## 8 PROOFS OF LEMMATA

### 8.1 Proof of Lemma 4.1

Due to the decomposability of (7), we observe $\forall X$ :

$$
\frac{\partial h(X, \tau)}{\partial X_{i j}}=\frac{2 X_{i j}}{\tau} \cdot\left(\left(\frac{X_{i j}}{\tau}\right)^{2}+1\right)^{-1 / 2}=\frac{X_{i j}}{\tau} \cdot \frac{2}{\sqrt{\left(\frac{X_{i j}}{\tau}\right)^{2}+1}}
$$

Thus, in compact form, $\nabla h(X, \tau)=\frac{1}{\tau} X \odot S$, where $S$ is defined in the lemma.
Regarding the Hessian information, first observe that $\frac{\partial^{2} h(X, \tau)}{\partial X_{i j} \partial X_{l q}}=\frac{\partial\left(\frac{x_{i j}}{\tau} \cdot \frac{2^{2}}{\sqrt{\left(\frac{x_{i j}}{\tau}\right)^{2}+1}}\right)}{\partial X_{l q}}=0$, for indices $(i, j) \neq(l, q)$. This means that the off-diagonals of $\nabla^{2} h(X, \tau)$ are zero. For the case where $(i, j)=(l, q)$, we have:

$$
\begin{aligned}
\frac{\partial^{2} h(X, \tau)}{\partial X_{i j}^{2}} & =\frac{\partial\left(\frac{X_{i j}}{\tau} \cdot \frac{2}{\sqrt{\left(\frac{X_{i j}}{\tau}\right)^{2}+1}}\right)}{\partial X_{i j}}=\frac{2}{\tau} \cdot \frac{\sqrt{\left(X_{i j} / \tau\right)^{2}+1}-\frac{X_{i j}^{2}}{\tau^{2}} \cdot\left(\left(X_{i j} / \tau\right)^{2}+1\right)^{-1 / 2}}{\left(\frac{X_{i j}}{\tau}\right)^{2}+1} \\
& =\frac{2}{\tau} \cdot \frac{\left(X_{i j} / \tau\right)^{2}+1-\left(X_{i j} / \tau\right)^{2}}{\left(\left(\frac{X_{i j}}{\tau}\right)^{2}+1\right)^{3 / 2}}=\frac{1}{\tau} \cdot \frac{2}{\left(\left(\frac{X_{i j}}{\tau}\right)^{2}+1\right)^{3 / 2}}
\end{aligned}
$$

Then, $\nabla^{2} h(X, \tau)=\frac{1}{\tau} I \odot Q$, where $Q$ is defined in the lemma.

### 8.2 Proof of Lemma 4.2

The first part of the lemma is easily deduced from Lemma 4.1. Observe that $0 \preceq \nabla^{2} h(X, \tau) \preceq \frac{2}{\tau} I, \forall X$; that is $h$ function is convex with Lipschitz constant $\frac{2}{\tau}$. Moreover, by combining $h$ with any strongly convex function $\psi(\cdot)$, say $\psi(X):=\frac{\lambda}{2}|X|_{2}^{2}$, we easily observe that the composite form $h(X, \tau)+\psi(X)$ satisfies $\lambda I \preceq \nabla^{2} h(X, \tau)+\nabla^{2} \psi(X) \preceq$ $\left(\frac{2}{\tau}+\lambda\right) I$; i.e., the composite form is also strongly convex.

The last part of the lemma is true because

$$
\begin{aligned}
|X|_{1} \geq h(X, \tau)=\sum_{i=1}^{m} \sum_{j=1}^{n} h\left(X_{i j}, \tau\right) & =\tau \cdot \sum_{i=1}^{m} \sum_{j=1}^{n}\left(\sqrt{\left(\frac{X_{i j}}{\tau}\right)^{2}+1}-1\right)=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\sqrt{X_{i j}^{2}+\tau^{2}}-\tau\right) \\
& \geq \sum_{i=1}^{m} \sum_{j=1}^{n}\left|X_{i j}\right|-m n \tau=|X|_{1}-m n \tau
\end{aligned}
$$

### 8.3 Proof of Lemma 4.3

The proof is elementary as in Lemma 4.1 and we state it for completeness. First, observe that (9) can be re-written as follows:

$$
\sigma(X, \tau)=\tau \cdot \log \left(\frac{\operatorname{Tr}(\mathbb{1} \cdot P)}{2 m n}\right)
$$

