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Abstract

The conditional independence structure in-
duced on the observed marginal distribution by
a hidden variable directed acyclic graph (DAG)
may be represented by a graphical model rep-
resented by mixed graphs called maximal an-
cestral graphs (MAGs). This model has a num-
ber of desirable properties, in particular the set
of Gaussian distributions can be parameterized
by viewing the graph as a path diagram. Mod-
els represented by MAGs have been used for
causal discovery [22], and identification theory
for causal effects [28].

In addition to ordinary conditional indepen-
dence constraints, hidden variable DAGs also
induce generalized independence constraints.
These constraints form the nested Markov
property [20]. We first show that acyclic linear
SEMs obey this property. Further we show that
a natural parameterization for all Gaussian dis-
tributions obeying the nested Markov property
arises from a generalization of maximal ances-
tral graphs that we call maximal arid graphs
(MArG). We show that every nested Markov
model can be associated with a MArG; viewed
as a path diagram this MArG parametrizes the
Gaussian nested Markov model. This leads di-
rectly to methods for ML fitting and computing
BIC scores for Gaussian nested models.

1 INTRODUCTION

Causal models associated with graphs have a long history
in statistics, beginning with the seminal work of Wright
in pedigree analysis [27], Haavelmo’s work on simulta-
neous equations in econometrics [13] and the more re-
cent synthesis of earlier work into a general causal mod-
eling framework due to Pearl [17]. Causal graphical

models are widely used in a variety of disciplines, with
many theoretical developments and applications.
An important parametric subclass of causal graphical
models are the linear structural equation models with
correlated errors (SEMs). In fact, Wright and to some
extent Haavelmo’s work was originally within the SEM
class. SEMs are defined over a class of mixed graphs
containing directed (→) edges representing direct causa-
tion, and bidirected (↔) edges representing correlated er-
rors. Mixed graphs of this type without directed cycles—
an assumption that rules out cyclic causation—are called
acyclic directed mixed graphs (ADMGs).
Given an ADMG G, the linear structural equation model
with correlated errors (SEM) associated with G is for-
mally defined as the set of multivariate normal distribu-
tions with covariance matrices of the form

Σ = (I −B)−TΩ(I −B)−1,

where ωij = ωji = 0 unless i↔ j exists in G, and bij =
0 unless i→ j exists in G. The matrix Ω—and therefore
Σ—is assumed to be positive definite. We denote this
set by Psem(G), and the set of Gaussians with arbitrary
covariances N .
It is easy to show that this model is equivalent to assum-
ing that each variableXi is a linear function of its parents
with coefficients bji together with an additive error term.
The error terms are assumed to have a multivariate nor-
mal distribution with covariance matrix given by Ω. If
Ω = I , error terms are uncorrelated and the SEM corre-
sponds to a directed acyclic graph (DAG).
Elements of Psem(G) are known to obey the global
Markov property for G given by a criterion called m-
separation [15, 19, 23]; this is the natural extension of
d-separation to mixed graphs—see the Appendix for a
definition. This criterion implies that absences of cer-
tain edges in G correspond to conditional independences
in elements of Psem(G). Densities that obey this global
Markov property are said to be in the ordinary Markov
model of G, a set of densities we denote Po(G) [9].



Hence Psem(G) ⊆ Po(G) ∩ N ; that is elements of the
SEM for G are multivariate normal and are in the ordi-
nary Markov model of G.
Given a DAG D with observed variables O and hidden
variables H , a simple operation, called the latent projec-
tion [26], maps it to an ADMG G with only observed
variables O, such that d-separation applied to any vari-
ables in O in D, and m-separation applied to G yields
the same set of conditional independence relations on O.
Thus, distributions Markov relative to a hidden variable
DAG yield marginal distributions in Po(G) for a latent
projection G.
However, more recent work has shown that these
marginal distributions also obey certain generalized
conditional independence constraints, sometimes called
Verma constraints [6]. These define a model known as
the nested Markov model, also associated with G, and de-
noted Pn(G) [20]; generally Pn(G) ⊆ Po(G), since the
nested model implies all the constraints of m-separation.
In this paper we show that distributions in the SEM for G
also obey the additional constraints of the nested Markov
model, so Psem(G) ⊆ Pn(G) ∩N .
Although well-studied, general SEMs possess many
complexities that make them potentially difficult to work
with. The models may not be everywhere identifiable,
and may contain singularities that prevent convergence
of fitting algorithms [5]. No general distributional equiv-
alence result is available for SEMs; see [25] for re-
cent developments. In addition, while characterization
of identifiability of causal effects is known for non-
parametric structural equations [14, 21], a similar re-
sult is not known for SEMs despite decades of work
[1, 2, 3, 4, 8, 11, 12, 24].
It is known that SEMs are everywhere identified if and
only if they are associated with ADMGs in a special
class [7]; in this paper we call this class arid graphs.
We show that in a further subclass called maximal arid
graphs (MArGs), it is the case that Psem(G) = Pn(G) ∩
N . Moreover, we show that restricting to maximal arid
graphs is without loss of generality in the sense that for
any ADMG G, there exists a maximal arid graph G† such
that Pn(G) = Pn(G†). We also provide an algorithm for
obtaining this maximal arid projection from G, and show
that G† has the same ancestral relations as G.
Our results immediately imply that the nested Markov
model over multivariate normal densities is a curved
exponential family of known dimension, and is every-
where identifiable. They also imply that Gaussian nested
models can be fitted efficiently with existing algorithms,
such as RICF [5], applied to the SEM associated with
G†. Conversely, our results imply that every SEM obeys
all the generalized independence constraints implied by
Pn(G).

