Supplementary Materials

Differential Analysis of Directed Networks

There are five parts. Firstly, we collect in Section 1 all notations used in our paper and here. We then describe the
four conditions which help define the positive pair 7 and & for Theorem 1, and further prove Theorem 1 in Section 2.
In Section 3, we prove Theorem 2 which provides bounds for both estimation and prediction losses at the calibration
stage. In Section 4, we prove Theorem 3 which provides bounds for both estimation and prediction losses at the
construction stage. In Section 5, we prove the variable selection consistency in Theorem 4.

1 Notations

Unless otherwise claimed, we will follow the notations defined here throughout the paper and supplementary materials.

For a vector, ||-||2 and || -||; denote the ¢5 and £; norms, respectively; || -||oo and || - || oo are defined to be the maximum

and minimum absolute values of its components, respectively; | - |; implies taking element-wise absolute values of
. . . m . .

the vector so is itself a vector. For a matrix A = (ai;)mxn. || 4|1 = MaXi<j<n > icq laij], ie., the maximum

column sum of absolute values of its components, and [|A|oc = maxi<;<m _;_; |ai;], i.e., the maximum row sum

of absolute values of its components.

For a vector ¢ and index set S, a; , a_;, and as denote the i-th entry, the subvector excluding the i-th entry in a, and
the subvector of a indexed by S, respectively. For a matrix A, A; and A_; denote its i-th column and the submatrix
of A excluding its i-th column, respectively. For a vector a; and an index set S; both sharing the same subscript,
the subvector of a; indexed by S; is denoted by as, for simplicity. Similarly, the submatrix of a matrix A; including
columns indexed by the set S; is denoted by A, for simplicity.

a Vb and a A b denote the maximum and minimum of @ and b, respectively. Apin () and Apax(+) denote the minimum
and maximum eigenvalues of the corresponding matrix, respectively. E (-) denotes the expectation, and () denotes
the probability of an event. Symbol < denotes two terms at the same order. tr(-) denotes the trace of the corresponding
matrix. For a set S, | S| denotes the number of its elements. For positive integers j and p, j|p denotes the remainder of
7 when divided by p.

Throughout the paper and here, Cy,C5, ..., ¢1,co, ..., €1,C2,- -, t1, 12, ... are some positive constant numbers.

2 The Conditions and Proof of Theorem 1
For each k € {1, 2}, the reduced model (3) includes p regression models, i.e., fori = 1,2,--- ,p,
Y = XB 7 4 g™,

Here we first state the four conditions in Fan and Lv [2008] which restrict the positive pairs 7(*) and x(*) so as to
define 7 = max{7™",7(®} and & = max{x", k(?} for Theorem 1, and then prove that we can successfully screen
variables for each of the above linear regression model.

Denote Yj(ik), §J(f), and w§f) as the j-th row of Yi(k), Sgk), and TrEk), respectively. Further denote ¥.(*) the variance-
covariance matrix of the ¢ random variables in observing X(¥). For any M C {1,2,--+,q}, denote ES\IZ) the variance-

covariance matrix of the random variables in observing XE\A).

Condition 1. Each ¢ k) i normally distributed with mean zero. (X(*))~1/2X ()T is observed from a spherically

Ji
symmetric distribution, and has the concentration property: there exist some constants égk), Eék) > 1 and Eék) > 0 such

that, for any M C {1,2,--- , ¢} with | M| > &) the eigenvalues of M|~ X8 (5(1))-1/2(s#)T)-1/2x ®)T

are bounded either from above by 65@ or from below by 1/ &ék) with probability at least 1 — exp(—égk)n(k)).



Condition 2. Var(Yj(ik)) = O(1). For some x*) > 0, Eflk) > 0, and égk) > 0,

~(k)
Cy : (k)\—1y-(k) (k) ~(k)
> 7(71(,6))%%) and Jeri\lzr(l? ‘COV ((ﬂ'ji )Y, X )‘ >y

: (k)
min i

. (k)
JEM;,

™

Condition 3. log(q) = O((n®))?) for some & € (0,1 — 2x()).
Condition 4. There are some 7*) > 0 and éék) > 0 such that Ay (2F)) < éék) (n(k))T(M.

