
Meta Reinforcement Learning with Latent

Variable Gaussian Processes: Supplement

1 Model-Based Meta Reinforcement Learning

We consider stochastic systems of the form

xt+1 = f(xt, ct) + ε (1)

with state variables x ∈ RD, control signals c ∈ RK and i.i.d. system noise
ε ∼ N (0,E), where E = diag(σ2

1 , . . . , σ
2
D).

We model the distribution over systems using a latent embedding h and
model the dynamics using a global function conditioned on the latent embed-
ding. For a sample fp from the distribution we modify the dynamics from (1)
to

xt+1 = f(xt, ct,hp) + ε , (2)

such that the successor state depends on the latent system specification hp.
This means, we explicitly model the global properties through a shared function
f and the task-specific variation using a distribution over the latent variables
p(hp). Framing the meta learning problem as a hierarchical Bayesian model
means that meta-training becomes inference in a meta-learning model. The
meta RL procedures for training and testing are detailed in algorithms 1 and 2,
respectively.

1.1 Meta-Learning Gaussian Process

Our meta-learning model is a GP prior on the unknown transition function
in (2) with a concatenated state x̃t = (xt, ct,hp) ∈ RD+K+Q as the input to
the model. We define yt = xt+1 − xt as the targets of the GP and take the
mean function to be m(x̃t) = 0, which encodes that a priori the state does not
change [2]. Each dimension of the targets y is modeled by an independent GP.
We use a Gaussian likelihood

p(yt|x̃t,f(·),θ) = N (yt|f(x̃t),E), (3)

where θ = {E,L, σ2
f , Q} are the hyperparameters and f(·) =

(
f1(·), . . . , fD(·)

)
denotes a multi-dimensional function. We place a standard-normal prior hp ∼

1

Initialize dataset D and model M
. Initial random rollouts

forall training tasks do
execute random policy
add observations to D

end
. Meta training

while training tasks not solved do
—update—: train M and infer h given D
forall unsolved training tasks do

for each step in horizon do
—plan—: get control sequence using (13)
—execute—: execute first control in sequence

end
add observations to D
check if task solved

end

end
Algorithm 1: Model-based Meta RL with MPC (Train)

N (0, I) on the latent variables hp. The full specification of the model is

p(Y ,H,f(·)|X,C)

=
∏P

p=1
p(hp)

∏Tp

t=1
p(yt|xt, ct,hp,f(·))p(f(·)) (4)

where we denote a collection of vectors in bold upper-case and we have dropped
dependence on the hyperparameters for notation purposes. The corresponding
graphical model is given in Fig. 1. The figure shows the dependence of individual
system observations on the global GPs f(·) modeling each dimension of the
outputs, the system-specific latent embeddings hp and the observed states and
controls.

yt

∞
f(·)

xt

ut

hp

t = 1, . . . , Tp

p = 1, . . . , P

Figure 1: Graphical model for our ML-GP model.

2

Given dataset D and model M from training
. Single shot performance

forall test tasks do
for each step in horizon do

—plan—: get control sequence using (13)
—execute—: execute first control in sequence
—inference—: infer the value of h∗ given observations so far

end
add observations to D
check if task solved

end
. Meta test

while test tasks not solved do
—update—: train M and infer h given D
forall unsolved test tasks do

for each step in horizon do
—plan—: get control sequence using (13)
—execute—: execute first control in sequence

end
add observations to D
check if task solved

end

end
Algorithm 2: Model-based Meta RL with MPC (Test)

1.2 Inference

To learn the dynamics model we seek to optimize the hyperparameters θ w.r.t.
the log-marginal likelihood, which involves marginalization of the latent vari-
ables in (4). For predictions of the evolution of a system we also need to
infer the posterior GP and the posterior distribution of the latent variables
H = (h1, ...,hP). We approach this problem with approximate variational in-
ference. We posit a variational distribution that assumes independence between
the latent functions of the GP and the latent task variables

Q(f(·),H) = q(f(·))q(H) (5)

and minimize the Kullback-Leibler divergence between the approximate and
true posterior distributions. Equivalently we can maximize the evidence lower
bound

L = EQ(f(·),H)

[
log

p(Y ,H,f(·)|X,C)

Q(f(·),H)

]
, (6)

which lower-bounds the log-marginal likelihood [5]. We parameterize our vari-
ational distribution such that we can compute the lower bound in (6). We
then jointly optimize L with respect to the model hyperparameters and the
variational parameters.

