
Towards Flatter Loss Surface via Nonmonotonic Learning Rate Scheduling

Sihyeon Seong1, Yekang Lee1, Youngwook Kee1, Dongyoon Han1, 2, Junmo Kim1

1School of Electrical Engineering, KAIST
2Clova AI Research, NAVER Corp.

{sihyun0826,askhow,youngwook.kee,dyhan,junmo.kim}@kaist.ac.kr

Abstract

Whereas optimizing deep neural networks us-
ing stochastic gradient descent has shown great
performances in practice, the rule for setting
step size (i.e. learning rate) of gradient de-
scent is not well studied. Although it appears
that some intriguing learning rate rules such
as ADAM (Kingma and Ba, 2014) have since
been developed, they concentrated on improv-
ing convergence, not on improving generaliza-
tion capabilities. Recently, the improved gen-
eralization property of the flat minima was re-
visited, and this research guides us towards
promising solutions to many current optimiza-
tion problems. In this paper, we analyze the
flatness of loss surfaces through the lens of ro-
bustness to input perturbations and advocate
that gradient descent should be guided to reach
flatter region of loss surfaces to achieve gen-
eralization. Finally, we suggest a learning rate
rule for escaping sharp regions of loss surfaces,
and we demonstrate the capacity of our ap-
proach by performing numerous experiments.

1 INTRODUCTION

Overfitting is a core issue in the domain of machine
learning. When it comes to deep learning, it becomes
even more important, because of its high dimensionality.
Owing to the huge number of parameters, deep learn-
ing models show some strange behaviors. For exam-
ple, deep models easily fit random labeling of training
data and furthermore training data replaced with random
noise input (Zhang et al., 2016). A peculiar phenomenon
called “fooling deep neural networks (DNNs)” was also
reported in (Nguyen et al., 2015; Szegedy et al., 2013).
These kinds of unexpected behavior might be a potential

risk when adopting DNNs for applications which require
high precision. Classic DNN regularization methods in-
clude placing a Gaussian or Laplacian prior on param-
eters, called weight decays (Figueiredo, 2003; Bishop,
2006). A weight decay assumes that the desirable solu-
tions of the parameters are placed near zero, and there-
fore does not consider solutions which may lie a bit far
from zero but possibly show better test performance. Nu-
merous interesting works are still being proposed, in-
cluding Stochastic Gradient Langevin Dynamics(SGLD)
(Raginsky et al., 2017), parametrization method for re-
ducing overfitting for genomics (Romero et al., 2016),
employing stochastic effects; randomly dropping fea-
tures (Hinton et al., 2012) or using stochastic depth
(Huang et al., 2016). Some interesting works analyzed
these stochastic effects in the view of a L2-regularization
(Wager et al., 2013) or an ensemble method (Singh et al.,
2016).

The concept of generalization via achieving flat min-
ima was first proposed in (Hochreiter et al., 1995), and
its importance has recently been revisited in the domain
of deep learning optimization (Chaudhari et al., 2016),
(Keskar et al., 2016). This another viewpoint of think-
ing generalization may become a promising direction for
investigating the weight space property of DNNs; more-
over, DNN loss surface property analysis has become a
popular issue (Sagun et al., 2016; Swirszcz et al., 2016;
Littwin and Wolf, 2016; Im et al., 2016). Recently,
achieving generalization via flat minima is investigated
in terms of optimizing PAC-Bayes bound (Dziugaite and
Roy, 2017a,b; Neyshabur et al., 2017).

A stochastic gradient descent (SGD) walks around loss
surfaces in DNNs, and its behavior can be controlled
by learning rates. It leads us to an interesting question:
“Is it possible to seek flatter valleys of loss surfaces by
controlling learning rate schedules?”. We show the re-
lation of learning rates and flatness of the loss surface,
then show that a nonmonotonic scheduling of learning
rates with an intermediate large learning rate stages are

beneficial to discover flat minima and therefore leads to
improved generalization. On the scheduling of learning
rates, recent studies achieve great convergence rates on
training data, but they are prone to overfit, showing some
degradation of test performance. Therefore, even state-
of-the-art DNN models (Simonyan and Zisserman, 2014;
Szegedy et al., 2014; He et al., 2016) have continued to
use simple step or exponentially-decaying learning step
sizes. Thus, our work has great implications on improv-
ing the theory of learning rates. To the best of our knowl-
edge, this is the first work that pays substantial attention
to learning rates with regard to generalization and over-
fitting of deep neural networks. We cite selected note-
worthy work on learning rates; however, again note that
none of the work concerns what we consider through-
out the paper. Regarding fast convergence of given train-
ing data: RMSprop (Tieleman and Hinton, 2012), Ada-
grad (Duchi et al., 2011), Adadelta (Zeiler, 2012), Adam
(Kingma and Ba, 2014), and an interesting work that
searches for optimal adaptive learning rates without man-
ual tuning (Schaul et al., 2012).

In this paper, we begin with robustness in the input space,
which is a traditional way of explaining generalization.
Then, we find the relation of robustness in the input per-
turbation and that in weight perturbation to show why flat
minima work better (Section 2). Next, we explain how
large learning rates can guide gradient descent to flatter
losses (Section 3). Then, a simple nonmonotonic learn-
ing rate scheduling technique is introduced for adopt-
ing larger learning rates. Finally, our claims are demon-
strated by performing numerous experiments.

