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APPENDIX

A: The ID Algorithm

function ID(y, x, P, G):
INPUT: x,y value assignments, P a probability distribu-
tion, G a causal diagram.
OUTPUT: Expression for Px(y) in terms of P or
FAIL(F,F’).

1) if x = ∅, return
∑

v\y P (v).

2) if V \An(Y)G 6= ∅,
return ID(y, x∩An(Y)G,

∑
v\An(Y)G

P,An(Y)G).

3) let W = (V \ X) \An(Y)Gx .
if W 6= ∅, return ID(y, x ∪ w, P,G).

4) if C(G \ X) = {S1, ..., Sk},
return

∑
v\(y∪x)

∏
i ID(si, v \ si, P,G).

if C(G \ X) = {S}:

5) if C(G) = {G}, throw FAIL(G,G ∩ S).
6) if S ∈ C(G),

return
∑
s\y

∏
{i|Vi∈S} P (vi|v

(i−1)
G ).

7) if (∃S′)S ⊂ S′ ∈ C(G),
return ID(y, x ∩ S′,∏
{i|Vi∈S′} P (Vi|V

(i−1)
G ∩S′, v(i−1)G \S′), S′).

Figure 1: ID Algorithm as it appears in [2].

B: Example Derivation For A Response To An
Edge-Specific Policy

We seek to identify the distribution
p(Y (f

(AM)→
A (W0), f

(AW1)→
A (W0))) in Fig. 2

(b). Y∗ = {Y,W1,M1,W0}, and D(GY∗) =
{{Y }, {W0,M1}, {W1}} (the graph GY∗ is shown
in Fig. 2 (c)). Thus, we have three terms, a term

φ{W0,M1,A,W1}(p;G) for Y , a term φ{W0,A,M1,Y }(p;G)
for W1, and a term φ{A,W1,Y }(p;G) for {W0,M1}. We
have

φ{W0,A,M1,Y }(p;G) = φ{W0,A,M1}

(∑
Y

p;G(a)
)

= φ{W0,A}

(
p(W0, A,M1,W1)

p(M1 | A,W0)
;G(b)

)
= φ{W0}

(
p(W0, A,M1,W1)

p(M1, A |W0)
;G(c)

)
= p(W1 |M1, A,W0),

where G(a),G(b),G(c) are CADMGs in Figs. 2 (a), (b),
and (c), respectively. Similarly, φ{W0,M1,A,W1}(p;G) is
equal to

φ{W0,M1,A}

(
p(W0, A,M1,W1, Y )

p(W1 |M1, A,W0)
;G(d)

)
= φ{W0,A}

(
p(W0, A,M1,W1, Y )

p(W1,M1 | A,W0)
;G(e)

)
= φ{W0}

(∑
A

p(W0, A,M1,W1, Y )

p(W1,M1 | A,W0)
;G(f)

)
=
∑
W0,A

p(W2 |W1,M1, A,W0)p(A,W0),

where G(d),G(e),G(f) are CADMGs in Figs. 2 (d), (e),
and (f), respectively. Finally,

φ{A,W1,Y }(p;G) = φ{A,W1}

(∑
Y

p;G(a)
)

= φ{A}

(∑
Y,W1

p;G(g)
)

=
p(W0, A,M1)

p(A |W0)
= p(M1 | A,W0)p(W0),

where G(a),G(g) are CADMGs in Figs. 2 (a), and
(g), respectively. Note that whenever the fixing op-
eration for a kernel qV(V|W) that fixes V ∈ V
is such that V \ {V } ⊆ ndG(V,W)(V ), the result-
ing kernel can be viewed as q̃V\{V }(V \ {V }|W ∪



{V }) =
∑
V qV(V|W). We now combine these terms,

evaluating A to either f (AW1)→
A (W0) or f (AM)→

A (W0),
as appropriate, yielding the functional in (18) for
p(Y (f

(AW1)→
A (W0), f

(AM)→
A (W0))), namely:∑

W0,A,M,W1

[[
p(W1|M,A = f

(AM)→
A (W0),W0)

]
×
[
p(M |A = f

(AW1)→
A (W0),W0)p(W0)

]
×
[ ∑
W0,A

p(Y |W1,M,A,W0)p(W0, A)
]]
.
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Figure 2: CADMGs obtained from fixing in G shown
in Fig. 2 (b): (a) φ{Y }(G), (b) φ{Y,M1}(G), (c)
φ{Y,M1,A}(G), (d) φ{W1}(G), (e) φ{W1,M1}(G), (f)
φ{W1,M1,A}(G), (g) φ{Y,W1}(G).

