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Abstract

We introduce Battling-Bandits – an online
learning framework where given a set of n arms,
the learner needs to select a subset of k ≥ 2
arms in each round and subsequently observes
a stochastic feedback indicating the winner of
the round. This framework generalizes the stan-
dard Dueling-Bandit framework which applies
to several practical scenarios such as medical
treatment preferences, recommender systems,
search engine optimization etc., where it is eas-
ier and more effective to collect feedback for
multiple options simultaneously. We develop a
novel class of pairwise-subset choice model, for
modelling the subset-wise winner feedback and
propose three algorithms - Battling-Doubler,
Battling-MultiSBM and Battling-Duel: While
the first two are designed for a special class
of linear-link based choice models, the third
one applies to a much general class of pairwise-
subset choice models with Condorcet winner.
We also analyzed their regret guarantees and
show the optimality of Battling-Duel proving
a matching regret lower bound of Ω(n log T ),
which (perhaps surprisingly) shows that the
flexibility of playing size-k subsets does not
really help to gather information faster than the
corresponding dueling case (k = 2), at least for
the current subsetwise feedback choice model.
The efficacy of our algorithms are demonstrated
through extensive experimental evaluations on
a variety of synthetic and real world datasets.

1 INTRODUCTION

The problem of Dueling-Bandits has recently gained
much attention in the machine learning community
[22, 4, 24, 25, 23, 16]. Dueling bandits is an online learn-

ing framework, generalizing multi-armed bandits [5], in
which learning proceeds in rounds: At each round the
learner selects a pair of arm and observes a stochastic feed-
back of the winner of the comparison (duel) between the
selected arms. Several algorithms have been proposed for
this problem which are designed to learn to play the best
arm as often as possible over time [22, 4, 24, 25, 23, 16].
These algorithms are tailor-made to work well under spe-
cific assumptions on the underlying pairwise comparison
model that generates the stochastic feedback and under
specific definition of the winner of a set of arms [16].

In this work, we introduce a natural generalization of the
dueling bandits problem where given a set of n items
(bandit arms), the learner’s objective at each round is to
choose a subset of k ≥ 2 arms (unlike selecting just two
arms as in case of dueling bandits), upon which the winner
of the ‘battle’ among these k selected items is revealed
by the environment as stochastic feedback. The goal of
the learner is to identify an appropriately defined ‘best’
item in the process and play it often as possible.

We term this as the problem of Battling-Bandits as at
each round, essentially a subset of k items are competing
against each other unlike a pairwise duel as in the case of
Dueling-Bandits. Such settings occur naturally in many
application domains where it is practically easier for cus-
tomers or patients to give a single feedback for a set of
options (products or medical treatments), click on one
link from set of search engine outcomes etc., as opposed
to comparing only two options at a time. To the best of
our knowledge this is the first work to generalize the pair-
wise feedback model of dueling bandits to a subsetwise
model in an online regret minimization setup.

Related Work

The most related work to the current problem setup is
[17], where also a fixed set of arms in chosen in each
round. However, the key difference lies in the feedback
structure. While in [17] the feedback is a pairwise prefer-



ence matrix consisting outcomes of one or more chosen
pairs (maximum of

(
n
2

)
pairs), in our setting we only

observe a single index of the winning arm. In [8], the
authors also consider an extension of the dueling bandits
framework where multiple arms are chosen in each round.
We differ from their setup since we allow to choose only
a fixed k-set of arms at each round, whereas [8] allows a
variable number of arm selection. Moreover their work
does not have any theoretical guarantees while we provide
regret guarantees for our algorithms. Another work in
the similar essence is DCM-bandits [12], where a list of
k distinct items are offered at each round and the users
choose one or more from it scanning the list from top
to bottom. Their learning objective differs substantially
from ours since the DCM feedback is based on a fairly
different cascading feedback model. Moreover, their re-
gret objective demands to find the set of best k items as
opposed to finding a unique best item as in our case.

Another related body of literature is dynamic assortment
optimization where the objective is offer a subset of a
fixed set of items to the customers in order to maximize
the expected revenue. The demand of any item depends
on the substitution behavior of the customers that is cap-
tured mathematically by a choice model specifying the
probability of a consumer selecting a particular item from
any offered set. The problem has been studied under
different choice models – e.g. multinomial logit [19],
mallows and mixture of mallows [9], markov chain based
choice models [10], single transition model [15], general
discrete choice models [7] etc. A related bandit setting
has also been studied as the MNL-Bandits problem in [2]
where the learner selects a fixed set of k arms in each
iteration. However, the feedback is observed from a multi-
nomial logit model (MNL) which is different from the
subset choice model we considered here. Moreover their
setting takes item prices into account due to which the
notion of the ‘best item’ is different from ours, i.e. the
Condorcet winner. Thus our current problem setting can
not be reduced to theirs and vice-versa.

Proposed Work

The main challenge of Battling-Bandits lies in keeping
track of the subset choice probabilities, i.e. the probability
of an item winning in a given subset of k items, which
could be potentially of size O(knk) as our objective is to
find the “best" (Condorcet winner) item in the hindsight,
we must allow repetitions of items within a offered set,
which actually results in nk possible number of subsets
and each subset may give rise to atmost k choice prob-
abilities depending on number of distinct items in the
subset. Thus without any further structural or parametric
assumptions on the feedback choice model, the problem
becomes computationally intractable.

