
A Forest Mixture Bound for Block-Free Parallel Inference

Neal G. Lawton and Greg Ver Steeg and Aram Galstyan
Information Sciences Institute

University of Southern California
Marina del Rey, CA 90292

Abstract

Coordinate ascent variational inference is an
important algorithm for inference in proba-
bilistic models, but it is slow because it updates
only a single variable at a time. Block coordi-
nate methods perform inference faster by up-
dating blocks of variables in parallel. How-
ever, the speed and convergence of these algo-
rithms depends on how the variables are par-
titioned into blocks. In this paper, we give a
convergent parallel algorithm for inference in
deep exponential families that doesn’t require
the variables to be partitioned into blocks. We
achieve this by lower bounding the ELBO by a
new objective we call the forest mixture bound
(FM bound) that separates the inference prob-
lem for variables within a hidden layer. We
apply this to the simple case when all random
variables are Gaussian and show empirically
that the algorithm converges faster for models
that are inherently more forest-like.

1 INTRODUCTION

Inference in directed models like deep exponential fam-
ilies (DEF’s) [Ranganath et al., 2015] is complicated by
the “explaining away effect”: for a directed model with
observed variables x ∈ Rn and latent variables y ∈ Rm,
independent “causes” yj become dependent given an ob-
served “effect” xi. To handle this, the coordinate as-
cent variational inference (CAVI) algorithm iteratively
updates the variational distribution for a single latent
variable yj while holding the variational distribution for
all other latent variables fixed [Blei et al., 2017].

Though the yj’s are not conditionally independent given
x except in exceedingly simple models, in many cases
the yj’s are nearly conditionally independent. Is there a

way to perform parallel inference in such models, or do
we have to resort to the serial coordinate algorithm?

Block methods provide one avenue for parallel infer-
ence. These algorithms work by first partitioning the
latent variables into a collection of blocks, and then it-
eratively updating a variable from each block in par-
allel. However, the speed (as in MCMC methods
[Terenin et al., 2015]) or convergence (as in Hogwild
methods [Recht et al., 2011]) of the resulting algorithm
will depend on how the variables are blocked, and find-
ing a good choice of blocking for an arbitrary model can
be difficult.

The main contribution of this paper is a novel lower
bound on log-likelihood we call the forest mixture bound
(FM bound) that separates the problem of inference for
each variable in a hidden layer. This allows all the vari-
ables in a layer to be updated in parallel, without the use
of blocks. We call the resulting parallel inference algo-
rithm the forest mixture algorithm (FM algorithm).

We study in detail the case when all the random vari-
ables in the DEF are Gaussian. We then demonstrate on
both synthetic and real-world data the proposed method
achieves faster convergence compared to existing meth-
ods.

2 RELATED WORK

Hogwild Block Methods There are two types of
block methods for inference. The first is Hogwild-
type algorithms [Recht et al., 2011][Sa et al., 2016]
[Wang and Banerjee, 2014] [Zhao et al., 2014]. After
partitioning the variables into blocks, these algorithms
iteratively choose a single variable from each block
and update as in CAVI, but in parallel [Sa et al., 2016].
These algorithms are guaranteed to converge only in
certain cases, e.g., when the blocks are conditionally
independent [Johnson et al., 2013].

Convergent Block Methods Instead of making
CAVI updates in parallel, block algorithms may
achieve convergence by making small parallel updates
[Sontag and Jaakkola, 2009]. For example, “exact”
asynchronous Gibbs sampling randomly rejects each
block update according to an MCMC rejection ra-
tio [Terenin et al., 2015]. If the blocks are chosen
poorly, the rejection rate will increase and the rate of
convergence will decrease [Singh et al., 2017].

In either type of block method, the performance of the
algorithm depends on how the variables are blocked. In
a distributed computation setting, blocking is necessary
since each worker can only store a fraction of all vari-
ables in local memory. In this case, the FM bound pro-
vides a method for updating variables within a block or
worker in parallel, instead of updating only a single vari-
able in each block at a time.

Amortized Inference Instead of treating inference as
an inverse problem that has to be solved for each ob-
servation, VAE’s train inference network (encoder) so
the cost of inference is amortized over many observa-
tions [Kingma and Welling, 2013]. Once the encoder is
trained, inference for any observation can be performed
quickly with a single pass through the inference network.
Encoder-free methods like ours may still be useful in the
case when we have a trained generative model (decoder)
but no trained encoder and want to perform inference for
only a few samples or, more likely, for when we want
to improve the solution produced by the encoder at test
time.

Undirected Models Besides directed models, there is
a wide literature for fast inference in undirected models
[Baqué et al., 2016] [Singh et al., 2010]. Note that infer-
ence in undirected models like Deep Restricted Boltz-
mann Machines [Salakhutdinov and Hinton, 2009] can
already be parallelized: non-consecutive layers can be
updated in parallel in red-black fashion. In fact, the
same degree of parallelization can be achieved in a di-
rected model using our technique. While there is also
a wide literature on bounding the log-partition function
of an undirected model [Wainwright et al., 2005], we de-
rive the FM bound by lower bounding the log-partition
function of a directed model. The technique we use may
be applicable to undirected models, but that is not ex-
plored in this paper.