MArGs form a natural subclass of ADMGs for the pur-
poses of nested Markov model search methods, which
could be used for causal discovery. This would be a
more powerful alternative to model search with maxi-
mal ancestral graphs (MAGs), since nested models are
more fine-grained and therefore make more unambigu-
ous causal information available. Though the results
in this paper make significant progress towards causal
structure learning with nested Markov models, more
work is required. In particular, a natural next step would
be to fully describe equivalence classes of nested Markov
models, and develop a constraint based model search al-
gorithm that is akin to the FCI algorithm [22], but that
also takes generalized conditional independence con-
straints into account.
The remainder of the paper is organized as follows. Sec-
tion 2 gives some preliminary definitions, including that
of acyclic directed mixed graphs (ADMGs). In Section
3 we define the nested Markov model associated with
ADMGs formally, including the central notion of ‘fix-
ing’. Section 4 shows that the class of nested models can
be represented, without loss of generality, by the class
of maximal arid graphs. Section 5 characterizes fixing
in terms of zeroes of SEM parameters; this leads to the
result in Section 6, which shows that for maximal arid
graphs, the nested model and SEM coincide. We con-
clude with an example in Section 7, and discussion in
Section 8. The proofs of certain results that are not es-
sential to the presentation are deferred to the Appendix.

2 PRELIMINARIES

In this paper, we consider mixed graphs with directed
(→) and bidirected (↔) arrows connecting pairs of dis-
tinct vertices. There is at most one edge of each type be-
tween any pair of vertices, and we forbid directed cycles
(i.e. sequences of the form v1 → v2 → · · · → vk → v1
for k ≥ 2). Graphs in this class are called acyclic di-
rected mixed graphs (ADMGs). ADMGs may contain
bows, where both a → b and a ↔ b, but this is the
only circumstance in which more than one edge may be
present between two vertices. See Fig. 2, 3 and 4 for
examples of ADMGs.
We will use standard genealogical terminology for rela-
tions between vertices. Given a vertex v in an ADMG G
with a vertex set V , define the sets of parents, children,
ancestors, descendants, and siblings of v as

paG(v) ≡ {w : w → v in G}
chG(v) ≡ {w : v → w in G}
anG(v) ≡ {w : w = v or w → · · · → v in G}
deG(v) ≡ {w : w = v or v → · · · → w in G}
sibG(v) ≡ {w : w ↔ v in G}.



respectively. Define also the non-descendants of v to
be ndG(v) ≡ V \ deG(v). The definitions apply dis-
junctively to sets, e.g. for a set of vertices W ⊆ V ,
paG(W ) ≡

⋃
w∈W paG(w). In addition, we define the

district of v to be the set

disG(v) ≡ {w : w ↔ . . .↔ v in G}.

The set of districts of an ADMG G, which we denote by
D(G), always partitions the set of vertices in G.
An internal vertex v on a path is a collider (on the path)
if both adjacent edges have an arrowhead at v. A path
from w to v in G is called a collider path if every internal
vertex is a collider on the path. For example w → z ↔
m ← v is a collider path, while w → z → m → v is
not.
Given an ADMG G, and a subset S of vertices V in G,
the induced subgraph GS is the graph with vertex set S,
and those edges in G between elements in S. A set S
is called bidirected-connected in G if D(GS) contains a
single set.

3 NESTED MARKOV MODELS

Nested Markov models are a class of graphical models
associated with ADMGs, and defined by generalized in-
dependence constraints. We consider random variables
XV ≡ (Xv : v ∈ V ) taking values in the product space
XV = ×v∈V Xv , for finite dimensional sets Xv . For any
A ⊆ V we denote the subset (Xv : v ∈ A) by XA.
A kernel qV (xV |xW ) is a collection of densities over
XV , indexed by xW ∈ XW . Conditional densities are
kernels, but not all kernels are obtained by condition-
ing; we give some examples later. Conditioning and
marginalization are defined in the usual way in kernels.
A joint density p(xV ) over XV is said to be nested
Markov with respect to an ADMG G if it obeys certain
independence constraints in kernels derived from p(xV )
using a ‘fixing’ operation. These constraints are implied
by the m-separation criterion applied to conditional AD-
MGs (CADMGs) obtained from G by an analogous fix-
ing operation. We now define these terms, and the nested
Markov model, precisely.
A CADMG G(V,W ) is an ADMG with a set of random
vertices V and fixed vertices W , with the property that
sibG(w) ∪ paG(w) = ∅ for every w ∈ W . An example
can be found in Fig. 1(b); note that we depict fixed ver-
tices with rectangular nodes, and random vertices with
round nodes. Vertices V in a CADMG correspond to
random variables, as in standard graphical models, while
vertices in W correspond to variables that were fixed to
a specific value by some operation, such as condition-
ing or causal interventions. The genealogical relations in

Section 2 generalize in a straightforward way to CAD-
MGs by ignoring the distinction between V and W ; the
only exception is that districts are only defined for ran-
dom vertices, so D(G(V,W )) partitions V .

