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Abstract

Causal discovery methods aim to recover the
causal process that generated purely observa-
tional data. Despite its successes on a number
of real problems, the presence of measurement
error in the observed data can produce seri-
ous mistakes in the output of various causal
discovery methods. Given the ubiquity of
measurement error caused by instruments or
proxies used in the measuring process, this
problem is one of the main obstacles to reli-
able causal discovery. It is still unknown to
what extent the causal structure of relevant
variables can be identified in principle. This
study aims to take a step towards filling that
void. We assume that the underlining pro-
cess or the measurement-error free variables
follows a linear, non-Guassian causal model,
and show that the so-called ordered group
decomposition of the causal model, which con-
tains major causal information, is identifiable.
The causal structure identifiability is further
improved with different types of sparsity con-
straints on the causal structure. Finally, we
give rather mild conditions under which the
whole causal structure is fully identifiable.

1 INTRODUCTION

Understanding and using causal relations among vari-
ables of interest has been a fundamental problem in var-
ious fields, including biology, neuroscience, and social
sciences. Since interventions or controlled randomized
experiments are usually expensive or even impossible
to conduct, discovering causal information from obser-
vational data, known as causal discovery (Spirtes et al.,
2001; Pearl, 2000), has been an important task and
received much attention in computer science, statistics,
and philosophy. Roughly speaking, methods for causal

discovery are categorized into constraint-based ones,
such as the PC algorithm (Spirtes et al., 2001), and
score-based ones, such as Greedy Equivalence Search
(GES) (Chickering, 2002).

Almost all current causal discovery methods assume
that the recorded values are realizations of the variables
of interest. Typically, however, the measured values
are not identical to the values of the variables that they
are intended to measure. The measuring process may
involve nonlinear distortion, as already address by the
post-nonlinear causal model (Zhang & Hyvärinen, 2009;
Zhang & Chan, 2006), and may introduce a lot of error.
For instance, in neuroscience the measured brain sig-
nals obtained by functional magnetic resonance (fMRI)
usually contain error introduced by instruments. In
this paper, we consider the so-called random measure-
ment error model, as defined by Scheines & Ramsey
(2017), in which observed variables Xi, i = 1, ..., n, are
generated from the underlying measurement-error-free
variables X̃i with additive measurement errors Ei:

Xi = X̃i + Ei. (1)

We further assume that the errors Ei are mutually
independent and independent from X̃i. Putting the
causal model for X̃i and the random measurement
error model together, we have the whole process that
generates the measured data. We call this process the
CAusal Model with Measurement Error (CAMME).

Generally speaking, because of the presence of mea-
surement errors, the d-separation patterns among Xi

are different from those among the underlying vari-
ables X̃i. This generating process has been called
the random measurement error model in (Scheines
& Ramsey, 2017). According to the causal Markov
condition (Spirtes et al., 2001; Pearl, 2000), observed
variables Xi and the underlying variables X̃i may have
different conditional independence/dependence rela-
tions and, as a consequence, the output of approaches
to causal discovery that exploit conditional indepen-
dence and dependence relations are unreliable in the



presence of such errors, as demonstrated in (Scheines
& Ramsey, 2017). In Section 2 we will give an example
to show how conditional independence/dependence be-
tween the variables is changed by measurement error,
and discuss its implication in applications of causal dis-
covery to real problems. Furthermore, because of the
measurement error, the structural equation models ac-
cording to which the measurement-error-free variables
X̃i are generated usually do not hold for the observed
variables Xi. (In fact, Xi follow error-in-variables mod-
els, for which the identifiability of the underlying causal
relation is not clear.) Hence, approaches based on struc-
tural equation models, such as the linear, non-Gaussian,
acyclic model (LiNGAM (Shimizu et al., 2006)), will
generally fail to find the correct causal direction.

In this paper, we aim to estimate the causal model un-
derlying the measurement-error-free variables X̃i from
their observed values Xi contaminated by random mea-
surement error. We assume linearity of the causal
model and causal sufficiency relative to {X̃i}ni=1. We
particularly focus on the case where the causal struc-
ture for X̃i is represented by a Directed Acyclic Graph
(DAG), although this condition can be weakened. In
order to develop principled causal discovery methods
to recover the causal model for {X̃i}ni=1 from observed
values of {Xi}ni=1, we have to address theoretical issues
include 1) whether the causal model of interest is com-
pletely or partially identifiable from the contaminated
observations and 2) what are the precise identifiability
conditions.

