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1 CODE AND REPLICATION FILES

The implementation of our NVSD algorithm and the replication files for the experiments presented in the main text of
our paper are available publicly at the Bitbucket repository https://bitbucket.org/dmmlgeneva/nvsd_
uai2018/.

2 PROOFS OF PROPOSITIONS FROM THE MAIN TEXT

Proof of Proposition 1. We may decompose any function f ∈ F as f = f‖ + f⊥, where f‖ lies in the span of the
kernel sections kxi and its partial derivatives [∂akxi ] centred at the n training points, and f⊥ lies in its orthogonal
complement.

The 1st term L̂(f) depends on the function f only through its evaluations at the training points f(xi), i ∈ Nn. For
each training point xi we have

f(xi) = 〈f, kxi〉F = 〈f‖ + f⊥, kxi〉F = 〈f‖, kxi〉F ,

where the last equality is the result of the orthogonality of the complement 〈f⊥, kxi〉F = 0. By this the term L̂(f) is
independent of f⊥.

The 2nd term R̂(f) depends on the function f only through the evaluations of its partial derivatives at the training
points ∂af(xi), i ∈ Ni, a ∈ Nd. For each training point xi and dimension a we have

∂af(x
i) = 〈f, [∂akxi ]〉F = 〈f‖, [∂akxi ]〉F ,

by the orthogonality of the complement 〈f⊥, [∂akxi ]〉F = 0. By this the term R̂(f) is independent of f⊥ for the
empirical versions of all three considered regularizers RL,RGL,REN . For the 3rd term we have ||f ||2F = ||f‖ +
f⊥||2F = ||f‖||2F + ||f⊥||2F because 〈f‖, f⊥〉F = 0. Trivially, this is minimised when f⊥ = 0.

Proof of Proposition 2. Using the matrices and vector introduced in section 4.1 and proposition 1 we have

f(xi) =

n∑
j=1

αjKji +

n∑
j=1

d∑
a=1

βajD̃
a
ij

∂af(x
i) =

n∑
j=1

αjD̃
a
ij +

n∑
j=1

d∑
c=1

βcjL
ca
ji
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For the 1st term L̂(f) we have

L̂(f) =
n∑
i=1

(
yi − f(xi)

)2
=

n∑
i=1

yi − n∑
j=1

αjKji −
n∑
j=1

d∑
a=1

βajD̃
a
ij

2

=

n∑
i=1

(
(yi)2 − 2yi

n∑
j=1

αjKji − 2yi
n∑
j=1

d∑
a=1

βajD̃
a
ij +

n∑
j,l

αjαlKjiKl,i + 2

n∑
j,l

d∑
a=1

βajαlD̃
a
ijKl,i

+

n∑
j,l

d∑
a,b

βajβblD̃
a
ijD̃

b
i,l

)

= yTy − 2yTKa− 2

d∑
a

yT D̃aBT
a,: +αααTKKααα+ 2

d∑
a

αααTKD̃aBT
a,: +

d∑
a,b

Ba,:D
aD̃bBT

b,:

= yTy − 2yTKa− 2yTDTβββ +αααTKKααα+ 2αααTKDTβββ +

d∑
a,b

βββTDDTβββ

= ||y −Kααα−DTβββ||22 ,

where B is the d× n matrix with the β coefficients βββ = vec(BT )

For the 2nd term we have

R̂L(f) =
d∑
a=1

√√√√ 1

n

n∑
i=1

(∂af(xi))
2
=

d∑
a=1

[
1

n

n∑
i=1

( n∑
j=1

αjD̃
a
ji +

n∑
j=1

d∑
c=1

βcjL
ca
ji

)2]0.5

=

d∑
a=1

[
1

n

n∑
i=1

( n∑
j,l

αjαlD̃
a
jiD̃

a
l,i + 2

n∑
j,l

d∑
c=1

αjβclD̃
a
jiL

ca
l,i +

n∑
j,l

d∑
c,r

βcjβrlL
ca
jiL

ra
l,i

)]0.5

=

d∑
a=1

1√
n

[
αααT D̃aDaααα+ 2

d∑
c=1

αT D̃aLacBT
c: +

d∑
c,r

Bc:L
caLarBT

r:

]0.5

=

d∑
a=1

1√
n

[
αααT D̃aDaααα+ 2αT D̃aLaβββ + βββTLaTLaβββ

]0.5
=

d∑
a=1

1√
n
||Daααα+ Laβββ||2

R̂GL(f) and R̂EN (f) follow in analogy.