Proof of Theorem 1. Following the Sure Independence Screening Property by Fan and Lv [2008], there exists some
0*) € (0,1 — 2x®) — 7(*)) such that, when d® = [M™| = O((n®)1=¢""), we have, for some constant C' > 0,

(k)
*) (k) C(n(k))l—%
P ) C \ =1— _ )
(M;y € M) @) (exp { Tog (™)

Let 6 = min(01), 02)), then for d®) = |M¥| = d = O(nl-?), we have
(k)\1—2F
") pq®) C(n™)
P ) C \ =1— _ )
g %) =10 (e { - )

3 Proof of Theorem 2

Note that £¥) = EFRNI - I‘(’“))_1 for k € {1,2}. Suppose that the singular values of both (I — ™) are positively
bounded from below by a constant c¢. Denote ng)Q = var( ;k)) and o( 2 = Var(f(k)) Then &Z(k) < Opmax/C =

max (051) Y 052))/0.
1<i<p

Lemma 1. Under Assumptions 1-3, for each network k € {1,2} in the calibration step, there exist positive constants
ka) and Cék) such that, with probability at least 1 — eff(m,

1. (Estimation Loss) ||7r(k) Ek)H% < C{k) (rgk) vdv f(k)) /nk)

2. (Prediction Loss) || X (ﬁ'gk) - wgk))H%/n(k) < Cék) (Tl(k) \'AY f(k)) /ntk).

Proof of Lemma 1. We have the closed form ridge estimator 7%5\]:)(‘ «) for the linear model ng) = Xi\lil)( %) 775\];)( %) +£Ek)

(k k k k) 7\ Ly (B)T r(E
”E\A)gm = (XE\,I)WXEM)EM ) XEMEMYE g

(k)

where A, is the ridge tuning parameter. Plugging in the equation Yl(k) = Xi\]:)gmﬂ(k) o T 55’”, we have

M

. (k k)T k) ()T ~(k k)
v :{(XL)WX(MW A ) XM)WX(M)W”LE’“}

-1
- {(XW X0 + A1) X;’j(_{)gg’“)} .

- (F) (k)

The difference between the ridge estimator 7" ) and the true 7" "', | can be written as
M M

_ (k k k) k k)p =1 _(k k k k) \ Ly ()T p(k
ﬂ-g‘/l)ﬁk) - Wi\,zoc ’\( (X M)w)xi\,,)gm + /\z(' )Id) 7"5\4)51@ + (Xg\,l)mxg\,l)gk) +)‘z(‘ )Id) X;A)gmgz(‘ g



For simplicity, we denote the composite forms of w(k)(k) and X(k)(k> as follows,
M, M
- (k k E)T ~ (K k) k
7! )<k> = *)‘z(‘ ) (Xi\,[)mx( )(k> + )‘( Ia) 7"5\,{)@%
(k) _ (k) (k)T (k) (k)
XM(k> =X (XMwX w A1)
Then we have the following simplified form of the difference,

. (K k BT o(k
i\,[)m - 7"5\4)<k> = WEVZ:'“ Xi\,l)mg(' ).

To obtain the /5 norm losses of estimation and prediction, we write

17 = o |
T~ T e 112
- - (k k)T KT (k) ()T p(k
7"5\4)@)7"5\4)&)"’2 5\,l)<k>X( (k>£ "'51(') Xi\/t)g’”Xivt)ﬁ’“)Eg)
Tgl T22 T23
k k)
HXMW( 5\4)@) 7"5\4(1@)”2
k) RT 5 (k) =~ (k k)T (W)T ~(k ()T gk
= 7r5\4§")<X5\A§">X5\4§’“>) )<k>+2 ( (XMEk)XM)Ek))X <k>€ )
T24 T25
k)T (k )T ~ (k) k)T o(k)
+& XM)E’“) (Xi,l)gmxg\,lgk))xg\/[(k)s(‘ :
T2

Firstly, we will derive the bound for T4, T55 and T5¢ terms, then we can obtain similar results for term 751, 752

and T3 by simply removing the matrix x )(k)X(k) . Denote the singular value decomposition XMW x k) -

