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There are five parts. Firstly, we collect in Section 1 all notations used in our paper and here. We then describe the
four conditions which help define the positive pair τ̃ and κ̃ for Theorem 1, and further prove Theorem 1 in Section 2.
In Section 3, we prove Theorem 2 which provides bounds for both estimation and prediction losses at the calibration
stage. In Section 4, we prove Theorem 3 which provides bounds for both estimation and prediction losses at the
construction stage. In Section 5, we prove the variable selection consistency in Theorem 4.

1 Notations

Unless otherwise claimed, we will follow the notations defined here throughout the paper and supplementary materials.

For a vector, ||·||2 and ||·||1 denote the ℓ2 and ℓ1 norms, respectively; ∥·∥∞ and ∥·∥−∞ are defined to be the maximum
and minimum absolute values of its components, respectively; | · |1 implies taking element-wise absolute values of
the vector so is itself a vector. For a matrix A = (aij)m×n, ∥A∥1 = max1≤j≤n

∑m
i=1 |aij |, i.e., the maximum

column sum of absolute values of its components, and ∥A∥∞ = max1≤i≤m

∑n
j=1 |aij |, i.e., the maximum row sum

of absolute values of its components.

For a vector a and index set S, ai , a−i, and aS denote the i-th entry, the subvector excluding the i-th entry in a, and
the subvector of a indexed by S, respectively. For a matrix A, Ai and A−i denote its i-th column and the submatrix
of A excluding its i-th column, respectively. For a vector ai and an index set Si both sharing the same subscript,
the subvector of ai indexed by Si is denoted by aSi

for simplicity. Similarly, the submatrix of a matrix Ai including
columns indexed by the set Si is denoted by ASi

for simplicity.

a∨ b and a∧ b denote the maximum and minimum of a and b, respectively. λmin(·) and λmax(·) denote the minimum
and maximum eigenvalues of the corresponding matrix, respectively. E (·) denotes the expectation, and P(·) denotes
the probability of an event. Symbol ≍ denotes two terms at the same order. tr(·) denotes the trace of the corresponding
matrix. For a set S, |S| denotes the number of its elements. For positive integers j and p, j|p denotes the remainder of
j when divided by p.

Throughout the paper and here, C1, C2, . . ., c1, c2, . . ., c̃1, c̃2, · · · , t1, t2, . . . are some positive constant numbers.

2 The Conditions and Proof of Theorem 1

For each k ∈ {1, 2}, the reduced model (3) includes p regression models, i.e., for i = 1, 2, · · · , p,

Y
(k)
i = X(k)π

(k)
i + ξ

(k)
i .

Here we first state the four conditions in Fan and Lv [2008] which restrict the positive pairs τ (k) and κ(k) so as to
define τ̃ = max{τ (1), τ (2)} and κ̃ = max{κ(1), κ(2)} for Theorem 1, and then prove that we can successfully screen
variables for each of the above linear regression model.

Denote Y (k)
ji , ξ(k)ji , and π(k)

ji as the j-th row of Y (k)
i , ξ(k)i , and π

(k)
i , respectively. Further denote Σ(k) the variance-

covariance matrix of the q random variables in observing X(k). For any M ⊂ {1, 2, · · · , q}, denote Σ(k)
M the variance-

covariance matrix of the random variables in observing X
(k)
M .

Condition 1. Each ξ(k)ji is normally distributed with mean zero. (Σ(k))−1/2X(k)T is observed from a spherically

symmetric distribution, and has the concentration property: there exist some constants c̃(k)1 , c̃
(k)
2 > 1 and c̃(k)3 > 0 such

that, for any M ⊂ {1, 2, · · · , q} with |M| ≥ c̃
(k)
1 n(k), the eigenvalues of |M|−1X

(k)
M (Σ

(k)
M )−1/2(Σ

(k)T
M )−1/2X

(k)T
M

are bounded either from above by c̃(k)2 or from below by 1/c̃
(k)
2 with probability at least 1− exp(−c̃(k)3 n(k)).



Condition 2. var(Y (k)
ji ) = O(1). For some κ(k) ≥ 0, c̃(k)4 > 0, and c̃(k)5 > 0,

min
j∈M(k)

i0

∣∣∣π(k)
ji

∣∣∣ ≥ c̃
(k)
4

(n(k))κ(k)
and min

j∈M(k)
i0

∣∣∣cov
(
(π

(k)
ji )−1Y

(k)
i , X

(k)
j

)∣∣∣ ≥ c̃
(k)
5 .

Condition 3. log(q) = O((n(k))c̃) for some c̃ ∈ (0, 1− 2κ(k)).

Condition 4. There are some τ (k) ≥ 0 and c̃(k)6 > 0 such that λmax(Σ
(k)) ≤ c̃

(k)
6 (n(k))τ

(k)

.

Proof of Theorem 1. Following the Sure Independence Screening Property by Fan and Lv [2008], there exists some
θ(k) ∈ (0, 1− 2κ(k) − τ (k)) such that, when d(k) = |M(k)

i | = O((n(k))1−θ(k)

), we have, for some constant C > 0,

P(M(k)
i0 ⊆ M(k)

i ) = 1−O

(
exp

{
−C(n

(k))1−2κ(k)

log(n(k))

})
.

Let θ = min(θ(1), θ(2)), then for d(k) = |M(k)
i | ≡ d = O(n1−θ

min ), we have

P(M(k)
i0 ⊆ M(k)

i ) = 1−O
(
exp

{
−C(n

(k))1−2κ̃

log(n(k))

})
.

