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Appendix

m-separation and the Global Markov
Property

Let G be an ADMG with vertex set V , and let a, b ∈ V
and C ⊆ V \ {a, b}, with C possibly empty. We say a
path π from a to b is open if no noncollider on π is in C,
and every collider on π is in anG(C). A path which is
not open is said to be blocked by C.
Now let A,B,C be disjoint subsets of V (again, C may
be empty). We say thatA is m-separated fromB by C in
G, if every path from any a ∈ A to any b ∈ B is blocked
by C.
We say a density p obeys the global Markov property
with respect to G if whenever A and B are m-separated
by C, the conditional independence XA ⊥⊥ XB | XC

holds in p.

Fixing and Conditional Independence

Let qV (xV |xW ) be a kernel. The usual notion of condi-
tional independence in distributions is naturally extended
to kernels by saying that XA ⊥⊥ XB | XC if A ⊆ V
and qV (xA |xB , xC , xW\(B∪C)) is a function only of xA
and xC (or otherwise with the roles of A and B inter-
changed). See [1] for more details.

Proof of Proposition 32. First note that for any A,B ⊆
S we have

p∗S(xA |xB , xV \S) = qS(xA |xB , xV \S).

Let W = V \ (S ∪B ∪ C), so that

p∗S(xA |xB , xC)

=
∑
xW

p∗S(xA, xW |xB , xC)

=
∑
xW

p∗S(xA |xB , xC , xW ) · p∗S(xW |xB , xC)

=
∑
xW

qS(xA |xB , xC , xW ) · p∗S(xW |xB , xC).

Then by definition of conditional independence in qS , the
first factor depends only on xA and xC , so

p∗S(xA |xB , xC) = f(xA, xC)
∑
xW

p∗S(xW |xB , xC)

= f(xA, xC).

Hence XA ⊥⊥ XB | XC in p∗S .

Technical Proofs

Proof of Proposition 17. If a ∈ disG†(b), then fix a bidi-
rected path a↔ w1 ↔ . . .↔ wk ↔ b in G†. Each bidi-
rected edge on this path from c to d is due to 〈{c, d}〉G
being bidirected-connected in G. But this implies the ex-
istence of a bidirected path from c to d in G. Thus, there
is a bidirected path from a to b in G.
Suppose a, b ∈ S such that there is a bidirected edge
a ↔ b in G† (and hence also in φV \S(G†)). By the con-
struction of G†, a and b are bidirected-connected in the
closure of {a, b} in G. If a, b ∈ S, then by definition of
closure and fixing (in G), every vertex in the closure of
{a, b} is in S. Hence a and b are bidirected-connected in
G by a path on which every vertex is in S. Hence a and
b are bidirected-connected (in φV \S(G)). Consequently,
the districts of φV \S(G†) form a sub-partition of the dis-
tricts in φV \S(G).

Proof of Lemma 18. If there is such a path in G then the
same path exists in G† by Proposition 14. If there is a



path in G† then consider an edge c→ d; since this exists
in G† then c ∈ paG(〈d〉G), so there is a directed path in
G from c to d whose internal vertices (if any) are all in
〈d〉G \ {b}. Such vertices are not fixable in G by def-
inition and therefore do not include v. Hence we have
constructed a path that does not intersect v.

Proof of Theorem 19. If v is fixable in G, then it is also
fixable in G† by application of Propositions 15 and 17.
By Proposition 17 the districts of φv(G†) forms a sub-
partition of the districts in φv(G). If a is an ancestor of
b in φv(G), then this is because there is a directed path
in G from a to b that does not intersect v; by Lemma 18
this happens if and only if there is such a path in G†, and
hence a is an ancestor of b in φv(G†). It follows that
any vertex fixable in φv(G) is also fixable in φv(G†), so
a simple induction gives the first result.
Now let S ∈ R(G). We have a → b in (φV \S(G))†
if and only if b ∈ S and a ∈ paφV \S(G)(〈b〉φV \S(G)).
Since S is reachable, 〈b〉φV \S(G) = 〈b〉G by Proposition
4; and since 〈b〉φV \S(G) ⊆ S, then paφV \S(G)(〈b〉G) =

paG(〈b〉G). Hence a ∈ paG(〈b〉G), which happens if and
only if a → b in G†. But since S 3 b this happens if
and only if a → b in φV \S(G†). The directed edges are
therefore the same.
a ↔ b in (φV \S(G))† if and only if a, b ∈ S and
〈a, b〉φV \S(G) is bidirected-connected. By Proposition 4,
〈a, b〉φV \S(G) = 〈a, b〉G , so this happens if and only if
a ↔ b in G†, which occurs if and only if a ↔ b in
φV \S(G†), since a, b ∈ S.