Structure Learning The FM bound we derive is
closely related to an interesting family of models called
forest mixture models. These models may be applicable
to the problem of structure learning, where the task is
to infer the graphical structure of the underlying model

from data [Chow and Liu, 1968]. However, in this paper
we narrowly focus on the problem of inference in a given
generative model, not on training a new one.

3 PRELIMINARIES

Vector-valued variables are written in bold. The
component-wise product of two vectors u and v is de-
noted u � v. Unless stated otherwise, all expectations,
including the variance Var[·], standard deviation Std[·],
and conditional entropy H(y|x), are taken with respect
to the variational distribution q(y|x), though we some-
times write this explicitly for emphasis.

An exponential family of distributions is a family of dis-
tributions of the form

p(x) = exp{g(x) + t(x) · η − a(η)} (1)

Where g is the log-base measure, t are the sufficient
statistics, η are the natural parameters, and a is the log-
partition function. When η is a function of another ran-
dom variable y, e.g., η = b +w · y, we will sometimes
write η = η(y) for emphasis.

We denote the Gaussian probability density function with
mean µ and variance σ2 as N (µ, σ2). When we write
log p(x) ∝ f(x), we mean log p(x) = f(x)+constant.

3.1 FOREST MIXTURE MODELS

Consider a general directed model with a single layer of
observed variables x ∈ Rn and latent variables y ∈ Rm.
The joint distribution p(x,y) takes the form

p(x,y) =

 m∏
j=1

p(yj)

[n∏
i=1

p(xi|y)

]
(2)

A directed model is a forest model if each xi has exactly
one parent in the model’s directed dependency graph;
they are so-named because the resulting graphical model
is a forest with one tree per latent variable yj . These
models are particularly simple because the yj’s are con-
ditionally independent given x. Let ei ∈ Im be the one-
hot vector indicating the parent of xi, so eij = 1 if and
only if yj is the parent of xi. Then we can write

p(xi|y) =

m∏
j=1

p(xi|yj)eij (3)

Suppose we want to fit a forest model to data, but we
don’t know which xi’s should be the children of which
yj’s. One way to handle this uncertainty is to treat the
ei’s as independent latent random variable that have to

x1 x2 x3 x4 x5

y1 y2 y3

(a)

x1 x2 x3 x4 x5

y1 y2 y3

(b)

x1x2 x3x4 x5

y1 y2 y3

(c)

Figure 1: Visualization of sampling from a forest mixture model. (a) In a forest mixture model, the edges between x
and y are unknown random variables. (b) To sample from the model, first the parent of each xi is chosen independently
at random according to p(ei). In this visualization, each p(ei) is uniform over the latent variables. (c) After sampling
a forest structure from p(e), x and y are sampled according to the resulting forest model.

be inferred, just like y. To do this, we must first define
a prior p(ei) for each i. Given such a prior, the joint
distribution over x, y, and e ≡ {ei}ni=1 is

p(x,y, e) =

[
n∏
i=1

p(ei)

] m∏
j=1

p(yj)

[n∏
i=1

p(xi|y, ei)

]
(4)

The resulting model is a forest mixture model (FMM): to
sample from this model, we first draw a random forest
structure by sampling from the prior p(e); then, x and y
are sampled from the selected forest model.

Though the yj’s are no longer conditionally independent
given x, they are independent given x and e. Similarly,
the ei’s are conditionally independent given x and y. To
see this, define p̂(xi|yj) ≡ p(xi|yj , eij = 1). Then the
joint distribution can be written

p(x,y, e) =

[
n∏
i=1

p(ei)

] m∏
j=1

p(yj)

 n∏
i=1

m∏
j=1

p̂(xi|yj)eij

(5)

In the next section, we will use the mean-field variational
ELBO for this model, which for a given variational dis-
tribution q(y, e|x) is

log p(x) ≥ E[log p(x|y, e)]−DKL(q(y, e|x)‖p(y, e))

=

n∑
i=1

m∑
j=1

E[eij]E[log p̂(xi|yj)]

−
m∑
j=1

DKL(q(yj |x)‖ p(yj))

−
n∑
i=1

DKL(q(ei|x)‖ p(ei)) (6)

4 THE FOREST MIXTURE BOUND

For simplicity, we only consider shallow models in this
section. The extension to deep models is straightforward
(see Appendix C).