There exist causal discovery methods, such as the Fast
Causal Inference (FCI) algorithm (Spirtes et al., 2001),
to deal with confounders, i.e., hidden direct common
causes. However, they cannot estimate the causal rela-
tions among the “latent" variables, which is what we
aim to recover in this paper. Silva et al. (2006) and
Kummerfeld et al. (2014) have provided algorithms for
recovering latent variables and their causal relations
when each latent variable has multiple measured effects;
Shimizu et al. (2011a) further applied LiNGAM to the
recovered latent variables to improve the estimated
causal relations between them. Their problem is dif-
ferent from the measurement error setting we consider,
where clustering for latent common causes is not re-
quired and each measured variable is the direct effect
of a single "true" variable. As discussed in Section 3,
their models can be seen as special cases of our setting.

2 EFFECT OF MEASUREMENT
ERROR

Suppose we observe variables X1, X2, and X3, which
are generated from measurement-error-free variables
X̃i according to the structure given in Figure 1. By

the Markov condition and Faithfulness assumption, all
three of the X̃i variables are dependent on one another,
while X̃1 and X̃3 are conditionally independent given
X̃2. That conditional independence does not hold for
Xi, the variables actually observable. The measure-
ment error E2 produces the trouble. We will treat the
distributions as Gaussian purely for illustration; again,
the point is general.

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME to demonstrate the effect
of measurement error on conditional independence and
dependence relationships. For simplicity, we consider
the special case where there is measurement error only
in X2, i.e., X2 = X̃2 +E2, but X1 = X̃1 and X3 = X̃3.

Let ⇢̃12 be the correlation coefficient between X̃1 and
X̃2 and ⇢̃13,2 be the partial correlation coefficient be-
tween X̃1 and X̃3 given X̃2, which is zero. Let ⇢12

and ⇢13,2 be the corresponding correlation coefficient
and partial correlation coefficient in the presence of
measurement error. We let ⇢̃12 = ⇢̃23 = ⇢̃ to make the
argument simpler, but the point is quite general. So
we have ⇢13 = ⇢̃13 = ⇢̃12⇢̃23 = ⇢̃

2. Let � =
Std(E2)

Std(X̃2)
. For

the data with measurement error, we have

⇢12 =
Cov(X1, X2)

Var1/2(X1)Var1/2(X2)

=
Cov(X̃1, X̃2)

Var1/2(X̃1)(Var(X̃2) + Var(E2))
1/2

=
⇢̃

(1 + �2)1/2
;

⇢13,2 =
⇢13 � ⇢12⇢23

(1� ⇢212)
1/2(1� ⇢223)

1/2

=
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1+�2
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=
r
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2

1 + �2 � ⇢̃2
.

As the variance of the measurement error in X2 in-
creases, � become larger, and ⇢12 decreases and finally
goes to zero; in contrast, ⇢13,2, which is zero for the
measurement-error-free variables, is increasing and fi-
nally converges to ⇢̃

2. See Figure 2 for an illustration.
In other words, in this example as the variance of the
measurement error in X2 increases, X1 and X2 be-
come more and more independent, while X1 and X3

are conditionally more and more dependent given X2.
However, for the measurement-error-free variables, X̃1

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. The PC algorithm and
other methods that explicitly or implicitly exploit con-



ditional independence and dependence relations will
find an edge between X1 and X3 that does not exist
between X1 and X3 . Multiple regression of X3 on
X1 and X2, or X1 on X3 and X2, will make the same
error.
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Figure 2: The correlation coefficient ⇢12 between X1

and X2 and partial correlation coefficient ⇢13,2 between
X1 and X3 given X2 as functions of �, the ratio of the
standard deviation of measurement error to the that of
X̃2. We have assumed that the correlation coefficient
between X̃1 and X̃2 and that between X̃2 and X̃3 are
the same (denoted by ⇢̃), and that there is measurement
error only in X2.

Roughly speaking, originally conditionally independent
(or dependent) variables will become less independent
(or dependent), due to the effect of measurement error.
In order to correctly detect conditional independence re-
lations between measurement-error-free variables from
the observed noisy values, one may use a very small
significance level (or type I error level, ↵) when per-
forming conditional independence tests–the smaller the
significance level, the less often the independence null
hypothesis is rejected, and more pairs of variables are
likely to be considered as conditionally independent.
This, inevitably, risks high type II errors (i.e., con-
ditionally dependent variable pairs are likely to be
considered as independent), especially when the sam-
ple size is relatively small. Therefore it is desirable to
develop principled causal discovery methods to deal
with measurement error.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations. The effect of
measurement error on causal direction identification in
the two-variable case was also studied by Wiedermann
et al. (2018) under some further assumptions.

3 MODEL CANONICAL
REPRESENTATION

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence



from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)
�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.
Equation (3) can be rewritten as

X̃ = ANLẼNL
+ALẼL

= X̃⇤ +ALẼL
, (4)

where X̃⇤ , ANLẼNL, ANL and AL are n ⇥ (n � l)

and n ⇥ l matrices, respectively. Here both A
L and

ANL have specific structures. All entries of AL are 0
or 1; for each column of AL, there is only one non-zero
entry. In contrast, each column of ANL has at least
two non-zero entries, representing the influences from
the corresponding non-leaf noise term.