We thus introduce the pairwise-subset choice model for
the purpose which is based on a pairwise preference
model with Condorcet winner (Section 2) and propose
three different algorithms (Section 3): The first two –
Battling-Doubler and Battling-MultiSBM, are inspired by
the Doubler and MultiSBM algorithms of [4] which works
under a special class of pairwise-subset choice model,
viz. linear-subset choice model, which naturally general-
izes the linear-link based dueling feedback model of [4].
Both the algorithms are based on a novel reduction of the
battling bandit problem to classical multiarmed bandit
(MAB) [5]. Note that, although they apply to a special
subclass of choice models, their regret guarantees hold
for a richer class of arm sets, e.g. the regret of Battling-
Doubler holds for any general class of (even infinitely
many!) structured arms, whereas Battling-MultiSBM ap-
plies to any finite set of unstructured arms.

Our third algorithm, Battling-duel, works for the most
general class of pairwise subset choice models, which
is built on the novel idea of reducing battling bandits to
the dueling case by using a dueling bandit algorithm as a
black box, e.g. Relative-UCB [24] or Double-Thompson
Sampling [21] which are guaranteed to work optimally
(with O(n log T ) regret guarantee) under any pairwise
preference based feedback model with Condorcet winner.

Contributions. The specific contributions of this paper
can be summarized as follows:

1. We develop a novel class of subsetwise feedback
model, called pairwise-subset choice model, which
is based on a pairwise preference model with Con-
dorcet winner that models the winning probability
of an item in a battle in terms of its pairwise winning
probabilities over others. We further analyse a spe-
cial class of the above model, namely linear-subset
choice model which generalizes the linear-link based
dueling feedback model of [4] (Section 2).

2. We propose three algorithms for the probelme of
Battling-Bandits and analyze the regret guarantees
of each under a natural notion of regret with respect
to the Condorcet item (see Section 2.2). In particular,
we show that the regret for the first two algorithms,
Battling-Doubler and Battling-MultiSBM, scales
as O(nk ln2(T )) and O(nK(ln(T ) + n ln(n) +
n ln ln(T )) respectively, under linear-subset choice
model. The regret of our third algorithm Battling-
Duel holds under the general class of pairwise-subset
choice model that scales as O(n lnT ) (Section 3).

3. We also prove a lower bound of Ω(n ln(T )) for
Battling-Bandits under pairwise-subset choice model
which shows that the regret of Battling-Duel algo-
rithm matches the lower bound (upto constant factor),
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thereby making it the optimal possible algorithm for
the current problem setup (Section 4). An interesting
and perhaps surprising point to note here is that our
regret bounds are independent of the subset size k,
which implies the flexibility of playing larger subsets
does not really help to gather information faster than
the corresponding dueling case (k = 2), atleast with
the current setting of the battling problem.

4. Our extensive simulation based experiments justi-
fies the derived theoretical guarantees of our pro-
posed algorithms. We also compare our algorithms
to Self-Sparring algorithm of [17], which is the only
existing work applicable to our setting and show
the superior performance of our algorithms on both
synthetic and real word data sets (Section 5).

Organization: In Section 2, we describe the problem
setup and introduce our notions of regret. Section 3 de-
scribes our three proposed algorithms along with theoreti-
cal regret guarantees. In Section 4, we derive the lower
bound for Battling-Bandits problem. Section 5 presents
our experimental evaluations and finally we conclude with
remarks and directions for future work in Section 6.

2 PROBLEM SETUP

We proposed the problem of Battling-Bandit (or in
short BB) as a natural generalization of the well-studied
Dueling-Bandit (DB) problem in the bandit literature:
Given a set of n ≥ 2 items (equivalently, bandit arms)
denoted by [n] = {1, 2, . . . , n}, at each round t ∈ N,
the learner’s task is to build a multiset of k ≥ 2 items
from [n]. The environment then picks a ‘winner’ – one
of the k items from the chosen set – according to a
subset choice model, unknown to the learner, and re-
veals the winner’s identity to the learner. We denote by
St ⊆ [n] the multiset of k items chosen by the learner,
i.e., St ≡ (St(1), . . . , St(k)) ∈ [n]k, and i∗t ∈ [k] to be
the index of the winning item in St, at iteration t. Each se-
lection of k items also carries with it a cost or regret. The
aim of the learner is to choose sets of items to minimize
the total cumulative regret over a time horizon T .

From a different point of view, the setting of receiving
the winner information of the subset St at each round t
can be seen as a game between k players. Each player is
associated with an index i ∈ [k] and chooses an arm from
[n], thus specifying the multiset St. The winning player
is the index of the winning item revealed to the learner at
time t – the winner of the battle among k players. Hence
we named it as the problem of Battling-Bandit (BB). We
next describe the rule of winner selection in a given battle.

2.1 Subset Choice Models

Given a fixed set of items (context), choice modeling
defines the decision probability of preferring an individual
or set of items through stochastic models. In the present
case, we use subset choice models to specify the winning
probability of an item in a given set. We first introduce
a broad class of subset choice models, called pairwise-
subset choice models, extending the notions from pairwise
preference models for the dueling bandit (k = 2) problem.

