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Abstract

One of the fundamental tasks in causal infer-
ence is to decompose the observed association
between a decision X and an outcome Y into
its most basic structural mechanisms. In this
paper, we introduce counterfactual measures
for effects along with a specific mechanism,
represented as a path from X to Y in an ar-
bitrary structural causal model. We derive a
novel non-parametric decomposition formula
that expresses the covariance of X and Y as
a sum over unblocked paths from X to Y con-
tained in an arbitrary causal model. This for-
mula allows a fine-grained path analysis with-
out requiring a commitment to any particular
parametric form, and can be seen as a gen-
eralization of Wright’s decomposition method
in linear systems (1923,1932) and Pearl’s non-
parametric mediation formula (2001).

1 INTRODUCTION

Analyzing the relative strength of different pathways be-
tween a decision X and an outcome Y is a topic that
has interested both scientists and practitioners across dis-
ciplines for many decades. Specifically, path analysis
allows scientists to explain how Nature’s “black-box”
works, and practically, it enables decision analysts to
predict how an environment will change under a variety
of policies and interventional conditions [Wright, 1923;
Baron and Kenny, 1986; Bollen, 1989; Pearl, 2001].

More recently, understanding using causal inference
tools how a black-box decision-making system operates
has been a target of growing interest in the Artificial In-
telligence community, most prominently in the context
of Explainability, Transparency, and Fairness [Lu Zhang,
2017; Kusner et al., 2017; Zafar et al., 2017; Kilbertus
et al., 2017; Zhang and Bareinboim, 2018a]. For exam-

ple, consider the standard fairness model described in
Fig. 1(a) that is concerned with the relation between a
hiring decision (Y ) and an applicant’s religious beliefs
(X), which are mediated by the location (W ), and con-
founded by the education background (Z) of the appli-
cant. 1 Directed edges represent functional relations
between variables. The relationship between X and Y
is materialized through four different pathways in the
system – the direct path l1 : X → Y , the indirect
path l2 : X → W → Y , and the spurious paths
l3 : X ← Z → Y and l4 : X ← Z →W → Y .

Assuming, for simplicity’s sake, that the functional re-
lationships are linear and UVi is an independent “er-
ror” associated with each variable Vi (called the linear-
standard model), Fig. 1(a) shows the structural coeffi-
cients corresponding to each edge – i.e., the value of the
variable Y is decided by the structural function Y ←
αYXX+αYZZ+αYWW+UY. The celebrated result known
as Wright’s method of path coefficients [Wright, 1923,
1934], also known as Wright’s rule, allows one to ex-
press the covariance ofX and Y , denoted by Cov(X,Y ),
as the sum of the products of the structural coefficients
along the paths from X to Y in the underlying causal
model. 2 In particular, Cov(X,Y ) is equal to:

αYX︸︷︷︸
X→Y

+ αWXαYW︸ ︷︷ ︸
X→W→Y

+ αXZαYZ︸ ︷︷ ︸
X←Z→Y

+ αXZαWZαYW︸ ︷︷ ︸
X←Z→W→Y

. (1)

Using the observational covariance matrix, the decom-
position above allows one to answer some compelling
questions about the relationship between X and Y in the
underlying model. For instance, the product αWXαYW ex-
plains how much the indirect discrimination through the
location (the path l2) accounts for the observed dispari-
ties in the religion composition among hired employees.

The path analysis method gained momentum in the so-
1This specific setting has been called standard fairness

model given its generality to representing a variety of decision-
making scenarios [Zhang and Bareinboim, 2018a].

2For a survey on linear methods, see [Pearl, 2000, Ch. 5].



cial sciences during 1960’s, becoming extremely popular
in the form of the mediation formula in which the total
effect of X on Y is decomposed into direct and indi-
rect components [Baron and Kenny, 1986; Bollen, 1989;
Duncan, 1975; Fox, 1980]. 3 The bulk of this literature,
however, required a commitment to a particular paramet-
ric form, thus falling short of providing a general method
for analyzing natural and social phenomena with nonlin-
earities and interactions [MacKinnon, 2008].

