
SUPPLEMENTARY MATERIAL

A Σ-CG UNDER MARGINALISATION
AND CONDITIONING

v1v2v3

v4 v5 v6

v1v2v3

v4 v5

v2v3

v4 v5 v6

v2v3

v4 v5

Figure 5: A directed acyclic graph G (top left) as
the σ-connection graph (σ-CG) with the σ-equivalence
classes {{v1}, · · · , {v6}}. We have the σ-separation:
{v3} ⊥⊥ σ

G{v5} |{v2, v4, v6}. The combination of
marginalizing out v1 and conditioning on v6 introduces
cycles. Without keeping track of aboves σ-equivalence
classes we would not get the corresponding σ-separation:
{v3} ⊥⊥ σ

G
{v1}
{v6}
{v5} |{v2, v4} in the bottom right σ-CG.

Theorem A.1 (σ-Separation under Marginalisation). Let
G be a σ-CG with set of nodes V and W,X, Y, Z ⊆ V
subsets with W = {w} and w /∈ X ∪ Y ∪ Z. Then we
have the equivalence:

X
σ

⊥⊥
G
Y |Z ⇐⇒ X

σ

⊥⊥
GW

Y |Z.

Proof. If π = x · · · y is a Z-σ-open path in G then every
occurrence of w in π is as a non-collider. If we have
· · · v w · · · in π and v /∈ Z then marginalising
out w keeps πW Z-σ-open in GW . If v ∈ Z then v ∈
σ(w) by the Z-σ-openess. Since σ(w) ∈ L(G) is a loop
we find elements vi ∈ σ(w), r ≥ 0, i = 1, . . . r, and a
path

· · · v v1 · · · vr w · · · .

We do the same replacement on the right hand side of w
if necessary. Then marginalising this path w.r.t. W gives
a Z-σ-open path in GW . This shows:

X
σ

⊥⊥
GW

Y |Z =⇒ X
σ

⊥⊥
G
Y |Z.

Now let x · · · y be a Z-σ-open path in GW . Then every
edge lifts to a subpath in G where w only occurs as a

non-collider. If a path · · · v z · · · in GW with z ∈
Z∩σ(v) inG comes from · · · v w z · · · or v
w w z then we can, again since σ(v) ∈ L(G) is
a loop, find nodes vi ∈ σ(v), r ≥ 0, i = 1, . . . r, and a
path in G of the form:

· · · v v1 · · · vr z · · ·

which is in any case Z-σ-open in G (whether v or z are
colliders or not). So we can construct a Z-σ-open path
in G and we get:

X
σ

⊥⊥
G
Y |Z =⇒ X

σ

⊥⊥
GW

Y |Z.

Theorem A.2 (σ-Separation under Conditioning). LetG
be a σ-CG with set of nodes V and C,X, Y, Z ⊆ V
subsets with C = {c} and c /∈ X ∪Y ∪Z. Then we have
the equivalence:

X
σ

⊥⊥
G
Y |Z ∪ C ⇐⇒ X

σ

⊥⊥
GC

Y |Z.

Proof. Let C = {c}. Let π = x · · · y be a (Z ∪ C)-
σ-open path in G with a minimal number of arrowheads
pointing to nodes in C. Then at c (if c occurs) there are
no undirected edges. So we have the cases:

1. fork: · · · v1 c v2 · · · in G with σ(v1) =
σ(c) = σ(v2). Then · · · v1 v2 · · · is in GC with
σ(v1) = σ(v2) = σ(c). So the triple situation for
v1, v2 stays the same in GC .

2. right chain: · · · v1 c v2 · · · in G with
σ(c) = σ(v2). Then · · · v1 v2 . . . is in GC
with σ(v2) = σ(c). So the triple situation for v1, v2

stays the same in GC .

3. left chain: similar to right chain.

4. collider: · · · v1 c v2 · · · in G. Then
· · · v1 v2 · · · is in GC . So the triple situation
for v1, v2 stays the same in GC .

5. collider: · · · v1 c v2 · · · in G with
v1, v2 /∈ Z. Then · · · v1 v2 · · · is in GC with
v1, v2 non-collider. So it is Z-open at v1, v2.

6. collider: · · · v1 c v2 · · · in G with
v1 ∈ Z ∩ σ(c). Since σ(c) ∈ L(G) is a loop there
is a path in G with wi ∈ σ(c), r ≥ 0, i = 1, . . . , r,
of the form:

· · · v1 w1 wr c v2 · · · ,

which then is (Z ∪ C)-σ-open. So the path

· · · v1 w1 · · ·wr v2 · · ·

is then Z-σ-open in GC .

7. collider: · · · v1 c v2 · · · in G with v1 /∈
Z. Then · · · v1 v2 · · · is in GC and Z-open.

8. collider: as before with v1 and v2 swapped. Same
arguments.

These cover all cases and we have shown:

X
σ

⊥⊥
GC

Y |Z =⇒ X
σ

⊥⊥
G
Y |Z ∪ C.