(k) (k)
BTy () (k) (k) i

, where U;™ is a unitary matrix, VZ-( is a diagonal matrix with eigenvalues v;. Therefore, the shared

component of 77'5(;)(@ and X;’;)(k) can be rewritten as

i

. —1 -1
(XOLXE o, +aM 1) = v (v NP L) o

By Assumption 3, there are some constants cj,ce such that max||5||2:1(n(k) 1/2\|X(k)k)5\|2 < ¢ and

. _ k k k k
m111||6||2:1(Tl(k)) 1/2HX.(/V[)(.;€)5H2 > ¢o. Thus, /\maX(X( )(::)X( )(k)) < 2n® and )‘min(X( )i)X(M)W > 2nk),

(k) )

That is, v; < n(®) for each eigenvalue. Let b = Ui(k)wM(k), then ||b||2 = [|=® Noting that /\Ek) = o(n®) in

M(k) HQ
Assumption 3, we can bound the term 754 as follows,

Ty = ~(k)(k) (X(k)T x*) )7?5\’;)@ _ )\l(_k)2bTVi(k)(Vi(k) + Al(-k)fd)_lVZ—(k)(V;(k) T )\Ek)Id>_1b

M pq )
d 2 )
_ )\z(k)Q Z vjszk —0 ()\(k)2| || /n(k)> O (?"gk)).
= (v + /\( ))
Similarly, removing the term X(k)(::) X(k)( x> We have
Ty =0 (rg@?w;’;{_k)g /n(k)> -0 (rgm /n<k>). )

Noting that 755 follows a Gaussian distribution, we can write the probability of deviation of T55 with the classical
Gaussian tail inequality, for any positive number ¢,

1
P(Tos <t)>1—exp (—2t2/var(T25)> .



Furthermore,

~ (k)2 ~ (k)T k k k T (K
var(Tas) = 401( : ﬂ-gi)) (X( )<k>X£\4)<k>)X§\A)<k>X( )(m (X,(/\A)<k)X,(/\/t)(k)> iw)oc)
VIV )71‘/@ (v + )\(k)[d)ilb
d 03D2
= 455@2&&)22# =(’)( k)2/\(k)2H || /n(k)> ( Z( )2 (k)).
= 0+ )

Letting t = \/2var(T25)(f(® + log 2), we obtain that, with probability at least 1 — e~/ /2,

Tys = O (\/T§k)f(k))- 3)
(T 5 (k)

Similarly, removing XM( nX s We can obtain that, concurring with (3),

Ty — O (\/7«5’” 1) /n(k')>. )

The term Thg follows a non-central y? distribution. We can invoke the Hanson-Wright inequality [Rudelson et al.,
2013] to bound the probability of its extreme deviation, for some constant ¢t > 0,

P(Tos < E(The) +t)
2, —tty

N =
k k)T k 2 k)T
M“”)Xivt)(’“)Xfw)(’”ng)(“ 1% o ||XM(’”XE\/1)§‘“)XE\4)<’“)

> 1—exp &)

k
DY1% x® ot oo

To understand this probabilistic bound, we need to calculate [E (T56) and the two involved norms. Firstly,
~(k & (k k k
E(Ty) = &% (XH(_,C)X(M@ X<M)(k)x( {M)
— &(k)2tr (V(’f) (V(k) 4 )\(k Id)i Vz(k) (Vz(k) 4 /\Ek)Id)il)
2

_ zdj =0 (a5?). 6)

(v + )‘ )
The Frobenius norm can be simplified as follows,

(k) (R 5 (k) (k)T
HXMmXM(mXMmXMm||F
(k) xROT xc(k) (WT (k) (W) x(k) (k)T
<XM(k>XM<k) Mgk)XMu)XM(k)XM(k)XM(k>XMgk>>

k < k k v (k k
= (((X;;w>Txgj<k>><xgjm>TX;j<k)((Xy@))TX;jm><X;A>@>>Txgj(k)
)

= o (VOO AP L) v v AP 1) v @S a0 1) v v ® 4 a0 1))

v —0 7
- ;wﬁ&(’“))f - ”



Note that )‘max(XE\4)< k)X;Z)(k)XiZ)(k) X(k)(q,;)) = n(¥), then, the operator norm can be simplified as follows,

