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Abstract

The design of personalized incentives or rec-
ommendations to improve user engagement
is gaining prominence as digital platform
providers continually emerge. We propose
a multi-armed bandit framework for match-
ing incentives to users, whose preferences are
unknown a priori and evolving dynamically
in time, in a resource constrained environ-
ment. We design an algorithm that com-
bines ideas from three distinct domains: (i)
a greedy matching paradigm, (ii) the upper
confidence bound algorithm (UCB) for ban-
dits, and (iii) mixing times from the theory of
Markov chains. For this algorithm, we provide
theoretical bounds on the regret and demon-
strate its performance via both synthetic and
realistic (matching supply and demand in a
bike-sharing platform) examples.

1 INTRODUCTION

The theory of multi-armed bandits plays a key role in
enabling personalization in the digital economy (Scott,
2015). Algorithms from this domain have successfully
been deployed in a diverse array of applications includ-
ing online advertising (Lu et al., 2010; Mehta and Mir-
rokni, 2011), crowdsourcing (Tran-Thanh et al., 2014),
content recommendation (Li et al., 2010), and selecting
user-specific incentives (Ghosh and Hummel, 2013; Jain
et al., 2014) (e.g., a retailer offering discounts). On the
theoretical side, this has been complemented by a litany
of near-optimal regret bounds for multi-armed bandit
settings with rich combinatorial structures and complex
agent behavior models (Chen et al., 2016; Gai et al.,
2011; Kveton et al., 2015; Sani et al., 2012). At a high
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level, the broad appeal of bandit approaches for allocat-
ing resources to human agents stems from its focus on
balancing exploration with exploitation, thereby allow-
ing a decision-maker to efficiently identify users’ prefer-
ences without sacrificing short-term rewards.

Implicit in most of these works is the notion that in large-
scale environments, a designer can simultaneously allo-
cate resources to multiple users by running independent
bandit instances. In reality, such independent decompo-
sitions do not make sense in applications where resources
are subject to physical or monetary constraints. In simple
terms, matching an agent to a resource immediately con-
strains the set of resources to which another agent can be
matched. Such supply constraints may arise even when
dealing with intangible products. For instance, social
media platforms (e.g., Quora) seek to maximize user par-
ticipation by offering incentives in the form of increased
recognition—e.g., featured posts or badges (Immorlica
et al., 2015). Of course, there are supply constraints on
the number of posts or users that can be featured at a
given time. As a consequence of these coupling con-
straints, much of the existing work on multi-armed ban-
dits does not extend naturally to multi-agent economies.

Yet, another important aspect not addressed by the litera-
ture concerns human behavior. Specifically, users’ pref-
erences over the various resources may be dynamic—
i.e. evolve in time as they are repeatedly exposed to the
available options. The problem faced by a designer in
such a dynamic environment is compounded by the lack
of information regarding each user’s current state or be-
liefs, as well as how these beliefs influence their prefer-
ences and their evolution in time.

Bearing in mind these limitations, we study a multi-
armed bandit problem for matching multiple agents to a
finite set of incentives1: each incentive belongs to a cate-

1We use the term incentive broadly to refer to any resource
or action available to the agent. That is, incentives are not lim-
ited to monetary or financial mechanisms.



gory and global capacity constraints control the number
of incentives that can be chosen from each category. In
our model, each agent has a preference profile or a type
that determines its rewards for being matched to differ-
ent incentives. The agent’s type evolves according to a
Markov decision process (MDP), and therefore, the re-
wards vary over time in a correlated fashion.

Our work is primarily motivated by the problem faced
by a technological platform that seeks to not just max-
imize user engagement but also to encourage users to
make changes in their status quo decision-making pro-
cess by offering incentives. For concreteness, consider
a bike-sharing service—an application we explore in our
simulations—that seeks to identify optimal incentives for
each user from a finite bundle of options—e.g., varying
discount levels, free future rides, bulk ride offers, etc.
Users’ preferences over the incentives may evolve with
time depending on their current type, which in turn de-
pends on their previous experience with the incentives.
In addition to their marketing benefits, such incentives
can serve as a powerful instrument for nudging users to
park their bikes at alternative locations—this can lead to
spatially balanced supply and consequently, lower rejec-
tion rates (Singla et al., 2015).

1.1 CONTRIBUTIONS AND ORGANIZATION

Our objective is to design a multi-armed bandit algorithm
that repeatedly matches agents to incentives in order to
minimize the cumulative regret over a finite time hori-
zon. Here, regret is defined as the difference in the re-
ward obtained by a problem specific benchmark strategy
and the proposed algorithm (see Definition 1). A prelim-
inary impediment in achieving this goal is the fact that
the capacitated matching problem studied in this work is
NP-Hard even in the offline case. The major challenge
therefore is whether we can achieve sub-linear (in the
length of the horizon) regret in the more general match-
ing environment without any information on the users’
underlying beliefs or how they evolve?

Following preliminaries (Section 2), we introduce
a simple greedy algorithm that provides a 1/3–
approximation to the optimal offline matching so-
lution (Section 3). Leveraging this first contribu-
tion, the central result in this paper (Section 4) is
a new multi-armed bandit algorithm—MatchGreedy-
EpochUCB (MG-EUCB)—for capacitated matching
problems with time-evolving rewards. Our algorithm ob-
tains logarithmic (and hence sub-linear) regret even for
this more general bandit problem. The proposed ap-
proach combines ideas from three distinct domains: (i)
the 1/3–rd approximate greedy matching algorithm, (ii)
the traditional UCB algorithm (Auer et al., 2002), and

(iii) mixing times from the theory of Markov chains.