It took a few decades until this problem could be tack-
led in higher generality. In particular, the advent of non-
parametric structural causal models (SCMs) allowed this
leap, and a more fine-grained path-analysis with a much
broader scope, including models with nonlinearities and
arbitrarily complex interactions [Pearl, 2000, Ch. 7]. In
particular, Pearl introduced the causal mediation formula
for arbitrary non-parametric models, which decomposes
the total effect TEx0,x1

(Y ) = E[Yx1
]−E[Yx0

], the differ-
ence between the causal effect of the intervention do(x1)
and do(x0) 4, into what is now known as the natural di-
rect (NDE) and indirect (NIE) effects [Pearl, 2001] (see
also [Imai et al., 2010, 2011; VanderWeele, 2015]). In
the case of the specific linear-standard causal model,

TE0,1(Y ) = αYX︸︷︷︸
NDE

+αWXαYW︸ ︷︷ ︸
NIE

for x0 = 0 and x1 = 1 levels. Remarkably, when
compared with Eq. 1, NDE and NIE capture the effects
along with the direct and indirect paths, but omits the
spurious (non-causal) paths between X and Y (in this
case, l3, l4). The mediation formula was recently gen-
eralized to account for these spurious paths (more akin
to Wright’s rules), which appears under the rubric of
the causal explanation formula [Zhang and Bareinboim,
2018a]. This formula decomposes the total variation
TVx0,x1(Y ) = E[Y |x1]− E[Y |x0] (difference in condi-
tional distributions) into counterfactual measures of the
direct (Ctf-DE), indirect (Ctf-IE), and spurious (Ctf-SE)
effects. In the linear-standard model, for x0 = 0, x1 = 1,

TV0,1(Y ) = αYX︸︷︷︸
Ctf-DE

+αWXαYW︸ ︷︷ ︸
Ctf-IE

+αXZαYZ + αXZαWZαYW︸ ︷︷ ︸
Ctf-SE

Despite the generality of such results, there are still out-
standing challenges when performing path analysis in
non-parametric models, i.e.: (1) Estimands are defined
relative to specific values assigned to the treatment x1

and its baseline x0, which may be difficult to select in
some non-linear settings; (2) Mediators and confounders

3Just to give an idea of this popularity, Baron and Kenny’s
original paper counts more than 70,000 citations.

4By convention [Pearl, 2000], the post-interventional
distribution is represented interchangeably by P (yx) and
P (y|do(x)). General notation is discussed in the next section.
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Figure 1: Causal diagrams for (a) the standard fairness
model where X stands for the protected attribute, Y for
the outcome, W the mediators, and Z the confounders;
(b) the two-mediators setting where causal paths from X
to Y are mediated by W1,W2.

are collapsed and considered en bloc, leading to a coarse
decomposition of the relationship between X and Y
[Pearl, 2001; Vansteelandt and VanderWeele, 2012; Tch-
etgen and Shpitser, 2012; VanderWeele et al., 2014;
Daniel et al., 2015; Zhang and Bareinboim, 2018a]; (3)
Path-specific estimands are well-defined [Pearl, 2001;
Avin et al., 2005], but not in a way that they sum up to
either the total effect (TE) or variation (TV), precluding
the comparison of their relative strengths.

This paper aims to circumvent these problems. In partic-
ular, we decompose the covariance of a treatment X and
an outcome Y over effects along different mechanisms
between X and Y . We define a set of novel counter-
factual estimands for measuring the relative strength of a
specific mechanism represented as a path fromX to Y in
an arbitrary causal model. These estimands lead to a non-
parametric decomposition formula, which expresses the
covariance Cov(X,Y ) as a sum of the unblocked paths
from X to Y in the causal graph. This formula allows
a more fine-grained analysis of the total observed vari-
ations of Y due to X (both through causal and spurious
mechanisms) when compared to the state-of-art methods.
More specifically, our contributions are: (1) counterfac-
tual covariance measures for a specific pathway from X
to Y (causal and spurious) in an arbitrary causal model
(Defs. 8, 11-12); (2) non-parametric decomposition for-
mulae of the covariance Cov(X,Y ) over paths from X
to Y in the causal model (Thm. 5); (3) the identification
formulae estimating the proposed path-specific decom-
position from the passively-collected data in the standard
model (Thms. 6-7).