Observe that calculating gradients with respect to $X_{i j}$, the denominator $2 m n$ plays no role. Following similar motions, we compute partial derivatives as:

$$
\frac{\partial \sigma(X, \tau)}{\partial X_{i j}}=\tau \cdot \frac{1}{\operatorname{Tr}(\mathbb{1} \cdot P)} \cdot \frac{\partial\left(e^{x_{i j} / \tau}+e^{-x_{i j} / \tau}\right)}{\partial X_{i j}}=\frac{1}{\operatorname{Tr}(\mathbb{1} \cdot P)} \cdot\left(e^{x_{i j} / \tau}-e^{-x_{i j} / \tau}\right)
$$

Gathering all the partial derivatives in a matrix, we get the reported result.
Computing second-order partial derivatives for $\sigma(X, \tau)$, we distinct the cases of diagonal and off-diagonal elements. For the former, we have:

$$
\frac{\partial^{2} \sigma(X, \tau)}{\partial X_{i j}^{2}}=\frac{1}{\tau} \cdot \frac{\operatorname{Tr}(\mathbb{1} \cdot P)-N_{i j}^{2}}{\operatorname{Tr}(\mathbb{1} \cdot P)^{2}}
$$

and for the latter:

$$
\frac{\partial^{2} \sigma(X, \tau)}{\partial X_{i j} \partial X_{l, q}}=-\frac{1}{\tau} \cdot \frac{-N_{i j} N_{l q}}{\operatorname{Tr}(\mathbb{1} \cdot P)^{2}}
$$

Combining the two, we get the required result.

### 8.4 Proof of Lemma 4.4

Let us first prove convexity. By the definition of the Hessian, we want to prove

$$
\operatorname{Tr}(\mathbb{1} \cdot P) \cdot y^{\top}\left(\operatorname{diag}(\operatorname{vec}(P))-\frac{\operatorname{vec}(N) \operatorname{vec}(N)^{\top}}{\operatorname{Tr}(\mathbb{1} \cdot P)}\right) y \geq 0, \quad \forall y \in \mathbb{R}^{m n}
$$

First, observe that $\operatorname{Tr}(\mathbb{1} \cdot P) \geq 0$ since each element of $P$ is positive by definition. Second, for $P_{i j} \geq 0, \forall i, j$, it is obvious that $\frac{\operatorname{vec}(P) \operatorname{vec}(P)^{\top}}{\operatorname{Tr}(\mathbb{1} P P)} \preceq \operatorname{diag}(\operatorname{vec}(P))$. Thus, what is left is to prove $y^{\top}\left(\operatorname{vec}(N) \operatorname{vec}(N)^{\top}\right) y \leq$ $y^{\top}\left(\operatorname{vec}(P) \operatorname{vec}(P)^{\top}\right) y$, which is true since:

$$
\begin{aligned}
y^{\top}\left(\operatorname{vec}(N) \operatorname{vec}(N)^{\top}\right) y & =\left\|y^{\top} \operatorname{vec}(N)\right\|_{2}^{2}=\sum_{i=1}^{m n}\left(y_{i} \cdot \operatorname{vec}(N)_{i}\right)^{2} \leq \sum_{i=1}^{m n} y_{i}^{2} \cdot \operatorname{vec}(N)_{i}^{2} \\
& \leq \sum_{i=1}^{m n} y_{i}^{2} \cdot \operatorname{vec}(P)_{i}^{2}=\left\|y^{\top} \operatorname{vec}(P)\right\|_{2}^{2}=y^{\top}\left(\operatorname{vec}(P) \operatorname{vec}(P)^{\top}\right) y
\end{aligned}
$$

since $P_{i j} \geq N_{i j}$. Upper bounding the Hessian,

$$
\begin{aligned}
y^{\top} \nabla^{2} \sigma(X, \tau) y & =y^{\top}\left(\frac{1}{\tau} \cdot \frac{1}{\operatorname{Tr}(\mathbb{1} \cdot P)} \cdot\left(\operatorname{diag}(\operatorname{vec}(P))-\frac{\operatorname{vec}(N) \operatorname{vec}(N)^{\top}}{\operatorname{Tr}(\mathbb{1} \cdot P)}\right)\right) y \\
& \leq y^{\top}\left(\frac{1}{\tau} \cdot \frac{1}{\operatorname{Tr}(\mathbb{1} \cdot P)} \cdot(\operatorname{diag}(\operatorname{vec}(P)))\right) y \\
& =\frac{\sum_{i=1}^{m n} y_{i}^{2} \cdot \operatorname{vec}(P)_{i}}{\tau \cdot \operatorname{Tr}(\mathbb{1} \cdot P)} \leq \frac{\sum_{i=1}^{m n}\left|y_{i}\right|^{2} \cdot\left(\sum_{i=1}^{m n} \operatorname{vec}(P)_{i}\right)}{\tau \cdot \operatorname{Tr}(\mathbb{1} \cdot P)}=\frac{\|y\|_{2}^{2}}{\tau}
\end{aligned}
$$