3 Proof of Theorem 2

Note that ξ(k) = E(k)(I − Γ(k))−1 for k ∈ {1, 2}. Suppose that the singular values of both (I − Γ(k)) are positively
bounded from below by a constant c. Denote σ(k)2

i = var(ϵ
(k)
ji ) and σ̃(k)2

i = var(ξ
(k)
ji ). Then σ̃(k)

i ≤ σpmax/c =

max
1≤i≤p

(σ
(1)
i ∨ σ(2)

i )/c.

Lemma 1. Under Assumptions 1-3, for each network k ∈ {1, 2} in the calibration step, there exist positive constants
C

(k)
1 and C(k)

2 such that, with probability at least 1− e−f(k)

,

1. (Estimation Loss) ||π̂(k)
i − π

(k)
i ||22 ≤ C

(k)
1

(
r
(k)
i ∨ d ∨ f (k)

)/
n(k);

2. (Prediction Loss) ||X(k)(π̂
(k)
i − π

(k)
i )||22

/
n(k) ≤ C

(k)
2

(
r
(k)
i ∨ d ∨ f (k)

)/
n(k).

Proof of Lemma 1. We have the closed form ridge estimator π̂(k)

M(k)
i

for the linear model Y(k)
i = X

(k)

M(k)
i

π
(k)

M(k)
i

+ξ
(k)
i .

π̂
(k)

M(k)
i

=
(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
X

(k)T

M(k)
i

Y
(k)
i ,

where λ(k)i is the ridge tuning parameter. Plugging in the equation Y
(k)
i = X

(k)

M(k)
i

π
(k)

M(k)
i

+ ξ
(k)
i , we have

π̂
(k)

M(k)
i

=

{(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
X

(k)T

M(k)
i

X
(k)

M(k)
i

π
(k)

M(k)
i

}
+

{(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
X

(k)T

M(k)
i

ξ
(k)
i

}
.

The difference between the ridge estimator π̂(k)

M(k)
i

and the true π
(k)

M(k)
i

can be written as

π̂
(k)

M(k)
i

− π
(k)

M(k)
i

= −λ(k)i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
π

(k)

M(k)
i

+
(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
X

(k)T

M(k)
i

ξ
(k)
i .



For simplicity, we denote the composite forms of π(k)

M(k)
i

and X
(k)

M(k)
i

as follows,

π̃
(k)

M(k)
i

= −λ(k)i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
π

(k)

M(k)
i

;

X̃
(k)

M(k)
i

= X
(k)

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
.

Then we have the following simplified form of the difference,

π̂
(k)

M(k)
i

− π
(k)

M(k)
i

= π̃
(k)

M(k)
i

+ X̃
(k)T

M(k)
i

ξ
(k)
i .

To obtain the ℓ2 norm losses of estimation and prediction, we write

||π̂(k)

M(k)
i

− π
(k)

M(k)
i

||22

= π̃
(k)T

M(k)
i

π̃
(k)

M(k)
i︸ ︷︷ ︸

T21

+2π̃
(k)T

M(k)
i

X̃
(k)T

M(k)
i

ξ
(k)
i︸ ︷︷ ︸

T22

+ ξ
(k)T
i X̃

(k)

M(k)
i

X̃
(k)T

M(k)
i

ξ
(k)
i︸ ︷︷ ︸

T23

,

||X(k)

M(k)
i

(
π̂

(k)

M(k)
i

− π
(k)

M(k)
i

)
||22

= π
(k)

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
π̃

(k)

M(k)
i︸ ︷︷ ︸

T24

+2π̃
(k)T

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
X̃

(k)T

M(k)
i

ξ
(k)
i︸ ︷︷ ︸

T25

+ ξ
(k)T
i X̃

(k)

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
X̃

(k)T

M(k)
i

ξ
(k)
i︸ ︷︷ ︸

T26

.

Firstly, we will derive the bound for T24, T25 and T26 terms, then we can obtain similar results for term T21, T22
and T23 by simply removing the matrix X

(k)T

M(k)
i

X
(k)

M(k)
i

. Denote the singular value decomposition X
(k)T

M(k)
i

X
(k)

M(k)
i

=

U
(k)T
i V

(k)
i U

(k)
i , where U (k)

i is a unitary matrix, V (k)
i is a diagonal matrix with eigenvalues vi. Therefore, the shared

component of π̃(k)

M(k)
i

and X̃
(k)

M(k)
i

can be rewritten as(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
= U

(k)T
i

(
V

(k)
i + λ

(k)
i Id

)−1
U

(k)
i .

By Assumption 3, there are some constants c1, c2 such that max||δ||2=1(n
(k))−1/2||X(k)

M(k)
i

δ||2 ≤ c1 and

min||δ||2=1(n
(k))−1/2||X(k)

M(k)
i

δ||2 ≥ c2. Thus, λmax

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
< c21n

(k) and λmin

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
> c22n

(k).

That is, vj ≍ n(k) for each eigenvalue. Let b = U
(k)
i π

(k)

M(k)
i

, then ||b||2 = ||π(k)

M(k)
i

||2. Noting that λ(k)i = o(n(k)) in

Assumption 3, we can bound the term T24 as follows,

T24 = π̃
(k)T

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
π̃

(k)

M(k)
i

= λ
(k)2
i bTV

(k)
i

(
V

(k)
i + λ

(k)
i Id

)−1
V

(k)
i

(
V

(k)
i + λ

(k)
i Id

)−1
b

= λ
(k)2
i

d∑
j=1

vjb
2
ij(

vj + λ
(k)
i

)2 = O
(
λ
(k)2
i ||π(k)

M(k)
i

||22
/
n(k)

)
= O

(
r
(k)
i

)
.