Pairwise-subset choice model. We define a class of
subset choice models based on any pairwise preference
matrix Q ∈ [0, 1]n×n, where Qa,b denotes the proba-
bility of arm a beating b, for any a, b ∈ [n]. Clearly,
Qa,b + Qb,a = 1. Now given a set S ⊆ [n] of k items
with S ≡ (a1, . . . , ak) ∈ [n]k and any i ∈ [k], we define
the probability of ith index gets selected as the winner as:

P (i|S) =

k∑
j=1,j 6=i

2Qai,aj
k(k − 1)

∀i ∈ [k]. (1)

It can be easily checked that the formula above defines a
valid probability distribution over the indices i ∈ [k]. We
remark that since S is a multiset, the arm corresponding to
the winning index is not necessarily unique; as an extreme
example, in the multiset of k items (a1, a2, . . . , ak), we
might have ai = a ∈ [n], ∀i ∈ [k], in which case each
index i ∈ [k] wins with probability 1/k.

Note that when k = 2 (the dueling bandit case), for
any S = (a, b), we have P (i|S) = Qai,aj , where
i, j ∈ [2], i 6= j and a1 = a and a2 = b; which de-
fines the pairwise probability of item a winning over item
b in a pairwise duel. The following result provides an
alternative interpretation of the pairwise-subset choice
model in terms of the average probability that the item in
question wins in a randomly chosen duel:
Lemma 1. Let S ≡ (a1, . . . , ak) ∈ [n]k be a multiset of
k arms from [n]. Suppose U and V are two items (indices)
chosen uniformly at random without replacement from [k],
and W ∈ [2] is drawn as the winning index according to
the pairwise preference model Q over the set (aU , aV ).
Let X = U if W = 1 and X = V if W = 2. Then, for
each i ∈ [k], P(i|S) in (1) is the probability that X = i.
Remark 1. Note that if a Condorcet winner [16] a∗ ∈
[n] exists with respect to the preference matrix Q, i.e.
∃a∗ ∈ [n], such that Qa∗,j > 1

2 , ∀j ∈ [n] \ {a∗}, then it
is easy to verify that for any (multi)set S ⊆ [n], P (i|S) >
P (j|S) whenever ai = a∗ and aj ∈ [n] \ {a∗}, ∀i, j ∈
[k], i 6= j. Our objective is to identify this ‘best’ arm
a∗ and play it as often as possible; as spelt out in the
definition of our regret (Section 2.2).

We now define an utility score based subset choice model
as a special class of pairwise-subset choice models.
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Linear-subset choice model. Let us assume that each
arm a ∈ [n] is associated with an unknown utility
score θa ∈ [0, 1]. Then given a multiset of k items
S ≡ (a1, . . . , ak) ∈ [n]k, the probability that its ith index
gets selected as the winner with probability

P(i|S) =

∑k
j=1,j 6=i(θai − θaj + 1)

k(k − 1)

=
1

k
+

∑k
j=1,j 6=i(θai − θaj )

k(k − 1)
, ∀i ∈ [k]. (2)

We call this the linear-subset choice model since the
model is can be seen as a special case of pairwise-
subset choice model when the underlying pairwise prefer-
ence model Qθ is linear, i.e. Pr(a beats b) = Qθ

a,b =
(θa−θb+1)

2 , a, b ∈ [n]. Note that this model general-
izes the linear-link based pairwise feedback model of
[4] at k = 2, as for any S = (a, b), the probability
Pr(a beats b) = (θa−θb+1)/2 becomes exactly equal to
that of [4] used for modeling the dueling bandit feedback.
Remark 2. The linear-subset choice model satisfy a nat-
ural monotonicity property: For any set S ≡ (a1, . . . , ak)
and i, j ∈ [k], θai > θaj ⇒ P (i|S) > P (j|S), thus the
element with highest θ score is most likely to get selected
as the winner of set S. In other words, an ordering over θ
values, induces an ordering over the arms as well.

There also exist other notions subset choice models in the
literature, e.g., one popular class among them is the ran-
dom utility based models (RUM) [6] as described below:

RUM based Choice Models. One of the most popu-
larly studied class of choice models are Random Util-
ity Models (RUM). RUM assumes an underlying ground
truth of utility score θi ∈ R for each item i ∈ [n],
and assigns a conditional distribution Di(·|θi) for scor-
ing item i. So given S ⊆ [n], one first draws a ran-
dom utility score Xi ∼ Di(xi|θi) xi ∈ R, for each
item i ∈ S, and selects i with probability of Xi being
the maximum among all the scores of items in S, i.e.
i ∼ P(i|S) = Pr(Xi > Xj ∀j ∈ S \ {i}), ∀i ∈ S

One widely used example of RUM is the Multinomial-
Logit (MNL) or famously called Plackett-Luce model (PL)
where D′is are independent Gumbel distributions [6], i.e.
Di(xi|θi) = e−(xj−θj)e−e

−(xj−θj) . In this case it can be
shown that P(i|S) = eθai∑

j∈S e
θaj

, ∀i ∈ S.

Similarly, alternative family of discrete choice models
can be obtained assuming different distributions over the
utility scores Xi, e.g. when (X1, . . . Xn) ∼ N (θ,Σ) are
jointly normal with mean θ = (θ1, . . . θn) and covariance
Σ, above reduces to Multinomial Probit Model (MNP),
although unlike MNL, choice probabilities P(i|S) for
MNP do not have a closed formed solution [20].