We give a more formal way to derive the above result
and make it clear how ANL and AL depend on B. For
any graph G̃ there always exists a suitable permutation
matrix, denoted by ⌦, such that the last l elements of
the permuted variables ⌦X̃ are all leaf nodes. Hence,

⌦Ẽ =


ẼNL

ẼL

�
. Accordingly, (2) implies that

⌦X̃ = B⌦ ·⌦X̃+⌦Ẽ, (5)

where B⌦ = ⌦B⌦|. Since the last l variables in ⌦X̃
are leaf nodes, the last l columns of B⌦ are zero. Let
BNL

⌦ be the causal influence matrix for the non-leaf
nodes and BL

⌦ denote the causal influence from non-

leaf nodes to leaf nodes. We have B⌦ =


BNL

⌦ 0
BL

⌦ 0

�
.

Consequently,

(I�B⌦)
�1

=


(I�BNL

)
�1 0

BL
(I�BN

)
�1 I

�
. (6)

Combining (5) and (6) gives

X̃ = ⌦|
(I�B⌦)

�1⌦Ẽ

= ⌦| ·


I
BL

�
· (I�BNL

)
�1

| {z }
ANL

ẼNL
+⌦|


0
ẼL

�

| {z }
ALẼL

.

Further consider the generating process of observed
variables Xi. Combining (1) and (4) gives

X = X̃⇤ +ALẼL
+E = ANLẼNL

+ (ALẼL
+E)

= ANLẼNL
+E⇤ (7)

=
⇥
ANL I

⇤
·


ẼNL

E⇤

�
, (8)

where E⇤ = ALẼL
+ E and I denotes the identity

matrix. To make it more explicit, we give how X̃
⇤
i and

E
⇤
i are related to the original CAMME process:

X̃
⇤
i =

(
X̃i, if X̃i is not a leaf node in G̃;

X̃i � Ẽi, otherwise;
, and

(9)

E
⇤
i =

(
Ei, if X̃i is not a leaf node in G̃;

Ei + Ẽi, otherwise.

Clearly E
⇤
i s are independent across i, and as we shall

see in Section 4, the information shared by difference
Xi is still captured by X̃⇤. For each CAMME specified
by (2) and (1), there always exists an observationally
equivalent representation in the form of (7). We call
the representation (7) the canonical representation of
the CAMME (CR-CAMME).

Example Set 1 Consider the following example with
three observed variables Xi, i = 1, 2, 3, for which X̃1 !
X̃2  X̃3, with causal relations X̃2 = aX̃1 + bX̃3 + Ẽ2.
That is,

B =

2

4
0 0 0

a 0 b

0 0 0

3

5 , and A =

2

4
1 0 0

a 1 b

0 0 1

3

5 .

Therefore,

X = X̃+E = X̃⇤ +E⇤

=

2

4
1 0

a b

0 1

3

5 ·

Ẽ1

Ẽ3

�
+

2

4
E1

Ẽ2 + E2

E3

3

5

=

2

4
1 0 1 0 0

a b 0 1 0

0 1 0 0 1

3

5 ·

2

66664

Ẽ1

Ẽ3

E1

Ẽ2 + E2

E3

3

77775
.

In causal discovery from observations in the presence
of measurement error, we aim to recover information
of the measurement-error-free causal model G̃. Let us
define a new graphical model, G̃⇤. It is obtained by
replacing variables X̃i in G̃ with variables X̃⇤i . In other
words, it has the same causal structure and causal
parameters (given by the B matrix) as G̃, but with



variables X̃
⇤
i as its nodes. If we manage to estimate

the structure of and the involved causal parameters in
G̃
⇤, then the causal model of interest, G̃, is recovered.

We defined the graphical model G̃⇤ because we cannot
fully estimate the distribution of measurement-error-
free variables X̃, but might be able to estimate that of
X̃⇤ under proper assumptions, as shown in Section 4.

Compared to G̃, G̃⇤ involves some deterministic causal
relations because each leaf node is a deterministic
function of its parents (the noise in leaf nodes has
been removed; see (9)). For instance, suppose in G̃

⇤,
PA(X̃

⇤
3 ) = {X̃⇤1 , X̃⇤2}, where PA(X̃

⇤
3 ) denotes the set of

parents of X̃⇤3 in G̃
⇤, and that X̃3 is a leaf node. Then

each of X̃1, X̃2, and X̃3 is a deterministic function of
the remaining two. More generally, let X̃

⇤
l be a leaf

node in the causal graph G̃
⇤; then each of the variables

in {X̃⇤l } [ PA(X̃
⇤
l ), denoted by X̃

⇤
k , is a deterministic

function of the remaining variables.

To make it possible to identify the structure of G̃ from
the distribution of X, in what follows we assume the
distribution of X̃⇤ satisfies the following assumption.

