
A APPENDIX: EXPERIMENTS

Table 1 shows the number of queries for various algo-
rithms and datasets, as used in Figure 2. Similarly, Ta-
ble 2 shows the total number of annotations used, as de-
picted in Figure 3.

N LOGSTRAT PAULA ADASTRAT
35615 78 78 18

356150 156 156 20
3561500 234 234 18

35615000 312 312 21

Table 1: Number of queries of the precision function
issued by various algorithms for different size variants of
PPDB-36K.

N RANDOM LOGSTRAT PAULA ADASTRAT
35615 24745 18287 11292 14612

356150 84369 35631 19092 24004
3561500 284834 53937 26892 23707

35615000 954359 72867 34692 28477

Table 2: Number of annotations used by various algo-
rithms for different size variants of PPDB-36K.

B APPENDIX: PROOFS

B.1 Noisy Samples for Point Estimates

Consider the setting of Section 2.1, where we use noisy
estimates ṽ(u) of v(u) at J randomly chosen points from
{1, 2, . . . , r}, in order to estimate p(r).

First, fix a u. Because of the error probability η < 1/2
in the estimate, the expected value ṽ(u) is v(u)(1− η) +
(1 − v(u))η, which equals v(u) + η − 2ηv(u). Second,
note that the expected value of

∑
j∈J v(tj) across ran-

dom choices of J is precisely zp(r), where z = |J |.

Putting these together, we obtain that the expected value
of 1

z

∑
j∈J ṽ(tj) across random choices of J is p(r) +

η − 2ηp(r). Assuming p(r) ≤ 1/3, this lies within (1±
η) p(r) and is also within a multiplicative factor of 1 + η
of p(r).

Given ε > η, we can now use the two-sided Hoeffding
bound (Hoeffding, 1963) to assess how many samples,
z, are needed to obtain a (1 + ε)-approximation of p(r).
For this, it suffices to use a z that guarantees a 1+ε

1+η -
approximation of the expected value of 1

z

∑
j∈J ṽ(tj),

which, as shown above, is always within a factor of 1+η
of p(r). To this end, a direct application of Hoeffding’s
inequality, while observing that 1+ε

1+η − 1 = ε−η
1+η , yields:

z ≥ (1 + η)2

2(ε− η)2p(r)2
ln

2

δ
.

B.2 Proof of Theorem 2

The upper bound: when v′ ≤ y, p(v′)v′ ≤ p(y)y be-
cause of the monotonicity of the partial sum

∑n
j=1 v(tj).

Therefore, p(v′) ≤ p(y)y/v′, which is the result on
the first line. When v′ > y + m, p(v′) ≤ p(y) be-
cause of weak (r̃,m)-monotonicity, which is the result
on the fourth line. In the middle, for y + bmp(y)c <
v′ ≤ y + m, because of weak (r̃,m)-monotonicity,
p(y +m) ≤ p(y), hence at most p(y) fraction of the en-
tries v(ty+1), v(ty+2), . . . , v(ty+m) can be 1. This im-
plies that p(v′)v′ ≤ p(y)y+ bmp(y)c, which is the third
line. For y < v′ ≤ y + bmp(y)c, in the worst case all
v′ − y terms in v(y + 1), . . . , v(v′) are 1. Therefore,
p(v′)v′ ≤ p(y)y + v′ − y, which is the second line.

The lower bound: the first line holds because of weak
monotonicity. The fourth line is again because p(y)y ≤
p(v′)v′ when v′ ≥ y. In the middle, when y−bmp(y)c ≤
v′ < y, at most all y − v′ items v(tv′+1), . . . , v(ty) are
1. Hence, p(v′)v′ + y − v′ ≥ p(y)y, which gives us the
third line. When y − m ≤ v′ < y − bmp(y)c, again,
because p(y − m) ≥ p(y), at most p(y) fraction of the
elements v(ty−m+1), . . . , v(ty) can be 1. This implies
that p(v′)v′+ bmp(y)c ≥ p(y)y. Rearranging terms, we
get the second line.

The envelope is tight because we can construct sequences
of v(tj) which match the upper and lower bound exactly.

B.3 Proof of Theorem 4

The number of calls to QUERY is one plus the number
of intervals (p(l), p(r)) which enter the stopping condi-
tion of function PR. Notice that the boundary (l, r) of
every interval (p(l), p(r)) which enters the stopping con-
dition must satisfy r/l ≥ 1 + ε, since otherwise its par-
ent function call already satisfies the stopping condition
r/l ≤ (1 + ε)2. Aggregated across all intervals, this can
happen at most log1+ε(N/l̃) times, as claimed.