<o (k
1 X X 0 X 0 o

k)T k k k k) k)T (k k -1
||XM<k> (Xg\A(k)X( )(w +)‘z(‘ I a) X )<k>X5\,[(k> (Xiw)(mx )(k) +)‘z(‘ )Id) Xg\,[(mHop
k k k)T
- 0 (AmaX(X(M)MX(M )(k)Xg\A)(k)X;A)m) /nUf)?) =0(1). ®)

Letting

(k)45 (k )T ~(k k
! \/Ul( ) HXsw)(k)ng)(k)Xi\A)(k)X( )(k)HF (f(k) +log2)/ts
(k)25 (k) k k
v (Uz( )2||X( X( )(::)X( )(k) <k)||op x (f*) + log 2)/752) )
and combining (5), (6), (7), and (8), we obtain that, with probability at least 1 — e~/ /2,

Tos = O (d v Adf® v f<k>). 9)

Similarly, removing Xj\];)(j,:) XE\Z)( x)» We can obtain that, concurring with (9),

Tyy = O ((d VA FE v f<k>)/n<k>). (10)

Collecting the bounds (1), (3), (9) and noting the definition of Xi\]it)(’“) and ﬂ-i\lit)““)’ we conclude there exists some

constant C’ék) > 0 such that, with probability at least 1 — e~ f (k),
X0 (7 _ gz — L) ) ) e C(k)?“( vdv f®
W” (7 —m )||2fw|| M(k)( Mj’” M(>)||2 e

Similarly, collecting the bound (2), (4) and (10), we conclude there exists some constant C\* > 0 such that, with
probability at least 1 — e f (k),

yriE v dv

~ ~(k
170 =G = (|7 =13 < O =55

VI

This concludes the proof of Lemma 1. O

To bound the estimation loss, we write

a ~ (1 1 2 2
0L — 102 = |74 — 7|3+ (|7 — 7 ()2,

ile ~ Tjlp ile ~ Tjlp
where w;lf) and 7r(| ) are the §|p columns of 7w(*) and wk respectively. Following the bounds in Lemma 1 for both
networks, we obtain the overall estimation bound as, with probability at least 1 — e~ f W et (2),
(1) vVdV f(l) ( vdvV f(2)
(1) J\p @ "ilp
HH H]HQ < O n(l) + Cl (2)
() 2) ()
< (€M 4 c®) (i VAV F@) v (15 v v £)
- 1 n(l) A n(2)
(1) (2)
— C d\/ ( J‘P\/Tﬂp) v (f(l) \/f(2)) < C dvrmaxvfmax
! O AR® =T O AR



where C = C(l) + C(Q). Similarly, we write the prediction bound as, with probability at least 1 — e e‘f(z),
( 2 2
X (I, — 1) = [|X O (a8 — )3+ XD @D — 72
<c {r(.l vav i+ o vay f<2>}
(1) 1
<G {av () V) v (FO V) b < Co{dV i V fona}
where Cy = C8V + C8? and rpey = max (r™ v r®). This concludes the proof of Theorem 2.
ISP
4 Proof of Theorem 3
Let cpax = (1) V 052), and further denote
d\/’rm X\/ max d\/’rm X\/ max
Gn = Cga—fa 4 2Cmaxc2||HH1 a—f"
n V n
Lemma 2. Suppose that, for node i,
\/(d V Pmax V fmax) /10 + Comax| [T |1 < 4/ e [[T][E + 05/ (64C2[S;]). (11)

Under Assumptions 1-3, we have ¢,,(H;XTI_;,S;) > ¢ /2 with probability at least 1 — o=/ Hlogp _ o= f+logp,

Proof of Lemma 2. The inequality (11) implies that g, < ¢3/(64|S;]).

For any index set S; and vector d, note the definition of ¢, (-), then, we have that [[5||7 < (||6s¢ 1)? <
|Si ] |S; ] )2 = 16|S;|||ds,||3. we also have
o7 (H,XTT ;)" (H, XTI ;) — (H, XTI ,) " (H; XTL_,))6
\|5\|2 -
< L max |(H XH]]) (HiXHj2) - (HiXHjl)T(HiXHj2)|
16]S;| | B T
< n J1 ]2 |(H XH ) (HiXsz) - (HZXHh) (HZXHJ2)| (12)
Note that,

(H:X11;,)" (H;X1I,) — (H;XTL;, )" (HXTL,,)
= (I, — IL;,)"XTH, X (IT;, — I0;,) + (1, — I, )" X7’ XTL, + (XIL, ) "H X (0, — I0,) .

