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This supplementary material contains proofs that were
omitted in the paper. It also contains the potential par-
ent and potential sibling criteria and reports the results
of a small simulation study illustrating the cost and the
impact of the potential step in the learning algorithm.

A PROOFS OF LEMMAS 5 AND 6

Lemma 5. The independence model I(G) satisfies left
and right {decomposition, weak union, composition}
and left {redundancy, intersection, weak composition}.
Furthermore, 〈A,B | C〉 ∈ I(G) whenever B = ∅.

Proof. Left redundancy, left and right decomposition
and left and right composition follow directly from the
definition of µ-separation. Left and right weak union are
also immediate. Left weak composition follows from left
redundancy, left decomposition and left composition. It
is also clear that 〈A,B | C〉 ∈ I(G) if B = ∅.

For left intersection, consider a µ-connecting walk, ω =
〈ν1, e1, . . . , en, νn+1〉 from δ = ν1 ∈ A ∪ C to β =
νn+1 ∈ B given A ∩ C. This walk is by definition non-
trivial. Consider now the shortest possible non-trivial
subwalk of ω of the form ω̃ = 〈νi, ei, . . . , en, νn+1〉 such
that νi ∈ (A∪C) \ (A∩C). Such a subwalk always ex-
ists and it is µ-connecting either from A to B given C or
from C to B given A.

Lemma 6. I(G) satisfies cancellation.

Proof. The contrapositive of A ⊥µ B | C ∪ {δ} ⇒
A ⊥µ B | C is A 6⊥µ B | C ⇒ A 6⊥µ B | C ∪ {δ}.
So we have that A ⊥µ C1 ∪ {δ} | C ∪ {δ}, δ ⊥µ C2 ∪
A | C ∪ A, and A 6⊥µ B | C and want to show that
A 6⊥µ B | C ∪{δ}. Note that A ⊥µ δ | C ∪{δ} by right
decomposition.

There exists a µ-connecting walk ω from α ∈ A to some
β ∈ B given C, and we argue that this walk is also

µ-connecting given C ∪ {δ}. Suppose not, for contra-
diction. Note that α 6∈ C so α 6∈ C ∪ {δ} since by
factorization A,C, {δ} are disjoint. Also every collider
on ω is in an(C) so it is in an(C ∪ {δ}). Thus if ω is
not µ-connecting given C ∪ {δ} it must be because there
is some non-collider on ω which is not in C but is in
C ∪ {δ}, i.e., the non-collider is δ. Choose now a sub-
walk of ω between some (possibly different) α ∈ A and
δ such that no non-endpoint node of this subwalk is in
A ∪ {δ}. Again, α /∈ C ∪ {δ}. Such a subwalk always
exists.

There are two possibilities: either there is an arrowhead
into δ on this subwalk of ω or there is not. In the first
case, the subwalk of ω from α into δ is µ-connecting
given C ∪ {δ}, i.e., A 6⊥µ δ | C ∪ {δ}. Contradiction. In
the second case, we consider a collider ε on the subwalk
between α and δ (if there is no collider on the walk, then
the directed walk from δ to α is µ-connecting given C ∪
A). Either ε ∈ C1, ε ∈ C2, or there is a (non-trivial)
directed walk from ε to some ε′ that is either inC1 orC2.
If ε ∈ C1, there is a µ-connecting subwalk of ω from α
to ε ∈ C1 given C. Since there are no non-colliders on
this walk in {δ}, it is also µ-connecting given C∪{δ}. If
ε ∈ C2, likewise there is a µ-connecting walk from δ to
C2 given C∪A (note that there are no non-colliders inA
on this walk by choice of α). Either way, contradiction.

If ε 6∈ C, we consider concatenating one of the afore-
mentioned walks to ε with the directed path ω′ from ε
to ε′ ∈ C. Either δ appears on ω′ or it does not. In the
first case, then there is an arrowhead at δ on ω′ and so
A 6⊥µ δ | C ∪ {δ} as before. In the latter case, there
are two subcases to consider: either there is some vertex
in A on ω′ or there is not. If there is, choose α′ ∈ A
on ω′ such that there are no vertices in A nearer to ε on
ω′. Then the the walk from δ to α′ is µ-connecting given
C ∪A. If there is no vertex in A on ω′, then by concate-
nating a subwalk of ω to ω′ we get a µ-connecting walk
from α or δ to ε′ in C1 or C2 given C ∪ {δ} or C ∪ A,
respectively. In any case, contradiction.



