
A SUPPLEMENTARY LEMMAS

Lemma 7. The clipped error `c satisfies the triangle in-
equality.

Proof: This results follows because |x|c = |x�y+y|c 
|x�y|c+|y|c, still holds under clipping. To see why, con-
sider the following. If either |x � y|c or |y|c are clipped
to c, then clearly the sum is larger than |x|c. Otherwise,
if only |x|c is clipped to c, then it can only have been
strictly decreased and again the inequality must hold.
Once we have this inequality, we can use the fact that
|x|  |x � y| + |y| and |y|  |x � y| + |x| to get the
|x|� |y|  |x� y| and |y|� |x|  |x� y|. ⌅
Lemma 6. For a state s 2 S , Algorithm 2 returns an
✏, �, ⌧ -approximation v̄(s):

|v̄⇤(s)� v̄(s)|  ✏|v̄⇤(s)|+ ✏⌧ (8)

Proof: We follow a similar argument to Mnih et al.
[2008, Section 3.1]. The empirical Bernstein bound
[Audibert et al., 2007] states that, for a sample average
ḡt =

1
t

Pt
j=1 gj of t unbiased samples gj

|v̄⇤(s)� ḡt|  ct

where

ct = �̄(r)
t

r
2 log(3/�)

t
+ 3 log(3/�)

Vmax

t
(18)

�̄(r)
t =

vuut1

t

tX

j=1

(gj � v̄(s))2 (19)

Algorithm 2 estimates lower and upper bounds, based on
this concentration inequality, guaranteeing that the abso-
lute value of the true value is between these bounds with
probability at least 1 � �. Algorithm 2 terminates when
either of the following cases are satisfied:

[Case : 1] (1 + ✏)LB + 2✏⌧ � (1 � ✏)UB and returns
v̄ = sign(ḡt)

2 ((1 + ✏)LB + (1� ✏)UB).

[Case : 2] cUB�cLB
2  ✏⌧ and if so, the algorithm outputs

v̄ =
cUB+cLB

2 . This second case is for the setting where
v̄⇤(s) = 0, or very near zero, meaning it would not ter-
minate in Case 1. The relative error will remain high,
even though v̄(s) is sufficiently close to v̄⇤(s) to satisfy
(8) because of ⌧ > 0.

We show that for both cases, (8) is satisfied. We be-
gin with the proof for Case 1. Assume the algorithm
terminated, according to the condition in Case 1. For
all j 2 {1, . . . , t}, cj > 0 and UB > 0 since UB =

minj(|ḡj |+ cj). Upon termination, we have with proba-
bility 1� �,

|v̄(s)| = (1 + ✏)LB + (1� ✏)UB
2

 (1 + ✏)LB + (1 + ✏)LB + 2✏⌧

2
= (1 + ✏)LB + ✏⌧

 (1 + ✏)|v̄⇤(s)|+ ✏⌧.

Similarly,

|v̄(s)| = (1 + ✏)LB + (1� ✏)UB
2

� (1� ✏)UB + (1� ✏)UB + 2✏⌧

2
� (1� ✏)|v̄⇤(s)|+ ✏⌧

Combining these two inequalities gives
��|v̄(s)|� |v̄⇤(s)|

��  ✏|v̄⇤(s)|+ ✏⌧. (20)

When termination occurs under Case, we know LB >
0, and so |ḡt| � ct � |ḡt � v̄⇤(s)|. This is because
|ḡt| � ct must have increased the lower bound, to allow
termination. This inequality, |ḡt| � |ḡt � v̄⇤(s)| is only
possible if v̄⇤(s) is of the same sign as ḡt. This gives that
sign(v̄(s)) = sign(ḡt) = sign(v̄⇤(s)). Because the signs
match,

��|v̄(s)| � |v̄⇤(s)|
�� = |v̄(s) � v̄⇤(s)|, and so the

result follows from Equation (20).

