
SUPPLEMENTARY MATERIAL

THE RECURSIVELY BLINKERED POLICY

The blinkered policy of Hay et al. (2012) was defined
for problems where each computation informs the value
of only one action. This assumption of “independent
actions” is crucial to the efficiency of the blinkered ap-
proximation because it allows the problem to be decom-
posed into independent (and easily solved) subproblems
for each action. However, the assumption does not hold
for the Bernoulli metalevel tree because the reward at a
given state affects the value of multiple policies. This
is because in the context of sequential decision mak-
ing, “actions” become policies, and the reward at one
state affects the values of all policies visiting that state.
Thus, a single computation affects the value of many
policies. An intuitive generalization would be to approx-
imate the value of a computation ck by assuming that
future computations will be limited to those that are in-
formative about any of the policies the initial compu-
tation is relevant to, a set we call Eck ,. However, for
large trees, this only modestly reduces the size of the ini-
tial problem. This suggests a recursive generalization:
Rather than applying the blinkered approximation once
and solving the resulting subproblem exactly, we recur-
sively apply the approximation to the resulting subprob-
lems. Finally, to ensure that the subproblems decrease
in size monotonically, we remove from Eck the compu-
tations about rewards on the path from the agent’s cur-
rent state to the state sk inspected by computation ck and
call the resulting set E ′ck . Thus, we define the recursively
blinkered policy as πRB(b) = argmaxcQ

RB(b, c) with
QRB(bt,⊥) = rmeta(bt,⊥) and QRB

meta(b, c) =

rmeta(b, c) + EB′∼Tmeta(b,c,·)

[
max
c′∈E′

c′

QRB(B′, c′)

]

DETAILS ON SIMULATIONS REPORTED IN
SECTION 5

We found the computational cost of metareasoning for
the tornado problem to be several orders of magnitude
lower than realistic costs of object-level computations
(i.e. weather simulations). Thus, the simulations leave
open the question of whether BMPS can also be usefully
applied when metareasoning costs are non-negligible. To
answer this question, we ran additional simulations for
the tornado problem with unrealistically low values of T
and tsim.

The simulations summarized in Figure 1 investigated hy-
pothetical scenarios where the metareasoning cost in-
curred by the BMPS policy considerably reduces the
amount of object-level computation it can perform. This

reduction is greatest when object-level computations are
fast and the total amount of available time T is high.
Nevertheless, as shown in Figure 2, BMPS still often out-
performs allocating computation time uniformly. This
is often true even when BMPS can perform only half as
many simulations (e.g. T = 0.03; k = 30; tsim = 2−10).
As expected, when the time to run a simulation is much
less than the time to metareason about which simulation
to run, metareasoning does not pay off anymore. Overall,
we see that the benefit of metareasoning increases with
the costliness of object-level reasoning and the number
of computations that must be considered, but decreases
with increased total computation time.
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Figure 1: The number of simulations that can be run with
versus without metareasoning as a function of the total
time T and the cost of each simulation tsim.
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Figure 2: Utility of BMPS vs. allocating computation
uniformly as a function of the total time T , the cost of
each simulation tsim, and the number of possible compu-
tations (i.e. the number of cities) k.



Mmeta meta-level Markov Decision Process

B Set of possible belief states

A Set of meta-level actions C,∪{⊥}
C set of possible computations

⊥ meta-level action that terminates deliberation and initiates an object-
level action

rmeta(b, c) reward function of the meta-level MDP, rmeta(b, c) = −cost(c) = −λ
for c ∈ C and rmeta(b,⊥) = maxπ Eθ∼b[Uπ(θ)]

λ cost of a single computation

Tmeta(b, c, b′) probability that performing computation c in belief state b leads to be-
lief state b′

θ parameters of the agent’s model of the environment

π object-level policy for selecting physical actions

Uπ(θ) expected return of acting according to the object-level policy π if θ is
the correct model of the environment

U(b) expected value of terminating computation with the belief b,
rmeta(b,⊥)

πmeta meta-level policy for selecting computational actions

π?meta optimal meta-level policy, see Equation 1

VOC(c, b) Value of Computation, the expected improvement in decision quality
that can be achieved by performing computation c in belief state b and
continuing optimally, minus the cost of the optimal sequence of com-
putations

VOI1(c, b) myopic Value of Information, expected improvement in decision qual-
ity from taking a single computation c before terminating computation,
see Equation 2

VPI(b) Value of Perfect Information, the expected improvement in decision
quality from attaining a maximally informed belief state beginning in
belief state b, see Equation 3

VPIsub(c, b) value of attaining perfect information about the subset of components
of θ that are most relevant to computation c, see Equation 4

Table 1: Mathematical notation


