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Appendix

m-separation and the Global Markov
Property

Let G be an ADMG with vertex set V, and let a,b € V
and C C V \ {a, b}, with C possibly empty. We say a
path 7 from a to b is open if no noncollider on 7 is in C,
and every collider on 7 is in ang(C'). A path which is
not open is said to be blocked by C'.

Now let A, B, C be disjoint subsets of V' (again, C may
be empty). We say that A is m-separated from B by C'in
G, if every path from any a € A to any b € B is blocked
by C.

We say a density p obeys the global Markov property
with respect to G if whenever A and B are m-separated
by C, the conditional independence X, 1L Xp | X¢
holds in p.

Fixing and Conditional Independence

Let gy (xy | zw ) be a kernel. The usual notion of condi-
tional independence in distributions is naturally extended
to kernels by saying that X4 1 Xp | Xgif A CV
and qv (x4 | 7B, ¢, Tw\ (Buc)) is a function only of x4
and x¢ (or otherwise with the roles of A and B inter-
changed). See [[1]] for more details.

Proof of Proposition[32] First note that for any A, B C
S we have

ps(@alrp, zy\s) = qs(zalzp, T\ 5).
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Let W =V \ (SUBUQC), so that

ps(zalep, zc)

= pi(ea,zw 2B, 20)
Tw
= Zpg(m |zp, 20, 2w) - ps(aw |2B, 2C)
Tw
=> qs(zalzp z0,2w) - Ps(zw | 2B, 7).
Tw
Then by definition of conditional independence in ¢g, the
first factor depends only on x 4 and x¢, so

ps(@alzp, wo) = f(ra,x0) Y pslew |wp,20)
zw

= f(za,2c).

Hence X4 L Xp | X¢ in p§. O

Technical Proofs

Proof of Proposition|[I7] If a € disg: (b), then fix a bidi-
rected path a <> wy < ... <> wy < bin G, Each bidi-
rected edge on this path from ¢ to d is due to ({¢, d})g
being bidirected-connected in G. But this implies the ex-
istence of a bidirected path from c to d in G. Thus, there
is a bidirected path from a to bin G.

Suppose a,b € S such that there is a bidirected edge
a ¢ bin G' (and hence also in ¢y s(G")). By the con-
struction of GT, a and b are bidirected-connected in the
closure of {a,b} in G. If a,b € S, then by definition of
closure and fixing (in G), every vertex in the closure of
{a,b} isin S. Hence @ and b are bidirected-connected in
G by a path on which every vertex is in S. Hence a and
b are bidirected-connected (in ¢y 5(G)). Consequently,
the districts of ¢y 5(G") form a sub-partition of the dis-
tricts in gy s(G). O

Proof of Lemmal(I8] If there is such a path in G then the
same path exists in G by Proposition If there is a



path in GT then consider an edge ¢ — d; since this exists
in G' then ¢ € pag({d)g), so there is a directed path in
G from c to d whose internal vertices (if any) are all in
(d)g \ {b}. Such vertices are not fixable in G by def-
inition and therefore do not include v. Hence we have
constructed a path that does not intersect v. O

Proof of Theorem[I9) If v is fixable in G, then it is also
fixable in G' by application of Propositions and

By Proposition [17] the districts of ¢, (G") forms a sub-
partition of the districts in ¢, (G). If a is an ancestor of
b in ¢,(G), then this is because there is a directed path
in G from a to b that does not intersect v; by Lemma
this happens if and only if there is such a path in G, and
hence a is an ancestor of b in ¢,(GT). Tt follows that
any vertex fixable in ¢, (G) is also fixable in ¢, (GT), so
a simple induction gives the first result.

Now let S € R(G). We have a — b in (¢v\s(G))"
if and only if b € S and a € pa¢v\s(g)(<b>¢v\s(g)).
Since S is reachable, (b)y,, ;(g) = (b)g by Proposition
and since (b)y,, 5(g) € 5. then pay . () ((b)g) =
pag((b)g). Hence a € pag((b)g), which happens if and
only if @ — bin GT. But since S > b this happens if
and only if @ — b in ¢y s(G"). The directed edges are
therefore the same.

a + bin (¢y\s(G))" if and only if a,b € S and
(a,b) g, s(g) is bidirected-connected. By Propositionﬂ
(a,b)p, (@) = (a,b)g, so this happens if and only i
a < bin G', which occurs if and only if @ « b in
dv\s(G1), since a,b € S. O

Proof of Proposition 21} Suppose for contradiction that
G' is not arid, so there exists v and t € (v)g+ \ {v} such
that ¢ <+ v in GT, by Proposition

Now ¢ € (v)g+ implies ¢t € (v)g by Corollary 20} and
since t # v we have t € pag((v)g) by Lemma

But by construction of G' this implies that graph should
contain ¢t — v; this is a contradiction since ¢t <> v was
assumed to exist in GT. This establishes GT is arid.

