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Abstract

In Bayesian Multi-Objective optimisation, ex-
pected hypervolume improvement is often
used to measure the goodness of candidate
solutions. However when there are many ob-
jectives the calculation of expected hyper-
volume improvement can become computa-
tionally prohibitive. An alternative approach
measures the goodness of a candidate based
on the distance of that candidate from the
Pareto front in objective space. In this paper
we present a novel distance-based Bayesian
Many-Objective optimisation algorithm. We
demonstrate the efficacy of our algorithm on
three problems, namely the DTLZ2 bench-
mark problem, a hyper-parameter selection
problem, and high-temperature creep-resistant
alloy design.

1 INTRODUCTION

Bayesian optimisation (Brochu et al., 2010) is a method
for maximising black-box functions that are expensive
to evaluate either in terms of time or cost. Bayesian
optimisation works by modelling the objective function
(typically) using a Gaussian process (GP) (Rasmussen
and Williams, 2006). At each iteration a point (called a
recommendation) is selected to maximise an acquisition
function, where the acquisition function is a measure of
the goodness of a proposed point. Unlike the black-box
function, the acquisition function is cheap to evaluate and
therefore amenable to global optimisation.

In the context of multi-objective optimisation, Bayesian
optimisation is typically applied using an acquisition
function based on expected hypervolume improvement
(EHI) (Ponweiser et al., 2008; Emmerich and Klinken-
berg, 2008; Shir et al., 2007; Zaefferer et al., 2013; Shi-
moyama et al., 2013), which is the expected change in

the hypervolume dominated by the estimated Pareto front
(the set of dominant evaluations of prior recommenda-
tions in objective space - see figure 1). However this
can be expensive to evaluate, particularly in the many-
objective case where the number of objectives is large
(Wagner et al., 2010; Zaefferer et al., 2013). While op-
timised algorithms have been developed for calculating
EHI for up to 3 dimensions (Hupkens et al., 2015) the
general (many-objective (Ishibuchi et al., 2008)) case re-
mains computationally challenging.

An alternative approach is to use a distance-based ac-
quisition function (or score function) (Miranda and
Von Zuben, 2015; Yun et al., 2004). Distance-based ac-
quisition functions seek to maximise the signed distance
of a point from the estimated Pareto front, as shown in
figure 1. Unlike EHI this acquisition function is cheap
to evaluate, making its global optimisation (and hence
Bayesian optimisation) practical in the many-objective
case. While the underlying concept is old (e.g. (Yun
et al., 2004)) it has only recently been formalised in a
rigorous manner (Miranda and Von Zuben, 2015) in the
form of conditions that must be met by a distance (score)
function measuring the signed distance in advance of
(dominating) the Pareto front; whereas (Yun et al., 2004)
for example defines the signed distance from the esti-
mated feasible region in any direction, dominating or
otherwise. However, while (Miranda and Von Zuben,
2015) defines the conditions that must be met by such a
score function, the method implemented therein - namely
a GP model with a probability distribution over the gra-
dient - only approximately meets these requirements.

In the present paper we introduce an alternative model
based on a modified 1-norm support vector machine
(SVM) that is able to exactly satisfy the conditions laid
down in (Miranda and Von Zuben, 2015). To be pre-
cise, we use a restricted 1-norm, 1-class SVM to define
a signed distance function which is strictly positive for
points that dominate the estimated Pareto front, strictly
negative for points dominated by the estimated Pareto



front, and for which signed distance and the dominance
relation are congruent.1. This distance function forms
the basis for an acquisition function that is computation-
ally cheap to evaluate and scales well with the number
of objectives, thereby making feasible Bayesian many-
objective optimisation.

To test our proposed algorithm we have applied it to
one benchmark problem and two practical problems.
The benchmark problem used is taken from the DTLZ
suite of benchmarks (Deb et al., 2005). For practical
problems we have chosen a hyper-parameter selection
problem and an experimental problem involving high-
temperature, creep resistant alloy design.

