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Abstract

Predictive models can fail to generalize from
training to deployment environments because
of dataset shift, posing a threat to model re-
liability in practice. As opposed to previous
methods which use samples from the target
distribution to reactively correct dataset shift,
we propose using graphical knowledge of the
causal mechanisms relating variables in a pre-
diction problem to proactively remove variables
that participate in spurious associations with
the prediction target, allowing models to gen-
eralize across datasets. To accomplish this, we
augment the causal graph with latent counter-
factual variables that account for the underlying
causal mechanisms, and show how we can es-
timate these variables. In our experiments we
demonstrate that models using good estimates
of the latent variables instead of the observed
variables transfer better from training to tar-
get domains with minimal accuracy loss in the
training domain.

1 INTRODUCTION

Supervised machine learning is concerned with predicting
a target output label T from input features X. Classical
learning frameworks assume that training and test data are
independently and identically distributed from a fixed dis-
tribution p(X, T ). When this assumption does not hold,
training with classical frameworks can yield models with
unreliable and, in the case of safety-critical applications
like medicine, dangerous predictions (Dyagilev and Saria,
2015; Caruana et al., 2015; Schulam and Saria, 2017).
For example, prediction systems are often deployed in
dynamic environments that systematically differ from the
one in which the historical training data was collected—
a problem known as dataset shift which results in poor

generalization. Methods for addressing dataset shift are
typically reactive: they use unlabeled data from the target
deployment environment during the learning process (see
Quionero-Candela et al. (2009) for an overview). How-
ever, when the differences in environments are unknown
prior to model deployment (e.g., no available data from
the target environment or target environments that have
not yet been conceived), it is important to understand what
aspects of the prediction problem can change and how we
can train models that will be robust to these changes. We
consider this problem of proactively addressing dataset
shift in this work.

In particular, we will guard against spurious associations
between predictors and the target—non-causal marginal
relationships that often do not generalize due to shifts in
training and test distributions. To illustrate, consider an
example prediction problem of medical screening. The
features (X) are blood pressure (BP) Y and congestive
heart failure C. The label we want to predict is whether or
not a patient has meningitis T . Underlying every predic-
tion problem is a directed acylic graph (DAG), such as the
one in Figure 1a, which describes the causal mechanisms
(general directional knowledge of causes and effects, e.g.,
C → Y : heart failure causes low BP) between the vari-
ables that hold in all environments. In this graph, T and
C are not causally related to each other: C is neither
a causal ancestor nor a causal descendant of T . By d-
separation (Koller and Friedman, 2009), unless we condi-
tion on Y , the two are statistically independent: T ⊥⊥ C.
However, selection bias (Figure 1b) or domain-dependent
confounding by indication (Figure 1c) can introduce a spu-
rious association: T 6⊥⊥ C. We now define these cases of
dataset shift and show how they threaten model reliability.

Selection bias occurs when certain subpopulations (with
respect to T and C) are underrepresented in the train-
ing data (S=1) which can result in inaccurate predic-
tions in the deployment population. For example, sup-
pose patients with heart failure but without meningitis
(C = 1, T = 0) are underrepresented because they rarely



Figure 1: (a) The DAG capturing causal mechanisms for
the medical screening example. The features are blood
pressure Y and heart failure C. The target label T is
meningitis. (b) Selection bias S is included. (c) Domain-
dependent confounding is shown. C represents narcotics
and D a latent risk factor, brain surgery. Shaded nodes
denote observed variables.

visit this hospital since they manage their chronic condi-
tion using a high quality local chronic care clinic. This
results in a spurious positive association between T and
C, with the strength of the association depending on the
degree of selection bias. Further, the distribution p(T |X)
(i.e., p(T |C, Y ) in our example) in the deployment pop-
ulation can differ from the distribution in the training
population p(T |C, Y, S = 1). For the case of the under-
represented (C = 1, T = 0) subpopulation, the screen-
ing model will be poorly calibrated and overestimate the
risk of meningitis in patients with the chronic condition
(i.e., p(T = 1|C = 1, Y ) predictions will be too high).
These systematic errors on a subpopulation pose a threat
to model reliability.