B PROOF OF THEOREM 8

In this section, we first prove some lemmas and then use
these to prove Theorem 8.

Lemma 19. If A ⊥µ B | C and A ⊥µ D | C, then
A ⊥µ B | C ∪D.

Proof. This follows from right composition, right weak
union, and right decomposition of µ-separation.

Lemma 20. Assume γ ∈ an(A∪B ∪C) and α, γ /∈ C.
If there is a walk between α ∈ A and γ such that no non-
collider is in C and every collider is in an(C), and there
is a µ-connecting walk from γ to β ∈ B given C, then
there is a µ-connecting walk from A to B given C.

If ω = 〈ν1, e1, ν2, . . . , en, νn+1〉 is a walk, then the in-
verse, ω−1, is the walk 〈νn+1, en, νn, . . . , e1, ν1〉.

Proof. If γ ∈ an(C), then simply compose the walks.
Assume γ /∈ an(C). If γ ∈ an(A) let π denote the
directed path from γ to ᾱ ∈ A. We have that there
is no node in C on π and composing π−1 with the µ-
connecting walk from γ to B gives a µ-connecting walk
from ᾱ ∈ A to β ∈ B given C. If γ ∈ an(B) compose
the walk from α to γ with the directed path from γ to B
(which is µ-connecting given C as γ /∈ an(C)).

Lemma 21. Assume that I satisfies left weak com-
position, left intersection, and left decomposition. If
A ∩D = ∅ then

〈A,B | C ∪D〉 ∈ I, 〈D,B | C ∪A〉 ∈ I ⇒
〈A ∪D,B | C〉 ∈ I.

Proof. By left weak composition 〈A ∪C,B | C ∪D〉 ∈
I, 〈D∪C,B | C∪A〉 ∈ I. It follows by left intersection
that 〈A ∪ C ∪D,B | C〉 ∈ I and by left decomposition
the result follows.

Lemma 22. Let D = (V,E) be a DG, and let α, β ∈ V .
Then α /∈ paD(β) if and only if α ⊥µ β | V \ {α}.

In the following proofs, we will use ∼ to denote an arbi-
trary edge.

Proof. Assume first that α /∈ paD(β), and consider a
walk between α and β that has a head at β, α ∼ . . . ∼
γ → β. We must have that α 6= γ and therefore the walk
is not µ-connecting given V \ {α}.

Assume instead that α ⊥µ β | V \{α}. The edge α→ β
would constitute a µ-connecting walk given V \ {α} and
therefore we must have that α /∈ paD(β).

Theorem 8. Assume that I is an independence
model that satisfies left {redundancy, intersection, de-
composition, weak union, weak composition}, right
{decomposition, composition}, is cancellative, and fur-
thermore 〈A,B | C〉 ∈ I whenever B = ∅. Let D be a
DG. Then I satisfies the pairwise Markov property with
respect to D if and only if it satisfies the global Markov
property with respect to D.

Proof. It follows directly from the definitions and
Lemma 22 that the global Markov property implies the
pairwise Markov property. Assume that I satisfies the
pairwise Markov property w.r.t. D and let A,B,C ⊆ V .
Assume A ⊥µ B | C. We wish to show that 〈A,B |
C〉 ∈ I.

Assume |V | = n > 0. We will proceed using reverse
induction on |C|. As the induction base, C = V . The
result follows by noting that 〈V,B | V 〉 ∈ I by left
redundancy of I. By left decomposition of I, we get
〈A,B | V 〉 ∈ I.