A0. The causal Markov condition holds for G̃ and
the distribution of X̃i is faithful w.r.t. G̃.
Furthermore, the distribution of X̃

⇤
i is non-

deterministically faithful w.r.t. G̃
⇤, in the sense

that if there exists S, a subset of {X̃⇤k : k 6= i, k 6=
j}, such that neither of X̃⇤i and X̃

⇤
j is a determin-

istic function of S and X̃
⇤
i ?? X̃

⇤
j |S holds, then

X̃
⇤
i and X̃

⇤
j (or X̃i and X̃j) are d-separated by S

in G̃
⇤.

This non-deterministically faithfulness assumption ex-
cludes a particular type of parameter coupling in the
causal model for X̃i. in Figure 4 we give a causal
model in which the causal coefficients are carefully
chosen so that this assumption is violated: because
X̃
⇤
3 = aX̃

⇤
1 + bX̃

⇤
2 and X̃

⇤
4 = 2aX̃

⇤
1 + 2bX̃

⇤
2 + E

⇤
4 , we

have X̃
⇤
4 = 2X̃

⇤
3 + E

⇤
4 , implying X̃

⇤
4 ?? X̃

⇤
1 | X̃⇤3 and

X̃
⇤
4 ?? X̃

⇤
2 | X̃⇤3 , which are not given by the causal

Markov condition on G̃. We note that this non-
deterministic faithfulness is defined for the distribution
of the constructed variables X̃

⇤
i , not the measurement-

error-free variables X̃i. (Bear in mind their relationship
given in (9).) This assumption is generally stronger
than the faithfulness assumption for the distribution of
X̃i. In particular, in the causal model given in Figure 4,
the distribution of X̃i is still faithful w.r.t. G̃. Below
we call the conditional independence relationship be-
tween X̃

⇤
i and X̃

⇤
j given S where neither of X̃

⇤
i and

X̃
⇤
j is a deterministic function of S non-deterministic

conditional independence.

Now we have two concerns. One is whether essential
information of the CR-CAMME is identifiable from

X̃4X̃2 X̃5X̃1

X̃3

2b dc

a b

2a

Figure 4: A specification of the causal model G̃ in
which X̃

⇤
i are not non-deterministically faithful w.r.t.

G̃ because of parameter coupling.

observed values of X. The other is what information of
the original CAMME, in particular, the causal model
over X̃i, can be estimated from the above identifiable
information of the CR-CAMME. Although the transfor-
mation from the original CAMME to a CR-CAMME is
straightforward, without further knowledge there does
not necessarily exist a unique CAMME corresponding
to a given CR-CAMME: first, the CR-CAMME does
not tell us which nodes X̃i are leaf nodes in G̃; second,
even if X̃i is known to be a leaf node, it is impossible to
separate the measurement error Ei from the noise Ẽi in
E
⇤
i . Fortunately, we are not interested in everything of

the original CAMME, but only the causal graph G̃ and
the corresponding causal influences B. Accordingly, in
the next section we will explore what information of the
CR-CAMME is identifiable from the observations of X
and how to further reconstruct necessary information
of the original CAMME.

In the measurement error model (1) we assumed that
each observed variable Xi is generated from its own la-
tent variable X̃i. We note that in case multiple observed
variables are generated from a single latent variable
or a single observed variable is generated by multiple
latent variables (see, e.g., Silva et al. (2006)), we can
still use the CR-CAMME to represent the process. In
the former case, certain rows of ANL are identical. For
instance, if X1 and X2 are generated as noisy obser-
vations of the same latent variable, then in (7) the
first two rows of ANL are identical. (More generally,
if one allows different coefficients to generate them
from the latent variable, the two rows are proportional
to each other.) Let us then consider an example in
the latter case. Suppose X3 is generated by latent
variables X̃1 and X̃2, for each of which there is also
an observable counterpart. Write the causal model as
X3 = f(X̃1, X̃2)+E3 and introduce the latent variable
X̃3 = f(X̃1, X̃2), and then we have X3 = X̃3 + E3.
The CR-CAMME formulation then follows.

4 IDENTIFIABILITY IN THE
LINEAR, NON-GAUSSIAN CASE

The CR-CAMME (7) has a form of the factor analysis
model (FA) (Everitt, 1984), which has been a funda-



mental tool in data analysis. Accordingly, one can
study the identifiability for CAMME by making use
of the identifiability of FA, as reported by Zhang et al.
(2017). The identifiability of FA, however, replies heav-
ily on the assumption that there are a relatively large
number of leaf variables in the causal graph G̃ (Bekker
& ten Berge, 1997), which seems rather strong. More-
over, it has been shown that second-order statistics
usually is not informative enough to recover a unique
causal model (Spirtes et al., 2001). Interestingly, we
show that the identifiability results can greatly benefit
from the non-Gaussianity assumption on the data. In
this paper we make the following assumption on the
distribution of Ẽi:

A1. All Ẽi are non-Gaussian.