We validate our theoretical results (Section 5) by per-
forming simulations on both synthetic and realistic in-
stances derived using data obtained from a Boston-based
bike-sharing service Hubway (hub). We compare our
algorithm to existing UCB-based approaches and show
that the proposed method enjoys favorable convergence
rates, computational efficiency on large data sets, and
does not get stuck at sub-optimal matching solutions.

1.2 BACKGROUND AND RELATED WORK

Two distinct features separate our model from the ma-
jority of work on the multi-armed bandit problem: (i)
our focus on a capacitated matching problem with finite
supply (every user cannot be matched to their optimal in-
centive), and (ii) the rewards associated with each agent
evolve in a correlated fashion but the designer is unaware
of each agent’s current state. Our work is closest to (Gai
et al., 2011) which considers a matching problem with
Markovian rewards. However, in their model the rewards
associated with each edge evolve independently of the
other edges; as we show via a simple example in Sec-
tion 2.2, the correlated nature of rewards in our instance
can lead to additional challenges and convergence to sub-
optimal matchings if we employ a traditional approach as
in (Gai et al., 2011).

Our work also bears conceptual similarities to the rich
literature on combinatorial bandits (Badanidiyuru et al.,
2013; Chen et al., 2016; Kveton et al., 2014, 2015; Wen
et al., 2015). However, unlike our work, these papers
consider a model where the distribution of the rewards
is static in time. For this reason, efficient learning al-
gorithms leveraging oracles to solve generic constrained
combinatorial optimization problems developed for the
combinatorial semi-bandit setting (Chen et al., 2016;
Kveton et al., 2015) face similar limitations in our model
as the approach of (Gai et al., 2011). Moreover, the re-
wards in our problem may not have a linear structure so
the approach of (Wen et al., 2015) is not applicable.

The novelty in this work is not the combinatorial aspect
but the interplay between combinatorial bandits and the
edge rewards evolving according to an MDP. When an
arm is selected by an oracle, the reward of every edge
in the graph evolves—how it evolves depends on which
arm is chosen. If the change occurs in a sub-optimal di-
rection, this can affect future rewards. Indeed, the dif-
ficulties in our proofs do not stem from applying an or-
acle for combinatorial optimization, but from bounding
the secondary regret that arises when rewards evolve in a
sub-optimal way.

Finally, there is a somewhat parallel body of work



on single-agent reinforcement learning techniques (Azar
et al., 2013; Jaksch et al., 2010; Mazumdar et al., 2017;
Ratliff et al., 2018) and expert selection where the re-
wards on the arms evolve in a correlated fashion as in
our work. In addition to our focus on multi-agent match-
ings, we remark that many of these works assume that the
designer is aware (at least partially) of the agent’s exact
state and thus, can eventually infer the nature of the evo-
lution. Consequently, a major contribution of this work is
the extension of UCB-based approaches to solve MDPs
with a fully unobserved state and rewards associated with
each edge that evolve in a correlated fashion.

2 PRELIMINARIES

A designer faces the problem of matchingm agents to in-
centives (more generally jobs, goods, content, etc.) with-
out violating certain capacity constraints. We model this
setting by means of a bipartite graph (A, I,P) where A
is the set of agents, I is the set of incentives to which the
agents can be matched, and P = A × I is the set of all
pairings between agents and incentives. We sometimes
refer to P as the set of arms. In this regard, a matching is
a set M ⊆ P such that every agent a ∈ A and incentive
i ∈ I is present in at most one edge belonging to M .

Each agent a ∈ A is associated with a type or state θa ∈
Θa, which influences the reward received by this agent
when matched with some incentive i ∈ I. When agent a
is matched to incentive i, its type evolves according to a
Markov process with transition probability kernel Pa,i :
Θa × Θa → [0, 1]. Each pairing or edge of the bipartite
graph is associated with some reward that depends on the
agent–incentive pair, (a, i), as well as the type θa.

The designer’s policy (algorithm) is to compute a match-
ing repeatedly over a finite time horizon in order to max-
imize the expected aggregate reward. In this work, we
restrict our attention to a specific type of multi-armed
bandit algorithm that we refer to as an epoch mixing pol-
icy. Formally, the execution of such a policy α is divided
into a finite number of time indices [n] = {1, 2, . . . , n},
where n is the length of the time horizon. In each time
index k ∈ [n], the policy selects a matching α(k) and
repeatedly ‘plays’ this matching for τk > 0 iterations
within this time index. We refer to the set of iterations
within a time index collectively as an epoch. That is,
within the k–th epoch, for each edge (a, i) ∈ α(k), agent
a is matched to incentive i and the agent’s type is allowed
to evolve for τk iterations. In short, an epoch mixing
policy proceeds in two time scales—each selection of a
matching corresponds to an epoch comprising of τk it-
erations for k ∈ [n], and there are a total of n epochs.
It is worth noting that an epoch-based policy was used
in the UCB2 algorithm (Auer et al., 2002), albeit with

stationary rewards.

Agents’ types evolve based on the incentives to which
they are matched. Suppose that β(k)

a denotes the type
distribution on Θa at epoch k and i ∈ I is the incentive
to which agent a is matched by α (i.e., (a, i) ∈ α(k)).
Then, β(k+1)

a (θa) =
∑
θ′∈Θa

P τka,i(θ
′, θa)β

(k)
a (θ′).

