Supplementary Materials For: Acyclic Linear SEMs Obey the Nested Markov Property

Ilya Shpitser Department of Computer Science Johns Hopkins University ilyas@cs.jhu.edu

Appendix

m-separation and the Global Markov Property

Let \mathcal{G} be an ADMG with vertex set V, and let $a, b \in V$ and $C \subseteq V \setminus \{a, b\}$, with C possibly empty. We say a path π from a to b is *open* if no noncollider on π is in C, and every collider on π is in $\operatorname{an}_{\mathcal{G}}(C)$. A path which is not open is said to be *blocked* by C.

Now let A, B, C be disjoint subsets of V (again, C may be empty). We say that A is *m*-separated from B by C in \mathcal{G} , if every path from any $a \in A$ to any $b \in B$ is blocked by C.

We say a density p obeys the global Markov property with respect to \mathcal{G} if whenever A and B are m-separated by C, the conditional independence $X_A \perp X_B \mid X_C$ holds in p.

Fixing and Conditional Independence

Let $q_V(x_V | x_W)$ be a kernel. The usual notion of conditional independence in distributions is naturally extended to kernels by saying that $X_A \perp X_B | X_C$ if $A \subseteq V$ and $q_V(x_A | x_B, x_C, x_{W \setminus (B \cup C)})$ is a function only of x_A and x_C (or otherwise with the roles of A and B interchanged). See [1] for more details.

Proof of Proposition 32. First note that for any $A, B \subseteq S$ we have

$$p_S^*(x_A \mid x_B, x_{V \setminus S}) = q_S(x_A \mid x_B, x_{V \setminus S}).$$

Robin J. Evans Department of Statistics University of Oxford evans@stats.ox.ac.uk Thomas S. Richardson Department of Statistics University of Washington thomasr@u.washington.edu

Let $W = V \setminus (S \cup B \cup C)$, so that

$$p_{S}^{*}(x_{A} | x_{B}, x_{C})$$

$$= \sum_{x_{W}} p_{S}^{*}(x_{A}, x_{W} | x_{B}, x_{C})$$

$$= \sum_{x_{W}} p_{S}^{*}(x_{A} | x_{B}, x_{C}, x_{W}) \cdot p_{S}^{*}(x_{W} | x_{B}, x_{C})$$

$$= \sum_{x_{W}} q_{S}(x_{A} | x_{B}, x_{C}, x_{W}) \cdot p_{S}^{*}(x_{W} | x_{B}, x_{C})$$

Then by definition of conditional independence in q_S , the first factor depends only on x_A and x_C , so

$$p_{S}^{*}(x_{A} | x_{B}, x_{C}) = f(x_{A}, x_{C}) \sum_{x_{W}} p_{S}^{*}(x_{W} | x_{B}, x_{C})$$
$$= f(x_{A}, x_{C}).$$

Hence
$$X_A \perp X_B \mid X_C$$
 in p_S^* .

Technical Proofs

Proof of Proposition 17. If $a \in \operatorname{dis}_{\mathcal{G}^{\dagger}}(b)$, then fix a bidirected path $a \leftrightarrow w_1 \leftrightarrow \ldots \leftrightarrow w_k \leftrightarrow b$ in \mathcal{G}^{\dagger} . Each bidirected edge on this path from c to d is due to $\langle \{c, d\} \rangle_{\mathcal{G}}$ being bidirected-connected in \mathcal{G} . But this implies the existence of a bidirected path from c to d in \mathcal{G} . Thus, there is a bidirected path from a to b in \mathcal{G} .

Suppose $a, b \in S$ such that there is a bidirected edge $a \leftrightarrow b$ in \mathcal{G}^{\dagger} (and hence also in $\phi_{V \setminus S}(\mathcal{G}^{\dagger})$). By the construction of \mathcal{G}^{\dagger} , a and b are bidirected-connected in the closure of $\{a, b\}$ in \mathcal{G} . If $a, b \in S$, then by definition of closure and fixing (in \mathcal{G}), every vertex in the closure of $\{a, b\}$ is in S. Hence a and b are bidirected-connected in \mathcal{G} by a path on which every vertex is in S. Hence a and b are bidirected-connected (in $\phi_{V \setminus S}(\mathcal{G})$). Consequently, the districts of $\phi_{V \setminus S}(\mathcal{G})$ form a sub-partition of the districts in $\phi_{V \setminus S}(\mathcal{G})$.