The first practical problem considered is hyperparame-
ter selection for a multi-class classifier where the relative
weights (importance) of the various classes is unknown.
While the default assumption often made for such prob-
lems is that all classes should have equal weight (or alter-
natively that their weight should be proportional to their
class density) this will not be valid in general. Instead
the accuracy of the classifier with respect to each class
of training data forms an independent objective, and the
problem of hyper-parameter selection in the absence of
additional information regarding relative weight is one
of multi-objective optimisation.

The second practical problem considered is the de-
sign of high-temperature, creep-resistant alloys. High-
temperature creep resistant Ni-superalloy is used for
making boilers of super-critical thermal power plants. In
a joint project with metallurgists we were asked to op-
timize the current alloy recipe to obtain superior creep
resistance than the industry standard. This involves us-
ing phase simulation (via ThermoCalc) to design an alloy
with maximum good phases (those that improved creep-
resistance) and minimum bad phases (those that made
the alloy less creep-resistant) over a range of tempera-
tures. The total number of objectives for this experiment
is 12, each corresponding to a particular phase and tem-
perature, which leads to recommendation times of up to
1 day/recommendation if EHI is used. We demonstrate
that our approach is able to provide a range of potential
alloys, each Pareto-optimal in terms of phase contents,
for further assessment by the metallurgist.

We note that there exists an abundance of such many-
objective optimisation problems in physical systems - for
example advanced fibre production (Li et al., 2017). By
making many-objective Bayesian optimisation feasible
we envisage that such problems will be able to be for-
mulated and solved.

1That is, if y dominates y′ then the distance of y from the
estimated Pareto front, as measured by the score function, is
greater than the distance of y′ from the estimated Pareto front.

2 NOTATION

Column vectors are written a,b, . . . with elements
ai, bi, . . .. Matrices are written A,B, . . ., with elements
Ai,j , Bi,j , . . .. If f : X ⊂ Rm → Rn is a map from de-
sign to objective space then ∀x,x′ ∈ X we say x dom-
inates x′, written x �f x′, if fi(x) ≥ fi(x

′) ∀i; and x
strongly dominates x′, written x �f x′, if x �f x′ ∧
f(x) 6= f(x′). Analogously, ∀y,y′ ∈ Rn we say y dom-
inates y′, written y � y′, if yi ≥ y′i ∀i; and y strongly
dominates y′, written y � y′, if y � y′ ∧ y 6= y′.

3 BACKGROUND

Multi-objective optimisation (Deb, 2001; Coello et al.,
2002; Miettinen, 1999) extends standard single-objective
optimisation to the case where there are multiple, poten-
tially conflicting objectives. The multi-objective optimi-
sation problem is:

argmax
x∈X

f (x) (1)

where f : X → Rn maps from design space to objec-
tive space; X ⊂ [0, r]m ⊂ Rm is the feasible region; and
argmax is defined in the Pareto sense described below.
This is known as a many-objective optimisation prob-
lem (Ishibuchi et al., 2008) if the number of objectives
is sufficiently large to cause difficulties with standard
multi-objective optimisation algorithms (as shown in our
experiments, as few as 6 objectives can cause difficul-
ties).

Our aim is to find a representation of the Pareto set:

X? = {x? ∈ X|@x ∈ X : x �f x
?}

where �f is the dominance relation as defined in section
2 (x strongly dominates x′, written x �f x′, if fi(x) ≥
fi(x

′) ∀i and f(x) 6= f(x′)). This is the set of all Pareto-
optimal x ∈ X, where a vector is Pareto-optimal if it
cannot be changed without causing a decrease in at least
one objective fi : X → R. The Pareto front is the image
of the Pareto set in objective space:

Y? = {y? ∈ Y|@y ∈ Y : y � y?}

where Y = f (X) and � is the dominance relation in
objective space (y strongly dominates y′, written y �
y′, if yi ≥ y′i ∀i and y 6= y′). The solution to (1) is a
finite set of Pareto-optimal solutions X ? ⊂ X?.

3.1 GAUSSIAN PROCESSES

We assume the many-objective case where, for all i,
fi(x) ∼ GP(0, k(x,x′)) is a sample from a zero-
mean Gaussian process (Rasmussen and Williams, 2006;
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Figure 1: Pareto front (left), expected hypervolume improvement (EHI, middle) and boundary distance (right) for a
simple two-objective problem.

