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1 SUPPLEMENTARY MATERIAL

1.1 DETAILS OF DUAL DECOMPOSITION
We describe the dual decomposition approach in more detail. We start with the opti-
mization problem:

max
x∈{0,1}n

c1(z)Tx

+
1

Nω

∑
ω∈Dω

[
max

y∈Y (x,ω,z)
c2(ω, z)T y

]
We first introduce independent copies of x for each scenario ω. We can state this as

max
x,{xω}

1

Nω

∑
ω∈Dω

[
max

y∈Y (xω,ω,z)
c1(z)Txω + c2(ω, z)T y

]
(1)

s.t xω = x ∀ω ∈ Ω

The constraints in the problem are known as non-anticipativity constraiants, since the
enforce that x has to be chosen independent of the value of ω (i.e., at the first stage,
we do not know the precise realization of the second stage randomness). We obtain
a relaxation of the above problem by dropping the non-anticipativity constraints and
simply adding a Lagrangian term that tries to enforce the constraint:

max
∑
ω∈Dω

1

Nω

 max
y∈

Y (xω,ω,z)

cT1 xω + cT2 y + λTω (x− xω)

 (2)

where we dropped the dependce of c1, c2 on ω, z for brevity and the outer maximization
is over x, {xω} For any choice of {λω}ω∈Ω, the optimal value of this optimization
problem is an upper bound on the optimal value of (1) - this follows from weak duality
[Carøe and Schultz, 1999]. A quick way to see that this is true is as follows: Any
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feasible solution for (1) satisfies x = xω and hence the Lagrangian terms involving λ
disappear and the objective reduces to the objective of (1). Thus, every feasible solution
of (1) is feasible for (2) and for every such solution the objectives of (2) and (1) coincide.
Thus, the optimal value of (2) is guaranteed to be larger than or equal to the optimal
value of the (1).

We can simplify (2) by observing that the maximization over xω can be done
independently for each ω:

1

Nω

∑
ω∈Dω

max
xω,y:

B(ω,z)xω+C(ω,z)y≤d(ω,z)

cT1 xω + cT2 y − λTωxω

+ max
x∈{0,1}n

(
1

Nω

∑
ω∈Dω

λω

)T
x (3)

We denote

h(ω, z, λω) =

max
B(ω,z)xω+C(ω,z)y≤d(ω,z)

c1(z)Txω + c2(ω, z)T y − λTωxω

Note also that

∂h(ω, z, λω)

∂λω
=

argmax
x:B(ω,z)xω+C(ω,z)y≤d(ω,z)

c1(z)Txω + c2(ω, z)T y − λTωxω

Then (2) reduces to

1

Nω

∑
ω∈Dω

h(ω, z, λω) + 1T max

(
1

Nω

∑
ω∈Dω

λω, 0

)
(4)

Since this quantity is an upper bound on the optimal value of (1) for every choice of
λω , we can optimize the upper bound leading to the dual problem:

min
{λω}

1

Nω

∑
ω∈Dω

h(ω, z, λω) + 1T max

(
1

Nω

∑
ω∈Dω

λω, 0

)
(5)

Theorem 1 (From the results in [Carøe and Schultz, 1999]). The optimal value of (5)
is a bound on the optimal value of (1) and further (5) is a convex optimization problem.

Proof. The bound argument was sketched informally above and a formal proof can
be found in [Carøe and Schultz, 1999]. The convexity of the objective can be easily
checked from the definition of h, which is simply a maximum over linear functions of
λω .
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1.2 TABU SEARCH
Tabu Search (Glover [1986]) makes local moves in the space of the first stage decision
variable x and maintains a list of recently visited solutions (“tabu” list) to avoid cycles.
The algorithms starts with a random initialization in {0, 1}n during training. At each
iteration, a minibatch of values of ω S = {ωs} and a subset of dimensions B =
i1, i2, . . . , ik are sampled. Then, the effect of flipping each bit in the index set B is
evaluated by averaging the objective over the minibatch S. The best performing flip is
then accepted (if it does better than the current solution and if the flip does not lead to a
solution in the tabu list). If the solution is accepted, it is added to the tabu list displacing
the oldest member (if the size of the tabu list has reached its limit).

The limit on the size of the tabu list, the minibatch size and the size of the dimension
set B are hyperparameters that are tuned by observing the value that give the maximum
improvement in the objective over the validation set, averaged over the set of training
context vectors z

Also, for each training context z, the optimal solution found by the hill climbing
algorithm is stored.

At test time, given a test context z, we look at the nearest neighbor z in the training
context set, retrieve the optimal solution for that context, and initalize the tabu search
with that solution with the hyperparmaters chosen based on tuning on the training
contexts.

1.3 PROGRESSIVE HEDGING
We implement the progressive hedging algorithm [Watson and Woodruff, 2011] that is
based on the dual decomposition approach. This algorithm has been successfully applied
to several stocahstic integer programming problems. The main idea in this algorithm is
to fix the relaxation introduced in the dual decomposition by adding penalty terms to
promote consistency between xω and x. Specifically, an additional penalty of the form
ρ‖xω − x‖2 is added to the objective to promote consistency between solutions and
the dual variables λω are updated with a gradient step at each iteration. If all scenarios
converge to the same solution, the algorithm is terminated. Otherwise, if the algorithm
fails to converge, the xω are averaged over all the scenarios and the averaged solution is
rounded to binary values and returned.
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