3.1 Fixing

A vertex r ∈ V is said to be fixable in a CADMG
G(V,W ) if disG(r) ∩ deG(r) = ∅. Given a CADMG
G(V,W ), and a fixable r ∈ V , the fixing operation φr(G)

yields a new CADMG G̃(V \ {r},W ∪ {r}) obtained
from G(V,W ) by removing all edges of the form → r
and ↔ r, and keeping all other edges. Given a kernel
qV (xV |xW ) associated with a CADMG G(V,W ), and
a fixable r ∈ V , the fixing operation φr(qV ;G) yields a
new kernel

q̃V \{r}(xV \{r} |xW , xr) ≡
qV (xV |xW )

qV (xr |xndG(r))
.

A sequence r1, . . . , rk of vertices in V is said to be fix-
able if r1 is fixable in G, r2 is fixable in φr1(G), etc. A re-
sult in [20] states that for any p(xV ) ∈ Pn(G), two valid
fixing sequences on the same set of variables R yield the
same CADMG and kernel. We therefore unambiguously
define

φR(G) ≡ φrk(. . . φr2(φr1(G)) . . .),

and similarly the kernel φR(p;G).
If a fixing sequence exists for a set R ⊆ V in G(V,W ),
we say V \R is a reachable set. Such a set is called intrin-
sic if the vertices in V \ R are bidirected-connected (so
that D(φR(G)) has a single element). We denote the col-
lections of reachable and intrinsic sets in G respectively
byR(G) and I(G).
For any v ∈ V , such that chG(v) = ∅, the Markov blan-
ket of v in a CADMG G(V,W ) is defined as

mbG(v) ≡ (disG(v) ∪ paG(disG(v))) \ {v},

this is the set of vertices that are connected to v by col-
lider paths. For brevity, we will denote mbφV \S(G)(v) by
mbG(v, S).
We are now ready to define the nested Markov model
Pn(G). Given an ADMG G, let ≺ be any topological
ordering on V . A distribution p(xV ) is in the nested
Markov model associated with G if, for each intrinsic
S ⊆ V and ≺-maximal v ∈ S,

Xv ⊥⊥ XV \({v}∪mbG(v,S)) | XmbG(v,S)

holds in φV \S(p(xV );G). This is known as the or-
dered local Markov property for nested models. As
a consequence, under the nested model, fixing r
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Figure 1: (a) An ADMG G that is not ancestral; (b)
a CADMG obtained from G in (a) by fixing a and
c; (c) the graph obtained from (b) that is used to
check conditional independence statements associated
with φ{a,c}(p(a, b, c, d);G).

within any R ∈ R(G) may be redefined as di-
viding by qR(xr |xmbG(r,R)), instead of dividing by
qR(xr |xndG(r)) (see section 2.11 in [20]). Nested
models can be equivalently defined by a global nested
Markov property obtained by applying the m-separation
criterion to each reachable graph φV \S(G) after adding
bidirected edges between all pairs of fixed vertices;
adding these bidirected edges ensures no independences
are implied between vertices in W . These m-separations
imply independences in the kernel φV \S(p;G); see [20].

Example 1. Consider the ADMG in Fig. 1(a). The ver-
tices a, c and d all satisfy the condition of being fixable,
but b does not since d is both a descendant of, and in the
same district as, b. The CADMG G({b, d}, {a, c}) ob-
tained after fixing a and c is shown in Fig. 1(b). Notice
that fixing c removes the edge b → c, but that the edge
c → d is preserved. Applying m-separation to the graph
shown in Fig. 1 (c), obtained from Fig. 1 (b) by connect-
ing a, c by a bidirected edge, yields

Xd ⊥⊥ Xa | Xc in φ{a,c}(p(x{a,b,c,d});G).

In addition, one can see easily that if an edge a→ d had
been present in the original graph, then we would not
have obtained this m-separation.

4 ARID GRAPHS

The main result of this section is that the nested Markov
model associated with any ADMG G can be associated,
without loss of generality, with a closely related maximal
arid graph (MArG) G†.
Arid graphs lack certain structures called C-trees [21]
(aka convergent arborescences [7]) that present difficul-
ties for identifiability. As a result, any linear SEM asso-
ciated with an arid graph is everywhere identifiable [7].