Now let x · · · y be a Z-open path in GC . Then the rules
for conditioning lift every edge in GC to an edge or
triple in G, where the triple situation for c is C-σ-open
and where the triple situation for the endnodes stays the
same. So it is clearly (Z ∪ C)-open in G. This shows:

X
σ

⊥⊥
G
Y |Z ∪ C =⇒ X

σ

⊥⊥
GC

Y |Z.

B THE Σ-SEPARATION CRITERION
FOR MSCMS

The trick to prove the σ-separation criterion is to trans-
form the σ-connection graph G of an mSCM, which
has no undirected edges and can be seen as a directed
mixed graph (DMG), into an acyclic directed mixed
graph (ADMG) that encodes the same conditional in-
dependencies in terms of the well known d-separation.
This also shows that every σ-separation-equivalence-
class contains an acyclic graph (if one only looks at the
observational distributions). Caution: the constructed
ADMG is not well-behaved under marginalisation or in-
terventions. We will refer to the d-separation criterion as
the directed global Markov property (dGMP) and to the
σ-separation criterion as the generalized directed global
Markov property (gdGMP) in the following.

Lemma B.1. Let G = (V,E,H) be an acyclic directed
mixed graph (ADMG) and (Xv)v∈V be random vari-
ables that satisfy the dGMP w.r.t. G. Let Ew be a ran-
dom variable independent of (Xv)v∈V and Xw be an-
other random variable, w /∈ V , given by a functional
relation:

Xw = f
(
(Xv)v∈P , Ew

)
,

where P ⊆ V is a subset of nodes. Let G′ =
(V ′, E′, H ′) be the ADMG with set of nodes V ′ :=
V ∪ {w}, set of edges E′ := E ∪ {v w|v ∈ P}

and set of bidirected edgesH ′ := H . ThenG ⊆ G′ is an
ancestral sub-ADMG and (Xv)v∈V ′ satisfies the dGMP
w.r.t. G′.

Proof. Since w is a childless node in G′ clearly G′ is
acyclic, PaG

′
(w) = P and G ⊆ G′ is an ancestral

sub-ADMG. So there exists a topological order < for G′

such that w is the last element. Since for an ADMG the
directed global Markov property (dGMP) is equivalent
to the ordered local Markov property (oLMP) w.r.t. any
topological order (see [12,28]) we only need to check the
local independence:

{w} ⊥⊥
P
A \ {w} | ∂Amor(w)

for every ancestral A ⊆ G′ with w ∈ A. Since
∂Amor(w) = PaG

′
(w) = P and A \ {w} ⊆ V the state-

ment follows directly from the implication:

Ew ⊥⊥P (Xv)v∈V =⇒

f
(
(Xv)v∈P , Ew

)
⊥⊥
P

(Xv)v∈A\{w} |(Xv)v∈P .

Theorem B.2. Let G = (V,E,H) be a directed mixed
graph (DMG) and S(G) the set of its strongly connected
components. Assume that we have:

1. random variables (Xv)v∈V ,

2. random variables (Ev)v∈V that jointly satisfy the
dGMP w.r.t. the bidirected graph (V, ∅, H), i.e. for
every W,Y ⊆ V we have the implication:

W
d

⊥⊥
(V,∅,H)

Y =⇒ (Ev)v∈W ⊥⊥P (Ev)v∈Y ,

3. a tuple of functions (gS)S∈S(G) indexed by the
strongly connected components S of G,

such that we have the following equations for S ∈ S(G):

(Xv)v∈S = gS
(
(Xw)w∈PaG(S)\S , (Ew)w∈S

)
.

Then (Xv)v∈V satisfy the general directed global
Markov property (gdGMP) w.r.t. the DMG G, i.e. for ev-
ery three subsets W,Y,Z ⊆ V we have the implication:

W
σ

⊥⊥
G
Y |Z =⇒ (Xv)v∈W ⊥⊥P (Xv)v∈Y |(Xv)v∈Z .

Proof. By assumption we have that (Ev)v∈V satisfies
the dGMP w.r.t. the ADMG (V, ∅, H). By lemma B.1
we can inductively add:

Xv = gS,v
(
(Xw)PaG(S)\S , (Ew)w∈S

)

for v ∈ V where S = ScG(v). We then finally get
an ADMG G′ with nodes (Ev)v∈V and (Xv)v∈V that
satisfy the dGMP w.r.t. this G′. This implies that for
W,Y,Z ⊆ V we have:

W
d

⊥⊥
G′
Y |Z =⇒ (Xv)v∈W ⊥⊥P (Xv)v∈Y |(Xv)v∈Z .

It is thus left to show that we also have the implication:

W
σ

⊥⊥
G
Y |Z =⇒ W

d

⊥⊥
G′
Y |Z.

For this it is enough to show that every Z-d-open path π′

from W to Y in G′ lifts to a Z-σ-open path π from W to
Y in G. The construction is straightforward. For details
see [12].