B.4 Proof of Lemma 3

Let l̃′ = max
{
d m1+εe, r̃

}
. Using the full characteriza-

tion from Theorem 2, we can prove that for r > l > l̃′,
p(r) ≤ (1 + ε)p(l).

Because of the definition of q1, . . . , qK , we know that
q1 ≤ q2 ≤ . . . ≤ qK . Moreover, we know that for
qi < j < qi+1, p(j) ≥ p(qi)/(1 + ε). Because of
the statement in the previous paragraph, we know that
p(j) ≤ p(qi)(1 + ε). Proof completes.

B.5 Proof of Lemma 4

First, the function p(r)r monotonically increases, be-
cause for l < r, we have

r p(r) =

r∑
i=1

v(ti) ≥
l∑
i=1

v(ti) = l p(l).

Therefore, p(j)j is sandwiched between p(si)si and
p(si+1)si+1 whenever j ∈ {si, . . . , si+1}. Because of
the definition of si+1, for any j ∈ {si, . . . , si+1}, we
have p(j)j ≥ p(si)si and p(j)j ≤ (1 + ε)p(si)si, which
finishes the proof.

B.6 Proof of Theorem 6

Suppose the “optimal” algorithm calls QUERY at points
r1, r2, . . . , rOPT. We begin with some relevant nota-
tion. These points split the entire range between l̃ and
N into OPT + 1 segments. We call one segment of this
type an opt-segment. We also define the following tuple:
〈p(l), p(r), d,SMALL/BIG〉, where (p(l), p(r)) is an in-
terval on which the function PR called during the execu-
tion of ADASTRAT, d is the depth of this recursive call,
and the fourth entry is either SMALL or BIG. It is BIG if
and only if the interval [l, r] covers at least one complete
opt-segment. The log distance of a tuple is measured as
log1+ε

r/l. Two tuples are treated as cousins if they are
called by a single PR function as two children calls (i.e.,
one is (p(l), p(c)), while the other one is (p(c), p(r))).
We can merge two cousin tuples. The result of merging is
the tuple representing the parent function that called the
functions represented by these two cousin tuples. Notice
that the log distance of the merged tuple is 2 times that
of one cousin tuple.

We start with the set Φ, made of tuples
〈p(l), p(r), d,SMALL/BIG〉 such that (p(l), p(r))
enters the stopping condition of function PR during the
execution of the algorithm. We repeat the following
merge operation on tuples in Φ until no tuple in Φ is
tagged with SMALL: (i) Choose a tuple from Φ that has
the largest depth d among those tagged with SMALL.
(ii) Merge this tuple with its cousin tuple. (iii) Add the
merged tuple back into Φ. We refer to the set Φ obtained
after merging all SMALL tuples as ΦE .

First, all tuples in ΦE are tagged BIG. Therefore, each of
them contains an opt-segment. Second, since the tuples
in ΦE are still from the PR algorithm, these tuples must
be non-overlapping. Based on these two observations,
the number of tuples in ΦE is bounded by the number of
opt-segments, which is OPT+1. How many merge oper-
ation could each tuple in ΦE have gone through? This
must be bounded by O(log2 log1+εN), since the largest

possible log distance is log1+εN (the entire range), and
each merge operation doubles the log distance.

Now we count the number of QUERY calls that algorithm
ADASTRAT makes. It is easy to see that

#QUERY = |ΦE |+ #MERGE + 1,

where #MERGE is the total number of merge operations
performed. This number is bounded by

|ΦE |+ |ΦE | ·max{#MERGE for one tuple in ΦE}+ 1.

Combined with the fact that |ΦE | ≤ OPT + 1 and
#MERGE for one tuple in ΦE ≤ log2 log1+εN , we ob-
tain the claimed bound.

B.7 Detailed Construction of F to Prove Theorem 7

Our proof works by showing that any algorithm that can
identify an unknown function from F , which includes
A, must make at least J queries. To demonstrate this,
our function family F is constructed such that for one
separating point, there are at least two functions from F
that are more than (1 + ε)2 apart at the point. Therefore,
A has to query all J separating points to identify one
function from F .

Figure 5: An illustration of the function family support-
ing the lower bound in Theorem 7.

Specifically, we identify J + 1 points a1, . . . , aJ+1,
where the space between aj and aj+1 is called the j-
th interval (j = 1, . . . , J), which is shown as the space
between two green triangles in Figure 5. One function
f from F either follows the red or the blue curve in one
interval. Because we have J intervals in total, this gives
us 2J functions in F . The separating points are shown
in yellow circles in Figure 5. We construct these yellow
circles to guarantee that the gap (height) is more than
(1 + ε)2.

