Supplementary Materials For: Identification of Personalized Effects Associated With Causal Pathways

Ilya Shpitser Department of Computer Science Johns Hopkins University Baltimore, MD

APPENDIX

A: The ID Algorithm

function **ID**(**y**, **x**, **P**, **G**):

INPUT: **x**,**y** value assignments, P a probability distribution, G a causal diagram.

OUTPUT: Expression for $P_{\mathbf{x}}(\mathbf{y})$ in terms of P or FAIL(F,F').

1) if
$$\mathbf{x} = \emptyset$$
, return $\sum_{\mathbf{v} \in \mathbf{v}} P(\mathbf{v})$.

- 2) if $\mathbf{V} \setminus An(\mathbf{Y})_G \neq \emptyset$, return $\mathbf{ID}(\mathbf{y}, \mathbf{x} \cap An(\mathbf{Y})_G, \sum_{\mathbf{v} \setminus An(\mathbf{Y})_G} P, An(\mathbf{Y})_G)$.
- 3) let $\mathbf{W} = (\mathbf{V} \setminus \mathbf{X}) \setminus An(\mathbf{Y})_{G_{\mathbf{x}}}$. if $\mathbf{W} \neq \emptyset$, return $\mathbf{ID}(\mathbf{y}, \mathbf{x} \cup \mathbf{w}, P, G)$.
- 4) if $C(G \setminus \mathbf{X}) = \{S_1, ..., S_k\},$ return $\sum_{\mathbf{v} \setminus (\mathbf{y} \cup \mathbf{x})} \prod_i \mathbf{ID}(s_i, \mathbf{v} \setminus s_i, P, G).$
 - if $C(G \setminus \mathbf{X}) = \{S\}$:
 - 5) if $C(G) = \{G\}$, throw **FAIL** $(G, G \cap S)$. 6) if $S \in C(G)$, return $\sum_{s \setminus y} \prod_{\{i | V_i \in S\}} P(v_i | v_G^{(i-1)})$. 7) if $(\exists S')S \subset S' \in C(G)$, return **ID** $(y, x \cap S', \prod_{\{i | V_i \in S'\}} P(V_i | V_G^{(i-1)} \cap S', v_G^{(i-1)} \setminus S'), S')$.

Figure 1: ID Algorithm as it appears in [2].

B: Example Derivation For A Response To An Edge-Specific Policy

We seek to identify the distribution $p(Y(f_A^{(AM)_{\rightarrow}}(W_0), f_A^{(AW_1)_{\rightarrow}}(W_0)))$ in Fig. 2 (b). $\mathbf{Y}^* = \{Y, W_1, M_1, W_0\}$, and $\mathcal{D}(\mathcal{G}_{\mathbf{Y}^*}) = \{\{Y\}, \{W_0, M_1\}, \{W_1\}\}$ (the graph $\mathcal{G}_{\mathbf{Y}^*}$ is shown in Fig. 2 (c)). Thus, we have three terms, a term Eli Sherman Department of Computer Science Johns Hopkins University Baltimore, MD

 $\phi_{\{W_0,M_1,A,W_1\}}(p;\mathcal{G})$ for Y, a term $\phi_{\{W_0,A,M_1,Y\}}(p;\mathcal{G})$ for W_1 , and a term $\phi_{\{A,W_1,Y\}}(p;\mathcal{G})$ for $\{W_0,M_1\}$. We have

$$\begin{split} \phi_{\{W_0,A,M_1,Y\}}(p;\mathcal{G}) &= \phi_{\{W_0,A,M_1\}} \left(\sum_Y p;\mathcal{G}^{(a)}\right) \\ &= \phi_{\{W_0,A\}} \left(\frac{p(W_0,A,M_1,W_1)}{p(M_1 \mid A,W_0)};\mathcal{G}^{(b)}\right) \\ &= \phi_{\{W_0\}} \left(\frac{p(W_0,A,M_1,W_1)}{p(M_1,A \mid W_0)};\mathcal{G}^{(c)}\right) \\ &= p(W_1 \mid M_1,A,W_0), \end{split}$$

where $\mathcal{G}^{(a)}, \mathcal{G}^{(b)}, \mathcal{G}^{(c)}$ are CADMGs in Figs. 2 (a), (b), and (c), respectively. Similarly, $\phi_{\{W_0, M_1, A, W_1\}}(p; \mathcal{G})$ is equal to

$$\begin{split} \phi_{\{W_0,M_1,A\}} & \left(\frac{p(W_0,A,M_1,W_1,Y)}{p(W_1 \mid M_1,A,W_0)}; \mathcal{G}^{(d)} \right) \\ &= \phi_{\{W_0,A\}} & \left(\frac{p(W_0,A,M_1,W_1,Y)}{p(W_1,M_1 \mid A,W_0)}; \mathcal{G}^{(e)} \right) \\ &= \phi_{\{W_0\}} & \left(\sum_A \frac{p(W_0,A,M_1,W_1,Y)}{p(W_1,M_1 \mid A,W_0)}; \mathcal{G}^{(f)} \right) \\ &= \sum_{W_0,A} p(W_2 \mid W_1,M_1,A,W_0) p(A,W_0), \end{split}$$

where $\mathcal{G}^{(d)}, \mathcal{G}^{(e)}, \mathcal{G}^{(f)}$ are CADMGs in Figs. 2 (d), (e), and (f), respectively. Finally,

$$\begin{split} \phi_{\{A,W_1,Y\}}(p;\mathcal{G}) &= \phi_{\{A,W_1\}}\left(\sum_{Y} p;\mathcal{G}^{(a)}\right) \\ &= \phi_{\{A\}}\left(\sum_{Y,W_1} p;\mathcal{G}^{(g)}\right) \\ &= \frac{p(W_0,A,M_1)}{p(A \mid W_0)} = p(M_1 \mid A,W_0)p(W_0), \end{split}$$

where $\mathcal{G}^{(a)}, \mathcal{G}^{(g)}$ are CADMGs in Figs. 2 (a), and (g), respectively. Note that whenever the fixing operation for a kernel $q_{\mathbf{V}}(\mathbf{V}|\mathbf{W})$ that fixes $V \in \mathbf{V}$ is such that $\mathbf{V} \setminus \{V\} \subseteq \operatorname{nd}_{\mathcal{G}(\mathbf{V},\mathbf{W})}(V)$, the resulting kernel can be viewed as $\tilde{q}_{\mathbf{V}\setminus\{V\}}(\mathbf{V} \setminus \{V\}|\mathbf{W} \cup$
$$\begin{split} \{V\}) &= \sum_V q_{\mathbf{V}}(\mathbf{V}|\mathbf{W}). \text{ We now combine these terms,} \\ \text{evaluating } A \text{ to either } f_A^{(AW_1) \rightarrow}(W_0) \text{ or } f_A^{(AM) \rightarrow}(W_0), \\ \text{as appropriate, yielding the functional in (18) for } \\ p(Y(f_A^{(AW_1) \rightarrow}(W_0), f_A^{(AM) \rightarrow}(W_0))), \text{ namely:} \end{split}$$

$$\sum_{W_0,A,M,W_1} \left[\left[p(W_1|M, A = f_A^{(AM) \to}(W_0), W_0) \right] \times \left[p(M|A = f_A^{(AW_1) \to}(W_0), W_0) p(W_0) \right] \times \left[\sum_{W_0,A} p(Y|W_1, M, A, W_0) p(W_0, A) \right] \right].$$

