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PROOFS

Proof of Lemma 1. Each of the above coordinate-
wise statistics have closed-form integrals for any ¢ €
N. Now in the course of integrating the product
Jo Il ¥ b(@); duv(x) for some fixed j € [d]F, we
can encounter the following situations. First, prod-
ucts of the same dimension, say ¢(x);, yield an ex-
pression of the same functional form, but with a
power of 2c¢ instead of c. Hence, those products
have a closed-form integral. The integral of the prod-
uct of different coordinate-wise statistics ¢(x); and
¢(x);, which access different components of x, say
x, and xp, is simply the product of the correspond-
ing integrals, ie., [ [¢(x)id(x);dv(z,)dv(e,) =
([ ¢(x); dv(z, ) (f ¢(x) dy :cb)) which also has a
closed- form The last case 1s the integration of the prod-
uct of statistics of different type which involve the same
variable &, = . Any such integral can be written in the
form

/xcl In(z)dx, €))

where ¢; € Z and ¢o € N. Then, for ¢; # —1,

c1+1 1 c2
/xcl In(z)>dz e 7 n(z) —

c1+1

2 /x(’l In(z)2tda.

Cl+1

co is a known integer constant and we may repeat the
unrolling of the integral until only [ 2 d x is left. Thus,
we arrive at a summation over a constant number (cs) of
terms. In the case ¢c; = —1, the indefinite integral is
In(z)°2t /(e + 1). [ |

Proof of Lemma 2. Considering the semantic of in-
dex tuples, the number of index tuples that correspond
to the same clique tuple is equal to the number of joint
state assignments to all cliques in the tuple. The num-
ber of such assignments is the product of the state spaces
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H§:1 |Xc (), |, which establishes the statement for |[5]].
Second, the number of permutations of [ objects is ! =
{(lI—1)(1—2)...2. Here, we are interested in the number
of ways how h(C) < i objects—h(C) distinct cliques—
can be distributed to ¢ different places. For example,
when we consider the cliques A and B and the clique tu-
ple (A, A, B), its equivalence class [(A, A, B)] contains
the tuples (A4, A, B), (4,B,A), (A,B,B), (B,B,A),
(B,A,B), and (B, A, A). Counting such multicom-
binations is a well known combinatorial enumeration
problem, equivalent to the total number of surjective
functions from [i] to [A(C)]. The resulting number is
h(C)'{i h(C)}T, where the factorial accounts for the
number of permutations of distinct cliques. The second
factor is the Stirling number of second kind {n k} T,
which counts the number of ways to partition a set of
n elements into k subsets. This establishes the second
equality. Lastly, each clique tuple in the equivalence
class [C] corresponds to the same number of indices,
namely |[7]|. Hence, the total number of indices covered
by the equivalence class |[j]*| is the product of the sizes
[[C]| and |[4] |, which completes the proof. |

Proof of Theorem 2. By Hoeffding’s inequality (Ho-

effding, 1963), for N independent samples from a ran-
dom variable Y, bounded in [a; b], we have

1 2Nt?
]P’[N21 Y]Zt]ngxp<—(b_a)2>.

N
> v -

Setting ¢ = &[X'| in combination with | Z(8) — Z(6)] <

e|X|, Theorem 1 and the triangle inequality, we get

P 2]"(8) - 2£(0)] = €| X]]

€2|X|2
< — _— =
—26"p< Nﬂzneuz’g/) ’
= P 2""(0) — ZE(0)| +|2£(0) — Z(8)| > 2¢|X]]
<8 =P[Z"(0) - 2(0) > 2:|X|| <6 . 2)



Now, we apply the error bound for Chebyshev approx-
imations (Xiang et al., 2010) and Holder’s inequality
(Holder, 1889).

dexp ||0]]1
m(k—1)k!
The rightmost inequality is known as naive mean field
lower bound (Wainwright and Jordan, 2008). More pre-
cisely,
log Z(0) = sup (0, u) + H(p)

peM

> (0, 1)+ H(n) Ve M(G),

X
o) < e 12

21X
2] < o 6]