2 PRELIMINARIES

In this section, we introduce notations used throughout
the paper. We will use capital letters to denote variables
(e.g., X), and small letters for their values (x). The ab-
breviation P (x) represents the probabilities P (X = x).
For arbitrary sets A and B, let A−B denote their differ-



ence, and let |A| be the dimension of set A. V[i,j] stands
for a set {Vi, . . . , Vj} (∅ if i > j). We use graphical
family abbreviations: An(X)G, De(X)G, Non-De(X)G,
Pa(X)G, Ch(X)G, which stand for the set of ancestors,
descendants, non-descendants, parents and children ofX
in G. We omit the subscript G when obvious.

The basic semantical framework of our analysis rests
on structural causal models (SCM) [Pearl, 2000, Ch. 7;
Bareinboim and Pearl, 2016]. A SCMM consists of a set
of endogenous variables V (often observed) and exoge-
nous variables U (often unobserved). The values of each
Vi ∈ V are determined by a structural function fi taking
as argument a combination of the other endogenous and
exogenous variables (i.e., Vi ← fi(PAi, Ui), PAi ⊆
V,Ui ⊆ U)). Values of U are drawn from a distribu-
tion P (u). A SCM M is called Markovian when the
exogenous are mutually independent and each Ui ∈ U is
associated with only one endogenous Vi ∈ V . If Ui is
associated with two or more endogenous variables, M is
called semi-Markovian.

Each recursive SCMM has an associated causal diagram
in the form of a directed acyclic graph (DAG) G, where
nodes represent endogenous variables and directed edges
represent functional relations (e.g., Figs. 1-2). By con-
vention, the exogenous U are not explicitly shown in the
graph; a dashed-bidirected arrow between Vi and Vj indi-
cates the presence of an unobserved confounder (UC) Uk
affecting both Vi and Vj (e.g., the path Vi ← Uk → Vj).

A path from X to Y is a sequence of edges which does
not include a particular node more than once. It may go
either along or against the direction of the edges. Paths
of the form X → · · · → Y are causal (from X to Y ).
We use d-separation and blocking interchangeably, fol-
lowing the convention in [Pearl, 2000]. Any unblocked
path that is not causal is called spurious. The direct link
X → Y is the direct path and all the other causal paths
from X to Y are called indirect. The set of unblocked
paths from X to Y given a set Z in a causal diagram G
is denoted by Π(X,Y |Z)G; causal, indirect, and spuri-
ous paths are denoted by Πc(X,Y |Z)G, Πi(X,Y |Z)G,
and Πs(X,Y |Z)G (G will be omitted when obvious).
For a causal path g including nodes V1, V2, we denote
g(V1, V2) a subpath of g from V1 to V2.5

An intervention on a set of endogenous variables X and
exogenous variables Ui, denoted by do(x∗, u∗i ), is an op-
eration where values of X,Ui are set to x∗, u∗i , respec-
tively, without regard to how they were ordinarily deter-
mined (X through fX and Ui through P (Ui)). Formally,
we can rewrite the definition of potential response [Pearl,
2000, Ch. 7.1] to account for operation on Ui, namely:

5Mediators (relative toX and Y ) are a set of variablesW ⊆
De(X) ∩ Non-De(Y ) such that |Πi(X,Y |W )| = 0.

