
A PROOF OF PROPOSITION 2

Proof A stationary distribution µ of (8) means @tµ = 0.
Assuming µ = p(✓|X) , p, then we need to prove that

r · ((W ⇤p)p) = 0 .

By the definition of W in (9), and applying Stein’s iden-
tity Liu and Wang (2016a), we have W ⇤p = 0. Conse-
quently, we have r · ((W ⇤p)p) = 0.

The above argument indicates p(✓|X) is a stationary
distribution of (8). This completes the proof.

B MORE DETAILS ON
LEMMA 3

We first specify the conditions the energy functional E
needs to satisfy in Assumption 1.

Assumption 1 The energy functional is assumed to

• proper: D(E) , {✓ 2 ⌦ : E(✓) < +1} 6= ;.
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• lower semicontinuous: For all ✓n,✓ 2 ⌦ such that

✓n ! ✓, lim infn!1 E(✓n) � E(✓).

• convex: E is convex in the sense that given � 2 R
and a curve ✓↵ 2 ⌦,

E(✓↵)  (1� ↵)E(✓0) + ↵E(✓1) .

Proof [Sketch proof of Lemma 3] Our case is just
a simplification of Theorem 3.5.1 in Craig (2014),
where we restrict the energy functional to be con-
vex instead the more general case of �-convex. For
�-convex energy functional, Craig (2014) proves
that W 2
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�� , max{0,��}. Our result follows by simply letting
�� = 0, which is for the case of convex E.

C DERIVATION OF (22)

The derivation of (22) relies on the following Lemma
from Carrillo et al. (2017).

Lemma 6 (Proposition 3.12 in Carrillo et al. (2017))
Let F : (0,1) ! R belongs to C2(0,+1) and satisfy

lims!+1 F (s) = +1 and lim infs!0 F (s)/s� > �1

for some � > �2/(d+ 2). Define

F(µ) ,
Z

F � (K ⇤ µ)dµ ,

where � denotes function composition, i.e., F is evaluated

on the output of K ⇤ µ. Then we have
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Now it is ready to derive (22). In this case, F =
log(·). Let F1 = r'✏ ⇤ (F 0
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Combing (26) and (27) gives the formula for v in (22).

Table 4: Hyper-parameter settings for MNIST on FNN.
Datasets MNIST
Batch Size 100 100
Step Size 5⇥ 10�4 5⇥ 10�4

#Epoch 150 150
RMSProp 0.99 0.99
Network (hidden layers) [400, 400] [800, 800]
Variance in prior 1 1



D EXPERIMENTAL SETTING

We list some experimental settings in Table 4 and Table 5.
For evaluation on BNNs, following a standard Bayesian
treatment, we use ensemble of particle predictions to
compute the test accuracy. We will need to store all the
M particles in order to do particle optimization, thus the
time and memory complexity would be proportional to
the number of particles. In practice, however, we can
reduce the complexity by only treating a small part of the
parameters as particles (e.g., the parameters of the last
layer of a BNN), and leaving others as single values.

Table 5: Hyper-parameter settings for CIFAR-10 on CNN.
Datasets CIFAR10
Batch size 128
Step size 0.01 (< 5e3), 0.001 (< 1e4) 0.0001
#Epoch 200
Filter size 3⇥3
Channels C64-C128-C256
Network (hidden layers) [1024]
Variance in prior 1

E EXTRA EXPERIMENTS

We further optimize 50 particles to approximate differ-
ent distributions. The optimized particles are plotted in
Figure 4, which shows that w-SGLD seems to be able to
learn better particles due to the concentration property of
the Wasserstein regularization term.



Figure 4: Illustration of different algorithms on toy distributions with 50 particles. Each column is a distribution case. 1st row:
standard SGLD; 2nd row: w-SGLD; 3rd row: w-SGLD-B; 4th row: SVGD; 5th row: ⇡-SGLD. The blue shapes are ground true
density contours.