For Case 2, the interval [cLB, cUB] represents the confi-
dence interval from the IID samples that contains the true
mean v̄⇤. The terminating condition is cUB�cLB

2  ✏⌧ . For
v̄(s) =

cUB+cLB
2 , this gives UB� v̄(s) =

cUB�cLB
2  ✏⌧ and

v̄(s)� LB =
cUB�cLB

2  ✏⌧ . Upon termination, therefore,
we have ✏⌧ � cUB�v̄ � v̄⇤�v̄ and ✏⌧ � v̄�cLB � v̄�v̄⇤.
Thus, |v̄ � v̄⇤|  ✏⌧  ✏|v̄⇤|+ ✏⌧ . ⌅

B HIGH CONFIDENCE BOUNDS FOR
CLIPPED MAVE AND MSVE

If one desires to use non-percentage losses, corre-
sponding high-confidence sample complexity bounds are
derivable. In this section, we will extend our analysis
to the clipped Mean Absolue Value Error (CMAVE) and
clipped Mean Squared Value Error (CMSVE).

These are defined as follows:

CMAVE(v̂, v̄) def
= E [min(c, |v̂(si)� v̄(si)|)]

CMSVE(v̂, v̄) def
= E

⇥
min(c, (v̂(si)� v̄(si))

2)
⇤



Along with their empirical approximations:

CMAVE(v̂, v̄) ⇡ 1

m

mX

i=1

min(c, |v̂(si)� v̄(si)|)

CMSVE(v̂, v̄) ⇡ 1

m

mX

i=1

min(c, (v̂(si)� v̄(si))
2)

In proving the sample complexity results, we use some
of the ideas used in proving Theorem 1. Since both
CMAVE and CMSVE are non-percentage losses and do
not require a division by the value function, the analysis
is greatly simplified. In fact, they no longer require As-
sumption 2 and, hence, remove the need for EBGStop-
like algorithms (1 and 2) presented in Section 4 (which
deal with relative errors). Instead of using EBGStop to
provide an estimate of the value function, we can sim-
ply compute the appropriate number of truncated roll-
outs (sampled returns) to achieve an estimate of the de-
sired accuracy. These sample complexity numbers are
provided in the following analysis.

B.1 SAMPLE COMPLEXITY ANALYSIS OF
CLIPPED MAVE

In this section, we will use `(v̂, v̄) to refer CMAVE(v̂, v̄).
Also, the following definitions will be necessary for our
analysis:

`c(v̂(si), v̄(si))
def
= min(c, |v̂(si)� v̄(si)|)

ˆ̀(v̂, v̄)
def
=

1

m

mX

i=1

min(c, |v̂(si)� v̄(si)|)

`(v̂, v̄)
def
= E[ˆ̀(v̂, v̄)]

We also define similar quantities replacing v̄ with v⇤

in the above definitions. Below, we present the sample
complexity bound for CMAVE.

Theorem 8. Let {s1, . . . , sm} be states sampled I.I.D
according to d and that the number of rollouts for each
state be n. Let �̄i be the standard deviation of the rollouts
for state i.

With probability at least 1 � � the following bound for
clipped MAVE holds:

���`(v̂, v⇤)� ˆ̀(v̂, v̄)
��� 

r
log(4K/�)c2

2m
+ ⇣. (21)

for ⇣ = 3Rmax
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Proof: Similar to Theorem 1, we start by bounding���`(v̂, v⇤)� ˆ̀(v̂, v̄)
���:

���`(v̂, v⇤)� ˆ̀(v̂, v̄)
��� 

���`(v̂, v⇤)� ˆ̀(v̂, v⇤)
���

+
���ˆ̀(v̂, v⇤)� ˆ̀(v̂, v̄)

���

The first term is bounded by Hoeffding’s inequality in
Lemma 2 with probability at least 1� �/2 which gives:

���`(v̂, v⇤)� ˆ̀(v̂, v⇤)
��� 

r
log(4K/�)c2

2m

The second term is bounded in the following way:
���ˆ̀(v̂, v⇤)� ˆ̀(v̂, v̄)

���

 1

m

mX

i=1

|`c(v̂(si), v⇤(si))� `c(v̂(si), v̄(si))|

We can bound each one of these terms as follows:

|`c(v̂(si), v⇤(si))� `c(v̂(si), v̄(si))|
= |min(c, |v̂(si)� v⇤(si)|)�min(c, |v̂(si)� v̄(si)|)|

 max
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 |v̄(si)�v⇤(si)|  |v̄(si)� v̄⇤(si)|+ |v̄⇤(si)�v⇤(si)|
 ⇣. (22)

Now, we need to find an expression of ⇣.
The term |v̄(si) � v̄⇤(si)| can be bounded us-
ing the empirical bernstein inequality for ran-

dom variables with range: Rmax
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.

