SUPPLEMENTARY MATERIAL

RANK ONE UPDATE ALGORITHM

Here we detail the algorithm to update the QR factorization of Z^t for the rank one update

$$\boldsymbol{Z}^{t+1} = \boldsymbol{Z}^t + (\boldsymbol{e}_i - \boldsymbol{H}_i)' \boldsymbol{X}_i \tag{1}$$

We assume that the factorization $Z^t = Q^t R^t$ is known. Let $v = e_i - H_i$. We start by refactoring the update as

$$Z^{t+1} = Q^t R^t + v' X_i = Q^t (R^t + w' X_i)$$
 (2)

 \mathbf{R}^t is upper triangular, but $\mathbf{w}' \mathbf{X}_i$ is not and we would like to convert it to be upper triangular. Givens rotations are a common tool used in QR factorization to convert matrices into upper triangular ones. A Givens rotation can be represented as a rotation matrix $\mathbf{G}(i, j, \theta)$, where $G_{[k,k]} = \cos \theta$ for $k = i, j, G_{[k,k]} = 1$ for $k \neq i, j,$ $G_{[i,j]} = -G_{[j,i]} = -\sin \theta$, and all other entries are zero. The angle of rotation, θ , can be set such that the product of \mathbf{G} and a given vector has a zero at index j.

We can compute a set of Givens rotation matrices $J^1, ..., J^{n-1}$ such that $(J^1)'...(J^{n-1})'w' = ||w||e'_1$. This will ensure that $||w||e'_1X_i$ is upper triangular, since only the first row of the product is non-zero. The inverse of a Givens rotation matrix is also its transpose. To maintain equality with the original formula, we must include the transpose of every Givens rotation we introduce. This results in

$$egin{aligned} m{Z}^{t+1} &= m{Q}^t m{J}^{n-1} ... m{J}^1 (m{J}^1)' \dots (m{J}^{n-1})' (m{R}^t + m{w}' m{X}_i) \ &= m{Q}^t m{J}^{n-1} ... m{J}^1 (m{A} + ||m{w}|| m{e}_1' m{X}_i) \end{aligned}$$

where $\mathbf{A} = (\mathbf{J}^1)'...(\mathbf{J}^{p-1})'\mathbf{R}$, which is an upper Hessenberg matrix. Upper Hessenberg matrices are upper triangular matrices with one additional non-zero entry below the diagonal of each column. They can be turned into upper triangular matrices with a linear number of Givens rotations.

$$egin{aligned} oldsymbol{Z}^{t+1} &= oldsymbol{Q}^t oldsymbol{J}^{n-1}...oldsymbol{J}^1(oldsymbol{A}+||oldsymbol{w}||oldsymbol{e}_1'oldsymbol{X}_i) \ &= oldsymbol{Q}^toldsymbol{J}^{n-1}...oldsymbol{J}^1 ilde{oldsymbol{A}} \end{aligned}$$

 \hat{A} is also an upper Hessenberg matrix. As such, we can find another set of Givens rotation matrices $G^1, ..., G^{p-1}$ such that $(G^{p-1})'...(G^1)'\tilde{A} = \tilde{R}$, where \tilde{R} is an upper triangular matrix.

$$egin{aligned} m{Z^{t+1}} &= m{Q^t} m{J^{n-1}}...m{J^1} m{ ilde{A}} \ &= m{Q^t} m{J^{n-1}}...m{J^1} m{G^1},...,m{G^{p-1}} (m{G^{p-1}})'...(m{G^1})'m{ ilde{A}} \ &= m{Q^t} m{J^{n-1}}...m{J^1} m{G^1},...,m{G^{p-1}} m{ ilde{R}} \end{aligned}$$

This completes the factorization update, with $Q^{t+1} = Q^t J^{n-1} \dots J^1 G^1 \dots G^{p-1}$ and $R^{t+1} = \tilde{R}$.