2 THE RELATION OF ROBUSTNESS
IN INPUT SPACE AND WEIGHT
SPACE

In this section, we show that generalization can be
achieved through robustness with respect to input per-
turbations, input perturbations can be equivalently trans-
ferred to weight perturbations, and therefore generaliza-
tion can be achieved through robustness with respect to
weight perturbations.

Generalization can be stated as the uniformity of the loss
function with respect to input change (See Supplemen-
tary Material A). Denote x ∈ Rn×1 as input, w ∈ Rd as
the vectorized weight of the model and L(w;x) as the
loss function of the neural network. Then, input pertur-
bations δx ∈ Rn×1 should result in a small change in the
loss function:

|L(w;x + δx)− L(w;x)| < ε,

A similar interpretation of generalization in DNNs can be
found in (Rifai et al., 2011), where the authors attempted
to reduce |f(w;x + δx) − f(w;x)| for f , which is an
auto-encoder.

Now, the generalization capability of the model is eval-
uated for the change of the loss function with respect to
perturbations on the weight vector δw.

Lemma 1. Let δx and δw be input and weight per-
turbations, respectively. For a single-layer neural net-
work, the input perturbations δx can be transferred to
the weight perturbations δw. More formally, suppose
we have weight matrix W ∈ Rm×n and weight per-
turbations δW ∈ Rm×n. Then for any W and x that
satisfy x 6= 0 and W 6= 0, there exists δW such that
(W + δW)x = W(x + δx). Consequently, |L(W +
δW;x)− L(W;x)| = |L(W;x + δx)− L(W;x)|.

Proof. The proof can be accomplished by finding δW

which satisfies

δWx = Wδx (1)

The following choice of δW satisfies (1):

δW =
Wδx

x>x
x> =

Wδx

‖x‖2
x> (2)

Proposition 1. Suppose |L(W+δW;x)−L(W;x)| <
ε holds for any δW such that

∥∥∥δW
∥∥∥
F
< δ, δ > 0 and

ε > 0. Then |L(W;x + δx) − L(W;x)| < ε holds for
any δx such that ‖δ

x‖
‖x‖ < δ

σmax(W) , where σmax(W) is
the maximum singular value of W.

Proof. For any δx such that ‖δ
x‖
‖x‖ < δ

σmax(W) , if we

choose δW as in (2), then from the result of Lemma 1,
we have

|L(W;x + δx)− L(W;x)|
= |L(W + δW;x)− L(W;x)| (3)

Then, corresponding bound on
∥∥∥δW

∥∥∥
F

can be derived
by∥∥∥δW

∥∥∥2
F

=
‖Wδx‖2

∥∥x>
∥∥2

(x>x)
2 ≤ σ2

max(W) ‖δx‖2

‖x‖2
< δ2,

(4)

where we used
∥∥ab>

∥∥2
F

= ‖a‖2 ‖b‖2 and ‖Wδx‖ ≤
σmax(W) ‖δx‖.

Cost

Parameter

Escape :
Large learning rate

Similar cost

Decaying

Flat :
Robust to perturbation

(a) (b)

Figure 1: Conjectured illustration showing the relation of learning rate to loss surface. (a) A nonmonotonic scheduling
of learning rates with an intermediate large learning rate stages lets the model escape from the steep valleys with high
curvature. (b) Concept of what we call ‘wide valleys’. The scale of perturbation should be large enough so that the
loss surface can effectively cope with proper perturbations.

Therefore, we have

|L(W;x+δx)− L(W;x)|
= |L(W + δW;x)− L(W;x)| < ε (5)

According to Lemma 1, for an arbitrary input perturba-
tion, the first layer’s weight matrix can be perturbed so
that W(x + δx) = (W + δW)x, i.e. the first layer’s
responses are the same for the two cases. Thus, the re-
maining layer’s responses are also the same throughout,
and the results in Lemma 1 and Proposition 1 are applica-
ble to general DNNs. In Supplementary Material B, we
provide additional analysis that shows how to distribute
weight perturbations to all DNN layers to match the input
perturbations.

Now that we can transfer the perturbations of input to
those of weight, generalization can be interpreted on the
loss surface. Reduction of the effects on the loss function
with respect to perturbations on the input, requires us to
reduce the effects with respect to perturbations on the
weight vector. Finally, we propose the relation of the
loss surface and a measure for generalization as follows:

Conjecture 1. Given the same cost value, if the loss sur-
face is flatter, then it is more likely for neural networks to
be more generalized.

3 THE RELATION OF LEARNING
RATES AND GENERALIZATION

High-dimensional loss surfaces are regarded as non-
convex and extremely difficult to visualize. Let us con-
sider the SGD algorithm, which corresponds well to cur-
rent large-scale problems. Not only are there abundant
pathways that the SGD can follow, but the pathways are

also highly dependent on learning rates. We can expect
the loss surface of the model to have many locally convex
areas and the learning rates to largely affect the outcome
achieved by the algorithm. We justify this situation by
evaluating the stationary characteristic of the stochastic
gradients as the mean of the given values as follows:

L̄(w;x) := Exi∼D[L(w;xi)], (6)

where the training data xi ∈ Rn×1 are drawn from a
distribution D. We can fit a quadratic approximation of
the entire loss surface surrounding the local optimum w∗

using the positive definite Hessian matrix

L̄(w;x) ≈ L̄(w∗;x) +
1

2
(w −w∗)>H∗(w −w∗),

(7)

where H∗ is the mean (overD) of the Hessian of the loss
function at w∗. Let us denote γt as the learning rate at the
iteration t. Then, the gradient descent can be calculated
as follows:

wt+1 = wt − γt∇L̄(w;x) (8)
≈ wt − γtH∗(wt −w∗). (9)

wt+1 −w∗ ≈ (I − γtH∗)(wt −w∗). (10)

If we assume small and smooth changes of the learn-
ing rate during some epochs (equivalently, ts ≤ t ≤ tf
where |γt−γts | < εγ), providing constant γts , the weight
vector can be measured by both the optimal and the ini-
tial points:

wt ≈ w∗ + (I − γtsH∗)t−ts(wts −w∗) (11)

Then, we can strictly obtain the range of the learning rate
capable of enforcing the convergence. If H∗ is diagonal
as (Schaul et al., 2012), and hmax is the maximum value

amongst the second-order gradients, the convergence cri-
teria are expressed by the condition1

|1− γtshmax| < 1, (12)

which is equivalent to

0 < hmax <
2

γts
, (13)

which provides the relationship of the learning rate and
the curvature of the surface necessary to converge. A
large learning rate has the critical requirement that the
curvature of the surface should be sufficiently low to
avoid diverging. Therefore, we anticipate that the SGD
having a large learning rate allows for locating a smooth
area.

Our remarks on the relationship between learning
rates and generalization address “which local minimum
should be chosen” as conceptually illustrated in Figure 1.
Recent studies on loss surfaces, such as (Dauphin et al.,
2014) and (Choromanska et al., 2015), both theoretically
and empirically discovered that local minima are more
likely to be located only where train losses are very close
to those of the global minimum. Based on these results,
we consider that the loss surface has basins of local min-
ima that occur only at the bottom of the loss surface, i.e.,
|L(w∗;x)−Lgmin| ≈ ε where Lgmin is the global min-
imum. When such a basin has a high curvature hmax
violating (13), w keeps drifting from w∗ because of (11)
until it reaches another basin with a smaller curvature, a
flatter region satisfying (13).

Additionally, once it reaches the entrance of a basin of
smaller curvature, it is more likely to converge to a flat-
ter local minimum. This is discussed in Section 6.3 im-
plying that the average slope of the loss surface depends
on the width of the basin’s entrance. Finally, we pro-
pose the following chain of effects showing how general-
ization can be achieved via nonmonotonic learning rates
scheduling:

High learning rate⇒ escape from high curvature val-
leys in weight space ⇒ smooth region in weight space
⇒ smooth region in input space⇒ improved general-
ization.

4 LEARNING RATES AND
STOCHASTIC VARIANCE

The major claim of our work is that learning rates should
be set large to escape sharp loss surface valleys. For set-
ting large learning rates, curvature of loss surfaces is the

1(12) is still a valid condition for a non-diagonal H∗ with
the maximum eigenvalue hmax

ത𝐿 𝐰𝒐𝒑𝒕; 𝐱

ത𝐿 𝐰𝒑𝒆𝒂𝒌; 𝐱

basin 1 basin 2 basin 3 basin 4
ത𝐿 𝐰𝒊𝒏𝒊𝒕; 𝐱

Figure 2: An illustration of the occurrence of maximum
gradients. As the loss at random initial weights is signifi-
cantly large, maximum gradients are most likely to occur
near initial weights.

only constraint in plain gradient descent cases. However,
stochastic variance (Reddi et al., 2016) further interferes
with convergence in SGD cases. Stochastic variance is
an inherent variance of gradients caused by minibatch se-
lection in SGD. When stochastic variance is large, learn-
ing rates should be set smaller to prevent divergence.
Therefore, the maximum learning rate can be achieved
when the stochastic variance is small.

Stochastic variance is relatively large when the gradients
are large (Johnson and Zhang, 2013). Therefore, learning
rates should be set large after the occurrence of the max-
imum gradients. As in Figure 2, suppose the randomly
initialized weights are winit for which L̄(winit;x) will
be large (e.g. around log (nclass) in the case of cross-
entropy loss where nclass is the number of classes). wopt

is a local minimum that is closest to winit and wpeak is
a weights of local maximum which is the closest to wopt

and under the condition L̄(winit;x) � L̄(wpeak;x).
We constrain our claims under

|L̄(winit;x)− L̄(wopt;x)|
|L̄(wpeak;x)− L̄(wopt;x)|

� ‖winit −wopt‖
‖wpeak −wopt‖

(14)

and consider other cases to be beyond the scope of this
paper. In practice, L̄(winit;x) � L̄(wpeak;x). There-
fore (14) is a probable condition. If we divide the loss
surfaces into subspaces of basins and assume Lipschitz
continuity, then we get the lower bound of maximum gra-
dients during the optimization gLB as follows.

gLB =
|L̄(winit;x)− L̄(wopt;x)|

‖winit −wopt‖
(15)

which makes maximum gradients mostly occur near the
initial weights.