3

Sparse Gaussian Processes It is important to account for the fact that
training a GP on a joint data set of P different systems quickly becomes in-
feasible due to the O(T 3) computational complexity for training and O(T 2)
for predictions where T is the total number of observations. To address this
we turn to the variational sparse GP approximation [9] and approximate the
posterior GP with a variational distribution q(f(·)) that depends on a small
set of M � T inducing points. We introduce a set of M inducing inputs
Z = (z1, . . . ,zM) ∈ RM×(D+K+Q), which live in the same space as x̃, with
corresponding GP function values U = (u1, . . . ,uM) ∈ RM×D. We follow [4]
and specify the variational approximation as a combination of the conditional
GP prior and a variational distribution over the inducing function values, inde-
pendent across output dimensions

q(fd(·)) =

∫
p(fd(·)|ud)q(ud)dud. (7)

where q(ud) = N (ud|md,Sd) is a full rank Gaussian. The integral in (7) can
be computed in closed form since both terms are Gaussian, resulting in a GP
with mean and covariance functions given by

mq(·) = kTZ(·)K−1ZZm
d (8)

kq(·, ·) = k(·, ·)− kTZ(·)K−1ZZ(KZZ − Sd)K−1ZZkZ(·) (9)

where [kZ(·)]i = k(·, zi) and [KZZ]ij = k(zi, zj). Here, the variational ap-
proach has two main benefits: a) it reduces the complexity of training to
O(TM2) and predictions to O(TM), b) it enables mini-batch training for fur-
ther improvement in computational efficiency.

Latent Variables For the latent variables H we assume a Gaussian varia-
tional posterior

q(H) =
∏P

p=1
N (hp|np,T p) (10)

where T p is in general a full rank covariance matrix. We use a diagonal covari-
ance in practice for more efficient computation of the ELBO (6).

Evidence Lower Bound (ELBO) Plugging in the definition of the model in
eq. (3) and the specified variational distributions in (7), (10) into the definition
of the ELBO in (6) we find

L = EQ(f(·),H)

[
log

p(Y ,H,f(·)|X,C)

Q(f(·),H)

]
= Eq(f(·))q(H)

[
log

∏P
p=1 p(hp)

∏Tp

t=1 p(yt|xt, ct,hp,f(·))p(f(·))
q(f(·))q(H)

]
=
∑P

p=1

∑T

t=1
Eq(ft|xt,ct,hp)q(hp)

[
log p(yt|f t)

]
−KL

[
q(H)||p(H)

]
−KL

[
q(f(·))||p(f(·))

]
4

where we emphasize that q(f t|xt, ct,hp) = q(f(x̃t)|xt, ct,hp) is the marginal
of the GP evaluated at the inputs x̃t. The KL term for the latent variables H
is analytically tractable since both terms are Gaussian. The KL term between
the GPs has been shown to simplify to KL

[
q(U)||p(U)

]
[7], which again is

analytically tractable since both terms are Gaussian. Thus the ELBO can be
written

L =
∑P

p=1

∑T

t=1
Eq(ft|xt,ct)

[
log p(yt|f t)

]
−KL

[
q(H)||p(H)

]
−KL

[
q(U)||p(U)

]
(11)

The expected log-likelihood term in (11) needs further consideration: we would
like to integrate out the latent variable hp to obtain

q(f t|xt, ct) =

∫
q(f t|xt, ct,hp)q(hp)dhp (12)

The integral in (12) is intractable due to the non-linear dependence on hp in (8)
and (9). Given our choice of kernel (RBF) and Gaussian variational distribution
q(hp) the first and second moments can be computed in closed form. We could
use these terms to compute the log-likelihood term in closed form since the
likelihood is Gaussian but in practice this can be prohibitively expensive since
it requires the evaluation of a TM2D tensor. Instead we avoid computing the
moments by approximately integrating out the latent variable using Monte Carlo
sampling.

Hyperparameters: θ = {E,L, σ2
f , Q}

Variational parameters: φ = {Z,M {md,Sd}Dd=1, {np,T p}Pp=1}

Training For the update steps in algorithms 1 and 2 we jointly optimize the
GP hyperparameters and the variational parameters w.r.t. the ELBO. For the
inference step in algorithm 2, we optimize only the variational parameters for
the latent variables h, i.e. φh = {np,T p}Pp=1.

2 Expected Long Term Cost

RL with MPC Our objective is to find a sequence of optimal controls c∗0, . . . , c
∗
H−1

that minimizes the expected finite-horizon cost

J = E
[∑H

t=1
`(xt)

]
, (13)

where xt is the state of the system at time t and ` is a known immediate/
instantaneous cost function that encodes the task objective. We consider an
episodic setting. Initial states x0 are sampled from p(x0) = N (µ0,Σ0).