2.2 Measuring performance – Regret

We compare the performance of the learner’s strategy
with respect to a ‘best’ arm of the choice model. As
defined before, for pairwise-subset choice models, the
most natural candidate for the ‘best’ arm is the Condorcet
winner a∗ ∈ [n], i.e. Qa∗,a > 1

2 , ∀a ∈ [n] \ {a∗},
assuming Q contains a Condorcet arm. Then an intuitive
way to define the regret of Battling-Bandit is by extending
the notion of dueling bandit regret [24, 22, 4] as follows:

RBBT =

T∑
t=1

(∑
a∈St

(
Qa∗,a − 1

2

)
k

)
, (3)

Consequently, the aim of the learner is to play sets St at
times t = 1, 2, . . . to keep the regret as low as possible
which in fact corresponds to playing a∗ as many times as
possible in St, at any round t. Clearly only if the learner
plays the set St = (a1, a2, . . . ak) such that ai = a∗ ∀i ∈
[k], the corresponding regret incurred at round t is 0.

Note that, for linear-subset choice models, the ‘best’ arm
is a∗ = argmaxa∈[n]θa, i.e., an arm having the highest
utility score, as that happens to be the Condorcet winner
of the underlying pairwise preference model Qθ. Thus
using (3), we can similarly define the regret RBBT in this
case as well with Qθ

a∗,a = (θa∗−θa+1)
2 ,∀a ∈ [n].

3 PROPOSED ALGORITHMS
In this section we describe three algorithms for the
Battling-Bandit problem. The first two algorithms,
Battling-Doubler and Battling-MultiSBM, respectively
generalize the two algorithms for utility based dueling
bandits (UBDB) Doubler and MultiSBM, proposed by
Ailon et al. [4], which essentially address the problem by
using classical multi-armed bandit (MAB) algorithm as an
underlying black box. Our third algorithm, Battling-Duel
is based on dueling matches that uses black-box instances
of a dueling bandit algorithms for the purpose.

The main advantage of Battling-Doubler is that it works
even with an infinite set of arms, although its regret guar-
antee is off by an extra multiplicative factor of lnT . On
the other hand, Battling-MultiSBM guaranteesO(nk lnT )
regret for any finite set of n arms. However both these
algorithms are tailored for linear-subset choice model, un-
like our third algorithm, Battling-duel, which in contrast
applies to the general class of pairwise-subset choice mod-
els (Section 2) and is shown to perform optimally with a
regret guarantee of O(n log T ) as long as the it uses an
optimal dueling bandit algorithm as the black box.

Before describing our proposed algorithms, it is worth
describing the black-box algorithms used to design them.

SBM: We call a black box algorithm for the classical
4



MAB problem1 as a single bandit machine (SBM). Any
SBM instance S supports three operations: Reset, Ad-
vance and Feedback. Reset(S) initializes the instance
S. Advance(S) suggests which arm to play next and
Feedback(S, r) feedbacks a reward r ∈ [0, 1] to S.

Definition 2. (α-robust SBM) [4] Consider a SBM in-
stance S with n arms. For any sub-optimal arm x ∈ [n],
let Tx be the number of times x is played by S in T rounds.
The SBM S is said to be α-robust if ∀s ≥ 4α∆−2

x lnT , it
holds that P[Tx > s] < 2

α (s/2)−α, where ∆x denotes
the gap between the expected reward of the best arm and
that of arm x in the underlying MAB instance.

DBM: Similar to SBM, we call a black box algorithm
for the dueling bandit problem as dueling bandit machine
(DBM). A DBM also supports the same three operations
as that of a SBM instance, with the only difference being
that a DBM instance D, outputs two arms x, y ∈ [n] on
the Advance(D) operation instead of one. We refer x as
the right arm and y the left arm. Also, in this case, the
feedback r upon Feedback(S, r) is a preference relation
between x and y defined as r = 1(y beats x). We now
describe our main algorithms and their regret guarantees.
Proofs of all the theorems are deferred to the Appendix.

3.1 Battling-Doubler

The first algorithm, Battling-Doubler, maintains a single
SBM instance S . The total time horizon T is divided into
exponentially growing epochs, and a MAB game is played
within each epoch using S . Specifically, at any epoch, the
algorithm plays the first (k − 1) arms uniformly from the
multiset of arms L selected by S in the previous epoch,
the kth arm is played adaptively according to suggestion
of the SBM S upon which S receives a binary reward
based on the defeat or victory of the kth arm it suggested.
Algorithm 1 describes Battling-Doubler formally.

Remark 3. Note that when [n] is finite, in order to save
the memory overhead of maintaining the multiset L (line
14), a more elegant approach can be to instead maintain a
probability distribution pt ∈ ∆n over the n arms, where
pta ∈ [0, 1] denotes the fraction of times arm a ∈ [n]
was played as the kth arm of St−1 at round (t− 1), and
sample at1, a

t
2, · · · , atk−1 according to pt (in line 7).