A single-layer deep exponential family (DEF) model is a
directed model with a single layer of observed variables
x ∈ Rn and hidden variables y ∈ Rm, where the condi-
tional distribution is in an exponential family. The joint
distribution p(x,y) takes the form

p(x,y) =

 m∏
j=1

p(yj)

[n∏
i=1

p(xi|y)

]
(7)

p(xi|y) = exp {g(xi) + t(xi)ηi(y)− a(ηi(y))} (8)

Suppose we are given an observation x and want
to approximately infer the posterior p(y|x) by max-
imizing the variational ELBO, and suppose the yj’s
are conditionally independent given x, so p(x,y) =
p(x)

∏m
j=1 p(yj |x). Then the mean-field variational

ELBO is

log p(x) ≥ max
q(y|x)

E[log p(x,y)] +H(y|x) (9)

≡ max
q(y|x)

m∑
j=1

E [log p(yj |x)] +H(yj |x) (10)

=

m∑
j=1

max
q(yj |x)

E [log p(yj |x)] +H(yj |x) (11)

In the second line, log p(x) is constant with respect to
q(y|x) and can be removed without changing the opti-
mization problem. In this case, the ELBO separates into
a sum of terms, each of which involves only a single yj .
This allows us to optimize the ELBO by updating each
q(yj |x) independently and in parallel.

In a general DEF, the yj’s are not conditionally indepen-
dent and the objective does not separate. However, with-
out much manipulation, much of the ELBO does sepa-
rate: for a single-layer DEF, the ELBO can be written

log p(x) ≥ E[log p(x,y)] +H(y|x) (12)

=

n∑
i=1

E[log p(xi|y)] +

m∑
j=1

E[log p(yj)] +H(yj |x)

(13)

So only the E[log p(xi|y)] terms aren’t separable. How-
ever, if ηi is an affine function of y, so ηi ≡ bi +wi · y
for some bi ∈ R andwi ∈ Rm, then each E[log p(xi|y)]
term can be expanded

E[log p(xi|y)] = g(xi) + t(xi)E[ηi]− E[a(ηi)] (14)
= g(xi) + t(xi) (bi +wi · E[y])− E[a(bi +wi · y)]

(15)

From this we can see the only term left preventing
the entire ELBO from separating is Eq(y|x)[−a(ηi(y))],
a high-dimensional expectation of the non-linear log-
partition function. The one thing we know about the log-
partition function in exponential families is that it’s con-
vex. This suggests we use Jensen’s inequality to bound
E[−a(ηi)]. Note that using Jensen’s to bring the expec-
tation over q inside a gives an inequality in the wrong di-
rection because−a(ηi) is concave; to get a lower bound,
we need to pull an expectation out from the inside of a.
The derivation of the ELBO gives a hint on how to do
this: recall

log p(x) = log

∫
p(x, y)dy (16)

= log

∫
q(y|x)

q(y|x)
p(x, y)dy (17)

= logEq(y|x)
[
p(x, y)

q(y|x)

]
(18)

≥ Eq(y|x)
[
log

p(x, y)

q(y|x)

]
(19)

In the same way, we will introduce a variational or auxil-
iary distribution inside the concave function −a(η), then
use Jensen’s to pull it out. For each i, introduce an auxil-
iary discrete distribution over m categories εi ∈ ∆m−1,
so

m∑
j=1

εij = 1 εij ≥ 0 ∀j ∈ [m] (20)

Injecting this inside the log-partition function gives

E[−a(bi +wi · y)] = E

−a
bi +

m∑
j=1

εij
wijyj
εij

(21)

To use Jensen’s inequality, we first need to bring bi in-
side the sum, which we can do using bi =

∑m
j=1 εijbi.

This partitions the bias bi into m parts according to εi.
However, to get a sufficiently tight bound, we’ll need to
consider more general splittings: introduce another set
of auxiliary parameters b̂i ∈ Rm with the constraint
bi =

∑m
j=1 εij b̂ij . Then

E[−a(bi +wi · y)] = E

−a
 m∑
j=1

εij

(
b̂ij +

wijyj
εij

)
≥

m∑
j=1

εijE
[
−a
(
b̂ij +

wijyj
εij

)]
(22)

Bounding this term for each i separates the entire ELBO
into a sum of terms, each of which involves only a single
yj . Plugging this in directly to get a final bound on log-
likelihood results in an unwieldy expression, so first we
will introduce new notation to simplify the bound.

4.1 CONNECTION WITH FMM

To demonstrate the relation of the above bound and forest
mixture models, let us define

η̂ij ≡ b̂ij +
wijyj
εij

(23)

p̂(xi|yj) ≡ exp {g(xi) + t(xi)η̂ij − a(η̂ij)} (24)

Then ηi =
∑m
j=1 εij η̂ij and the bound can be rewritten

as follows:

E [−a (ηi)] ≥
m∑
j=1

εijE [−a (η̂ij)] (25)

This expression can be used to impose bounds on each
E[log p(xi|y)]:

E[log p(xi|y)] = g(xi) + t(xi)E[ηi]− E[a(ηi)] (26)

≥ g(xi) + t(xi)E[ηi]−
m∑
j=1

εijE[a(η̂ij)] (27)