(1)

Similarly, removing the term X
(k)T

M(k)
i

X
(k)

M(k)
i

, we have

T21 = O
(
λ
(k)2
i ||π(k)

M(k)
i

||22
/
n(k)

)
= O

(
r
(k)
i

/
n(k)

)
. (2)

Noting that T25 follows a Gaussian distribution, we can write the probability of deviation of T25 with the classical
Gaussian tail inequality, for any positive number t,

P (T25 ≤ t) ≥ 1− exp

(
−1

2
t2
/
var(T25)

)
.



Furthermore,

var(T25) = 4σ̃
(k)2
i π̃

(k)T
(i)

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
X̃

(k)T

M(k)
i

X̃
(k)

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
π̃

(k)

M(k)
i

= 4σ̃
(k)2
i λ

(k)2
i bT (V + λ

(k)
i Id)

−1V
(k)
i (V

(k)
i + λ

(k)
i Id)

−1

×V (k)
i

(
V

(k)
i + λ

(k)
i Id

)−1
V

(k)
i

(
V

(k)
i + λ

(k)
i Id

)−1
b

= 4σ̃
(k)2
i λ

(k)2
i

d∑
j=1

v3j b
2
ij

(vj + λ
(k)
i )4

= O
(
σ̃
(k)2
i λ

(k)2
i ||π(k)

M(k)
i

||22
/
n(k)

)
= O

(
σ̃
(k)2
i r

(k)
i

)
.

Letting t =
√

2var(T25)(f (k) + log 2), we obtain that, with probability at least 1− e−f(k)

/2,

T25 = O
(√

r
(k)
i f (k)

)
. (3)

Similarly, removing X
(k)T

M(k)
i

X
(k)

M(k)
i

, we can obtain that, concurring with (3),

T22 = O
(√

r
(k)
i f (k)

/
n(k)

)
. (4)

The term T26 follows a non-central χ2 distribution. We can invoke the Hanson-Wright inequality [Rudelson et al.,
2013] to bound the probability of its extreme deviation, for some constant t2 > 0,

P(T26 ≤ E (T26) + t)

≥ 1− exp

 −t2t2
σ̃
(k)4
i ||X̃(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

||2F
∧ −tt2
σ̃
(k)2
i ||X̃(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

||op

 . (5)

To understand this probabilistic bound, we need to calculate E (T26) and the two involved norms. Firstly,

E (T26) = σ̃
(k)2
i tr

(
X̃

(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

)
= σ̃

(k)2
i tr

(
V

(k)
i

(
V

(k)
i + λ

(k)
i Id

)−1
V

(k)
i

(
V

(k)
i + λ

(k)
i Id

)−1
)

= σ̃
(k)2
i

d∑
j=1

v2j

(vj + λ
(k)
i )2

= O
(
dσ̃

(k)2
i

)
. (6)

The Frobenius norm can be simplified as follows,

||X̃(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

||2F

= tr

(
X̃

(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

X̃
(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

)
= tr

(
((X

(k)

M(k)
i

)TX
(k)

M(k)
i

)(X̃
(k)

M(k)
i

)T X̃
(k)

M(k)
i

((X
(k)

M(k)
i

)TX
(k)

M(k)
i

)(X̃
(k)

M(k)
i

)T X̃
(k)

M(k)
i

)
= tr

(
V

(k)
i (V

(k)
i + λ

(k)
i Id)

−1V
(k)
i (V

(k)
i + λ

(k)
i Id)

−1V
(k)
i (V

(k)
i + λ

(k)
i Id)

−1V
(k)
i (V

(k)
i + λ

(k)
i Id)

−1
)

=
d∑

j=1

v4j

(vj + λ
(k)
i )4

= O (d). (7)



Note that λmax(X
(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X
(k)T

M(k)
i

) ≍ n(k), then, the operator norm can be simplified as follows,

||X̃(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

||op

= ||X(k)

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
X

(k)T

M(k)
i

X
(k)

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
X

(k)T

M(k)
i

||op

= O
(
λmax

(
X

(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X
(k)T

M(k)
i

)/
n(k)2

)
= O (1). (8)

Letting

t =

√
σ̃
(k)4
i ||X̃(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

||2F × (f (k) + log 2)/t2

∨
(
σ̃
(k)2
i ||X̃(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

||op × (f (k) + log 2)/t2

)
,

and combining (5), (6), (7), and (8), we obtain that, with probability at least 1− e−f(k)

/2,

T26 = O
(
d ∨

√
df (k) ∨ f (k)

)
. (9)

Similarly, removing X
(k)T

M(k)
i

X
(k)

M(k)
i

, we can obtain that, concurring with (9),

T23 = O
((
d ∨

√
d f (k) ∨ f (k)

)/
n(k)

)
. (10)

Collecting the bounds (1), (3), (9) and noting the definition of X(k)

M(k)
i

and π
(k)

M(k)
i

, we conclude there exists some

constant C(k)
2 > 0 such that, with probability at least 1− e−f(k)

,

1

n(k)
||X(k)(π̂(k) − π(k))||22 =

1

n(k)
||X(k)

M(k)
i

(π̂
(k)

M(k)
i

− π
(k)

M(k)
i

)||22 ≤ C
(k)
2

r
(k)
i ∨ d ∨ f (k)

n(k)
.

Similarly, collecting the bound (2), (4) and (10), we conclude there exists some constant C(k)
1 > 0 such that, with

probability at least 1− e−f(k)

,

||π̂(k) − π(k)||22 = ||π̂(k)

M(k)
i

− π
(k)

M(k)
i

||22 ≤ C
(k)
1

r
(k)
i ∨ d ∨ f (k)

n(k)
.