Domain-dependent confounding, shown in Figure 1c, also
threatens model reliability. Suppose C were instead an
indicator for narcotic pain medications which lower BP.
Doctors sometimes prescribe narcotics after brain surgery
(D in Figure 1c), a risk factor for meningitis that may
not be recorded in the data. The policy p(C|D) doctors
use to prescribe narcotics varies between domains (i.e.,
doctors and hospitals) which also causes p(T |Y,C) to
vary. For example, one hospital may freely prescribe
narcotics (resulting in a positive association between T
and C) while another hospital may carefully restrict the
number of painkiller prescriptions. A model trained on
data from the first hospital will overestimate the risk of
meningitis in patients treated with narcotics at the second
hospital. However, when confounders are observed and
differences in policies are known beforehand, adjustments
can be made by discounting the policies during learning
(e.g., Swaminathan and Joachims (2015); Schulam and
Saria (2017)). Otherwise, instead of learning to predict
using a domain-specific association between the target
and the treatment that will not generalize, we can remove
the treatment information from the model or, as we pro-
pose, retain relevant information by accounting for the
effects of the medication.

In both cases of dataset shift, due to either the collider S
(Figure 1b) or the confounder D (Figure 1c), the graphs
contain the spurious marginal association T 6⊥⊥ C that
does not generalize across datasets. When we do not have
data from the target distribution or the differences in poli-
cies across domains are unknown, we propose modifying
the graph to contain latent counterfactual variables which,
when estimated, allow us to remove the variables that
participate in spurious associations with T (such as C in
Figure 1) from the problem. Specifically, if we somehow
knew an adjusted value of Y , denoted Y (C = ∅)—the
value of Y for which the effects of C were removed (e.g.,
the blood pressure had the patient not had heart failure
or not been given narcotics)—then C would no longer
be causally relevant for predicting T . This concept is
inspired by potential outcomes (Neyman, 1923; Rubin,
1974) in causal inference. However, we do not need to
assume full knowledge of the causal DAG (which also in-
cludes latent factors and intermediate variables), required
for the assumptions of causal inference methods. Instead,
we only use knowledge of the causal mechanisms between
the variables in a prediction problem.

In this paper we make the following contributions. First,
we identify variables in a DAG capturing causal mecha-
nisms which make a statistical model vulnerable to learn-
ing spurious associations that do not generalize across
datasets. Second, we define a node-splitting operation
which modifies the DAG to contain interpretable latent
counterfactual variables which render the vulnerable vari-
ables irrelevant in the prediction problem. Third, we
provide conditions for estimating the latent variables as
adjustments of observed features. Fourth, we explain how
the proposed method can make a classification problem
measurably simpler due to reduced variance of the latent
features. On simulated data we evaluate the quality of
model predictions when the accuracy of the latent variable
estimates changes. Then, on a real world medical classi-
fication task, we demonstrate that the proposed method
allows us to remove vulnerable variables while preserving
relevant information.

2 RELATED WORK

Spurious Associations: Predictive modeling methods
for accounting for spurious associations in data typically
require representative unlabeled samples from the test dis-
tribution. For example, the classic selection bias paradigm
is to detect and correct bias in the training distribution by
using unlabeled test samples to estimate the probability of
selection in the training data so the training examples can
be discounted during learning (see e.g., Heckman (1977);
Zadrozny (2004); Huang et al. (2007); Storkey (2009)).

Beyond predictive modeling, previous work has consid-



ered estimation of causal models in the presence of se-
lection bias and confounding. For example, Spirtes et al.
(1995) learn the structure of the causal DAG from data
affected by selection bias. Others have studied methods
and conditions for identification of causal effects under
spurious associations due to selection bias and confound-
ing (e.g., Bareinboim and Pearl (2012); Bareinboim and
Tian (2015); Correa et al. (2018)). Most relevantly, Cor-
rea and Bareinboim (2017) determine conditions under
which interventional distributions are identified without
using external data. Our work is concerned with statisti-
cal prediction under selection bias or domain-dependent
confounding without external data.

Transportability: The goal of an experiment is for the
findings to generalize beyond a single study, a concept
known as external validity (Campbell and Stanley, 1963).
Similarly, in causal inference transportability, formalized
in Pearl and Bareinboim (2011), transfers causal effect
estimates from one environment to another. Bareinboim
and Pearl (2013) further generalize this to transfer causal
knowledge from multiple source domains to a single tar-
get domain. Like these works, we assume the structure of
the causal mechanism DAG is the same in the source and
any relevant target domains. However, rather than trans-
fer causal estimates from source to target, the proposed
method learns a single statistical model whose predic-
tions should perform well on the source domain while
also generalizing well to new domains.