For the induction step, consider a node γ /∈ C. Note
first that if A ⊆ C, then the result once again follows
using left redundancy and then left decomposition, and
therefore assume that A \ C 6= ∅, and take α ∈ A \ C
(note that α = γ is allowed). Assume first that we cannot
choose α and γ such that α 6= γ. This means that C =
V \ {α}. By right decomposition of I(G) we have that
A ⊥µ β | C for all β ∈ B, and by left decomposition
of I(G) we have α ⊥µ β | C. If B = ∅, then the
result follows by assumption, and else by the pairwise
Markov property and Lemma 22 we have 〈α, β | C〉 ∈ I
for all β ∈ B and by right composition of I we have
〈α,B | C〉 ∈ I. By left weak composition, we have
〈A,B | C〉 ∈ I.

Now assume γ 6= α. We split the proof into two cases,
(i) and (ii), depending on whether or not we can choose
γ as an ancestor to A ∪B ∪ C.

Case (i): γ ∈ an(A ∪B ∪ C)
We have that γ ⊥µ B | C or A ⊥µ γ | C by Lemma 20.
We split into two subcases, (i-1) and (i-2).

Case (i-1): γ ⊥µ B | C
By left composition of I(G), A ∪ {γ} ⊥µ B | C and
by left weak union A ∪ {γ} ⊥µ B | C ∪ {γ} as well
as A ∪ {γ} ⊥µ B | C ∪ (A \ {γ}). By the induction
hypothesis and noting thatC∪{γ} 6= C 6= C∪(A\{γ}),
〈A∪{γ}, B | C ∪{γ}〉 ∈ I, and 〈A∪{γ}, B | C ∪ (A\
{γ})〉 ∈ I. By left decomposition of I and Lemma 21,
the result follows.

Case (i-2): A ⊥µ γ | C
In this case, we can assume that γ /∈ A, as otherwise
by left decomposition of I(G) we would also have γ ⊥µ



B | C which is case (i-1). Moreover, either γ ⊥µ B | C
or γ ⊥µ A \ C | C, as otherwise A ⊥µ B | C would
not hold (Lemma 20). γ ⊥µ B | C is the above case, so
assume that γ 6⊥µ B | C and γ ⊥µ A \ C | C. Using
right weak union of I(G), we haveA ⊥µ γ | C∪{γ} and
γ ⊥µ A\C | C∪A. Using the induction assumption, we
have that 〈A, γ | C ∪{γ}〉 ∈ I and 〈γ,A\C | C ∪A〉 ∈
I. We haveA ⊥µ B | C andA ⊥µ γ | C and using right
composition and right weak union of I(G), we obtain
A ⊥µ B∪{γ} | C∪{γ}. Using the induction assumption
we have that 〈A,B | C ∪ {γ}〉 ∈ I. Assume to obtain a
contradiction that A 6⊥µ δ | C ∪ γ and γ 6⊥µ δ | C ∪ A
for some δ ∈ C. We know that A ⊥µ γ | C and by
using the contrapositive of Lemma 19 this means that
A 6⊥µ δ | C. Similarly, we obtain that γ 6⊥µ δ | C. We
note that γ 6⊥µ B | C and by Lemma 20 this means that
A 6⊥µ B | C which is a contradiction. Therefore, we
have that for each δ ∈ C, either A ⊥µ δ | C ∪ γ (and
therefore also A \ C ⊥µ δ | C ∪ γ) or γ ⊥µ δ | C ∪ A.
Using the induction assumption, right composition of I,
the cancellation property and left weak composition of I
we arrive at the conclusion.

Case (ii): If one cannot choose a γ ∈ an(A∪B∪C) such
that γ /∈ C and γ 6= α, then an(A ∪B ∪C) = C ∪ {α}.
Assume this and furthermore assume that γ /∈ an(A ∪
B ∪ C). We will first argue that A ⊥µ B | C ∪ {γ}.
If this was not the case there would be a µ-connecting
walk, ω, from A to β ∈ B given C ∪ {γ} on which
γ was a collider and furthermore every collider was in
C ∪ {γ}. Consider now the last occurrence of γ on this
walk, and the subwalk of ω, γ ∼ . . . ∼ θ ∼ . . . → β.
Let θ be the node in an(A ∪B ∪ C) which is the closest
to γ on the walk. Then there must be a tail at θ, and
this means that θ = α as otherwise the walk would be
closed. In this case, the subwalk from α to β would also
be µ-connecting given C which is a contradiction.