This leads us to a bound: |v̄(si) � v̄⇤(si)| 
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The second term can be bounded based on the proof

of Lemma 5: |v̄⇤(si) � v⇤(si)|  Rmax
�l

1� �
.

This gives us ⇣ = 3Rmax
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. We finish the

proof by pointing out that due to using hoeffding bound
twice with error probability of atmost �/2 and due to the
union bound (to ensure that the bound holds for all m
states), the probability that the final bound holds is with
at least 1� �. ⌅



B.2 SAMPLE COMPLEXITY ANALYSIS OF
CLIPPED MSVE

In this section, we will use `(v̂, v̄) to refer CMSVE(v̂, v̄).
Also, the following definitions will be necessary for our
analysis:

`c(v̂(si), v̄(si))
def
= min(c, (v̂(si)� v̄(si))

2)

ˆ̀(v̂, v̄)
def
=

1

m

mX

i=1

min(c, (v̂(si)� v̄(si))
2)

`(v̂, v̄)
def
= E[ˆ̀(v̂, v̄)]

Similarly, in the above definitions, v⇤ can be used instead
of v̄. Below, we present the sample complexity bound for
CMSVE.

Theorem 9. Let {s1, . . . , sm} be states sampled I.I.D
according to d and that the number of rollouts for each
state be n. Let �̄i be the standard deviation of the rollouts
for state i.

With probability at least 1 � � the following bound for
clipped MSVE holds:

���`(v̂, v⇤)� ˆ̀(v̂, v̄)
��� 

r
log(4K/�)c2

2m
+ ⇣ (23)

for ⇣ = 3R2
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Proof: Similar to Theorem 1, we start by bounding���`(v̂, v⇤)� ˆ̀(v̂, v̄)
���:

���`(v̂, v⇤)� ˆ̀(v̂, v̄)
��� 

���`(v̂, v⇤)� ˆ̀(v̂, v⇤)
���

+
���ˆ̀(v̂, v⇤)� ˆ̀(v̂, v̄)

���

The first term is bounded by Hoeffding’s inequality in
Lemma 2 with probability atleast 1� �/2 which gives:

���`(v̂, v⇤)� ˆ̀(v̂, v⇤)
��� 

r
log(4K/�)c2

2m

The second term is bounded in the following way:
���ˆ̀(v̂, v⇤)� ˆ̀(v̂, v̄)

���
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|`c(v̂(si), v⇤(si))� `c(v̂(si), v̄(si))|

We can bound each one of these terms as follows:

|`c(v̂(si), v⇤(si))� `c(v̂(si), v̄(si))|
=
��min(c, (v̂(si)� v⇤(si))
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 |v̄(si)� v̄⇤(si)|2 + |v̄⇤(si)� v⇤(si)|2  ⇣ (24)

The first inequality is due to |a � b|2  (|a � c| +
|c � b|)2 and this implies |a � b|2  |a � c|2 +
|c � b|2  (|a � c| + |c � b|)2. The range of v̄ is

R2
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We finish the proof similarly to conclude that the final
bound holds with probability atleast 1� � due to the ap-
plication of hoeffding’s bound twice with error probabil-
ity of atmost �/2 and due to the union bound. ⌅

C SAMPLE COMPLEXITY ANALYSIS
OF UNCLIPPED LOSSES

Sometimes, one may prefer to consider unclipped losses.
Here, we will present sample complexity bounds for
the Mean Absolute Value Error (MAVE) and the Mean
Squared Value Error (MSVE). To derive meaningful
bounds for unbounded random variables, we need to im-
pose other assumptions. There are various options but
we choose to explore one: using sub-exponential random
variables. With this assumption, the proof techniques
mostly follow from those in Section B of the appendix.
Below we briefly discuss sub-exponential random vari-
ables and illustrate how one can derive the corresponding
concentration bounds.