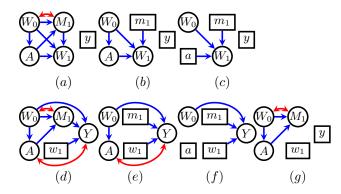


Figure 2: CADMGs obtained from fixing in \mathcal{G} shown in Fig. 2 (b): (a) $\phi_{\{Y\}}(\mathcal{G})$, (b) $\phi_{\{Y,M_1\}}(\mathcal{G})$, (c) $\phi_{\{Y,M_1,A\}}(\mathcal{G})$, (d) $\phi_{\{W_1\}}(\mathcal{G})$, (e) $\phi_{\{W_1,M_1\}}(\mathcal{G})$, (f) $\phi_{\{W_1,M_1,A\}}(\mathcal{G})$, (g) $\phi_{\{Y,W_1\}}(\mathcal{G})$.

C: Proofs

Before giving proofs of our main results, we state the following utility lemma which will be useful throughout subsequent developments.

Lemma 1 Let \mathcal{G} be a DAG with vertex set \mathbf{V} . Fix $A, B \in \mathbf{V}$ such that $B \notin \deg(A) \setminus \operatorname{ch}_{\mathcal{G}}(A)$ and $A \notin \deg(B) \setminus \operatorname{ch}_{\mathcal{G}}(B)$. Let $\mathcal{G}_{A \times B}$ be a directed graph containing vertices $(\mathbf{V} \setminus \{A, B\}) \cup Z$, and the following set of edges. First, all edges between vertices in $\mathbf{V} \setminus \{A, B\}$ in \mathcal{G} also are in $\mathcal{G}_{A \times B}$. Second, for every $C \neq A, B$, for every edge of the form $C \to A$ or $C \to B$ in \mathcal{G} , there is an edge $C \to Z$ in $\mathcal{G}_{A \times B}$, and for every edge of the form $A \to C$ or $B \to C$ in \mathcal{G} , there is an edge $Z \to C$ in $\mathcal{G}_{A \times B}$. Then

- (a) $\mathcal{G}_{A\times B}$ is a DAG.
- (b) Any element in the causal model for G is an element of the causal model for $G_{A\times B}$, if we interpret the Cartesian product of variables A and B in this element as the variable Z.

Proof: If $\mathcal{G}_{A \times B}$ is not a DAG, there is a directed cycle involving Z, e.g. $W \to \ldots \to \circ \to Z \to \circ \to \ldots \to$ W. Since \mathcal{G} is a DAG, this implies either \mathcal{G} has a pair of paths $W \to \ldots \to \circ \to A$ and $B \to \circ \to \ldots \to$ W, or a pair of paths $W \to \ldots \to \circ \to B$ and $A \to$ $\circ \to \ldots \to W$. This violates our assumption on the genealogical relationship between A and B.

We construct the element in the causal model for $\mathcal{G}_{A \times B}$ as follows. Given the structural equation $f_A(\operatorname{pa}_{\mathcal{G}}(A), \epsilon_A)$ for A, and the structural equation $f_B(\operatorname{pa}_{\mathcal{G}}(B), \epsilon_B)$ for B in some element of a causal model in \mathcal{G} , define the structural equation $f_Z(\operatorname{pa}_{\mathcal{G}_{A \times B}}(Z), \epsilon_Z)$ to be the function that sets the component of Z corresponding to A via $f_A(\operatorname{pa}_{\mathcal{G}}(A), \epsilon_A)$, the component of Z corresponding to B via $f_B(\operatorname{pa}_{\mathcal{G}}(B), \epsilon_B)$, and where $\epsilon_Z = \epsilon_A \times \epsilon_B$.

The structural equations and independent error terms for variables other than Z are inherited from the element of the causal model for \mathcal{G} . By construction, all error terms are independent. By definition of the structural equation model with independent errors, this gives an element in the causal model of $\mathcal{G}_{A \times B}$.

Corollary 1 Fix \mathcal{G} , A, B with the properties in Lemma 1. Fix any causal parameter β that is not identified in \mathcal{G} . If A, B is reintepreted to refer to $Z = A \times B$, then β is also not identified in $\mathcal{G}_{A \times B}$.

Proof: If β is not identified, there exist two elements in the causal model for \mathcal{G} which agree on the observed data distribution, but disagree on β . The construction in the proof of Lemma 1 allows us to reinterpret those elements as elements of the causal model for $\mathcal{G}_{A \times B}$, and β as a parameter in the causal model for $\mathcal{G}_{A \times B}$. This immediately yields two elements in the model for $\mathcal{G}_{A \times B}$ which disagree on β , but agree on the observed data distribution. \Box

We now give the proofs of the main results. The proof of the following result is already known. We give a version of it here to show the close relationship between proofs of other the results in this paper, and the method for proving this result.

Theorem 4 Given disjoint subsets \mathbf{Y}, \mathbf{A} of \mathbf{V} in an ADMG \mathcal{G} , define $\mathbf{Y}^* \equiv \operatorname{an}_{\mathcal{G}_{\mathbf{V}\setminus\mathbf{A}}}(\mathbf{Y})$. Then $p(\mathbf{Y}(\mathbf{a}))$ is not identified if there exists $\mathbf{D} \in \mathcal{D}(\mathcal{G}_{\mathbf{Y}^*})$ that is not a reachable set in \mathcal{G} .

Proof: Assume there exists $\mathbf{D} \in \mathcal{D}(\mathcal{G}_{\mathbf{Y}^*})$ that is not a reachable set in \mathcal{G} . Let $\mathbf{R} = \{D \in \mathbf{D} | \operatorname{ch}_{\mathcal{G}}(D) \cap \mathbf{D} = \emptyset\}$, and $\mathbf{A}^* = \mathbf{A} \cap \operatorname{pa}_{\mathcal{G}}(\mathbf{D})$. Then there exists a hedge consisting of \mathbf{D} and a superset of \mathbf{D} for $p(\mathbf{R}|\operatorname{do}(\mathbf{a}^*))$, and $p(\mathbf{R}|\operatorname{do}(\mathbf{a}^*))$ is not identified via a construction based on hedges in [2].