It also holds that γ ⊥µ B | C ∪ A as every parent of a
node in B is in C ∪ A. Using the induction assumption
we have that 〈A,B | C∪{γ}〉 ∈ I and 〈γ,B | C∪A〉 ∈
I and using Lemma 21 and left decomposition of I we
obtain 〈A,B | C〉 ∈ I.

C PROOF OF LEMMA 11

Lemma 11. Let I be a local independence model. Then
it satisfies left {redundancy, decomposition, weak union,
weak composition} and right {decomposition, composi-
tion} and furthermore 〈A,B | C〉 ∈ I whenever B = ∅.
If FAt ∩ FCt = FA∩Ct holds for all A,C ⊆ V and
t ∈ [0, T ], then left intersection holds.

Proof. Left redundancy: We note that FA∪Ct = FCt
from which the result follows.

Left decomposition: Assume that A1 ∪ A2 6→λ B | C.
We wish to show that A1 6→λ B | C.

E(λβt | F
A1∪C
t ) = E

(
E(λβt | F

A1∪A2∪C
t )︸ ︷︷ ︸

=E(λB
t |FC

t )

∣∣FA1∪C
t

)
= E(λβt | FCt )

Left weak union: Simply note that the conditioning σ-
algebra stays the same in the conditional expectation
which is assumed to be FCt -adapted and therefore also
FC∪Dt -adapted.

Left weak composition: The conditioning σ-algebra
again stays the same in the conditional expectation.

Right decomposition and right composition follow di-
rectly from the coordinate-wise definition of local inde-
pendence.

Left intersection: We note that E(λβt | FA∪Ct ) by as-
sumption has an FAt -adapted and an FCt -adapted ver-
sion, thus it has a version, which is adapted w.r.t. the
filtration FAt ∩ FCt = FA∩Ct .

Finally, it is clear that 〈A,B | C〉 ∈ I if B = ∅ as this
makes the condition void.

D PROOFS, SECTION 5

Lemma 16. Subalgorithm 1 outputs the separability
graph of I, S, and furthermore N ⊆ S.

Proof. In Subalgorithm 1, we only remove edges α ∗→
β when we have found a set C ⊆ V \ {α} that separates
β from α. The DMGs G0 and N are Markov equivalent
and therefore the same separation holds in I(N ). Such
an edge would always be µ-connecting from α to β given
C as α /∈ C and therefore we know it to be absent in N .
This means that the output of the algorithm is a super-
graph of N .

The graph G in Subalgorithm 1 is always a supergraph of
G0 and therefore DG0(α, β) ⊆ DG(α, β). If there exists
a set that separates β from α then DG0(α, β) does and
by the above inclusion we are always sure to test this set.
This means that the output is the separability graph.

Lemma 17. Subalgorithm 2 outputs a supergraph of N .

Proof. By Lemma 16, N ⊆ S . We also know that if
there is an edge α → β in S then α ∈ u(β, I(G0)) =



u(β, I(N )) = u(β, I). Assume there is an unshielded
W -structure w(α, β, γ) in S. The edge between α and β
in S means that β cannot be separated from α in I(N )
and therefore there exists for every C ⊆ V \ {α} a µ-
connecting walk from α to β given C. By definition of
µ-connecting walks this has a head at (the final) β. The
W -structure is unshielded, that is, α → γ is not in S.
This means that we have previously found a separating
set Sα,γ , such that 〈α, γ | Sα,β〉 ∈ I(N ) and α /∈ Sα,γ .
We know that there exists a µ-connecting walk ω, from
α to β given Sα,γ in N as α ∈ u(β, I(N )). If β /∈ Sα,γ
then we can compose ω with the edge β → γ which
gives a µ-connecting walk from α to γ given Sα,γ which
is a contradiction, and therefore the edge β → γ cannot
be inN . If β ∈ Sα,γ then we can argue analogously and
obtain that β ↔ γ cannot be in N .

Theorem 18. The algorithm defined by first doing the
separation step, then the pruning, and finally the potential
step outputs N , the maximal element of [G0].

