
A DETAILS ON LEMMA 1

Before we proceed, we state a technical result:

Lemma 1. Let y ∼ N (µ, σ2) and ϕ = (µ/σ)2. Then

Ey[ln y2] = ln(2σ2)+

∞∑
j=0

(ϕ/2)j exp(−ϕ/2)

j!
ψ(j+1/2),

(1)
where ψ(·) is the digamma function.

Proof. Let ỹ = y/σ, then the expectation can be calcu-
lated as

Ey[ln y2] =

∫ ∞
−∞

ln y2 1√
2πσ

exp
(
− (y − µ)2

2σ2

)
dy

= lnσ2 +

∫ ∞
−∞

ln ỹ2 1√
2π

exp
(
− (ỹ − µ/σ)2

2

)
dỹ.

(2)

The second part has the form of Eȳ[ln ȳ2], where ȳ ∼
N (µ/σ, 1) . Let w = ȳ2 and w follows a standard
non-central chi-squared distribution with parameter ϕ =
(µ/σ)2 (Famoye, 1995). The distribution of w is given
as follows:

p(w) =
e−

w+ϕ
2

√
2w

∞∑
j=0

(wϕ/4)j

j!Γ(j + 1/2)
. (3)

The expectation of lnw then is

Ew[lnw] =

∫ ∞
0

lnw
e−

w+ϕ
2

√
2w

∞∑
j=0

(wϕ/4)j

j!Γ(j + 1/2)
dw

=

∞∑
j=0

(ϕ/2)je−ϕ/2

j!
(ln 2 + ψ(j + 1/2)). (4)

Substituting this back yields the answer.

B DETAILS ON LEMMA 2

Let us recall that

gm(x) =

∞∑
j=0

xj exp(−x)

j!
ψ(j +m). (5)

The derivative of gm(x) with respect to x is

g′m(x) =

∞∑
j=0

(jxj−1 − xj) exp(−x)

j!
ψ(j +m)

=

∞∑
j=0

xj exp(−x)

j!

1

j +m
. (6)

To prove the Lemma 2 in Section 4, we first present two
results:

Lemma 2. (Moser, 2007)

g′m(x) ≥ 1

x+m
, m ∈ N+, x > 0.

Note that the inequality holds when m ∈ N+. However,
following the same lines of the proof, one can general-
ized their results for m ∈ R+, hence the proof is elided.
In our case, we are interested in a bound when m = 1

2 .
We state the following:
Lemma 3. The following inequality holds:

gm(x) ≥ ln(x+m) + ψ(m)− ln(m). (7)

Proof. Since
1

x+m
≤ g′m(x), (8)

integrating both sides yield

ln(x+m)− lnm =

∫ x

0

1

y +m
dy

≤
∫ x

0

g′m(y)dy = gm(x)− gm(0) = gm(x)− ψ(m).

Lemma 4. Let x ∼ N (µ, σ2). Then we have

Ex[lnx2] ≥ ln(µ2 + bσ2)− C − ln 2, b ∈ [0, 1], (9)

where C is Euler’s constant and takes the value ≈
0.5772.

Proof. Invoking Lemma 2, it is obvious that the inequal-
ity holds true for b = 1,

Ex[lnx2] = ln(2σ2) + g0.5

( µ2

2σ2

)
≥ ln(2σ2) + ln

( µ2

2σ2
+

1

2

)
+ ψ(1/2) + ln(2)

= ln(µ2 + σ2)− C − ln 2. (10)

This implies that the inequality holds true for all values
of b ∈ [0, 1].

C DETAILS ON THEOREM 2

Theorem 2 can be obtained by applying Theorem 1 on
the ELBO L. In Theorem 2, there are two expectations
E2
qf(x) and Varqf(x) which can be computed as follows

(Lloyd et al., 2015):

E2
qf(x) = tr(K−1

RRΦK−1
RR(µµ>)), (11)

Varqf(x) = γ|X (k)| − tr(K−1
RRΦ) + tr(K−1

RRΦK−1
RRΣ).

(12)
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Figure 1: Synthetic Data Set. Comparison of performance of GP3, GP4C and LocalEM in terms of Ltest, MISE and
T when varying the ratio of training subjects and the test set is the same. For MISE and the computation time, the 0.25
and 0.75 quantiles of the statistics in 40 experiments are shown with error bars. All methods benefit from the increase
of the number of training subjects. The computation time of GP3 and GP4C grow linearly with the increase of the
number of training subjects.

D TEST LIKELIHOOD OF GP4C and
GP3

Recall that during the sth trial, the test likelihood is

Ltest(s)
∆
= ln

∫
p(D(s)

test|f)p(f |D(s)
train)df

≈ ln
1

U

U∑
u=1

p(D(s)
test|f (s,u)) (13)

= ln

U∑
u=1

exp
(

ln p(D(s)
test|f (s,u))

)
− lnU

= ln

U∑
u=1

exp
(Ktest∑

k=1

Nk∑
i=1

(
m

(k)
i ln r

(s,u)
ik − ln(m

(k)
i !)