In addition, maximal arid graphs are analogous to (but a
strict superset of) maximal ancestral graphs (MAGs), a
class of ADMGs also used for causal discovery.
The section proceeds as follows. In Section 4.1 we de-
fine the reachable closure of a set which is the smallest
reachable superset of that set. These structures will be
used in the proofs of our results, and to define C-trees
and (maximal) arid graphs in Section 4.2. In Section
4.3 we define a projection operation which constructs,
for any ADMG, its maximal arid graph counterpart. In
Section 4.4, we show a number of useful graphical prop-
erties remain invariant between the original ADMG, and
its maximal arid graph, leading to the proof of our main
result in Section 4.5.

4.1 Reachable Closures

For a CADMG G(V,W ), a (reachable) subset C ⊆ V is
called a reachable closure for S ⊆ C if the set of fixable
vertices in φV \C(G) is a subset of S. Every set S in G
has a reachable closure.

Proposition 2. If A,B ∈ R(G), then A ∩B ∈ R(G).

Proof. This follows from the fact that if a vertex is fix-
able, it remains fixable after fixing other vertices (see
Lemma 27 of [20]).

Proposition 3. For any set of random vertices S in a
CADMG G, there is a unique reachable closure.

Proof. Assume there are two such distinct closures
W1,W2. Since both W1 and W2 are reachable, so is
W1∩W2, by Proposition 2. Since S ⊆W1 and S ⊆W2,
S ⊆W1∩W2. Consider a fixing sequence σ1 for V \W1.
Then there exists a fixing sequence σ2 for V \(W1∩W2)
which contains σ1 as a prefix. Note that W1 being reach-
able implies that W1 6⊆ W2, by the same argument as in
the proof of Proposition 2; hence σ2 is non-empty. But
this implies W1 is not a reachable closure for S, since
the next element in σ2 after the σ1 prefix cannot lie in S.
This is a contradiction.

In light of Proposition 3, we denote the unique reachable
closure of a set S in G by 〈S〉G . By definition 〈S〉G ∈
R(G) for any S, and if S ∈ R(G) then 〈S〉G = S. To
avoid clutter, if S = {s}, we write 〈{s}〉G as 〈s〉G .

Proposition 4. Let A ⊆ B with B a reachable set; then
〈A〉φV \B(G) = 〈A〉G .

Lemma 5. 〈S〉G ⊆ S ∪ paG(〈S〉G).

Proof. If s ∈ 〈S〉G \ S then s has a child in 〈S〉G since
otherwise s is fixable, which is a contradiction.



4.2 C-Trees and Arid Graphs

For any v ∈ V in an ADMG G, the induced subgraph
G〈v〉 is called a v-rooted C-tree [21] or an arborescence
converging on v [7]. These subgraphs are particularly
important because of the following result.

Theorem 6 ([7], Theorem 2). The SEM for an ADMG G
is everywhere identifiable if and only if 〈v〉G = {v} for
all v ∈ V .

In other words, the SEM parameterization is identifiable
everywhere if and only if G does not contain any non-
trivial converging arborescences. We call such graphs
‘arid’, since they do not contain such ‘trees’.

Definition 7. An ADMG G is called arid if for every
vertex v in G, 〈v〉G = {v}.

Arid ADMGs are “DAG-like,” in the sense that in any
DAG G, it is also the case that 〈v〉G = {v}. The cen-
tral result of this section is that the nested Markov model
Pn(G), a statistical model with desirable properties, may
be associated without loss of generality with arid graphs.
The ordinary Markov model Po(G) has previously been
associated with another special class of ADMGs called
ancestral graphs in [18].

Definition 8. An ADMG G is called ancestral if for ev-
ery vertex v in G, sibG(v) ∩ anG(v) = ∅.

Arid graphs may be viewed as a strict generalization of
ancestral graphs of [18], due to the following property of
C-trees.

Proposition 9. If 〈a〉G contains more than one element,
then there exists b ∈ 〈a〉G with a↔ b in G.

Proof. If no such element exists then every element in
paG(a) ∩ 〈a〉G is fixable in φV \〈a〉G (G), which is a con-
tradiction.

Proposition 10. Ancestral graphs are arid.

Proof. Follows immediately by the contrapositive appli-
cation of Proposition 9 and 〈a〉G ⊆ anG(a).

Proposition 11. An arid graph with at least two vertices
contains at least two fixable vertices.

Proof. Since the graph is acyclic, there is some childless
v that is therefore fixable. Since the graph is arid, 〈v〉G =
{v} ⊂ V , and so there is also some other vertex that can
be fixed to make {v} reachable.

4.3 Maximal Arid Projection

To prove that Pn(G) can always be associated with an
arid graph, we define the maximal arid projection opera-
tion which, for every ADMG G, yields a closely related

a b c

(a)

a b c

(b)

a b c

(c)

a b c

(d)

Figure 2: Graphs illustrating maximal arid projection.
The graphs (a) and (c) are not arid, but have maximal
arid projections given by (b) and (d) respectively.

graph G† that is arid, and ultimately show that G and G†
yield the same nested model.
In this section we define this projection operation and
derive several of its properties, culminating in a proof
that the projection and fixing operations commute. We
first need a preliminary definition.