Theorem 3. Battling-Doubler Regret for general arm
sets. Assume that the SBM S used by Battling-Doubler
has expected regret no more than c lnβ(t) at the end of t ∈
N rounds, where c > 0, β > 0 are constants independent

1Given a fixed set of n arms, each associated to a reward
distribution with their expectation bounded in the range [0, 1],
the classical MAB defines the problem of identifying the best
arm with highest expected reward by actively selecting one arm
at each round sequentially and receiving a feedback from its
underlying reward distribution in an online fashion [5].

Algorithm 1 Battling-Doubler
1: Initialize: S ← an SBM over set of [n] arms
2: L ← [n]
3: `← 1, t← 1
4: while true do
5: reset(S)
6: for j = 1, 2, 3 · · · 2` do
7: Select at1, a

t
2, · · · , atk−1 uniformly from L

8: atk ← Advance(S)
9: Play St = (at1, a

t
2, · · · atk)

10: Receive winner i∗t ∈ [k]
11: Feedback(S,1(i∗t = k))
12: t← t+ 1
13: end for
14: L ← the multiset of arms played as atk in epoch `
15: `← `+ 1
16: end while

of t. Then, under the linear-subset choice model, the
expected regret of Battling-Doubler at the end of T rounds
is at most 2c kβ

β+1 lnβ+1(T ).
Corollary 4. Battling-Doubler Regret for finite set of
arms. Assume the SBM S used in Battling-Doubler is the
Upper Confidence Bound (UCB) algorithm [5] and sup-
pose the underlying feedback model used for the Battling-
Bandit problem is linear-subset choice model with pa-
rameter θ ∈ [0, 1]n, such that θ1 > maxni=2 θi. Then
the expected regret of Battling-Doubler is O(kH log2 T ),
where H :=

∑n
i=2

1
∆i

, and ∆i = θ1 − θi ∀i ∈ [n].

Note that, the above regret guarantee becomes trivial if
the gap parameter H is large. Instead, we can also derive
the a gap-independent regret bound as follows:
Corollary 5. Battling-Doubler Regret (Gap-
independent regret bound) Assume that the SBM
S in Battling-Doubler is the Upper Confidence Bound
(UCB) algorithm [5]. Then under any linear-subset
choice model, the expected regret of Battling-Doubler is
at most O(k

√
nT log3 T ).

3.2 The Battling-MultiSBM algorithm

Unlike Battling-Doubler, Battling-MultiSBM simultane-
ously maintains n independent SBMs Sa, ∀a ∈ [n]. At
each round t, the first (k − 1) arms are played according
to the last (k − 1) arms of round (t − 1) and the kth

arm is played according to the suggestion of SBM Sat−1
k

which corresponds to the kth arm played at round t− 1.
As before, a binary reward is fed back to Sat−1

k
based

on whether the arm it suggested at round t wins or not.
Battling-MultiSBM is formally described in Algorithm 2.

Theorem 6. Battling-MultiSBM Regret with
finite arms. Suppose all the SBMs used
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Algorithm 2 Battling-MultiSBM
1: Initialize: For each arm a ∈ [n],Sa ← new SBM

over set of arms [n]. Reset(Sa).
2: Select a0

2, a
0
3, · · · a0

k uniformly from [n]
3: for t = 1, 2, · · ·T do
4: atj = at−1

j+1, ∀j ∈ [k − 1]

5: atk ← advance
(
Satk−1

)
6: Play St = (at1, a

t
2, · · · atk)

7: Receive winner i∗t ∈ [k]

8: Feedback
(
Satk−1

,1(i∗t = k)
)

9: end for

in Battling-MultiSBM are α-robust, where
α = max{3, 2 + lnK

ln lnT }. Also assume θ1 > maxni=2 θi,
∆i = (θ1 − θi), ∀i ∈ [n] and H :=

∑n
i=2

1
∆i

. Then,
under the linear-subset choice model with param-
eter θ ∈ [0, 1]n, the regret of Battling-MultiSBM is

O
(
kHα

(
lnT + n lnn+ n ln lnT + 2

∑n
i=2 ln 1

θ1−θi

))
.

Note that the above bound is essentially of O(nk log T ),
since H = O(n) given a fixed instance of linear-subset
choice model θ. Similar Battling-Doubler, here also we
can derive a gap-independent regret bound as follows:
Corollary 7. Battling-MultiSBM Regret (Gap indepen-
dent regret bound). If the SBMs used in Battling-
MultiSBM are α-robust, α = max{3, 2+ lnK

ln lnT }, then un-
der any linear subset choice model, the regret of Battling-
MultiSBM is O

(
k
√
nTα

(√
lnT + n (lnn+ln lnT )√

lnT

))
.

3.3 Battling-Duel

Our third algorithm Battling-Duel, is a simple general
algorithm for Battling-Bandits that uses a good (low-
regret) dueling bandit algorithm as its black-box and
works under any pairwise-subset choice model. Battling-
Duel maintains an instance of a dueling bandit algo-
rithm (DBM) D, at each round t, the algorithm receives
two arms xt, yt ∈ [n] from D, and plays the multiset
St = (xt, xt, . . . , xt, yt, yt, . . . , yt) of k arms by repli-
cating xt and yt equal number of times on an average.
More precisely, xt is replicated for either bk/2c or dk/2e
number of times with equal probability of 1

2 and the rest
half of St is filled with yt. Upon playing St, once the
identity of the battling winner is revealed, D receives a
corresponding dueling feedback depending on if its xt or
yt. The formal description is given in Algorithm 3.