C: Proofs

Before giving proofs of our main results, we state the
following utility lemma which will be useful throughout
subsequent developments.

Lemma 1 Let G be a DAG with vertex set V. Fix
A,B ∈ V such that B 6∈ deG(A) \ chG(A) and A 6∈
deG(B) \ chG(B). Let GA×B be a directed graph con-
taining vertices (V \ {A,B})∪Z, and the following set
of edges. First, all edges between vertices in V \ {A,B}
in G also are in GA×B . Second, for every C 6= A,B, for
every edge of the form C → A or C → B in G, there
is an edge C → Z in GA×B , and for every edge of the
form A → C or B → C in G, there is an edge Z → C
in GA×B . Then

(a) GA×B is a DAG.

(b) Any element in the causal model for G is an element
of the causal model for GA×B , if we interpret the
Cartesian product of variables A and B in this ele-
ment as the variable Z.

Proof: If GA×B is not a DAG, there is a directed cycle
involving Z, e.g. W → . . . → ◦ → Z → ◦ → . . . →
W . Since G is a DAG, this implies either G has a pair
of paths W → . . . → ◦ → A and B → ◦ → . . . →
W , or a pair of paths W → . . . → ◦ → B and A →
◦ → . . . → W . This violates our assumption on the
genealogical relationship between A and B.

We construct the element in the causal model for
GA×B as follows. Given the structural equa-
tion fA(paG(A), εA) for A, and the structural equa-
tion fB(paG(B), εB) for B in some element of
a causal model in G, define the structural equa-
tion fZ(paGA×B (Z), εZ) to be the function that
sets the component of Z corresponding to A via
fA(paG(A), εA), the component of Z corresponding to
B via fB(paG(B), εB), and where εZ = εA × εB .

The structural equations and independent error terms for
variables other than Z are inherited from the element of
the causal model for G. By construction, all error terms
are independent. By definition of the structural equation
model with independent errors, this gives an element in
the causal model of GA×B . �

Corollary 1 Fix G, A,B with the properties in Lemma
1. Fix any causal parameter β that is not identified in G.
If A,B is reintepreted to refer to Z = A × B, then β is
also not identified in GA×B .

Proof: If β is not identified, there exist two elements in
the causal model for G which agree on the observed data
distribution, but disagree on β. The construction in the
proof of Lemma 1 allows us to reinterpret those elements
as elements of the causal model for GA×B , and β as a pa-
rameter in the causal model for GA×B . This immediately
yields two elements in the model for GA×B which dis-
agree on β, but agree on the observed data distribution.
�

We now give the proofs of the main results. The proof of
the following result is already known. We give a version
of it here to show the close relationship between proofs
of other the results in this paper, and the method for prov-
ing this result.

Theorem 4 Given disjoint subsets Y,A of V in an
ADMG G, define Y∗ ≡ anGV\A(Y). Then p(Y(a)) is
not identified if there exists D ∈ D(GY∗) that is not a
reachable set in G.

Proof: Assume there exists D ∈ D(GY∗) that is not a
reachable set in G. Let R = {D ∈ D| chG(D)∩D = ∅},
and A∗ = A ∩ paG(D). Then there exists a hedge con-
sisting of D and a superset of D for p(R|do(a∗)), and
p(R|do(a∗)) is not identified via a construction based
on hedges in [2].