)
−

Ktest∑
k=1

∫
X (k)

(
f (s,u)(x)

)2

dx
)
− lnU. (14)

In the above derivation, we use

f (s,u) ∼ N (µ(s),Σ(s)), (15)

r
(s,u)
ik =

∫
X (k)

i

(
f (s,u)(x)

)2

dx. (16)

We can calculate the test likelihood for each subject sim-
ilarly. In Equation (13), we draw U = 50 samples of the
function f (s,u) from the variational distribution q(s)(f)
on a vector of 3001 evenly-spaced points on X and we
approximate points at an arbitrary position on X with
the linear interpolation. The log-exp-sum trick is used
to calculate the Ltest(s). We calculate all integrals in
p(D(s)

test|f) using Simpson’s rule with 501 evenly-spaced
points.

In Equation (14), the term
∑

k

∑
i ln(m

(k)
i !) can be ex-

tracted out and treated as a constant. 1

E ADDITIONAL SYNTHETIC
EXPERIMENTS

E.1 THE DEPENDENCE OF THE LIKELIHOOD
ON THE NUMBER OF INTERVALS

The likelihood of the panel count data for the kth sub-
ject depends on the disjoint intervals {X (k)

i }
Nk
i=1, where⋃

X (k)
i = X (k). One phenomenon is that as the number

of disjoint intervals Nk increases, the likelihood tends
to decrease. This is because as we use finer disjoint in-
tervals, we are less uncertain about the position of the
time-stamps.

We conduct an experiment to show this phenomenon.
First we draw a time-sequence from the intensity func-
tion λ(t) = 5 on X = [0, 60] and then censor the time-
sequence using N disjoint intervals. We vary the num-
ber of disjoint intervals and calculate the likelihood of
the generated panel count data set. The result is given
in Figure 2. We see that the logarithm of the likelihood
decreases with the increase of the number of intervals.

E.2 RATIO OF THE TRAINING OBJECTS

We vary the number of training subjects by adjusting
the ratio relative to full training subjects. We expect
all methods will benefit from the increase of the training

1In first versions of this paper, we omitted the constant term.
However, to compute the standard deviations of the test like-
lihood and fairly compare the test likelihood among all algo-
rithms, we add back the constant term in the final version.
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Figure 2: The logarithm of the likelihood of the same
time-sequence when varying the number of disjoint inter-
vals. As more disjoint intervals are used, the logarithm
of the likelihood decreases. Even for the same number
of disjoint intervals, the logarithm of the likelihood has a
large variance.

subjects.

The result for the Synthetic A data set is given in Fig-
ure 1. We see that all three methods benefit from the
increase of the number of training subjects. The com-
putation time of GP3 and GP4C grow linearly with the
increase of the number of training subjects but LocalEM
grows more rapidly.

E.3 THE DEPENDENCE OF THE
COMPUTATION TIME ON THE SIZE N̄

The computational complexity of LocalEM during one
iteration is O(N̄2M̄2) while for GP4C it is O(NM3),
where N and N̄ denote the number of different intervals
in the data set and the size of the merged set X . We
conduct an experiment to show the influence of the size
N̄ .

We generate U = 70 subjects from the same intensity
function λ(t) = h1(t), which is the same as Synthetic A
data set. We generate the corresponding panel count data
set by censoring each subject with 10 intervals. Then we
vary the number of N̄ by rounding each end point to the
next smaller integer with the probability p0. As p0 get
larger, more end points are rounded and the value of N̄
decreases. The experiment result is given in Figure 3. We
see that the number N̄ decreases linearly with the prob-
ability p0 and computational time decreases much more
faster. We can conclude that when the probability p0 is
small and the number of duplicates is large, LocalEM is
less efficient than GP4C.
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Figure 3: Synthetic A Data Set. Comparison of the
computation time of GP4C and LocalEM algorithms.
LocalEM algorithm achieves a worse computation time
as the probability p0 gets smaller.

F A BRIEF DESCRIPTION OF THE
REAL-WORLD DATA SET

Sun and Zhao (2016) provided three panel count data
sets. A brief introduction can be found as follows.

Nausea data set. This data set contains the visiting times
from 113 patients during 52 weeks. The panel count
data were obtained by recording the reported count of
vomits from each patient between two subsequent vis-
its. Patients were divided into two groups, which are the
treatment group (65 patients) and the placebo group (48
patients). We denote the two groups as the Nausea A
(Na-A) and B (Na-B) sets.

Bladder cancer data set. This data set arises from
a bladder cancer study conducted by the Veterans Ad-
ministration Cooperative Urological Research Group. It
records the counts of new tumors that occurred between
subsequent visits from 85 patients during 53 weeks, who
were divided into the placebo group (47 patients) and the
treatment group (38 patients). We denote the two groups
as the Bladder A (Bl-A) and B (Bl-B) sets.