We note that under the above assumption, ANL in (8)
can be estimated up to the permutation and scaling
indeterminacies (including the sign indeterminacy) of
the columns, as given in the following lemma. This
can be achieved by using overcomplete Independent
Component Analysis (ICA) (Hyvärinen et al., 2001).
Lemma 1. Suppose assumption A1 holds. Given X
which is generated according to (8), ANL is identifiable
up to permutation and scaling of columns as the sample
size N !1.

Proof. This lemma is implied by Theorem 10.3.1 in
(Kagan et al., 1973) or Theorem 1 in (Eriksson &
Koivunen, 2004).

What information of the causal structure G̃ can we re-
cover? Can we apply existing methods for causal discov-
ery based on LiNGAM, such as ICA-LiNGAM (Shimizu
et al., 2006) and Direct-LiNGAM (Shimizu et al.,
2011b), to recover it? LiNGAM assumes that the
system is non-deterministic: each variable is generated
as a linear combination of its direct causes plus a non-
degenerate noise term. As a consequence, the linear
transformation from the vector of observed variables to
the vector of independent noise terms is a square ma-
trix; ICA-LiNGAM applies certain operations to this
matrix to find the causal model, and Direct-LiNGAM
estimates the causal ordering by enforcing the property
that the residual of regressing the effect on the root
cause is always independent from the root cause.

In our case, ANL, the essential part of the mixing
matrix in (8), is n ⇥ r, where r < n. In other words,
for some of the variables X̃

⇤
i , the causal relations are

deterministic. (In fact, if X̃k is a leaf node in G̃, X̃⇤k is
a deterministic function of X̃k’s direct causes.) As a
consequence, unfortunately, the above causal analysis
methods based on LiNGAM, including ICA-LiNGAM

and Direct-LiNGAM, do not apply. We will see how to
recover information of G̃ by analyzing the estimated
ANL.

We will show that some group structure and the group-
wise causal ordering in G̃ can always be recovered.
Before presenting the results, let us define the follow-
ing ordered group decomposition according to causal
structure G̃.
Definition 2 (ordered group decomposition).
Consider the causal model G̃⇤. Decompose all involved
nodes into disjoint groups in the following way. First
put all leaf nodes which share the same direct-and-only-
direct cause in the same group; further incorporate the
corresponding direct-and-only-direct cause in the same
group. Here we say a node X̃

⇤
i is the “direct-and-only-

direct" cause of X̃⇤j if and only if X̃⇤i is a direct cause
of X̃⇤j and there is no other directed path from X̃

⇤
i to

X̃
⇤
j . After forming all groups each of which involves at

least one leaf node, each of the remaining nodes forms a
separate group. Each node is guaranteed to be in
one and only one group. We call the set of all such
groups ordered according to the causal ordering
of the non-leaf nodes in DAG G̃

⇤ an ordered group
decomposition of G̃⇤, denoted by GG̃⇤ .

X̃1 X̃2 X̃3 X̃4

X̃5 X̃6 X̃7

X̃8
G̃A :

(a)

X̃1X̃2 X̃3

X̃4

G̃B :

(b)

X̃4X̃2 X̃5

X̃6

X̃1

X̃3

G̃C (solid lines as its edges):
G̃D (all lines as its edges):

(c)

X̃3X̃2 X̃6

X̃7

X̃8X̃1

X̃5

X̃4
G̃E :

(d)

Figure 5: A set of causal DAGs G̃ as illustrative exam-
ples. (a) DAG G̃A. (b) G̃B. (c) Two DAGs G̃C and
G̃D. (d) G̃E .

Example Set 2 As seen from the process of ordered
group decomposition, each non-leaf node is in one and
only one ordered group, and it is possible for multi-
ple leaf nodes to be in the same group. Therefore,
in total there are (n � l) ordered groups. For ex-
ample, for G̃A given in Figure 5(a), a corresponding
group structure for the corresponding G̃

⇤ is GG̃⇤A
=

({X̃⇤1} ! {X̃⇤2 , X̃⇤5} ! {X̃⇤3 , X̃⇤6} ! {X̃⇤4 , X̃⇤7 , X̃⇤8}),
and for G̃B in Figure 5(b), there is only one group:



GG̃⇤B
= ({X̃⇤1 , X̃⇤2 , X̃⇤3 , X̃⇤4}). For both G̃C and G̃D,

given in Figure 5(c), an ordered group decomposition
is ({X̃⇤1}! {X̃⇤2 , X̃⇤3}! {X̃⇤4}! {X̃⇤5 , X̃⇤6}).

