)2

+ 1

)
, (21)

Notice that we can use Iexpm/2 = exp(−k)Im/2 for numerical stability.

C PROOF OF LEMMA 2

Lemma 3 (2). Let f be any measurable function and ε ∼ π1(ε|θ) = s(ε)
g(h(ε, θ)|θ)
r(h(ε, θ)|θ)

the distribution of the accepted

sample. Also let v ∼ π2(v), and T a transformation that depends on the parameters such that if z = T (ω,v; θ) with
ω ∼ g(ω|θ), then z ∼ q(z|θ):

E(ε,v)∼π1(ε|θ)π2(v) [f (T (h(ε, θ),v; θ))] =

∫
f(z)q(z|θ)dz = Eq(z|θ)[f(z)], (22)

Proof.

E(ε,v)∼π1(ε|θ)π2(v) [f (T (h(ε, θ),v; θ))] =

∫∫
f (T (h(ε, θ),v; θ))π1(ε|θ)π2(v)dεdv, (23)

Using the same argument employed by Naesseth et al. (2017) we can apply the change of variables ω = h(ε, θ) rewrite
the expression as:

=

∫∫
f (T (ω,v; θ)) g(ω|θ)π2(v)dωdv =∗

∫
f(z)q(z|θ)dz (24)

Where in * we applied the change of variables z = T (ω,v; θ).

D REPARAMETERIZATION GRADIENT DERIVATION

D.1 GENERAL EXPRESSION DERIVATION

We can then proceed as in 8 using Lemma 2 and the the log derivative trick to compute the gradient of the expectation
term ∇θEq(z|θ)[f(z)]:

∇θEq(z|θ)[f(z)] = ∇θ
∫∫

f (T (h(ε, θ),v; θ))π1(ε|θ)π2(v)dεdv (25)

= ∇θ
∫∫

f (T (h(ε, θ),v; θ)) s(ε)
g(h(ε, θ)|θ)
r(h(ε, θ)|θ)

π2(v)dεdv (26)

=

∫∫
s(ε)π2(v)∇θ

(
f (T (h(ε, θ),v; θ))

g(h(ε, θ)|θ)
r(h(ε, θ)|θ)

)
dεdv (27)

=

∫∫
s(ε)π2(v)

g(h(ε, θ)|θ)
r(h(ε, θ)|θ)

∇θ (f (T (h(ε, θ),v; θ))) dεdv (28)

+

∫∫
s(ε)π2(v)f (T (h(ε, θ),v; θ))∇θ

(
g(h(ε, θ)|θ)
r(h(ε, θ)|θ)

)
dεdv

=

∫∫
π1(ε|θ)π2(v)∇θ (f (T (h(ε, θ),v; θ))) dεdv (29)

+

∫∫
s(ε)π2(v)f (T (h(ε, θ),v; θ))∇θ

(
g(h(ε, θ)|θ)
r(h(ε, θ)|θ)

)
dεdv

= E(ε,v)∼π1(ε|θ)π2(v) [∇θf (T (h(ε, θ),v; θ))]︸ ︷︷ ︸
grep

(30)

+ E(ε,v)∼π1(ε|θ)π2(v)

[
f (T (h(ε, θ),v; θ))∇θ log

(
g(h(ε, θ)|θ)
r(h(ε, θ)|θ)

)]
︸ ︷︷ ︸

gcor

,

where grep is the reparameterization term and gcor the correction term. Since h is invertible in ε, Naesseth et al. (2017)

show that∇θ log
q(h(ε, θ), θ)

r((h(ε, θ), θ)
in gcor simplifies to:

∇θ log
g(h(ε, θ), θ)

r((h(ε, θ), θ)
= ∇θ log g(h(ε, θ), θ) +∇θ log |∂h(ε, θ)

∂ε
|, (31)

D.2 GRADIENT CALCULATION

In our specific case we want to take the gradient w.r.t. θ of the expression:

Eqψ(z|x;θ)[log pφ(x|z)] where θ = (µ, κ), (32)