Let Y′ be the minimal subset of Y such that R ⊆
anGV\A(Y

′). Consider an edge subgraph G† of G con-
sisting of all edges in G in the hedge above, and a sub-
set of edges on directed paths in GV\A from R to Y′

that form a forest. Note that if p(Y′|do(a∗)) is not
identified in G†, p(Y|do(a)) is also not identified in G,
since by construction, p(Y′|do(a∗)) = p(Y′|do(a)),
and if the marginal p(Y′|do(a)) is not identified, the
joint p(Y|do(a)) is also not identified. Since G† is an
edge subgraph of G, p(Y|do(a)) is also not identified in
G.

We now show that p(Y′|do(a∗)) is not identified in G†.
If R ⊆ Y′, our conclusion is trivial.

If not, pick a vertex Ỹ in G† such that paG†(Ỹ ) ⊆ R,
and paG†(Ỹ ) \ Y′ 6= ∅. Such a vertex is guaranteed to
exist, since G† is acyclic and R \ Y′ 6= ∅. We want
to show the following subclaim: if p(R|do(a∗)) is not
identifiable, then p(R \ (paG†(Ỹ ) \Y′) ∪ Ỹ |do(a∗)) is
also not identified. Note that in the model given by G†,

p(R \ (paG†(Ỹ ) \Y′) ∪ Ỹ |do(a∗)) =∑
paG† (Ỹ )\Y′

p(R|do(a∗))p(Ỹ |paG†(Ỹ ))

Since p(R|do(a∗)) is not identified in the model corre-
sponding to the subgraph of G† pertanining to the hedge
for p(R|do(a∗)), there exist two elements in this model
that agree on the observed data distribution, but disagree
on p1(R|do(a∗)) and p2(R|do(a∗)). In fact, the two el-
ements constructed in [2] used discrete state space vari-
ables.

Note that the right hand side expression above can
be viewed, for discrete state space variables, as a
linear mapping from vectors representing probabilities
p(R|do(a∗)) to vectors representing probabilities p(R \
(paG†(Ỹ ) \ Y′), Ỹ |do(a∗)). To prove the subclaim, it
suffices to extend the above two elements with the same
distribution p(Ỹ |paG†(Ỹ )) in such a way that this lin-
ear mapping is one to one. This will ensure the two
elements still agree on the observed data distribution
but disagree on p1(R \ (paG†(Ỹ ) \Y′), Ỹ |do(a∗)) and
p2(R \ (paG†(Ỹ ) \Y′), Ỹ |do(a∗)). Many such choices
for p(Ỹ |paG†(Ỹ )) are possible. For example, any appro-
priate stochastic matrix of full column rank will suffice.

We now redefine R ≡ R\(paG†(Ỹ )\Y′)∪Ỹ , and apply
the above subclaim inductively until R ⊆ Y′. Note that
if Ỹ = Y ∈ Y′, we may first apply the induction to Ỹ as
an artificial “copy” of Y , and then redefine Y as a Carte-
sian product of Y and Ỹ , with the conclusion following
by Corollary 1.

This proves the claim. �

To illustrate the operation of the proof, consider the
graph in Fig. 3 (a), where we want to show p(Y2|do(a))
is not identified. First, note that Y∗ = {Y2,M, Y1}, with
{Y1, Y2} not reachable. This entails the hedge structure
composed of two ”C-forests” shown in Fig. 3 (b) and
(c), see [2] for further details on how hedges are defined.
The presence of the hedge structure immediately implies
p(Y1, Y2|do(a)) is not identified. The inductive argu-
ment in the proof proceeds as follows. First a distribu-
tion p(M |Y1) is constructed such that p(Y2,M |do(a)) =∑
Y1
p(M |Y1)p(Y1, Y2|do(a)) is not identified in Fig. 3