< eZ(6) (3)

where M (Q) is the marginal polytope and H(u) is the
entropy of the density implied by u. Since the inequality
is valid for all & € M(G), we may choose the fully
factorized density with uniform marginals. Hence,

H(p) == p@)logp(w
reX
= log | Xy = log | X] .
> Mo H

Combining this with (@,p) > —||@|; implies
logZ(6) > —||0]1 + log|X| and thus Z(68) >
|X'|/ exp ||0]|1, which explains the last inequality in (3).
The statement of the theorem is then derived by plugging
(3) into the probability that is complementary to (2). W

Proof of Theorem 3. We call an index tuple realiz-
able, if no states of the induced state tuple contradict
each other'. The x; value of non-realizable index tu-
ples is 0, hence, it suffices to do the summation only
over realizable tuples. The value Xfp (g) of any realiz-
able index tuple depends only on the associated clique
tuple C'(7). This implies that all tuples from the same
equivalence class [j], will contribute equally to the sum.
We can thus rewrite the summation over all index tuples
[d]® in terms of a summation over all index tuples C* and
multiply each summand by the size of the corresponding
equivalence class:

||X¢H1 = Z ‘qu

jeld]’

= > |lEiC

CeC?

¢|X¢ (C)) ;

where j(C) is an arbitrary index tuple associated with
clique tuple C'.

Furthermore, note that be is permutation invariant, e.g.,
for any fixed indices a, b, ¢, ... and any permutation o,

'We refer to the proof of Lemma 2 in (Piatkowski and
Morik, 2016) for more details on non-realizable instances.

we have x/,(a,b,¢,...) = x4(o(a,b,c,...)). In other
words, x* will yield the same function value for all j
which correspond to clique tuples C' that are in the same
equivalence class [C]. We hence sum only over the el-
ements of P(C, i) and multiply each term in the sum by
the size of the corresponding equivalence class:

ol = D 1H(CO)slx,(3(C))
cect
= Y IOl (C)]s) -
[CleP(C,i)
We have x;,([3(C)]o) = [X/|Xcr] = |1X]/|[5(C)]sl-

Plugging this into the equation above and invoking Lem-
mas 2 and 3 to compute the sizes of equivalence classes,
yields

=18 Y w0 h-
[CleP(C,i)
Here, C is an arbitrary member of the equivalence class
[C], and h(C) is the number of distinct cliques which
appear in the tuple C. We finally partition the summation
over P(C, 1), into i separate summations, each over those
members of P(C,¢) which have size 1 < [ < i. Hence,
h(C) =l in each of these separate summations:

(SIS DD SRR H TS
(€)=l

1=0 [C]€P(C,i):h

(7) follows from the fact that number of terms in each in-
ner sum can be computed via binomial coefficients. Note
that {0 0} T = 1, 0! = 1, and that the empty set is con-
tained in P(C,0). The runtime reported in the theorem

follows from the identity Zli:o {;} ('?l) N=cl’. m

Proof of Lemma 3. We have Xf;s (4) = 0 whenever an
index tuple is non-realizable. L.e., at least two indices
in the tuple imply different assignments to the same vari-
able. For the clique tuple C(j), observe that X ;) is the
full joint state space of all unique variables in C. If C
contains cliques that share some vertices, those vertices
must have the same state if and only if 5 is realizable.
Thus, there cannot be more than |X¢ ;| distinct realiz-
able index tuples. The second equality is then a direct
consequence of Lemma 2. |

Proof of Theorem 4. If j is non-realizable, then y ¢
Xpcy and both P¢ 4(J = j | I = i) = 0 and the pro-
posed factorization will assign mass 0. Now, assume that
J is realizable and hence y € X|¢). By definition of the



above quantities:

PC[IC) Py [ [Clop(CT | DB | 1)
1

il S O

We have x,(j) = [X[/|Xx_ ¢, | for any realizable j.
The denominator will be the same for all clique tuples C'
from the same equivalence class [C], since those share
the same variables. Hence, X (j) = |X|/|X[c|. Multi-
plication of (4) by 1 = |X'|/|X| hence yields

