
Sparse-Matrix Belief Propagation
Supplemental Material

Reid Bixler
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061

Bert Huang
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061

A ADDITIONAL EXPERIMENTS

We present here additional experiments completed after
initial submission of the main paper.

A.1 SEQUENTIAL BELIEF PROPAGATION

The power of sparse-matrix belief propagation comes
from its ability to flexibly implement parallel belief prop-
agation on various backends. However, in many settings,
parallel belief propagation is not as desirable as sequential
belief propagation. Sequential updates can often converge
faster when hardware parallelization is limited.

We run a variation of our main experiments with with
an additional comparison method: a sequential belief
propagation (Sequential-CPU), which updates the belief
for each variable then immediately updates all outgoing
messages from that variable. Each variable and its outgo-
ing messages is updated in sequence, reducing redundant
computation within each belief propagation iteration.

We again run trials on multiple sized grids with random-
ized potential functions and different variable cardinal-
ities. For cardinalities c 2 {8, 16, 32}, sequential BP
consistently faster than Python loop-based parallel BP but
slower than either PyTorch or SciPy sparse parallel BP.
For c = 64, sequential BP is the fastest of all CPU-based
methods.

On these same grids, the GPU remains orders of mag-
nitude faster than CPU-based methods, but the fact that
sequential BP can be faster than sparse-matrix BP in some
settings suggests that there is a tradeoff between massive
parallelism and the benefits of sequential inference. A
direction of future work may be to find abstractions that
enable sequential updates, though a key challenge is that
the macro-operations of bulk message and belief updates
is what enables the sparse-matrix abstraction to work well.

A.2 ADDITIONAL BENCHMARKS

We will include experiments on established benchmark
graphical models in a later revision of this supplemental
document.

102 103 104 105
Rf vaULabOes Ln gULG

10−2

10−1

100

101

102

103

tLP
e
fR
U L
nf
eU
en
ce
 (s
ec
Rn
Gs
)

BeOLef 3URSagatLRn 5unnLng TLPes (c 8)

2SenG0-C38
LRRSy-C38
SeTuentLaO-C38
3yTRUch-C38
SSaUse-C38
3yTRUch-G38

102 103 104
Rf vaULabOes Ln gULG

10−2

10−1

100

101

102

103

tLP
e
fR
U L
nf
eU
en
ce
 (s
ec
Rn
Gs
)

BeOLef 3URSagatLRn RunnLng TLPes (c 16)

2SenG0-C3U
LRRSy-C3U
6eTuentLaO-C3U
3yTRUch-C3U
6SaUse-C3U
3yTRUch-G3U

102 103 104
Rf vaULabOes Ln gULG

10−2

10−1

100

101

102

tLP
e
fR
U L
nf
eU
en
ce
 (s
ec
Rn
Gs
)

BeOLef 3URSagatLRn RunnLng TLPes (c 32)

2SenG0-C3U
LRRSy-C3U
SeTuentLaO-C3U
3yTRUch-C3U
SSaUse-C3U
3yTRUch-G3U

102 103
Rf vaULabOes Ln gULG

10−2

10−1

100

101

102

tLP
e
fR
U L
nf
eU
en
ce
 (s
ec
Rn
Gs
)

BeOLef 3URSagatLRn RunnLng TLPes (c 64)

2SenG0-C3U
LRRSy-C3U
6eTuentLaO-C3U
3yTRUch-C3U
6SaUse-C3U
3yTRUch-G3U

Figure 1: Running times for variants of belief propagation on a 4 Ghz i7 CPU and an Nvidia GTX 1080 GPU. In these
experiments, we compare against CPU-based sequential belief propagation, which was not implemented in our main
experiments.