This concludes the proof of Lemma 1.

To bound the estimation loss, we write

||Π̂j −Πj ||22 = ||π̂(1)
j|p − π

(1)
j|p||

2
2 + ||π̂(2)

j|p − π
(2)
j|p||

2
2,

where π
(k)
j|p and π̂

(k)
j|p are the j|p columns of π(k) and π̂(k), respectively. Following the bounds in Lemma 1 for both

networks, we obtain the overall estimation bound as, with probability at least 1− e−f(1) − e−f(2)

,

||Π̂j −Πj ||22 ≤ C
(1)
1

r
(1)
j|p ∨ d ∨ f (1)

n(1)
+ C

(2)
1

r
(2)
j|p ∨ d ∨ f (2)

n(2)

≤
(
C

(1)
1 + C

(2)
1

)(r(2)j|p ∨ d ∨ f (2)
)
∨
(
r
(2)
j|p ∨ d ∨ f (2)

)
n(1) ∧ n(2)

= C1

d ∨
(
r
(1)
j|p ∨ r(2)j|p

)
∨
(
f (1) ∨ f (2)

)
n(1) ∧ n(2)

≤ C1
d ∨ rmax ∨ fmax

n(1) ∧ n(2)
,



where C1 = C
(1)
1 + C

(2)
1 . Similarly, we write the prediction bound as, with probability at least 1− e−f(1) − e−f(2)

,

||X(Π̂j −Πj)||22 = ||X(1)(π̂
(1)
j|p − π

(1)
j|p)||

2
2 + ||X(2)(π̂

(2)
j|p − π

(2)
j|p)||

2
2

≤ C
(1)
2

{
r
(1)
j|p ∨ d ∨ f (1) + C

(2)
2 r

(2)
j|p ∨ d ∨ f (2)

}
≤ C2

{
d ∨

(
r
(1)
j|p ∨ r(2)j|p

)
∨
(
f (1) ∨ f (2)

)}
≤ C2 {d ∨ rmax ∨ fmax} ,

where C2 = C
(1)
2 + C

(2)
2 and rmax = max

1≤i≤p
(r

(1)
i ∨ r(2)i ). This concludes the proof of Theorem 2.

4 Proof of Theorem 3

Let cmax = c
(1)
1 ∨ c(2)1 , and further denote

gn = C2
d ∨ rmax ∨ fmax

n
+ 2cmaxC2||Π||1

√
d ∨ rmax ∨ fmax

n
.

Lemma 2. Suppose that, for node i,√
(d ∨ rmax ∨ fmax)

/
n+ cmax||Π||1 ≤

√
c2max||Π||21 + ϕ20/(64C2|Si|). (11)

Under Assumptions 1-3, we have ϕre(HiXΠ̂−i,Si) ≥ ϕ0/2 with probability at least 1− e−f(1)+log p − e−f(2)+log p.

Proof of Lemma 2. The inequality (11) implies that gn ≤ ϕ20/(64|Si|).

For any index set Si and vector δ, note the definition of ϕre(·), then, we have that ||δ||21 ≤ (||δSc
i
||1 + ||δSi ||1)2 ≤

(3
√
|Si|||δSi ||2 +

√
|Si|||δSi ||2)2 = 16|Si|||δSi ||22. we also have

δT ((HiXΠ̂−i)
T (HiXΠ̂−i)− (HiXΠ−i)

T (HiXΠ−i))δ

n||δSi ||22

≤ ||δ||21
n||δSi ||22

max
j1,j2

|(HiXΠ̂j1)
T (HiXΠ̂j2)− (HiXΠj1)

T (HiXΠj2)|

≤ 16|Si|
n

max
j1,j2

|(HiXΠ̂j1)
T (HiXΠ̂j2)− (HiXΠj1)

T (HiXΠj2)|. (12)

Note that,

(HiXΠ̂j1)
T (HiXΠ̂j2)− (HiXΠj1)

T (HiXΠj2)

= (Π̂j1 −Πj1)
TXTHiX(Π̂j2 −Πj2)︸ ︷︷ ︸

T31

+(Π̂j1 −Πj1)
TXTHiXΠj2︸ ︷︷ ︸
T32

+(XΠj1)
THiX(Π̂j2 −Πj2)︸ ︷︷ ︸

T33

.

We will derive the bounds for each of these three terms separately. With Hi a projection matrix, we have λmax(Hi) =
1. We can obtain that

|T31| ≤ ||HiX(Π̂j1 −Πj1)||2 × ||HiX(Π̂j2 −Πj2)||2
≤ λmax(Hi)||X(Π̂j1 −Πj1)||2 × ||X(Π̂j2 −Πj2)||2
= ||X(Π̂j1 −Πj1)||2 × ||X(Π̂j2 −Πj2)||2.

Note that |T32| ≤ ||XΠj2 ||2||HiX(Π̂j1 −Πj1)||2, and

||XΠj2 ||22 = ||X(1)π
(1)
j|p||

2
2 + ||X(2)π

(2)
j|p||

2
2

≤ (c
(1)
1 )2n(1)||π(1)

j|p||
2
2 + (c

(2)
1 )2n(2)||π(2)

j|p||
2
2

≤ c2maxn(||π
(1)
j|p||

2
2 + ||π(2)

j|p||
2
2)

≤ c2maxn
(
||π(1)

j|p||2 + ||π(2)
j|p||2

)2
≤ c2max||Π||21.