=

m∑
j=1

εij (g(xi) + t(xi)E[η̂ij]− E[a(η̂ij)]) (28)

=

m∑
j=1

εijE[log p̂(xi|yj)] (29)

input : An observation x ∈ Rn and model parameters
W ∈ Rn×m, b ∈ Rn, σ2

y ∈ R and σ2
x ∈ R.

output: The mean-field variational distribution
q(y|x) ≡

∏m
j=1 q(yj |x)

initialize (µ0)j and (σ0)2j for each j ∈ [m]

for t = 0 to T − 1 do
for i = 1 to n do

for j = 1 to m do
(εt)ij =

|wij |(σt)j∑m
j′=1

|wij′ |(σt)2j′

(b̂t)ij = (bi +
∑m
j=1 wij(µt)j)−

wij(µt)j
(εt)ij

end
end
for j = 1 to m do

(µt+1)j ≡
∑m
i=1 wij(xi−(b̂t)ij)
σ2x
σ2y

+
∑m
j=1

w2
ij

(εt)ij

(σt+1)2j ≡ 1

1
σ2y

+ 1
σ2x

∑m
j=1

w2
ij

(εt)ij

end
end
return q(yj |x) = N ((µT)j , (σT)2j) for j ∈ [m]
Algorithm 1: The FM algorithm in the Gaussian case.

Finally, plugging the above expression into the ELBO
gives

log p(x) ≥ E[log p(x,y)] +H(y|x)

≥
n∑
i=1

m∑
j=1

εijE[log p̂(xi|yj)]

−
m∑
j=1

DKL(q(y|x)‖p(y)) (30)

Comparing (30) with (6) confirms that this bound is iden-
tical to the ELBO of a forest mixture model with the
same p̂(xi, yj) and q(yj |x), with q(eij = 1|x) = εij (so
that E[eij] = εij) and p(ei) = q(ei|x) (so that the sec-
ond KL term of the FMM ELBO is zero and disappears
entirely). For this reason, we call this bound the forest
mixture bound (FM bound). Note this bounds the DEF
ELBO by the ELBO of each FMM in a large family of
FMM’s parameterized by ε ≡ {εi}ni=1 and b̂ ≡ {b̂i}ni=1.

5 ALGORITHM

To optimize the FM bound, we propose an alternating
maximization algorithm: in the first step, update all
q(yj |x) in parallel while holding all εij and b̂ij fixed;
in the second step, update all εij and b̂ij in parallel while
holding all q(yj |x) fixed. In this section, we will derive
the optimal updates for q(yj |x), εij , and b̂ij in the case
when each xi and yj are Gaussian with known variance:

p(yj) = N (0, σ2
y) p(xi|y) = N (ηi(y), σ2

x)

(31)

We will derive the updates for the auxiliary parameters
first since this will help simplify the update for the vari-
ational distribution later.

5.1 AUXILIARY PARAMETER UPDATES

Maximizing the FM bound over ε and b̂ is equivalent
to maximizing Li ≡

∑m
j=1 εijE[−a(η̂ij)] over εi and

b̂i for each i, since these are the only terms in the FM
bound that depend on ε and b̂. In the Gaussian case,
−a(η̂ij) = − 1

2σ2
x
η̂2ij and

Li =
m∑
j=1

εijE
[
− 1

2σ2
x

η̂2ij

]
(32)

= − 1

2σ2
x

m∑
j=1

εij

(
Var [η̂ij] + E [η̂ij]

2
)

(33)

= − 1

2σ2
x

m∑
j=1

w2
ijVar[yj]
εij

+ εij

(
b̂ij +

wijE[yj]

εij

)2

(34)

Theorem 1 Holding q(yj |x) constant, the choice of b̂i
and εi that maximizes Li is b̂i = b̂∗i and εi = ε∗i , where

b̂∗ij = E[ηi]−
wijE[yj]

ε∗ij
ε∗ij =

|wij |Std[yj]∑m
j′=1 |wij′ |Std[yj′]

(35)

For a proof, see Appendix A. Note that these computa-
tions can be parallelized across i and j.

5.2 VARIATIONAL UPDATES

Holding the auxiliary parameters fixed, each variational
distribution q(yj |x) can be updated in parallel:

Theorem 2 For a fixed ε and b̂, the choice for the next
variational distribution qt+1(yj |x) that maximizes the
FM bound is qt+1(yj |x) = N ((µ∗t+1)j , (σ

∗
t+1)2j), where

(µ∗t+1)j ≡
(x− Eqt [η]) ·wj + Eqt [yj]

∑n
i=1

w2
ij

εij

σ2
x

σ2
y

+
∑n
i=1

w2
ij

εij

(36)

(σ∗t+1)2j ≡
1

1
σ2
y

+ 1
σ2
x

∑n
i=1

w2
ij

εij

(37)

For a proof, see Appendix B.