Let \mathbf{Y}' be the minimal subset of \mathbf{Y} such that $\mathbf{R} \subseteq \operatorname{an}_{\mathcal{G}_{\mathbf{V}\setminus\mathbf{A}}}(\mathbf{Y}')$. Consider an edge subgraph \mathcal{G}^{\dagger} of \mathcal{G} consisting of all edges in \mathcal{G} in the hedge above, and a subset of edges on directed paths in $\mathcal{G}_{\mathbf{V}\setminus\mathbf{A}}$ from \mathbf{R} to \mathbf{Y}' that form a forest. Note that if $p(\mathbf{Y}'|\operatorname{do}(\mathbf{a}^*))$ is not identified in \mathcal{G}^{\dagger} , $p(\mathbf{Y}|\operatorname{do}(\mathbf{a}))$ is also not identified in \mathcal{G} , since by construction, $p(\mathbf{Y}'|\operatorname{do}(\mathbf{a}^*)) = p(\mathbf{Y}'|\operatorname{do}(\mathbf{a}))$, and if the marginal $p(\mathbf{Y}'|\operatorname{do}(\mathbf{a}))$ is not identified, the joint $p(\mathbf{Y}|\operatorname{do}(\mathbf{a}))$ is also not identified. Since \mathcal{G}^{\dagger} is an edge subgraph of \mathcal{G} , $p(\mathbf{Y}|\operatorname{do}(\mathbf{a}))$ is also not identified in \mathcal{G} .

We now show that $p(\mathbf{Y}'|do(\mathbf{a}^*))$ is not identified in \mathcal{G}^{\dagger} . If $\mathbf{R} \subseteq \mathbf{Y}'$, our conclusion is trivial.

If not, pick a vertex \widetilde{Y} in \mathcal{G}^{\dagger} such that $\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \subseteq \mathbf{R}$, and $\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}' \neq \emptyset$. Such a vertex is guaranteed to exist, since \mathcal{G}^{\dagger} is acyclic and $\mathbf{R} \setminus \mathbf{Y}' \neq \emptyset$. We want to show the following subclaim: if $p(\mathbf{R}|\operatorname{do}(\mathbf{a}^*))$ is not identifiable, then $p(\mathbf{R} \setminus (\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}') \cup \widetilde{Y}|\operatorname{do}(\mathbf{a}^*))$ is also not identified. Note that in the model given by \mathcal{G}^{\dagger} ,

$$\begin{split} p(\mathbf{R} \setminus (\mathrm{pa}_{\mathcal{G}^{\dagger}}(Y) \setminus \mathbf{Y}') \cup Y | \mathrm{do}(\mathbf{a}^*)) &= \\ \sum_{\mathrm{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}'} p(\mathbf{R} | \mathrm{do}(\mathbf{a}^*)) p(\widetilde{Y} | \mathrm{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y})) \end{split}$$

Since $p(\mathbf{R}|do(\mathbf{a}^*))$ is not identified in the model corresponding to the subgraph of \mathcal{G}^{\dagger} pertaining to the hedge for $p(\mathbf{R}|do(\mathbf{a}^*))$, there exist two elements in this model that agree on the observed data distribution, but disagree on $p_1(\mathbf{R}|do(\mathbf{a}^*))$ and $p_2(\mathbf{R}|do(\mathbf{a}^*))$. In fact, the two elements constructed in [2] used discrete state space variables.

Note that the right hand side expression above can be viewed, for discrete state space variables, as a linear mapping from vectors representing probabilities $p(\mathbf{R}|\operatorname{do}(\mathbf{a}^*))$ to vectors representing probabilities $p(\mathbf{R} \setminus (\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}'), \widetilde{Y}|\operatorname{do}(\mathbf{a}^*))$. To prove the subclaim, it suffices to extend the above two elements with the same distribution $p(\widetilde{Y}|\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}))$ in such a way that this linear mapping is one to one. This will ensure the two elements still agree on the observed data distribution but disagree on $p_1(\mathbf{R} \setminus (\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}'), \widetilde{Y}|\operatorname{do}(\mathbf{a}^*))$ and $p_2(\mathbf{R} \setminus (\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}'), \widetilde{Y}|\operatorname{do}(\mathbf{a}^*))$. Many such choices for $p(\widetilde{Y}|\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}))$ are possible. For example, any appropriate stochastic matrix of full column rank will suffice.

We now redefine $\mathbf{R} \equiv \mathbf{R} \setminus (\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}') \cup \widetilde{Y}$, and apply the above subclaim inductively until $\mathbf{R} \subseteq \mathbf{Y}'$. Note that if $\widetilde{Y} = Y \in \mathbf{Y}'$, we may first apply the induction to \widetilde{Y} as an artificial "copy" of Y, and then redefine Y as a Cartesian product of Y and \widetilde{Y} , with the conclusion following by Corollary 1.

This proves the claim.

To illustrate the operation of the proof, consider the graph in Fig. 3 (a), where we want to show $p(Y_2|do(a))$ is not identified. First, note that $\mathbf{Y}^* = \{Y_2, M, Y_1\}$, with $\{Y_1, Y_2\}$ not reachable. This entails the hedge structure composed of two "C-forests" shown in Fig. 3 (b) and (c), see [2] for further details on how hedges are defined. The presence of the hedge structure immediately implies $p(Y_1, Y_2 | do(a))$ is not identified. The inductive argument in the proof proceeds as follows. First a distribution $p(M|Y_1)$ is constructed such that $p(Y_2, M|do(a)) =$ $\sum_{Y_1} p(M|Y_1)p(Y_1,Y_2|do(a))$ is not identified in Fig. 3 (d). Next, a distribution $p(Y_2|M)$ is constructed such that $p(\widetilde{Y}_2, Y_2|do(a)) = \sum_M p(\widetilde{Y}_2|M)p(Y_2, M|do(a))$ is not identified in Fig. 3 (e). Finally, we use Corollary 1 to conclude non-identifiability of $p(Y_2|do(a))$ in Fig. 3 (a) by redefining Y_2 in Fig. 3 (a) to be a Cartesian product of Y_2 and \overline{Y}_2 in Fig. 3 (e). This construction corresponds to Fig. 3 (f). Note that Fig. 3 (a) and Fig. 3 (f) are identical up to vertex relabeling.

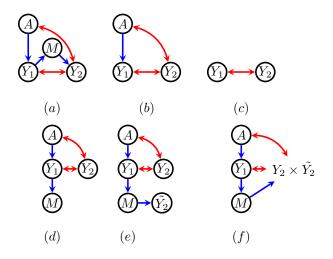


Figure 3: (a) A graph in which we are interested in the effect of A on Y_2 , $p(Y_2|do(a))$; (b) and (c) Two forests that form a hedge with the root set $\{Y_1, Y_2\}$, $p(Y_1, Y_2|do(a))$ is not identified; (d) A subgraph illustrativing the injectivity argument: $p(M, Y_2|do(a))$ is not identified; (e) Adding an artificial variable \tilde{Y}_2 , $p(Y_2, \tilde{Y}_2|do(a))$ is not identified; (f) Joining Y_2 and \tilde{Y}_2 via the Cartesian product, $p(Y_2 \times \tilde{Y}_2|do(a))$ is not identified.

We next prove an analogous theorem for edge interventions. A similar proof for a closely related claim (not involving edge interventions) appeared in [1].

