
A Task Details

Pendulum Hopper 2D Walker 3D Walker Reacher

Observation space dimension 3 11 17 41 21
Action space dimension 1 3 6 15 5
Number of samples per iteration 4k 16k 16k 16k 40k
Number of iterations 100 200 200 1000 500
Number of TRPO iterations for expert 50 50 100 500 100
Upper limit of number of imitation steps of LOKI 10 20 25 50 25
Truncated horizon of THOR 40 40 250 250 250

The expert value estimator V̂π∗ needed by SLOLS and THOR were trained on a large set of samples (50 times the
number of samples used in each batch in the later policy learning), and the final average TD error are: Pendulum
(0.972), Hopper (0.989), 2D Walker (0.975), 3D Walker (0.983), and Reacher (0.973), measured in terms of explained
variance, which is defined as 1- (variance of error / variance of prediction).

B Proof of Section 4

B.1 Proof of Proposition 1

To prove Proposition 1, we first prove a useful Lemma 2.

Lemma 2. Let K be a convex set. Let h = E[g]. Suppose R is α-strongly convex with respect to norm ‖ · ‖.
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η (x− Ph,η(x)). In particular, if ‖ · ‖ = ‖ · ‖W for some positive definite matrix W , R is quadratic, and
K is Euclidean space,
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For general setups, we first separate the term into two parts

〈h, y − x〉 = 〈g, y − x〉+ 〈h− g, y − x〉

For the first term, we use the optimality condition
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This can be proved by Legendre transform:
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which proves (16). Putting everything together, we have
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Proof of Proposition 1 We apply Lemma 2: By smoothness of J ,
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This proves the statement in Proposition 1. We note that, in the above step, the general result of Lemma 2. For the
special case Lemma 2, we would recover the usual convergence property of stochastic smooth nonconvex optimization,
which shows on average convergence to stationary points in expectation.

B.2 Proof of Proposition 2

We use a well-know result of mirror descent, whose proof can be found e.g. in (Juditsky et al., 2011).

Lemma 3. LetK be a convex set. Suppose R is α-strongly convex with respect to norm ‖ · ‖. Let g be a vector in some
Euclidean space and let
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Next we prove a lemma of performing online mirror descent with weighted cost. While weighting it not required in
proving Proposition 2, it will be useful to prove Theorem 2 later in Appendix C.

Lemma 4. Let fn be σ-strongly convex with respect to some strongly convex function Rn, i.e.
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and let {wn}Nn=1 be a sequence of positive numbers. Consider the update rule
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Proof. The proof is straight forward by strong convexity of fn and Lemma 3.
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Proof of Proposition 2 Now we use Lemma 4 to prove the final result. It’s easy to see that if gn is an unbiased
stochastic estimate of∇fn(xn) in Lemma 4, then the performance bound would hold in expectation since xn does not
depend on gn. Finally, by definition of εclass, this concludes the proof.

C Proof of Section 5

C.1 Proof of Theorem 1

Let wn = nd. The proof is similar to the proof of Proposition 2 but with weighted cost. First we use Lemma 1 and
bound the series of weighted accumulated loss
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and, for d ≥ 1,
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Thus, by the assumption that ‖gn‖∗ ≤ G almost surely, the weighted accumulated loss on average has an upper bound
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By sampling K according to ws, this bound directly translates into the the bound on J(πK).

C.2 Proof of Theorem 3

For simplicity, we prove the result of deterministic problems. For stochastic problems, the result can be extended to
expected performance, similar to the proof of Proposition 2. We first define the online learning problem of applying
gn = ∇θlλn(π)|π=πn to update the policy. In the nth iteration, we define the per-round cost as

lλn(π) = EdπnEπ[(1− λ)Aπn + λAπ∗ ] (17)

With the strongly convexity assumption and large enough step size, similar to the proof for Proposition 2, we can show
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To relate this to the performance bound, we invoke Lemma 1 and write
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This concludes the proof.
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