The gradient can be computed using the Lemma 2 and the subsequent gradient derivation with f(z) = pφ(x|z). As
specified in Section 3.4 we optimize unbiased Monte Carlo estimates of the gradient. Therefore fixed one datapoint x
and sampled (ε,v) ∼ π1(ε|θ)π2(v) the gradient is:

∇θEqψ(z|x;θ)[log pφ(x|z)] = grep + gcor, (33)

With

grep ≈ ∇θ log pφ (x|T (h(ε, θ),v; θ)) , (34)

gcor ≈ pφ (x|T (h(ε, θ),v; θ))

(
∇θ log g(h(ε, θ)|θ) +∇θ log |∂h(ε, θ)

∂ε
|
)
, (35)

where grep is simply the gradient of the reconstruction loss w.r.t θ and can be easily handled by automatic differentiation
packages.

For what concerns gcor we notice that the terms g() and h() do not depend on µ. Thus the gcor term w.r.t. µ is 0 an all
the following calculations can will be only w.r.t. κ. We therefore have:

∂h(ε, k)

∂ε
=

−2b

((b− 1)ε+ 1)2
where b =

−2k +
√

4k2 + (m− 1)2

m− 1
, (36)

and

∇κ log g(ω|k) = ∇κ
(

log Cm(k) + ωk +
1

2
(m− 3) log(1− ω2)

)
(37)

= ∇k log Cm(k) +∇κ
(
ωk +

1

2
(m− 3) log(1− ω2)

)
. (38)

So, putting everything together we have:

gcor = log pφ(x|z) ·
[
−
Im/2
Im/2−1

+∇κ
(
ωκ+

1

2
(m− 3) log(1− ω2) + log | −2b

((b− 1)ε+ 1)2
|
)]

, (39)

where

b =
−2k +

√
4k2 + (m− 1)2

m− 1
(40)

ω = h(ε, θ) =
1− (1 + b)ε

1− (1− b)ε
(41)

z = T (h(ε, θ),v; θ), (42)

And the term ∇κ
(
ωκ+ 1

2 (m− 3) log(1− ω2) + log | −2b

((b− 1)ε+ 1)2
|
)

can be computed by automatic differentia-

tion packages.

E COLLAPSE OF THE SURFACE AREA

Figure 6: Plot of the unit hyperspherical surface area against dimensionality. The surface area has a maximum for
m = 7.

F EXPERIMENTAL DETAILS: ARCHITECTURE AND HYPERPARAMETERS

F.1 EXPERIMENT 5.2

Architecture and hyperparameters For both the encoder and the decoder we use MLPs with 2 hidden layers of
respectively, [256, 128] and [128, 256] hidden units. We trained until convergence using early-stopping with a look
ahead of 50 epochs. We used the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 1e-3, and mini-batches
of size 64. Additionally, we used a linear warm-up for 100 epochs (Bowman et al., 2016). The weights of the neural
network were initialized according to (Glorot and Bengio, 2010).

F.2 EXPERIMENT 5.3

Architecture and Hyperparameters For M1 we reused the trained models of the previous experiment, and used
K-nearest neighbors (K-NN) as a classifier with k = 5. In the N -VAE case we used the Euclidean distance as a
distance metric. For the S-VAE the geodesic distance arccos(x>y) was employed. The performance was evaluated for
N = [100, 600, 1000] observed labels.

The stacked M1+M2 model uses the same architecture as outlined by Kingma et al. (2014), where the MLPs utilized
in the generative and inference models are constructed using a single hidden layer, each with 500 hidden units. The
latent space dimensionality of z1, z2 were both varied in [5, 10, 50]. We used the rectified linear unit (ReLU) as an
activation function. Training was continued until convergence using early-stopping with a look ahead of 50 epochs on
the validation set. We used the Adam optimizer with a learning rate of 1e-3, and mini-batches of size 100. All neural
network weight were initialized according to (Glorot and Bengio, 2010). N was set to 100, and the α parameter used to
scale the classification loss was chosen between [0.1, 1.0]. Crucially, we train this model end-to-end instead of by parts.