MacKay, 1998) (we assume the objectives are non-
correlated) that is costly to evaluate. Evaluations of f are
presumed noisy, so yi = fi(x) + ε, where ε ∈ N (0, σ2).
Given observationsDt = {(x,y)|y = f(x)+ε}we have
f(x)|Dt ∼ N (µt(x), Iσt(x)), where:

µt (x) = YT
t

(
Kt + σ2I

)−1
kt (x)

σ2
t (x) = k (x,x)− kT

t (x)
(
Kt + σ2I

)−1
kt (x)

(2)

where Yt = [yT](−,y)∈Dt
, kt(x) = [k(x,x′)](x′,−)∈Dt

and Kt = [k(x,x′)](x,−),(x′,−)∈Dt
.2 Given Dt the esti-

mated Pareto set X ?t and Pareto front Y?t at iteration t are
the dominant subsets of Dt:

X ?t = {x? ∈ Xt|@x ∈ Xt : x �f x
?}

Y?t = {y? ∈ Yt|@y ∈ Yt : y � y?}
where: Xt = {x ∈ X| (x,−) ∈ Dt}

Yt = {y ∈ Y| (−,y) ∈ Dt}

(3)

3.2 BAYESIAN OPTIMISATION

Bayesian optimisation (Brochu et al., 2010) is an optimi-
sation method designed for problems where the function
being optimised is expensive to evaluate in terms of time
or monetary cost. A typical Bayesian optimisation algo-
rithm is presented in algorithm 1. For each iteration t we
maximise a (cheap) acquisition function at : X → R
based on µt−1 and σt−1, and the resulting recommenda-
tion is evaluated to obtain yt = f(xt) + ε. GP models
are updated, and the algorithm continues. Standard ac-
quisition functions include expected improvement (EI)
(Mockus et al., 1978), probability of improvement (PI)
(Kushner, 1964), and GP upper confidence bound (GP-
UCB) (Jones et al., 1998; Srinivas et al., 2012; Brochu
et al., 2010).

2We write (x,−) ∈ Dt if ∃y ∈ Y : (x,y) ∈ Dt; and
likewise (−,y) ∈ Dt if ∃x ∈ X : (x,y) ∈ Dt.

Algorithm 1 Generic Bayesian Optimisation

input D0 := {(xi, yi)|yi = f(xi) + ε, i = 1, 2, . . .}.
for t = 1, 2, . . . , T do

Select test point xt = argmaxx at(x).
Perform Experiment yt = f(xt) + ε.
Update Dt := Dt−1 ∪ {(xt, yt)}.

end for

3.3 MULTI-OBJECTIVE BAYESIAN
OPTIMISATION

Adding an observation yt to Yt−1 will either cause no
change to the estimated Pareto front Y?t−1 (if ∃y ∈
Y?t−1 : y � yt) or push it closer to the actual Pareto
front Y? (if @y ∈ Y?t−1 : y � yt). The acquisition func-
tion at(x) is designed to measure this expected change.
Two popular measures used, as shown in figure 1, are:

• Expected hypervolume improvement (EHI):

at (x) = E
[
S
(
Y?t−1 ∪ {f (x)}

)
− S

(
Y?t−1

)]
(Shir et al., 2007; Zaefferer et al., 2013; Shimoyama
et al., 2013). This is the expected change in hyper-
volume dominated by Y?t−1, where S(Y) is the hy-
pervolume dominated by Y (Zitzler, 1999; Huband
et al., 2003; Purshouse, 2003; Laumanns et al.,
2000; Fleischer, 2000).

• Boundary distance:

at (x) = E
(
d
(
Y?t−1, f (x)

))
(Yun et al., 2004; Keane, 2006). This is the expected
(signed) distance between the the estimated Pareto
front and f(x).