For epoch k, the rewards are averaged over the τk itera-
tions in that epoch. Let rθa,i denote the reward received
by agent a when it is matched to incentive i given type
θ ∈ Θa. We assume that rθa,i ∈ [0, 1] and is drawn from a
distribution Tr(a, i, θ). The reward distributions for dif-
ferent edges and states in Θa are assumed to be indepen-
dent of each other. Suppose that an algorithm α selects
the edge (a, i) for τ iterations within an epoch. The ob-
served reward at the end of this epoch is taken to be the
time-averaged reward over the epoch. Specifically, sup-
pose that the k–th epoch proceeds for τk iterations be-
ginning with time tk—i.e. one plus the total iterations
completed before this—and ending at time tk+1 − 1 =
tk + τk − 1, and that θa(t) denotes agent a’s state at
time t ∈ [tk, tk+1 − 1]. Then, the time-averaged reward
in the epoch is given by r

θa(tk)
a,i = 1

τk

∑tk+1−1
t=tk

r
θa(t)
a,i .

We use the state as a superscript to denote dependence
of the reward on the agent’s type at the beginning of the
epoch. Finally, the total (time-averaged) reward due to a
matching α(k) at the end of an epoch can be written as∑

(a,i)∈α(k) r
θa(tk)
a,i .

We assume that the Markov chain corresponding to each
edge (a, i) ∈ P is aperiodic and irreducible (Levin et al.,
2009). We denote the stationary or steady-state distribu-
tion for this edge as πa,i : Θa → [0, 1]. Hence, we define
the expected reward for edge (a, i), given its stationary
distribution, to be µa,i = E

[∑
θ∈Θa

rθa,iπa,i(θ)
]

where
the expectation is with respect to the distribution on the
reward given θ.

2.1 CAPACITATED MATCHING

Given P = A × I, the designer’s goal at the beginning
of each epoch is to select a matching M ⊆ P—i.e. a
collection of edges—that satisfies some cardinality con-
straints. We partition the edges in P into a mutually ex-
clusive set of classes allowing for edges possessing iden-
tical characteristics to be grouped together. In the bike-
sharing example, the various classes could denote types
of incentives—e.g., edges that match agents to discounts,
free-rides, etc. Suppose that C = {ξ1, ξ2, . . . , ξq} de-
notes a partitioning of the edge set such that (i) ξj ⊆ P
for all 1 ≤ j ≤ q, (ii)

⋃q
j=1 ξj = P , and (iii) ξj∩ξj′ = ∅

for all j 6= j′. We refer to each ξj as a class and for any
given edge (a, i) ∈ P , use c(a, i) to denote the class that
this edge belongs to, i.e., (a, i) ∈ c(a, i) and c(a, i) ∈ C.



Given a capacity vector b = (bξ1 , . . . , bξq ) indexed on
the set of classes, we say that a matching M ⊆ P is a
feasible solution to the capacitated matching problem if:
a) for every a ∈ A (resp., i ∈ I), the matching must

contain at most one edge containing this agent (resp.,
incentive)

b) and, the total number of edges from each class ξj
contained in the matching cannot be larger than bξj .

In summary, the capacitated matching problem can be
formulated as the following integer program:

max
∑

(a,i)∈P w(a, i)x(a, i)

s.t.
∑
i∈I x(a, i) ≤ 1 ∀a ∈ A∑
a∈A x(a, i) ≤ 1 ∀i ∈ I∑
(a,i)∈ξj x(a, i) ≤ bξj , ∀ξj ∈ C

x(a, i) ∈ {0, 1}, ∀(a, i) ∈ P

(P1)

We use the notation {P, C, b, (w(a, i))(a,i)∈P} for a ca-
pacitated matching problem instance. In (P1), w(a, i)
refers to the weight or the reward to be obtained from the
given edge. The term x(a, i) is an indicator on whether
the edge (a, i) is included in the solution to (P1). Clearly,
the goal is to select a maximum weight matching subject
to the constraints. In our online bandit problem, the de-
signer’s actual goal in a fixed epoch k is to maximize the
quantity

∑
(a,i)∈P r

θa(tk)
a,i x(a, i), i.e., w(a, i) = r

θa(tk)
a,i .

However, since the reward distributions and the current
user type are not known beforehand, our MG-EUCB al-
gorithm (detailed in Section 4.2) approximates this ob-
jective by setting the weights to be the average observed
reward from the edges in combination with the corre-
sponding confidence bounds.

2.2 TECHNICAL CHALLENGES

There are two key obstacles involved in extending tra-
ditional bandit approaches to our combinatorial setting
with evolving rewards, namely, cascading sub-optimality
and correlated convergence. The first phenomenon oc-
curs when an agent a is matched to a sub-optimal arm i
(incentive) because its optimal arm i∗ has already been
assigned to another agent. Such sub-optimal pairings
have the potential to cascade, e.g., when another agent
a1 who is matched to i in the optimal solution can no
longer receive this incentive and so on. Therefore, unlike
the classical bandit analysis, the selection of sub-optimal
arms cannot be directly mapped to the empirical rewards.