T3 1 T3 2 T3 3

We will derive the bounds for each of these three terms separately. With H; a projection matrix, we have \y,q. (H;) =
1. We can obtain that

| T51] ||, X (L, — IL;,) |2 x |[H X (IT;, — I0;,)||
Amaz (Hq)|[X(ILj;, — I, ) ]2 x |[X(IL;, — TL;, )|
|[X(IL;, — I, )2 x [[X(IL;, — IL,)|[2.

Note that |Ts2| < ||X TL, ||o|[H; X (II;, — II;,)|

<
<

5, and

XT3 = [XOal))3+1x@xD)3
< (“’)2 O3 + ()20 @213
< Ganlllmil3 + (175 13)
< e (17Dl + 1w 211)
<



Therefore,

|T32] < || XTI, ||of [HX (L, — IO, ) |2 < emax/n| (T[4 || X (XL, — I;,) |2

Similarly, we can have
|T33| < CmaX\/ﬁHHHlHX(sz - sz)‘|2-

Theorem 2 leads to the following, with probability at least 1 — e/ " +108(p) _ o= +log(p)

|T31| d Vv Tmax \ fmax

SC2Ta

n

T [dV \Y,

| 32| S CmaxC2||HH1 Tmax fmax7
n n

T [dV Tmax V e

| 33| S CmaxC2||HH1 Tmax fmax.
n n

Putting the above three inequalities together, we have,

6T (H,XTI_,)T (H,XII_;) — (H,XII_;)T (H;XII_;))é
nllds,|13

|T51] + |T32| + |T3s]
= f < ; = .

b b

< 16|St‘ X

Together with Assumption 4, we have ¢, (H;XII_;,Sy) > ¢, /2. This concludes the proof of Lemma 2.

Lemma 3. (Basic Inequality) Let n; = 2n~ ‘2T H;e; — 20 27 H,(Z_; — Z_;)B; and

) = {[IW oo < Ai/2}

13)

(14)

15)

(16)

for \; specified in Theorem 3. Under Assumptions 1-2, with h,, defined in Theorem 3, there exit a positive constant

C3 > 0 such that
P(&();)) > 1 — e~ Cahntloslda) _ o=F " +log(p) _ (=1 +log(p),

Concurring with event &()\;), we have the following basic inequality,

n Y HLZ_i(B; — B3 + Niwl 1811 < \w!'8:]1 + 0l (B; — By).

6(1') 5(1_)
EiQ@ 5@)

we have Z_; = XTI_; + £_,. With 7 ;= XfI_i, we get

Proof of Lemma 3. Letting

2. 2. )
n, = gl'[iXTHiei - ﬁHiXTHi(XH_i CXIL, - £_,)8,

2 . 2
= (I, —T_)"X"H,e; + ~T17 X"Hje;
n mn

T34 T35

2 2
+—(II_; — Hfi)TXTHiéfiIBi + 7HTiXTHi£7iﬁi
n n

T36 Ts7
2 .
n

~ 2 ~
— S - )X TH,X(TT, —I1_,)3, — EHTiXTHix(H_,- —II_,)B;.

Tg 8 T3 9

We aim to bound each of these six terms by \; /12 either probabilistically or deterministically.

a7

(18)



Firstly, for some constant ¢ > 0, we choose the adaptive lasso tuning parameter as below,

_ d\/rm x Vv max lo
A = tallwi |7 'B'l”ﬂ”lw x V' funnx) 108 (P) (19)

Mmin
Denoting the j-th column of X by X_;, we have X ,?X 5= n®) fork e {1,2} due to standardization. Furthermore,

1 (k)
ar (X_?Hiel) < —XTH X. o2 <2 <
n

JYpmax = 712 pmax —

For T34, via the classical Gaussian tail inequality, we have

A 2 . Allwill—
W, T34 |00 < P(||=(II_; —II_))TXTH,€;||o > 212
P (W Tl > 7)< P (130 X e > M