It has been noted that calculating the EHI is non-trivial
(Wagner et al., 2010; Zaefferer et al., 2013) and, while
heavily optimised algorithms are available for up to 3



A

B

C

D

EDominated region

Figure 2: Distance maximisation of 1-class SVM (Yun
et al., 2004). The set of observations (blue) are used to
train a 1-class SVM, giving the boundary of the green
region. Points A-E all give a positive boundary distance,
but only points C and D dominate the observations as the
boundary does not satisfy consistancy requirements.

objectives (Hupkens et al., 2015), the computational cost
in the many-objective case remains prohibitive, making
EHI unsuitable in a many-objectives context. Similarly,
calculating the precise distance to the Pareto front is of-
ten computationally intractable, particularly in the many-
objective case. Hence when calculating the boundary dis-
tance the estimated Pareto front is usually approximated
(smoothed) using a score function such as the 1-class
SVM (Yun et al., 2004), and the signed distance to this
front used. We note that the Pareto front approximation
used by (Yun et al., 2004) is in fact a hypersurface sur-
rounding the set of observations and may contain pairs of
points where one dominates the other (i.e. it does not sat-
isfy the consistency requirements discussed in section 4).
Thus, as shown in figure 2, maximising this measure will
not necessarily maximise change to the Pareto front as
points may be selected that are not in advance of (domi-
nating) the set of observations.

4 PROPOSED METHOD

In the present paper we will be using an acquisition func-
tion based on GP-UCB (Srinivas et al., 2012) that we call
AD-GP-UCB (approximated distance GP-UCB):

at(x)=gt
(
µt−1(x)

)
+
√
βtηt

(
µt−1(x) , σt−1(x)

)
(4)

In this expression gt(µt−1(x)) is the approximate mean
distance of f(x) from the estimated Pareto set and
ηt(µt−1(x), σt−1(x)) the approximate variance. The
constants βt control the trade-off between exploitation
(selecting recommendations with high predicted distance
from the estimated Pareto set) and exploration (exploring
unexplored regions of the feasible set X) as per the GP-

UCB method (Srinivas et al., 2012):

βt=


2log

(
π2t2

6δ |X|
)

if |X|<∞

2log

(
2π2t2

3δ

(
t2mbr

(
log
(
2ma
δ

))1
2

)2m)
otherwise

(5)

where 0 < δ � 1 and in the infinite case we assume f
satisfies Pr{supx∈X |∂fi/∂xj | > L} ≤ ae−(L/b)2 ∀i, L.
We have chosen GP-UCB here as it is explicitly designed
to balance exploration and exploitation; and because, in
the single objective case, there exist convergence bounds
to show that, with probability 1−δ, the optimisation pro-
cedure is guaranteed to converge (as measured by cumu-
lative risk) sub-linearly as T → ∞. While our method
is not a “true” GP-UCB method (gt and ηt are only ap-
proximations of the mean and variance of the predicted
distance from the estimated Pareto front; and moreover
the function approximated by gt changes over time) our
experimental results demonstrate its efficacy.

4.1 APPROXIMATING THE MEAN DISTANCE

The score function gt(µt−1(x)) is used to approximate
the signed distance between the estimated Pareto set
Y?t−1 and the sample evaluation f(x) for a given x ∈ X.
We use the GP posterior mean µt−1(x) to estimate the
mean of f(x) and gt to approximate the distance of this
from the Pareto front Y?t−1. Motivated by the “standard
form” of the trained SVM in dual form, the score func-
tion gt is defined as:

gt (y) = 1− 2
Nt∑
i=1

αtiL (yi,y) (6)

where the indices i applied to all yi ∈ Yt−1 correspond
to the indices i on αti, Nt = |Yt−1|, αt ≥ 0, and L is
defined to ensure that gt satisfies consistency conditions:

1. Observational Consistency:

gt (y) ≤ 0 ∀y ∈ Y?t−1

2. Dominance Consistency:

gt (y) > gt (y
′) ∀y,y′ ∈ Y : y � y′

Observational consistency is required to ensure that the
reported distance is never positive for existing observa-
tions that are by definition dominated by the current es-
timated Pareto set Y?t−1. Dominance consistency ensures
that, ∀y,y′ ∈ Y, the dominant vector will receive the
higher “score”. Thus gt is a score function in the sense
of (Miranda and Von Zuben, 2015) and may be said to
define an estimated Pareto set:

Ygt? = {y ∈ Rm| g (y) = 0} (7)



that dominates all points in Yt−1 (that is, ∀y ∈
Yt−1 ∃y′ ∈ Ygt? : y′ � y). The distance reported
by gt is the signed distance from Ygt? as measured
by some metric. Motivated by this we let L(y,y′) =
κ(minq(yq − y′q)), where:

κ (0) = 1
2 (centred)

κ (y + δ) > κ (y) ∀y ∈ R, δ ∈ R+ (increasing)
(8)

Many standard neural activation functions are suitable
choices (e.g. the logistic function κ (y) = 1/(1 +
exp(−υy))). It is straightforward to see that gt defined
by (6) satisfies dominance consistency if αt 6= 0. To sat-
isfy observational consistency αt is selected to solve the
linear programming problem:

min
α
‖αt‖1 = 1Tαt

such that:
Nt∑
i=1

αtiL (yi,yj) ≥ 1
2 ∀1 ≤ j ≤ Nt

αt ≥ 0

(9)

which will be referred to this as the score-function opti-
misation problem. It may be noted that the score-function
optimisation problem, and the form of the score function
gt, are closely related to the 1-norm SVM (Bradley and
Mangasarian, 1998; Zhu et al., 2004), which is a vari-
ant of the standard SVM that retains the standard (dual)
form of the trained machine but minimises ‖α‖1 rather
than ‖α‖HL

. This form has two distinct advantages: the
kernel3 L may be any function (not just positive defi-
nite) and the solution tends to be more sparse than the
standard form. Our approach also borrows from the 1-
class SVM (Schölkopf et al., 1999), but rather than us-
ing a bias-forcing term to achieve margin minimalisation
(rather than maximising the margin of separation, the 1-
class SVM seeks to minimise the margin) we instead use
a fixed bias (b = −1) and restrict L using (8) so that
the margin minimalisation occurs as a direct result from
minimising the regularisation term ‖α‖1.

4.2 APPROXIMATING THE DISTANCE
VARIANCE

The function ηt(µt−1(x), σt−1(x)) in the acquisition
function (4) approximates the variance in the estimate
gt(µt−1(x)) of the distance between f(x) and the es-
timated Pareto front Y?t−1. We approximate this using
a simple first-order Taylor approximation of the second
moment about µt−1(x) - that is:

ηt
(
µt−1(x) , σt−1(x)

)
=
∥∥∇xgt

(
µt−1(x)

)∥∥σt−1(x)
3In general we have tried to avoid using the word kernel

to refer to L to avoid potential confusion with the covariance
function (kernel) k used for Gaussian Processes.

where, defining qi = argminq(yi,q − µt−1,q(x)) ∀i:

∂
∂xl

gt
(
µt−1 (x)

)
= . . .

−2
∑
i α

t
iκ
′ (yi,qi − µt−1,ki (x)) ∂

∂xl
µt−1,qi (x)

where κ′(y) = ∂κ(y)/∂y and:

∂
∂xl

µt (x) = YT
t

(
Kt + σ2I

)−1 ∂
∂xl

kt (x)

We note that the accuracy of this approximation degrades
as the non-linearity of gt(µt−1(•)) increases. This is
a necessary trade-off as calculating the actual variance
is not feasible. Assuming an squared-exponential ker-
nel k(x,x′) = exp(−‖x − x′‖22/l) for the GP model
and a sigmoid function for the score function kernel
κ(y) = 1/(1 + exp(−υy)) we see that the variance ap-
proximation is best when the length scale l of k is large
and the constant υ of κ is small.

5 THEORETICAL ANALYSIS

It is useful at this point to analyse the theoretical prop-
erties of our proposed algorithm. We have already noted
that the score function gt satisfies both observational and
dominance consistency and so provides a sensible ap-
proximation of distance from the estimated Pareto front.
Applying SVM techniques we find the following proper-
ties (all proofs presented in the supplementary material):

Theorem 1 (Non-triviality) Let αt be the solution to
the score-function optimisation problem (9). Then αt 6=
0.

Theorem 2 (Margin Minimisation) Let αt be the so-
lution to the score-function optimisation problem (9). Let
Ygt? be the estimated Pareto front defined by gt. The min-
imum distance between Yt−1 and the estimated Pareto
front Ygt? is zero:

min
y∈Yt−1,y′∈Ygt?