Correlated Convergence. As mentioned previously, in
our model, the rewards depend on the type or state of an
agent, and hence, the reward distribution on any given
edge (a, i) can vary even when the algorithm does not
select this edge. As a result, a naı̈ve application of a ban-
dit algorithm can severely under-estimate the expected

reward on each edge and eventually converge to a sub-
optimal matching. A concrete example of the poor con-
vergence effect is provided in Example 1. In Section 4.2,
we describe how our central bandit algorithm limits the
damage due to cascading while simultaneously avoiding
the correlated convergence problem.

Example 1 (Failure of Classical UCB). Consider a
problem instance with two agents A = {a1, a2}, two
incentives I = {i1, i2} and identical state space i.e.,
Θa1 = Θa2 = {θ1, θ2}. The transition matrices and
deterministic rewards for the agents for being matched
to each incentive are depicted pictorially below: we as-
sume that ε > 0 is a sufficiently small constant.

θ1 θ2

rθ1a1,i1 = 0 rθ2a1,i1 = 1

1

ε
0 1− ε

Edge
(a1, i1)

θ1 θ2

rθ1a1,i2 = 0.5 rθ2a1,i2 = 0.5

ε

1
1− ε 0

Edge
(a1, i2)

θ1 θ2

rθ1a2,i1 = 0.5 rθ2a2,i1 = 0.5

ε

1
1− ε 0

Edge
(a2, i1)

θ1 θ21

ε
0 1− ε

Edge
(a2, i2)

rθ1a2,i2 = 0 rθ2a2,i2 = 1

Agent a1 Agent a2

Figure 1: (a) State transition diagram and reward for each edge:
note that the state is associated with the agent and not the edge.

Clearly, the optimal strategy is to repeatedly chose the
matching {(a1, i1), (a2, i2)} achieving a reward of (al-
most) two in each epoch. An implementation of tra-
ditional UCB for the matching problem—e.g., the ap-
proach in (Chen et al., 2016; Gai et al., 2011; Kveton
et al., 2015)—selects a matching based on the empirical
rewards and confidence bounds for a total of

∑n
k=1 τk

iterations, which are then divided into epochs for con-
venience. This approach converges to the sub-optimal
matching of M = {(a1, i2), (a2, i1)}. Indeed, every
time the algorithm selects this matching, both the agents’
states are reset to θ1 and when the algorithm explores
the optimum matching, the reward consistently happens
to be zero since the agents are in state θ1. Hence, the
rewards for the (edges in the) optimum matching are
grossly underestimated.

3 GREEDY OFFLINE MATCHING

In this section, we consider the capacitated matching
problem in the offline case, where the edge weights are
provided as input. The techniques developed in this sec-
tion serve as a base in order to solve the more general
online problem in the next section. More specifically, we
assume that we are given an arbitrary instance of the ca-
pacitated matching problem {P, C, b, (w(a, i))(a,i)∈P}.



Algorithm 1 Capacitated-Greedy Matching Algorithm

1: function MG((w(a, i))(a,i)∈P , b)
2: G∗ ← ∅, E′ ← P
3: while E′ 6= ∅:
4: Select (a, i) = arg max(a′,i′)∈E′ w(a′, i′)
5: if|G∗ ∩ c(a, i)| < bc(a,i) then
6: G∗ ← G∗ ∪ {(a, i)}
7: E′ ← E′ \ {(a′, i′)} ∀(a′, i′) : a′ = a or i′ = i

else
8: E′ ← E′ \ {(a, i)}
9: return G∗

10: end function

Given this instance, the designer’s objective is to
solve (P1). Surprisingly, this problem turns out to be NP-
Hard and thus cannot be optimally solved in polynomial
time (Garey and Johnson, 1979)—this marks a stark con-
trast with the classic maximum weighted matching prob-
lem, which can be solved efficiently using the Hungarian
method (Kuhn, 1955).

In view of these computational difficulties, we develop
a simple greedy approach for the capacitated matching
problem and formally prove that it results in a one-third
approximation to the optimum solution. The greedy
method studied in this work comes with a multitude of
desirable properties that render it suitable for matching
problems arising in large-scale economies. Firstly, the
greedy algorithm has a running time of O(m2 logm),
where m is the number of agents—this near-linear ex-
ecution time in the number of edges makes it ideal for
platforms comprising of a large number of agents. Sec-
ondly, since the output of the greedy algorithm depends
only on the ordering of the edge weights and is not sen-
sitive to their exact numerical value, learning approaches
tend to converge faster to the ‘optimum solution’. This
property is validated by our simulations (see Figure 2c).
Finally, the performance of the greedy algorithm in prac-
tice (e.g., see Figure 2b) appears to be much closer to the
optimum solution than the 1/3 approximation guaranteed
by Theorem 1 below.

3.1 ANALYSIS OF GREEDY ALGORITHM

The greedy matching is outlined in Algorithm 1. Given
an instance {P, C, b, (w(a, i))(a,i)∈P}, Algorithm 1
‘greedily’ selects the highest weight feasible edge in each
iteration—this step is repeated until all available edges
that are feasible are added to G∗. Our main result in this
section is that for any given instance of the capacitated
matching problem, the matching G∗ returned by Algo-
rithm 1 has a total weight that is at least 1/3–rd that of
the maximum weight matching.

Theorem 1. For any given capacitated matching prob-
lem instance {P, C, b, (w(a, i))(a,i)∈P}, let G∗ denote
the output of Algorithm 1 and M∗ be any other feasi-
ble solution to the optimization problem in (P1) includ-
ing the optimum matching. Then,

∑
(a,i)∈M∗ w(a, i) ≤

3
∑

(a,i)∈G∗ w(a, i).