Proof. By Lemma 17, the output after the first two steps
is a supergraph of N . In the potential step, an edge
α → β is only removed if α is not a potential parent
of β in I. We know that if the edge is in N then α is a
potential parent of β in I(N ) = I(G0) = I (Mogensen
and Hansen, 2018) and by contraposition of this result
it follows that every directed edge removed is not in N .
The same argument applies in the case of a bidirected
edge and therefore the output is a supergraph of N .

If we consider some edge α e→ β in the output graph,
then either α is a potential parent of β, in which case e
is also in N , or I(G − e) ∩ Ln 6= ∅. Assume the latter.
We have that G0 ⊆ G, and therefore I(G − e) ⊆ I(G0) if
e is not in G0. The above intersection is non-empty and
therefore there is some triple which is in both I(G − e)
and Ln, and by I(G − e) ⊆ I(G0) it is also in I(G0).
But by definition Ln contains only triples not in I(G0),
so this is a contradiction. Therefore, e must be in G0 and
also in N as G0 ⊆ N . One can argue analogously for
the bidirected edges. We conclude that the output graph
is equal to N , the maximal element of [G0].

E POTENTIAL PARENT/SIBLINGS

Consider an independence model, I, over V and let
α, β ∈ V . The set u(β, I) is defined in Subsection 5.1.1.
As described in Subsection 5.1 the below definitions de-
fine a list of independence tests which one can conduct
to directly construct N . This was proven by Mogensen
and Hansen (2018). However, the list is very large and
one can construct N in a more efficient manner. If e.g.
|V | = 10, then for each choice of γ in (s2) we can choose

C in 28 different ways (omitting sets C containing γ as
such an independence would hold trivially for any inde-
pendence model satisfying left redundancy and left de-
composition).

Definition 23. We say that α and β are potential siblings
in the independence model I if (s1)-(s3) hold:

(s1) β ∈ u(α, I) and α ∈ u(β, I),

(s2) for all γ ∈ V , C ⊆ V such that β ∈ C,

〈γ, α | C〉 ∈ I ⇒ 〈γ, β | C〉 ∈ I,

(s3) for all γ ∈ V , C ⊆ V such that α ∈ C,

〈γ, β | C〉 ∈ I ⇒ 〈γ, α | C〉 ∈ I.

Definition 24. We say that α is a potential parent of β
in the independence model I if (p1)-(p4) hold:

(p1) α ∈ u(β, I),

(p2) for all γ ∈ V , C ⊆ V such that α /∈ C,

〈γ, β | C〉 ⇒ 〈γ, α | C〉,

(p3) for all γ, δ ∈ V , C ⊆ V such that α /∈ C, β ∈ C,

〈γ, δ | C〉 ⇒ 〈γ, β | C〉 ∨ 〈α, δ | C〉,

(p4) for all γ ∈ V,C ⊆ V , such that α /∈ C,

〈β, γ | C〉 ⇒ 〈β, γ | C ∪ {α}〉.

F SIMULATION STUDY

We conducted a small simulation study to empirically
evaluate the cost and impact of the third step in the learn-
ing algorithm, the potential step. This step is computa-
tionally expensive as it involves testing the potential par-
ent/siblings conditions, see above.

We simulated a random DMG on 5 nodes by first draw-
ing pd from a uniform distribution on [0, 1/2] and pb
from a uniform distribution on [0, 1/4]. We then gene-
rated independent Bernoulli random variates, {b〈α,β〉},
each with success parameter pd, and one for each ordered
pair of nodes, 〈α, β〉. The edge α → β was included if
b〈α,β〉 = 1. For each unordered pair of nodes, {α, β}, we
did analogously, using pb as success parameter. We dis-
carded graphs for which the maximal Markov equivalent
graph had more then 15 edges.

Simulating 800 random DMGs, we saw that on average
the first step required 90 independence tests and removed



26 edges. The second step removed 1.1 edge on aver-
age (it does not use any additional independence tests),
while the third required an additional 77 independence
tests. On average the third step removed 0.8 edge. This
simulation is very limited and simple, however, it does
indicate that the potential step of the learning algorithm
constitutes a substantial part of the computational cost
while not removing a lot of edges.