5 PEAK LEARNING STAGE :
NONMONOTONIC LEARNING
RATES SCHEDULING

To experimentally show that high learning rates are bene-
ficial to discovering flatter loss surfaces, we propose non-
monotonic learning rate schedules to utilize larger learn-
ing rates. Adopting larger learning rates presents the
risk of learning to diverge because of (13) and Section
4. Rather than placing the maximum learning rate at the
start of the learning, we place maximum learning rate in
the middle, so the initial stage can stabilize learning(i.e.
reduce stochastic variance) and prepare for the consec-
utive large learning rates. This learning rate schedule is
motivated by the neurological phenomenon called criti-
cal period or sensitive period—a period in which learn-
ing plasticity reaches its peak (Wiesel et al., 1963; Ge
et al., 2007). The plasticity gradually increases if biolog-
ical systems are prepared to learn, after which plasticity
is reduced over time. Considering the stabilization of
learning, it is not surprising that plasticity gradually and
slowly grows to a certain degree once it is switched on.
We tried two nonmonotonic learning rate schedules, γt
at normalized iteration t, as follows2:

• Gaussian Shape: γt = γmax ∗ exp(−(t−0.5)
2

σ2).

• Laplacian Shape: γt = γmax ∗ exp(− |t−0.5|λ).

Here, γmax is the peak or maximum learning rate; γmin
is the final or minimum learning rate; and γstart is the
starting learning rate. Also, σ2 for the Gaussian-shaped
schedule and λ for the Laplacian-shaped schedule is de-
fined as−0.25 ∗ 1

ln(γmin/γmax)
and−0.5∗ 1

ln(γmin/γmax)
,

respectively. Because the function starts with a value
that is too small, we use a truncated function that is cut
at the appropriate offset, toffset, for faster convergence.
The offset toffset is 0.5−

√
−σ2 ln(γstart/γmax) in the

Gaussian schedules and 0.5 + λ ln(γstart/γmax) in the
Laplacian schedules.

The total number of iterations determines not only the
total number of weight updates but also the sampling
frequency from the continuous peak-shaped function.
The sampling frequency controls the smoothness of the
change in learning rate. By setting γmax larger than
the maximum learning rate of the classical learning rate
schedule within convergence, the local optimum can be
found in the flatter basin. We found both two peak
shaped learning rates worked well, but the Gaussian-
shaped learning rates worked slightly better than the

2For notation simplicity, the iteration t is normalized be-
tween 0 and 1.

Laplacian-shaped ones as shown in Figure 6. Therefore,
we used Gaussian-shaped scheduling for most of the ex-
periments. Note that a Gaussian-shaped curve is not the
only way but just one way to implement the proposed
peak learning stages.

SLOW START Because of (13) and stochastic vari-
ance of the SGD, learning rates that are too large cause
the learning to diverge. If we start with a too large learn-
ing rate, the learning either diverges or finds a poor crit-
ical point. Therefore, considering the stability of opti-
mization, learning should commence with a small learn-
ing rate. However, we verified experimentally that start-
ing with a learning rate that is too small does not lead to
success. Thus, adopting toffset in the learning rate rules
is required to eliminate the redundant initial phase.

DECAYING LEARNING RATES The peak learning
stage induces some divergence to escape from the sharp
minima. Thus, the learning rate must be decayed for
the final convergence. Considering conventional meth-
ods, this stage is intuitively acceptable. It is noteworthy
that most DNNs are optimized using SGD, which im-
plies loss surfaces are substantially fluctuating for each
minibatch. Therefore decaying stages are necessary for
achieving stability of optimization results.

6 EVALUATING THE FLATNESS OF
LOSS SURFACES

Evaluation of the effect of the learning rate inevitably
requires its behavior on the loss surface to be analyzed.
However, in neural networks, the loss surface is high-
dimensional so that optimization trajectory on the loss
function becomes difficult to visualize. First, we tracked
the local property of high-dimensional loss surfaces by
measuring the magnitude of the gradient. Throughout
this paper, the magnitude of the gradient refers to the 2-
norm of the gradient vector which represents the local
steepness of loss surfaces.

However, because the gradient (or Hessian) of the loss is
computed at a specified location in the weight space, its
application is limited to a local area of the loss surface.
Therefore, we visualize large-scale properties of loss sur-
faces by adopting the linear path experiments introduced
by (Goodfellow and Vinyals, 2014). The linear path ex-
periments measure the loss surface by sweeping the tra-
jectory between two points in high-dimensional spaces.
By visualizing a single cross section of the loss surface,
we indirectly measure its large-scale flatness.

(a) (b) (c)
Figure 3: Linear path experiments in Section 6. (a) Loss versus weight perturbation along the line path, which
follows the trajectory between the final state weight and peak stage weight. The model trained using the proposed
learning rate clearly shows flatter loss surface. Each color represents different learning rates. Maximum and minimum
losses are also presented from different models trained by random initialization. (b) Loss versus randomly generated
input perturbation. Each transparent line represents different random noise directions, and the bold line indicates the
ensemble average of these transparent lines. The model trained using the proposed learning rate shows smaller loss
for the same perturbation, indicating that our method is more robust to input perturbations. (c) Loss versus input
perturbations in the directions of training to validation data. Each transparent line represents different perturbation
decided by the selection of nearby validation data. The bold line indicates the ensemble average of the transparent
lines. This also shows that the loss surface determined by our method is flatter with respect to input perturbations.