Theorem 5 Given $\mathbf{A}_{\alpha} \equiv \{A \mid (AB)_{\rightarrow} \in \alpha\}$, and an edge intervention given by the mapping \mathfrak{a}_{α} , define $\mathbf{Y}^* \equiv \operatorname{an}_{\mathcal{G}_{\mathbf{V}\setminus\mathbf{A}_{\alpha}}}(\mathbf{Y})$. The joint distribution of the counterfactual response $p(\{\mathbf{V}\setminus\mathbf{A}_{\alpha}\}(\mathfrak{a}_{\alpha}))$ is not identified if $p(\{\mathbf{V}\setminus\mathbf{A}_{\alpha}\}(\mathbf{a}))$ is not identified, or there exists $\mathbf{D} \in$ $\mathcal{D}(\mathcal{G}_{\mathbf{Y}^*})$ and $A \in \mathbf{A}_{\alpha}$, such that \mathfrak{a}_{α} has the different value assignments for a pair of directed edges out of A into \mathbf{D} .

Proof: Assume there exists $\mathbf{D} \in \mathcal{D}(\mathcal{G}_{\mathbf{Y}^*})$ that is not a reachable set in \mathcal{G} , or \mathfrak{a}_{α} has different value assignments for a pair of directed edges out of A into \mathbf{D} . Let $\mathbf{R} = \{D \in \mathbf{D} | \operatorname{ch}_{\mathcal{G}}(D) \cap \mathbf{D} = \emptyset\}$, and $\mathbf{A}^* = \mathbf{A} \cap \operatorname{pa}_{\mathcal{G}}(\mathbf{D})$. Then we have one of two cases. Either there exists a hedge consisting of \mathbf{D} and a superset of \mathbf{D} for $p(\mathbf{R}|\operatorname{do}(\mathbf{a}^*))$, and $p(\mathbf{R}|\operatorname{do}(\mathbf{a}^*))$ is not identified via a construction based on hedges in [2]. Or $p(\mathbf{R}(\mathfrak{a}_{\{(AD) \rightarrow | A \in \mathbf{A}, D \in \mathbf{D}\}))$ is not identified by counterexamples in [1].

Note that $p(\mathbf{R}|do(\mathbf{a}^*))$ is equal to $p(\mathbf{R}(\mathfrak{a}^{\dagger}_{\{(AD)_{\rightarrow}|A\in\mathbf{A},D\in\mathbf{D}\}}))$, where \mathfrak{a}^{\dagger} assigns all edges from **A** to **D** to a consistent value. As a result, in the discussions below we will unify the above two cases by assuming non-identifiability of $p(\mathbf{R}(\mathfrak{a}_{\{(AD)_{\rightarrow}|A\in\mathbf{A},D\in\mathbf{D}\}}))$, for some \mathfrak{a} .

We now proceed as before. Let \mathbf{Y}' be the minimal subset of \mathbf{Y} such that $\mathbf{R} \subseteq \operatorname{an}_{\mathcal{G}_{\mathbf{V}\setminus\mathbf{A}}}(\mathbf{Y}')$. Consider an edge subgraph \mathcal{G}^{\dagger} of \mathcal{G} consisting of all edges in \mathcal{G} in the recanting district or hedge above, and a subset of edges on directed paths in $\mathcal{G}_{\mathbf{V\setminus A}}$ from \mathbf{R} to \mathbf{Y}' that form a forest. Note that if $p(\mathbf{Y}'(\mathfrak{a}_{\{(AD)\rightarrow|A\in\mathbf{A},D\in\mathbf{D}\}}))$ is not identified in \mathcal{G}^{\dagger} , $p(\mathbf{Y}(\mathfrak{a}_{\alpha}))$ is also not identified in \mathcal{G} , since by construction, $p(\mathbf{Y}'(\mathfrak{a}_{\{(AD)\rightarrow|A\in\mathbf{A},D\in\mathbf{D}\}})) = p(\mathbf{Y}'(\mathfrak{a}_{\alpha}))$, and if the marginal $p(\mathbf{Y}'(\mathfrak{a}_{\alpha}))$ is not identified, the joint $p(\mathbf{Y}(\mathfrak{a}_{\alpha}))$ is also not identified. Since \mathcal{G}^{\dagger} is an edge subgraph of \mathcal{G} , $p(\mathbf{Y}(\mathfrak{a}_{\alpha}))$ is also not identified in \mathcal{G} .

We now show that $p(\mathbf{Y}'(\mathfrak{a}_{\{(AD) \rightarrow | A \in \mathbf{A}, D \in \mathbf{D}\}}))$ is not identified in \mathcal{G}^{\dagger} . If $\mathbf{R} \subseteq \mathbf{Y}'$, our conclusion is trivial.

If not, pick a vertex \widetilde{Y} in \mathcal{G}^{\dagger} such that $\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \subseteq \mathbf{R}$, and $\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}' \neq \emptyset$. Such a vertex is guaranteed to exist, since \mathcal{G}^{\dagger} is acyclic and $\mathbf{R} \setminus \mathbf{Y}' \neq \emptyset$. We want to show the following subclaim: if $p(\mathbf{R}(\mathfrak{a}_{\{(AD) \rightarrow | A \in \mathbf{A}, D \in \mathbf{D}\}}))$ is not identifiable, then $p(\{\mathbf{R} \setminus (\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}') \cup \widetilde{Y}(\mathfrak{a}_{\{(AD) \rightarrow | A \in \mathbf{A}, D \in \mathbf{D}\}}))$ is also not identified. Note that in the model given by \mathcal{G}^{\dagger} ,

$$p(\{\mathbf{R} \setminus (\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}') \cup \widetilde{Y}\}(\mathfrak{a}_{\{(AD)_{\rightarrow} | A \in \mathbf{A}, D \in \mathbf{D}\}})) = \sum_{\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}'} p(\mathbf{R}(\mathfrak{a}_{\{(AD)_{\rightarrow} | A \in \mathbf{A}, D \in \mathbf{D}\}}))p(\widetilde{Y} | \operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}))$$

Since $p(\mathbf{R}(\mathfrak{a}_{\{(AD)\rightarrow|A\in\mathbf{A},D\in\mathbf{D}\}}))$ is not identified in the model corresponding to the appropriate subgraph of \mathcal{G}^{\dagger} pertaining to $p(\mathbf{R}(\mathfrak{a}_{\{(AD)\rightarrow|A\in\mathbf{A},D\in\mathbf{D}\}}))$, there exist two elements in this model that agree on the observed data distribution, but disagree on $p_1(\mathbf{R}(\mathfrak{a}_{\{(AD)\rightarrow|A\in\mathbf{A},D\in\mathbf{D}\}}))$ and $p_2(\mathbf{R}(\mathfrak{a}_{\{(AD)\rightarrow|A\in\mathbf{A},D\in\mathbf{D}\}}))$. In fact, the two elements constructed in [1, 2] used discrete state space variables.