For the 3rd term we have

||f ||2F = ||
n∑
j=1

αjkxj +

n∑
j=1

d∑
a=1

βaj [∂akxj ]||2F

= 〈
n∑
j=1

αjkxj ,

n∑
i=1

αikxi〉F + 2〈
n∑
j=1

αjkxj ,

n∑
i=1

d∑
a=1

βai[∂akxi ]〉F

+ 〈
n∑
j=1

d∑
a=1

βaj [∂akxj ],

n∑
i=1

d∑
c=1

βci[∂ckxi ]〉F

= αααTKααα+ 2

n∑
ij

d∑
a

αjβai ∂akxj (xi) +

n∑
ij

d∑
ac

βajβci
∂2

∂xja∂xic
k(xj ,xi)

= αααTKααα+ 2

n∑
ij

d∑
a

αjβaiD̃
a
ji +

n∑
ij

d∑
ac

βajβciL
ac
ji

= αααTKααα+ 2

d∑
a

αααT D̃aBT
a: +

d∑
ac

B:jL
acBT

c:

= αααTKααα+ 2αααTDTβββ +

d∑
a

Ba:L
aβββ

= αααTKααα+ 2αααTDTβββ + βββTLβββ

Proof of Proposition 4. The proximal problem in step S2 forRL for a single partition ϕϕϕa is

RL : ϕϕϕ(k+1)
a = argmin

ϕϕϕa

τ√
n
||ϕϕϕa||2 +

ρ

2
||Zaωωω(k+1) −ϕϕϕa + λλλ(k)a ||22

This convex problem is non-differentiable at the point ϕϕϕ = 0. It is, however, sub-differentiable with the optimality
condition for the minimizing ϕϕϕ∗

0 ∈ ∂ τ√
n
||ϕϕϕ∗a||2 − ρ (Zaωωω(k+1) −ϕϕϕa + λλλ(k)a ) ,

where for any function f : Rd → R, ∂f(x) ⊂ Rd is the sub-differential of f at x defined as

∂f(x) = {g | f(z) ≥ f(x) + gT (z− x)} .

For notational simplicity, in what follows we introduce the variable v = Zaωωω(k+1)+λλλ
(k)
a , and we drop the sub-/super-

scripts of the partitions a and the iterations k.

Part A For all points other than ϕϕϕ∗ = 0 the optimality condition reduces to

0 =
τ√
n

ϕϕϕ∗

||ϕϕϕ∗||2
− ρ (v −ϕϕϕ∗) ,

From which we get (
τ

ρ
√
n||ϕϕϕ∗||2

+ 1

)
ϕϕϕ∗ = v(

τ

ρ
√
n||ϕϕϕ∗||2

+ 1

)
||ϕϕϕ∗||2 = ||v||2

||ϕϕϕ∗||2 = ||v||2 −
τ

ρ
√
n
.



We use this result in the optimality condition

0 =
τ√
n

ϕϕϕ∗

||v||2 − τ
ρ
√
n

− ρ (v −ϕϕϕ∗)

τ√
n
ϕϕϕ∗ = ρ (v −ϕϕϕ∗)(||v||2 −

τ

ρ
√
n
)

τ√
n
ϕϕϕ∗ = (ρ||v||2 −

τ√
n
)v − ρ ||v||2ϕϕϕ∗ +

τ√
n
ϕϕϕ∗

ϕϕϕ∗ =

(
1− τ

ρ
√
n||v||2

)
v

Part B For the point ϕϕϕ∗ = 0 we have ∂||ϕϕϕ∗||2 = {g | ||g||2 ≤ 1} (from the definition of sub-differential and the
Cauchy-Schwarz inequality).

From the optimality condition

0 =
τ√
n
g − ρv (ϕϕϕ∗ = 0)

ρv =
τ√
n
g

ρ ||v||2 =
τ√
n
||g||2

||v||2 ≤ τ

ρ
√
n

(||g||2 ≤ 1)

Putting the results from part A and B together we obtain the final result

ϕϕϕ∗ =

(
1− τ

ρ
√
n||v||2

)
+

v

The proofs forRGL andREN follow similarly.

3 Examples of kernel partial derivatives

We list here the 1st and 2nd order partial derivatives which form the elements of the derivative matrices D and L
introduced in section 4.1 for some common kernel functions k.

Linear kernel
Kernel gram matrix

Ki,j = k(xi,xj) = 〈xi,xj〉

1st order partial-derivative matrix

Da
i,j =

∂k(s,xj)

∂sa
|s=xi = xja

2nd order partial-derivative matrix

Labi,j =
∂2k(s, r)

∂sa∂rb
| s=xi

r=xj
=

{
0 if a 6= b

1 if a = b



Polynomial of order p > 1
Kernel gram matrix

Ki,j = (〈xi,xj〉+ c)p

1st order partial-derivative matrix

Da
i,j = p (〈xi,xj〉+ c)p−1 xja

2nd order partial-derivative matrix

Labi,j =


p(p− 1) (〈xi,xj〉+ c)p−2 xibx

j
a if a 6= b

p(p− 1) (〈xi,xj〉+ c)p−2 xiax
j
a + p (〈xi,xj〉+ c)p−1

if a = b

Gaussian kernel
Kernel gram matrix

Ki,j = exp

(
−||x

i − xj ||22
2σ2

)

1st order partial-derivative matrix

Da
i,j = exp

(
−||x

i − xj ||22
2σ2

)
xja − xia
σ2

2nd order partial-derivative matrix

Labi,j =

exp
(
− ||x

i−xj ||22
2σ2

)
(xj

a−x
i
a)(x

i
b−x

j
b)

σ4 if a 6= b

exp
(
− ||x

i−xj ||22
2σ2

)
(xi

a−x
j
a)

2−σ2

−σ4 if a = b


	Code and replication files
	Proofs of propositions from the main text
	Examples of kernel partial derivatives