Graphical Representations of Counterfactuals: The
node-splitting operation we introduce in Section 3.2.2 is
similar to the node-splitting operation in Single World
Intervention Graphs (SWIGs) (Richardson and Robins,
2013). However, intervening in a SWIG results in a causal
generative graph for a potential outcome with the fac-
tual outcome removed from the graph. By contrast, the
node-splitting operation of the proposed method results
in a modified causal generative graph of the factual out-
comes, with new intermediate counterfactual variables.
Other graphical representations such as twin networks
(Pearl, 2009) and counterfactual graphs (Shpitser and
Pearl, 2007) simultaneously represent factual and coun-
terfactual outcomes, rather than the intermediate counter-
factuals exploited in this work.

3 METHODS

Counterfactual Normalization consists of three steps:
identification of variables that are vulnerable to partic-
ipating in spurious associations with the target that do not
generalize across datasets, a node-splitting operation to
place latent counterfactual variables onto the causal DAG
such that they d-separate the target from the vulnerable
variables, and estimation of the relevant latent variables.

We will first review necessary background about potential
outcomes and structural equation models before introduc-
ing the method.

3.1 BACKGROUND

3.1.1 Potential Outcomes

The proposed method involves the estimation of coun-
terfactuals, which can be formalized using the Neyman-
Rubin potential outcomes framework (Neyman, 1923;
Rubin, 1974). For outcome variable Y and intervention
A, we denote the potential outcome by Y (a): the value
Y would have if A were observed to be a.

In general, the distributions p(Y (a)) and p(Y |A = a) are
not equal. For this reason, estimation of the distribution
of the potential outcomes relies on two assumptions:

Consistency: The distribution of the potential outcome
under the observed intervention is the same as the distribu-
tion of the observed outcome. This implies p(Y (a)|A =
a) = p(Y |A = a).

Conditional Ignorability: Y (a) ⊥⊥ A|X , ∀a ∈ A.
There are no unobserved confounders. This implies
p(Y (a)|X,A = a′) = p(Y (a)|X,A = a).

3.1.2 Counterfactuals and SEMs

Shpitser and Pearl (2008) develop a causal hierarchy con-
sisting of three layers of increasing complexity: asso-
ciation, intervention, and counterfactual. Many works
in causal inference are concerned with estimating aver-
age treatment effects—a task at the intervention layer
because it uses information about the interventional dis-
tribution p(Y (a)|X). In contrast, the proposed method
requires counterfactual queries which use the distribution
p(Y (a)|Y, a′, X) s.t. a 6= a′ 1. That is, given that we
observed an individual’s outcome to be Y under interven-
tion a′, what would the distribution of their outcome have
been under a different intervention a?

In addition to the assumptions for estimating potential out-
comes, computing counterfactual queries requires func-
tional or structural knowledge (Pearl, 2009). We can repre-
sent this knowledge using causal structural equation mod-
els (SEMs). These models assume variables Xi are func-
tions of their immediate parents in the generative causal
DAG and exogenous noise ui: Xi = fi(pa(Xi), ui). Rea-
soning counterfactually at the level of an individual unit
requires assumptions on the form of the functions fi and
independence of the ui, because typically we are inter-

1The distinction is that p(Y (a)|X) reasons about the effects
of causes while p(Y (a)|Y, a′, X) reasons about the causes of
effects (see, e.g., Pearl (2015)).



Figure 2: (a) The DAG of causal mechanisms for the
medical screening example. (b) The modified DAG after
node-splitting yielding the latent signal value under no
different treatment Y (a). (c) The modified DAG after
node-splitting yielding the latent signal value under no
treatment and no chronic condition Y (a, c).

ested in reasoning about interventions in which the ex-
ogenous noise variables remain fixed. We build on this to
estimate the latent counterfactual variables.

3.2 COUNTERFACTUAL NORMALIZATION

Counterfactual Normalization uses a DAG, G, that lever-
ages any prior knowledge of the causal mechanisms relat-
ing variables in a prediction problem with target variable
T , assumed to be binary for the purposes of explanation.
We further assume that the predictors form a Markov
blanket2 of T in G. To sketch the method, recall that
in the example in Figure 1a we identified that C is vul-
nerable to participating in a spurious association with
T . To retain generalizable information about C we will
estimate Y (C = ∅), the counterfactual blood pressure
if a patient did not have heart failure or did not receive
narcotics. Instead of predicting T by modeling p(T |Y,C)
which likely will not generalize, we will instead model
p(T |Y (∅)) which notably does not contain C as a feature.
To explain the method’s steps in complete detail, we will
consider an expanded version of the meningitis example.
In Figure 2a we have added a variable A to represent med-
ications given to the patient, and a variable X to represent
demographic factors (e.g., age).