Note that the right hand side expression above can be viewed, for discrete state space variables, as a linear mapping from vectors representing probabilities $p(\mathbf{R}(\mathfrak{a}_{\{(AD) \rightarrow | A \in \mathbf{A}, D \in \mathbf{D}\}}))$ to vectors representing probabilities $p(\{\mathbf{R} \setminus (\mathrm{pa}_{\mathcal{G}^{\dagger}}(Y) \setminus$ $\mathbf{Y}'), Y\}(\mathfrak{a}_{\{(AD)\to|A\in\mathbf{A},D\in\mathbf{D}\}})).$ To prove the subclaim, it suffices to extend the above two elements with the same distribution $p(Y | \operatorname{pa}_{G^{\dagger}}(Y))$ in such a way that this linear mapping is one to one. This will ensure, the two elements still agree on the observed data distribution, but disagree on $p_1(\{\mathbf{R} \setminus (\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}'), \widetilde{Y}\}(\mathfrak{a}_{\{(AD)_{\rightarrow} | A \in \mathbf{A}, D \in \mathbf{D}\}}))$ and $p_2(\{\mathbf{R} \setminus (\mathrm{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}'), \widetilde{Y}\}(\mathfrak{a}_{\{(AD) \rightarrow | A \in \mathbf{A}, D \in \mathbf{D}\}})).$ Many such choices for $p(Y | \operatorname{pa}_{\mathcal{G}^{\dagger}}(Y))$ are possible. For example, any appropriate stochastic matrix of full column rank will suffice.

We now redefine $\mathbf{R} \equiv \mathbf{R} \setminus (\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}') \cup \widetilde{Y}$, and apply the above subclaim inductively until $\mathbf{R} \subseteq \mathbf{Y}'$. As before, whenever $\widetilde{Y} = Y \in \mathbf{Y}'$, we redefine Y as a Cartesian product of \widetilde{Y} and Y, with the conclusion following by Corollary 1.

This proves the claim.

We illustrate the two problematic structures that create non-identifiability of $p(Y((aY)_{\rightarrow}, (a'M)_{\rightarrow})) =$ p(Y(a, M(a'))) in Fig. 4 (a) and (b). In (a), the recanting district criterion does not hold, however, p(Y|do(a))is not identified. In (b), p(Y|do(a)) is identified, but the recanting district criterion fails, since Y and M form a district, but the edge intervention assigns A to different values for different edges from A into the district. The inductive part of the argument in Theorem 5 is identical to that in Theorem 4.

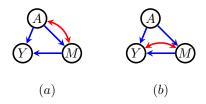


Figure 4: An example of the two problematic structures that prevent identification of $p(Y((aY)_{\rightarrow}, (a'M)_{\rightarrow})))$. (a) There is a hedge structure preventing identification of p(Y|do(a)). (b) The recanting district criterion holds.

Next, we give a completeness results for responses to arbitrary, possibly stochastic policies. This result is new and shows the algorithm in [3] is complete for unrestricted policies. **Theorem 6** Define $\mathcal{G}_{\mathbf{f}_{\mathbf{A}}}$ to be a graph obtained from \mathcal{G} by removing all edges into \mathbf{A} , and adding for any $A \in \mathbf{A}$, directed edges from \mathbf{W}_A to A. Define $\mathbf{Y}^* \equiv \mathrm{an}_{\mathcal{G}_{\mathbf{f}_{\mathbf{A}}}}(\mathbf{Y}) \setminus \mathbf{A}$. Then if $p(\mathbf{Y}^*(\mathbf{a}))$ is not identified in \mathcal{G} , $p(\mathbf{Y}(\mathbf{f}_{\mathbf{A}}))$ is not identified in \mathcal{G} if $\mathbf{f}_{\mathbf{A}}$ is the unrestricted class of policies.

Proof: Assume there exists $\mathbf{D} \in \mathcal{D}(\mathcal{G}_{\mathbf{Y}^*})$ that is not a reachable set in \mathcal{G} . Let $\mathbf{R} = \{D \in \mathbf{D} | \operatorname{ch}_{\mathcal{G}}(D) \cap \mathbf{D} = \emptyset\}$, and $\mathbf{A}^* = \mathbf{A} \cap \operatorname{pa}_{\mathcal{G}}(\mathbf{D})$. Then there exists a hedge consisting of \mathbf{D} and a superset of \mathbf{D} for $p(\mathbf{R}|\operatorname{do}(\mathbf{a}^*))$, and $p(\mathbf{R}|\operatorname{do}(\mathbf{a}^*))$ is not identified via a construction based on hedges in [2].

Because $\mathcal{G}_{\mathbf{V}\setminus\mathbf{A}}$ is an edge subgraph of $\mathcal{G}_{\mathbf{f}_{\mathbf{A}}}$, there is some element $\mathbf{D}' \in \mathcal{D}(\mathcal{G}_{\operatorname{an}_{\mathcal{G}_{\mathbf{V}\setminus\mathbf{A}}}}(\mathbf{Y}))$ that is a subset of \mathbf{D} . If $\mathbf{D} = \mathbf{D}'$, it suffices to consider policies that set \mathbf{A}^* to constants, and our proof is immediate by the argument in Theorem 4.

Otherwise, we proceed as follows. Let \mathbf{Y}' be the minimal subset of \mathbf{Y} such that $\mathbf{R} \subseteq \operatorname{an}_{\mathcal{G}_{\mathbf{f}_{\mathbf{A}}}}(\mathbf{Y}')$. Consider an edge subgraph \mathcal{G}^{\dagger} of $\mathcal{G}_{\mathbf{f}_{\mathbf{A}}}$ consisting of all edges in \mathcal{G} in the hedge above, and a subset of edges on directed paths in $\mathcal{G}_{\mathbf{f}_{\mathbf{A}}}$ from \mathbf{R} to \mathbf{Y}' that form a forest. Note that unlike previous proofs, these directed paths may intersect \mathbf{A} due to the addition of edges to $\mathcal{G}_{\mathbf{f}_{\mathbf{A}}}$ from \mathbf{W}_A to $A \in \mathbf{A}$. Let \mathbf{A}^{\dagger} be the set \mathbf{A}^* and all elements in \mathbf{A} in \mathcal{G}^{\dagger} .

For every $A^{\dagger} \in \mathbf{A}^{\dagger}$, we restrict attention to policies that map from $\mathbf{W}_{A^{\dagger}}^{\dagger}$ to A^{\dagger} , where $\mathbf{W}_{A^{\dagger}}^{\dagger}$ is $\mathbf{W}_{A^{\dagger}}$ intersected with vertices in \mathcal{G}^{\dagger} .

Note that if $p(\mathbf{Y}'(\{A^{\dagger} = f_{A^{\dagger}}(\mathbf{W}_{A^{\dagger}}^{\dagger})|A^{\dagger} \in \mathbf{A}^{\dagger}\}))$ is not identified in \mathcal{G}^{\dagger} , $p(\mathbf{Y}(\mathbf{f}_{\mathbf{A}}))$ is also not identified in \mathcal{G} , since by construction, $p(\mathbf{Y}'(\{A^{\dagger} = f_{A^{\dagger}}(\mathbf{W}_{A^{\dagger}}^{\dagger})|A^{\dagger} \in \mathbf{A}^{\dagger}\})) = p(\mathbf{Y}'(\mathbf{f}_{\mathbf{A}}))$ in \mathcal{G}^{\dagger} , and if the marginal $p(\mathbf{Y}'(\mathbf{f}_{\mathbf{A}}))$ is not identified, the joint $p(\mathbf{Y}(\mathbf{f}_{\mathbf{A}}))$ is also not identified. Since \mathcal{G}^{\dagger} is an edge subgraph of \mathcal{G} , $p(\mathbf{Y}(\mathbf{f}_{\mathbf{A}}))$ is also not identified in \mathcal{G} .