Definition 12. A pair of vertices a 6= b in an ADMG
G is densely connected if either a ∈ paG(〈b〉G), or b ∈
paG(〈a〉G), or 〈{a, b}〉G is a bidirected-connected set.
A CADMG G is called maximal if every pair of densely
connected vertices in G are adjacent.

Densely connected vertex pairs form the nested Markov
analogue of inducing paths [26]. Just as the existence
of an inducing path between a pair of vertices prevents
m-separation by any set, so does the existence of dense
connectedness between a pair of vertices prevents m-
separation by any set within any CADMG correspond-
ing to a reachable set. In effect, a densely connected pair
cannot be made independent, by any combination of con-
ditioning and fixing operations.

Definition 13. For a CADMG G, we define the maximal
arid projection of G, denoted G†, to be the graph that
shares the vertex sets V,W with G, and that contains the
following edges:

• for b ∈ V , the edge a → b exists in G† if a ∈
paG(〈b〉G),

• for a, b ∈ V , the edge a ↔ b exists in G† if neither
a ∈ paG(〈b〉G), nor b ∈ paG(〈a〉G), but 〈{a, b}〉G is
a bidirected-connected set.

Fig. 2 provides some elementary examples of the max-
imal arid projection. In each of (a) and (c) we have a
dense inducing path between the vertices a and c. For (a)
we insert the edge a→ c to represent this (yielding (b)),
while in (c) we add a ↔ c (yielding (d)). In each case
the bow arcs are replaced by directed edges.



We provide several results characterizing the output of
the maximal arid projection operation, first noting that
pairs of vertices adjacent in G are also adjacent in G†.
Proposition 14.

(i) If a ∈ paG(b), then a ∈ paG†(b).

(ii) If a ∈ sibG(b), then either a ∈ paG†(b) or a ∈
sibG†(b) or b ∈ paG†(a).

Ancestral relationships are also preserved in G†.
Proposition 15. a ∈ anG(b) if and only if a ∈ anG†(b).

Proof. If a ∈ anG(b), then a ∈ anG†(b) follows by an in-
ductive application of Proposition 14(i). If a ∈ anG†(b),
then fix a directed path a → w1 → · · ·wk → b in G†.
Each directed edge on this path from c to d is due to
c ∈ paG(〈d〉G) being true. But since every element 〈d〉G
is an ancestor of d in G, this implies the existence of a
directed path from c to d in G. Thus, there is a directed
path from a to b in G.

Proposition 16. If G is a (C)ADMG, then so is G†.

Proof. Acyclicity of G† follows from Proposition 15; in
addition, in a CADMG it is clear from the definition that
no arrowheads are introduced into W .

If G is acyclic then G† is simple, i.e. contains at most one
edge between each pair of vertices, so if G is an ADMG
then G† is an example of a bow-free acyclic path diagram
(BAP) [5, 16].

Proposition 17. D(G†) is a sub-partition of D(G). Fur-
ther, for any S reachable in G and G†, D(φV \S(G†))
forms a sub-partition of D(φV \S(G)).

Note that it will follow from Theorem 19 that if S is
reachable in G then it is also reachable in G†.
Lemma 18. Let v be fixable in G. For any a, b ∈ V there
is a directed path from a to b in G with no intermediate
vertex being v, if and only if there is such a path in G†.
Theorem 19. If S is reachable in an ADMG G, then it
is also reachable in G† via the same fixing sequence. In
this case, (φV \S(G))† = φV \S(G†).

Corollary 20. 〈S〉G† ⊆ 〈S〉G for any set S.

Proposition 21. G† is a maximal arid graph.

4.4 Invariance Results In Maximal Arid
Projections

A key result will be that the nested Markov model asso-
ciated with a maximal arid projection is the same as that
for the original graph, and this will be proven by showing
that the Markov blankets in the two graphs are the same.

Lemma 22. Suppose that w ∈ paG(〈v〉G), and that
〈{v, w}〉G is bidirected-connected. Then 〈{v, w}〉G =
〈v〉G and in particular w ∈ 〈v〉G .

Lemma 23. If v, w ∈ V are connected by a collider
path π in G then they are connected by a collider path π†

in G† that uses a subset of the internal vertices of π. In
addition, if π starts with an edge v →, then so does π†.

This follows by definition of G†, and properties of clo-
sures of sets of vertices of size 1 and 2. A detailed proof
is in the Appendix.
As an example of this result, notice that the path t →
x ↔ bp ↔ y in Fig. 4 (a) is replaced by t → bp ↔ y in
the maximal arid projection in Fig. 4 (b).
We provide a partial converse.

Lemma 24. If v, w ∈ V are connected by a collider path
π† in G†, then they are also connected by a collider path
in G.