This means that $\sigma$ function is Lipschitz gradient continuous with constant $\frac{1}{\tau}$. To prove the set of inequalities of the lemma, we observe:

$$
|X|_{\infty} \geq \sigma(X, \tau) \geq \tau \cdot \log \left(\frac{e^{|X|_{\infty} / \tau}}{2 m n}\right)=|X|_{\infty}-\tau \log (2 m n)
$$

### 8.5 Proof of Theorem 5.1

Using Lemma 4.2, we bound $\left|M-U_{T} V_{T}^{\top}\right|_{1}$ as follows:

$$
\begin{aligned}
\left|M-U_{T} V_{T}^{\top}\right|_{1} & \leq h\left(M-U_{T} V_{T}^{\top}, \tau\right)+m n \tau \\
& \leq h\left(M-U_{T} V_{T}^{\top}, \tau\right)+\frac{\lambda}{2}\left|U_{T} V_{T}^{\top}\right|_{2}^{2}+m n \tau
\end{aligned}
$$

Define $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ such as $f\left(U V^{\top}\right):=h\left(M-U V^{\top}, \tau\right)+\frac{\lambda}{2}\left|U V^{\top}\right|_{2}^{2}$. Observe that $f$ is $\lambda$-strongly convex with Lipscihtz continuous gradients with parameter $\left(\frac{2}{\tau}+\lambda\right)$. By Theorem 3.1, we know that:

$$
f\left(U_{T} V_{T}^{\top}\right)-f\left(\widehat{U}^{\star} \widehat{V}^{\star \top}\right) \leq \frac{10 \cdot \operatorname{DisT}\left(U_{0}, V_{0} ; \widehat{X}_{r}^{\star}\right)^{2}}{\eta T}
$$

where $\operatorname{DIST}\left(U_{0}, V_{0} ; \widehat{X}_{r}^{\star}\right) \leq \frac{\sqrt{2} \cdot \sigma_{r}\left(\widehat{X}_{r}^{\star}\right)^{1 / 2}}{10 \sqrt{\kappa}}$. Combining this bound with the above, we get:

$$
\begin{equation*}
\left|M-U_{T} V_{T}^{\top}\right|_{1} \leq h\left(M-\widehat{U}^{\star} \widehat{V}^{\star \top}, \tau\right)+\frac{\lambda}{2}\left|\widehat{X}^{\star}\right|_{2}^{2}+\frac{10 \cdot \operatorname{DIST}\left(U_{0}, V_{0} ; \widehat{X}_{r}^{\star}\right)^{2}}{\eta T}+m n \tau \tag{12}
\end{equation*}
$$

We know from Lemma 4.2 that:

$$
h\left(M-U V^{\top}, \tau\right) \leq\left|M-U V^{\top}\right|_{1} \quad \Longrightarrow \quad h\left(M-U V^{\top}, \tau\right)+\frac{\lambda}{2}\left|U V^{\top}\right|_{2}^{2} \leq\left|M-U V^{\top}\right|_{1}+\frac{\lambda}{2}\left|U V^{\top}\right|_{2}^{2}
$$

for every $U, V$. This further implies that:

$$
\begin{aligned}
\min _{U, V}\left(h\left(M-U V^{\top}, \tau\right)+\frac{\lambda}{2}\left|U V^{\top}\right|_{2}^{2}\right) & \leq \min _{U, V}\left(\left|M-U V^{\top}\right|_{1}+\frac{\lambda}{2}\left|U V^{\top}\right|_{2}^{2}\right) \quad \Rightarrow \\
h\left(M-\widehat{U}^{\star} \widehat{V}^{\star \top}, \tau\right)+\frac{\lambda}{2}\left|\widehat{U}^{\star} \widehat{V}^{\star \top}\right|_{2}^{2} & \stackrel{(i)}{\leq} \min _{U, V}\left(\left|M-U V^{\top}\right|_{1}+\frac{\lambda}{2}\left|U V^{\top}\right|_{2}^{2}\right) \\
& \stackrel{(i i)}{\leq}\left|M-U^{\star} V^{\star \top}\right|_{1}+\frac{\lambda}{2}\left|U^{\star} V^{\star \top}\right|_{2}^{2} \\
& \stackrel{(i i i)}{=} \mathrm{OPT}+\frac{\lambda}{2}\left|U^{\star} V^{\star \top}\right|_{2}^{2}
\end{aligned}
$$