We now show that $p(\mathbf{Y}'(\{A^{\dagger} = f_{A^{\dagger}}(\mathbf{W}_{A^{\dagger}}^{\dagger}) | A^{\dagger} \in \mathbf{A}^{\dagger}\}))$ is not identified in \mathcal{G}^{\dagger} .

If $\mathbf{R} \subseteq \mathbf{Y}'$, it immediately implies the case above where $\mathbf{D} = \mathbf{D}'$, and we are done by Theorem 4. If not, we proceed inductively, as before. Pick a vertex \widetilde{Y} in \mathcal{G}^{\dagger} such that $\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \subseteq \mathbf{R}$, and $\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}' \neq \emptyset$. Such a vertex is guaranteed to exist, since \mathcal{G}^{\dagger} is acyclic and $\mathbf{R} \setminus \mathbf{Y}' \neq \emptyset$. We now have two cases, $\widetilde{Y} \notin \mathbf{A}^*$ or $\widetilde{Y} \in \mathbf{A}^*$. In the former case, we use the inductive argument from Theorem 4.

Note, in particular, that if $\tilde{Y} \in \mathbf{A}^{\dagger} \setminus \mathbf{A}^{*}$, we simply treat \tilde{Y} as an ordinary variable, and it's policy as an ordinary conditional distribution. A special argument isn't necessary here since \tilde{Y} does not intersect the original hedge

structure for D.

Now consider the latter case, where $\widetilde{Y} \in \mathbf{A}^*$. This case we simply create copies of variables on the path $\widetilde{Y} \to W_1 \to \ldots \to W_k \to \widetilde{Y}' \in \mathbf{Y}'$ in \mathcal{G}^{\dagger} , yielding a graph $\widetilde{\mathcal{G}}^{\dagger}$. We extend the previous inductive argument by considering an "extended" observed data joint distribution where conditional distributions of $\{W_1, \ldots, W_k, \widetilde{Y}\} \cap \mathbf{A}^*$ given their parents are specified by appropriate policies in \mathbf{f}_A . For the unrestricted policy class, the inductive argument again implies that

$$p(\{\mathbf{R} \setminus (\operatorname{pa}_{\mathcal{G}^{\dagger}}(\tilde{Y}) \setminus \mathbf{Y}'), \tilde{Y}'\}(\mathbf{a}_{\mathbf{A}^{*} \setminus \{\tilde{Y}\}})) = \sum_{(\mathbf{a}_{\tilde{Y}}^{*} \cup \operatorname{pa}_{\mathcal{G}^{\dagger} \cup \{W_{1}, \dots, W_{k}\}}(\tilde{Y})) \setminus \mathbf{Y}'} p(\mathbf{R} | \operatorname{do}(\mathbf{a}^{*})) p(\tilde{Y}' | W_{k}) p(W_{1} | \tilde{Y})$$
$$\prod_{i=2}^{k} p(W_{i} | W_{i-1}) \tilde{p}(\tilde{Y} = \mathbf{a}_{\tilde{Y}}^{*} | \operatorname{pa}_{\mathcal{G}^{\dagger}}(\tilde{Y}))$$

is not identified in $\widetilde{\mathcal{G}}^{\dagger}$ if $p(\mathbf{R}|do(\mathbf{a}^*))$ is not identified in $\widetilde{\mathcal{G}}^{\dagger}$.

We now inductively apply Lemma 1 to construct elements in \mathcal{G}^{\dagger} where $p(\{\mathbf{R} \setminus (\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}'), \mathbf{Y}'\}(\mathbf{a}^*_{\mathbf{A}^* \setminus \{\widetilde{Y}\}}))$ is not identified by Corollary 1.

We now redefine $\mathbf{R} \equiv \mathbf{R} \setminus (\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}))$, and $\mathbf{A}^* \equiv \mathbf{A}^* \setminus \{\widetilde{Y}\}$. The induction terminates when $\mathbf{A}^* = \emptyset$ and $\mathbf{R} \subseteq \mathbf{Y}'$, yielding our conclusion.

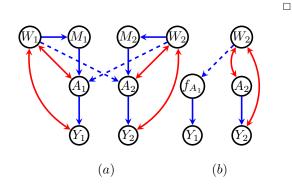


Figure 5: (a) A graph in which we're interested in the distribution $p({Y_1, Y_2}(A_1 = f_{A_1}(W_2), A_2 = f_{A_2}(W_1)))$. (b) A subgraph of $\mathcal{G}_{\mathbf{Y}^*}$ for the given counterfactual which shows the hedge structure, and the form of the inductive argument which yields non-identification.

We illustrate the novel ideas in this proof via Fig. 5 (a) and (b), where we are interested in identification of $p(\{Y_1, Y_2\}(A_1 = f_{A_1}(W_2), A_2 = f_{A_2}(W_1)))$. First, note that the fact that A_1 is determined by W_2 via f_{A_1} and A_2 is determined by W_1 via f_{A_2} implies the set $\mathbf{Y}^* = \{Y_1, Y_2, A_1, A_2, W_1, W_2\}$ is larger than it would have been had we been interested in $p(Y_1, Y_2|do(a_1, a_2))$, in which case \mathbf{Y}^* would be equal to $\{Y_1, Y_2\}$. Second, note that $p(Y_1, Y_2|do(a_1, a_2))$ is identified in this graph, while $p(\{Y_1, Y_2\}(A_1 = f_{A_1}(W_2), A_2 = f_{A_2}(W_1)))$ is not. Specifically, the subgraph shown in Fig. 5 (b) contains the hedge structure for $p(Y_2, W_2|do(a_2))$, along with a path $W_2 \to f_{A_1} \to Y_1$ which yields the inductive argument showing non-identification.

For this example, it sufficed to consider a trivial policy for A_2 which always sets A_2 to a constant. However, the policy f_{A_1} needed to dependent on W_2 in order to allow the inductive argument to go through showing that if $p(Y_2, W_2|do(a_2))$ is not identified, $p(\{Y_2, Y_1\}(a_2, A_1 = f_{A_1}(W_2)))$ is also not identified.

Finally, we give an argument for completeness, for unrestricted policies, of the identification algorithm for responses to edge-specific policies. The following proof can be viewed as a generalization of the arguments in Theorems 5 and 6. This result is also new.