C.1 SUB-EXPONENTIAL CONCENTRATION
ANALYSIS

It is well known that for unbounded random variables,
finite high probability bounds are not derivable unless it
is possible to assume a bound on the moment generat-
ing function. One way to derive a meaningful bound is



to assume that the tails of the random variable’s distribu-
tion decay exponentially. If we know the tail decay like
a Gaussian distribution, sub-gaussianity is a common as-
sumption. A weaker assumption is sub-exponentiality,
which only requires that the moment generating func-
tion exists. The Laplace and exponential distributions
are two such common fat-tailed distributions. In this sec-
tion, we will assume that the loss random variable is sub-
exponential and derive finite sample complexity bounds.
For completeness, we provide the necessary definitions.
Definition C.1. A sub-gaussian random variable X with
mean µ = E[X] and parameters � � 0 has the following
bound on its moment generating function (MGF):

E[e�(X�µ)]  e
�2�2

2 8� 2 R (25)

Definition C.2. A sub-exponential random variable X
with mean µ = E[X] and parameters ↵,� � 0 has the
following bound on its moment generating function:

E[e�(X�µ)]  e
↵2�2

2 8|�|  � (26)

Note that all sub-gaussian RVs are sub-exponential with
↵ = � and � = 1, but not all sub-exponential RVs are
sub-gaussian. For example, the gaussian distribution is
a sub-exponential RV with ↵ being the standard devia-
tion and � = 1. Thus, if the loss is known to be sub-
gaussian, one can still use the sub-exponential concen-
tration bound. Below, in Theorem 10, we present a con-
centration bound for sub-exponential random variables.
Theorem 10. If Xi are I.I.D sub-exponential RVs with
parameters (↵,�) as defined in Definition C.2, then the
following concentration bound holds:
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We used Markov’s inequality and the last equality is due
to the independence of Xi. Now, we can bound the
moment generating function of each Xi using the sub-
exponential RV’s property (Definition C.2).

) E[e�(Xi�µ)/n]

e�t/n
 e

0.5↵2�2��t
n

Optimizing over � will result in the tightest bound possi-
ble. The minimum of 0.5↵2�2��t

n is reached at � = t
↵2 .

Replacing �, we arrive at the expression: � t2

2↵2 . By def-
inition � < �, which results in t < ↵2�. As a result, the
following bound for t 2 (0,↵2�) has to hold:
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The same argument follows for the lower tail
and by the union bound we conclude that
Pr
h���

Pn
i=1 Xi

n � µ
��� � t

i
 2e�

nt2

2↵2 . For t � ↵2�,
the function 0.5↵2�2 � �t decreases monotonously
as � increases since the gradient: �↵2 � t
is negative for 0  � < �, t � ↵2� and
thus the minimum is reached at � = �. So,
0.5↵2�2 � �t < ��t + �2↵2

2  ��t + �t
2 = ��t

2 .
The last inequality is due to t � ↵2�. For t > ↵2�,
the strict inequality becomes an inequality, resulting in
E[e�(Xi�µ)/n]

e�t/n
 e�

t�
2 . Using the same argument for

the confidence bound for the case that t < ↵2�, we
conclude the proof.

⌅
A key point to notice in Theorem 10 is that sub-
exponential variables exhibit gaussian-like tail decay for
a small deviation t in contrast to a slower fat tailed de-
cay for larger t. Also, note that a given distribution may
be sub-exponential with multiple settings of ↵ and �. To
obtain the best concentration bounds, we would want to
optimize these parameters, a task which will depend on
the exact distribution being considered.

To give an example of how one can prove sub-
exponentiality of random variables, we analyze the
Laplace distribution.

Definition C.3. (Laplace MGF) If X ⇠ Lap(µ, b)
with probability density function = 1

2be
|x�µ|

b , then
E[e�(X�µ)] = 1

1�b2�2 for |�| < 1
b

Proposition 11. If X ⇠ Lap(µ,b), then X is a sub-
exponential RV with ↵ = b

p
5.12 and � =

p
0.9
b .



Proof: Notice that 1
1�x  e2.56x for 0  x  0.9.

The second inequality comes from basic calculations that
conclude e2.55x ⇡ 1

1�x for x = 0.9, e2.56x > 1
1�x ,

and the fact that e2.56x is always above the function 1
1�x

for 0  x  0.9. Based on the above inequality, for
X ⇠ Lap(µ,b), E[e�(X�µ)] = 1

1�b2�2  e2.56b
2�2

=

e
(
p

5.12b)2�2

2 . Thus, E[e�(X�µ)]  e
↵2�2

2 for ↵ = b
p
5.12

and |�| < � =
p
0.9
b . This concludes the proof. ⌅

Note that these constants for ↵ and � were not optimized
in the above proof and the given values are only one pa-
rameter setting out of (infinitely) many that show that the
Laplace distribution is sub-exponential.