6.1 LOSS WITH RESPECT TO WEIGHT
PERTURBATIONS

Because our learning rate rule has a peak stage that is
not considered in existing methods, we analyzed its ef-
fects by performing linear path experiments which fol-
low the trajectory between the final state weight, wfinal,
and peak stage weight, wpeak. That is, we calculated
L(w;x), where w = wfinal + α

wpeak−wfinal

‖wpeak−wfinal‖ and
α > 0. We reported the flatness over a training set S.
Thus, the average of losses, 1

|S|
∑

x∈S L(w;x), was cal-
culated. We also tested weight perturbations in random
directions and fooling directions (Szegedy et al., 2013).

6.2 LOSS WITH RESPECT TO INPUT
PERTURBATIONS

We also applied the linear path experiments to input
spaces. Flatter loss surfaces can be easily expected to be
robust, regarding random perturbations. Thus, we calcu-
lated L(w;x), where x = xtrain + αxnoise, given that
xnoise is randomly generated from the Normal distribu-
tion and then normalized to ‖xnoise‖ = 1. Moreover,
what the generalization tries to achieve is higher accu-
racy on the validation data. Therefore, we performed
further experiments generating perturbations in the direc-
tion of validation data from training data. Thus, we cal-
culated L(w;x), where x = xtrain + α(xval − xtrain).
In this case, xval was randomly selected from the ten
closest validation candidates placed near xtrain for each
trial. Finally, the average of losses over training set is

calculated.

6.3 THE FLATNESS OF LOSS SURFACES

The notion of flatness of a loss surface can be defined
as follows. Let us consider a basin of a loss surface
with local minimum w∗i , and define level set SLi =
{w|L(w;x) = c} where c is the loss at the entrance of
the basin. Choose any w0 ∈ SLi

, and then the average
slope of the surface along the line from w∗i to w0 can be
determined as c−ε

‖w∗
i−w0‖ , where ε is the loss at w∗i . If

this slope is small, then we call the loss surface is flat.

7 EXPERIMENTS
Here, we verify the roles of these peak-shaped learn-
ing rates on baseline convolutional neural networks
(Krizhevsky et al., 2012), which we call “small model”,
and (Springenberg et al., 2014), which we call “large
model” with the CIFAR-10 dataset. Hereinafter, all the
experimental results are based on these settings, except
for those in Section 7.2. We compared step decay, ratio-
nal decay (γt = γ0(1 + λt)−1), and RMSprop (Tiele-
man and Hinton, 2012) as adaptive step size schedules
and Gaussian-shaped schedules. For the “small model”,
the best validation error was 18.79 % with the baseline
step decaying learning rates. This result was reduced to
16.48% after adding our learning rate method. For the
“large model”, the validation error, 9.53%, of the base-
line method was reduced to 8.68%. We tried numerous
random settings of hyperparameters (e.g., total number

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

L(x
tr
;W

gau
+w

1st only
rand

)

L(
x tr

;W
st

ep
+
w

1s
t o

nl
y

ra
nd

)

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

L(x
tr
;W

gau
+

rand
)

L(
x t
r;W

st
ep
+
 r
an
d)

(b)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

L(x
tr
;W

gau
+

fool
)

L(
x t
r;W

st
ep
+
 f
oo
l)

(c)
Figure 4: Measuring effects of various weight perturbations (at t = 1) was introduced in Section 6. The x and y axes
indicate the loss of the model trained by Gaussian and stepped learning rates, respectively. Because all graphs are tilted
toward the y-axis, we can see that the nonmonotonic learning rate technique leads to flatter region of loss surfaces with
less loss for weight perturbation. (a) Random weight perturbations are added to the first layer. (b) Random weight
perturbations are added to the entire layers. (c) Weight perturbations along the fooling direction are added to the entire
layers.

0 100 200 300 400 500 600 700

0.002

0.004

0.006

0.008

0.01

number of epoch

le
ar

ni
ng

 r
at

e
/

gr
ad

ie
nt

 m
ag

ni
tu

de
 x

 0
.0

00
5

0 100 200 300 400 500 600 700

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

er
ro

r
ra

te

learning rate
gradient magnitude
validation error
train error

(a)

0 100 200 300 400 500 600

0.002

0.004

0.006

0.008

0.01

number of epoch

le
ar

ni
ng

 r
at

e
/

gr
ad

ie
nt

 m
ag

ni
tu

de
 x

 0
.0

00
5

0 100 200 300 400 500 600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

er
ro

r
ra

te

learning rate
gradient magnitude
validation error
train error

(b)

0 100 200 300 400 500 600 700 800 900

0.002

0.004

0.006

0.008

0.01

number of epoch

le
ar

ni
ng

 r
at

e
/

gr
ad

ie
nt

 m
ag

ni
tu

de
 x

 0
.0

00
5

0 100 200 300 400 500 600 700 800 900

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

er
ro

r
ra

te

learning rate
gradient magnitude
validation error
train error

(c)

0 100 200 300 400 500 600 700 800 900

0.05

0.1

0.15

0.2

0.25

number of epoch

le
ar

ni
ng

 r
at

e
/

gr
ad

ie
nt

 m
ag

ni
tu

de
 x

 0
.0

00
5

0 100 200 300 400 500 600 700 800 900

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

er
ro

r
ra

te

learning rate
gradient magnitude
validation error
train error

(d)