Proof. π† is of the form →↔ · · · ↔← (possibly with-
out the directed edges). Each↔ represents a bidirected
path in G. A directed edge in G†, say v → t, represents
an edge v → s for s ∈ 〈t〉G . Since 〈t〉G is bidirected-
connected, there is a path of the form v →↔ · · · ↔ t in
G. Concatenating these paths (and possibly shortening)
gives another collider path.

Theorem 25. Let S be a reachable set in G. Then
mbG(v, S) = mbG†(v, S).

Proof. First note that v is childless in φV \S(G) if and
only if it is so in φV \S(G†), so the statement is well-
defined. Theorem 19 shows that it is enough to show this
for S = V . The result is then a direct consequence of
Lemmas 23 and 24, since the Markov blanket is just the
set of vertices connected to v by collider paths.

Proposition 26. There is a one-to-one correspondence
between intrinsic sets in G and in G†.
Remark 27. The set H is referred to by [10] as the re-
cursive head associated with S. A consequence of the
argument in the proof above is that the discrete parame-
terization given by [10] is identical for G and G†.

An important result is that fixing corresponds to the same
probabilistic operation in G and G†.
Proposition 28. If S ∈ R(G), then any fixing sequence
σ for V \ S valid in G consists of the same set of fix-
ing operations when applied to p(xV ) using G and when
applied to p(xV ) using G†.

Proof. Recall that fixing is division of φW (p(xV );G) ≡
qV (xV |xW ) by qV (xv |xmbG(v,S)∪W ). By Theorem
25, mbG(v, S) = mbG†(v, S), and a simple induction
gives the result.



Thus, for any S ∈ R(G†), qS is well defined without
specifying the particular sequence of fixing operations in
G†. Some fixing sequences may be valid in G† but not in
G; however the kernels reached in G† are related to those
reachable in G by the following result.

Lemma 29. Suppose S ∈ I(G†), and let S† = 〈S〉G .
Let v be the maximal element of S. Any independences
involving the full conditional of v hold in qS if and only
if they hold in qS† .

Proof. For simplicity assume S† = V , so we write G and
G† in place of φV \S†(G) and φV \S†(G†) respectively.
This is justified by Theorem 19.
Suppose that s ∈ S† \ S is fixable in G† but not in G.
Then s ∈ disG(v) and is an ancestor of some r ∈ S such
that chG(r) = ∅ (in both G and G†).
The vertices r and v are connected by a collider path in
G, and so also are in G†. Further, since they have no
children in G, they also have no children in G†, and these
paths are therefore made up entirely of bidirected edges
in both graphs; in other words, r and v are in the same
district in both graphs. Since s is fixable in G† but not in
G, and since ancestor relations are preserved, it follows
that s is in the same district as r and v in G, but not in G†.
Fixing s involves division by qS†(xs |xmbG† (s)). Since
v is in a different district to s and has no children, then
v /∈ mbG†(s), and so by Lemma 10 of [20] we have
qS†(xv |xS†\{v}, xW ) = qS†\{s}(xv |xS†\{v}, xW ).
Any further vertices in S† \ S are also not in the same
district as v for the same reason, so v never appears in
their Markov blankets and hence this is also the same as
the full conditional qS(xv |xS\{v}, xW∪(S†\S)). The re-
sult follows.

4.5 Any ADMG And Its Maximal Arid Projection
Define The Same Nested Model

We are now ready to state and prove the main result of
this section.

Theorem 30. Pn(G) = Pn(G†).

Proof. Let ≺ be a topological order and consider any
pair S, S† as defined in Proposition 26. We will show
that the corresponding independences for the ordered lo-
cal nested Markov property are equivalent. Let v be the
≺-maximal element of S (and therefore of S†). Then the
two independences are(

Xv ⊥⊥ XV \(mbG(v,S)∪{v}) | XmbG(v,S)

)
in φV \S(p(xV );G), and(

Xv ⊥⊥ XV \(mbG† (v,S†)∪{v}) | XmbG† (v,S†)

)

a b

c d

(a)

a b

c d

(b)

b

a c

(c)

Figure 3: (a) A graph with a non-nested SEM constraint,
and (b) A nested Markov equivalent graph. (c) A graph
in which the parameter ωbc is not identifiable after any
fixing.

in φV \S†(p(xV );G†). Since—as follows from the proof
of Proposition 26—we have mbG(v, S) = mbG†(v, S†),
it only remains to bridge the difference between the ker-
nels. But this is an independence on the full conditional
of φV \S†(p(xV );G), so by Lemma 29, it holds in that
kernel if and only if it holds in φV \S(p(xV );G†).

5 THE FIXING OPERATION IN
STRUCTURAL EQUATION MODELS

If v is fixable in an ADMG G, the kernel qV \{v} result-
ing from fixing v is obtained by dividing p(xV ) by the
conditional distribution p(xv | xnd(v)). Hence

qV \{v}(xV \{v} |xv)
≡ p(xnd(v)) · p(xde(v)\{v} |xnd(v)∪{v}),

and therefore qV \{v} preserves both the marginal dis-
tribution of Xnd(v) and the conditional distribution of
Xde(v)\{v} given Xnd(v)∪{v}.

