
Supplementary Material for the Paper:
Probabilistic AND-OR Attribute Grouping for Zero-Shot Learning

A IMPLEMENTATION AND
TRAINING DETAILS

The weights W were initialized with orthogonal initial-
ization (Saxe et al., 2014). The loss in Eq. (6) was opti-
mized with Adam optimizer (Kingma & Ba, 2015). We
used cross-validation to tune early stopping and hyper-
parameters. When the learning rate is too high, the num-
ber of epochs for early-stopping varies largely with the
weight seed. Therefore, we chose a learning rate that
shows convergence within at least 40 epochs. Learn-
ing rate was searched in [3e-6, 1e-5, 3e-5, 1e-4, 3e-4].
From the top performing hyper-parameters, we chose the
best one based on an average of additional 3 different
seeds. Number-of-epochs for early stopping, was based
on their average learning curve. For β, λ, L2 regulariza-
tion params, we searched in [0, 1e-8, .., 1e-3].

For learning soft groups, we also tuned the learning rate
of V in [0.01, 0.1, 1], of ζ in [1, 3, 10], and when appli-
cable, the number of groups K in [1, 10, 20, 30, 40, 60],
or semantic prior ψ in [1e-5, .., 1e-2]. We tuned these
hyper-params by first taking a coarse random search, and
then further searching around the best performing values.

To comply with the mutual-exclusion approximation (2),
if the group sum

∑
m∈Gk

p(am = T |z) is larger than 1,
we normalize it to 1. We do not normalize if the sum is
smaller than 1 in order to allow LAGO to account for the
complementary case. We apply this normalization only
for the LAGO-Semantic variants, where a prior knowl-
edge about grouping is given.

After selecting hyper-parameters with cross-validation,
models were retrained on both the training and the vali-
dation classes.

A.1 EVALUTATION METRIC

We follow Xian et al. (2017) and use a class-balanced
accuracy metric which averages correct predictions in-

dependently per-class before calculating the mean value:

accZ =
1

|Z|

|Z|∑
z=1

# of correct predictions in z

# of samples in z
. (A.1)

B LEARNED SOFT-GROUP
ASSIGNMENTS (Γ)

We analyzed the structure of learned soft group assign-
ments (Γm,k = p(m ∈ Gk)) for LAGO-K-Soft, initial-
ized by a uniform prior. We found two types of interest-
ing structures:

First, we find that the learned Γ tends to be sparse: with
2.5% non-zero values on SUN, 8.7% on AWA2 and 3.3%
on CUB. As a result, the learned model has small groups,
each with only a few attributes. Specifically, Γ maps each
attribute to only a single group on SUN (K=40 groups)
and CUB (K=30), and to 2-3 groups on AWA2 (K=30
groups).

Second, we tested which attributes tend to be grouped
together, and found that the model tends to group anti-
correlated attributes. To do this, we first quantified for
each pair of attributes, how often they tend to appear
together in the data. Specifically, we estimated the oc-
currence pearson-correlation for each pair of attributes
across samples (CUB, SUN) or classes (AWA2). Sec-
ond, we computed the grouping similarity of two at-
tributes as the inner product of their corresponding rows
in Gamma, and considered an attribute pair to be grouped
together if this product was positive (note that rows are
very sparse). Using these two measures, we observed
that the model tends to group anti-correlated attributes.
This is consistent with human-based grouping, whose at-
tribute are also often anti correlated (red foot, blue foot).
In SUN, 45% of attribute-pairs that are grouped together
were anti-correlated, compared to 23% of the full set of
pairs. (AWA2 38% vs 5% baseline, CUB 16% vs 10%
baseline). These differences were also highly significant
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Figure A.1: Robustness to salt & pepper noise. The relative
accuracy on CUB of three models as a function of ration of in-
jected noise to class-level description p(am|z). Values are av-
erages over 5 noise-seeds. LAGO-Semantic-Hard and ESZSL
show a similar sensitivity to noise, while LAGO-Singletons is
more sensitive due to its all-AND structure. The relative accu-
racy is calculated against each model own zero-noise baseline.

statistically (Kolmogorov-Smirnov test p-value¡3e-3)

C ROBUSTNESS TO NOISE

We tested LAGO-Semantic-Hard, LAGO-Singletons and
ESZSL with various amount of salt & pepper noise (Fig-
ure A.1) injected to class-level description p(am|z) of
CUB. While LAGO-Semantic-Hard and ESZSL show a
similar sensitivity to noise, LAGO-Singletons is more
sensitive due to its all-AND structure.