The proof is based on a charging argument that takes
into account the capacity constraints and can be found
in Section B.1 of the supplementary material. At a high
level, we take each edge belonging to the benchmarkM∗

and identify a corresponding edge inG∗ whose weight is
larger than that of the benchmark edge. This allows us to
charge the weight of the original edge to an edge in G∗.
During the charging process, we ensure that no more than
three edges in M∗ are charged to each edge in G∗. This
gives us an approximation factor of three.

3.2 PROPERTIES OF GREEDY MATCHINGS

We conclude this section by providing a hierarchi-
cal decomposition of the edges in P for a fixed in-
stance {P, C, b, (w(a, i))(a,i)∈P}. In Section 4.1, we
will use this property to reconcile the offline version
of the problem with the online bandit case. Let G∗ =
{g∗1 , g∗2 , . . . , g∗m} denote the matching computed by Al-
gorithm 1 for the given instance such that w(g∗1) ≥
w(g∗2) ≥ . . . ≥ w(g∗m) without loss of generality2. Next,
let G∗j = {g∗1 , g∗2 , . . . , g∗j } for all 1 ≤ j ≤ m—i.e. the j
highest-weight edges in the greedy matching.

For each 1 ≤ j ≤ m, we define the infeasibility set HG∗

j

as the set of edges in P that when added to G∗j violates
the feasibility constraints of (P1). Finally, we use LG

∗

j to
denote the marginal infeasibility sets—i.e. LG

∗

1 = HG∗

1

and
LG
∗

j = HG∗

j \HG∗

j−1, ∀ 2 ≤ j ≤ m. (1)

We note that the marginal infeasibility sets denote a mu-
tually exclusive partition of the edge set minus the greedy
matching—i.e.,

⋃
1≤j≤m L

G∗

j = P \ G∗. Moreover,
since the greedy matching selects its edges in the de-
creasing order of weight, for any g∗j ∈ G∗, and every
(a, i) ∈ LG∗j , we have that w(g∗j ) ≥ w(a, i).

Armed with our decomposition of the edges in P \ G∗,
we now present a crucial structural lemma. The follow-
ing lemma identifies sufficient conditions on the local
ordering of the edge weights for two different instances
under which the outputs of the greedy matching for the
instances are non-identical.
Lemma 1. Given instances {P, C, b, (w(a, i))(a,i)∈P}
and {P, C, b, (w̃(a, i))(a,i)∈P} of the capacitated match-
ing problem, let G∗ = {g∗1 , g∗2 , . . . , g∗m} and G̃ denote

2If g = (a, i), we abuse notation and let w(g) = w(a, i).



the output of Algorithm 1 for these instances, respec-
tively. Let E1, E2 be conditions described as follows:

E1 ={∃j < j′ |(w̃(g∗j ) < w̃(g∗j′)) ∧ (g∗j′ ∈ G̃)}

E2 ={∃g∗j ∈ G∗, (a, i) ∈ LG
∗

j |
(w̃(g∗j ) < w̃(a, i)) ∧ ((a, i) ∈ G̃)}.

If G∗ 6= G̃, then at least one of E1 or E2 must be true.

Lemma 1 is fundamental in the analysis of our MG-
EUCB algorithm because it provides a method to map the
selection of each sub-optimal edge to a familiar condition
comparing empirical rewards to stationary rewards.

4 ONLINE MATCHING—BANDIT
ALGORITHM

In this section, we propose a multi-armed bandit algo-
rithm for the capacitated matching problem and analyze
its regret. For concreteness, we first highlight the in-
formation and action sets available to the designer in
the online problem. The designer is presented with a
partial instance of the matching problem without the
weights, i.e., {P, C, b} along with a fixed time horizon
of n epochs but has the ability to set the parameters
(τ1, τ2, . . . , τn), where τk is the number of iterations un-
der epoch k. The designer’s goal is to design a policy α
that selects a matching α(k) in the k–th epoch that is a
feasible solution for (P1). At the end of the k–th epoch,
the designer observes the average reward r

θa(k)
a,i for each

(a, i) ∈ α(k) but not the agent’s type. We abuse notation
and take θa(k) to be the agent’s state at the beginning
of epoch k. The designer’s objective is to minimize the
regret over the finite horizon.

The expected regret of a policy α is the difference in
the expected aggregate reward of a benchmark match-
ing and that of the matching returned by the policy,
summed over n epochs. Owing to its favorable prop-
erties (see Section 3), we use the greedy matching on
the stationary state rewards as our benchmark. Measur-
ing the regret with respect to the unknown stationary-
distribution is standard with MDPs (e.g., see (Gai et al.,
2011; Tekin and Liu, 2010, 2012)). Formally, let
G∗ denote the output of Algorithm 1 on the instance
{P, C, b, (µa,i)(a,i)∈P}—i.e., with the weights w(a, i)
equal the stationary state rewards µa,i.
Definition 1. The expected regret of a policy α with re-
spect to the greedy matching G∗ is given by

Rα(n) = n
∑

(a,i)∈G∗
µa,i −

n∑
k=1

∑
(a,i)∈α(k)

E[r
θa(k)
a,i ],

where the expectation is with respect to the reward and
the state of the agents during each epoch.