(d). Next, a distribution p(Ỹ2|M) is constructed such that
p(Ỹ2, Y2|do(a)) =

∑
M p(Ỹ2|M)p(Y2,M |do(a)) is not

identified in Fig. 3 (e). Finally, we use Corollary 1 to
conclude non-identifiability of p(Y2|do(a)) in Fig. 3 (a)
by redefining Y2 in Fig. 3 (a) to be a Cartesian product of
Y2 and Ỹ2 in Fig. 3 (e). This construction corresponds to
Fig. 3 (f). Note that Fig. 3 (a) and Fig. 3 (f) are identical
up to vertex relabeling.
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Figure 3: (a) A graph in which we are interested in the ef-
fect ofA on Y2, p(Y2|do(a)); (b) and (c) Two forests that
form a hedge with the root set {Y1, Y2}, p(Y1, Y2|do(a))
is not identified; (d) A subgraph illustrativing the injec-
tivity argument: p(M,Y2|do(a)) is not identified; (e)
Adding an artificial variable Ỹ2, p(Y2, Ỹ2|do(a)) is not
identified; (f) Joining Y2 and Ỹ2 via the Cartesian prod-
uct, p(Y2 × Ỹ2|do(a)) is not identified.

We next prove an analogous theorem for edge interven-
tions. A similar proof for a closely related claim (not
involving edge interventions) appeared in [1].

Theorem 5 Given Aα ≡ {A | (AB)→ ∈ α}, and
an edge intervention given by the mapping aα, define
Y∗ ≡ anGV\Aα (Y). The joint distribution of the coun-
terfactual response p({V \Aα}(aα)) is not identified if
p({V \ Aα}(a)) is not identified, or there exists D ∈



D(GY∗) and A ∈ Aα, such that aα has the different
value assignments for a pair of directed edges out of A
into D.

Proof: Assume there exists D ∈ D(GY∗) that is not
a reachable set in G, or aα has different value assign-
ments for a pair of directed edges out of A into D.
Let R = {D ∈ D| chG(D) ∩ D = ∅}, and A∗ =
A ∩ paG(D). Then we have one of two cases. Ei-
ther there exists a hedge consisting of D and a super-
set of D for p(R|do(a∗)), and p(R|do(a∗)) is not iden-
tified via a construction based on hedges in [2]. Or
p(R(a{(AD)→|A∈A,D∈D})) is not identified by coun-
terexamples in [1].

Note that p(R|do(a∗)) is equal to
p(R(a†{(AD)→|A∈A,D∈D})), where a† assigns all
edges from A to D to a consistent value. As a
result, in the discussions below we will unify the
above two cases by assuming non-identifiability of
p(R(a{(AD)→|A∈A,D∈D})), for some a.

We now proceed as before. Let Y′ be the minimal sub-
set of Y such that R ⊆ anGV\A(Y

′). Consider an edge
subgraph G† of G consisting of all edges in G in the re-
canting district or hedge above, and a subset of edges on
directed paths in GV\A from R to Y′ that form a forest.
Note that if p(Y′(a{(AD)→|A∈A,D∈D})) is not identified
in G†, p(Y(aα)) is also not identified in G, since by con-
struction, p(Y′(a{(AD)→|A∈A,D∈D})) = p(Y′(aα)),
and if the marginal p(Y′(aα)) is not identified, the joint
p(Y(aα)) is also not identified. Since G† is an edge sub-
graph of G, p(Y(aα)) is also not identified in G.

We now show that p(Y′(a{(AD)→|A∈A,D∈D})) is not
identified in G†. If R ⊆ Y′, our conclusion is trivial.

If not, pick a vertex Ỹ in G† such that paG†(Ỹ ) ⊆ R, and
paG†(Ỹ ) \Y′ 6= ∅. Such a vertex is guaranteed to exist,
since G† is acyclic and R \ Y′ 6= ∅. We want to show
the following subclaim: if p(R(a{(AD)→|A∈A,D∈D}))

is not identifiable, then p({R \ (paG†(Ỹ ) \ Y′) ∪
Ỹ (a{(AD)→|A∈A,D∈D})) is also not identified. Note that
in the model given by G†,

p({R \ (paG†(Ỹ ) \Y′) ∪ Ỹ }(a{(AD)→|A∈A,D∈D})) =∑
paG† (Ỹ )\Y′

p(R(a{(AD)→|A∈A,D∈D}))p(Ỹ |paG†(Ỹ ))

Since p(R(a{(AD)→|A∈A,D∈D})) is not identified in
the model corresponding to the appropriate subgraph
of G† pertainining to p(R(a{(AD)→|A∈A,D∈D})),
there exist two elements in this model that
agree on the observed data distribution, but
disagree on p1(R(a{(AD)→|A∈A,D∈D})) and
p2(R(a{(AD)→|A∈A,D∈D})). In fact, the two ele-

ments constructed in [1, 2] used discrete state space
variables.