0 100 200 300 400 500 600 700 800 900

0.05

0.1

0.15

0.2

0.25

number of epoch

le
ar

ni
ng

 r
at

e
/

gr
ad

ie
nt

 m
ag

ni
tu

de
 x

 0
.0

00
5

0 100 200 300 400 500 600 700 800 900

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

er
ro

r
ra

te

learning rate
gradient magnitude
validation error
train error

(e)

0 100 200 300 400 500 600 700 800 900

0.05

0.1

0.15

0.2

0.25

number of epoch

le
ar

ni
ng

 r
at

e
/

gr
ad

ie
nt

 m
ag

ni
tu

de
 x

 0
.0

00
5

0 100 200 300 400 500 600 700 800 900

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

er
ro

r
ra

te

learning rate
gradient magnitude
validation error
train error

(f)
Figure 5: Examples of learning process of each learning rate schedule. (a), (b) and (c) :“small model” results, (d), (e)
and (f) :“large model” results. (a), (b) and (c), or (d), (e) and (f) show learning rates, gradient magnitude, train and
validation errors of each learning rate schedule (step, rational and Gaussian learning rates), respectively. All given
values are calculated after each epoch. For the Gaussian learning case, the magnitude of the gradient peaks at the
initial phase. Afterwards, it gradually decreases until the learning rate peaks. Other plots are provided for comparison.

of iterations, weight decay, momentum, and initial or
peak learning rate) on the “small model” and confirmed
that our methods are robust to selection of those settings
(see Figure 7). However, we would like to clarify some
experimental details on hyperparameters.

STARTING OFFSET This parameter can be ignored
if the training time does not matter. It is safe to set
toffset = 0. However, going through all these extremely
small learning rates is not necessary for achieving good
performance. toffset is controlled by γstart and setting
this value as maximum learning rate from the step decay-

0 100 200 300 400 500 600 700 800 900
0.165

0.17

0.175

0.18

0.185

0.19

0.195

number of epochs

va
lid

at
io

n
er

ro
r

lap,discrete
lap,continuous
gau,discrete
gau,continuous

Figure 6: Comparisons of Gaussian-shaped and
Laplacian-shaped learning rates, in terms of final vali-
dation error at s = 1. Horizontal axis is the total num-
ber of epochs. “Continuous” refers to learning rates that
are updated at each iteration, whereas “Discrete” refers
learning rates that are only updated at the beginning of
each epoch.

ing scheduling is predominantly a good choice.

MAXIMUM LEARNING RATE Because we are
claiming that a large learning rate increases the gener-
alization capability of the model, it is necessary to in-
crease the peak learning rate more than three times of the
original maximum learning rate reported in the baseline
model. Three times the conventional maximum learning
rate is most often safe. However, one can further increase
γmax if enough epochs are taken.

MINIMUM LEARNING RATE Generally, using
learning rates that are too small presents the risk of over-
fitting. However, because we regularize for the smooth
loss surface in the peak learning stages, setting γmin
smaller than the conventional value does not harm the
performance. It sometimes results in further perfor-
mance improvement during trials. We experimentally
found that setting γmin = γmax/10000 works well.

THE NUMBER OF EPOCHS Our method spends
times on peak learning rate, which does not reduce train-
ing loss. Therefore, we were required to take more
epochs than the conventional schedule to get the best
performance. However, even with the same number
of epochs, our method can surpass other learning rate
schedules, as reported in Section 7.2. Furthermore, we
compared the performance of our method to the step-
decaying learning rate using the model ensemble in Table
1. To reproduce the same performance as our method, the
step decaying learning rate rule needs five model ensem-
bles. Therefore, whereas Gaussian learning rate requires
more epochs, our method is still practically efficient.

Figure 7: Prediction on test error with cost and `2-norm
of gradients.

ROBUSTNESS TO HYPERPARAMETER TUNING
We reported the experimental results with several values
for the peak learning rate, γmax, and the total number of
iterations in Figure 7. This clearly shows our method is
robust to variations in the hyperparameter. For a wide
range of γmax, from 0.002 to 0.015, the worst validation
error was 18.15%, which is still better than the baseline
error (18.79%).

7.1 EVALUATING FLATNESS OF THE LOSS
GUIDED BY PEAK LEARNING STAGES

Using the techniques presented in Section 6, we eval-
uated the flatness of the loss trained by peak learning
stages. Peak learning stage showed robustness with re-
spect to random input perturbations (Figure 3(b)) and
flatness in the direction of train to validation data (Fig-
ure 3(c)). In terms of weight perturbations, our method
showed flatness in the direction of wfinal to wpeak (Fig-
ure 3(a)). It also showed flatness along random direc-
tions (Figure 4(a), (b)) and even with fooling directions
(Figure 4(c)). Thus, our theory of flattening loss surface
using peak learning stages is well supported by numer-
ous experimental results.

Method Error (%)
Step learning rate Gaussian learning rate

1 CNN 18.79(360 epochs) 16.91(360 epochs)
2 CNNs 17.49 15.98
3 CNNs 17.13 15.37
4 CNNs 17.09 14.88
5 CNNs 16.75 14.89

Table 1: Model Ensemble.

7.2 PERFORMANCE EVALUATION

In what follows, all test error rates are evaluated at the
last epoch, not at the best validation epoch. The per-

formance of our learning rate schedule(Gaussian-shaped
learning rates) is compared to the state-of-the-art models
(Zeiler and Fergus, 2013; Lin et al., 2013; Goodfellow
et al., 2013; Lee et al., 2014; He et al., 2016).