Definition 1 (Potential Response). Let M be a SCM,
X,Y sets of arbitrary variables in V , and Ui a set of ar-
bitrary variables in U . Let U−i = U − Ui. The potential
response of Y to the intervention do(x∗, u∗i ) in the situ-
ation U = u, denoted by Yx∗,u∗i (u), is the solution for
Y with U−i = u−i, Ui = u∗i in the modified submodel
Mx∗ where functions fX are replaced by constant func-
tions X = x∗ , i.e., Yx∗,u∗i (u) , YMx∗ (u∗i , u−i).6

Yx∗,u∗i (u) can be read as the counterfactual sentence “the
value that Y would have obtained in situation U−i =
u−i, had the treatment X been x∗ and the situation Ui
been u∗i .” Averaging u over the distribution P (u), we
obtain a counterfactual random variable Yx∗,u∗i . If the
values of x∗, u∗i follow random variablesX∗, U∗i , we de-
note the resulting counterfactual YX∗,U∗i .

3 A COARSE COVARIANCE
DECOMPOSITION

In this section, we introduce counterfactual measures that
will allow us to non-parametrically decompose the co-
variance Cov(X,Y ) in terms of direct, indirect and spu-
rious pathways fromX to Y . Given space constraints, all
proofs are included in [Zhang and Bareinboim, 2018b].

If there exists no spurious path from X to Y , then treat-
ment X is independent of the counterfactual Yx∗ , i.e.,
(X ⊥⊥ Yx∗) [Pearl, 2000, Ch. 11.3.2]. The spurious co-
variance can then be defined as the correlation between
the factual variable X and counterfactual Yx∗ .

Definition 2 (Spurious Covariance). The spurious co-
variance between treatment X = x∗ and outcome Y is:

Covsx∗(X,Y ) = Cov(X,Yx∗). (2)

Property 1. |Πs(X,Y )| = 0⇒ Covsx∗(X,Y ) = 0.

The causal covariance can naturally be defined as the
difference between the total and spurious covariance.

Definition 3 (Causal Covariance). The causal covariance
of the treatment X = x∗ and the outcome Y is:

Covcx∗(X,Y ) = Cov(X,Y − Yx∗). (3)

Prop. 2 establishes the correspondence between the
causal paths and the causal covariance – if there is no
causal path from X to Y in the underlying model, the
causal covariance equates to zero.

Property 2. |Πc(X,Y )| = 0⇒ Covcx∗(X,Y ) = 0.

We consider more detailed measures corresponding to
the different causal pathways, and first, the direct path:

6An alternative way to see that the replacement operation
relative to Ui is to envision a system where Ui is observed.



Definition 4 (Direct Covariance). Given a semi-
Markovian model M , let the set W be the mediators
between X and Y . The pure (Covdpx∗(X,Y )) and to-
tal (Covdtx∗(X,Y )) direct covariance of the treatment
X = x∗ on the outcome Y are defined respectively as

Covdpx∗(X,Y ) = Cov(X,Y − Yx∗,W ), (4)

Covdtx∗(X,Y ) = Cov(X,YWx∗ − Yx∗). (5)

By the composition axiom [Pearl, 2000, Ch. 7.3], Eqs. 4
and 5 can be explicitly written as follows 7:

Cov(X,Y − Yx∗,W ) = Cov(X,YX,W − Yx∗,W ),

Cov(X,YWx∗ − Yx∗) = Cov(X,YX,Wx∗ − Yx∗,Wx∗ ).

The counterfactual pure direct covariance (Eq. 4) is
shown graphically in Fig. 2, where (a) corresponds to
the Y -side, and (b) to the Yx∗,W -side. Note that from
the mediator W perspective, X remains at the level that
it would naturally have attained, while the “direct” in-
put from X to Y varies from its natural level (Fig. 2a)
to do(x∗) (b). The change of the outcome Y thus mea-
sures the effect of the direct path. A similar analysis also
applies to the total direct covariance (Eq. 5).