Note that the right hand side expression above
can be viewed, for discrete state space variables,
as a linear mapping from vectors representing
probabilities p(R(a{(AD)→|A∈A,D∈D})) to vec-
tors representing probabilities p({R \ (paG†(Ỹ ) \
Y′), Ỹ }(a{(AD)→|A∈A,D∈D})). To prove the
subclaim, it suffices to extend the above two el-
ements with the same distribution p(Ỹ |paG†(Ỹ ))
in such a way that this linear mapping is one to
one. This will ensure, the two elements still agree
on the observed data distribution, but disagree on
p1({R\ (paG†(Ỹ )\Y′), Ỹ }(a{(AD)→|A∈A,D∈D})) and
p2({R \ (paG†(Ỹ ) \ Y′), Ỹ }(a{(AD)→|A∈A,D∈D})).
Many such choices for p(Ỹ |paG†(Ỹ )) are possible.
For example, any appropriate stochastic matrix of full
column rank will suffice.

We now redefine R ≡ R\(paG†(Ỹ )\Y′)∪Ỹ , and apply
the above subclaim inductively until R ⊆ Y′. As before,
whenever Ỹ = Y ∈ Y′, we redefine Y as a Cartesian
product of Ỹ and Y , with the conclusion following by
Corollary 1.

This proves the claim. �

We illustrate the two problematic structures that cre-
ate non-identifiability of p(Y ((aY )→, (a

′M)→)) =
p(Y (a,M(a′))) in Fig. 4 (a) and (b). In (a), the recant-
ing district criterion does not hold, however, p(Y |do(a))
is not identified. In (b), p(Y |do(a)) is identified, but the
recanting district criterion fails, since Y and M form a
district, but the edge intervention assigns A to different
values for different edges from A into the district. The
inductive part of the argument in Theorem 5 is identical
to that in Theorem 4.

M
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(a)

M

A

Y
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Figure 4: An example of the two problematic structures
that prevent identification of p(Y ((aY )→, (a

′M)→)).
(a) There is a hedge structure preventing identification
of p(Y |do(a)). (b) The recanting district criterion holds.

Next, we give a completeness results for responses to ar-
bitrary, possibly stochastic policies. This result is new
and shows the algorithm in [3] is complete for unre-
stricted policies.



Theorem 6 Define GfA to be a graph obtained from G by
removing all edges into A, and adding for any A ∈ A,
directed edges from WA toA. Define Y∗ ≡ anGfA (Y)\
A. Then if p(Y∗(a)) is not identified in G, p(Y(fA))
is not identified in G if fA is the unrestricted class of
policies.

Proof: Assume there exists D ∈ D(GY∗) that is not a
reachable set in G. Let R = {D ∈ D| chG(D)∩D = ∅},
and A∗ = A ∩ paG(D). Then there exists a hedge con-
sisting of D and a superset of D for p(R|do(a∗)), and
p(R|do(a∗)) is not identified via a construction based
on hedges in [2].

Because GV\A is an edge subgraph of GfA , there is some
element D′ ∈ D(GanGV\A (Y)) that is a subset of D. If
D = D′, it suffices to consider policies that set A∗ to
constants, and our proof is immediate by the argument in
Theorem 4.