Corollary B.3. The observed variables (Xv)v∈V of
any mSCM M = (G+,X ,P, g), G+ = (U ∪̇V,E+),
satisfy the σ-separation criterion w.r.t. the induced σ-
connection graph (σ-CG) G.

Proof. For v ∈ V we put Ev := (Eu) u∈U
v∈ChG

+
(u)

. The

(Ev)v∈V then entail the conditional independence re-
lations implied by d-separation of the bidirected graph
(V, ∅, H). Furthermore, for S ∈ S(G) we have equa-
tions:

XS = gS(XPaG(S)\S , ES).

The claim then directly follows from B.2.

As a motivation for future work on selection bias we state
the following direct corollary.

Corollary B.4 (mSCM with context). Let M =
(G+,X ,P, g) be a mSCM with G+ = (U ∪̇V,E+) and
C ⊆ V a subset. Let GC = (G+)UC be the induced
σ-CG of M conditioned on C. Then the observed vari-
ables (Xv)v∈V \C satisfy the σ-separation criterion w.r.t.
GC and w.r.t. the regular conditional probability distri-
bution P|XC=xC given XC = xC (for PXC -almost-all
values xC ∈ XC): For all subsets W,Y,Z ⊆ V \ C we
have the implication:

W
σ

⊥⊥
GC

Y |Z =⇒ XW ⊥⊥
P|XC=xC

XY |XZ .

Proof. The lhs is equivalent to W ⊥⊥ σ
G Y |Z ∪ C (see

Theorem 2.20, Theorem A.2, resp.) and this im-
plies XW ⊥⊥ PXY |XZ , XC (see Theorem 2.14, Corol-
lary B.3, resp.), which implies the claim on the rhs (for
PXC -almost-all values xC ∈ XC).

The last corollary can be used as a starting point for con-
ditional independence constraint-based causal discovery

in the presence of (unknown) selection bias given by the
unknown context C and xC ∈ XC (in addition to non-
linear functional relations, cycles and latent confounders
etc.).

C NEURAL NETWORKS AS MSCMS

For constructing causal mechanisms we could use any
parametric or non-parametric family of functions. Since
we want to stay as general as possible and also make use
of the practical advantages of parametric models we rep-
resent/approximate the structural functions g{v}, v ∈ V
by universal approximators. A well known class of uni-
versal approximators are neural networks (see e.g. [16]).
A neural network is a function that is constructed from
several compositions of linear maps and a fixed one-
dimensional activation function h. A sufficient condition
to have the universal approximation property is if one as-
sumes h be continuous, non-polynomial and piecewise
differentiable. A further advantage of neural networks
is that the hidden units (given by composition of func-
tions z 7→ h(wT z + b)) can be interpreted as interme-
diate variables of an extended structural causal model.
This means that by modelling the hidden units of ev-
ery g{v} explicitely as a node in an extended graph we
can restrict—for the analysis purposes here—to this ex-
tended setting, where now the functions g{v} (the index
{v} refers to the trivial loop) are of the form:

g{v}(xPaG
+

(v)\{v})

= h
(∑

k∈PaG
+

(v)\{v}Av,k · xk + bv

)
,

with weights Av,k and biases bv .

Further note that introducing or marginalizing interme-
diate variables will not change the outcome of the σ-
separation criterion defined in Definition 2.10, Theo-
rem 2.14, and Theorem 2.20 (also see [12]). So also this
part is compatible with our theory.
Theorem C.1. The conditions for the contractiveness of
the iterations scheme from subsection 4.1 are satisfied if
the following three points hold:

1. supz |h′(z)| ≤ C with 0 < C <∞, and

2. Av,k := 0 for k /∈ PaG
+

(v) \ {v}, and

3. ||(Av,k)v,k∈S || < 1
C for every non-trivial loop S ⊆

G, where ||·|| can be one of the matrix norms: ||·||p,
p ≥ 1, or || · ||∞.

In this case the functions (g{v})v∈V will constitute a
well-defined mSCM.

Note that we can put C = 1 for popular activation func-
tions h(z) like tanh(z), ReLU(z) = max(0, z), σ(z) =

1
1+exp(−z) , LeakyRelu, SoftPlus(z) = ln(1 + ez), etc..
Further note that by using one of these activation func-
tions h(z) and || · || = || · ||∞ all the conditions are satis-
fied if we choose the Av,k such that for all v ∈ V :

∑
k∈PaG

+
(v)\{v} |Av,k| < 1

and Av,k := 0 for k /∈ PaG
+

(v) \ {v}.
Furthermore, we can then iterate the whole system for
given error value xU and initialization x(0)

V :

x
(t+1)
V := (g{v})v∈V (x

(t)
V , xU)

= h
(
AV + · (x

(t)
V
xU

) + bV

)

and reach a unique fixed point xV . This analyis also
holds if we have the error variables outside of the acti-
vation function as additive noise.