F.3 EXPERIMENT 5.4

Architecture and Hyperparameters We are training a Variational Graph Auto-encoder (VGAE) model, a state-of-
the-art link prediction model for graphs, as proposed in Kipf and Welling (2016). For a fair comparison, we use the same
architecture as in the original paper and we just change the way the latent space is generated using the vMF distribution
instead of a normal distribution. All models are trained for 200 epochs on Cora and Citeseer, and 400 epochs on Pubmed
with the Adam optimizer. Optimal learning rate lr ∈ {0.01, 0.005, 0.001}, dropout rate pdo ∈ {0, 0.1, 0.2, 0.3, 0.4} and
number of latent dimensions dz ∈ {8, 16, 32, 64} are determined via grid search based on validation AUC performance.
For S-VGAE, we omit the dz = 64 setting as some of our experiments ran out of memory. The model is trained with a
single hidden layer with 32 units and with document features as input, as in Kipf and Welling (2016). The weights
of the neural network were initialized according to (Glorot and Bengio, 2010). For testing, we report performance of
the model selected from the training epoch with highest AUC score on the validation set. Different from (Kipf and
Welling, 2016), we train both the N -VGAE and the S-VGAE models using negative sampling in order to speed up
training, i.e. for each positive link we sample, uniformly at random, one negative link during every training epoch. All
experiments are repeated 5 times, and we report mean and standard error values.

F.3.1 FURTHER EXPERIMENTAL DETAILS

Dataset statistics are summarized in Table 6. Final hyperparameter choices found via grid search on the validation splits
are summarized in Table 7.

Table 6: Dataset statistics for citation network datasets.

Dataset Nodes Edges Features

Cora 2,708 5,429 1,433
Citeseer 3,327 4,732 3,703
Pubmed 19,717 44,338 500

Table 7: Best hyperparameter settings found for citation network datasets.

Dataset Model lr pdo dz

Cora N -VAE 0.005 0.4 64
S-VAE 0.001 0.1 32

Citeseer N -VAE 0.01 0.4 64
S-VAE 0.005 0.2 32

Pubmed N -VAE 0.001 0.2 32
S-VAE 0.01 0.0 32

G VISUALIZATION OF SAMPLES AND LATENT SPACES

(a) d = 2 (b) d = 5 (c) d = 10 (d) d = 20

Figure 7: Random samples from N -VAE of MNIST for different dimensionalities of latent space.

(a) d = 2 (b) d = 5 (c) d = 10 (d) d = 20

Figure 8: Random samples from S-VAE of MNIST for different dimensionalities of latent space.

(a) N -VAE (b) S-VAE

Figure 9: Visualization of the 2 dimensional manifold of MNIST for both the N -VAE and S-VAE. Notice that the
N -VAE has a clear center and all digits are spread around it. Conversely, in the S-VAE instead all digits occupy the
entire space and there is a sense of continuity from left to right.

H VISUALIZATION OF CONDITIONAL GENERATION

Figure 10: Visualization of handwriting styles learned by the model, using conditional generation on MNIST of M1+M2
with dim(z1) = 50, dim(z2) = 50, S+N . Following Kingma et al. (2014), the left most column shows images from
the test set. The other columns show analogical fantasies of x by the generative model, where in each row the latent
variable z2 is set to the value inferred from the test image by the inference network and the class label y is varied per
column.

	SAMPLING PROCEDURE
	KL DIVERGENCE DERIVATION
	GRADIENT OF KL DIVERGENCE

	PROOF OF LEMMA 2
	REPARAMETERIZATION GRADIENT DERIVATION
	GENERAL EXPRESSION DERIVATION
	GRADIENT CALCULATION

	COLLAPSE OF THE SURFACE AREA
	EXPERIMENTAL DETAILS: ARCHITECTURE AND HYPERPARAMETERS
	EXPERIMENT 5.2
	EXPERIMENT 5.3
	EXPERIMENT 5.4
	FURTHER EXPERIMENTAL DETAILS

	VISUALIZATION OF SAMPLES AND LATENT SPACES
	VISUALIZATION OF CONDITIONAL GENERATION