We argue that AlgorithmAmust make at least one query
in each of the J intervals. This is because even if A
knows the exact function segment (red or blue) every-
where except for the j-th interval, it still cannot decide if

f follows the red or the blue curve within the j-th inter-
val.

The exact locations of separating points are as follows.
Let aj = b(1 + ε′)4j−4y0c, bj = b(1 + ε′)4j−2y0c,
(j = 1, . . . , J + 1). N = aJ+1 = b(1 + ε′)4Jy0c.
Here, y0 is a sufficiently large number. Let 1 <
γ < (1 + ε′)/(1 + ε). Select 2J (r̃,m)-weak mono-
tonic functions f0, f1, . . . , f2J−1 such that their val-
ues at aj (shown as the green triangles of Figure 5)
are close. More specifically, for all functions fu ∈
{f0, f1, . . . , f2J−1}, their values at aj are bounded:

1

γ(1 + ε′)2j−2
< fu(aj) <

γ

(1 + ε′)2j−2
.

For a specific bj (shown as yellow circles in Figure 5),
half of the functions in {f0, f1, . . . , f2J−1} match ap-
proximately around a particular value (i.e., follow the red
curve). The other half match around a different value
(i.e., follow the blue curve). More specifically, for all
u ∈ {0, 1, . . . , 2J − 1}, whose j-th digit of its binary
representation is 0, fu’s value at bj is bounded by

1

γ(1 + ε′)2j−2
< fu(bj) <

γ

(1 + ε′)2j−2
,

For all u ∈ {0, 1, . . . , 2J − 1}, whose j-th digit of its
binary representation is 1, fu’s value at bj is bounded by

1

γ(1 + ε′)2j
< fu(bj) <

γ

(1 + ε′)2j
,

Suppose algorithm A outputs an (1 + ε)-approximate
curve for any (r̃,m)-weak monotonic precision function.
Starting with one unknown function f drawn from the set
{f0, f1, . . . , f2J−1}, we can use algorithm A to identify
which function f actually is. To see this, we examine
the approximate values f̃(b1), . . . , f̃(bJ) returned by al-
gorithm A. If

f̃(bj) >
1

(1 + ε′)2j−1
,

we know that

1

γ(1 + ε′)2j−2
< f(bj) <

γ

(1 + ε′)2j−2
,

because otherwise, f̃(bj) and f(bj) are more than (1 +
ε)2 apart. The other side of the argument also holds.

B.8 Proof of Theorem 8

First, assuming that we have access to r1, . . . , rK , we
access the values of the first l̃ terms v(t1), . . . , v(tl̃).
We then randomly access d r1−l̃r1

es items from

ṽ(tl̃+1), . . . , ṽ(tr1), randomly access d r2−r1r2
es items

from ṽ(tr1+1), . . . , ṽ(tr2), and so on, until we randomly
access d rK−rK−1

rK
es items from ṽ(trK−1+1), . . . , ṽ(trK).

When we compute QUERY(ri, T, ṽ), we randomly sub-
sample accessed items in the range of 1, . . . , l̃ with prob-
ability ri−ri−1

ri
; randomly subsample accessed items in

the range of l̃ + 1, . . . , r1 with probability ri−ri−1

ri
r1
r1−l̃

;
randomly subsample accessed items in the range of r1 +
1, . . . , r2 with probability ri−ri−1

ri
r2

r2−r1 ; and so on; ran-
domly subsample accessed items in the range of ri−2 +
1, . . . , ri−1 with probability ri−ri−1

ri

ri−1

ri−1−ri−2
; and take

all accessed items in the range of ri−1 + 1, . . . , ri. We
use the empirical mean of these subsampled items to
compute the estimation p̃(ri). Using Hoeffding’s in-
equality, Eq. (2), we know that the estimation is a β-
approximation with confidence at least 1− δ/K.

Next, applying the union bound over all i ∈ {1, . . . ,K},
we have overall confidence of at least 1− δ that the esti-
mations are β-approximations simultaneously for all K
points r1, . . . , rK .

Nevertheless, we do not know the location of r1, . . . , rK
upfront. We thus take an iterative deepening style adap-
tive sampling scheme, as detailed in the last two para-
graphs of Section 4. In particular, we gradually increase
the number of samples in each interval as we increaseK;
and we sample more points for intervals that fall below
the sample density thresholds when we introduce new
query points.

	APPENDIX: EXPERIMENTS
	APPENDIX: PROOFS
	Noisy Samples for Point Estimates
	Proof of Theorem 2
	Proof of Theorem 4
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 6
	Detailed Construction of F to Prove Theorem 7
	Proof of Theorem 8