Proof. For a non-trivial loop S ⊆ G we want to show
that for every value x

PaG
+

(S)\S and initialization x
(0)
S

the iteration (using vector and matrix notations):

x
(t+1)
S :=

h
(
A

PaG
+

(S)∪S · (x
(t)
S , x

PaG
+

(S)\S)T + bS

)

converges to a unique point xS (for t → ∞) under the
three stated assumptions in the text.
For applying Banach’s fixed point theorem we need to
show that for every value x

PaG
+

(S)\S we have a bounded
partial Jacobian (S a non-trivial loop):

sup
xS

||JS(x
PaG

+
(S)∪S)|| ≤ L(x

PaG
+

(S)\S) < 1

where L(x
PaG

+
(S)\S) is a constant smaller than 1 and

|| · || is a suitable matrix norm. In our case we have:

JS(x
PaG

+
(S)∪S)

:=
(
∂g{v}
∂xk

)
v,k∈S

(x
PaG

+
(S)∪S)

= ∇xSh
(
A

PaG
+

(S)∪S ·
(

xS
x
PaG

+
(S)\S

)
+ bS

)

=
(
h′
(∑

j∈PaG
+

(v)\{v}Av,j · xj + bv

)

·Av,k · 1k∈PaG
+

(v)\{v}

)
v,k∈S

= diag(h′) · (AS � 1S) .

Here diag(h′) refers to the diagonal matrix with the cor-
responding values of h′ and 1S is the adjacency matrix
as indicated on the line above.
If |h′(z)| ≤ C < ∞ and || · || is either || · ||p, p ≥ 1,
or || · ||∞ then ||diag(h′)|| ≤ C. If, furthermore,
||AS � 1S || < 1

C then we get:

||JS || ≤ ||diag(h′)|| · ||AS � 1S ||
≤ C · ||AS � 1S || =: L
< C · 1

C
= 1.

Note that we can represent A � 1 in a single matrix A
if we put Av,k := 0 whenever k /∈ PaG

+

(v) \ {v}.
From the above then follows that the map of the itera-
tion scheme becomes contractive and the series thus con-
verges to a unique fixed point xS . gS can then be defined
via:

gS(x
PaG

+
(S)\S) := xS .

The system (gS)S∈L(G) is also compatible. In-
deed, the convergence shows that the above ele-
ment (x

PaG
+

(S)\S , xS) simultaneously solves the sys-
tem xv = g{v}(xPaG

+
(v)\{v}), v ∈ S. So

for a loop S′ ⊆ S the corresponding components
(x

PaG
+

(S′)\S′ , xS′) simultaneously solves the system
xv = g{v}(xPaG

+
(v)\{v}), v ∈ S′. Since also the so-

lution for the loop S′ is unique we get:

gS′(x
PaG

+
(S′)\S′) = xS′ ,

which shows the compatibility. The measurability of this
map follows from a measurable choice theorem (see [2])
as explained in [3].

If we want to uniformly sample weights for the parent
nodes one can use the following:

Remark C.2 (See [1]). To uniformly sample from the d-
dimensional Lp-ball Bdp := {x ∈ Rd : ||x||p ≤ 1} we
can sample i.i.d. y1, . . . , yd ∼ p(t) = 1

2Γ(1+ 1
p)
e−|t|

p

,

t ∈ R and z ∼ p(s) = e−s, s ≥ 0. Then x =
(y1,...,yd)T

(
∑d
j=1 |yj |p+z)

1/p is uniformly sampled from Bdp .

D MORE DETAILS ON THE
ALGORITHM

D.1 SCORING FEATURES

In order to score features, which can be defined as
Boolean functions of the causal graph G, we define a
modified loss function

L(G,S, f) :=
∑

(wj ,yj ,Zj ,Ij ,λj)∈S
λj(1λj>0 − 1wj ⊥⊥ σGdo(Ij)

yj |Zj1f(G))

(4)

[21] proposed to score the confidence of a feature with

C(S, f) := min
G∈G(V)

L(G,S,¬f)

− min
G∈G(V)

L(G,S, f).
(5)

They showed that this scoring method is sound for oracle
inputs.

Theorem D.1. For any feature f , the confidence score
C(S, f) of (5) is sound for oracle inputs with infinite
weights. In other words, C(S, f) = ∞ if f is identifi-
able from the inputs, C(S, f) = −∞ if ¬f is identifiable
from the inputs, and C(S, f) = 0 if f is unidentifiable
from the inputs.

Furthermore, they showed that the scoring method is
asymptotically consistent under a consistency condition
on the statistical independence test.

Theorem D.2. Assume that the weights are asymptoti-
cally consistent, meaning that

log pN − logαN
P→
{
−∞ H1

+∞ H0,
(6)

as the number of samples N → ∞, where the null hy-
pothesis H0 is independence and the alternative hypoth-
esis H1 is dependence. Then for any feature f , the con-
fidence score C(S, f) of (5) is asymptotically consistent,
i.e., C(S, f)→∞ in probability if f is identifiably true,
C(S, f) → −∞ in probability if f is identifiably false,
and C(S, f)→ 0 in probability otherwise.