- 2 Ailwil| -

< P(|(MI_; —T_) T || [ XTH €[00 > =2

S ol 2XTHig o > 20
2 Aillwil| - nA?|lwi[2

< P —XTHi illee > ZHHIEX ) <9 _ 7alimell—oo

= (”71 €illoo = =55 ) S 2aexp 115202 .07

< 2 .p—%tlllBHfllnllf < Qq.p.p—tlHBllf%HHllf, (20)

where t; = 13 /(2304C107 ,,,)- and dyy is the maximum estimation loss of the first stage. The last inequality is ob-
tained based on the following bound of dr;. Following Theorem 2, 1y satisfies the following inequality with probability
at least 1 — e~/ +log(p) _ o~ 1@ +log(p)

2y

R AV Tmax V f
2 < ( L . 2) < max max .
0 12}22(2;3”1_[ — 1L 121%);1) 2d|1I; — IL;||5 ) < 2Cid 4§ ————

Nmin

Note that the first inequality of (21) holds, since IT and IT have at most 2d non-zeros based on our assumptions and
the screening in the calibration step.

(t2)?
115202

p max

Similarly, for the second term 735, we have that, with to =

A 2 Aillw;]| -
! < ‘07 XTH,e,||. > 2U@illzco
(|W Ts5|00 > 12) < P(HTLHZX H;€l|oo > D
2 Aillwill - oo
n
<

R TYITs GO 115202 | ITEE |12,

— 2q,pfm\\B\\‘f(dwmaxvfmx)n/nmm < 2q.p.pftgllB\\f(d\/rmaxvfmax)n/nmin. (22)

For the third term T35, we write

\ ' Ml
P (I Tull 2 33) < P (10 - T el 2XT e, > 2
)\ Wil —oo
< (o max 2 X7 ) x 18 > =)
J1,J2
2 Ml 22
< P ZXTHe | > 22 ) < 94.9 ad
< P (e X 2 s ) <30 e " 115202 0B 18:1

2
— dq.p.ptelmEn/d o



2

2
where 072 . = gyllzz(var(%X 51 H;§;,) and t3 = 2304(;1%. Similarly, with ¢, = 11522%, we write T37 term as
Ai A} w2
IP’(IWleloo > ) < 2¢-2p-expq - : =
’ 12 11520’gmax||nzz|‘go”ﬁzH%
= 4q-p- p7t4(dvrnxaxvflnax)n/nnlin. (24)

For the deterministic term T3g, choosing ty > 12Co|[TI||7"\/(d V Tmax V fmax)/(nlog(p)), along with Cauchy-
Schwarz Inequality, we have

[18:ll lwill =5 -
— 1

||Wi_1T38||OO < n jlaf;{l(ﬂjl - Hjl )TXTHiX(ﬂjz - sz)‘
18l llwoi| =5 A A
< P ma { X (I, — T0,)[|o X (T, — 10,2}
18l lwil| =5 : A
< S i { e (L)X (L, — 1) o | X (11, — T2}
18l llwi| =5 : A
< PR max (| X1, ~ T, [of X (L, — 10, ) |2}
J1,J2
av max V Jmax )\7, 12C dVv max V Jmax >\z
< 1B ol =2 €y T eV max o A (12 AV e VS ) o X
n 2"\ GBI\ nlog() 2

Similarly, we choose t) > 24\/ Canmin/(nlog(p)), and take Theorem 2 to obtain

T —
Bl T oo [lwi| =5

W, Tg|0e < " %@’;\XngiX(ﬂjQ*HjM
18l 1T | oo [l ]| 4 -
< el o, )
NTOITS s CamTO P! . Ao (24 [Conmn ) _ N
B N P VI £ [ Y
vn Ja 12 ta \/ nlog(p) 12

Note that n > npyi,. Putting together the probabilistic bounds (20), (21), (22), (23) and (24), along with union bound,
there exist a constant C'3 > 0 such that

P(EN)) >1— 3¢~ Cshn+log(4pg) _ ,—f M +log(p) _ ,—f @ +log(p)

Next we will establish the basic inequality, concurring with the event & ()\;).