3.2.1 Identification of Vulnerable Variables

Spurious associations are marginal non-causal associa-
tions with T in the training data. Since we are using the
Markov blanket of T for prediction, a variable v ∈ G
makes a model vulnerable to learning a spurious associ-
ation if it is neither an ancestor nor a descendant of the
target variable T while being a member of the Markov

2The Markov blanket of a target variable is a set of variables
such that, conditioned on the set, the target is independent of
all other variables not in the set (Koller and Friedman, 2009).
Graphically, these are the target’s parents, children, and other
parents of its children.

Algorithm 1: Node-splitting Operation
Input: Graph G, child of target node Y , observed

parents of Y to intervene upon P
Output: Modified graph G∗
1. Insert counterfactual node Y (P = ∅)
2. Delete edges {x→ Y : x ∈ pa(Y ) \P}
3. Insert edges {x→ Y (P = ∅) : x ∈ pa(Y ) \P}
4. Insert edge Y (P = ∅)→ Y

blanket of T . Thus, vulnerable variables are parents of
children of T that are non-causally associated with the
target variable.

In Figure 2(a), the vulnerable variables are C and A be-
cause they are parents of Y (a child of T ) without being
descendants or ancestors of T .

3.2.2 Node-Splitting

To remove vulnerable variables from the Markov blanket
of T we need to create a modified graph G∗ by adding
latent nodes to G such that the new nodes and the existing
non-vulnerable nodes d-separate the vulnerable variables
from T . We term the process (shown in Algorithm 1) of
generating G∗ node-splitting.

Consider intervening on treatment (A) in Figure 2a. We
assume variables are interventionally set to a “null” value
(e.g., A = ∅ representing the absence of treatment or
C = ∅ representing the absence of the chronic condition).
A is a vulnerable variable because it is not causally asso-
ciated with T and it is a parent of a child of T , namely
blood pressure (Y ). The structural equation of blood pres-
sure is Y = fy(T,X,C,A, uy). Intervening on A results
in the latent variable Y (∅) = fy(T,X,C,A = ∅, uy)
representing the untreated blood pressure value. Unlike
traditional SEM interventions, we retain the factual ver-
sion of the variables we intervene on in the graph. We
visualize this in Figure 2b by placing the resulting latent
outcome variable Y (a) onto the causal graph as a parent
of its factual version Y . The latent version subsumes the
parents (in the original graph G) of its factual version that
were not intervened upon (e.g., X and C). Thus, the new
latent variable represents the value before the observed ef-
fects of the interventional variables occurred. We further
assume that the factual outcome can be recovered as some
invertible function of the counterfactual outcome and the
observed value of the parent, subject to the same values of
the exogenous noise variables: Y = gy(Y (∅), A, uy). As
a result, the new graph G∗ is still a model of the observed
data generating process.

The node-splitting operation naturally extends to simul-
taneous interventions on multiple variables. Figure 2c



shows the modified DAG when A and C are simultane-
ously intervened upon. Importantly, because we inter-
vened on all vulnerable variables, this graph yields the
conditional independence: T ⊥⊥ Y,A,C|Y (A = ∅, C =
∅), X in which the vulnerable variables A and C are
now irrelevant for predicting T conditioned on the new
Markov blanket which contains the latent variable. Thus,
to d-separate the target from the vulnerable variables V,
we need to compute the latent versions of the shared chil-
dren of T and V in which we intervene and set V = ∅.

3.2.3 Estimating Latent Variables

Under what conditions can we estimate the latent vari-
ables so that we d-separate the vulnerable variables from
the target? First, we need adjusted versions of the assump-
tions required to estimate the distributions of potential
outcomes, namely the previously mentioned conditional
ignorability assumption. We assume we can accurately fit
SEMs with respect to the available features in G. In addi-
tion to no unobserved confounders, we also ideally have
no unobserved exogenous variables. Enumerating more
parents of a variable in its SEM allows us to better fit the
equation and reduce the influence of ui, the exogenous
noise. Additionally, there are structural requirements for
the models used to estimate the latent variables because
of the underlying prediction problem, which results in an
unobserved target variable for test units.

No Interaction with the Target: In the structural equa-
tions, the effects of vulnerable variables V on children
Y shared with the T cannot depend on T . If this were
not the case, then estimating the latent outcome would
require knowing the value of T , defeating the purpose of
the prediction problem.