By using the scoring method of [21] as explained above,
our algorithm inherits these desirable properties.

D.2 ENCODING IN ANSWER SET
PROGRAMMING

In order to test whether a causal graph G entails a
certain independence, we create a computation graph
of σ-connection graphs. A computation graph of σ-
connection graphs is a DAG with σ-connection graphs as
nodes, and directed edges that correspond with the oper-
ations of conditioning and marginalisation. The “source
node” of an encoding DAG is an (intervened) causal
graph. The “sink” nodes are σ-connection graphs that
consist of only two variables (because all other variables
have been conditioned or marginalised out) that can be
reached from the source node by applying a sequence of
conditioning and marginalisation operations. Testing a
σ-separation statement in the intervened causal graph re-
duces to testing for adjacency in the corresponding sink
node.

Since interventions and conditioning do not commute,
one has to take care to employ these operations in the
right ordering. We define the computation graph in such
a way that intervention operations are performed first,
followed by marginalisations, and finally conditioning
operations. At each stage, we always remove the node
with the highest possible label first, which means that
our computation graph is actually a computation tree.

Below we provide the source code of the essential part
of the algorithm, using the ASP syntax for clingo 4.
It is based upon the source code provided by [19]. The
differences to [19], i.e. of σ-separation vs. d-separation,
are indicated with “(sigma)” in the comments, i.e. at lines
100, 128, 138. Note that the main difference between the
encoding of d-separation and σ-separation is that in the
non-collider case (see definition 2.9) we need to check
in which strongly connected component σ(v) the non-
collider node lies in comparison to its adjacent nodes.
This boils down to checking ancestral relations. Since
the σ-structure is inherited in a trivial fashion during
the marginalisation and conditioning operations, it only
needs to be found once (namely in the original σ-CG in-
duced by the mSCM).

We used the state-of-the-art ASP solver clingo 4 [13]
in our experiments to run the ASP program.

1 %%%%%%%%%% COMPUTATION GRAPH %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2
3 % preliminaries
4 node(0..nrnodes-1).
5 set(0..2**nrnodes-1).
6 ismember(M,Z) :- set(M), node(Z), M & (2**Z) != 0.
7
8 % first intervene, then marginalize, then condition;
9 % always remove the node with the highest possible label first

10 intervene(0,Jsub,Z,J,0) :- node(Z), set(J), set(Jsub),
11 ismember(J,Z), not ismember(Jsub,Z),
12 (Jsub + 2**Z) == J, 2**Z > Jsub.
13 marginalize(0,J,Msub,Z,M) :- node(Z), set(M), set(J), set(Msub),
14 ismember(M,Z), not ismember(Msub,Z),
15 (Msub + 2**Z) == M, 2**Z > Msub.
16 condition(Csub,Z,C,J,M) :- node(Z), set(M), set(C), set(J), set(Csub),
17 (C & M) == 0, ismember(C,Z), not ismember(Csub,Z),
18 (Csub + 2**Z) == C, 2**Z > Csub.
19
20 % guess (generate all possible directed mixed graphs)
21 { edge(X,Y) } :- node(X), node(Y), X != Y.
22 { conf(X,Y) } :- node(X), node(Y), X < Y.
23
24 % source node in computation graph
25 th(X,Y,0,0,0) :- edge(X,Y).
26 hh(X,Y,0,0,0) :- conf(X,Y).
27
28 % ancestral relations after perfect (surgical) intervention on J
29 ancestor(X,Y,J) :- th(X,Y,0,J,0), X!=Y, node(X), node(Y), set(J).
30 ancestor(X,Y,J) :- ancestor(X,Z,J), ancestor(Z,Y,J),
31 X!=Y, X!=Z, Y!=Z,
32 node(X), node(Y), node(Z), set(J).
33
34
35 %%%%%%%%%% INTERVENTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
36
37 tt(X,Y,C,J,M) :- tt(X,Y,C,Jsub,M),
38 X <= Y,
39 not ismember(C,X), not ismember(C,Y),
40 not ismember(M,X), not ismember(M,Y),
41 node(X),node(Y),
42 intervene(C,Jsub,Z,J,M).
43
44 th(X,Y,C,J,M) :- th(X,Y,C,Jsub,M),
45 X != Y,
46 not ismember(J,Y),
47 not ismember(C,X), not ismember(C,Y),
48 not ismember(M,X), not ismember(M,Y),
49 node(X),node(Y),
50 intervene(C,Jsub,Z,J,M).
51
52 hh(X,Y,C,J,M) :- hh(X,Y,C,Jsub,M),
53 X < Y,
54 not ismember(J,Y), not ismember(J,X),
55 not ismember(C,X), not ismember(C,Y),
56 not ismember(M,X), not ismember(M,Y),
57 node(X),node(Y),
58 intervene(C,Jsub,Z,J,M).
59
60 %%
61
62
63 %%%%%%%%%% CONDITIONING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64
65 %% X---Y => X---Y
66 tt(X,Y,C,J,M) :- tt(X,Y,Csub,J,M),
67 X <= Y,
68 not ismember(C,X), not ismember(C,Y),
69 not ismember(M,X), not ismember(M,Y),
70 node(X),node(Y),
71 condition(Csub,Z,C,J,M).
72
73 %% X-->Z<--Y => X---Y
74 tt(X,Y,C,J,M) :- th(X,Z,Csub,J,M),th(Y,Z,Csub,J,M),
75 X <= Y,
76 not ismember(C,X), not ismember(C,Y),
77 not ismember(M,X), not ismember(M,Y),
78 node(X),node(Y),
79 condition(Csub,Z,C,J,M).
80
81 %%