Since the estimator ,(3'1 from the adaptive lasso minimizes the corresponding objective function, we have
1 PO . 1 .
LY = HLZBy s + Miw] |Biln < (LY = HZ Byl + Niw] |Bil1- (25)
Because H;Y,; = H,Z_,3, + H;e;, we can rewrite
IHY; — HiZ 3,15
= ||H,Z_:B3; + Hie; — H;Z_;3,/[3
= [[Hieill3 — 26/ Hi(Z_iB, — Z_:8,) + |[HiZ_;3; - HiZ_,3; + H,Z_; 3, — H,Z_, 3,]|
= |[Hieill3 — 26/ Hi(Z-:8; — Z-:B3;) + [[HLZ_i(B; — B3 + |Hi(Z—; — Z_5)B,[[3
+28] (Z_i — Z_)"H,Z_(B; — B)). (26)
Similarly we can rewrite
IHY: — HLZ 313 IH.Z_,B3; + Hie; — HiZ_i 3,3
| Hie|3 + [1Hi(Z s — Z-0)By|5 — 26/ Hi(Z_; — Z_,)B3; 27)



Plugging equations (26) and (27) into (25), we then have

1 A A .
EHHz‘Zﬂ'(ﬁi = BIII3 + Xiw] |81

IN

T
Niw] Byl + (2ZTiHi€i - EZZHz‘(Zﬂ' - Zi)ﬁi) (Bi — By)
n n
= \w!|Bih + WZT(& - B;).

Thus, the basic inequality is established. This concludes the proof of Lemma 3.

Conditioning on the event &(\;), we remove the random term 7); from the basic inequality as

1 5 z 2
Iz (B, - 8B

< Awl 1Bl — w181+ nf (B, — By)

< € )\z“-'-’:‘g? |Bs.¢ lh+ 7756 (Bsc) +n8,(Bs, — Bs,)
< AwE|Bs, — Bs,l1 — N wsv\ﬁsr 1+ ; wsv|53f|1 + ; w§ |Bs, —

< ;Azw£|35 - Bs, 11 — iAiwg; Bsgh

< L= sl oellBs

The last inequality implies that
Limza, - 813
< %Ai\lwsilloollﬁs,. = Bs,Ih < gAiuwsinmHB& B, ll2
< §Ai|wsi||wm2lHiZ-i<Bi—ﬁi>||27

Ve,
where the last inequality follows Assumption 4 and Lemma 2. The above inequality leads to that,
1 g, 7 9( 00)2 2
~|HZ_i(8; - B)Il3 < |Sil A7
n ’ %

Plugging in (19), and letting C; = 3t,, we obtain that

Lo s C3 .14V Tmax V fmax) log(p)
~|HZi(B; - B)ll3 < — :
n 0|| iHQ Mmin
The fact that ||H;Z_;(3; — 8,)||2 is always positive in (28) implies that
lwse —oo||Bsg||1 < 3Hw5i||0°”lési —Bs, I,
which further leads to that
P 2 7 Hw i |loo 2
18: = Bull = WBs: I + 135, ~ Bl < (322 1) 13, - s

Noting the inequality (30), we can follow Assumption 4 and Lemma 2 to derive that

1) \/@2HHZ—Z4(51‘ — Bi)ll2

18— Bl < (3|°° T

d V Tmax V fmax) log(p)

st —oc Vi,
. 2C,
< (sl i) s S
( [wsell- ¢>o|| z”—oo
2B 1] |TX (dV Tmax V fmax) |
< sc,leslklBlhl ||1|Si\/ iV finax) 108 ()
dillwill o

Tlmin

(28)

(29)

(30)

€1y

(32)



> < - Since the
inequality (28) concurs with the event & ();), the above prediction and estimation bounds hold with probability at least
1 — 3¢~ Cshn+log(4pa) _ o=f " +log(p) _ =S +log(P) This completes the proof of Theorem 3.

where the last inequality comes from the facts that |wse|| o0 > [|will o and [Jwil| —oo < [ws,

5 Proof of Theorem 4

Lemma 4. Suppose that, for node i,

VOV PV fanso) /14 ol XT3 < (/2,0 T 4 min(93 /64, 7(4 — ) wil| o /) /(CalSH]). (33)

oo < 1—17/2 with the probability at least 1 — e=F " +log(p) _

Under Assumptions 1-5, we have ||Wg.! (27212?111)1/[/31.
e— 1 +log(p)

Proof of Lemma 4. The inequality (33) implies that ;||w;|| ~% |Silgn < -
By the inequalities (15) and (16) in the proof of Lemma 2 and union bound, we have that, with probability at least