Note that the causal ordering and the ordered group
decomposition of given variables according to the graph-
ical model G̃⇤ may not be unique (this will actually
give rise to the possibility of distinguishing between the
non-leaf and leaf node in the group, as shown next). For
instance, if G̃⇤ has only two variables X̃⇤1 and X̃

⇤
2 which

are not adjacent, both decompositions ({X̃⇤1}! {X̃⇤2})
and ({X̃⇤2} ! {X̃⇤1}) are correct. Consider G̃

⇤ over
three variables, X̃

⇤
1 , X̃

⇤
2 , X̃

⇤
3 , where X̃

⇤
1 and X̃

⇤
2 are

not adjacent and are both causes of X̃
⇤
3 ; then both

({X̃⇤1}! {X̃⇤2 , X̃⇤3}) and ({X̃⇤2}! {X̃⇤1 , X̃⇤3}) are valid
ordered group decompositions.

We first present a procedure to construct the ordered
group decomposition and the causal ordering among
the groups from the estimated ANL. We will further
show that the recovered ordered group decomposition
is always asymptotically correct under assumption A1.

4.1 Construction and Identifiability of
ordered Group Decomposition

First of all, Lemma 1 tells us that ÂNL in (8) is identi-
fiable up to permutation and scaling columns. Let us
start with the asymptotic case, where the columns of
the estimated ANL from values of Xi are a permuted
and rescaled version of the columns of ANL. In what
follows the permutation and rescaling of the columns
of ANL does not change the result, so below we just
work with the true ANL, instead of its estimate.

X̃
⇤
i and X̃i follow the same causal DAG, G̃, and X̃

⇤
i are

causally sufficient, although some variables among them
(corresponding to leaf nodes in G̃

⇤) are determined by
their direct causes. Let us find the causal ordering
of X̃

⇤
i . If there are no deterministic relations and

the values of X̃
⇤
i are given, the causal ordering can

be estimated by recursively performing regression and
checking independence between the regression residual
and the predictor (Shimizu et al., 2011b). Specifically,
if one regresses all the remaining variables on the root
cause, the residuals are always independent from the
predictor (the root cause). After detecting a root cause,
the residuals of regressing all the other variables on the
discovered root cause are still causally sufficient and
follow a DAG. One can repeat the above procedure to
find a new root cause over such regression residuals,
until no variable is left.

However, in our case we have access to ANL but not
the values of X̃⇤i . Fortunately, the independence be-
tween regression residuals and the predictor can still be
checked by analyzing ANL. Recall that X̃⇤ = ANLẼNL,

where the components of ẼNL are independent. With-
out loss of generality, here we assume that all com-
ponents of ẼNL are standardized, i.e., they have a
zero mean and unit variance. Denote by ANL

i· the
ith row of ANL. We have E[X̃⇤j X̃⇤i ] = ANL

j· ANL|
i· and

E[X̃⇤2i ] = ANL
i· ANL|

i· = ||ANL
i· ||2. The regression model

for X̃
⇤
j on X̃

⇤
i is

X̃
⇤
j =

E[X̃⇤j X̃⇤i ]
E[X̃⇤2i ]

X̃
⇤
i +Rj i =

ANL
j· ANL|

i·

||ANL
i· ||2

X̃
⇤
i +Rj i.

Here the residual can be written as

Rj i = X̃
⇤
j �

ANL
j· ANL|

i·

||ANL
i· ||2

X̃
⇤
i

=
�
ANL

j· �
ANL

j· ANL|
i· ANL

i·

||ANL
i· ||2

�

| {z }
,↵j i

ẼNL
. (10)

If for all j, Rj i is either zero or independent from X̃
⇤
i ,

we consider X̃
⇤
i as the current root cause and put it

and all the other variables which are deterministically
related to it in the first group, which is a root cause
group. Now the problem is whether we can check for
independence between nonzero residuals Rj i and the
predictor X̃⇤i . Interestingly, the answer is yes, as stated
in the following proposition.
Proposition 3. Suppose assumption A1 holds. For
variables X̃⇤ generated by (7), regression residual Rj i

given in (10) is independent from variable X̃
⇤
i if and

only if ���
���↵j i �ANL

i·

���
���
2
= 0, (11)

where � denotes entrywise product.

So we can check for independence between the predictor
and regression residual as if the values of X̃⇤ were given.
Consequently, we can find the root cause group.

We then consider the residuals of regressing all the
remaining variables X̃⇤k on the discovered root cause as
a new set of variables. Note that like the variables X̃

⇤
j ,

these variables are again linear mixtures of Ẽi. Repeat-
ing the above procedure on this new set of variables
will give the second root cause and its ordered group.
Applying this procedure repeatedly until no variable
is left finally discovers all ordered groups following
the causal ordering. The constructed ordered group
decomposition is asymptotically correct, as stated in
the following proposition. We denote by OICA+Reg the
above two-stage procedure: we first apply overcomplete
ICA to find an estimate of ANL, and then do regression
and check for independence between the residuals and
the current candidate root cause by analyzing ANL.