To compute the hypothetical latent variables, we first pick
arbitrary forms for the generative structural equations of
the children of T satisfying the invertibility and no inter-
action requirements and fit them to the factual outcomes
data (e.g., using maximum likelihood estimation). Then,
we can compute the latent outcome values by performing
the interventions on the fitted structural equations. In our
experiments in Section 5 we demonstrate how to do this
for additive structural equations.

3.2.4 Non-Vulnerable Interventions

As we will explain in Section 4, the proposed method
can result in a measurably simpler classification problem
when the target is binary by decreasing variance in the
children of T due to removing the effects of the vulner-
able variables. A natural question is: are we limited to
intervening only on the vulnerable variables?

We can intervene on any parent of a child of T (except

T

Y (a, c, x)

X

C

A

Y

Figure 3: The modified DAG after intervening on C,A,
and X .

for T itself). However, unless the parent is a vulnerable
variable, the parent will still be relevant for predicting T .
This is because we cannot change the value of a parent of
T in the structural equation for T , because in evaluation
data T is unobserved. In the meningitis example of Figure
2, suppose we intervene on X (a parent of T and a parent
of a child of T ) in addition toC andA. The resulting DAG
after node-splitting is shown in Figure 3. Note that the
only parent of Y (a, c, x) is T since it is the only parent of
Y in the original DAG that is not intervened upon. Since
the edgeX → T remains unchanged by the node-splitting
operation, X is still a member of the Markov blanket of
T . Thus, we would predict T using p(T |Y (∅, ∅, ∅), X).
While not pictured, we can also intervene on children of T
that are parents of other children of T . For example, if we
added a variable Z to Figure 2a with edges T → Z → Y ,
we could intervene on Z. We would not, however, be able
to remove Z from the Markov blanket of T because the
edge T → Z remains.

Even though these variables remain relevant for predict-
ing T after intervening on them, there are still potential
benefits to removing their effects on the children of T be-
cause it can measurably lower variance in these variables
as we now discuss.

4 COMPLEXITY METRICS

Beyond guarding against vulnerabilities, what are other
benefits of the proposed method? For binary prediction
problems, the geometric complexity (on the basis of eu-
clidean distance) of the class boundary of a dataset can
decrease when using the latent variables instead of the fac-
tual outcome and vulnerable variables. This is similar to
the work of Alaa and van der Schaar (2017) who use the
smoothness of the treated and untreated response surfaces
to quantify the difficulty of a causal inference problem.
To measure classifier-independent geometric complexity
we will use two types of metrics developed by Ho and
Basu (2000, 2002): measures of overlap of individual
features and measures of separability of classes.

For measuring feature overlap, we use the maximum



Fisher’s discriminant ratio of the features. For a single
feature, this measures the spread of the means for each
class (µ1 and µ2) relative to their variances (σ2

1 and σ2
2):

(µ1−µ2)
2

σ2
1+σ

2
2

. Since the proposed method uses latent vari-
ables in which we have adjusted for the effects of the
vulnerable variables (and any other variables we inter-
vene on), this also removes sources of variance in the
outcome. Thus, we expect the variances of each class to
reduce resulting in increased feature separability and a
corresponding increased Fisher’s discriminant ratio.

One measure of separability of classes is based off of a
test (Friedman and Rafsky, 1979) for determining if two
samples are from the same distribution. First, compute
a minimum spanning tree (MST) that connects all the
data points regardless of class. Then, the proportion of
nodes which are connected to nodes of a different class
is an approximate measure of the proportion of examples
on the class boundary. Higher values of this proportion
generally indicate a more complex boundary, and thus a
more difficult classification problem.

However, this metric is only sensitive to which class neigh-
bors are closer, and not the relative magnitudes of intra-
class and interclass distances. Another measure of class
separability is the ratio between the average intraclass
nearest neighbor distance and the average interclass near-
est neighbor distance. This measures the relative magni-
tudes of the dispersion within classes and the gap between
classes. While we do not necessarily expect Counterfac-
tual Normalization to increase the gap between classes,
we do expect intraclass distances to decrease because the
data units are transformed to have the same value of the
vulnerable variables, reducing sources of variance (e.g.,
less variance in counterfactual untreated BP than in fac-
tual BP). While the MST metric may not decrease, we
expect the intraclass-interclass distance ratio to decrease.