4.1 REGRET DECOMPOSITION

As is usual in this type of analysis, we start by decompos-
ing the regret in terms of the number of selections of each
sub-optimal arm (edge). We state some assumptions and
define notation before proving our generic regret decom-
position theorem. A complete list of the notation used
can be found in Section A of the supplementary mate-
rial.
1. For analytic convenience, we assume that the number

of agents and incentives is balanced and therefore,
|A| = |I| = m. WLOG, every agent is matched to
some incentive in G∗; if this is not the case, we can
add dummy incentives with zero reward.

2. Suppose that G∗ = {g∗1 , g∗2 , . . . , g∗m} such that
µg∗1 ≥ . . . ≥ µg∗m and let i∗(a) denote the incen-
tive that a is matched to in G∗. Let L∗1, . . . L

∗
m be the

marginal infeasibility sets as defined in (1).
3. Suppose that τ0 ≥ 1 and τk = τ0 + ζk for some

non-negative integer ζ.
Let 1{·} be the indicator function—e.g., 1{(a, i) ∈
α(k)} is one when the edge (a, i) belongs to the match-
ing α(k), and zero otherwise. Define Tαa,i(n) =∑n
k=1 1{(a, i) ∈ α(k)} to be the random variable that

denotes the number of epochs in which an edge is se-
lected under an algorithm α. By relating E[Tαa,i(n)] to
the regret Rα(n), we are able to provide bounds on the
performance of α.

By adding and subtracting
∑

(a,i)∈P E[Tαa,i(n)]µa,i from
the equation in Definition 1, we get that

Rα(n) =
∑

(a,i)∈P E[Tαa,i(n)](µa,i∗(a) − µa,i)

+
∑n
k=1

∑
(a,i)∈P E[1{(a, i) ∈ α(k)}

(
µa,i − r

θa(k)
a,i

)
].

To further simplify the regret, we separate the edges
in P by introducing the notion of a sub-optimal edge.
Formally, for any given a ∈ A, define Sa :=
{(a, i) | µa,i∗(a) ≥ µa,i ∀i ∈ I} and S :=

⋃
a∈A Sa.

Then, the regret bound in the above equation can be sim-
plified by ignoring the contribution of the terms in P \S.
That is, since µa,i∗(a) < µa,i for all (a, i) ∈ P \ S ,

Rα(n) ≤
∑

(a,i)∈S E[Tαa,i(n)](µa,i∗(a) − µa,i)

+
∑n
k=1

∑
(a,i)∈P E[1{(a, i) ∈ α(k)}

(
µa,i − r

θa(k)
a,i

)
].

(2)

Recall from the definition of the marginal infeasibility
sets in (1) that for any given (a, i) ∈ P \G∗, there exists
a unique edge g∗j ∈ G∗ such that (a, i) ∈ L∗j . Define
L−1(a, i) := g∗j ∈ G∗ such that (a, i) ∈ L∗j . Now, we
can define the reward gap for any given edge as follows:

∆a,i =


µa,i∗(a) − µa,i, if (a, i) ∈ S
µL−1(a,i) − µa,i, if (a, i) ∈ (P \G∗) \ S
µg∗j−1

− µg∗j , if (a, i) = g∗j for j ≥ 2



This leads us to our main regret decomposition result
which leverages mixing times for Markov chains (Fill,
1991) along with Equation (2) in deriving regret bounds.
For an aperiodic, irreducible Markov chain Pa,i, using
the notion that it convergences to its stationary state un-
der repeated plays of a fixed action, we can prove that for
every arm (a, i), there exists a constant Ca,i > 0 such
that

∣∣E[µa,i − r
θa(k)
a,i

]∣∣ ≤ Ca,i/τk—in fact, this result

holds for all type distributions β(k)
a of the agent.

Proposition 1. Suppose for each (a, i) ∈ P , Pa,i is an
aperiodic, irreducible Markov chain with corresponding
constant Ca,i. Then, for a given algorithm α where τk =
τ0 + ζk for some fixed ζ > 0, we have that

Rα(n) ≤
∑

(a,i)∈S Eα
[
Tαa,i(n)

]
(∆a,i +

Ca,i

τ0
)

+m
C∗
ζ

(
1 + log

(
ζ(n− 1)/τ0 + 1

))
.

The proof of this proposition is in Section B.2 of the sup-
plementary material.

4.2 MG-EUCB ALGORITHM AND ANALYSIS

In the initialization phase, the algorithm computes and
plays a sequence of matchingsM1,M2, . . . ,Mp for a to-
tal of p epochs. The initial matchings ensure that ev-
ery edge in P is selected at least once—the computa-
tion of these initial matchings relies on a greedy cov-
ering algorithm that is described in Section C.1 of the
supplementary material. Following this, our algorithm
maintains the cumulative empirical reward r̄a,i for ev-
ery (a, i) ∈ P . At the beginning of (say) epoch k, the
algorithm computes a greedy matching for the instance
{P, C, b, (w(a, i))(a,i)∈P} where w(a, i) = r̄a,i/Ta,i +
ca,i, i.e., the average empirical reward for the edge added
to a suitably chosen confidence window. The INCENT(·)
function (Algorithm 2, described in the supplementary
material since it is a trivial function) plays each edge in
the greedy matching for τk iterations, where τk increases
linearly with k. This process is repeated for n−p epochs.
Prior to theoretically analyzing MG-EUCB, we return to
Example 1 in order to provide intuition for how the algo-
rithm overcomes correlated convergence of rewards.