MNIST For MNIST, we set the γmax = 0.3, σ2 =
2∗0.082 (this value makes Gaussian-shape visually looks
good) of the Gaussian shaped-learning schedule with to-
tal 167 epochs. We considered that the training time is
not the issue in case of MNIST because training time
is significantly short. Throughout our proposed learning
rate policy, without any modification of loss functions
and architectures, the accuracy already surpasses the pre-
vious works. Table 2 summarizes the result.

METHOD ERROR (%)
CNN 0.53

STOCHASTIC POOLING 0.47
NIN 0.47

MAXOUT NETWORKS 0.45
DEEPLY SUPERVISED NET 0.39

NIN + ours 0.34
Table 2: Test error rates for the MNIST dataset (without
data augmentation).

CIFAR-10 and CIFAR-100 On the hyperparameter
tuning, we followed same settings as in MNIST, ex-
cept 720 total epochs for NIN (Lin et al., 2013), 270
epochs for ResNet (He et al., 2016). We preprocess the
images similar to (Lin et al., 2013; Zeiler and Fergus,
2013; Goodfellow et al., 2013). Color jittering is also
added in the ResNet experiment. For CIFAR-100, ex-
periments on DenseNet (Huang et al., 2017) and Wide
ResNet (Zagoruyko and Komodakis, 2016) are also per-
formed. In case of Wide ResNet, we exceptionally set
the peak learning rate twice as large as the start learn-
ing rate (this model adopts large dropout rate 0.3 and ex-
ceptionally small number of epochs, which interfere with
convergence). Table 3 summarizes the result.

ImageNet Because ImageNet classification requires
huge computational cost, we reduced shape of the
Gaussian-shaped learning rate scheduling by adopting
toffset. We tested with the model of (Krizhevsky et al.,
2012) and (Szegedy et al., 2014), which is well-reported
and widely used as baseline model. First, we tried learn-
ing rate schedules with toffset = 0, σ2 = 0.0128 and
total 270 epochs (Naive version). Then, to make train-
ing efficient, we adopt γstart = 0.01, γmax = 0.03 and
γmin = 0.000003, as suggested in the section 7. Finally,
we report validation errors in Table 4.

METHOD
ERROR (%)

CIFAR-10 CIFAR-100
MAXOUT NETWORKS 9.38 -

DROPCONNECT 9.32 -
NIN 8.81 -

DEEPLY SUPERVISED NET 8.22 -
NIN + APL UNITS 7.51 -

RESNET(110-DEPTH) 6.41±0.21 27.815±0.15
DENSENET-BC
(L=100, K=12) - 22.47

DENSENET-BC
(L=190, K=40) - 17.18

WIDE RESNET
(WRN-28-10-DROPOUT) - 18.44

NIN + ours 7.22 -
ResNet(110-depth) + ours 5.34±0.11 25.71±0.07

DenseNet-BC
(L=100, k=12) + ours - 22.17

DenseNet-BC
(L=190, k=40) + ours - 16.86

Wide ResNet
(WRN-28-10-dropout) + ours - 18.03

Table 3: Test error rates for CIFAR-10 and CIFAR-100.

METHOD ERROR (%)
ALEXNET(90 EPOCHS) 19.81

GOOGLENET(80 EPOCHS) 10.82
BATCHNORMALIZATION (80 EPOCHS) 9.05

AlexNet + ours(90 epochs) 19.67
AlexNet + ours(180 epochs) 19.06

AlexNet + ours(Naive version, 270 epochs) 18.89
GoogLeNet + ours(80 epochs) 10.39

BatchNormalization + ours(80 epochs) 8.68
Table 4: Validation error rates for the ImageNet dataset.

8 CONCLUSION

We showed why a flatter loss generalizes better in the
view of robustness. Then we presented the relation-
ship of flat losses and learning rates. Inspired by neu-
roscience, we further proposed peak learning stages for
improving high-dimensional DNNs. We thoroughly ana-
lyzed how such learning rates affect conventional deep
networks. To the best of our knowledge, the work
presented in this paper is the first work in this line
of research bridging the gap between the learning rate
scheduling and the regularization theory of deep learn-
ing.

ACKNOWLEDGEMENT

This work was supported by the National Research
Council of Science & Technology (NST) grant by the
Korea government (MSIP) (No. CRC-15-05-ETRI).

References
Bishop, C. M. (2006). Pattern recognition. Machine Learning.

Chaudhari, P., Choromanska, A., Soatto, S., and LeCun, Y.
(2016). Entropy-sgd: Biasing gradient descent into wide
valleys. arXiv preprint arXiv:1611.01838.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and
LeCun, Y. (2015). The loss surfaces of multilayer networks.
In AISTATS.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli,
S., and Bengio, Y. (2014). Identifying and attacking the
saddle point problem in high-dimensional non-convex op-
timization. In Advances in Neural Information Processing
Systems, pages 2933–2941.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradi-
ent methods for online learning and stochastic optimization.
The Journal of Machine Learning Research, 12:2121–2159.

Dziugaite, G. K. and Roy, D. M. (2017a). Computing nonvac-
uous generalization bounds for deep (stochastic) neural net-
works with many more parameters than training data. arXiv
preprint arXiv:1703.11008.