where $(i)$ is due to the optimality of $\widehat{U}^{\star}, \widehat{V}^{\star}$ as the minimizer of $f\left(U V^{\top}\right):=h\left(M-U V^{\top}, \tau\right)+\frac{\lambda}{2}\left|U V^{\top}\right|_{2}^{2},(i i)$ is due to $U^{\star}, V^{\star}$ not being necessarily the minimizers of $\min _{U, V}\left(\left|M-U V^{\top}\right|_{1}+\frac{\lambda}{2}\left|U V^{\top}\right|_{2}^{2}\right)$, and (iii) OPT $:=$ $\min _{U, V}\left|M-U V^{\top}\right|_{1}=\left|M-U^{\star} V^{\star \top}\right|_{1}$. Thus, (12) becomes:

$$
\left|M-U_{T} V_{T}^{\top}\right|_{1} \leq \mathrm{OPT}+\frac{\lambda}{2}\left|X^{\star}\right|_{2}^{2}+\frac{10 \cdot \operatorname{Dist}\left(U_{0}, V_{0} ; X_{r}^{\star}\right)^{2}}{\eta T}+m n \tau
$$

For $\varepsilon>0$, setting $\tau=\frac{\varepsilon \cdot \mathrm{OPT}}{3 m n}$ we observe that $m n \tau=\frac{\varepsilon \cdot \mathrm{OPT}}{3}$. Executing Algorithm 1 for $T \geq \frac{10 \cdot \sigma_{r}\left(\widehat{X}_{r}^{\star}\right)}{50} \cdot \frac{3}{\eta \varepsilon \mathrm{OPT}}$, we can guarantee that $\frac{10 \cdot \operatorname{Dist}\left(U_{0}, V_{0} ; \widehat{X}_{r}^{\star}\right)^{2}}{\eta T} \leq \frac{10 \sigma_{r}\left(\widehat{X}^{\star}\right)}{50 \eta \cdot \frac{3 \cdot 10 \cdot \sigma_{r}\left(\widehat{X}^{\star}\right)}{50 \eta \varepsilon \mathrm{OPT}^{2}}}=\frac{\varepsilon \cdot \mathrm{OPT}}{3}$. Finally, setting $\lambda=\frac{2 \varepsilon \cdot \mathrm{OPT}}{3\left|X^{\star}\right|_{2}^{2}}$, we obtain: $\frac{2 \varepsilon \cdot \mathrm{OPT}}{6\left|X^{\star}\right|_{2}^{2}}$. $\left|X^{\star}\right|_{2}^{2}=\frac{\varepsilon \cdot \text { OPT }}{3}$. Substituting the above in the main recursion, we get:

$$
\begin{aligned}
\left|M-U_{T} V_{T}^{\top}\right|_{1} & \leq \mathrm{OPT}+\frac{\lambda}{2}\left|X^{\star}\right|_{2}^{2}+\frac{10 \cdot \operatorname{DIST}\left(U_{0}, V_{0} ; X_{r}^{\star}\right)^{2}}{\eta T}+m n \tau \\
& \leq \mathrm{OPT}+\frac{\varepsilon \cdot \mathrm{OPT}}{3}+\frac{\varepsilon \cdot \mathrm{OPT}}{3}+\frac{\varepsilon \cdot \mathrm{OPT}}{3} \\
& =(1+\varepsilon) \cdot \mathrm{OPT}
\end{aligned}
$$

The number of iterations $T$ required can be further analyzed to:

$$
\begin{aligned}
T & \geq \frac{10 \cdot \sigma_{r}\left(\widehat{X}_{r}^{\star}\right)}{50} \cdot \frac{3}{\eta \varepsilon \mathrm{OPT}} \stackrel{(i)}{=} \frac{10 \cdot \sigma_{r}\left(\widehat{X}_{r}^{\star}\right)}{50} \cdot \frac{3 \cdot O(L)}{\varepsilon \mathrm{OPT}} \\
& \stackrel{(i i)}{=} \frac{10 \cdot \sigma_{r}\left(\widehat{X}_{r}^{\star}\right)}{50} \cdot \frac{3 \cdot O\left(\frac{1}{\tau}+\lambda\right)}{\varepsilon \mathrm{OPT}} \\
& \stackrel{(i i i)}{=} \frac{10 \cdot \sigma_{r}\left(\widehat{X}_{r}^{\star}\right)}{50} \cdot \frac{3 \cdot O\left(\frac{3 m n}{\varepsilon \mathrm{OPT}}+\frac{2 \varepsilon \mathrm{OPT}}{3\left\|X^{\star}\right\|_{2}^{2}}\right)}{\varepsilon \mathrm{OPT}} \\
& =\frac{10 \cdot \sigma_{r}\left(\widehat{X}_{r}^{\star}\right)}{50} \cdot O\left(\frac{9 m n}{(\varepsilon \mathrm{OPT})^{2}}+\frac{2}{\left\|X^{\star}\right\|_{2}^{2}}\right) \\
& =O\left(\sigma_{r}\left(\widehat{X}_{r}^{\star}\right) \cdot\left(\frac{m n}{(\varepsilon \mathrm{OPT})^{2}}+\frac{1}{\left\|X^{\star}\right\|_{2}^{2}}\right)\right)
\end{aligned}
$$

where $(i)$ is due to the definition of the step size that $\eta=O\left(\frac{1}{L}\right),(i i)$ is due to the definition $L=\frac{1}{\tau}+\lambda,($ iii $)$ is obtained by substituting $\lambda$ and $\tau$.

### 8.6 Proof of Corollary 5.2

The proof is similar to that of Theorem 5.1. Using Lemma 4.4, we bound $\left|M-U_{T} V_{T}^{\top}\right|_{\infty}$ as follows:

$$
\begin{aligned}
\left|M-U_{T} V_{T}^{\top}\right|_{\infty} & \leq \sigma\left(U_{T} V_{T}^{\top}, \tau\right)+\tau \log (2 m n) \\
& \leq \sigma\left(U_{T} V_{T}^{\top}, \tau\right)+\frac{\lambda}{2}\left|U_{T} V_{T}^{\top}\right|_{2}^{2}+\tau \log (2 m n)
\end{aligned}
$$

Following similar motions with Theorem 5.1, and setting $\tau=\frac{\varepsilon \cdot \mathrm{OPT}}{3 \log (2 m n)}$, and $T$ and $\lambda$ similar to the $p=1$ case, we get:

$$
\left|M-U_{T} V_{T}^{\top}\right|_{\infty} \leq(1+\varepsilon) \cdot \mathrm{OPT}
$$

The number of iterations $T$ required follow the same motions as the proof of Theorem 5.1, with a slight difference in the definition of $\tau$.

## 9 CONNECTIONS WITH RELATED WORK

[10] considers probabilistic extensions of the PCA problem: starting with various generative probabilistic models, one obtains different matrix factorization objectives. The authors rely on the fundamental work of Csiszar and Tusnady [11], and propose an alternating minimization procedure; see also [49, 48].
[21, 45] show that the differences between many algorithms for matrix factorization can be viewed in terms of a small number of modeling choices. Their view unifies methods for Bregman co-clustering, LSI, non-negative matrix factorization, relational learning, to name a few.
While the bilinear factorization $U V^{\top}$ is common across different problems, there are cases where even a trilinear representation is more preferable, from an interpretation perspective. Having constraints over the factors is a another differentiation: An illustrative example of this case is that of matrix co-clustering where we are interested in $M \approx$ $C_{1} C_{2}^{\top}$, with $C_{1}$ and $C_{2}$ being matrices that denote the participation/indicator matrices. Our work is quite different to this type of factorizations (i.e., with additional constraints on the factors); we defer the reader to [35, 18, 2, 53] for some recent developments on similar subjects.

Finally, there is a recent line of work on robust PCA that further focuses on identifying the (sparse) grossly corrupted elements in $M$; see $[56,6,59,31,32,8,24,57]$. That line of work differs from our problem in that, our approach "models" the corruption through the penalization of the residual $M-U V^{\top}$ with an $\ell_{1}$-norm, while in the aforementioned line of works, one optimizes over the residual $S=M-U V^{\top}$ in order to minimize the number of "active" corruptions. In that sense our model is "simpler" as we are only interested in identifying the low rank component.