Revisiting Example 1: Why does MG-EUCB work? In
Example 1, the algorithm initially estimates the empiri-
cal reward of (a1, ii) and (a2, i2) to be zero respectively.
However, during the UCB exploration phase, the match-
ing M1 = (a1, i1), (a2, i2) is played again for epoch
length > 1 and the state of agent a1 moves from θ1 to
θ2 during the epoch. Therefore, the algorithm estimates
the average reward of each edge within the epoch to be
≥ 0.5, and the empirical reward increases. This contin-
ues as the epoch length increases, so that eventually the

Algorithm 2 MatchGreedy-EpochUCB

1: procedure MG-EUCB(ζ, τ0,P)
2: t1 ← 0, r̄a,i ← 0 & Ta,i ← 1 ∀(a, i) ∈ P
3: M1,M2, . . . ,Mp ⊂ P s.t. (a, i) ∈ Mj ⇔ (a, i) /∈
M` ∀` 6= j . see Supplement C.1 for details

4: INCENT(·) . see Alg. 2 in Supplement C
5: for1 ≤ n ≤ m . play each arm once
6: (r̄a,i)(a,i)∈Mn

← INCENT(Mn, tn, n, τ0, ζ)
7: tn+1 ← tn + τ0 + ζn
8: end for
9: while n > m

10: MG = MG((r̄a,i/Ta,i + c
Ta,i

a,i (n))(a,i)∈P )
11: (ra,i(tn))(a,i)∈MG

← INCENT(MG, tn, n, τ0, ζ)
12: r̄a,i ← r̄a,i + 1

τ0+ζnra,i(tn) ∀(a, i) ∈MG

13: Ta,i ← Ta,i + 1 ∀(a, i) ∈MG

14: tn+1 ← tn + τ0 + ζn; n← n+ 1
15: end while
16: end procedure

empirical reward for (a1, i1) exceeds that of (a1, i2) and
the algorithm correctly identifies the optimal matching as
we move from exploration to exploitation.

In order to characterize the regret of the MG-EUCB algo-
rithm, Proposition 1 implies that it is sufficient to bound
the expected number of epochs in which our algorithm
selects each sub-optimal edge. The following theorem
presents an upper bound on this quantity.

Theorem 2. Consider a finite set of m agents A and
incentives I with corresponding aperiodic, irreducible
Markov chains Pa,i for each (a, i) ∈ P . Let α be the
MG-EUCB algorithm with mixing time sequence {τk}
where τk = τ0 + ζk, τ0 > 0, and ζ > 0. Then for every
(a, i) ∈ S,

Eα[Ta,i(n)] ≤ 4m2

∆2
a∗,i∗

(
ρa∗,i∗√
τ0

+
√

6 log n+ 4 logm
)2

+ 2(1 + log(n))

where (a∗, i∗) = argmax(a1,i1)∈P\g∗1

⌈
4

∆2
a1,i1

(ρa1,i1√
τ0

+
√

6 log n+ 4 logm
)2⌉

, and ρa,i is a constant specific to

edge (a, i).

The full proof of the theorem is provided can be found in
the supplementary material.

Proof (sketch.) There are three key ingredients to the
proof: (i) linearly increasing epoch lengths, (ii) overcom-
ing cascading errors, and (iii) application of the Azuma-
Hoeffding concentration inequality.

By increasing the epoch length linearly, MG-EUCB en-
sures that as the algorithm converges to the optimal
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Figure 2: Synthetic Experiments: Comparison of MG-EUCB(+) and H-EUCB(+) to their respective offline solutions (G- and H-
optimal, respectively) and to C-UCB (classical UCB). We use the following set up: (i) |A| = |I| = |Θa| = 10 (see Supplement D
for more extensive experiments) (ii) each state transition matrix Pa,i associated with an arm (a, i) ∈ P was selected uniformly
at random within the class of aperiodic and irreducible stochastic matrices; (iii) the reward for each arm, state pair rθa,i is drawn
i.i.d. from a distribution Tr(a, i, θ) belonging to either a Bernoulli, Uniform, or Beta distribution; (iv) τ0 = 50 and ζ = 1.

matching, it also plays each arm for a longer duration
within an epoch. This helps the algorithm to progres-
sively discard sub-optimal arms without selecting them
too many times when the epoch length is still small. At
the same time, the epoch length is long enough to al-
low for sufficient mixing and separation between multi-
ple near-optimal matchings. If we fix the epoch length
as a constant, the resulting regret bounds are consider-
ably worse because the agent states may never converge
to the steady-state distributions.

To address cascading errors, we provide a useful charac-
terization. For a given (a, i), suppose that uka,i(t) refers
to the average empirical reward obtained from edge (a, i)
up to epoch t−1 plus the upper confidence bound param-
eter, given that edge (a, i) has been selected for exactly
k times in epochs 1 to t − 1 . For any given epoch k
where the algorithm selects a sub-optimal matching, i.e.,
α(k) 6= G∗, we can apply Lemma 1 and get that at least
one of the following conditions must be true:

1. 1{∃j < j′|
(
ukg∗

j′
(t) > ukg∗j (t)

)
∧ (g∗j′ ∈ α(t))}

2. 1{∃j, (a, i) ∈ L∗j |
(
ukg∗j (t) < uka,i(t)

)
∨ ((a, i) ∈

α(k))} = 1

This is a particularly useful characterization because it
maps the selection of each sub-optimal edge to a familiar
condition that compares the empirical rewards to the sta-
tionary rewards. Therefore, once each arm is selected for
O(log(n)) epochs, the empirical rewards approach the
‘true’ rewards and our algorithm discards sub-optimal
edges. Mathematically, this can be written as

Eα[Ta′,i′(n)] = 1 +
∑n
t=p+1 1{(a′, i′) ∈ α(t)}

≤ `m2 +
∑m
j=1

∑
(a,i)∈L+

j

∑n
t=p+1

∑t−1
s=1

∑t−1
k=`

(
1{usg∗j (t) ≤ uka,i(t)}

)
,

where ` is some carefully chosen constant, L+
j = L∗j ∪

{g∗j+1} and L+
m = L∗m.