‖y − y′‖ = 0

Theorem 3 (Sparsity) Let αt be the solution to the
score-function optimisation problem (9). Then αti = 0
∀i : yi /∈ Y?t−1 (ie. points not in the estimated Pareto
front cannot be support vectors).

Theorem 4 (Heaviside Limit) Let κ = κ⊥, where

κ⊥ (y) = lim
υ→∞

1
1+exp(−υy) =

1
2 (1 + sgn (y)) ,

and @i 6= j : yi = yj . Then αti = 1 ∀i : yi ∈ Y?t−1,
αti = 0 otherwise (ie. in the limiting case the support
vectors are precisely the estimated Pareto set).



Figure 3: Estimated front Ygt? (objective space) given
y1 = [ −1; 1 ], y2 = [ 1;−1 ], where κ(y) =

1
1+exp(−υy) and υ = 0.5, 1, 2, 4, respectively.

It follows that solving (9) will define a score function,
and hence an estimated Pareto front Ygt?, that is as tight
as possible (insofar as it lies as close to Yt as pos-
sible while maintaining observational consistency) and
sparsely represented. As shown in figure 3 the param-
eter υ in the κ function acts as a smoothing parameter
on the estimated Pareto front, where smaller υ will tend
to favour smoother fronts while larger υ will attempt to
achieve a tighter “fit” to the observations Yt. In the lim-
iting case υ → ∞ the Pareto front becomes stepwise, as
shown by theorem 4.

6 EXPERIMENTS

We consider three experiments in the this section: stan-
dard test function optimisation, hyper-parameter selec-
tion in multi-class SVM classification in the absence of
relative class weighting, and high-temperature alloy de-
sign. All SVM and related code was written in C++ with
linking to ThermoCalc via a Matlab interface. Where rel-
evant EHI estimation was performed using the IRS algo-
rithm (Hupkens et al., 2015). Global optimisation on our
acquisition function was carried out using the DIRECT
algorithm (Jones et al., 1993). The objective function f
was modelled using a GP with a squared-exponential ker-
nel. For the score function we use κ (y) = 1

1+exp(−υy) .

6.1 STANDARD TEST FUNCTION

In our first experiment we have evaluated the perfor-
mance of AD-GP-UCB on the standard DTLZ2 multi-
objective test function (Deb et al., 2005). We have run
simulations for Bayesian optimisation using both EHI
and AD-GP-UCB acquisition functions over a budget of
T = 200 iterations for n = 2, 3, . . . , 10 objectives.

We have evaluated performance on four criteria:

1. How close the elements of the estimated Pareto
front Y?t are to the actual Pareto front Y? (how op-
timal the elements of the Y?t are):

dY? = sup
y∈Y?

T

d (y,Y?) = sup
y∈Y?

T

(
inf

y′∈Y?
‖y − y′‖

)
2. The maximum distance between any point on the

actual Pareto front Y? and the closest point to it in
the estimated Pareto front (how well Y?t approxi-
mates Y?):

dY?
T
= sup

y′∈Y?

d (Y?t ,y′) = sup
y′∈Y?

(
inf

y∈Y?
t

‖y − y′‖
)

3. The Hausdorff distance between the estimated
Pareto front Y?t and the actual Pareto front Y?:

dH = d (Y?T ,Y?) = max
(
dY? , dY?

T

)
4. Simulation time per recommendation produced.

Results are summarised in table 1. It may be seen from
this that in terms of the Hausdorff distance between es-
timated and actual Pareto fronts AD-GP-UCB consis-
tently outperformed EHI in this experiment. Moreover
although the EHI estimated Pareto front was closer to
the actual Pareto front (measure 1) the AD-GP-UCB esti-
mated Pareto front better approximated the actual Pareto
front in terms of coverage (measure 2). We note that the
hypervolume dominated by the AD-GP-UCB estimated
Pareto front was consistently higher than the hypervol-
ume dominated by the EHI estimated Pareto front. Figure
5 shows the average time required per recommendation
for each of the algorithms. We have chosen this measure
to factor out extraneous fluctuations observed in the esti-
mated Pareto set size generated by the EHI method as n
varied.