The following result shows an exact equivalence between
the regret of Battling-Duel RBBT (BD) and that of its
underlying dueling bandit algorithm RDBT (D).
Theorem 8. Battling-Duel Regret. Under any pairwise-
subset choice model with preference matrix Q, the regret

Algorithm 3 Battling-Duel
1: Initialize: D ← new dueling bandit algorithm over

set of [n] arms
2: for t = 1, 2, · · · do
3: {xt, yt} ← Advance(D)
4: St=(xt, . . . , xt, yt, . . . , yt), where xt and yt are

respectively replicated for bk/2c and dk/2e or
dk/2e) and bk/2c times, each with probability 1

2 .
5: Receive winner i∗t ∈ [k]
6: Feedback: (D,1(St(i

∗
t ) = yt))

7: end for

incurred by Battling-Duel (BD) in T rounds is

RBBT (BD) = κRDBT (D),

where κ = 2(k−1)
k if k is even, or κ = 2k

k+1 other-
wise. RDBT (D) is the regret incurred by D in T rounds,

i.e. RDBT (D) =
∑T
t=1

(Q′a∗,xt−
1
2 )+(Q′a∗,yt−

1
2 )

2 as per the
standard definition of regret for any dueling bandit algo-
rithmD [24, 22] under Q′ (as also obtained from (3) with
k = 2), Q′ being the pairwise preference model perceived
by D in Algorithm 3, such that Q′xt,yt := P(i∗t == xt),
for any choices of (xt, yt), at any round t.

Using D as the state-of-the-art RUCB algorithm [24],
gives the following regret guarantee for Battling-Doubler:
Corollary 9. Battling-Duel Regret with RUCB. Assume
that the DBM D in Battling-Duel is RUCB [24], then
under any pairwise-subset choice models with preference
matrix Q, the regret of Battling-Duel is

κ

C̃ +
∑

i∈[a]\{a∗}

2α(∆i + 4∆max)

∆2
i

lnT

 , (4)

where C̃ is a problem instance (i.e. Q) dependent con-
stant, independent of the time horizon T , ∆i =

(
Qa∗,i −

1
2

)
, ∆max = maxi∈[n] ∆i, ∀i ∈ [n], κ = 2(k−1)

k if k is

even, or κ = 2k
k+1 otherwise.

Note that Corollary 9 essentially gives an O(n log T ) re-
gret guarantee for Battling-Duel since the first term of
(4) is constant given a fixed Q, whereas the second term
scales as log T for each (n− 1) suboptimal arms. Clearly
Battling-Duel performs the best in terms of dependency
of its regret guarantee on n, k and T , among all three of
our proposed algorithms. We next establish a matching
regret lower bound of Ω(n log T ) for the problem, which
essentially proves the optimality of Battling-Duel.

4 REGRET LOWER BOUND

In this section, we derive an Ω(n lnT ) regret lower bound
(Theorem 8) for the problem of Battling-Bandit under any
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pairwise-subset choice model. Our proof involves reduc-
tion of an instance of the Dueling-Bandit (DB) problem
to an instance of the Battling-Bandit (BB) problem and
solve the former using an algorithm designed for the later.
More specifically, we first prove the following key result:

Theorem 10 (Reducing Dueling-Bandit to Battling-Ban-
dit). There exists a reduction from the Dueling-Bandits
problem to Battling-Bandits, which preserves expected
regret under any pairwise-subset choice model.

Proof. Consider that we have an algorithm ABB for the
BB problem and our goal is to construct a DB algorithm
ADB using this. One intuitive way to do this is: At any
round t, first play ABB to generate the set St of k arms,
randomly sample two indices it, jt ∈ [k] from the set [k],
play ait , ajt respectively as the left and right arm of DB,
receive the winner wt of the duel (ait , ajt) from the DB
environment and feedback a winning index i∗t to ABB
accordingly as the winner of the St battle. The resulting
algorithm ADB is as summarized in Algorithm 4.

Algorithm 4 ADB: Reducing DB to BB
1: for t = 1, 2, . . . do
2: St ←Multiset of arms played by ABB at round t
3: Draw it, jt ∼ Unif[k] (without replacement)
4: Play (ait , ajt)
5: Receive feedback wt = 1({ait beats ajt})
6: Return i∗t = itwt + jt(1− wt) ∈ {it, jt} to ABB

as winning index to ABB
7: end for

The crucial observation is that if the DB environment
actually simulates the winner from an underlying (un-
known) preference matrix Q, then internally ABB sees
a world where subset choice probabilities are given by

P(i|S) =
∑k
j=1,j 6=i 2Qai,aj
k(k−1) , due to Lemma 1. Thus at

each round t, the average instantaneous regret of ADB is:

Eit,jt∼[k],it 6=jt [rt(ADB)]

= Eit,jt∼[k],it 6=jt

[
(Qa∗,ait −

1
2 ) + (Qa∗,ajt −

1
2 )

2

]

=
1

k(k − 1)

k∑
i=1

2(k − 1)

[
(Qa∗,i − 1

2 )

2

]

=

k∑
i=1

[
(Qa∗,i − 1

2 )

k

]
= rt(ABB).

where the second equality follows since the expecta-
tion is taken over the random draw of two indices it, jt
from [k] without replacement, a∗ ∈ [n] being the Con-
dorcet arm of Q and rt(ABB) denotes the instantaneous

regret of ABB at round t, as defined in Section 2.2.
Thus we get E[RT (ADB)] = E

[∑T
t=1 rt(ADB)

]
=∑T

t=1 rt(ABB) = RT (ABB), proving the claim.