Algorithmi i qr_upuate	41	goritl	hm 1	qr_u	pdate
------------------------	----	--------	------	------	-------

Inputs: Q, R, v, uw' = Q'v'# Add v' as a new column basis to Q $oldsymbol{v}' = oldsymbol{v}'/||oldsymbol{v}||$ $oldsymbol{Q}_{[\cdot,p+1]} = oldsymbol{v}^{\prime}$ $R_{[p+1,\cdot]} = 0$ # Use givens rotation to zero out wfor i = p - 1 to 1 do $G = givens(w_i, w_{i+1})$ $oldsymbol{Q}_{[\cdot,i:i+1]} = oldsymbol{Q}_{[\cdot,i:i+1]}oldsymbol{G}$ $\boldsymbol{R}_{[i:i+1,\cdot]} = \boldsymbol{G}\boldsymbol{R}_{[i:i+1,\cdot]}$ $\boldsymbol{w}_{[i:i+1]} = \boldsymbol{G} \boldsymbol{w}_{[i:i+1]}$ end for $\boldsymbol{R}_{[1,\cdot]} = \boldsymbol{R}_{[1,\cdot]} + w_1 \boldsymbol{u}$ # Use Givens rotations to make R upper triangular for i = 1 to p - 1 do $G = givens(R_{[i,i]}, R_{[i+1,i]})$ $\begin{array}{l} \boldsymbol{Q}_{[\cdot,i:i+1]} = \boldsymbol{Q}_{[\cdot,i:i+1]}\boldsymbol{G} \\ \boldsymbol{R}_{[i:i+1,\cdot]} = \boldsymbol{G}\boldsymbol{R}_{[i:i+1,\cdot]} \end{array}$ end for # Return first p columns of Q, p rows of R $oldsymbol{Q} = oldsymbol{Q}_{[\cdot,1:p]}$ $\boldsymbol{R} = \boldsymbol{R}_{[1:p,\cdot]}$ $\operatorname{Return}(\boldsymbol{Q},\boldsymbol{R})$

The pseudocode for the rank one QR update is in Algorithm 1. After calculating w, we normalize v into the basis of Q and append it as an extra column. We also add a zero row to R. Givens rotations are used to zero out w, with Q and R updated accordingly. After this we can add $wu' = w_1u'$ to R. At this point R is upper Hessenberg, so we make it upper triangular with another series of Givens rotation, updating Q appropriately. We then return the first p columns of Q and the first p rows of R.

Givens rotations can be represented as a full matrix product, but in practice it is faster to work with the rows that they operate on. In Algorithm 1, G is a 2×2 Givens rotation matrix which we apply directly to the two columns of Q and rows of R it affects.

SIMULATOR

Our simulator models two different distributions used for data generation: a baseline distribution and a modified or anomalous distribution. The data generated from each distribution is ensured to lie within a spatially contiguous region. These distributions are modeled at specific percentiles of the CDF, which gives us the ability to control at which percentiles they differ.

Our simulation creates a dataset of n points defined by $D = \{Y, X, L, Q, B_1, B_2, I\}.$

L is a set of *n* locations in 2D space, generated uniformly at random.

X is an $n \times p$ covariate matrix, generated uniformly at random between a minimum and maximum value. The first column of X is 1, to denote the intercept term.

 B_1 and B_2 are $k \times p$ distribution matrices representing the default and altered distributions respectively. The *i*th row of B_j stores the parameters for a regression through the (i/k)th quantile. These parameters are generated such that the quantiles in B_j do not cross within the range of X. Each B_j parameterizes a piecewise continuous CDF for the regression data, with k locations in the CDF modeled exactly, and the rest assumed to vary uniformly between them.

I is a $n \times 1$ indicator vector that determines whether each point is generated from B_1 or from B_2 . The set of points generated from B_2 make a circle in the space of L. This is the target region for the algorithm to identify.

Q is a $n \times 1$ vector indicating what quantile each point is generated from. The values of Q are in the continuous range [0, k] and are generated uniformly at random. We use the function $f(B, Q_i)$ to produce the parameters of a given quantile for distribution matrix B.

$$f(\boldsymbol{B}, Q_i) = (Q_i - \lfloor Q_i \rfloor)\boldsymbol{B}_{\lfloor Q_i \rfloor} + (\lceil Q_i \rceil - Q_i)\boldsymbol{B}_{\lceil Q_i \rceil}$$
(3)

where B_i indicates the *i*th row of B. If Q_i falls between two rows of B, then f returns a weighted average of the two rows, such that the quantiles change continuously with respect to Q_i .

 \boldsymbol{Y} is an n vector of response variables. These are generated by

$$Y_i = \boldsymbol{X}_i f(\boldsymbol{B}_{I_i}, Q_i) + \boldsymbol{\epsilon} \tag{4}$$

where $\epsilon \sim Norm(0, \sigma)$ is a random noise term.