C.2 SAMPLE COMPLEXITY ANALYSIS OF
UNCLIPPED MAVE

In this section we assume that the loss is a sub-
exponential random variable. Following the proof of
Theorem 8, it is not hard to notice that the only differ-
ence will be replacing the Hoeffding’s confidence bound
with the sub-exponential concentration bound. The fol-
lowing corollary states the result.
Corollary 2. Let {s1, . . . , sm} be states sampled I.I.D
according to d and that the number of rollouts for each
state be n.

If the loss is a sub-exponential random variable with pa-
rameters ↵ and �, with probability at least 1 � � the
following bound for unclipped MAVE holds:

���`(v̂, v⇤)� ˆ̀(v̂, v̄)
���  t+ ⇣. (27)

for ⇣ = 3Rmax
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0 < �1  ↵2� and 0 < �2  ↵2�, then t = �1. If
�1 > ↵2� and �2 > ↵2�, then t = �2.

Proof: Let Xi be the empirical loss for each
state i and the mean loss be µ. Due to The-
orem 10, for K different empirical loss mean
estimates and for 0 < �1  ↵2�, setting
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Based on the conditions for �1 and �2 to be valid, t is
chosen accordingly. Thus, using union bound over K
empirical loss mean estimates, the total error probability
is at most �/2. The rest of the results regarding ⇣ fol-
lows from Theorem 8 since the bounding technique in its
proof does not rely on clipping even though the loss is
clipped. This later part gives an error probability of at
most �/2 and so the total error probability is at most �.

⌅

C.3 SAMPLE COMPLEXITY ANALYSIS OF
UNCLIPPED MSVE

Corollary 3. Let {s1, . . . , sm} be states sampled I.I.D
according to d and that the number of rollouts for each
state be n.

If the loss is a sub-exponential random variable with pa-
rameters ↵ and �, with probability at least 1 � � the
following bound for unclipped MSVE holds:

���`(v̂, v⇤)� ˆ̀(v̂, v̄)
���  t+ ⇣. (28)
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2 log(4K/�)

�m
. If

0 < �1  ↵2� and 0 < �2  ↵2�, then t = �1. If
�1 > ↵2� and �2 > ↵2�, then t = �2.

Proof: The same argument from Corollary 2 is applied
here for choosing t appropriately. Similarly, the rest of
the results regarding ⇣ follows from Theorem 9 since the
bounding technique in its proof does not rely on clipping
even though the loss is clipped. ⌅

D ALGORITHM DETAILS

In this section, we provide additional details on the pseu-
docode in the main body, as well as providing the re-
placement for Algorithm 2 for other the losses discussed
in the appendix.

D.1 Sampling returns

To sample the returns to satisfy Assumption 1 for the dis-
counted setting, we provide Algorithm 3. We use the re-
sult in Lemma 3 to ensure Assumption 1 is satisfied.

There are a few other details that warrant explanation in
the pseudocode for Algorithm 2. The trajectory rollouts



Algorithm 3 Sample truncated return to satisfy Assump-
tion 1

1: . Input ✏, �, ⌧, �, state s
2: . Output a sampled return, g
3: p� = 1
4: g  0
5: s0  s
6: while p� > ✏(1� �)/Rmax do
7: Sample next sk+1, rk+1, sampling the action ac-

cording to ⇡(·|sk)
8: g  g + p�rk+1

9: p�  p��
return g

Algorithm 4 Empirical confidence interval using boot-
strapping

1: . Input number of sets to sample k (e.g., k = 1000),
and iteration j.

2: �0  3
(3/dh)↵

· 100
3: D  randomly sample k sets of size j from the em-

pirical distribution F̂
4: {g1, . . . , gk} compute the means from the sets in

D
5: c�0  the �0’th percentile from {g1, . . . , gk}
6: c100��0  the (100 � �0)’th percentile from

{g1, . . . , gk}
7: cj  max(c�0 , c100��0)
8: LB max(LB, |ḡ|� cj)
9: UB min(UB, |ḡ|+ cj)

are of the appropriate lengths given by Lemma 5 to en-
sure the error due to truncation is sufficiently small. For
the empirical Bernstein inequality, we need to estimate
the mean and variance of the sample truncated returns.
We use a numerically stable approach to compute this
sample mean and standard deviation, using Welford’s al-
gorithm [Welford, 1962].