To aid visualisation the estimated Pareto fronts for AD-
GP-UCB and EHI in the case n = 3 are shown in figure
4, where the Pareto front for DTLZ2 consists of a first-
quadrant unit sphere in objective space (Deb et al., 2005).
From this figure it may be seen that EHI constructs a
cluster of recommendations that are close to a fragment
of the actual Pareto front; whereas AD-GP-UCB creates
a more diverse coverage of the Pareto front. We postulate
that this results from the fact that AD-GP-UCB explicitly
incorporates an exploration term

√
βtηt in the acquisi-

tion function, encouraging greater exploration and hence
more diversity in Y?T .

As noted previously, and as may be seen from table 1, the
size of the estimated Pareto front found by EHI was sur-
prisingly small for larger n. It is unclear why this occurs;
however it appears to contribute to the significant fluc-
tuation in the total time τ for required EHI to complete
T = 200 iterations.



EHI-based Bayesian Optimisation AD-GP-UCB
n N? dY? ↓ dY?

T
↓ dH ↓ HV ↑ τ ↓ τ

N? ↓ N? dY? ↓ dY?
T
↓ dH ↓ HV ↑ τ ↓ τ

N? ↓
2 124 0.007 0.48 0.48 2.52 162 1.31 66 0.25 0.13 0.25 3.18 815 12.35
3 185 0.027 0.66 0.66 5.67 174 0.94 107 0.25 0.25 0.25 7.33 824 7.70
4 198 0.25 0.90 0.90 11.1 358 1.81 117 0.25 0.35 0.35 15.5 986 8.43
5 14 0.25 1.26 1.26 25.2 243 17.4 121 0.25 0.49 0.49 31.5 1012 8.36
6 187 0.25 1.16 1.16 51.5 3950 21.1 126 0.25 0.71 0.71 63.3 992 7.87
7 167 0.25 1.32 1.32 90.3 27546 165 141 0.25 0.92 0.92 127 1024 7.26
8 60 0.24 1.39 1.39 207 1483 24.7 180 0.25 0.99 0.99 253 1227 6.82
9 46 0.20 1.38 1.38 378 2025 44.0 174 0.24 1.15 1.15 499 1444 8.30
10 32 0.20 1.41 1.41 818 973 30.4 200 0.23 1.13 1.13 978 2795 13.98

Table 1: Results summary for DTLZ2 optimisation over range of n. In this table dY? measures how close the estimated
Pareto front is to the actual Pareto front (optimality); dY?

T
measures the maximum distance from any point on the actual

Pareto front to any point in the estimated Pareto front (coverage) (for calculation Y? is approximated as a projected
grid); dH is the Hausdorff distance between the estimated and actual Pareto fronts; and HV is the dominated hypervol-
ume. T = 200 iterations were used, producing an estimated Pareto front Y?T containing N? = |Y?T | recommendations
in τ seconds - ie. τ/N? recommendations per second. ↑ indicates that larger values are preferable and ↓ that smaller
values are preferable.
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Figure 4: Estimated Pareto fronts for EHI (left) and AD-GP-UCB (right) for n = 3 objectives. Note that DTLZ2 is a
minimisation problem, so the BO maximises its negative.

6.2 HYPERPARAMETER SELECTION

In this experiment we have compared our algorithm
to Bayesian multi-objective optimisation with an ex-
pected hypervolume improvement (EHI) based acqui-
sition function. We consider hyper-parameter selection
for multi-class classifiers in the absence of information
about the relative importance of classes. As there is
no objective way to compare (weight) the cost of mis-
classification for the different classes this is an example
of a multi-objective optimisation, where the classifica-
tion accuracy with respect to each class is a single objec-
tive.

For multi-class classification we used the CS-SVM algo-
rithm (Shilton et al., 2012) in SVMHeavy (Shilton, 2001)

with an RBF kernel with length-scale g. Performance on
each class was measured using 10-fold cross-validation.
The hyper-parameters being tuned were the CS-SVM
trade-off parameter C ∈ [0.1, 10] and the kernel param-
eter g ∈ [0.1, 10]. Three datsets from the UCI collection
(Dheeru and Karra Taniskidou, 2017) were used: SAT (6
classes,N = 4435 vectors), SEG (7 classes,N = 2310),
and WAV (3 classes, N = 5000).