P(C | [CLL By | [CLB(C] | BU | 1)
_ X5 () .
i {p ) () w

By Definition, we have P¢ o(J = j | I = i) =
Xfﬁ(j )/l be||1 for any realizable j. Thus, the theorem
follows by plugging the result of Theorem 3 into (5). W

“
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Proof of Theorem 5. We analyze the worst-case com-
plexity of each step separately and assume that uniform
random numbers can be drawn in O(1). To draw a sam-
ple according to p(l | ¢), we employ inversion sam-
pling. Computing each probability requires the evalua-
tion of a Stirling number of second kind (O(?) steps),
a binomial coefficient (O(I) steps), and a factorial (also
O(1)). These probabilities have to be computed for each
1 <[ < 4. Since 7 is at most k, the total runtime for the
probability computation is O(k?). Drawing an actual in-
version sample from {1,2,...,i} hence requires O(k*)
steps. Whenever multiple samples must be drawn, we
can reuse the probabilities. Thus, any subsequent sample
requires only O(k) steps. Moreover, the terms that ap-
pear in the uniform sampling steps in lines 2 and 3 have
already be computed for the first step. Consequently,
their worst-case complexity is O(1).

We explained earlier that each clique equivalence class
corresponds to a subset of [ cliques. The algorithm pre-
sented in (Buckles and Lybanon, 1977) is used to directly
generate the a-th clique combination (in lexicographic
order). The runtime of this algorithm is equal to the
largest element in the combination, and the worst-case
complexity of line 4 is hence O(|C|).

In contrast, we are not aware of an algorithm that gener-
ates the b-th composition of {1,2,...,i} with [ subsets
directly. Instead, we generate such compositions by first
computing an unordered partition of ¢ elements into ex-
actly [ blocks, followed by a particular [-permutation.

As an example, let [C] = {A, B,C} and ¢ = 5 (the tu-
ple length). Hence, | = 3 cliques must be assigned to ¢ =

5 places. After determining the tuple, say (1,2,2,3,1),
a permutation of (A, B, C) must be determined to find
the actual clique tuple. in case of the identity permuta-
tion, the resulting tuple would be (A, B, B,C, A). An-
other permutation would lead to (C, A, A, B, C)—there
are 3! = 6 of such permutation in total.

We employ the algorithm from (Ehrlich, 1973) (Section
5.2.2) to generate all unordered partitions of 7 elements
into exactly [ blocks. There are {i [} such partitions
and the algorithm from (Ehrlich, 1973) requires O(1)
steps to generate the successor of any partition. Another
algorithm from (Ehrlich, 1973) can be used to generate
all [-permutations in O(1!) steps. Alternatively, there are
algorithms which do not require to store all permutations
but generate the g-th permutation (for any ¢) directly—
such procedures require O(I?) steps. In total, it requires
O({i 1}7 + 1!) steps (and memory) to precompute all
partitions and permutations—any subsequent execution
of line 5 (for the same combination of ¢ and [) will
take O(1) steps. Since clique tuples C' may involve all
|V| = n vertices, the worst-case complexities of lines 6
and 7 are O(kn) and O(n), respectively. The joint state
y, computed in line 8, is the c-th element of the product
space @), g Xy. Converting c into the particular state y
is done by a series of | S| subtractions and divisions. As
explained above, S may contain all vertices, and line 8
can thus be computed in O(n) steps. By employing an
array of offsets to access the first parameter index of any
clique, the conversion of the pair (C, y) to the index tu-
ple j is done in O(k) steps. Combining these insights
yields the statement of the theorem. ]

Proof of Theorem 6 Let [ = min{ZéV’k(G), Z(0)} and
u = max{ZéV’k(O), Z(0)}. Applying the mean value
theorem to the logarithm, there is £ € [/, u] such that
&|Inl —Inwu| = |l — u|. By Theorem 2,

PIZX"(0) — 2(0)| < eZ(0)] > 1-14 ,
and hence
P¢|n 2" (0) —In Z(6)| < eZ(0)] > 13 .

Dividing by £ and using the fact £ > [ implies the desired
result. |
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