Property 3. Covdpx∗(X,Y ) = Covdtx∗(X,Y ) = 0 if X is
not a parent of Y (i.e., X 6∈ Pa(Y )).

We can turn around the definitions of direct covariance
and provide operational estimands for indirect paths.

Definition 5 (Indirect Covariance). Given a semi-
Markovian model M , let the set W be the mediators
between X and Y . The pure (Covipx∗(X,Y )) and to-
tal (Covitx∗(X,Y )) indirect covariance of the treatment
X = x∗ on the outcome Y are defined respectively as:

Covipx∗(X,Y ) = Cov(X,Y − YWx∗ ), (6)

Covitx∗(X,Y ) = Cov(X,Yx∗,W − Yx∗). (7)

Eqs. 6 and 7 correspond to the indirect paths, since they
capture the covariance of X and Y , but only via paths
mediated by W . The first argument of Y is the same in
both halves of the contrast, but this value can either be
x∗ (Eq. 7) or at the level that X would naturally attain
without intervention (Eq. 6).

Property 4. |Πi(X,Y )| = 0 ⇒ Covipx∗(X,Y ) =
Covitx∗(X,Y ) = 0.

Putting these definitions together, we can prove a general
non-parametric decomposition of Cov(X,Y ):

7Consider Eq. 4 as an example. For any U = u,
YX(u),W (u)(u) = Yx∗,w(u) if X(u) = x∗,W (u) = w.
By the composition axiom, X(u) = x∗,W (u) = w im-
plies Y (u) = Yx∗,w(u), which in turn gives YX(u),W (u)(u) =
Y (u). Averaging u over P (u), we obtain YX,W = Y .

(a) Y

W

X Y
−

(b) Yx∗,W

W

X x∗ Y

Figure 2: The graphical representation of measuring the
pure direct covariance Covdpx∗(X,Y ).

Theorem 1. Cov(X,Y ), Covsx∗(X,Y ) and
Covcx∗(X,Y ) obey the following non-parametric
relationship:

Cov(X,Y ) = Covcx∗(X,Y ) + Covsx∗(X,Y ), (8)

where Covcx∗(X,Y ) = Covdpx∗(X,Y )+Covitx∗(X,Y ) =
Covdtx∗(X,Y ) + Covipx∗(X,Y ).

In other words, the covariance between X and Y can
be partitioned into its corresponding direct, indirect, and
spurious components. In particular, Thm. 1 coincides
with Eq. 1 in the linear-standard model.

Corollary 1. In the linear-standard model, for
any x∗, Covsx∗(X,Y ), Covdpx∗(X,Y ), Covdtx∗(X,Y ),
Covipx∗(X,Y ) and Covitx∗(X,Y ) are equal to:

Covsx∗(X,Y ) = αXZαYZ + αXZαWZαYW,

Covdpx∗(X,Y ) = Covdtx∗(X,Y ) = αYX,

Covipx∗(X,Y ) = Covitx∗(X,Y ) = αWXαYW.

Corol. 1 says that the proposed decomposition (Thm. 1)
does not depend on the value of do(x∗) in the linear
model of Fig. 1(a), which is not achievable in previous
value-specific decompositions [Pearl, 2001; Zhang and
Bareinboim, 2018a].8

4 DECOMPOSING CAUSAL
RELATIONS

We now focus on the challenge of decomposing the
causal covariance into more elementary components. We
use the two-mediators setting (Fig. 1(b)) as example,
where X and Y are connected through four causal paths:
through bothW1,W2 (g1 : X →W1 →W2 → Y ), only
through W1 (g2 : X → W1 → Y ), only through W2

(g3 : X → W2 → Y ), and directly (g4 : X → Y ). Our
goal is to decompose the Covcx∗(X,Y ) over the paths
g[1,4]. Our analysis applies to semi-Markovian models,
without loss of generality, and the Markovian example
(Fig. 1(b)) is used for simplicity of the exposition.