Theorem 7 Define the graph $\mathcal{G}_{\mathfrak{f}_{\alpha}}$ to be one where all edges with arrowheads into \mathbf{A}_{α} are removed, and directed edges from any vertex in \mathbf{W}_A to $A \in \mathbf{A}_{\alpha}$ added. Fix a set \mathbf{Y} of outcomes of interest, and define \mathbf{Y}^* equal $\operatorname{an}_{\mathcal{G}_{\mathfrak{f}_{\alpha}}}(\mathbf{Y}) \setminus \mathbf{A}_{\alpha}$. Then if $p(\mathbf{Y}^*(\mathbf{a}))$ is not identified, or there exists $\mathbf{D} \in \mathcal{D}((\mathcal{G}_{\mathfrak{f}_{\alpha}})_{\mathbf{Y}^*})$, such that \mathfrak{f}_{α} yields different policy assignments for two edges from $A \in \mathbf{A}_{\alpha}$ to \mathbf{D} , $p(\mathbf{Y}(\mathfrak{f}_{\alpha}))$ is not identified.

Proof: Assume there exists $\mathbf{D} \in \mathcal{D}(\mathcal{G}_{\mathbf{Y}^*})$ that is not a reachable set in \mathcal{G} , or \mathfrak{f}_{α} has the different policy assignments for a pair of directed edges out of A into \mathbf{D} . Let $\mathbf{R} = \{D \in \mathbf{D} | \operatorname{ch}_{\mathcal{G}}(D) \cap \mathbf{D} = \emptyset\}$, and $\mathbf{A}^* = \mathbf{A} \cap \operatorname{pa}_{\mathcal{G}}(\mathbf{D})$. Then we have one of two cases. Either there exists a hedge consisting of \mathbf{D} and a superset of \mathbf{D} for $p(\mathbf{R}|\operatorname{do}(\mathbf{a}^*))$, and $p(\mathbf{R}|\operatorname{do}(\mathbf{a}^*))$ is not identified via a construction based on hedges in [2]; or $p(\mathbf{R}(\mathfrak{f}_{\{(AD) \to | A \in \mathbf{A}, D \in \mathbf{D}\}))$ is not identified by counterexamples in [1] (i.e., the "recanting district criterion").

Because $\mathcal{G}_{\mathbf{V}\setminus\mathbf{A}}$ is an edge subgraph of $\mathcal{G}_{f_{\mathbf{A}}}$, there is some element $\mathbf{D}' \in \mathcal{D}(\mathcal{G}_{\operatorname{an}_{\mathcal{G}_{\mathbf{V}\setminus\mathbf{A}}}(\mathbf{Y})})$ that is a subset of \mathbf{D} . If $\mathbf{D} = \mathbf{D}'$, it suffices to consider interventions that set the all edges out of \mathbf{A}^* to the same policy and our proof follows from the argument in Theorem 6.

Additionally, note that $p(\mathbf{R}|\text{do}(\mathbf{a}^*))$ is equal to $p(\mathbf{R}(\mathfrak{f}^{\dagger}_{\{(AD_{\rightarrow}|A\in\mathbf{A},D\in\mathbf{D}\})}))$, where \mathfrak{f}^{\dagger} assigns all edges from **A** to **D** to a consistent value. As a result, we can unify the two cases above (hedge and recanting district) by assuming non-identifiability of $p(\mathbf{R}(\mathfrak{f}_{\{(AD_{\rightarrow}|A\in\mathbf{A},D\in\mathbf{D}\})}))$ for some policy set \mathfrak{f} .

We now proceed as before. Let \mathbf{Y}' be the minimal sub-

set of **Y** such that $\mathbf{R} \subseteq \operatorname{an}_{\mathcal{G}_{f_{\alpha}}}(\mathbf{Y}')$. Consider an edge subgraph \mathcal{G}^{\dagger} of $\mathcal{G}_{f_{\alpha}}$ consisting of all edges in $\mathcal{G}_{f_{\alpha}}$ in the hedge above, and a subset of edges on directed paths in $\mathcal{G}_{f_{\alpha}}$ from **R** to **Y**' that form a forest. As in Theorem 6, these directed paths may intersect **A** due to the addition of edges in $\mathcal{G}_{f_{\alpha}}$ from $\mathbf{W}_{\mathbf{A}}$ to $A \in \mathbf{A}$. Let \mathbf{A}^{\dagger} be the union of the set \mathbf{A}^* and all elements that are in **A** in \mathcal{G}^{\dagger} . For every $A^{\dagger} \in \mathbf{A}^{\dagger}$ we restrict attention to policies that map values of $\mathbf{W}_{A^{\dagger}}^{\dagger}$ to A^{\dagger} , where $\mathbf{W}_{A^{\dagger}}^{\dagger}$ is $\mathbf{W}_{A^{\dagger}}$ intersected with the vertices in \mathcal{G}^{\dagger} .

Note that if $p(\mathbf{Y}'(\{A^{\dagger} = \mathfrak{f}_{\{(AD)_{\rightarrow}|A \in \mathbf{A}, D \in \mathbf{D}\}}(\mathbf{W}_{A^{\dagger}}^{\dagger})|A^{\dagger} \in \mathbf{A}^{\dagger}\}))$ is not identified in \mathcal{G}^{\dagger} , $p(\mathbf{Y}(\mathfrak{f}_{\alpha}))$ is also not identified in \mathcal{G} . This is because, by construction, $p(\mathbf{Y}'(\{A^{\dagger} = \mathfrak{f}_{\{(AD)_{\rightarrow}|A \in \mathbf{A}, D \in \mathbf{D}\}}(\mathbf{W}_{A^{\dagger}}^{\dagger})|A^{\dagger} \in \mathbf{A}^{\dagger}\})) = p(\mathbf{Y}'(\mathfrak{f}_{\alpha}))$ in \mathcal{G}^{\dagger} , and if the marginal $p(\mathbf{Y}'(\mathfrak{f}_{\alpha}))$ is not identified the joint $p(\mathbf{Y}(\mathfrak{f}_{\alpha}))$ is also not identified in \mathcal{G}^{\dagger} . Because \mathcal{G}^{\dagger} is an edge subgraph of \mathcal{G} , $p(\mathbf{Y}(\mathfrak{f}_{\alpha}))$ is also not identifiable in \mathcal{G} .

We now show that

$$p(\mathbf{Y}'(\{A^{\dagger} = \mathfrak{f}_{\{(AD) \to |A \in \mathbf{A}, D \in \mathbf{D}\}}(\mathbf{W}_{A^{\dagger}}^{\dagger}) | A^{\dagger} \in \mathbf{A}^{\dagger}\}))$$

is not identified in \mathcal{G}^{\dagger} . Note that if $\mathbf{R} \subseteq \mathbf{Y}'$, we are done since this implies $\mathbf{D} = \mathbf{D}'$ which implies we can simply apply Theorem 6 as described above.