D.2 Sampling algorithm for CMAVE, CMSVE,
MAVE and MSVE

In this section, we present an incremental sampling al-
gorithm (Algorithm 5) that can be used to sample states
with their values and hence guarantee that the high prob-
ability errors of sub-exponential MAVE, MSVE and
clipped MAVE, MSVE are bounded by a desired pre-
set amount ✏. This algorithm would be called in Al-
gorithm 1, in place of Algorithm 2. Since a given er-
ror can be satisfied with different combinations of m —
the number of sampled states—and n—the number of
rollouts per state—one option for MSVE and MAVE is
to pick m such that the error contributed by the sub-

Algorithm 5 High confidence v̄ estimator for clipped
losses

1: . Input ✏, �,m,K,↵,�
2: . Compute the values v̄ once offline and store for

repeated use.
3: . If using CMAVE/MAVE, set Vmax =

Rmax

 
1� �l

1� �

!

4: . If using CMSVE/MSVE, set Vmax =

R2
max

 
1� �l

1� �

!2

5: . If using MAVE/MSVE, set m = d 2 log(4K/�)
↵2�2 e and

⇣  ✏� ↵

r
2 log(4K/�)

m

6: . Else for CMAVE/CMSVE: ⇣  ✏�
q

log(4K/�)c2

2m

7: . For states i = 1, ..,m initialize:
8: ḡi  0, Mi  0
9: ji  1, hi  0, ↵i  1, xi  1

10: �  1.1, p 1.1, ⇣  ✏�
q

log(4K/�)c2

2m

11: while True do
12: for i 2 {1, ..,m} do
13: gi  Sampled return from state i of length l
14: �i  gi � ḡi
15: ḡi  ḡi +

�i
ji

16: Mi  Mi +�i(gi � ḡi)
17: �i  

p
Mi/ji

18: . Compute the confidence interval
19: if ji �

⌅
�hi
⇧

then
20: hi  hi + 1
21: ↵i  

⌅
�hi
⇧
/
⌅
�hi�1

⇧

22: xi  �↵i log
�(p� 1)

6mphp
i

23: ci  �i

q
2xi
ji

+ 3Vmaxxi
ji

24: ji = ji + 1

25: if
Pm

i=1 ci
m  ⇣ then

26: . For all states i = 1, ..,m :
27: v̄(i) ḡi
28: return v̄

exponential bound is atmost ↵2� to take advantage of
the subgaussian tail decay. Such a choice corresponds to
m = d 2 log(4K/�)

↵2�2 e. For CMAVE, CMSVE, we suggest
fixing m beforehand depending on c, ✏ and how costly it
is to sample more rollouts compared to sampling states.
We leave other selection criteria for future work.



D.3 Computation of optimal intervals

For completeness, we include how we used bootstrap-
ping to compute the intervals to provide a similar stop-
ping rule to EBGStop. The algorithm is the same, except
in how the confidence intervals are computed. We first
generate a large batch of data, to act as the empirical dis-
tribution. We could simply sample sets of size j repeat-
edly, from the simulator, to get a sense of variability of
sample averages. However, we choose to sample a very
large batch of data upfront, to reduce the computational
burden of the procedure. On each step, a large number k
of set of j return samples are drawn, and their sample av-
erage computed to obtain the spread of values. Then the
percentile corresponding to � is computed, to provide a
high-confidence estimate of a lower and an upper bound
on the true values. This approach to computing the true
confidence interval is given in Algorithm 4. We sampled
an batch of 107 returns for each state, to provide the em-
pirical distribution, and set k = 1000.

This approach is not a suitable strategy to get high con-
fidence estimates, because it requires a very large num-
ber of samples. Rather, we only used this strategy as
a comparison, to provide a close approximation to the
true confidence intervals, and so obtain best-case sam-
pling numbers. This allowed us to evaluated the impact
of the looseness of our bounds, in terms of how many
extra samples are generated.