We can now state more specifically the benefits of the
proposed method. Based on the assumptions in Section
3, we know that the vulnerable variables are not causally
related to the target variable and that their effects on the
outcome variables are not dependent on the target variable.
These variables add variance to the prediction problem
and, given that we can account for their effects on the
children of T , are irrelevant to it. Thus, the proposed
method can directly increase the signal-to-noise ratio of
the classification problem. With respect to the geometric
complexity of the class boundary, this manifests itself
through reductions in the variance within a class, as we
will demonstrate in our simulated experiments.

Table 1: Simulated Experiment Results
Method Source AUROC Target AUROC
Baseline 0.66 0.67
Baseline (vuln) 0.94 0.87
CFN 0.96 0.96
CFN (vuln) 0.97 0.95

5 EXPERIMENTS

The proposed method allows us to learn accurate pre-
diction models that generalize across datasets. We first
consider simulated experiments in which we know the
true counterfactual outcomes to illustrate how the quality
of predictions depends on the accuracy of the counter-
factual estimates. Then we apply the method to a real
medical classification task and demonstrate how we can
use the proposed method to train a model that does not
rely on vulnerable variables while retaining relevant in-
formation. In all experiments we train models using only
source data and evaluate on test data from both the the
source and target domains.

5.1 SIMULATED EXPERIMENTS

5.1.1 Cross Hospital Transfer

We consider a simulated version of the medical screening
problem in Figure 2(a), but removeX from the graph. We
let A represent the time since treatment and simulate the
exponentially decaying effects of the treatment as f(A) =
2 exp(−0.08A) where the treatment policy depends on
C. In this example, C and A are vulnerable variables.

We simulate data for patients from two hospitals. In the
source hospital, we directly introduce a spurious associ-
ation between C and T , which leads to an association
between A and T . At this hospital shorter times since
treatment are correlated with having the target condition.
For this hospital the data are generated as follows:

T ∼ Bernoulli(0.4)
C|T = 1 ∼ Bernoulli(0.8)
C|T = 0 ∼ Bernoulli(0.3)
A|C = 1 ∼ 24 ∗Beta(0.5, 2.1)
A|C = 0 ∼ 24 ∗Beta(0.7, 0.2)
Y ∼ N (−0.5T +−0.3C + f(A), 0.22)

f(A) = 2 exp(−0.08A)

We remove the spurious correlation between T and C in
the target hospital: p(C = 1|T ) = p(C = 1) = 0.75.
We also change the after-treatment measurement policy
parameters to 1.7 and 1.1 such that p(A|C) = p(A).

We assume that the T and C coefficients (in the struc-



Table 2: Simulated Classification Complexity Metrics
Method Fisher’s Distance MST
Baseline (vuln) 0.86 0.11 0.54
CFN 3.51 0.02 0.19

tural equation for Y ), the treatment response amplitude
and timescale parameters, and noise scale parameter are
unknown and need to be learned through maximum likeli-
hood estimation, optimized using BFGS (Chong and Zak,
2013). We generate 800 patients from the source hospital,
using 600 to learn the parameters and holding out 200 to
evaluate performance on the source hospital. We evaluate
cross hospital transfer on 600 patients generated from the
second hospital.

As we identified in Section 2, the target latent variable
is Y (A = ∅, C = ∅): the patient’s blood pressure value
if they had not been treated and did not have heart fail-
ure. Once the model parameters are learned, comput-
ing the latent variable is straightforward due to the ad-
ditive structural equation of Y : Yi(A = ∅, C = ∅) =

Yi − β̂Ci − f̂(si)3 which can be computed for every in-
dividual i at both hospitals without observing T . We
consider counterfactual (CFN) p(T |Y (∅, ∅)) and base-
line factual models p(T |Y ) and corresponding versions
with the vulnerable variables (p(T |Y (∅, ∅), A,C) and
p(T |Y,A,C)) using logistic regression and measure pre-
dictive accuracy with the area under the Receiver Operat-
ing Characteristic curve (AUROC).

The results of evaluation on the patients from the source
and target are shown in Table 1. The accuracy of the
baseline model using the vulnerable variables does not
transfer across hospitals. However, simply discarding
the vulnerable features results in consistently poor per-
formance at both hospitals. Instead, the counterfactually
normalized models both transfer well while maintaining
high performance. The latent features also capture most
of the relevant information from the vulnerable variables,
since adding the vulnerable variables results in marginal
improvements at the source hospital.