Proof of Proposition 21. Suppose for contradiction that
G† is not arid, so there exists v and t ∈ 〈v〉G† \ {v} such
that t↔ v in G†, by Proposition 9.
Now t ∈ 〈v〉G† implies t ∈ 〈v〉G by Corollary 20, and
since t 6= v we have t ∈ paG(〈v〉G) by Lemma 5.
But by construction of G† this implies that graph should
contain t → v; this is a contradiction since t ↔ v was
assumed to exist in G†. This establishes G† is arid.
Now suppose a and b are densely connected in G†. If this
is because a ∈ paG†(〈b〉G†), then G† being arid implies
〈b〉G† = {b}, and thus a ∈ paG†(b); hence a and b are
adjacent.
Alternatively, suppose 〈{a, b}〉G† is a bidirected-
connected set. Note that 〈{a, b}〉G† ⊆ 〈{a, b}〉G by
Corollary 20, so a and b are also bidirected-connected
in 〈{a, b}〉G in G†. By Proposition 17, the districts in G
form a superpartition of those in G†, and therefore a and
b are also bidirected-connected in 〈{a, b}〉G in G. Hence
they satisfy the condition to add an edge a ↔ b in the
definition of G†, and hence are adjacent in G†.

Proof of Lemma 22. The only possibly fixable vertices
in 〈{v, w}〉G are v and w by definition. But w ∈
paG(〈v〉G) implies that w is an ancestor of v, and since
〈{v, w}〉G is bidirected-connected w is also in the same
district. Hence w is not fixable in 〈{v, w}〉G , giving the
result.

Proof of Lemma 23. Suppose that such a path exists in
G. Each adjacent pair {a, b} on the path satisfies the cri-
terion for insertion of an edge in G† of the same type
as (one of) the edge(s) between a and b in G. The only
potential concern is that a bidirected edge in G might in-
stead be replaced by a directed edge in G†.
Let π† be the path in G† with the same vertices as π (this
is unique since G† is simple). Then π† is such that all
adjacent nodes a, b satisfy the condition that 〈{a, b}〉G
is bidirected-connected in G, except possibly for the end
pairs which either satisfy this or v ∈ paG(〈a〉G).
If all the internal nodes on π† are colliders in G† then we
are done; otherwise we claim we can find a strict subpath
of π† (still from v tow), such that any adjacent nodes still
satisfy the condition above.
Suppose a is an internal non-collider on π† because a↔
b has been replaced by a → b. The replacement implies
that a ∈ paG(〈b〉G) which with a ↔ b in G implies that
a ∈ 〈b〉G by Lemma 22. Let c be the other neighbour of
a on the path.
First suppose c ↔ a on π; then a ∈ 〈b〉G implies
that a ∈ 〈{b, c}〉G , so 〈{b, c}〉G is bidirected-connected.
Hence we can remove a from π† and repeat the argu-
ment. Alternatively, if c→ a on π (i.e. c is the end vertex
on the path) then c ∈ paG(〈b〉G) since a ∈ 〈b〉G , so start
the path with c→ b. In either case, we have reduced the
number of vertices on the path being considered, and this
process will eventually terminate.

Proof of Proposition 26. Let S ∈ I(G). Using Theorem
19 it is sufficient to consider the case in which S is the
set of all random vertices in G. Let H ⊆ S be the set of
childless vertices in G. Since S is bidirected-connected
in G, every pair of vertices in H is connected by a path
of bidirected edges within S in G, and hence is also con-
nected by a collider path in G† by Lemma 23. By Propo-
sition 15, vertices in H are also childless in G†, so the
collider paths consist entirely of bidirected edges; hence
H is bidirected-connected by paths in S in G†.
Let the district of G† containing H be S† ⊆ S. It then
follows that 〈H〉G† = S†; see below for a proof. Further,
since S is reachable in G, S is reachable in G† by The-
orem 19. Since S† is a district in a reachable subgraph
φV \S(G†) of G†, S† ∈ I(G†).
Conversely, let S† ∈ I(G†) and H† ⊆ S† the set of
childless vertices in S† in φV \S†(G). Since only ele-



ments of H† are fixable in φV \S†(G), S† = 〈H†〉G† . Let
S = 〈H†〉G , which is a superset of S† = 〈H†〉G† by
Corollary 20.
For every pair a, b in S† ⊆ S with a ∈ sibG†(b),
〈{a, b}〉G must be in S = 〈H†〉G . Consequently H is
bidirected connected in φV \S(G), and thus so is S. Then
S is intrinsic in G, and H† is the set of childless ver-
tices in S in φV \S(G). This establishes the correspon-
dence.

Proof that 〈H〉G† = S† used in Proof of Proposition 26.
Since H is bidirected-connected in G†, clearly
〈H〉G† ⊆ S†. Let v be any vertex in S† \ H .
Since v /∈ H , chG(v) 6= ∅. Since, by hypothesis G
consists of a single district it follows that there is a
collider path: v → c · · · ↔ h with h ∈ H in G. Hence
by Lemma 23 and the fact that chG†(H) = ∅, there is
a path v → c† · · · ↔ h in G†, so c† ∈ S†. Thus from
every vertex in S† \H there is a directed path to a vertex
h ∈ H on which every vertex is in S† \ H . Hence
〈H〉G† = S†.
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