D DETAILED DERIVATION

D.1 p(am|gk,z=T ) EQUALS p(am|Z=z)

Here we explain why Eq. (A.2) below is true.

p(am|gk,z=T ) = p(am|Z=z), (A.2)

It is based on the definition of gk,z: gk,z is the classifier
of z based on ak. Therefore p(gk,z|ak)=p(z|ak), and by
marginalization we get: (*) p(gk,z = T, am)=p(z, am),
(**) p(gk,z = T ) =p(Z = z). Next, using conditional
probability chain rule on (*), yields

p(am|gk,z =T )p(gk,z =T ) = p(am|Z = z)p(Z = z) .
(A.3)

Then, (**) transforms (A.3) to the required equality:

p(am|gk,z =T ) = p(am|Z = z) . (A.4)

Intuitively, the right side of (A.4), is the probability
of observing am for a class z, like p(stripes|zebra).
This is the same probability of observing the at-
tribute given the class while focusing on its respec-
tive group, namely p(am = T |gk,z = T ) =
p(stripes|focus on zebra pattern).

D.2 DERIVATION OF GROUP CONJUNCTION:

This derivation is same as in DAP (Lampert 2009), ex-
cept we apply it at the group level rather than the attribute
level. We denote g1,z . . . gK,z by gz and approximate the
following combinatorially large sum:

p(Z=z|x)=
∑

gz∈{T,F}K

p(Z=z|gz)p(gz|x) . (A.5)

First, using Bayes (A.5) becomes

∑
gz∈{T,F}K

p(gz|Z=z)p(Z=z)

p(gz)
p(gz|x) (A.6)

Second, we approximate p(gz|Z=z) to be

p(gz|Z=z) =

{
1, if g1,z =T . . . gK,z =T

0, otherwise
(A.7)

which transforms (A.6) to

p(Z=z|x)≈ p(Z=z)
p(g1,z =T . . . gK,z =T |x)

p(g1,z =T . . . gK,z =T )
(A.8)

Third, we approximate the numerator of (A.8) with the
assumption of conditional independence of groups given
an image (by observing an image we can judge each
group independently),

p(g1,z =T . . . gK,z =T |x) ≈
K∏

k=1

p(gk,z =T |x) (A.9)

Fourth, we approximate the denominator of (A.8) to
its factored form p(g1,z = T . . . gK,z = T ) ≈
K∏

k=1

p(gk,z =T ), and with (A.9) we arrive at:

p(Z=z|x) ≈ p(Z=z)

K∏
k=1

p(gk,z =T |x)

p(gk,z =T )
. (A.10)

D.3 A DERIVATION OF SOFT GROUP MODEL

Here we adapt LAGO to account for soft group-
assignments for attributes, by extending the within-group
part of the model. We start with partitioning p(gk,z =
T |x) to a union (OR) of its contributions, repeated be-
low for convenience,

p(gk,z|x) =

p(gk,z, ∪
m∈Gk

am = T |x) + p(gk,z, ãk = T |x), (A.11)



CUB AWA2 SUN

DAP 40.0 46.2 39.9
ALE 54.9 62.5 58.1
ESZSL 53.9 58.6 54.5
SYNC 55.6 46.6 56.3
SJE 53.9 61.9 53.7
DEVISE 52.0 59.7 56.5
ZHANG2018 48.7 - 57.1 58.3-70.5 57.8-61.7

LAGO-SINGLETONS 54.5 63.7 57.3
LAGO-K-SOFT 55.3 59.7 57.5
LAGO-SEMANTIC-HARD 58.3 60.4 47.1
LAGO-SEMANTIC-SOFT 57.8 64.8 48.0

LAGO (CROSS-VALIDATION) 57.8 64.8 57.5

Table A.1: Test accuracy for all the variants of LAGO on three benchmark datasets, averaged over 5 random initializations of model
weights. Standard-error-of-the-mean (S.E.M) is ∼ 0.1% for the hard groups variants and ∼ 0.4% for the soft-groups variants.

p(am) P (ãk|x) ATTRIBUTES SUPERVISION CUB AWA2

UNIFORM CONST IMPLICIT 52.85 60.53
UNIFORM CONST EXPLICIT 52.17 60.17
UNIFORM DEMORGAN EXPLICIT 51.75 57.93
UNIFORM DEMORGAN IMPLICIT 48.41 49.54
PER-ATTRIBUTE DEMORGAN EXPLICIT 47.71 53.32
PER-ATTRIBUTE CONST EXPLICIT 42.68 52.05
PER-ATTRIBUTE CONST IMPLICIT 39.31 51.88
PER-ATTRIBUTE DEMORGAN IMPLICIT 35.3 37.21

Table A.2: Ablation experiments: Validation accuracy (in %) for CUB and AWA2, for combinations of model-design variants,
with the semantic hard-grouping of LAGO. Results are given in descending order based on CUB. Uniform vs Per-attribute relates
to taking a uniform prior for p(am). Const DeMorgan relates to setting a constant value for approximating the complementary
attribute p(ãk|x) vs an approximation derived by De-Morgan’s rule. Implicit vs Explicit relates to setting a zero weight (α = 0) for
the loss term of the attribute supervision. Namely, attributes are learned implicitly, since only class-level super vision is given. The
uniform prior on p(am) has the largest impact, second is the usage of a constant value for p(ãk|x), and the last relates to nulling
the attribute supervision loss. See details on Section 4.4

and instead, treat the attribute-to-group assignment
(m ∈ Gk), as a probabilistic assignment, yielding:

p(gk,z|x) =

p(gk,z,
|A|
∪
m=1

(m ∈ Gk, am = T |x))+p(gk,z, ãk = T |x),

(A.12)

Note that the attribute-to-group assignment (m ∈ Gk) is
independent of the current given image x, class z or the
True / False occurrence of an attribute am. Repeating the
mutual exclusion approximation (2) yields,

p(gk,z|x) ≈
|A|∑
m=1

p(gk,z,m ∈ Gk, am = T |x). (A.13)

Using the independence of (m ∈ Gk), yields

p(gk,z|x) ≈
|A|∑
m=1

p(m ∈ Gk)p(gk,z, am = T |x).