1 — eV +los(p) _ o= +log(p)

1 . .
ma { 2 (BT, (BLXIL,) — (HXTG)T (HOXT) | < g,

J1.d2
With the definitions of infinity norm || - || o, f@',ll’ and Z, ;, we can obtain the following inequality indexed by set S;,
%HWs_il(ii,n _Iz',n)Hoo < 71’1‘”‘"&‘[3»”2,11 _Ii,11||00 < Yillws, :éo‘SiL‘Jn < i (34)

Similarly we can obtain the following bound indexed by the complement set S,
llWs? i~ Lia)lloo < illws; | =LelSilon < 77— (35)

Applying the matrix inversion error bound in Horn and Johnson [2012] and the triangular inequality, we have that

||:Zi_,111WS'i||OO < ||Ii_,11WSiHoo+Hiz'_JllWSi _Ii_,lllwsiHoo
%‘ W_l jz _Ii 0o 4 —
< ot 2 S',(l a1~ Lo i S i+ ot < T (36)
L= [Wg (Z; 11 — i 11) |0 — AT — AT

Also note that we can rewrite

—1 (4 -1 —1
WS; (Ii,lei,ll - Ii,QIIi,ll) WSi

= Ws_gl (j 21 Ii,21) jij111WSz + W_;lI@mIiTlﬁWSiWél (7:-‘,11 - Ii,ll) Ii_,111WSq:-

7, i

Then, it follows from (34), (35), (36) and Assumption 5 that

o0

-1 (4 -1 -1
Hng (Ii,lei,n - Ii,lei,ll) Ws,

o0

< ||W§;1 (Ii,Ql _Ii,21> ||OOHIiTlllWSi

+||WS_§111',21-Z;111W571 ooHWs_il (Ii,ll *Iz',n> |‘90||IiT111WSiHOO <7/2.

Therefore, together with Assumption 5 again, we can conclude that ||W$_p1 (11,212‘? IIWs, oo <1—17/2.

This concludes the proof of Lemma 4. 0



The optimality of Bl in the adaptive lasso step and KKT condition lead to
2 . P
n

where o; € R?~2, satisfying that [|o||co < 1and a;;I(B;; # 0) = sign(B;;).
Plug in the equation H;Y; = H;Z_,3, + H;¢;, we can have that

HY, -HZ .8, = HZ_ .8, +He - HZ 3
= Hie +H,Z .8, -HWZ .8, +HZ 8, -HZ 3

This, along with KKT condition (37), leads to

2,(B; — By) —m = —AiWiai, (39)
where 1), is defined in Lemma 3.

Letting B se = Bse = 0, equation (39) can be decomposed as

211‘,11(331- —Bs,) —ns, = —A\iWs,as,, (40)
27:21(Bs, — Bs,) — Nse = —AiWsease.
We can solve for B s, from the first equation of (40) as
BSi - 651- = 2_1:227111 (nSi - )‘ZW‘SZO‘SI) = 2_1117111W5i(W$71778i - )‘iasi)' 41)

Following the similar strategy in the proof of Lemma 3, we can prove that there exists a constant C'5 > 0 such that
W, ;][0 < 35=A; with probability at least 1 — 3¢=C5 o (40) Hog () _ o=f oz (p) _ o=/ +log (1) Thys,
together with ||as, || < 1, we obtain the infinity norm estimation loss on the true support set S;

HBS —Bslle < 2_1‘|jij111W8i oo(HW.;n& 0o i)
4—-7 4 Aii
< 27! i Ai = o—— < min|B;| = b;,
S 2 Vi A T oo, S minlByl

where the last inequality comes from the condition on the minimal signal strength b;. The above inequality implies
sign(Bs,) = sign(Bs,)-
Plugging (40) into the left hand side of the second equation in (41), we can verify that
IWai' Zio1 (Zin) (s, = AiWs,as,) = Wad el
< ||Ws}1ii,2li.5111W$i m(||W§1nSi 0o T Ai) + ||Ws}1"7$f”oo
< (Q=7/2)4/4d=TNi+T7/(4d=T)Ni = A

Therefore, we have constructed a solution 3, which satisfies the KKT condition (39) and sign(8;) = sign(3;), that
is, §; = S;. This completes the proof of Theorem 4.
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