Proposition 4. (Identifiable ordered group de-
composition) Let Xi be generated by the CAMME
with the corresponding measurement-error-free vari-
ables generated by the causal DAG G̃ and suppose as-
sumptions A0 and A1 hold. The ordered group decom-
position constructed by the above procedure is asymp-
totically correct, in the sense that as the sample size
N !1, if non-leaf node X̃i is a cause of non-leaf node
X̃j , then the ordered group which X̃i is in precedes the
group which X̃j belongs to. However, the causal or-
dering among the nodes within the same ordered group
may not be identifiable.

The result of Proposition 4 applies to any DAG struc-
ture G̃. Clearly, the identifiability can be naturally
improved if additional assumptions on the causal struc-
ture G̃ hold. In particular, to recover information of
G̃, it is essential to answer the following questions.

• Can we determine which nodes in an ordered group
are leaf nodes?

• Can we find the causal edges into a particular
node?

Below we will show that under rather mild assumptions,
the answers to both questions are yes.

4.2 Identifying Leaf Nodes and Individual
Causal Edges

If for each ordered group we can determine which vari-
able is the non-leaf node, the causal ordering among the
variables X̃

⇤
i is then fully known. The causal structure

in G̃
⇤ as well as the causal model can then be read-

ily estimated by regression: for a leaf node, its direct
causes are those non-leaf nodes that determine it; for
a non-leaf node, we can regress it on all non-leaf nodes
that precede it according to the causal ordering, and
those predictors with non-zero linear coefficients are
its parents. This way the structure can be estimated
uniquely under Assumption A0, although whether the
causal parameters in the causal model are uniquely
identifiable is another issue for investigation.

Now the goal is to see whether it is possible to find out
which variables in a given ordered group are leaf nodes;
if all leaf nodes are found, then the remaining one
is the (only) non-leaf node in the considered ordered
group. Below we will show that it is possible to find
leaf nodes by “looking backward" or “looking forward";
the former makes use of the parents of the variables in
the considered group, and the latter exploits the fact
leaf nodes do not have any child.
Proposition 5. (Leaf node determination by
“looking backward") Suppose the observed data were

generated by the CAMME where Assumptions A0 and
A1 hold.1 Let the sample size N ! 1. Then if as-
sumption A2 holds, leaf node O is correctly identified
from observations of X (more specifically, from the
estimated ANL or the distribution of X̃⇤).

A2. According to G̃
⇤, for leaf node O in the considered

ordered group g
(k), at least one of its parents is

not a parent of the non-leaf node in g
(k) or some

other leaf node in g
(k).

Example Set 3 Suppose Assumptions A0 and A1
hold.

• For G̃A in Figure 5(a), assumption A2 holds for
X̃
⇤
7 and X̃

⇤
8 in the ordered group {X̃⇤4 , X̃⇤7 , X̃⇤8}:

each of them has a parent which is not a parent of
the other; so both of them are identified to be leaf
nodes from the estimated ANL or the distribution
of X̃⇤, and X̃

⇤
4 can then be determined as a non-

leaf node.

• For G̃B, we cannot detect which node is a leaf
node or a non-leaf node.

• For both G̃C and G̃D in Figure 5(c), X̃⇤6 , in the
ordered group {X̃⇤5 , X̃⇤6}, follows assumption A2
and can be found to be a leaf node from the matrix
ANL; accordingly, X̃⇤5 has to be a non-leaf node.

• For G̃E in Figure 5(d), assumption A2 holds for
all leaf nodes, X̃⇤4 , X̃⇤5 , and X̃

⇤
8 , which can then

be found to be leaf nodes.

We can also determine leaf nodes by looking at the
relationships between the considered variables and the
variables causally following them, as stated in the fol-
lowing proposition.
Proposition 6. (Leaf node determination by
“looking forward") Suppose the observed data were
generated by the CAMME where Assumptions A0 and
A1 hold. Then as the sample size N !1, we can cor-
rectly identify the leaf node U in the considered ordered
group g

(k) from values of X if assumption A3 holds for
it:

A3. For leaf node U in g
(k), there exists at least one

node causally following g
(k) that 1) is d-separated

from U by a subset of variables in g
(1) [ g

(2)
... [

g
(k) \ {U} which does not include all parents of U

and 2) is a child of the non-leaf node in g
(k) .

1In this non-Gaussian case (implied by assumption A1),
the result reported in this proposition may still hold if
one avoids the non-deterministic faithfulness assumption
and assumes a weaker condition; however, for simplicity
of the proof we currently still assume non-deterministic
faithfulness.



Example Set 4 Let Assumptions A0 and A1 hold.