If $\mathbf{R} \not\subseteq \mathbf{Y}'$, pick a vertex \tilde{Y} in \mathcal{G}^{\dagger} such that $\operatorname{pa}_{\mathcal{G}^{\dagger}}(\tilde{Y}) \subseteq \mathbf{R}$ and $\operatorname{pa}_{\mathcal{G}^{\dagger}}(\tilde{Y}) \setminus \mathbf{Y}' \neq \emptyset$. Such a vertex is guaranteed to exist since \mathcal{G}^{\dagger} is acyclic and $\mathbf{R} \setminus \mathbf{Y}' \neq \emptyset$. We now have two cases, $\tilde{Y} \not\in \mathbf{A}^*$ or $\tilde{Y} \in \mathbf{A}^*$. In the former case, we use the inductive argument from Theorem 5. In particular, if $\tilde{Y} \in \mathbf{A}^{\dagger} \setminus \mathbf{A}^*$, we treat \tilde{Y} as an ordinary variable, and the element of \mathfrak{f} pertaining to \tilde{Y} and its outgoing edge in \mathcal{G}^{\dagger} as an ordinary distribution with the properties that yield an injective map. This element of \mathfrak{f} is then used to obtain non-identification in the inductive step corresponding to \tilde{Y} . A special argument isn't necessary here since \tilde{Y} does not intersect the original hedge structure for \mathbf{D} .

Now consider the latter case, where $\widetilde{Y} \in \mathbf{A}^*$. We apply the same argument as in Theorem 6. We create copies of variables on the path $\widetilde{Y} \to W_1 \to \ldots \to W_k \to \widetilde{Y}' \in$ \mathbf{Y}' in \mathcal{G}^{\dagger} , yielding a graph $\widetilde{\mathcal{G}}^{\dagger}$. We extend the previous inductive argument by considering an "extended" observed data joint distribution where conditional distributions of $\{W_1, \ldots, W_k, \widetilde{Y}\} \cap \mathbf{A}^*$ given their parents are specified by appropriate policies in $\mathfrak{f}_{\mathbf{A}}$. For the unrestricted policy class, the inductive argument again implies that

$$p(\{\mathbf{R} \setminus (\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}) \setminus \mathbf{Y}'), \widetilde{Y}'\}(\mathbf{a}_{\mathbf{A}^{*} \setminus \{\widetilde{Y}\}})) = \sum_{(\mathbf{a}_{\widetilde{Y}}^{*} \cup \operatorname{pa}_{\mathcal{G}^{\dagger} \cup \{W_{1}, \dots, W_{k}\}}(\widetilde{Y})) \setminus \mathbf{Y}'} p(\mathbf{R}|\operatorname{do}(\mathbf{a}^{*}))p(\widetilde{Y}'|W_{k})p(W_{1}|\widetilde{Y})$$
$$\prod_{i=2}^{k} p(W_{i}|W_{i-1})\tilde{p}(\widetilde{Y} = \mathbf{a}_{\widetilde{Y}}^{*}|\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}))$$

is not identified in $\widetilde{\mathcal{G}}^{\dagger}$ if $p(\mathbf{R}|do(\mathbf{a}^*))$ is not identified in $\widetilde{\mathcal{G}}^{\dagger}$ by Corollary 1.

Note that this construction yields a composite variable Z corresponding to \tilde{Y} and its copy, where the original version of the variable has a policy that unconditionally assigns outgoing edges to different values, while the copied version of the variable has a policy that conditionally assigns a value based on $pa_{\mathcal{G}^{\dagger}}(\tilde{Y})$ that is consistent across all outgoing edges in \mathcal{G}^{\dagger} . This somewhat unnatural policy is nevertheless within the unrestricted class of edge-specific policies.

We redefine $\mathbf{R} \equiv \mathbf{R} \setminus (\operatorname{pa}_{\mathcal{G}^{\dagger}}(\widetilde{Y}))$, and $\mathbf{A}^* \equiv \mathbf{A}^* \setminus \{\widetilde{Y}\}$. The induction terminates when $\mathbf{A}^* = \emptyset$ and $\mathbf{R} \subseteq \mathbf{Y}'$, yielding our conclusion.

We illustrate the novel ideas in this proof via the example in Fig. 6 (a), where we are interested in $p(Y(\mathfrak{f}_{\{(AY)_{\rightarrow}, (AM)_{\rightarrow}\}}))$, where \mathfrak{f} sets A according to $f^{(AY)}(W)$ for the purposes of $(AY)_{\rightarrow}$, and to $f^{(AM)} \to (W)$ for the purposes of $(AM) \to .$ In this example, it suffices to construct a subgraph, shown in Fig. 6 (b), containing a recanting district along with a path from W to \tilde{Y} , a copy of Y. Note that in this subgraph there are three versions of the A variable. Two versions represent conflicting value settings corresponding to different edges from A into a district $\{W, M, Y\}$. This is necessary to demonstrate the existence of the recanting district structure. The third version of A is set according to the mapping from W, and it's necessary in order to run the inductive argument which says if $p(Y, M, W((aY)_{\rightarrow}, (aM)_{\rightarrow}))$ is not identified in Fig. 6 (b), neither is $p(Y, M, \widetilde{Y}((aY)_{\rightarrow}, (aM)_{\rightarrow})))$. Merging the appropriate variables yields Fig. 6 (c), which demonstrates the edge-specific policy for A that is not identified. Finally, the observed data version of the graph in Fig. 6 (c) is Fig. 6 (d), which is identical to Fig. 6 (a) up to vertex relabeling.

References

 I. Shpitser. Counterfactual graphical models for longitudinal mediation analysis with unobserved confounding. *Cognitive Science (Rumelhart special issue)*, 37:1011–1035, 2013.

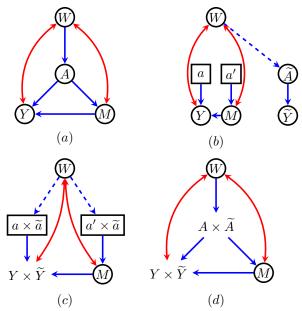


Figure 6: (a) A graph in which we are interested in $p(Y(\mathfrak{f}_{\{(AY)_{\rightarrow},(AM)_{\rightarrow}\}}))$, where \mathfrak{f} sets A according to $f^{(AY)_{\rightarrow}}(W)$ for the purposes of $(AY)_{\rightarrow}$, and to $f^{(AM)_{\rightarrow}}(W)$ for the purposes of $(AM)_{\rightarrow}$. (b) The graph demonstrating the problematic recanting district structure $\{Y, M, W\}$ where A is set to different values unconditionally for different edges into the district, along with a path from W to \tilde{Y} , yielding an inductive argument of non-identification. (c) A version of the graph in (b) where variables are merged, and the effect of the A edgespecific policy on Y is still not identified. (d) The graph isomorphic to (a) up to vertex relabeling which shows non-identification of $p(Y(\mathfrak{f}_{\{(AY)_{\rightarrow},(AM)_{\rightarrow}\}}))$.

- [2] I. Shpitser and J. Pearl. Identification of joint interventional distributions in recursive semi-Markovian causal models. In Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI-06). AAAI Press, Palo Alto, 2006.
- [3] J. Tian. Identifying dynamic sequential plans. In Proceedings of the Twenty-Fourth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-08), pages 554–561, Corvallis, Oregon, 2008. AUAI Press.