82
83 %% X-->Y => X-->Y
84 th(X,Y,C,J,M) :- th(X,Y,Csub,J,M),
85 X != Y,
86 not ismember(C,X), not ismember(C,Y),
87 not ismember(M,X), not ismember(M,Y),
88 node(X),node(Y),
89 condition(Csub,Z,C,J,M).
90
91 %% X-->Z<->Y => X-->Y
92 th(X,Y,C,J,M) :- th(X,Z,Csub,J,M),
93 { hh(Z,Y,Csub,J,M); hh(Y,Z,Csub,J,M) } >= 1,
94 X != Y,
95 not ismember(C,X), not ismember(C,Y),
96 not ismember(M,X), not ismember(M,Y),
97 node(X),node(Y),
98 condition(Csub,Z,C,J,M).
99

100 %% X-->Z-->Y (anc of Z) => X-->Y (sigma)
101 th(X,Y,C,J,M):- th(X,Z,Csub,J,M), th(Z,Y,Csub,J,M),
102 ancestor(Y,Z,J),
103 X != Y,
104 not ismember(C,X), not ismember(C,Y),
105 not ismember(M,X), not ismember(M,Y),
106 node(X),node(Y),node(Z),
107 condition(Csub,Z,C,J,M).
108
109 %%
110
111 %% X<->Y => X<->Y
112 hh(X,Y,C,J,M) :- hh(X,Y,Csub,J,M),
113 X < Y,
114 not ismember(C,X), not ismember(C,Y),
115 not ismember(M,X), not ismember(M,Y),
116 node(X),node(Y),
117 condition(Csub,Z,C,J,M).
118
119 %% X<->Z<->Y => X<->Y
120 hh(X,Y,C,J,M) :- { hh(Z,X,Csub,J,M); hh(X,Z,Csub,J,M) } >= 1,
121 { hh(Z,Y,Csub,J,M); hh(Y,Z,Csub,J,M) } >= 1,
122 X < Y,
123 not ismember(C,X), not ismember(C,Y),
124 not ismember(M,X), not ismember(M,Y),
125 node(X),node(Y),
126 condition(Csub,Z,C,J,M).
127
128 %% X<->Z-->Y (anc of Z) => X<->Y (sigma)
129 hh(X,Y,C,J,M) :- { hh(Z,X,Csub,J,M); hh(X,Z,Csub,J,M) } >= 1,
130 th(Z,Y,Csub,J,M),
131 ancestor(Y,Z,J),
132 X < Y,
133 not ismember(C,X), not ismember(C,Y),
134 not ismember(M,X), not ismember(M,Y),
135 node(X),node(Y),node(Z),
136 condition(Csub,Z,C,J,M).
137
138 %% (anc of Z) X<--Z-->Y (anc of Z) => X<->Y (sigma)
139 hh(X,Y,C,J,M) :- th(Z,X,Csub,J,M), th(Z,Y,Csub,J,M),
140 ancestor(X,Z,J),
141 ancestor(Y,Z,J),
142 X < Y,
143 not ismember(C,X), not ismember(C,Y),
144 not ismember(M,X), not ismember(M,Y),
145 node(X),node(Y),node(Z),
146 condition(Csub,Z,C,J,M).
147
148 %%
149
150
151 %%%%%%%%%% MARGINALIZATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
152
153 %% X---Y => X---Y
154 tt(X,Y,C,J,M) :- tt(X,Y,C,J,Msub),
155 X <= Y,
156 not ismember(C,X), not ismember(C,Y),
157 not ismember(M,X), not ismember(M,Y),
158 node(X),node(Y),
159 marginalize(C,J,Msub,Z,M).
160
161 %% X-->Z---Y => X---Y
162 tt(X,Y,C,J,M) :- th(X,Z,C,J,Msub),