Otherwise, we proceed as follows. Let Y′ be the minimal
subset of Y such that R ⊆ anGfA (Y′). Consider an
edge subgraph G† of GfA consisting of all edges in G in
the hedge above, and a subset of edges on directed paths
in GfA from R to Y′ that form a forest. Note that unlike
previous proofs, these directed paths may intersect A due
to the addition of edges to GfA from WA to A ∈ A. Let
A† be the set A∗ and all elements in A in G†.

For every A† ∈ A†, we restrict attention to policies that
map from W†

A†
to A†, where W†

A†
is WA† intersected

with vertices in G†.

Note that if p(Y′({A† = fA†(W
†
A†

)|A† ∈ A†})) is
not identified in G†, p(Y(fA)) is also not identified in G,
since by construction, p(Y′({A† = fA†(W

†
A†

)|A† ∈
A†})) = p(Y′(fA)) in G†, and if the marginal
p(Y′(fA)) is not identified, the joint p(Y(fA)) is also
not identified. Since G† is an edge subgraph of G,
p(Y(fA)) is also not identified in G.

We now show that p(Y′({A† = fA†(W
†
A†

)|A† ∈ A†}))
is not identified in G†.

If R ⊆ Y′, it immediately implies the case above where
D = D′, and we are done by Theorem 4. If not, we
proceed inductively, as before. Pick a vertex Ỹ in G†
such that paG†(Ỹ ) ⊆ R, and paG†(Ỹ ) \Y′ 6= ∅. Such
a vertex is guaranteed to exist, since G† is acyclic and
R \Y′ 6= ∅. We now have two cases, Ỹ 6∈ A∗ or Ỹ ∈
A∗. In the former case, we use the inductive argument
from Theorem 4.

Note, in particular, that if Ỹ ∈ A† \A∗, we simply treat
Ỹ as an ordinary variable, and it’s policy as an ordinary
conditional distribution. A special argument isn’t neces-
sary here since Ỹ does not intersect the original hedge

structure for D.

Now consider the latter case, where Ỹ ∈ A∗. This
case we simply create copies of variables on the path
Ỹ → W1 → . . . → Wk → Ỹ ′ ∈ Y′ in G†,
yielding a graph G̃†. We extend the previous induc-
tive argument by considering an “extended” observed
data joint distribution where conditional distributions of
{W1, . . . ,Wk, Ỹ } ∩A∗ given their parents are specified
by appropriate policies in fA. For the unrestricted policy
class, the inductive argument again implies that

p({R \ (paG†(Ỹ ) \Y′), Ỹ ′}(a∗
A∗\{Ỹ })) =∑

(a∗
Ỹ
∪paG†∪{W1,...Wk}

(Ỹ ))\Y′

p(R|do(a∗))p(Ỹ ′|Wk)p(W1|Ỹ )

k∏
i=2

p(Wi|Wi−1)p̃(Ỹ = a∗
Ỹ
|paG†(Ỹ ))

is not identified in G̃† if p(R|do(a∗)) is not identified in
G̃†.

We now inductively apply Lemma 1 to con-
struct elements in G† where p({R \ (paG†(Ỹ ) \
Y′), Y ′}(a∗

A∗\{Ỹ }
)) is not identified by Corollary 1.

We now redefine R ≡ R \ (paG†(Ỹ )), and A∗ ≡ A∗ \
{Ỹ }. The induction terminates when A∗ = ∅ and R ⊆
Y′, yielding our conclusion.

�
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Figure 5: (a) A graph in which we’re interested in the dis-
tribution p({Y1, Y2}(A1 = fA1

(W2), A2 = fA2
(W1))).

(b) A subgraph of GY∗ for the given counterfactual which
shows the hedge structure, and the form of the inductive
argument which yields non-identification.