(A.14)
Defining Γm,k = p(m ∈ Gk), yields:

p(gk,z|x) ≈
|A|∑
m=1

Γm,kp(gk,z, am = T |x). (A.15)

As in section 3, using the Markov chain property X →
A → G and p(gk,z = T |am) =

p(am|z)p(gk,z=T )
p(am) results

with Eq. (5), repeated below:

p(gk,z = T |x) ≈

p(gk,z = T )

|A|∑
m=1

Γm,k
p(am = T |z)
p(am = T )

p(am = T |x)

(A.16)



D.3.1 APPROXIMATING THE
COMPLEMENTARY TERM

With soft groups, the complementary term is defined as

ãk =
( |A|
∪
m=1

(m ∈ Gk, am = T |x))
)c

(A.17)

To approximate p(ãk = T |z) we can use De-Morgan’s
rule over a factored joint conditional probability of
group-attributes. I.e.

p(ãk = T |z) ≈
|A|∏
m=1

(1− p(m ∈ Gk, am = T |z)) =

|A|∏
m=1

(1− Γm,kp(am = T |z)), (A.18)

where the latter term is derived by the independence of
(m ∈ Gk)

D.4 DAP, ESZSL AS SPECIAL CASES OF LAGO

Two extreme cases of LAGO are of special interest: hav-
ing each attribute in its own singleton group (K = |A|),
and having one big group over all attributes (K = 1).

Consider first assigning each single attribute am to its
own singleton group (K = |A| and m = k). We remind
that we defined G′

k = Gk∪ ãk. Therefore, G′
k has only

two attributes {am, ãk}, which turns the sum in Eq. (4),
to a sum over those elements:

p(z|x) = p(z)

K∏
k=1

[p(am =T |z)
p(am =T )

p(am=T |x)+

p(ãk =T |z)
p(ãk =T )

p(ãk=T |x)
]
. (A.19)

In a singleton group, the complementary attribute ãk be-
comes ãk = acm, and therefore
ãk =T ⇔ am =F . This transforms (A.19) to:

p(z|x) = p(z)

|A|∏
m=1

[p(am=T |z)
p(am=T )

p(am=T |x)+

p(am=F |z)
p(am=F )

p(am=F |x)
]

. (A.20)

This formulation is closely related to DAP (Lampert
et al., 2009), where the expert annotation p(am =T |z)
is thresholded to {0, 1} using the mean of the matrix U
as a threshold, and denoted by azm. Applying a similar

threshold to Eq. (A.20) yields

p(z|x) = p(z)

|A|∏
m=1

[ azm
p(am=T )

p(am=T |x)+

(1− azm)

p(am=F )
p(am=F |x)

]
(A.21)

Reducing Eq. (A.21), by taking only the cases where it is
non-zero for its two parts, gives the posterior of DAP

p(z|x) = p(z)

|A|∏
m=1

p(am=azm|x)

p(am=azm)
. (A.22)

This derivation reveals that in the extreme case of K =
|A| singleton groups, LAGO becomes equivalent to a soft
relaxation of DAP.

At the second extreme, consider the case where all at-
tributes are assigned to a single group, K = 1. Tak-
ing a uniform prior for p(z) and p(am), and writing
p(am = T |x) using the network model σ(x>W ), trans-
forms Eq. (4) to:

p(z|x) ∝
|A|∑
m=1

σ(x>W )p(am = T |z). (A.23)

This can be viewed as a 2-layer architecture: First map
image features to a representation in the attribute di-
mension, then map it to class scores by an inner prod-
uct with the supervised entries of attributes-to-classes
Um,z = p(am = T |z). This formulation resembles ES-
ZSL, which uses a closely related 2-layer architecture:
Score(z|x) = x>WU , where W first maps image fea-
tures to a representation in the same attribute dimension,
and then map it to class scores, with an inner product by
the same attributes-to-classes entries Um,z = p(am =
T |z). LAGO differs from ESZSL in two main ways: (1)
The attribute-layer in LAGO uses a sigmoid-activation,
while ESZSL uses a linear activation. (2) LAGO uses
a cross-entropy loss, while ESZSL uses mean-squared-
error. This allows ESZSL to have a closed-form solution
where reaching the optimum is guaranteed.

This derivation reveals that at the extreme case of K =
1, LAGO can be viewed as a non-linear variant that is
closely related to ESZSL.
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