6 DISCUSSION

Tightness We derived the FM bound by using Jensen’s
inequality to lower bound the ELBO. For a given vari-
ational distribution q, the gap between the two bounds
is

GAP ≡
n∑
i=1

E[−a(ηi)]−
n∑
i=1

m∑
j=1

εijE[−a(η̂ij)] (38)

In the Gaussian case, for an optimal choice of auxiliary
parameters (see Appendix A),

m∑
j=1

εijE[−a(η̂ij)] = − 1

2σ2
x

‖wi � Std[y]‖21 −
1

2σ2
x

E[ηi]
2

(39)

E[−a(ηi)] = − 1

2σ2
x

‖wi � Std[y]‖22 −
1

2σ2
x

E[ηi]
2

(40)

GAP =
1

2σ2
x

n∑
i=1

‖wi � Std[y]‖21 − ‖wi � Std[y]‖22

(41)

Since
∑n
i=1 ‖wi‖21 ≥

∑n
i=1 ‖wi‖22, the FM bound

imposes a stronger regularization on the variance of
the variational distribution compared to the variational
ELBO. For this reason, the variational distribution q that
maximizes the FM bound generally has a smaller vari-
ance compared to the variational distribution that maxi-
mizes the ELBO.

The FM bound tightly bounds the ELBO when p is a for-
est model, so that wij has exactly one non-zero element
in the component j(i) corresponding to the parent of xi.
In this case,

‖wi � Std[y]‖21 = w2
ij(i)Var[yj(i)] = ‖wi � Std[y]‖22

(42)

The bound is also tight when Var[y] = 0, but in this case
both the ELBO and the FM bound yield −∞ because of
the conditional entropy term H(y|x).

Speed of Convergence Let’s examine the role of ε

in the update for q(yj |x). If
∑m
j=1

w2
ij

εij
is large, then

Eqt+1 ≈ Eqt [yj], and so the FM algorithm makes

a small update for yj . If
∑m
j=1

w2
ij

εij
is small, then

Eqt+1 [yj] makes a large step in the direction of the resid-
ual x− E[η]. In fact, if for some j, εij = 1 for all i
where wij is non-zero, then the FM algorithm updates

q(yj |x) exactly as CAVI would. In this sense, ε acts
like an attention parameter that selects which q(yj |x) to
change and by how much.

If p is a forest model, then the FM algorithm chooses
εi to be the one-hot vector indicating the parent of xi.
In this case, the FM algorithm makes coordinate updates
for all j in parallel and converges in one iteration. If p is
forest-like, i.e., |wj | · |wj′ | is small for j 6= j′, then εi
is close to one-hot and the FM algorithm makes damped,
nearly-CAVI updates in parallel. In this sense, the speed
at which the FM algorithm converges depends on how
inherently forest-like the model p is.

7 EXPERIMENTS

Recall that we derived the FM bound by lower bound-
ing the ELBO. Algorithms that optimize the ELBO like
CAVI will generally provide a superior lower bound
on log-likelihood compared to the FM algorithm. For
a more fair comparison, we can instead measure how
quickly these algorithms converge to the optimal mean.
In the Gaussian case, optimizing the mean of the mean-
field variational distribution is equivalent to minimizing
a ridge regression objective:

1

2σ2
x

n∑
i=1

(xi − (bi +wi · E[y]))
2

+
1

2σ2
y

m∑
j=1

E[yj]
2

(43)

To evaluate each algorithm on the ridge regression prob-
lem, we must first choose a x, b, and a set of wij . All
the algorithms we consider in this section are guaranteed
to converge to the optimal solution, so we are only in-
terested in comparing how quickly each algorithm con-
verges to that optimal solution. This is measured by
recording the objective value achieved by the mean of
the variational distribution Eqt [y] in the ridge regression
problem across 200 iterations.

In the first experiment, we choose x to be a vectorized
sample from the MNIST dataset, with pixel values scaled
to lie in the interval [−1, 1]; we choose b to be the aver-
age of 1000 randomly chosen MNIST samples; and we
construct a synthetic wij as follows: given an integer
window side length s, we construct all possible square
s × s windows of pixels. For windows that overlap the
border of the 28 × 28 MNIST image region, we clip the
window so that it lies entirely inside the image region,
resulting in a rectangular window. For each window, we
add a latent variable yj to the model and a correspond-
ing wj , where wij = 1 if pixel i lies in window j, and
wij = 0 otherwise. The resulting model is more forest-
like for smaller choices of s: if s = 1, the windows are

0 100 200

101

102

iterations

ri
dg

e
re

gr
es

si
on

lo
ss

s = 15 s = 7 s = 3

(a) FM algorithm on synthetic
windows of different sizes

0 100 200
101

102

iterationsk = 3 k = 5 k = 7

(b) FM algorithm on CNN kernels of
different sizes

0 100 200

101

102

iterationsCAVI blocks FM

(c) CAVI, block, and FM comparison

Figure 2: The ridge regression objective over 200 iterations.

disjoint and the graphical model is exactly a forest. Fig-
ure 2a demonstrates the rate of convergence of the FM
algorithm for various choices of s. As we expect, the
FM algorithm converges faster for more forest-like mod-
els, i.e., smaller s. Note that the objective value achieved
by the optimal solution to the ridge regression problem
changes as wij changes.