We illustrate the novel ideas in this proof via Fig. 5
(a) and (b), where we are interested in identification
of p({Y1, Y2}(A1 = fA1(W2), A2 = fA2(W1))).
First, note that the fact that A1 is determined by W2

via fA1
and A2 is determined by W1 via fA2

im-
plies the set Y∗ = {Y1, Y2, A1, A2,W1,W2} is larger



than it would have been had we been interested in
p(Y1, Y2|do(a1, a2)), in which case Y∗ would be equal
to {Y1, Y2}. Second, note that p(Y1, Y2|do(a1, a2))
is identified in this graph, while p({Y1, Y2}(A1 =
fA1

(W2), A2 = fA2
(W1))) is not. Specifically, the sub-

graph shown in Fig. 5 (b) contains the hedge structure
for p(Y2,W2|do(a2)), along with a path W2 → fA1 →
Y1 which yields the inductive argument showing non-
identification.

For this example, it sufficed to consider a trivial policy
for A2 which always sets A2 to a constant. However, the
policy fA1

needed to dependent on W2 in order to al-
low the inductive argument to go through showing that if
p(Y2,W2|do(a2)) is not identified, p({Y2, Y1}(a2, A1 =
fA1(W2))) is also not identified.

Finally, we give an argument for completeness, for un-
restricted policies, of the identification algorithm for re-
sponses to edge-specific policies. The following proof
can be viewed as a generalization of the arguments in
Theorems 5 and 6. This result is also new.

Theorem 7 Define the graph Gfα to be one where all
edges with arrowheads into Aα are removed, and di-
rected edges from any vertex in WA to A ∈ Aα added.
Fix a set Y of outcomes of interest, and define Y∗ equal
anGfα (Y) \ Aα. Then if p(Y∗(a)) is not identified, or
there exists D ∈ D((Gfα)Y∗), such that fα yields differ-
ent policy assignments for two edges fromA ∈ Aα to D,
p(Y(fα)) is not identified.

Proof: Assume there exists D ∈ D(GY∗) that is not
a reachable set in G, or fα has the different policy as-
signments for a pair of directed edges out of A into
D. Let R = {D ∈ D| chG(D) ∩ D = ∅}, and
A∗ = A ∩ paG(D). Then we have one of two cases.
Either there exists a hedge consisting of D and a su-
perset of D for p(R|do(a∗)), and p(R|do(a∗)) is not
identified via a construction based on hedges in [2];
or p(R(f{(AD)→|A∈A,D∈D})) is not identified by coun-
terexamples in [1] (i.e., the ”recanting district criterion”).

Because GV\A is an edge subgraph of GfA , there is some
element D′ ∈ D(GanGV\A (Y)) that is a subset of D. If
D = D′, it suffices to consider interventions that set the
all edges out of A∗ to the same policy and our proof
follows from the argument in Theorem 6.

Additionally, note that p(R|do(a∗)) is equal to
p(R(f†{(AD→|A∈A,D∈D}))), where f† assigns all edges
from A to D to a consistent value. As a re-
sult, we can unify the two cases above (hedge and
recanting district) by assuming non-identifiability of
p(R(f{(AD→|A∈A,D∈D}))) for some policy set f.

We now proceed as before. Let Y′ be the minimal sub-

set of Y such that R ⊆ anGfα (Y
′). Consider an edge

subgraph G† of Gfα consisting of all edges in Gfα in the
hedge above, and a subset of edges on directed paths in
Gfα from R to Y′ that form a forest. As in Theorem 6,
these directed paths may intersect A due to the addition
of edges in Gfα from WA toA ∈ A. Let A† be the union
of the set A∗ and all elements that are in A in G†. For
every A† ∈ A† we restrict attention to policies that map
values of W†

A†
to A†, where W†

A†
is WA† intersected

with the vertices in G†.

Note that if p(Y′({A† =

f{(AD)→|A∈A,D∈D}(W
†
A†

)|A† ∈ A†})) is not
identified in G†, p(Y(fα)) is also not identified in
G. This is because, by construction, p(Y′({A† =

f{(AD)→|A∈A,D∈D}(W
†
A†

)|A† ∈ A†})) = p(Y′(fα))

in G†, and if the marginal p(Y′(fα)) is not identified the
joint p(Y(fα)) is also not identified in G†. Because G† is
an edge subgraph of G, p(Y(fα)) is also not identifiable
in G.