Remark 31. A Gaussian kernel q(xS |xV \S) is parame-
terized via a set of means E[xS |xV \S ] indexed by xV \S
and variances Cov[xS |xV \S ]. There is a distribution
naturally associated with q(xS |xV \S) given by:

p∗S(xV ) ≡ qS(xS |xV \S)
∏

v∈V \S

q∗v(xv),

where q∗v(xv) is an arbitrary marginal distribution.
In what follows we will consider kernels qS(xS |xV \S)
derived from a mean zero Gaussian distribution p(xV ),
hence parametrized via Cov[xV ]. We will then take
q∗v(xv) to be the univariate normal distribution p(xv). It
then follows that the Gaussian distribution p∗S(xV ) corre-
sponding to qS(xS |xV \S) will also be parametrized via
a covariance matrix Cov∗S [xV ].

Proposition 32. Every conditional independence that
holds in qS also holds in p∗S .



We now show that fixing in the linear SEM corresponds
to setting all coefficients corresponding to incoming
edges to zero, but keeping all other parameters constant.

Lemma 33. Let v be fixable in an ADMG G. Then
in an SEM corresponding to G, setting bwv = ωvw =
ωwv = 0 for all w 6= v is equivalent to dividing by
p(xv | xnd(v))/q∗v(xv).

Proof. We show that setting parameters to zero as in-
dicated leaves the marginal distribution p(xnd(v)) and
the conditional distribution p(xde(v)\{v} |xnd(v), xv) un-
changed. The former follows easily from the trek rule
(see, for example, [7]), since no edge in any trek be-
tween non-descendants of v is altered. Similarly, since
we choose VarXv = ωvv (see Remark 31), and the only
trek from v to itself in the fixed graph is the trivial trek;
hence ωvv is also preserved.
It remains to show that the same holds for the conditional
distribution of the strict descendants given {v} ∪ nd(v).
To see this, note that it is equivalent to check that the con-
centration kij = (Σ−1)ij remains the same whenever ei-
ther i or j is a descendant of v. Without loss of generality
we may assume that j has no descendants (by marginal-
izing anything which is not an ancestor of i, j, v). Then
we have

K = Σ−1 = (I −B)TΩ−1(I −B);

denote ωij =
(
Ω−1

)
ij

. By definition of the model, Ω

is a block-diagonal matrix with blocks corresponding to
districts in the graph G, and therefore so is Ω−1. Hence
kij (including the case i = j) can be written as

kij =

p∑
d=1

bidω
dj + ωij =

∑
d∈dis(j)

bidω
dj + ωij , (1)

(corresponding to paths of the form i → d ↔ · · · ↔ j
and i ↔ · · · ↔ j respectively). We claim none of the
quantities in (1) are modified by setting the parameters
bwv and ωvw = ωwv to zero.
Suppose for a contradiction that bid for d ∈ disG(j) is
one of the parameters set to zero; this could happen only
if d = v. Now, if i is the descendant of v then this
would imply a cycle, and if j is the descendant of v then
d ∈ disG(j) implies v is not fixable which is also a con-
tradiction. Hence bid is not set to zero.
Next consider ωdj . If d, j are in different districts then
ωdj = 0. Since Ω−1 is block diagonal, this parameter
will only change if v is in the same district as j and d.
If j is a descendant of v then v 6∈ disG(j) since v is
fixable. If i is a descendant of v then so is d, and therefore
v 6∈ dis(j) = dis(d) for the same reason. Therefore the
quantities ωij , ωdj all remain unchanged, as they are a
function only of the block of Ω corresponding to dis(j).

Hence if either i or j is a descendant of v, then none
of the terms in (1) is changed by setting bwv = ωvw =
ωwv = 0 for all w 6= v.

Thus in the context of a linear SEM fixing v corresponds
to setting the parameters bwv and ωvw = ωwv to zero.
We have the following result as a direct consequence:

Theorem 34. Let G be an ADMG then Psem(G) ⊆
Pn(G) ∩N .

Recall that N is the set of multivariate Gaussian distri-
butions with positive definite covariance matrix.

6 ARID SEMS REPRESENT ALL
GAUSSIAN NESTED MODELS

The Gaussian nested Markov model associated with an
ADMG G is exactly the linear SEM corresponding to the
maximal arid projection G† of G:

Theorem 35. Let G be an ADMG. Then Psem(G†) =
Pn(G) ∩N .