Therefore,
|T32| ≤ ||XΠj2 ||2||HiX(Π̂j1 −Πj1)||2 ≤ cmax

√
n||Π||1||X(Π̂j1 −Πj1)||2. (13)

Similarly, we can have
|T33| ≤ cmax

√
n||Π||1||X(Π̂j2 −Πj2)||2. (14)

Theorem 2 leads to the following, with probability at least 1− e−f(1)+log(p) − e−f(2)+log(p),

|T31|
n

≤ C2
d ∨ rmax ∨ fmax

n
,

|T32|
n

≤ cmaxC2||Π||1

√
d ∨ rmax ∨ fmax

n
,

|T33|
n

≤ cmaxC2||Π||1

√
d ∨ rmax ∨ fmax

n
.

(15)

Putting the above three inequalities together, we have,

δT ((HiXΠ̂−i)
T (HiXΠ̂−i)− (HiXΠ−i)

T (HiXΠ−i))δ

n||δSi ||22

≤ 16|Si| ×
|T31|+ |T32|+ |T33|

n
= 16|Si|gn ≤ 16|Si|

ϕ2
0

64|Si|
=

ϕ2
0

4
. (16)

Together with Assumption 4, we have ϕre(HiXΠ̂−k,Sk) ≥ ϕ0/2. This concludes the proof of Lemma 2.

Lemma 3. (Basic Inequality) Let ηi = 2n−1ẐT
−iHiϵi − 2n−1ẐT

−iHi(Ẑ−i − Z−i)βi and

E (λi) =
{
||W−1

i ηi||∞ ≤ λi/2
}
,

for λi specified in Theorem 3. Under Assumptions 1-2, with hn defined in Theorem 3, there exit a positive constant
C3 > 0 such that

P(E (λi)) ≥ 1− e−C3hn+log(4q) − e−f(1)+log(p) − e−f(2)+log(p).

Concurring with event E (λi), we have the following basic inequality,

n−1||HiẐ−i(β̂i − βi)||22 + λiω
T
i |β̂i|1 ≤ λiω

T
i |βi|1 + ηT

i (β̂i − βi). (17)

Proof of Lemma 3. Letting

ξ−i =

(
ξ
(1)
−i ξ

(1)
−i

ξ
(2)
−i −ξ

(2)
−i

)
, (18)

we have Z−i = XΠ−i + ξ−i. With Ẑ−i = XΠ̂−i, we get

ηi =
2

n
Π̂

T

−iX
THiϵi −

2

n
Π̂

T

−iX
THi(XΠ̂−i −XΠ−i − ξ−i)βi

=
2

n
(Π̂−i −Π−i)

TXTHiϵi︸ ︷︷ ︸
T34

+
2

n
ΠT

−iX
THiϵi︸ ︷︷ ︸

T35

+
2

n
(Π̂−i −Π−i)

TXTHiξ−iβi︸ ︷︷ ︸
T36

+
2

n
ΠT

−iX
THiξ−iβi︸ ︷︷ ︸
T37

− 2

n
(Π̂−i −Π−i)

TXTHiX(Π̂−i −Π−i)βi︸ ︷︷ ︸
T38

− 2

n
ΠT

−iX
THiX(Π̂−i −Π−i)βi︸ ︷︷ ︸

T39

.

We aim to bound each of these six terms by λi/12 either probabilistically or deterministically.



Firstly, for some constant tλ > 0, we choose the adaptive lasso tuning parameter as below,

λi = tλ∥ωi∥−1
−∞||B||1||Π||1

√
(d ∨ rmax ∨ fmax) log(p)

nmin
. (19)

Denoting the j-th column of X by X·j , we have XT
·jX·j = n(k) for k ∈ {1, 2} due to standardization. Furthermore,

var

(
1

n
XT

·jHiϵi

)
≤ 1

n2
XT

·jHiX·jσ
2
pmax ≤ n(k)

n2
σ2
pmax ≤ 1

n
σ2
pmax.

For T34, via the classical Gaussian tail inequality, we have

P
(
||W−1

i T34||∞ ≥ λi
12

)
≤ P

(
|| 2
n
(Π̂−i −Π−i)

TXTHiϵi||∞ ≥ λi∥ωi∥−∞

12

)
≤ P

(
||(Π̂−i −Π−i)

T ||∞|| 2
n
XTHiϵi||∞ ≥ λi∥ωi∥−∞

12

)
≤ P

(
|| 2
n
XTHiϵi||∞ ≥ λi∥ωi∥−∞

12δΠ

)
≤ 2q exp

{
−
nλ2i ∥ωi∥2−∞
1152σ2

pmaxδ
2
Π

}
≤ 2q · p−n

d t1||B||21||Π||21 ≤ 2q · p · p−t1||B||21 n
d ||Π||21 , (20)

where t1 = t2λ/(2304C1σ
2
pmax), and δΠ is the maximum estimation loss of the first stage. The last inequality is ob-

tained based on the following bound of δΠ. Following Theorem 2, δΠ satisfies the following inequality with probability
at least 1− e−f(1)+log(p) − e−f(2)+log(p),

δ2Π = max
1≤j≤2p

||Π̂j −Πj ||21 ≤ max
1≤j≤2p

(
2d||Π̂j −Πj ||22

)
≤ 2C1d

{
d ∨ rmax ∨ fmax

nmin

}
. (21)

Note that the first inequality of (21) holds, since Π̂ and Π have at most 2d non-zeros based on our assumptions and
the screening in the calibration step.