We now show that

p(Y′({A† = f{(AD)→|A∈A,D∈D}(W
†
A†

)|A† ∈ A†}))

is not identified in G†. Note that if R ⊆ Y′, we are done
since this implies D = D′ which implies we can simply
apply Theorem 6 as described above.

If R 6⊆ Y′, pick a vertex Ỹ in G† such that paG†(Ỹ ) ⊆
R and paG†(Ỹ )\Y′ 6= ∅. Such a vertex is guaranteed to
exist since G† is acyclic and R \Y′ 6= ∅. We now have
two cases, Ỹ 6∈ A∗ or Ỹ ∈ A∗. In the former case, we
use the inductive argument from Theorem 5. In particu-
lar, if Ỹ ∈ A† \A∗, we treat Ỹ as an ordinary variable,
and the element of f pertaining to Ỹ and its outgoing edge
in G† as an ordinary distribution with the properties that
yield an injective map. This element of f is then used
to obtain non-identification in the inductive step corre-
sponding to Ỹ . A special argument isn’t necessary here
since Ỹ does not intersect the original hedge structure for
D.

Now consider the latter case, where Ỹ ∈ A∗. We apply
the same argument as in Theorem 6. We create copies of
variables on the path Ỹ → W1 → . . . → Wk → Ỹ ′ ∈
Y′ in G†, yielding a graph G̃†. We extend the previous in-
ductive argument by considering an “extended” observed
data joint distribution where conditional distributions of
{W1, . . . ,Wk, Ỹ } ∩A∗ given their parents are specified
by appropriate policies in fA. For the unrestricted policy



class, the inductive argument again implies that

p({R \ (paG†(Ỹ ) \Y′), Ỹ ′}(a∗
A∗\{Ỹ })) =∑

(a∗
Ỹ
∪paG†∪{W1,...Wk}

(Ỹ ))\Y′

p(R|do(a∗))p(Ỹ ′|Wk)p(W1|Ỹ )

k∏
i=2

p(Wi|Wi−1)p̃(Ỹ = a∗
Ỹ
|paG†(Ỹ ))

is not identified in G̃† if p(R|do(a∗)) is not identified in
G̃† by Corollary 1.

Note that this construction yields a composite variable Z
corresponding to Ỹ and its copy, where the original ver-
sion of the variable has a policy that unconditionally as-
signs outgoing edges to different values, while the copied
version of the variable has a policy that conditionally as-
signs a value based on paG†(Ỹ ) that is consistent across
all outgoing edges in G†. This somewhat unnatural pol-
icy is nevertheless within the unrestricted class of edge-
specific policies.

We redefine R ≡ R \ (paG†(Ỹ )), and A∗ ≡ A∗ \ {Ỹ }.
The induction terminates when A∗ = ∅ and R ⊆ Y′,
yielding our conclusion. �

We illustrate the novel ideas in this proof via the
example in Fig. 6 (a), where we are interested in
p(Y (f{(AY )→,(AM)→})), where f sets A according to
f (AY )→(W ) for the purposes of (AY )→, and to
f (AM)→(W ) for the purposes of (AM)→. In this exam-
ple, it suffices to construct a subgraph, shown in Fig. 6
(b), containing a recanting district along with a path
from W to Ỹ , a copy of Y . Note that in this sub-
graph there are three versions of the A variable. Two
versions represent conflicting value settings correspond-
ing to different edges from A into a district {W,M,Y }.
This is necessary to demonstrate the existence of the
recanting district structure. The third version of A is
set according to the mapping from W , and it’s neces-
sary in order to run the inductive argument which says if
p(Y,M,W ((aY )→, (aM)→)) is not identified in Fig. 6
(b), neither is p(Y,M, Ỹ ((aY )→, (aM)→)). Merging
the appropriate variables yields Fig. 6 (c), which demon-
strates the edge-specific policy for A that is not identi-
fied. Finally, the observed data version of the graph in
Fig. 6 (c) is Fig. 6 (d), which is identical to Fig. 6 (a) up
to vertex relabeling.
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Ã

Ỹ
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