Corollary 11. Given any algorithm ABB for Battling-
Bandits (BB) under pairwise-subset choice model asso-
ciated to a preference matrix Q with Condorcet winner,
there exists a problem instance of BB such that

lim inf
T→∞

E[RT (ABB)]

lnT
≥

∑
i∈[n]\{a∗}

min
j∈Bi

∆ij

kl(Qi,j , 1
2 )
,

where ∆ij =
(Qa∗,i− 1

2 )+(Qa∗,j− 1
2 )

2 , Bi = {j | Qi,j <
1
2}, and kl(p, q) = p log p

q + (1− p) log 1−p
1−q denotes the

kl-divergence between two Bernoulli distributions with
parameters p and q.

Remark 4. Note that Corollary 11 implies that the
asymptotic regret lower bound is Ω(n log T ) since∑
i∈[n]\{a∗}minj∈Bi

∆ij

kl(Qij , 12 )
essentially involves a

sum over (n − 1) terms, each being a constant for a
fixed Q, thus making it Ω(n). This therefore concludes
that the regret guarantee of Battling-Duel (Theorem 8) is
indeed optimal when used with a ‘good’ dueling bandit
algorithm of O(n log T ) regret guarantee (Corollary 9).

Remark 5. The optimal regret guarantee of O(n log T )
of Battling-Bandits with pairwise-subset choice model
is independent of the subset size k, which essentially
clarifies the tradeoff of learning rate with subset size k —
even with the flexibility of playing larger k-sized sets (k ≥
2) does not help in faster information aggregation than
the corresponding dueling setup (k = 2) — which might
appear counter intuitive but is justified as information
theoretically the winner information of a k-set does not
reveal any additional information over that in a 2-set.

5 EXPERIMENTS

We now present empirical evaluations for our proposed
algorithms on different synthetic and real world datasets
and also compare them with the Self-Sparring algorithm
of [17], which is the only existing work applicable to our
framework. In all our experimental results, our proposed
algorithm Battling-Duel outperforms the rest, rightfully
justifying the optimality of its regret guarantees as dis-
cussed in Remark 4. A detailed discussion is given below:

Algorithms. We compared the performances of the fol-
lowing 5 algorithms: 1. BD-RUCB: Battling-Duel (Sec-
tion 3.3) with RUCB [24] as the DBM D. 2. BD-TS:
Battling-Duel (Section 3.3) with Double-Thompson Sam-
pling [21] as the DBM D. 3. B-Dblr: Battling-Doubler
(Section 3.1) with UCB [5] as the SBM S. 4. B-Msbm:
Battling-MultiSBM (Section 3.2) with UCB [5] as the
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SBM S. 5. SS-TS: Self-Sparring algorithm [17] with
Thompson Sampling [3]. This algorithm closely resem-
bles to the Sparring algorithm of [4] that maintains a
single copy of SBM (a MAB algorithm), and at each
round t, it queries the SBM k times to produce a k-sized
battling set St. To the best of our knowledge no other
existing work applies to the setup of Battling-Bandits.

Experimental Setup and Performance Measures We
plot regret of each of the 5 algorithms for different real
world and synthetic datasets, as describe in Section 5.1
and 5.2. In all the experiments the time horizon is fixed to
T = 5000 (with few exceptions if the regret plot do not
converge within 5000 time iterations) and the experiments
are run for different item sizes n and subset sizes k as
specified in the corresponding experiments. The measure
of performances in all the plots is the total regret RBBT
in T round as defined in (3). All results are reported as
average across 50 runs along with the standard deviations.

5.1 Experiments on Synthetic Datasets

For synthetic experiments with linear-subset choice model
(Section 2), we use the following four different utility
score vectors θ: 1. arith 2. geom 3. g1 and 4. g3.

Both arith and geom has n = 8 items, with item 1
being the ‘best’ (Condorcet) item of highest score, i.e.
θ1 > max8

i=2 θi; the rest of the θis are in an arithmetic
or geometric progression respectively, as their names sug-
gest. The two score vectors are described in Table 2.

arith 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
geom 0.8 0.7 0.512 0.374 0.274 0.2 0.147 0.108

Table 1: Parameters for linear-subset choice model

The next two utility score vectors has n = 15 items in
each. Similarly as before, item 1 is the Condorcet winner
here as well, with θ1 > max8

i=2 θi. More specifically
for g1, the individual score vectors are of the form: θi =
0.8, if i = 1 and θi = 0.2, ∀i ∈ [15] \ {1}. For g3, the
individual score vectors are of the form: θi = 0.8, if i =
1, θi = 0.7, ∀i ∈ [8] \ {1} and θi = 0.6, otherwise

Clearly, g3 is a harder model (for learning the Cordorcet
item), than g1 as in the former case, the gap between the
items scores are very close to each other and the best and
the second best item is only 0.1 distance apart, whereas
gap is 0.6 for every suboptimal items in the later case.
The fact is reflected in our experimental results as well.