With this characterization, for each s, we find an upper
bound on the probability of the event {usg∗j (t) ≤ uka,i(t)}.
However, this is a non-trivial task since the reward ob-
tained in any given epoch is not independent of the
previous actions. Specifically, the underlying Markov
process that generates the rewards is common across
the edges connected to any given agent in the sense,
that the initial distribution for each Markov chain
that results from pulling an edge is the distribution at
the end of the preceding pull. Therefore, we employ
Azuma-Hoeffding (Azuma, 1967; Hoeffding, 1963), a
concentration inequality that does not require indepen-
dence in the arm-based observed rewards. Moreover,
unlike the classical UCB analysis, the empirical reward
can differ from the expected stationary reward due to
the distributions Tr(a, i, θ) and βka,i 6= πa,i. To account
for this additional error term, we use bounds on the
convergence rates of Markov chains to guide the choice
of the confidence parameter cka,i(t) in Algorithm 2.
Applying the Azuma-Hoeffding inequality, we can show
that with high probability, the difference between the
empirical reward and the stationary reward of edge (a, i)
is no larger than cka,i(t).

As a direct consequence of Proposition 1 and Theorem 2,
we get that for a fixed instance, the regret only increases
logarithmically with n.

5 EXPERIMENTS

In this section, we present a set of illustrative experi-
ments with our algorithm (MG-EUCB) on synthetic and
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Figure 3: Bike-share Experiments: Figures 3a and 3b compare the efficiency (percentage of demand satisfied) of the bike-share
system with two demand models under incentive matchings selected by MG-EUCB+ with upper and lower bounds given by the
system performance when the incentives are computed via the benchmark greedy matching that uses the state information and when
no incentives are offered respectively. In Figure 3c we plot the mean reward of the MG-EUCB+ algorithm with static and random
demand which gives the expected number of agents who accept an incentive within each epoch.

real data. We observe much faster convergence with
the greedy matching as compared to the Hungarian al-
gorithm. Moreover, as is typical in the bandit literature
(e.g., (Auer et al., 2002)), we show that a tuned version
of our algorithm (MG-EUCB+), in which we reduce the
coefficient on the log(n) term in the UCB ‘confidence
parameter’ from six to three, further improves the con-
vergence of our algorithm. Finally we show that our al-
gorithm can be effectively used as an incentive design
scheme to improve the performance of a bike-share sys-
tem.

5.1 SYNTHETIC EXPERIMENTS

We first highlight the failure of classical UCB ap-
proaches (C-UCB)—e.g., as in (Gai et al., 2011)—for
problems with correlated reward evolution. In Figure 2a,
we demonstrate that C-UCB converges almost imme-
diately to a suboptimal solution, while this is not the
case for our algorithm (MG-EUCB+). In Figure 2b,
we compare MG-EUCB and MG-EUCB+ with a vari-
ant of Algorithm 2 that uses the Hungarian method (H-
EUCB) for matchings. While H-EUCB does have a
‘marginally’ higher mean reward, Figure 2c reveals that
the MG-EUCB and MG-EUCB+ algorithms converge
much faster to the optimum solution of the greedy match-
ing than the Hungarian alternatives.

5.2 BIKE-SHARE EXPERIMENTS

In this problem, we seek to incentivize participants in
a bike-sharing system; our goal is to alter their intended
destination in order to balance the spatial supply of avail-
able bikes appropriately and meet future user demand.
We use data from the Boston-based bike-sharing service
Hubway (hub) to construct the example. Formally, we

consider matching each agent a to an incentive i = s′a,
meaning the algorithm proposes that agent a travel to
station s′a as opposed to its intended destination sa (po-
tentially, for some monetary benefit). The agent’s state
θa controls the probability of accepting the incentive by
means of a distance threshold parameter and a parameter
of a Bernouilli distribution, both of which are drawn uni-
formly at random. More details on the data and problem
setup can be found in Section D of the supplementary
material.

Our bike-share simulations presented in Figure 3 show
approximately a 40% improvement in system perfor-
mance when compared to an environment without incen-
tives and convergence towards an upper bound on system
performance. Moreover, our algorithm achieves this sig-
nificant performance increase while on average matching
less than 1% of users in the system to an incentive.

6 Conclusion

We combine ideas from greedy matching, the UCB
multi-armed bandit strategy, and the theory of Markov
chain mixing times to propose a bandit algorithm for
matching incentives to users, whose preferences are un-
known a priori and evolving dynamically in time, in a
resource constrained environment. For this algorithm,
we derive logarithmic gap-dependent regret bounds de-
spite the additional technical challenges of cascading
sub-optimality and correlated convergence. Finally, we
demonstrate the empirical performance via examples.
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