Similarly, for the second term T35, we have that, with t2 = (tλ)
2

1152σ2
pmax

,

P
(
||W−1

i T35||∞ ≥ λi
12

)
≤ P

(
|| 2
n
ΠT

−iX
THiϵi||∞ ≥ λi∥ωi∥−∞

12

)
≤ P

(
||ΠT

−i||∞|| 2
n
XTHiϵi||∞ ≥ λi∥ωi∥−∞

12

)
≤ P

(
|| 2
n
XTHiϵi||∞ ≥ λi∥ωi∥−∞

12||ΠT
−i||∞

)
≤ 2q exp

{
−

nλ2i ∥ωi∥2−∞

1152σ2
pmax||Π

T
−i||2∞

}
= 2q · p−t2||B||21(d∨rmax∨fmax)n/nmin ≤ 2q · p · p−t2||B||21(d∨rmax∨fmax)n/nmin . (22)

For the third term T36, we write

P
(
||W−1

i T36||∞ ≥ λi
12

)
≤ P

(
||(Π̂−i −Π−i)

T ||∞|| 2
n
XTHiξ−iβi||1 ≥ λi∥ωi∥−∞

12

)
≤ P

(
δΠ × max

j1,j2
| 2
n
XT

·j1Hiξj2 | × ||βi||1 ≥ λi∥ωi∥−∞

12

)
≤ P

(
max
j1,j2

| 2
n
XT

·j1Hiξj2 | ≥
λi∥ωi∥−∞

12δΠ||βi||1

)
≤ 2q · 2p exp

{
−

nλ2i ∥ωi∥2−∞
1152σ2

qmaxδ
2
Π||βi||21

}
= 4q · p · p−t3||Π||21n/d, (23)



where σ2
qmax = max

j1,j2
var( 1nX

T
·j1Hiξj2) and t3 =

t2λ
2304C1σ2

q max
. Similarly, with t4 =

t2λ
1152σ2

q max
, we write T37 term as

P
(
||W−1

i T37||∞ ≥ λi
12

)
≤ 2q · 2p · exp

{
−

nλ2i ∥ωi∥2−∞

1152σ2
qmax||Π

T
−i||2∞||βi||21

}
= 4q · p · p−t4(d∨rmax∨fmax)n/nmin . (24)

For the deterministic term T38, choosing tλ ≥ 12C2||Π||−1
1

√
(d ∨ rmax ∨ fmax)/(n log(p)), along with Cauchy-

Schwarz Inequality, we have

||W−1
i T38||∞ ≤

||βi||1∥ωi∥−1
−∞

n
max
j1,j2

|(Π̂j1 −Πj1)
TXTHiX(Π̂j2 −Πj2)|

≤
||βi||1∥ωi∥−1

−∞
n

max
j1,j2

{
||HiX(Π̂j1 −Πj1)||2||HiX(Π̂j2 −Πj2)||2

}
≤

||βi||1∥ωi∥−1
−∞

n
max
j1,j2

{
λmax(Hi)||X(Π̂j1 −Πi1)||2||X(Π̂j2 −Πj2)||2

}
≤

||βi||1∥ωi∥−1
−∞

n
max
j1,j2

{
||X(Π̂j1 −Πj1)||2||X(Π̂j2 −Πj2)||2

}
≤ ||βi||1∥ωi∥−1

−∞C2
d ∨ rmax ∨ fmax

n
≤ λi

12
×

(
12C2

tλ||Π||1

√
d ∨ rmax ∨ fmax

n log(p)

)
≤ λi

12
.

Similarly, we choose tλ ≥ 24
√
C2nmin/(n log(p)), and take Theorem 2 to obtain

||W−1
i T39||∞ ≤ 2

||βi||1||Π
T
−i||∞∥ωi∥−1

−∞
n

max
j1,j2

|XT
·j1HiX(Π̂j2 −Πj2)|

≤ 2
||βi||1||Π

T
−i||∞∥ωi∥−1

−∞√
n

max
j2

||HiX(Π̂j2 −Πj2)||2

≤ 2
||βi||1||Π

T
−i||∞∥ωi∥−1

−∞√
n

max
j2

||X(Π̂j2 −Πj2)||2 ≤ λi
12

×

(
24

tλ

√
C2nmin

n log(p)

)
≤ λi

12
.

Note that n ≥ nmin. Putting together the probabilistic bounds (20), (21), (22), (23) and (24), along with union bound,
there exist a constant C3 > 0 such that

P(E (λi)) ≥ 1− 3e−C3hn+log(4pq) − e−f(1)+log(p) − e−f(2)+log(p).

Next we will establish the basic inequality, concurring with the event E (λi).

Since the estimator β̂i from the adaptive lasso minimizes the corresponding objective function, we have

1

n
||HiYi −HiẐ−iβ̂i||2 + λiω

T
i |β̂i|1 ≤ 1

n
||HiYi −HiẐ−iβi||2 + λiω

T
i |βi|1. (25)

Because HiYi = HiZ−iβi +Hiϵi, we can rewrite

||HiYi −HiẐ−iβ̂i||22
= ||HiZ−iβi +Hiϵi −HiẐ−iβ̂i||22
= ||Hiϵi||22 − 2ϵTi Hi(Ẑ−iβ̂i − Z−iβi) + ||HiẐ−iβ̂i −HiẐ−iβi +HiẐ−iβi −HiZ−iβi||2
= ||Hiϵi||22 − 2ϵTi Hi(Ẑ−iβ̂i − Z−iβi) + ||HiẐ−i(β̂i − βi)||22 + ||Hi(Ẑ−i − Z−i)βi||22

+2βT
i (Ẑ−i − Z−i)

THiẐ−i(β̂i − βi). (26)

Similarly we can rewrite

||HiYi −HiẐ−iβi||22 = ||HiZ−iβi +Hiϵi −HiẐ−iβi||22
= ||Hiϵi||22 + ||Hi(Ẑ−i − Z−i)βi||22 − 2ϵTi Hi(Ẑ−i − Z−i)βi. (27)



Plugging equations (26) and (27) into (25), we then have

1

n
||HiẐ−i(β̂i − βi)||22 + λiω

T
i |β̂i|1

≤ λiω
T
i |βi|1 +

(
2

n
ẐT

−iHiϵi −
2

n
ẐT

−iHi(Ẑ−i − Z−i)βi

)T

(β̂i − βi)

= λiω
T
i |βi|1 + ηT

i (β̂i − βi).