8For the nonlinear models, the decomposing terms (e.g.,
Covsx∗(X,Y )) are still sensitive to the target level do(x∗). To
circumvent the challenges of picking a specific decision value,
one could assign a randomized treatment do(x∗ ∼ P (X)),
where P (X) is the distribution over the treatment X induced
by the underlying causal model.



For a node Si ∈ Pa(Y ) and a set of causal paths π, the
edge Si → Y defines a funnel operator CSi→Y , which
maps from π to the set of paths CSi→Y (π) obtained from
π by replacing all paths of the formX → · · · → Si → Y
with X → · · · → Si, and removing all the other paths.
As an example, for π = {g1, g2, g3}, CW2→Y (π) =
{g1(X,W2), g3(X,W2)}, where g1(X,W2) is the sub-
path X → W1 → W2 and g3(X,W2) is the subpath
X → W2. We next formalize the notion of path-specific
interventions, which isolates the influence of the inter-
vention do(x∗) passing through a subset π of causal
paths from X , denoted by do(π[x∗]) (a similar notion
has been introduced by [Pearl, 2001], and then [Avin et
al., 2005; Shpitser and Tchetgen, 2016]).
Definition 6 (Path-Specific Potential Response). For a
SCM M and an arbitrary variable Y ∈ V , let π be a set
of causal paths. Let X be the source variables of paths
in π. Further, let Xπ→Y = {Xi : ∀Xi ∈ X,Xi → Y ∈
π} and S = (Pa(Y )G ∩ V ) − Xπ→Y . The π-specific
potential response of Y to the intervention do(π[x∗]) in
the situation U = u, denoted by Yπ[x∗](u), is defined as:

Yπ[x∗](u) =

{
Yx∗π→Y ,SCS→Y (π)[x∗](u) if π 6= ∅
Y (u) otherwise

where SCS→Y (π)[x∗](u) is a set of π-specific potential
response {SiCSi→Y (π)[x∗](u) : Si ∈ S}.9
Despite the non-trivial notation, the π-specific counter-
factual Yπ[x∗] is simply assigning the treatment do(x∗)
exclusively to the causal paths in π, while allowing all
the other causal paths to behave naturally. This con-
trasts with the counterfactual Yx∗ , which can be seen as
assigning the treatment do(x∗) to all causal paths from
X to Y . For instance, repeatedly applying Def. 6 to
g1 : X → W1 → W2 → Y (see [Zhang and Barein-
boim, 2018b, Sec. 2.1]), we obtain the g1-specific poten-
tial response Yg1[x∗] as

Yg1[x∗] = YX,W1,W2X,W1x∗
= YW2W1x∗

.

The intervention do(g1[x∗]) can be visualized more im-
mediately through its graphical representation (Fig. 3(b))
– the treatment do(x∗) is assigned throughout g1 while
all the other paths are kept at the level that it would have
attained “naturally” following X . The difference of the
outcome Y (induced by do(g1[x∗])) and the unintervened
Y (Fig. 3(a)) measures the relative strength of g1 itself,
which leads to the following definition.
Definition 7 (Pure Path-Specific Causal Covariance).
For a semi-Markovian model M and an arbitrary causal
path g from X , the pure g-specific causal covariance of
the treatment X = x∗ on the outcome Y is defined as:

Covcg[x∗](X,Y ) = Cov(X,Y − Yg[x∗]). (9)
9For a single causal path g, let Yg[x∗](u) = Y{g}[x∗](u).

Averaging u over P (u), we obtain a random variable Yπ[x∗].
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Figure 3: Graphical representations of the causal covari-
ance specific to g1 (a-b), g[2,3] (c-d) and g4 (e-f).