The increased separability in the latent variables is shown
in Figure 4, in which the factual blood pressure distribu-
tions (solid lines) contain significant overlap. However,
once we normalize the blood pressures for treatment and
chronic condition, the separability by class is increased.
We also measure the increase through the classification
complexity metrics in Table 2, computed using the source
hospital training data. The feature with the maximum
Fisher’s Discriminant Ratio in the baseline model is C,
but this is much smaller than the ratio for the latent fea-

3∧ denotes an estimated value.

Figure 4: The distribution of factual (solid line) and es-
timated counterfactual (dashed line) blood pressures at
the source hospital in the simulated experiment. It is eas-
ier to discriminate T from counterfactual BP than from
observed BP due to decreased overlap in the distributions.

Figure 5: Performance as the accuracy of counterfactual
estimates decreases. Secondary y-axis measures correla-
tion between predictions using vulnerable variables and
predictions without using them. The error bars denote the
standard error of 50 runs.

ture. The large decrease in the MST metric indicates
fewer examples lies on the class boundary in the normal-
ized problem, and the decrease in intraclass-interclass
is due to a combination of increased separability and re-
duced intraclass variance of the latent variables visible in
the reduced spread of the distributions in Figure 4.

5.1.2 Accuracy of Counterfactual Estimates

In this experiment, we examine how the accuracy of coun-
terfactual estimates affects the quality of model predic-
tions. If the counterfactual estimates are accurate, then
we expect the conditional independence of the vulner-
able variables in the modified DAG to hold. We mea-
sure the degree of independence using the correlation
between the predictions with (p(T |Y (∅, ∅))) and without
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Figure 6: Real data experiment DAG of causal mecha-
nisms. The outcome Y is INR and the target T is sepsis.

(p(T |Y (∅, ∅), C,A)) using vulnerable variables.

We bias the true counterfactual values by adding normally
distributed noise of increasing scale. Then, we train the
counterfactual logistic regressions (with and without vul-
nerable variables) to predict T and evaluate the AUROC
on the source and target hospital patients. We vary the
standard deviation of the perturbations from 0.05 to 1 in
increments of 0.05, repeating the process 50 times for
each perturbation.

The results, shown in Figure 5, demonstrate what we ex-
pect: as the mean squared error (MSE) of the estimated
latent variables increases, predictive performance on both
populations worsens and the correlations of the predic-
tions with and without vulnerable variables decreases.
Since the model using vulnerable variables is biased by
a spurious association that does not transfer (since the
noisy adjustment is not capturing the relevant informa-
tion), that model consistently underperforms at the target
hospital. The counterfactual model without the vulnera-
ble variables performs equally well at both hospitals, but
the noise removes both the information captured by the
adjustment and the information contained in Y itself.

5.2 REAL DATA: SEPSIS CLASSIFICATION

5.2.1 Problem and Data Description

We apply the proposed method to the task of detecting
sepsis, a deadly response to infection that leads to organ
failure. Early detection and intervention has been shown
to result in improved mortality outcomes (Kumar et al.,
2006) which has resulted in recent applications of ma-
chine learning to build predictive models for sepsis (e.g.,
Henry et al. (2015); Soleimani et al. (2017); Futoma et al.
(2017)).

We consider a simple cross-sectional version of the sepsis
detection task as follows using electronic health record
(EHR) data from our institution’s hospital. Working with
a domain expert, we determined the primary factors in
the causal mechanism DAG (Figure 6) for the effects
of sepsis on a single physiologic signal Y : the interna-

tional normalized ratio (INR), a measure of the clotting
tendency of blood. The target variable T is whether or
not the patient has sepsis due to hematologic dysfunction.
We use chronic liver disease and sickle cell disease as
conditions C affecting INR that are risk factors for sepsis
(Goyette et al., 2004; Booth et al., 2010). We consider five
types of relevant treatments A: anticoagulants, aspirin,
nonsteroidal anti-inflammatory drugs (NSAIDs), plasma
transfusions, and platelet transfusions, where Aij = 1
means patient i has received treatment j in the last 24
hours. Finally, we include a demographic risk factor, age
X . For each patient, we take the last recorded measure-
ments while only considering data up until the time sepsis
is recorded in the EHR for patients with T = 1.

27,633 patients had at least one INR measurement, 388
of whom had sepsis due to hematologic dysfunction. We
introduced spurious correlation through selection bias as
follows. First, we took one third of the data as a sample
from the original target population for evaluation. Second,
we subsample the remaining data such that it only contains
patients who are flagged in the EHR for having high INR.
Third, we split the subsampled data into a random two
thirds/one third train/test splits for training on biased data
and evaluating on both the biased and unbiased data to
measure transferability. We repeated the three steps 50
times. We normalize INR in all experiments.