Thus, the basic inequality is established. This concludes the proof of Lemma 3.

Conditioning on the event E (λi), we remove the random term ηi from the basic inequality as

1

n
||HiẐ−i(β̂i − βi)||22

≤ λiω
T
i |βi|1 − λiω

T
i |β̂i|1 + ηT

i (β̂i − βi)

≤ λiω
T
Si
|βSi

|1 − λiω
T
Si
|β̂Si

|1 − λiω
T
Sc
i
|β̂Sc

i
|1 + ηT

Sc
i
(β̂Sc

i
) + ηT

Si
(β̂Si

− βSi
)

≤ λiω
T
Si
|β̂Si

− βSi
|1 − λiω

T
Sc
i
|β̂Sc

i
|1 +

λi
2
ωT

Sc
i
|β̂Sc

i
|1 +

λi
2
ωT

Si
|β̂Si

− βSi
|1

≤ 3

2
λiω

T
Si
|β̂Si

− βSi
|1 −

1

2
λiω

T
Sc
i
|β̂Sc

i
|1

≤ 3

2
λi∥ωSi∥∞||β̂Si

− βSi
||1 −

1

2
λi∥ωSc

i
∥−∞||β̂Sc

i
||1. (28)

The last inequality implies that

1

n
||HiẐ−i(β̂i − βi)||22

≤ 3

2
λi∥ωSi∥∞||β̂Si

− βSi
||1 ≤ 3

2
λi∥ωSi∥∞

√
|Si|||β̂Si

− βSi
||2

≤ 3

2
λi∥ωSi

∥∞
√
|Si|

2||HiẐ−i(β̂i − βi)||2√
nϕ0

, (29)

where the last inequality follows Assumption 4 and Lemma 2. The above inequality leads to that,

1

n
||HiẐ−i(β̂i − βi)||22 ≤ 9(∥ωSi∥∞)2

ϕ2
0

|Si|λ2i .

Plugging in (19), and letting C4 = 3tλ, we obtain that

1

n
||HiẐ−i(β̂i − βi)||22 ≤ C2

4∥ωSi
∥2∞||B||21||Π||21

ϕ2
0∥ωi∥2−∞

|Si|
(d ∨ rmax ∨ fmax) log(p)

nmin
. (30)

The fact that ||HiẐ−i(β̂i − βi)||22 is always positive in (28) implies that

∥ωSc
i
∥−∞||β̂Sc

i
||1 ≤ 3∥ωSi∥∞||β̂Si

− βSi
||1, (31)

which further leads to that

||β̂i − βi||1 = ||β̂Sc
i
||1 + ||β̂Si

− βSi
||1 ≤

(
3
∥ωSi∥∞
∥ωSc

i
∥−∞

+ 1

)
||β̂Si

− βSi
||1.

Noting the inequality (30), we can follow Assumption 4 and Lemma 2 to derive that

||β̂i − βi||1 ≤
(
3
∥ωSi∥∞
∥ωSc

i
∥−∞

+ 1

)√
|Si|

2||HiẐ−i(β̂i − βi)||2√
nϕ0

≤
(
3
∥ωSi∥∞
∥ωSc

i
∥−∞

+ 1

)√
|Si|

2C4∥ωSi∥∞||B||1||Π||1
ϕ2

0∥ωi∥−∞

√
|Si|

√
(d ∨ rmax ∨ fmax) log(p)

nmin

≤ 8C4
∥ωSi∥2∞||B||1||Π||1

ϕ2
0∥ωi∥2−∞

|Si|

√
(d ∨ rmax ∨ fmax) log(p)

nmin
, (32)



where the last inequality comes from the facts that ∥ωSc
i
∥−∞ ≥ ∥ωi∥−∞ and ∥ωi∥−∞ ≤ ∥ωSi∥∞. Since the

inequality (28) concurs with the event E (λi), the above prediction and estimation bounds hold with probability at least
1− 3e−C3hn+log(4pq) − e−f(1)+log(p) − e−f(2)+log(p). This completes the proof of Theorem 3.

5 Proof of Theorem 4

Lemma 4. Suppose that, for node i,√
(d ∨ rmax ∨ fmax)

/
n+ cmax||Π||1 ≤

√
c2max||Π||21 +min(ϕ20

/
64, τ(4− τ)−1∥ωi∥−∞

/
ψi)
/
(C2|Si|). (33)

Under Assumptions 1-5, we have ||W−1
Sc
i
(Îi,21Î

−1
i,11)WSi ||∞ ≤ 1−τ/2 with the probability at least 1−e−f(1)+log(p)−

e−f(2)+log(p).

Proof of Lemma 4. The inequality (33) implies that ψi∥ωi∥−1
−∞|Si|gn ≤ τ

4−τ .

By the inequalities (15) and (16) in the proof of Lemma 2 and union bound, we have that, with probability at least
1− e−f(1)+log(p) − e−f(2)+log(p),

max
j1,j2

{
1

n
|(HiXΠ̂j1)

T (HiXΠ̂j2)− (HiXΠj1)
T (HiXΠj2)|

}
≤ gn.