In the previous example, more explicitly, the pure g1-
specific causal covariance is equal to (Fig. 3(a-b)):

Covcg1[x∗](X,Y ) = Cov
(
X,Y − YW2W1x∗

)
. (10)

For U = u, the counterfactual Y∅[x∗](u) stands for the
values of Y when all causal paths are under the natural
regime. Eq. 9 can then be rewritten as:

Covcg[x∗](X,Y ) = Cov(X,Y∅[x∗] − Yg[x∗]).
The pure path-specific causal covariance for g can be
seen as a function of the difference between two path-
specific potential response Yπ0[x∗] and Yπ1[x∗] such that
g 6∈ π0 and π1 = π0 ∪ {g} (i.e., the different between π1

and π0 is g). The difference Yπ1[x∗] − Yπ0[x∗], therefore,
measures precisely the effects of do(x∗) along the target
causal path g. Def. 7 can be generalized to account for
the path-specific covariance in terms of path-differences.
Definition 8 (Path-Specific Causal Covariance). For a
semi-Markovian model M and an arbitrary causal path g
from X , let π be a function mapping g to a set of causal
paths π(g) from X such that g 6∈ π(g). The g-specific
causal covariance of the treatment X = x∗ on the out-
come Y is defined as:

Covcg[x∗](X,Y )π = Cov(X,Yπ(g)[x∗] − Yπ(g)∪{g}[x∗]).

The following property establishes the correspondence
between a causal path and its path-specific estimand.
Property 5. g 6∈ Πc(X,Y )⇒ Covcg[x∗](X,Y )π = 0.

Prop. 5 follows immediately as a corollary of Lem. 1,
which implies that the counterfactuals Yπ(g)[x∗] and
Yπ(g)∪{g}[x∗] define the same variable over U if g is not
a causal path from X to Y .



Lemma 1. g 6∈ Πc(X,Y ) ⇒ Yπ(g)[x∗](u) =
Yπ(g)∪{g}[x∗](u).

Considering again the model in Fig. 1(b), let g[i,j] =
{gk}i≤k≤j (∅ if i > j). Recall that g4 = {X → Y }, and
note that the g4-specific causal covariance can be com-
puted using π(g4) = g[1,3], which yields:

Covcg4[x∗](X,Y )π = Cov(X,Yg[1,3][x∗] − Yg[1,4][x∗])
= Cov(X,YW1x∗ ,W2x∗

− Yx∗), (11)

which coincides with the direct effect (Eq. 5 with W =
{W1,W2}). Fig. 3(e-f) shows a graphical representation
of this procedure.

The path-specific quantity given in Def. 8 has an-
other desirable property, namely, the causal covariance
Covcx(X,Y ) can be decomposed as a summation over
causal paths from X to Y . To witness, first let an or-
der over Πc(X,Y ) be Lc : g1 < · · · < gn. For a path
gi ∈ Πc(X,Y ), the orderLc defines a functionLcπ which
maps from gi to a set of paths Lcπ(gi) that precede gi in
Lc, i.e., Lcπ(gi) = g[1,i−1]. We derive in the sequel a
path-specific decomposition formula for the causal co-
variance relative to an order Lc.
Theorem 2. For a semi-Markovian model M , let Lc be
an order over Πc(X,Y ). For any x∗, the following non-
parametric relationship hold:

Covcx(X,Y ) =
∑

g∈Πc(X,Y )

Covcg[x∗](X,Y )Lcπ .

Thm. 2 can be demonstrated in the model of Fig. 1(a).
Let an order Lc over g[1,4] be gi < gj if i < j.
First note that the path-specific causal covariance of g2

(Covcg2[x∗](X,Y )Lcπ ) and g3 (Covcg3[x∗](X,Y )Lcπ ) are
equal to, respectively,

Cov
(
X,YW2W1x∗

− YW2W1x∗
,W1x∗

)
(12)

Cov
(
X,YW2W1x∗

,W1x∗
− YW1x∗ ,W2x∗

)
(13)

The causal covariance Covcx(X,Y ) can then be de-
composed as the sum of Eqs. 10-13, respectively,
g1, g4, g2, g3. Fig. 3 describes this decomposition pro-
cedure: we measures the difference of the outcome
Y as the intervention do(x∗) propagates through paths
g1, g2, g3, g4. The sum of these differences thus equate
to the total influence of the intervention do(x∗) to the
outcome Y , i.e., the causal covariance Covcx∗(X,Y ).