Results of simulations are shown in figure 6. These fig-
ures show both hypervolume as a function of iteration
number (the hypervolume is used as a measure of the
optimality of the Pareto set) and also the time required
to recommend the next sample at each iteration. As may
be seen from the graphs our proposed method is signifi-
cantly faster than EHI. In fact, in the higher-dimensional
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Figure 5: Average time taken to produce Pareto front in
seconds/recommendation (τ/N?).

cases - namely SAT (6 classes/objectives) and SEG (7
classes/objectives) - the EHI simulations had to be ter-
minated early due to excessive computation time when
computing the next recommendation (up to 1 day to pro-
duce a single recommendation). With regard to optimal-
ity (as measured by dominated hypervolume) it is some-
what difficult to say with certainty, but based on the WAV
dataset at least our algorithm is certainly competitive
(particularly given that the EHI alternative was unable
to finish for either the SAT or SEG datasets due to exces-
sive computational load resulting from EHI calculations
made inside the global optimisation DIRECT call).

6.3 ALLOY DESIGN

High-temperature creep resistant Ni-superalloy is used
for making boilers of super-critical thermal power plants.
In a joint project with metallurgist we were asked to op-
timize the current alloy recipe to obtain superior creep
resistance to the industry standard. The alloy consist of
Ni, Cr, Co, Al, Ti, Mo, Ta, W and V. We use Thermo-
Calc software for phase simulation i.e. to predict what
compounds (phases) get formed at a given temperature.
Based on the existing knowledge, phases were clubbed
into either good or bad for creep resistance. The phase
simulation is performed at 6 different temperatures and a
total of 12 objectives are created. Recommendation times
for EHI were found to be excessive (∼ 1 day), whereas
our method was able to complete the task without diffi-
culty.

Results for our simulation are shown in figure 7. In
these figures dominated hypervolume has been used as
a measure of convergence (Zitzler, 1999; Huband et al.,
2003; Purshouse, 2003; Laumanns et al., 2000; Fleischer,
2000). The GP length scale in these results is 20 and was
selected experimentally to optimise the rate of conver-

gence; and the time budget T = 100 was chosen for prac-
tical reasons. A total of 21 Pareto-optimal alloys were
found by our simulation. As may be seen our algorithm
was able to calculate a set of Pareto-optimal recommen-
dations within a reasonable time-frame despite the high
number of objectives to provide the experimentalist with
a good selection of options for further investigation.
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Figure 7: Simulation results for alloy design. Top:
dominated hypervolume. Bottom: recommendation time
(solid red), ThermoCalc simulation time (dashed blue).

7 CONCLUSIONS

In this paper we have proposed a method for Bayesian
multi-objective optimisation based on score functions.
Our proposed method is particularly well suited to the
many-objective case where the number of objectives is
significant and renders alternative methods such as EHI
unsuitable due to reasons of computational infeasibility
(for example, on 2 of our datasets we found that the EHI
method failed early as the time required for a single rec-
ommendation grew to over 1 day). We have analysed the
theoretical properties of our method and shown that it
possesses properties such as sparseness, inherited from
the 1-norm SVM, that make it well suited to the task. For
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Figure 6: Hyper-parameter tuning results. Top row: recommendation times per iteration. Bottom row: enclosed hyper-
volume. EHI shown as black (dashed) line, our method as red (solid) line. EHI Simulations for SAT/SEG datasets had
to be terminated early due to excessive recommendation times (we estimate for example that running the SAT dataset
simulation to completion using the EHI method would have taken at least 3 months, which is clearly impractical).

experimental validation we have applied our proposed
method to high-temperature alloy design and hyperpa-
rameter selection in the multi-class case where no infor-
mation is provided with regard to the relative weight (or
importance) of the classes. Our results clearly showed
that our method is able to continue in cases where EHI
breaks down due to computational complexity, and more-
over that the results achieved by our method are compet-
itive with those achieved by EHI.
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