Proof. By Theorem 34 Psem(G†) ⊆ Pn(G) ∩ N . Fur-
ther, by Theorem 30, Pn(G) = Pn(G†). Thus it suffices
to prove that Pn(G)∩N ⊆ Psem(G) where G is maximal
and arid.
In order to facilitate our inductive argument, we extend
the definitions of Pn(G) and Psem(G) and the result to
CADMGs and kernels. Specifically, if G(V,W ) is a
CADMG and≺ is a topological ordering on V , then ker-
nel qV ∈ Pn(G) if, for each intrinsic S ⊆ V and ≺-
maximal v ∈ S,

Xv ⊥⊥ XV \({v}∪mbG(v,S)) | XmbG(v,S)

holds in φV \S(qV (xV |xW );G). Similarly, Psem(G)
represents a SEM where, if there is an edge w → v with
w ∈W , v ∈ V then the equation for Xv contains bwvxw
as a summand. We now claim that if G is a CADMG then
Psem(G†) = Pn(G)∩N , whereN is the set of Gaussian
kernels. This is clearly sufficient.
Suppose p ∈ Pn(G) ∩ N , where G(V,W ) is a CADMG
with topological ordering ≺.
If |V | = 1 then the result follows by regression on
XpaG(v). Otherwise we proceed by induction on |V |. Let
v be the maximal vertex under ≺.
For any fixablew in G we obtain by the induction hypoth-
esis that qV \{w} ∈ Pn(φw(G)) = Psem(φw(G)). Hence
we can identify parameters for edges not involving v by
fixing v. Any directed edge parameter bij can be identi-
fied provided j is not fixed; if |V | ≥ 2 then, since G is
arid, it contains at least two fixable vertices by Proposi-
tion 11. Hence we can identify every bij in this manner.
[Since valid fixings commute, all such results will agree.]



Similarly we can identify any bidirected edge this way
except possibly ωwv if w and v are the only two fixable
vertices in G. In this case, G contains only one district
and every vertex is an ancestor of v or w.
Since we have identified every other parameter, let p̃γ
be the distribution obtained from all the other parame-
ters with ωvw = γ. Then by construction, p̃γ and p have
the same margins over V \ {v} and V \ {w}. If we can
choose γ so that the covariance σvw matches that in p,
then p = p̃γ . It is not hard to see that σvw is a mono-
tonic function of ωvw, so the only restriction is on the
positive definiteness of the relevant covariance matrices.
Since the set of positive definite matrices is convex, the
set of valid ωvw is an interval; in addition, Ω is positive
definite if and only if Σ is positive definite. Hence, by
the intermediate value theorem there exists a γ that maps
to the appropriate σvw.

Example 36. To see the difficulty with the induction in
the previous proof, consider the graph in Fig. 3 (c). There
are two fixable vertices, b and c, and in either case the fix-
ing corresponds to marginalizing over the corresponding
random variable. This means that, in either case, the edge
parameter ωbc is not identifiable. Every other parameter
can be identified inductively, and we may finally use σbc
to identify ωbc.

7 EXAMPLE

Consider the following simplified medical trial to exam-
ine the effect of diet and exercise on diabetes, adapted
from [5]. At baseline, patients are randomly assigned to
perform t hours of exercise in a week, but actually per-
form x hours. At the end of the week their blood pres-
sure (bp) is measured, this is assumed to depend upon x,
but also to be confounded with it by lifestyle factors. In
the second phase of the trial, patients are assigned to lose
∆bmi kilograms in weight; the value of ∆bmi is random,
but for ethical reasons depends linearly on x and bp. Fi-
nally, at the end of the trial, triglyceride levels (y) are
measured, which is used to diagnose diabetes; these are
assumed to be correlated with blood pressure, and depen-
dent on exercise and weight loss. This causal structure
naturally yields the ADMG shown in Fig. 4(a).
Though a perfectly reasonable causal description of the
model, Fig. 4(a) contains a bow and therefore the asso-
ciated model is non-smooth and not everywhere iden-
tifiable. Performing maximal arid projection gives the
graph G† in Fig. 4(b), which gives an SEM that induces a
curved exponential family and is nested Markov equiv-
alent to the SEM corresponding to the original graph.
Note that the resulting graph is not an ancestral graph;
indeed G† preserves more of the structure than the corre-
sponding MAG.

t x bp ∆bmi y(a)

t x bp ∆bmi y(b)

Figure 4: (a) A graph representing a clinical trial for
interventions in diabetes; the associated SEM is non-
smooth. (b) A nested Markov equivalent graph whose
SEM represents a curved exponential family.

8 DISCUSSION

We have presented a subclass of ADMGs—the maximal
arid graphs (MArGs)—that fully represents the class of
nested Markov models. We have shown that any linear
SEM associated with a MArG is precisely equal to the
class of Gaussian densities in the nested Markov model
for that MArG.
We remark that the results on arid graphs we derived in
Section 4 are completely non-parametric, and apply not
only to the Gaussian models that we study here, but to
any model; we showed that any nested Markov equiv-
alence class contains a MArG which, since MArGs are
maximal and simple graphs, is a canonical representa-
tive of the class to use in search procedures within the
set of nested models. In this sense MArGs serve a simi-
lar role to MAGs for scoring-based searches for ordinary
Markov models corresponding to ADMGs.
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