5.2.2 Experimental Setup

We apply the proposed method by fitting an additive struc-
tural equation for Y using the Bayesian calibration form
of Kennedy and O’Hagan (2001):

Yi = β0 + β1Ti + βT2 Ai + βT3 Ci + β4Xi

+ δ(Ti,Ai,Ci, Xi) + ε

δ(·) ∼ GP(0, γ2Krbf )

ε ∼ N (0, σ2)

where δ(·) is a Gaussian process (GP) prior (with RBF
kernel) on the discrepancy function since our linear re-
gression model is likely misspecified.

Due to the selection bias in the training data, all patients
have high INR making it difficult to calibrate the regres-
sion parameters. For this reason we place informative
priors on β1, β2, and β3 using N (1, 0.1) for features that
increase INR (e.g., T and anticoagulants) andN (−1, 0.1)
for features that decrease INR (e.g., sickle cell disease
and plasma transfusions). For full specification of the
other priors please consult the supplement. We compute
point estimates for the parameters using MAP estimation
and the FITC sparse GP (Snelson and Ghahramani, 2006)
implementation in PyMC3 (Salvatier et al., 2016).

While the counterfactual Y (A = ∅) is sufficient for d-
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Figure 7: Results for models trained and tested on the
selection biased data. In order the average AUROCs are
0.71, 0.75, and 0.78 and the average AUPRCs are 0.34,
0.36, and 0.39. Error bars denote 50 run 95% intervals.
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Figure 8: Results for models trained on biased data and
tested on unbiased data. In order the average AUROCs
are 0.96, 0.94, and 0.88 and the average AUPRCs are 0.26,
0.29, and 0.28. Error bars denote 50 run 95% intervals.

separating A from T in Figure 6 after node splitting, we
additionally normalize the effects of C and X:

Yi(∅,∅, ∅) = Yi − β̂T2 Ai − β̂T3 Ci − β̂4Xi (1)

We consider three logistic regression models trained
on the biased data for predicting T : a base-
line that does not use the vulnerable variables
p(T |C, Y,X), a baseline that uses the vulnerable vari-
ables p(T |A,C, Y,X), and a counterfactually normal-
ized model p(T |C, Y (∅,∅, ∅), X). We evaluate predic-
tion accuracy on biased and unbiased data using AUROC
and the area under the precision-recall curve (AUPRC).

5.2.3 Results

The resulting AUCs when predicting on biased data are
shown in Figure 7. The counterfactually normalized
model (CFN) outperforms the baseline model in which the

vulnerable variables are removed, but performs slightly
worse than the normalized model which includes the vul-
nerable variables. This indicates that the latent variable
estimates have captured some, but not all, of the relevant
information in the vulnerable variables.

The results when predicting on unbiased data are shown
in Figure 8. Since most of the examples in the unbiased
data are negative (only 1.4% are positive), the AUPRC is
a more interesting measurement because it is sensitive to
false positives. As we expect, the baseline model without
vulnerable variables has the lowest AUPRC because it has
less statistically relevant information to use. Somewhat
surprisingly, despite being trained on finite samples of bi-
ased data, the model with the vulnerable variables is able
to learn a conditional distribution with the vulnerable vari-
ables that carries over to the unbiased population. Addi-
tionally, the counterfactual model without non-vulnerable
variables has similar performance to the vulnerable model
with respect to AUPRC indicating that it also captured a
relationship of the vulnerable variables that generalizes.
These results are encouraging because we were able to
learn a counterfactually normalized model that transfers
while clearly retaining non-spurious information about
the vulnerable variables.

6 CONCLUSION

Using properties of DAGs encoding causal mechanisms,
we have identified variables in prediction problems that
are vulnerable to participating in spurious associations
that can cause models to fail to generalize from training to
deployment settings. As opposed to previous approaches
which rely on unlabeled samples from the target distribu-
tion, we proposed a solution which allows us to identify
latent variables that, when estimated, can allow a model
to generalize by removing the vulnerable variables from
the prediction problem. Because of their causal interpre-
tations, we believe these latent variables are more intelli-
gible for human experts than existing adjustment-based
methods. For example, we think it is easier to reason
about “the blood pressure if the patient had not been
treated” than interaction features or kernel embeddings—
we would like to test this in a future user study. In our
experiments we demonstrated that we can successfully
remove vulnerable variables at prediction time with mini-
mal accuracy loss.
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