The second experiment is similar to the first, except it
uses x from the CIFAR-10 dataset, b = 0, and instead
of uniform windows, uses the first layer kernels from
a convolutional neural net trained several times chang-
ing only the width of the first layer kernels. Figure 2b
demonstrates the FM algorithm converges faster for more
forest-like models even using real-world data.

Our last experiment compares the convergence of the FM
algorithm with CAVI and block coordinate ascent. Here
we choose x and b the same as in the first experiment,
but we choose wij differently to make blocking the la-
tent variables easy: first we partition the 28× 28 MNIST
image region into 16 regions, each of size 7×7. Then, we
construct all possible 7×7 windows (as in the first exper-
iment with s = 7), then clip them to fit in the first region.
This is repeated for each region. If we block the latent
variables according to which region the corresponding
windows were clipped to, then the blocks will be condi-
tionally independent, since windows clipped to different
regions must be disjoint. Blocking in this way guaran-
tees that the block coordinate algorithm will converge to
the optimal solution. Figure 2c compares the rate of con-
vergence for CAVI, block coordinate ascent, and the FM
algorithm. The figure shows our block-free method can
outperform the block coordinate method, even when the
blocking is quite good.

8 CONCLUSION

In this paper we derived a forest mixture bound on the
log-likelihood of deep exponential families. This bound
gets around the “explaining away effect” by using a set of
auxiliary parameters to separate the problem of inference
for each latent variable in the same layer, allowing us to
make parallel updates. We then made a deep dive into the
simple case where all variables are Gaussian: we derived
the exact variable updates, then tested the algorithm on
both synthetic and real-world data. Our promising re-
sults show that fast, parallel inference in deep exponen-
tial families is possible without the use of blocks.

A AUXILIARY PARAMETER UPDATES

Proof of Theorem 1: First, we will find the optimal
choice of b̂i for any given εi. Since b̂i is constrained
by
∑m
j=1 εij b̂ij = bi, let’s first parameterize b̂i by a set

of unconstrained parameters: let γi ∈ Rm and write

b̂ij = bi − γij + εi · γi (44)

So for any choice of γi, the constraint bi =
∑m
j=1 εij b̂ij

is satisfied. Now we can differentiate the bound with
respect to γij , set to zero and solve. We will need the
following partial derivatives:

∂b̂ij
∂γij

= −1 + εij
∂b̂ij′

∂γij
= εij ∀j′ 6= j (45)

Now setting the partial derivative of Li with respect to
γij to zero,

0 =
∂

∂γij
Li = − 1

σ2
x

m∑
j′=1

εij′E[η̂ij′]
∂b̂ij′

∂γij
(46)

=
εij
σ2
x

E[η̂ij]−
m∑
j′=1

εij′E[η̂ij′]

 (47)

The derivative is zero for all j in particular when the
choice of b̂ij makes E[η̂ij] constant across j. We can ver-
ify this is satisfied by the choice γij =

wij
εij

E[yj], which

makes b̂ij = b̂∗ij :

E[η̂ij] = E
[
b̂ij +

wij
εij

yj

]
(48)

= E
[
E[ηi]−

wij
εij

E[yj] +
wij
εij

yj

]
(49)

= E[ηi] (50)

Plugging this choice into Li yields

Li = − 1

2σ2
x

m∑
j=1

(
w2
ijVar[yj]
εij

+ εijE[ηi]
2

)
(51)

= − 1

2σ2
x

 m∑
j=1

w2
ijVar[yj]
εij

− 1

2σ2
x

E[ηi]
2 (52)

Now let’s try to find the optimal choice of εij . Since εij
is constrained by εi ∈ ∆m−1, we’ll also parameterize
εij by a set of unconstrained parameters τi ∈ Rm:

εij = exp{τij}/
m∑
j′=1

exp{τij′} (53)

We will need the following partial derivatives:

∂εij
∂τij

= εij(1− εij)
∂εij′

∂τij
= −εijεij′ ∀j′ 6= j (54)

Now setting the partial derivative of Li with respect to
τij to zero,

0 =
∂

∂τij
Li =

1

2σ2
x

m∑
j′=1

w2
ij′Var[yj′]
ε2ij′

∂εij′

∂τij
(55)

=
1

2σ2
x

m∑
j′=1

Var[η̂ij′]
∂εij′

∂τij
(56)

=
εij
2σ2

x

Var[η̂ij]−
m∑
j′=1

εij′Var[η̂ij′]

(57)

The derivative is zero for all j in particular when
the choice of εij makes Var[η̂ij] constant across j.
We can verify this is satisfied by the choice τij =
log |wijStd[yj]|, which makes εij = ε∗ij :