Dziugaite, G. K. and Roy, D. M. (2017b). Entropy-sgd op-
timizes the prior of a pac-bayes bound: Data-dependent
pac-bayes priors via differential privacy. arXiv preprint
arXiv:1712.09376.

Figueiredo, M. A. (2003). Adaptive sparseness for supervised
learning. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 25(9):1150–1159.

Ge, S., Yang, C.-h., Hsu, K.-s., Ming, G.-l., and Song, H.
(2007). A critical period for enhanced synaptic plasticity
in newly generated neurons of the adult brain. Neuron,
54(4):559–566.

Goodfellow, I. J. and Vinyals, O. (2014). Qualitatively char-
acterizing neural network optimization problems. arXiv
preprint arXiv:1412.6544.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A.,
and Bengio, Y. (2013). Maxout networks. arXiv preprint
arXiv:1302.4389.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Identity map-
pings in deep residual networks. In Computer Vision–ECCV
2016.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. R. (2012). Improving neural networks by
preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Hochreiter, S., Schmidhuber, J., et al. (1995). Simplifying neu-
ral nets by discovering flat minima. Advances in Neural In-
formation Processing Systems, pages 529–536.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q.
(2017). Densely connected convolutional networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition.

Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger, K.
(2016). Deep networks with stochastic depth. arXiv preprint
arXiv:1603.09382.

Im, D. J., Tao, M., and Branson, K. (2016). An empiri-
cal analysis of deep network loss surfaces. arXiv preprint
arXiv:1612.04010.

Johnson, R. and Zhang, T. (2013). Accelerating stochastic
gradient descent using predictive variance reduction. In
Advances in neural information processing systems, pages
315–323.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and
Tang, P. T. P. (2016). On large-batch training for deep learn-
ing: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic
optimization. Proceedings of the 3rd International Confer-
ence on Learning Representations (ICLR).

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105.

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., and Tu, Z. (2014).
Deeply-supervised nets. arXiv preprint arXiv:1409.5185.

Lin, M., Chen, Q., and Yan, S. (2013). Network in network.
arXiv preprint arXiv:1312.4400.

Littwin, E. and Wolf, L. (2016). The loss surface of residual
networks: Ensembles and the role of batch normalization.
arXiv preprint arXiv:1611.02525.

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro,
N. (2017). Exploring generalization in deep learning. In
Advances in Neural Information Processing Systems, pages
5949–5958.

Nguyen, A., Yosinski, J., and Clune, J. (2015). Deep neural
networks are easily fooled: High confidence predictions for
unrecognizable images. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
427–436.

Raginsky, M., Rakhlin, A., and Telgarsky, M. (2017). Non-
convex learning via stochastic gradient langevin dynamics: a
nonasymptotic analysis. In Conference on Learning Theory,
pages 1674–1703.

Reddi, S. J., Hefny, A., Sra, S., Poczos, B., and Smola, A.
(2016). Stochastic variance reduction for nonconvex opti-
mization. In International conference on machine learning,
pages 314–323.

Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y.
(2011). Contractive auto-encoders: Explicit invariance dur-
ing feature extraction. In Proceedings of the 28th Interna-
tional Conference on Machine Learning (ICML-11), pages
833–840.

Romero, A., Carrier, P. L., Erraqabi, A., Sylvain, T., Auvolat,
A., Dejoie, E., Legault, M.-A., Dubé, M.-P., Hussin, J. G.,
and Bengio, Y. (2016). Diet networks: Thin parameters for
fat genomic. arXiv preprint arXiv:1611.09340.

Sagun, L., Bottou, L., and LeCun, Y. (2016). Singularity of the
hessian in deep learning. arXiv preprint arXiv:1611.07476.

Schaul, T., Zhang, S., and LeCun, Y. (2012). No more pesky
learning rates. arXiv preprint arXiv:1206.1106.

Simonyan, K. and Zisserman, A. (2014). Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.

Singh, S., Hoiem, D., and Forsyth, D. (2016). Swapout:
Learning an ensemble of deep architectures. arXiv preprint
arXiv:1605.06465.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller,
M. (2014). Striving for simplicity: The all convolutional net.
arXiv preprint arXiv:1412.6806.

Swirszcz, G., Czarnecki, W. M., and Pascanu, R. (2016). Lo-
cal minima in training of deep networks. arXiv preprint
arXiv:1611.06310.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. (2014). Going deeper with convolutions. arXiv preprint
arXiv:1409.4842.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D.,
Goodfellow, I., and Fergus, R. (2013). Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Di-
vide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning,
4.

Wager, S., Wang, S., and Liang, P. S. (2013). Dropout training
as adaptive regularization. In Advances in neural informa-
tion processing systems, pages 351–359.

Wiesel, T. N., Hubel, D. H., et al. (1963). Single-cell responses
in striate cortex of kittens deprived of vision in one eye. J
Neurophysiol, 26(6):1003–1017.

Zagoruyko, S. and Komodakis, N. (2016). Wide residual net-
works. arXiv preprint arXiv:1605.07146.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701.

Zeiler, M. D. and Fergus, R. (2013). Stochastic pooling for
regularization of deep convolutional neural networks. arXiv
preprint arXiv:1301.3557.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
(2016). Understanding deep learning requires rethinking
generalization. arXiv preprint arXiv:1611.03530.