• For data generated by G̃A in Figure 5(a), we al-
ready found X̃

⇤
4 in ordered group {X̃⇤4 , X̃⇤7 , X̃⇤8}

to be a non-leaf node because of Proposition 5.
Proposition 6 further indicates that X̃

⇤
2 (in group

{X̃⇤2 , X̃⇤5}) and X̃
⇤
3 (in group {X̃⇤3 , X̃⇤6}) are non-

leaf nodes, and all leaf nodes are identified.

• For G̃B in Figure 5(b), there is only one ordered
group, and it does not provide further information
by looking “backward" or “forward", and it is im-
possible to find the non-leaf node with Proposition
5 or 6.

• For both G̃C and G̃D in Figure 5(c), X̃⇤6 was found
to be a leaf node due to Proposition 5; thanks to
Proposition 6, the other leaf node, X̃⇤3 , was also
detected. In particular, in G̃C , for leaf node X̃

⇤
3

both X̃
⇤
4 and X̃

⇤
6 satisfy the two conditions in

Assumption A3; however, in G̃D, for leaf node
X̃
⇤
3 only X̃

⇤
4 satisfies them. All leaf nodes were

successfully found.

• For G̃E in Figure 5(d), Proposition 5 already al-
lows us to identify all leaf nodes, X̃

⇤
4 , X̃

⇤
5 , and

X̃
⇤
8 . The assumptions in Propositions 5 and 6 are

not exclusive: Assumption A3 also holds for X̃
⇤
4

(for it X̃
⇤
7 satisfies the two conditions), we can

alternatively identify this leaf node by making use
of Proposition 6.

For contaminated data generated by any of G̃A, G̃C ,
G̃D, and G̃E , now we can find all leaf nodes in
the measurement-error-free causal model. One can
then immediately estimate the whole structure of the
measurement-error-free model.

The above two propositions are about the identifiably of
leaf nodes in the measurement-error-free causal model.
By applying them to all leaf nodes, we have (sufficient)
conditions under which the causal graph of G̃ is fully
identifiable.
Proposition 7. (Full identifiability) Suppose the
observed data were generated by the CAMME where
Assumptions A0 and A1 hold. Assume that for each
leaf node in G̃

⇤, at least one of the the two assumptions,
A2 and A3, holds. Then as the sample size N ! 1,
the causal structure G̃ is fully identifiable from the
observations with random measurement error.

In the general case, the causal structure G̃ might not be
fully identifiable, and the above propositions may allow
partial identifiability of the underlying causal structure.
Roughly speaking, the ordered group decomposition is
identifiable in the non-Gaussian case; with Propositions
5 and 6 one can further identify some leaf nodes as well
as their parents.

5 CONCLUSION AND
DISCUSSIONS

The measured values of variables of interest in various
fields, including the social sciences, neuroscience, and
biology, are often contaminated by measurement error.
Unfortunately, the output of existing causal discovery
methods is sensitive to the existence of measurement
error, and it is desirable to develop causal discovery
methods that can estimate the causal model for the
measurement-error-free variables without using much
prior knowledge about the measurement error. To this
end, this paper investigates identifiability conditions for
the underlying measurement-error-free causal structure
given contaminated observations. We have shown that
under appropriate conditions, the causal structure of
interest is partially or even fully identifiable.

We formulated four assumptions. Assumption A0 is
about the Markov condition and non-deterministic
faithfulness assumption for causal model G̃⇤. Assump-
tion A1 is about the distribution of the underlying noise
terms in the causal process. The remaining two are
about particular types of “sparsity" of the underlying
causal graph. We note that in principle, all assump-
tions except A0 are testable from the observed data.
This suggests that it is possible to develop practical
causal discovery methods to deal with measurement er-
ror that are able to produce reliable information at least
in the asymptotic case. In addition, it is worth not-
ing that some involved assumptions may be weakened.
For instance, faithfulness is not required to find the
correct ordered group decomposition, but just needed
for detecting leaf nodes in the ordered groups. Sup-
pose Assumptions A0 and A1 hold; we conjecture that
the necessary and sufficient condition for the non-leaf
node to be identifiable is that at least one of the two
assumptions, A2 and A3, holds. To falsify or prove this
conjecture is part of our future work.

It is worth noting that various kinds of background
knowledge of the causal model may further help im-
prove the identifiability of the measurement-error-free
causal model. For instance, if one knows that all
causal coefficients are smaller than one in absolute
value, then the measurement-error-free causal model
in Figure 5(b) is immediately identifiable from contam-
inated data. Our future research further includes 1)
establishing identifiability conditions that allow cycles
in the measurement-error-free causal model in light of
ubiquity of cycles in causal models, 2) developing com-
putationally efficient algorithms for causal discovery
under measurement error based on the established the-
ory, and 3) proposing efficient methods for particular
cases where each measurement-error-free variable has
multiple measured effects or multiplied measurement-
error-free variables generate a single measured effect.
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