Var[η̂ij] =
w2
ijVar[yj]
ε2ij

(58)

=
w2
ijVar[yj]

w2
ijVar[yj]/

(∑m
j′=1 |wij′ |Std[yj′]

)2 (59)

= ‖wi � Std[y]‖21 (60)

Plugging this choice into Li yields

Li = − 1

2σ2
x

m∑
j=1

|wij |Std[yj]

 m∑
j′=1

|wij |Std[yj]

− 1

2σ2
x

E[ηi]
2

(61)

= − 1

2σ2
x

 m∑
j=1

|wij |Std[yj]

2

− 1

2σ2
x

E[ηi]
2 (62)

= − 1

2σ2
x

‖wi � Std[y]‖21 −
1

2σ2
x

E[ηi]
2 (63)

B VARIATIONAL UPDATES

Proof of Theorem 2: First, note that for any DEF, the
optimal update equation is as follows:

log qt+1(yj |x) ∝ log p(yj)+

n∑
i=1

εij log p̂t(xi|yj) (64)

In the Gaussian case, we have

log p(yj) ∝ −
1

2σ2
y

y2j (65)

log p̂(xi|yj) ∝ −
1

2σ2
x

(xi − η̂ij)2 (66)

∝ − 1

2σ2
x

(
xi −

(
b̂ij +

wij
εij

yj

))2

(67)

∝ 1

σ2
x

(xi − b̂ij)wij
εij

yj −
1

2σ2
x

w2
ij

ε2ij
y2j (68)

Plugging this in yields

log q(yj |x) ∝ 1

σ2
x

(
(x− b̂j) ·wj

)
yj

− 1

2
y2j

(
1

σ2
y

+
1

σ2
x

n∑
i=1

w2
ij

εij

) (69)

∝ − 1

σ2
x

(
(x− b̂j) ·wj

)
yj −

1

2(σ∗t+1)2j
y2j (70)

∝ − 1

2(σ∗t+1)2j

yj − 1
σ2
x

(x− b̂j) ·wj
1
σ2
y

+ 1
σ2
x

∑n
i=1

w2
ij

εij

2

(71)

∝ − 1

2(σ∗t+1)2j

yj − (x− b̂j) ·wj
σ2
x

σ2
y

+
∑n
i=1

w2
ij

εij

2

(72)

After substituting b̂ij = E[ηi]− wij
εij

Eqt [yj] and rearrang-
ing, we get log qt+1(yj |x) ∝ N ((µ∗t+1)j , (σ

∗
t+1)2j).

C EXTENSION TO DEEP MODELS

A DEF model with observed variables y(0) ∈ Rm0 and
L layers of latent variables {y(`)}L`=1 with y(`) ∈ Rm`
has joint distribution

p({y(`)}L`=0) =

[
L−1∏
`=0

m∏̀
i=1

p(y
(`)
i |y

(`+1))

][
mL∏
i=1

p(y
(L)
i)

]
(73)

p(y
(`)
i |y

(`+1)) = exp
{
g(y

(`)
i) + t(y

(`)
i)η

(`)
i − a(η

(`)
i)
}

(74)

η
(`)
i ≡ b

(`)
i +w

(`)
i · y

(`+1) (75)

The ELBO for this model is

log p(y(0)) ≥
m0∑
i=1

E[log p(y
(0)
i |y

(1))] (76)

+

L−1∑
`=1

m∑̀
i=1

E[log p(y
(`)
i |y

(`+1))] +H
q

(y
(`)
i |y

(0))

(77)

+

mL∑
i=1

p(y
(L)
i) +H

q
(y

(L)
i |y

(0)) (78)

For each ` ∈ {0, . . . , L− 1}, introduce the auxiliary pa-
rameters {ε(`)i }

m`
i=1 and {b̂(`)i }

m`
i=1, with ε(`)i ∈ ∆m`+1−1

and b̂(`)i ∈ Rm`+1 constrained by b(`)i =
∑m`+1

j=1 ε
(`)
ij b̂

(`)
ij .

For all ` ∈ {0, . . . , L − 1}, i ∈ [m`], and j ∈ [m`+1],
define

η̂
(`)
ij ≡ b̂

(`)
ij +

w
(`)
ij

ε
(`)
ij

y
(`+1)
j (79)

p̂(y
(`)
i |y

(`+1)
j) ≡ exp{g(y

(`)
i) + t(y

(`)
i)η̂

(`)
ij − a(η̂

(`)
ij)}

(80)

Then by (25),

E[log p(y
(`)
i |y

(`+1))] ≥
m`+1∑
j=1

ε
(`)
ij E[log p̂(y

(`)
i |y

(`+1)
j)]

(81)

Plugging this into the ELBO yields

log p(y(0)) ≥
m0∑
i=1

m1∑
j=1

ε
(`)
ij E[log p̂(y

(0)
i |y

(1)
j)] (82)

+

L−1∑
`=1

m∑̀
i=1

m`+1∑
j=1

ε
(`)
ij E[log p̂(y

(`)
i |y

(`+1)
j)] +H

q
(y

(`)
i |y

(0))

(83)

+

mL∑
i=1

p(y
(L)
i) +H

q
(y

(L)
i |y

(0)) (84)

This objective separates as a sum of terms, each of which
involves no more than one latent variable in the same
layer. This allows any group of variables forming an in-
dependent set in the model graph to be updated in paral-
lel, the same as for undirected models.