Proof of Lemma 18. If there is such a path in \mathcal{G} then the same path exists in \mathcal{G}^{\dagger} by Proposition 14. If there is a

path in \mathcal{G}^{\dagger} then consider an edge $c \to d$; since this exists in \mathcal{G}^{\dagger} then $c \in \operatorname{pa}_{\mathcal{G}}(\langle d \rangle_{\mathcal{G}})$, so there is a directed path in \mathcal{G} from c to d whose internal vertices (if any) are all in $\langle d \rangle_{\mathcal{G}} \setminus \{b\}$. Such vertices are not fixable in \mathcal{G} by definition and therefore do not include v. Hence we have constructed a path that does not intersect v. \Box

Proof of Theorem 19. If v is fixable in \mathcal{G} , then it is also fixable in \mathcal{G}^{\dagger} by application of Propositions 15 and 17.

By Proposition 17 the districts of $\phi_v(\mathcal{G}^{\dagger})$ forms a subpartition of the districts in $\phi_v(\mathcal{G})$. If *a* is an ancestor of *b* in $\phi_v(\mathcal{G})$, then this is because there is a directed path in \mathcal{G} from *a* to *b* that does not intersect *v*; by Lemma 18 this happens if and only if there is such a path in \mathcal{G}^{\dagger} , and hence *a* is an ancestor of *b* in $\phi_v(\mathcal{G}^{\dagger})$. It follows that any vertex fixable in $\phi_v(\mathcal{G})$ is also fixable in $\phi_v(\mathcal{G}^{\dagger})$, so a simple induction gives the first result.

Now let $S \in \mathcal{R}(\mathcal{G})$. We have $a \to b$ in $(\phi_{V \setminus S}(\mathcal{G}))^{\dagger}$ if and only if $b \in S$ and $a \in pa_{\phi_{V \setminus S}(\mathcal{G})}(\langle b \rangle_{\phi_{V \setminus S}(\mathcal{G})})$. Since S is reachable, $\langle b \rangle_{\phi_{V \setminus S}(\mathcal{G})} = \langle b \rangle_{\mathcal{G}}$ by Proposition 4; and since $\langle b \rangle_{\phi_{V \setminus S}(\mathcal{G})} \subseteq S$, then $pa_{\phi_{V \setminus S}(\mathcal{G})}(\langle b \rangle_{\mathcal{G}}) =$ $pa_{\mathcal{G}}(\langle b \rangle_{\mathcal{G}})$. Hence $a \in pa_{\mathcal{G}}(\langle b \rangle_{\mathcal{G}})$, which happens if and only if $a \to b$ in \mathcal{G}^{\dagger} . But since $S \ni b$ this happens if and only if $a \to b$ in $\phi_{V \setminus S}(\mathcal{G}^{\dagger})$. The directed edges are therefore the same.

 $a \leftrightarrow b$ in $(\phi_{V \setminus S}(\mathcal{G}))^{\dagger}$ if and only if $a, b \in S$ and $\langle a, b \rangle_{\phi_{V \setminus S}(\mathcal{G})}$ is bidirected-connected. By Proposition 4, $\langle a, b \rangle_{\phi_{V \setminus S}(\mathcal{G})} = \langle a, b \rangle_{\mathcal{G}}$, so this happens if and only if $a \leftrightarrow b$ in \mathcal{G}^{\dagger} , which occurs if and only if $a \leftrightarrow b$ in $\phi_{V \setminus S}(\mathcal{G}^{\dagger})$, since $a, b \in S$. \Box

Proof of Proposition 21. Suppose for contradiction that \mathcal{G}^{\dagger} is not arid, so there exists v and $t \in \langle v \rangle_{\mathcal{G}^{\dagger}} \setminus \{v\}$ such that $t \leftrightarrow v$ in \mathcal{G}^{\dagger} , by Proposition 9.

Now $t \in \langle v \rangle_{\mathcal{G}^{\dagger}}$ implies $t \in \langle v \rangle_{\mathcal{G}}$ by Corollary 20, and since $t \neq v$ we have $t \in \operatorname{pa}_{\mathcal{G}}(\langle v \rangle_{\mathcal{G}})$ by Lemma 5.