163 { tt(Z,Y,C,J,Msub); tt(Y,Z,C,J,Msub) } >= 1,
164 X <= Y,
165 not ismember(C,X), not ismember(C,Y),
166 not ismember(M,X), not ismember(M,Y),
167 node(X),node(Y),
168 marginalize(C,J,Msub,Z,M).
169
170 %% X---Z<--Y => X---Y
171 tt(X,Y,C,J,M) :- { tt(X,Z,C,J,Msub); tt(Z,X,C,J,Msub) } >= 1,
172 th(Y,Z,C,J,Msub),
173 X <= Y,
174 not ismember(C,X), not ismember(C,Y),
175 not ismember(M,X), not ismember(M,Y),
176 node(X),node(Y),
177 marginalize(C,J,Msub,Z,M).
178
179 %% X---Z---Y => X---Y
180 tt(X,Y,C,J,M) :- { tt(X,Z,C,J,Msub); tt(Z,X,C,J,Msub) } >= 1,
181 { tt(Z,Y,C,J,Msub); tt(Y,Z,C,J,Msub) } >= 1,
182 X <= Y,
183 not ismember(C,X), not ismember(C,Y),
184 not ismember(M,X), not ismember(M,Y),
185 node(X),node(Y),
186 marginalize(C,J,Msub,Z,M).
187
188 %% X-->Z---Z<--Y => X---Y
189 tt(X,Y,C,J,M) :- th(X,Z,C,J,Msub),th(Y,Z,C,J,Msub),tt(Z,Z,C,J,Msub),
190 X <= Y,
191 not ismember(C,X), not ismember(C,Y),
192 not ismember(M,X), not ismember(M,Y),
193 node(X),node(Y),
194 marginalize(C,J,Msub,Z,M).
195
196 %%
197
198 %% X-->Y => X-->Y
199 th(X,Y,C,J,M) :- th(X,Y,C,J,Msub),
200 X != Y,
201 not ismember(C,X), not ismember(C,Y),
202 not ismember(M,X), not ismember(M,Y),
203 node(X),node(Y),
204 marginalize(C,J,Msub,Z,M).
205
206 %% X-->Z-->Y => X-->Y
207 th(X,Y,C,J,M) :- th(X,Z,C,J,Msub),th(Z,Y,C,J,Msub),
208 X != Y,
209 not ismember(C,X), not ismember(C,Y),
210 not ismember(M,X), not ismember(M,Y),
211 node(X),node(Y),
212 marginalize(C,J,Msub,Z,M).
213
214 %% X---Z<->Y => X-->Y
215 th(X,Y,C,J,M) :- { tt(X,Z,C,J,Msub); tt(Z,X,C,J,Msub) } >= 1,
216 { hh(Z,Y,C,J,Msub); hh(Y,Z,C,J,Msub) } >= 1,
217 X != Y,
218 not ismember(C,X), not ismember(C,Y),
219 not ismember(M,X), not ismember(M,Y),
220 node(X),node(Y),
221 marginalize(C,J,Msub,Z,M).
222
223 %% X---Z-->Y => X-->Y
224 th(X,Y,C,J,M) :- { tt(X,Z,C,J,Msub); tt(Z,X,C,J,Msub) } >= 1,
225 th(Z,Y,C,J,Msub),
226 X != Y,
227 not ismember(C,X), not ismember(C,Y),
228 not ismember(M,X), not ismember(M,Y),
229 node(X),node(Y),
230 marginalize(C,J,Msub,Z,M).
231
232 %% X-->Z---Z<->Y => X-->Y
233 th(X,Y,C,J,M) :- th(X,Z,C,J,Msub),
234 tt(Z,Z,C,J,Msub),
235 { hh(Z,Y,C,J,Msub); hh(Y,Z,C,J,Msub) } >= 1,
236 X != Y,
237 not ismember(C,X), not ismember(C,Y),
238 not ismember(M,X), not ismember(M,Y),
239 node(X),node(Y),
240 marginalize(C,J,Msub,Z,M).
241
242 %%%
243