Now suppose a and b are densely connected in GT. If this
is because a € pag((b)gr), then GT being arid implies
(b)gt = {b}, and thus a € pag:(b); hence a and b are
adjacent.

Alternatively, suppose ({a,b})gi is a bidirected-
connected set. Note that ({a,b})gr C ({a,b})g by
Corollary 20] so a and b are also bidirected-connected
in ({a,b})¢g in G'. By Proposition the districts in G
form a superpartition of those in G t, and therefore a and
b are also bidirected-connected in ({a,b})g in G. Hence
they satisfy the condition to add an edge a <> b in the

definition of GT, and hence are adjacent in G f, O

Proof of Lemma[22] The only possibly fixable vertices
in ({v,w})g are v and w by definition. But w €
pag((v)g) implies that w is an ancestor of v, and since
({v,w})g is bidirected-connected w is also in the same
district. Hence w is not fixable in ({v,w})g, giving the
result. O

Proof of Lemma[23] Suppose that such a path exists in
G. Each adjacent pair {a, b} on the path satisfies the cri-
terion for insertion of an edge in G' of the same type
as (one of) the edge(s) between a and b in G. The only
potential concern is that a bidirected edge in G might in-
stead be replaced by a directed edge in G.

Let ' be the path in G' with the same vertices as 7 (this
is unique since G' is simple). Then 7' is such that all
adjacent nodes a, b satisfy the condition that ({a,b})g
is bidirected-connected in G, except possibly for the end
pairs which either satisfy this or v € pag({a)g).

If all the internal nodes on 71 are colliders in G then we
are done; otherwise we claim we can find a strict subpath
of 7t (still from v to w), such that any adjacent nodes still
satisfy the condition above.

Suppose a is an internal non-collider on ! because a <+
b has been replaced by a — b. The replacement implies
that a € pag((b)g) which with a <+ b in G implies that
a € (b)g by Lemma[22] Let c be the other neighbour of
a on the path.

First suppose ¢ <> a on m; then a € (b)g implies
that a € ({b, c})g, so ({b,c})g is bidirected-connected.
Hence we can remove a from 71 and repeat the argu-
ment. Alternatively, if c — a on 7 (i.e. cis the end vertex
on the path) then ¢ € pag((b)g) since a € (b)g, so start
the path with ¢ — b. In either case, we have reduced the
number of vertices on the path being considered, and this
process will eventually terminate. O

Proof of Proposition[26] Let S € Z(G). Using Theorem
it is sufficient to consider the case in which S is the
set of all random vertices in G. Let H C S be the set of
childless vertices in G. Since S is bidirected-connected
in G, every pair of vertices in H is connected by a path
of bidirected edges within S in G, and hence is also con-
nected by a collider path in GT by Lemma By Propo-
sition vertices in H are also childless in GT, so the
collider paths consist entirely of bidirected edges; hence
H is bidirected-connected by paths in S in GT.

Let the district of G' containing H be ST C S. It then
follows that (H)gi = ST; see below for a proof. Further,
since S is reachable in G, S is reachable in Gt by The-
orem Since ST is a district in a reachable subgraph
dv\s(G) of GT, ST € Z(G).

Conversely, let ST € Z(G') and HT C ST the set of
childless vertices in ST in $y\st(G). Since only ele-



ments of H' are fixable in ¢y g1 (G), ST = (HT)g:. Let
S = (H')g, which is a superset of ST = (HT)gs by
Corollary 20}

For every pair a,b in ST C S with a € sibgt (b),
{{a,b})g must be in S = (H')g. Consequently H is
bidirected connected in ¢\ 5(G), and thus so is S. Then
S is intrinsic in G, and HT is the set of childless ver-
tices in S in ¢y g(G). This establishes the correspon-
dence. 0

Proof that (H)gi = S 1 used in Proof of Proposition@
Since H is bidirected-connected in GT, clearly
(H)gr C ST. Let v be any vertex in ST\ H.
Since v ¢ H, chg(v) # 0. Since, by hypothesis G
consists of a single district it follows that there is a
collider path: v — ¢--- <> h with h € H in G. Hence
by Lemma 23| and the fact that chg(H) = 0, there is
apathv — ¢'--- < hin G, so ¢! € ST. Thus from
every vertex in ST\ H there is a directed path to a vertex
h € H on which every vertex is in ST\ H. Hence
(H)gr = ST. O
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