Skin cancer data set. This data set was recorded during
a skin cancer experiment conducted by the University of
Wisconsin Comprehensive Cancer Center and the num-
bers of new skin cancers of two different types between
two subsequent visits from 290 patients were recorded
during five years. The visiting time was recorded in the
form of days since the first visit and we divided the days
by 30. Patients were divided into treatment and placebo
groups. We denote the four groups from two types of
cancer as the Skin A (Sk-A), Skin B (Sk-B), Skin C (Sk-
C) and Skin D (Sk-D) sets.
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Figure 4: Bladder Cancer Data Set. Inferred inten-
sity function by the LocalEM and GP4CW methods. For
GP4CW, a 75% credible interval is given by dotted lines.

G GP4C MODEL WITH INDIVIDUAL
WEIGHT

G.1 MODEL

It is practical to assume that the k’th subject has an in-
dividual weight parameter υk multiplied to the basic in-
tensity function, because in traditional panel count data
sets, each subject is a patient whose personal informa-
tion, such as age, is not the same and the count data
from each patient may vary greatly. Such a modifica-
tion is called the unobservable independent random ef-
fects in Cook and Lawless (2007). In the simplest case,
we consider the following model for the underlying in-
tensity function:

λk(x) = υkf
2(x), f ∼ GP(g(x), κ(x, x′)), (17)

where υk ∈ R+ is a deterministic and positive real num-
ber. The likelihood is as follows.

p(D, f) =
[ K∏
k=1

p(dk|λ(x); υk)
]
p(f ; g, κ). (18)

We call this model GP4C model with individual Weight
(GP4CW).

We can further generalize this model by assuming that
the intensity function of the k’th subject is a linear com-
bination of basis intensity functions (Lloyd et al., 2016)
and the mixture weights are also deterministic.

G.2 INFERENCE

The inference of GP4CW is almost the same as GP4C.
We only need to modify GP4C by adding the inference of
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Figure 5: Bladder A Data Set. An illustration of
the panel count data in the test set (Left) and the test
likelihood from GP4CW and LocalEM of each subject
(Right). GP4CW mainly outperforms LocalEM on two
subjects whose numbers of newly-occurred cancers are
large (No. 12 and 15).

the point estimate of υk in M-step of the vEM framework
as follows.

υk = max
{
ε,

∑Nk

i=1m
(k)
i∫

X (k) Eq[f2(x)]dx

}
, (19)

where ε = 10−6 is a small number to guarantee the pos-
itiveness of υk.

G.3 EXPERIMENT ON THE REAL WORLD
DATA SET

On the three real world data sets. The test likelihood
Ltest and the computation time T are given in Table 1.
We also plot the test likelihood of each subject and the
inferred intensity function from GP4CW in Figures 5 and
4. We can notice that GP4CW provides more accurate
estimation on the patient No. 12 and No. 15.

H AN EXPERIMENT TO REDUCE THE
STANDARD DEVIATION ON THE
REAL WORLD DATA SET

In each trial, we randomly split the whole data set into
two halves Dtrain and Dtest, one for training and the
other for testing. However, as is introduced in Appendix
E.1, if the subjects in Dtest do not share the same time
window and the same set of censoring intervals, the test
likelihood L(1)

test will vary greatly from subject to subject.
To reduce the large standard deviation caused by differ-
ent random splits, we perform another round of training
for each split, we train on Dtest and calculate the test
likelihood on the Dtrain. The test likelihood is denoted



Table 1: Mean and standard deviations of the test likeli-
hood (Ltest) and the computation time (T ) on the three
panel count data sets for GP4C, GP4CW and LocalEM
over 40 runs. GP4CW outperforms GP4C and LocalEM.

Data Set METHOD Ltest T [s]

Na-A LocalEM -492.1±306.1 1±0
GP4C -484.9±201.8 10±10
GP4CW -179.2±81.3 8±9

Na-B LocalEM -473.2±212.2 1±0
GP4C -411.0±184.3 10±7
GP4CW -152.7±60.6 16±13

Bl-A LocalEM -201.8±46.9 1±0
GP4C -182.2±47.3 25±9
GP4CW -95.5±29.0 29±12

Bl-B LocalEM -313.1±54.2 1±0
GP4C -310.4±54.9 26±21
GP4CW -212.4±50.1 36±23

Sk-A LocalEM -259.1±27.3 39±3
GP4C -258.7±26.7 33±6
GP4CW -183.0±21.6 35±8

Sk-B LocalEM -198.1±47.1 39±3
GP4C -191.2±42.5 24±4
GP4CW -105.7±19.7 27±5

Sk-C LocalEM -358.0±35.8 47±4
GP4C -355.7±36.0 21±12
GP4CW -243.6±26.9 19±11

Sk-D LocalEM -200.9±31.9 46±3
GP4C -198.9±30.6 27±4
GP4CW -118.9±14.3 31±4

as L(2)
test. This can be viewed as adding an additional re-

verse split. The final test likelihood is L(1)
test +L(2)

test. The
result is given in Table 2.

We see that the variances of the test likelihood in Table 2
are reduced comparing to results in Table 1.
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