244 %% X<->Y => X<->Y
245 hh(X,Y,C,J,M) :- hh(X,Y,C,J,Msub),
246 X < Y,
247 not ismember(C,X), not ismember(C,Y),
248 not ismember(M,X), not ismember(M,Y),
249 node(X),node(Y),
250 marginalize(C,J,Msub,Z,M).
251
252 %% X<->Z-->Y => X<->Y
253 hh(X,Y,C,J,M) :- { hh(X,Z,C,J,Msub); hh(Z,X,C,J,Msub) } >= 1,
254 th(Z,Y,C,J,Msub),
255 X < Y,
256 not ismember(C,X), not ismember(C,Y),
257 not ismember(M,X), not ismember(M,Y),
258 node(X),node(Y),
259 marginalize(C,J,Msub,Z,M).
260
261 %% X<--Z-->Y => X<->Y
262 hh(X,Y,C,J,M) :- th(Z,X,C,J,Msub),
263 th(Z,Y,C,J,Msub),
264 X < Y,
265 not ismember(C,X), not ismember(C,Y),
266 not ismember(M,X), not ismember(M,Y),
267 node(X),node(Y),
268 marginalize(C,J,Msub,Z,M).
269
270 %% X<--Z<->Y => X<->Y
271 hh(X,Y,C,J,M) :- th(Z,X,C,J,Msub),
272 { hh(Y,Z,C,J,Msub); hh(Z,Y,C,J,Msub) } >= 1,
273 X < Y,
274 not ismember(C,X), not ismember(C,Y),
275 not ismember(M,X), not ismember(M,Y),
276 node(X),node(Y),
277 marginalize(C,J,Msub,Z,M).
278
279 %% X<->Z---Z<->Y => X<->Y
280 hh(X,Y,C,J,M) :- { hh(X,Z,C,J,Msub); hh(Z,X,C,J,Msub) } >= 1,
281 { hh(Y,Z,C,J,Msub); hh(Z,Y,C,J,Msub) } >= 1,
282 tt(Z,Z,C,J,Msub),
283 X < Y,
284 not ismember(C,X), not ismember(C,Y),
285 not ismember(M,X), not ismember(M,Y),
286 node(X),node(Y),
287 marginalize(C,J,Msub,Z,M).
288
289 %%
290
291
292 %%%%%%%%% LOSS FUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
293
294 fail(X,Y,C,J,M,W) :- th(X,Y,C,J,M), indep(X,Y,C,J,M,W), X<Y.
295 fail(X,Y,C,J,M,W) :- th(Y,X,C,J,M), indep(X,Y,C,J,M,W), X<Y.
296 fail(X,Y,C,J,M,W) :- hh(X,Y,C,J,M), indep(X,Y,C,J,M,W), X<Y.
297 fail(X,Y,C,J,M,W) :- tt(X,Y,C,J,M), indep(X,Y,C,J,M,W), X<Y.
298
299 fail(X,Y,C,J,M,W) :- not th(X,Y,C,J,M),
300 not th(Y,X,C,J,M),
301 not hh(X,Y,C,J,M),
302 not tt(X,Y,C,J,M),
303 dep(X,Y,C,J,M,W), X<Y.
304
305 %%
306
307
308 %%%%%%%%% OPTIMIZATION PROBLEM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
309
310 #minimize{W,X,Y,C,J,M:fail(X,Y,C,J,M,W) }.

E EXPERIMENTAL RESULTS

Here we provide additional visualisations of the results
of our experiments, for which no space was left in the
main paper.

Figure 6 shows ROC curves and PR curves for detecting
directed edges (i.e., direct causal relations) and for de-
tecting latent confounders in the causal graph. Results
are shown for the purely observational setting (“0 inter-
ventions”) and for a combination of observational and in-
terventional data (“1–5 interventions”) where the targets
of the stochastic surgical interventions are single vari-
ables chosen randomly, without replacement. Clearly,
making use of interventional data is beneficial for causal
discovery.

Figure 7 shows similar curves, now for 5 interventions
only, but for different encodings: σ-separation (this
work), d-separation (allowing for cycles, [19]) and d-
separation (acyclic, [19]). Interestingly, the differences
between σ-separation and d-separation turn out to be
quite small in our simulation setting. The difference is
largest for the detection of confounders. On the other
hand, the difference between assuming acyclicity and al-
lowing for cycles is much more pronounced, and is also
significant for the detection of direct causal relations.

We expect that when going to larger graphs with more
variables and with nested loops, the differences between
σ-separation and d-separation should increase. However,
due to computational restrictions we were not able to
perform sufficiently many experiments in this regime to
gather enough empirical support for that hypothesis and
leave this for future research.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves for direct causal relations

0 interventions (area = 0.61)
1 interventions (area = 0.73)
3 interventions (area = 0.85)
5 interventions (area = 0.92)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves for confounders

0 interventions (area = 0.62)
1 interventions (area = 0.70)
3 interventions (area = 0.79)
5 interventions (area = 0.86)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR-curves for the presence of a direct causal relation

0 interventions
1 interventions
3 interventions
5 interventions

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
PR-curves for the presence of a confounder

0 interventions
1 interventions
3 interventions
5 interventions

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR-curves for the absence of a direct causal relation

0 interventions
1 interventions
3 interventions
5 interventions

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR-curves for the absence of a confounder

0 interventions
1 interventions
3 interventions
5 interventions

Figure 6: ROC curves (top) and PR curves (center, bottom) for directed edges (left) and confounders (right), for
different numbers of single-variable interventions. All results shown here use σ-separation.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves for direct causal relations

d-separation (acyclic) (area = 0.81)
d-separation (cyclic) (area = 0.92)
sigma-separation (area = 0.92)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves for confounders

d-separation (acyclic) (area = 0.81)
d-separation (cyclic) (area = 0.86)
sigma-separation (area = 0.86)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR-curves for the presence of a direct causal relation

d-separation (acyclic)
d-separation (cyclic)
sigma-separation

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
PR-curves for the presence of a confounder

d-separation (acyclic)
d-separation (cyclic)
sigma-separation

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR-curves for the absence of a direct causal relation

d-separation (acyclic)
d-separation (cyclic)
sigma-separation

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR-curves for the absence of a confounder

d-separation (acyclic)
d-separation (cyclic)
sigma-separation

Figure 7: ROC curves (top) and PR curves (center, bottom) for directed edges (left) and confounders (right), for
different encodings. All results shown here use observational and 5 interventional data sets.