Results on linear-subset choice model. Figure 1 shows
the comparative regret performances of the 5 algorithms,
for Battling-Bandits with linear-subset choice model on 4
different utility score vectors as described above. We set
k = 4 for arith and geom and k = 8 for the rest two.

The results clearly shows the superiority of Battling-Duel
compared to the rest. In fact, BD-TS performs slightly
better than BD-RUCB as Thompson sampling based algo-
rithms are known to perform empirically well compared
to UCB based algorithms (in spite of both1 having a sim-
ilar O(n log T ) regret guarantee), although it comes at
the cost of a higher performance variability as evident
from our plots. SS-TS being a Thompson Sampling based
algorithm, it exhibits a very high variability too.

Figure 1: Averaged regret over time on synthetic datasets
(on linear-subset choice model)

Results on MNL choice model. We also run the above
experiment for the same 4 utility scores 1. arith 2. geom
3. g1 and 4. g3 on Multinomial Logit (MNL) choice
model (as describes in Section 2). Similarly as before,
even in this case the two Battling-Duel algorithms, BD-
RUCB and BD-TS, perform the best among all 5. As
argued before, g3 being the “hardest instance to learn”,
for both linear and MNL choice models, we had to run the
algorithms for comparatively larger number of iterations
until convergence. The results are shown in Figure 2.

Figure 2: Averaged regret over time on synthetic datasets
(on multinomial logit (MNL) model)

Results on Pairwise-subset choice model. We finally
run experiments for the general pairwise-subset choice
model on two synthetic pairwise preference matrices:
arxiv-pref and arith-pref with n = 6 and n = 8 respec-
tively. See Appendix E.2 for the details of the datasets.
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We run the experiments for k = 4 for both the datasets.
As before, the two Battling-Duel algorithms excel the rest
in this case as well, as follows from Figure 3.

Figure 3: Averaged regret over time on synthetic datasets
(on pairwise-subset choice model)

5.2 Experiments on Real Datasets

We also evaluated our method on four real-world prefer-
ence learning datasets: 1. Car [1] 2. Hurdy [16] 3. Tennis
[16] and 4. Sushi [11]. Each of the dataset contains pair-
wise preferences of a given set of n items, where n = 10
for both Car and Hurdy, and it is respectively 8 and 16 for
Tennis and Sushi. All the preference matrices contain a
Condorcet winner (as required as per our problem setup in
Section 2). We set k = 6 for both Hurdy and Tennis and
respectively 4 and 10 for Car and Sushi. The description
of the datasets along with data extraction procedure and
the actual preference matrices are given in Appendix E.

Figure 4: Averaged regret over time on real datasets (on
pairwise-subset choice model)

Results. Figure 4 shows the comparative regret perfor-
mances of the 5 algorithms used. As expected, BD-TS
turns out to be the best algorithm for most of the cases,
with BD-RUCB following it closely, whereas B-BMsbm
and B-Dblr performs poorly in comparison, rightfully
justifying their suboptimal regret guarantees (Theorem 3
and 6). SS-TS shows a very high variability as usual and
performs worse than both BD-RUCB and BD-TS.

5.3 Effect of varying subset size k

We also analyze the scaling of the regret performances
our optimal algorithm Battling-Duel with increasing k.

We use BD-RUCB for the purpose on two score vectors
1. g1 and 2. g1-big with varying k, keeping n fixed to 15
and 50 respectively. Here g1-big is just a larger version
of g1 utility score with n = 50 items, such that θ1 = 0.8
and θi = 0.2, ∀i ∈ [50] \ {1} (see Appendix E for
details). The results are shown in Figure 5, which clearly
reflects that the learning rate of Battling-Duel does not
scale with k, justifying that its regret guarantee is indeed
independent of the subset size k (Theorem 8).

Figure 5: Averaged regret over time with varying k and
fixed n (on linear-subset choice model)

6 CONCLUSION AND FUTURE WORK

We introduce the problem of Battling-Bandit – generaliza-
tion of the well-studied Dueling-Bandit problem, where
the objective is to find the ‘best’ arm by successively
playing a subset of k arms from a pool of n arms and
subsequently receiving the winner feedback in an online
fashion. For this we develop a novel k-wise feedback
model, viz. pairwise-subset choice model and propose
three algorithms along with their regret bound guaran-
tees. We also show a matching regret lower bound of
Ω(n log T ) proving the optimality of our algorithms.

Our proposed framework of Battling-Bandits opens up a
set of new directions to explore – with different choices of
feedback models, regret objectives, or even applying this
to new settings like revenue maximization, contextual or
adversarial bandits etc. One very interesting point noted
here is that the optimal regret guarantee is independent
of the subset size k ≥ 2, which implies the flexibility
of playing larger subsets does not really help to gather
information faster than the corresponding dueling case
(k = 2), atleast with the current pairwise-subset choice
feedback model. It will be interesting to study the tradeoff
of the subset size on the regret (learning rate to identify the
‘best’ arm) for different subset choice models, e.g. MNL,
MNP etc. Lastly, it would also be useful to analyze other
dueling bandit algorithms, e.g. Sparring [4], especially
for large set of structured arms and their implications in
solving Battling-Bandit with different settings.
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