References

[Baqué et al., 2016] Baqué, P., Bagautdinov, T., Fleuret,
F., and Fua, P. (2016). Principled parallel mean-field
inference for discrete random fields. In 2016 IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 5848–5857.

[Blei et al., 2017] Blei, D. M., Kucukelbir, A., and
McAuliffe, J. D. (2017). Variational inference: A re-
view for statisticians. Journal of the American Statis-
tical Association, 112(518):859–877.

[Chow and Liu, 1968] Chow, C. and Liu, C. (1968). Ap-
proximating discrete probability distributions with de-
pendence trees. IEEE Transactions on Information
Theory, 14(3):462–467.

[Johnson et al., 2013] Johnson, M., Saunderson, J., and
Willsky, A. (2013). Analyzing hogwild parallel Gaus-
sian Gibbs sampling. In Burges, C. J. C., Bottou,
L., Welling, M., Ghahramani, Z., and Weinberger,
K. Q., editors, Advances in Neural Information Pro-
cessing Systems 26, pages 2715–2723. Curran Asso-
ciates, Inc.

[Kingma and Welling, 2013] Kingma, D. P. and
Welling, M. (2013). Auto-Encoding Variational
Bayes. ArXiv e-prints.

[Ranganath et al., 2015] Ranganath, R., Tang, L., Char-
lin, L., and Blei, D. (2015). Deep exponential fam-
ilies. In Lebanon, G. and Vishwanathan, S. V. N.,
editors, Proceedings of the Eighteenth International
Conference on Artificial Intelligence and Statistics,
volume 38 of Proceedings of Machine Learning Re-
search, pages 762–771, San Diego, California, USA.
PMLR.

[Recht et al., 2011] Recht, B., Re, C., Wright, S., and
Niu, F. (2011). Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Shawe-
Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F.,
and Weinberger, K. Q., editors, Advances in Neural
Information Processing Systems 24, pages 693–701.
Curran Associates, Inc.

[Sa et al., 2016] Sa, C. D., Re, C., and Olukotun, K.
(2016). Ensuring rapid mixing and low bias for
asynchronous Gibbs sampling. In Balcan, M. F.
and Weinberger, K. Q., editors, Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1567–1576, New York, New York,
USA. PMLR.

[Salakhutdinov and Hinton, 2009] Salakhutdinov, R.
and Hinton, G. (2009). Deep Boltzmann machines.
In van Dyk, D. and Welling, M., editors, Proceedings
of the Twelth International Conference on Artificial
Intelligence and Statistics, volume 5 of Proceedings
of Machine Learning Research, pages 448–455,
Hilton Clearwater Beach Resort, Clearwater Beach,
Florida USA. PMLR.

[Singh et al., 2010] Singh, S., Subramanya, A., Pereira,
F., and McCallum, A. (2010). Distributed MAP in-
ference for undirected graphical models. In Neural
Information Processing Systems (NIPS) Workshop on
Learning on Cores, Clusters, and Clouds (LCCC).

[Singh et al., 2017] Singh, S. S., Lindsten, F., and
Moulines, E. (2017). Blocking strategies and stability
of particle Gibbs samplers. Biometrika, 104(4):953–
969.

[Sontag and Jaakkola, 2009] Sontag, D. and Jaakkola,
T. (2009). Tree block coordinate descent for MAP in
graphical models. In van Dyk, D. and Welling, M., ed-
itors, Proceedings of the Twelth International Confer-
ence on Artificial Intelligence and Statistics, volume 5
of Proceedings of Machine Learning Research, pages
544–551, Hilton Clearwater Beach Resort, Clearwater
Beach, Florida USA. PMLR.

[Terenin et al., 2015] Terenin, A., Simpson, D., and
Draper, D. (2015). Asynchronous Gibbs sampling.
ArXiv e-prints.

[Wainwright et al., 2005] Wainwright, M. J., Jaakkola,
T. S., and Willsky, A. S. (2005). A new class of upper
bounds on the log partition function. IEEE Transac-
tions on Information Theory, 51(7):2313–2335.

[Wang and Banerjee, 2014] Wang, H. and Banerjee, A.
(2014). Randomized block coordinate descent
for online and stochastic optimization. CoRR,
abs/1407.0107.

[Zhao et al., 2014] Zhao, T., Yu, M., Wang, Y., Arora,
R., and Liu, H. (2014). Accelerated mini-batch
randomized block coordinate descent method. In
Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N. D., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems 27, pages
3329–3337. Curran Associates, Inc.