With the definitions of infinity norm || · ||∞, Îi,11, and Ii,11, we can obtain the following inequality indexed by set Si,

ψi||W−1
Si

(Îi,11 − Ii,11)||∞ ≤ ψi∥ωSi∥−1
−∞||Îi,11 − Ii,11||∞ ≤ ψi∥ωSi∥−1

−∞|Si|gn ≤ τ

4− τ
. (34)

Similarly we can obtain the following bound indexed by the complement set Sc
i ,

ψi||W−1
Sc
i
(Îi,21 − Ii,21)||∞ ≤ ψi∥ωSc

i
∥−1
−∞|Si|gn ≤ τ

4− τ
. (35)

Applying the matrix inversion error bound in Horn and Johnson [2012] and the triangular inequality, we have that

||Î−1
i,11WSi ||∞ ≤ ||I−1

i,11WSi ||∞ + ||Î−1
i,11WSi − I−1

i,11WSi ||∞

≤ ψi +
ψi||W−1

Si
(Îi,11 − Ii,11)||∞

1− ψi||W−1
Si

(Îi,11 − Ii,11)||∞
ψi ≤ ψi +

τ

4− 2τ
ψi ≤

4− τ

4− 2τ
ψi. (36)

Also note that we can rewrite

W−1
Sc
i

(
Îi,21Î

−1
i,11 − Ii,21I

−1
i,11

)
WSi

= W−1
Sc
i

(
Îi,21 − Ii,21

)
Î−1
i,11WSi +W−1

Sc
i
Ii,21I

−1
i,11WSiW

−1
Si

(
Îi,11 − Ii,11

)
Î−1
i,11WSi .

Then, it follows from (34), (35), (36) and Assumption 5 that

||W−1
Sc
i

(
Îi,21Î

−1
i,11 − Ii,21I

−1
i,11

)
WSi ||∞

≤ ||W−1
Sc
i

(
Îi,21 − Ii,21

)
||∞||Î−1

i,11WSi ||∞

+||W−1
Sc
i
Ii,21I

−1
i,11WSi ||∞||W−1

Si

(
Îi,11 − Ii,11

)
||∞||Î−1

i,11WSi ||∞ ≤ τ/2.

Therefore, together with Assumption 5 again, we can conclude that ||W−1
Sc
i
(Îi,21Î

−1
i,11)WSi ||∞ ≤ 1− τ/2.

This concludes the proof of Lemma 4.



The optimality of β̂i in the adaptive lasso step and KKT condition lead to

− 2

n
(HiẐ−i)

T (HiYi −HiẐ−iβ̂i) + λiWiαi = 0, (37)

where αi ∈ R2p−2, satisfying that ||αi||∞ ≤ 1 and αijI(β̂ij ̸= 0) = sign(β̂ij).

Plug in the equation HiYi = HiZ−iβi +Hiϵi, we can have that

HiYi −HiẐ−iβ̂i = HZ−iβi +Hiϵi −HiẐ−iβ̂i

= Hiϵi +HiZ−iβi −HiẐ−iβi +HiẐ−iβi −HiẐ−iβ̂i

= Hiϵi −Hi(Ẑ−i − Z−i)βi −HiẐ−i(β̂i − βi). (38)

This, along with KKT condition (37), leads to

2Îi(β̂i − βi)− ηi = −λiWiαi, (39)

where ηi is defined in Lemma 3.

Letting β̂Sc
i
= βSc

i
= 0, equation (39) can be decomposed as{

2Îi,11(β̂Si
− βSi

)− ηSi
= −λiWSiαSi ,

2Îi,21(β̂Si
− βSi

)− ηSc
i
= −λiWSc

i
αSc

i
.

(40)

We can solve for β̂Si
from the first equation of (40) as

β̂Si
− βSi

= 2−1Î−1
i,11(ηSi

− λiW
T
Si
αSi) = 2−1Î−1

i,11WSi(W
−1
Si

ηSi
− λiαSi). (41)

Following the similar strategy in the proof of Lemma 3, we can prove that there exists a constant C5 > 0 such that
||W−1

i ηi||∞ ≤ τ
4−τ λi with probability at least 1 − 3e−C5 hn+log (4q)+log (p) − e−f(1)+log (p) − e−f(2)+log (p). Thus,

together with ||αSi ||∞ ≤ 1, we obtain the infinity norm estimation loss on the true support set Si

||β̂Si
− βSi

||∞ ≤ 2−1||Î−1
i,11WSi ||∞(||W−1

Si
ηSi

||∞ + λi)

≤ 2−1 4− τ

4− 2τ
ψi

4

4− τ
λi =

λiψi

2− τ
≤ min

j∈Si

|βij | = bi,

where the last inequality comes from the condition on the minimal signal strength bi. The above inequality implies
sign(β̂Si

) = sign(βSi
).

Plugging (40) into the left hand side of the second equation in (41), we can verify that

||W−1
Sc
i
Îi,21(Îi,11)−1(ηSi

− λiWSiαSi)−W−1
Sc
i
ηSc

i
||∞

≤ ||W−1
Sc
i
Îi,21Î−1

i,11WSi ||∞(||W−1
Si

ηSi
||∞ + λi) + ||W−1

Sc
i
ηSc

i
||∞

≤ (1− τ/2)(4/(4− τ))λi + τ/(4− τ)λi = λi.

Therefore, we have constructed a solution β̂i which satisfies the KKT condition (39) and sign(β̂i) = sign(βi), that
is, Ŝi = Si. This completes the proof of Theorem 4.
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