But by construction of \mathcal{G}^{\dagger} this implies that graph should contain $t \to v$; this is a contradiction since $t \leftrightarrow v$ was assumed to exist in \mathcal{G}^{\dagger} . This establishes \mathcal{G}^{\dagger} is arid.

Now suppose a and b are densely connected in \mathcal{G}^{\dagger} . If this is because $a \in \operatorname{pa}_{\mathcal{G}^{\dagger}}(\langle b \rangle_{\mathcal{G}^{\dagger}})$, then \mathcal{G}^{\dagger} being arid implies $\langle b \rangle_{\mathcal{G}^{\dagger}} = \{b\}$, and thus $a \in \operatorname{pa}_{\mathcal{G}^{\dagger}}(b)$; hence a and b are adjacent.

Alternatively, suppose $\langle \{a, b\} \rangle_{\mathcal{G}^{\dagger}}$ is a bidirectedconnected set. Note that $\langle \{a, b\} \rangle_{\mathcal{G}^{\dagger}} \subseteq \langle \{a, b\} \rangle_{\mathcal{G}}$ by Corollary 20, so *a* and *b* are also bidirected-connected in $\langle \{a, b\} \rangle_{\mathcal{G}}$ in \mathcal{G}^{\dagger} . By Proposition 17, the districts in \mathcal{G} form a superpartition of those in \mathcal{G}^{\dagger} , and therefore *a* and *b* are also bidirected-connected in $\langle \{a, b\} \rangle_{\mathcal{G}}$ in \mathcal{G} . Hence they satisfy the condition to add an edge $a \leftrightarrow b$ in the definition of \mathcal{G}^{\dagger} , and hence are adjacent in \mathcal{G}^{\dagger} . *Proof of Lemma 22.* The only possibly fixable vertices in $\langle \{v, w\} \rangle_{\mathcal{G}}$ are v and w by definition. But $w \in$ $\operatorname{pa}_{\mathcal{G}}(\langle v \rangle_{\mathcal{G}})$ implies that w is an ancestor of v, and since $\langle \{v, w\} \rangle_{\mathcal{G}}$ is bidirected-connected w is also in the same district. Hence w is not fixable in $\langle \{v, w\} \rangle_{\mathcal{G}}$, giving the result. \Box

Proof of Lemma 23. Suppose that such a path exists in \mathcal{G} . Each adjacent pair $\{a, b\}$ on the path satisfies the criterion for insertion of an edge in \mathcal{G}^{\dagger} of the same type as (one of) the edge(s) between a and b in \mathcal{G} . The only potential concern is that a bidirected edge in \mathcal{G} might instead be replaced by a directed edge in \mathcal{G}^{\dagger} .

Let π^{\dagger} be the path in \mathcal{G}^{\dagger} with the same vertices as π (this is unique since \mathcal{G}^{\dagger} is simple). Then π^{\dagger} is such that all adjacent nodes a, b satisfy the condition that $\langle \{a, b\} \rangle_{\mathcal{G}}$ is bidirected-connected in \mathcal{G} , except possibly for the end pairs which either satisfy this or $v \in \operatorname{pa}_{\mathcal{G}}(\langle a \rangle_{\mathcal{G}})$.

If all the internal nodes on π^{\dagger} are colliders in \mathcal{G}^{\dagger} then we are done; otherwise we claim we can find a strict subpath of π^{\dagger} (still from v to w), such that any adjacent nodes still satisfy the condition above.

Suppose *a* is an internal non-collider on π^{\dagger} because $a \leftrightarrow b$ has been replaced by $a \to b$. The replacement implies that $a \in pa_{\mathcal{G}}(\langle b \rangle_{\mathcal{G}})$ which with $a \leftrightarrow b$ in \mathcal{G} implies that $a \in \langle b \rangle_{\mathcal{G}}$ by Lemma 22. Let *c* be the other neighbour of *a* on the path.

First suppose $c \leftrightarrow a$ on π ; then $a \in \langle b \rangle_{\mathcal{G}}$ implies that $a \in \langle \{b, c\} \rangle_{\mathcal{G}}$, so $\langle \{b, c\} \rangle_{\mathcal{G}}$ is bidirected-connected. Hence we can remove a from π^{\dagger} and repeat the argument. Alternatively, if $c \to a$ on π (i.e. c is the end vertex on the path) then $c \in \operatorname{pa}_{\mathcal{G}}(\langle b \rangle_{\mathcal{G}})$ since $a \in \langle b \rangle_{\mathcal{G}}$, so start the path with $c \to b$. In either case, we have reduced the number of vertices on the path being considered, and this process will eventually terminate.