## 10 SUPPORTIVE EXPERIMENTAL RESULTS

|  | SVD |  |
| :---: | :---: | :---: |
|  | Time (sec.) | Error |
| Rank $r$ | [min, mean, median] |  |
| 1 | [2.63e-03, 1.10e-02, 1.08e-02] | [8.36e-01, 9.02e-01, 9.19e-01] |
| 2 | [3.44e-03, 5.58e-03, 4.25e-03] | [7.37e-01, 8.60e-01, 8.74e-01] |
| 3 | [4.08e-03, 8.55e-03, 6.67e-03] | [6.72e-01, 7.51e-01, 7.27e-01] |
| 4 | [2.59e-03, 7.73e-03, 4.47e-03] | [6.60e-01, 7.31e-01, 7.29e-01] |
| 5 | [2.59e-03, 3.69e-03, 3.63e-03] | [6.94e-01, 7.21e-01, 7.21e-01] |
| 6 | [2.52e-03, 3.40e-03, 3.11e-03] | [6.82e-01, 7.22e-01, 7.29e-01] |
| 7 | [2.44e-03, 3.21e-03, 3.29e-03] | [6.87e-01, 7.35e-01, 7.30e-01] |
| 8 | [2.43e-03, 3.58e-03, 3.32e-03] | [6.92e-01, 7.36e-01, 7.32e-01] |
| 9 | [2.50e-03, 3.01e-03, 2.97e-03] | [7.00e-01, 7.27e-01, 7.19e-01] |
| 10 | [1.96e-03, 2.70e-03, 2.84e-03] | [6.97e-01, 7.61e-01, 7.51e-01] |
|  | [17] |  |
|  | Time (sec.) | Error |
| Rank $r$ | [min, mean, median] |  |
| 1 | [6.81e-02, 2.24e-01, 2.28e-01] | [4.91e-01, 4.93e-01, 4.93e-01] |
| 2 | [1.55e-02, 2.75e-02, 2.31e-02] | [5.33e-01, 6.00e-01, 5.96e-01] |
| 3 | [2.42e-02, 5.89e-02, 4.59e-02] | [5.22e-01, 5.63e-01, 5.44e-01] |
| 4 | [2.69e-02, 4.61e-02, 4.04e-02] | [5.24e-01, 5.66e-01, 5.42e-01] |
| 5 | [4.67e-02, 3.36e-01, 1.48e-01] | [5.04e-01, 5.36e-01, 5.26e-01] |
| 6 | [6.72e-02, 6.24e-01, 1.34e-01] | [4.98e-01, 5.20e-01, 5.22e-01] |
| 7 | [5.46e-02, 8.91e-01, 5.47e-01] | [4.90e-01, 5.14e-01, 5.11e-01] |
| 8 | [1.36e-01, 1.66e+00, 5.39e-01] | [4.81e-01, 5.15e-01, 5.02e-01] |
| 9 | [1.90e-01, 2.91e+00, 2.56e+00] | [4.73e-01, 4.98e-01, 4.89e-01] |
| 10 | [2.30e-01, 9.60e+00, 4.25e+00] | [4.59e-01, 4.97e-01, 4.79e-01] |
|  | This work |  |
|  | Time (sec.) | Error |
| Rank $r$ | [min, mean, median] |  |
| 1 | [2.57e-02, 4.32e+01, 5.44e+01] | [4.99e-01, 5.82e-01, 5.01e-01] |
| 2 | [2.60e-02, 4.95e+01, 5.44e+01] | [5.04e-01, 5.49e-01, 5.07e-01] |
| 3 | [5.20e+01, 5.43e+01, 5.42e+01] | [5.06e-01, 5.10e-01, 5.10e-01] |
| 4 | [1.55e-02, 3.67e+01, 5.15e+01] | [5.05e-01, 5.90e-01, 5.10e-01] |
| 5 | [4.17e-02, 7.92e+01, 8.93e+01] | [5.07e-01, 5.33e-01, 5.13e-01] |
| 6 | [7.27e+01, 8.03e+01, 7.76e+01] | [5.02e-01, 5.08e-01, 5.09e-01] |
| 7 | [1.62e-02, 5.11e+01, 6.52e+01] | [5.08e-01, 5.84e-01, 5.08e-01] |
| 8 | [5.51e+01, 6.55e+01, 6.73e+01] | [4.95e-01, 5.09e-01, 5.02e-01] |
| 9 | [5.36e+01, 5.89e+01, 5.77e+01] | [4.78e-01, 5.06e-01, 5.06e-01] |
| 10 | [1.69e-02, 3.86e+01, 5.23e+01] | [4.69e-01, 5.94e-01, 4.75e-01] |

Table 2: Attained objective function values and execution time. Table includes minimum, mean and median values for 10 Monte Carlo instances.