5

To find the optimal open-loop sequence c∗0, . . . , c
∗
H−1, we compute the ex-

pected long-term cost J in (13) using Gaussian approximations p(x1), . . . , p(xH)
for a given control sequence c0, . . . , cH−1. Then, we find an open-loop control
sequence that minimizes the expected long-term cost and apply the first con-
trol signal c∗0 to the system, which transitions into the next state. Next we
re-plan, i.e., we determine the next open-loop control sequence c∗0, . . . , c

∗
H−1

from the new state. This iterative MPC approach turns an open-loop controller
into a closed-loop controller. Combining MPC with learned GP models for the
underlying dynamics increases the robustness to model errors and has shown
improved data efficiency in RL [6].

Computing the Expected Long-Term Cost To compute the expected
long-term cost in (13), we sum up the expected immediate costs E[`(xt)] =∫
`(xt)p(xt)dxt for t = 0, . . . ,H − 1. We assume Gaussian approximations

p(xt) of the state distribution and choose ` so that this expectation can be
computed analytically. To obtain the marginals p(xt) we iteratively predict the
state evolution using the GP dynamics model. Section 1.2 details the long-term
predictions the Gaussian approximations.

Long-term Predictions Key to computing the expected long-term cost in (13)
is to compute long-term predictions p(x1), . . . , p(xH−1) of the state evolution.
To accomplish this we iteratively predict

p(xt+1|ct) =

∫∫∫
p(xt+1|f t,xt)q(f t|xt, ct,hp)

× p(xt)q(hp)df tdxtdhp, (14)

which we approximate as a Gaussian using GP moment matching [8, 3].1 We
first define the distribution

q(x̃t|ct) = N (x̃t|µx̃t
,Σx̃t

) (15)

over the concatenated state x̃t = (xt, ct,hp), where the Gaussianity of q(x̃t|ct)
follows from the fact that p(xt) and q(hp) are both multivariate Gaussians and
independent of each other [1]. The mean and covariance of q(x̃t|ct) are

µx̃t
= [µxt

, ct,np] (16)

Σx̃t
= blockdiagonal([Σxt

,0,T p]). (17)

Next we predict the change in state given the control ct

p(yt|ct) =

∫∫
p(yt|f t)q(f t|x̃t)q(x̃t|ct)df tdx̃t (18)

1Note that we integrate out the distribution of the state, the GP dynamics model and the
latent variable encoding the task. The control has no distribution as it is treated as a free
parameter within an MPC context.

6

which is intractable due to the integral over the state q(x̃t|ct) through the GP.
However, given that the state is a Gaussian and the kernel is the RBF kernel,
we can analytically compute the first and second moments of the distribution
p(yt|ct) [8, 3, 2]. We then make a Gaussian approximation using those moments

q(yt|ct) = N (yt|µyt
,Σyt

) (19)

We are really interested in

p(xt+1|ct) =

∫∫
p(xt+1|yt,xt)q(yt|ct)p(xt|ct)dytdxt (20)

which gives

E[xt+1] = E[yt] + µxt
= µyt

+ µxt
(21)

var[xt+1] = var[xt] + var[yt] + cov[xt,yt] + cov[yt,xt] (22)

where the computation of the covariance terms in (22) is detailed in [2]. By
iterating this procedure for t = 1, . . . ,H − 1, we obtain the desired sequence of
approximate Gaussian state distributions p(x1), . . . , p(xH−1).

References

[1] J. Blitzstein and J. Hwang. Introduction to Probability. CRC Press, 2015.

[2] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian processes for
data-efficient learning in robotics and control. PAMI, 37(2):408–423, 2015.

[3] M. P. Deisenroth and C. E. Rasmussen. PILCO: A model-based and data-
efficient approach to policy search. In ICML, 2011.

[4] J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data.
In UAI, 2013.

[5] M. Hoffman, D. Blei, C. Wang, and J. Paisley. Stochastic variational infer-
ence. JMLR, 2013.

[6] S. Kamthe and M. P. Deisenroth. Data-efficient reinforcement learning with
probabilistic model predictive control. In AISTATS, 2018.

[7] A. Matthews, J. Hensman, R. Turner, and G. Zoubin. On sparse variational
methods and the Kullback-Leibler divergence between stochastic processes.
In AISTATS, 2016.

[8] J. Quiñonero-Candela, A. Girard, J. Larsen, and C. E. Rasmussen. Propaga-
tion of uncertainty in Bayesian kernel models—application to multiple-step
ahead forecasting. In ICASSP, 2003.

[9] M. Titsias. Variational learning of inducing variables in sparse Gaussian
processes. In AISTATS, 2009.

7