Proof of Proposition 26. Let $S \in \mathcal{I}(\mathcal{G})$. Using Theorem 19 it is sufficient to consider the case in which S is the set of all random vertices in \mathcal{G} . Let $H \subseteq S$ be the set of childless vertices in \mathcal{G} . Since S is bidirected-connected in \mathcal{G} , every pair of vertices in H is connected by a path of bidirected edges within S in \mathcal{G} , and hence is also connected by a collider path in \mathcal{G}^{\dagger} by Lemma 23. By Proposition 15, vertices in H are also childless in \mathcal{G}^{\dagger} , so the collider paths consist entirely of bidirected edges; hence H is bidirected-connected by paths in S in \mathcal{G}^{\dagger} .

Let the district of \mathcal{G}^{\dagger} containing H be $S^{\dagger} \subseteq S$. It then follows that $\langle H \rangle_{\mathcal{G}^{\dagger}} = S^{\dagger}$; see below for a proof. Further, since S is reachable in \mathcal{G} , S is reachable in \mathcal{G}^{\dagger} by Theorem 19. Since S^{\dagger} is a district in a reachable subgraph $\phi_{V \setminus S}(\mathcal{G}^{\dagger})$ of \mathcal{G}^{\dagger} , $S^{\dagger} \in \mathcal{I}(\mathcal{G}^{\dagger})$.

Conversely, let $S^{\dagger} \in \mathcal{I}(\mathcal{G}^{\dagger})$ and $H^{\dagger} \subseteq S^{\dagger}$ the set of childless vertices in S^{\dagger} in $\phi_{V \setminus S^{\dagger}}(\mathcal{G})$. Since only ele-

ments of H^{\dagger} are fixable in $\phi_{V \setminus S^{\dagger}}(\mathcal{G})$, $S^{\dagger} = \langle H^{\dagger} \rangle_{\mathcal{G}^{\dagger}}$. Let $S = \langle H^{\dagger} \rangle_{\mathcal{G}}$, which is a superset of $S^{\dagger} = \langle H^{\dagger} \rangle_{\mathcal{G}^{\dagger}}$ by Corollary 20.

For every pair a, b in $S^{\dagger} \subseteq S$ with $a \in \operatorname{sib}_{\mathcal{G}^{\dagger}}(b)$, $\langle \{a, b\} \rangle_{\mathcal{G}}$ must be in $S = \langle H^{\dagger} \rangle_{\mathcal{G}}$. Consequently H is bidirected connected in $\phi_{V \setminus S}(\mathcal{G})$, and thus so is S. Then S is intrinsic in \mathcal{G} , and H^{\dagger} is the set of childless vertices in S in $\phi_{V \setminus S}(\mathcal{G})$. This establishes the correspondence.

Proof that $\langle H \rangle_{\mathcal{G}^{\dagger}} = S^{\dagger}$ used in Proof of Proposition 26. Since H is bidirected-connected in \mathcal{G}^{\dagger} , clearly $\langle H \rangle_{\mathcal{G}^{\dagger}} \subseteq S^{\dagger}$. Let v be any vertex in $S^{\dagger} \setminus H$. Since $v \notin H$, $ch_{\mathcal{G}}(v) \neq \emptyset$. Since, by hypothesis \mathcal{G} consists of a single district it follows that there is a collider path: $v \to c \cdots \leftrightarrow h$ with $h \in H$ in \mathcal{G} . Hence by Lemma 23 and the fact that $ch_{\mathcal{G}^{\dagger}}(H) = \emptyset$, there is a path $v \to c^{\dagger} \cdots \leftrightarrow h$ in \mathcal{G}^{\dagger} , so $c^{\dagger} \in S^{\dagger}$. Thus from every vertex in $S^{\dagger} \setminus H$ there is a directed path to a vertex $h \in H$ on which every vertex is in $S^{\dagger} \setminus H$. Hence $\langle H \rangle_{\mathcal{G}^{\dagger}} = S^{\dagger}$.

References

 T. S. Richardson, R. J. Evans, J. M. Robins, and I. Shpitser. Nested Markov properties for acyclic directed mixed graphs. Working paper, https: //arxiv.org/abs/1701.06686v2, 2017.