5 DECOMPOSING SPURIOUS
RELATIONS

We introduce in the sequel a new strategy to decompose
the spurious covariance (Def. 2), which will play a cen-

(a)

Z1 U1

Z2 U2

X Y
(b)

Z1 U1

Z2 U2

X Y

Z1x∗

Z2x∗

Yx∗

Figure 4: Causal diagrams for (a) the one-confounder
setting where X and Y are confounded by the variable
Z2, of which Z1 is a parent node; (b) the twin network
for the model of (a) under do(x∗).

tral role in the analysis of the spurious relations relative
to the pair X,Y . The spurious covariance measures the
correlation between the observationalX and the counter-
factual Yx∗ (Def. 2). We will employ in our analysis the
twin network [Balke and Pearl, 1994; Pearl, 2000, Sec.
7.1.4], which is a graphical method to analyzing the rela-
tion between observational and counterfactual variables.

Consider the causal model M in Fig. 4(a), for example,
where the exogenous variables {U1, U2} are shown ex-
plicitly. Its twin network is the union of the model M
(factual) and the submodel Mx∗ (counterfactual) under
intervention do(x∗), which is shown in Fig. 4(b). The
factual (M ) and counterfactual (Mx∗ ) worlds share only
the exogenous variables (in this case, U1, U2), which
constitute the invariances shared across worlds. In this
twin network, the observational X and the counterfac-
tual Yx∗ are connected through two paths: one through
U1 and the other through U2. These paths correspond to
two pathways from X to Y in the original causal dia-
gram: τ1 : X ← Z2 ← Z1 ← U1 → Z1 → Z2 → Y ,
and τ2 : X ← Z2 ← U2 → Z2 → Y .

Note that when considering the corresponding paths in
the original graph (Fig. 4(a)), these paths (τ1, τ2) are not
necessarily simple, i.e., they may contain a particular
node more than once. Furthermore, each path can be
partitioned into a pair of causal paths (say, gl, gr) from
a common source Ui ∈ U (e.g., τ1 consists of a pair
(gl1 , gr1), where gl1 : U1 → Z1 → Z2 → X , and
gr1 : U1 → Z1 → Z2 → Y ). Indeed, these non-simple
paths are referred to as treks in the causal inference lit-
erature, which usually has been studied in the context of
linear models [Spirtes et al., 2001; Sullivant et al., 2010].

Definition 9 (Trek). A trek τ in G (from X to Y ) is
an ordered pair of causal paths (gl, gr) with a common
exogenous source Ui ∈ U such that gl ∈ Πc(Ui, X) and
gr ∈ Πc(Ui, Y ). The common source Ui is called the
top of the trek, denoted top(gl, gr). A trek is spurious if
gr ∈ Πc(Ui, Y |X), i.e., gr is a causal path from Ui to Y
that is not intercepted by X .



We denote the set of treks from X to Y in G by
T (X,Y )G and spurious treks by T s(X,Y )G (G will
be omitted when obvious). We introduce next an esti-
mand for a specific spurious trek. For a spurious trek
τ = (gl, gr) with Ui = top(τ), first let Xgl denote the
path-specific potential response Xgl[U li ]

, where U li is an
i.i.d. draw from the distribution P (Ui). Similarly, let
Yx∗,gr = Yx∗,gr[Uri ]

10, where Uri ∼ P (Ui). Pure trek-
specific covariance can then finally be defined.

Definition 10 (Pure Trek-Specific Spurious Covariance).
For a semi-Markovian model M and a spurious trek
τ = (gl, gr) with Ui = top(gl, gr), the pure τ -specific
spurious covariance of the treatment X = x∗ on the out-
come Y is defined as:

Covtsτ [x∗](X,Y ) = Cov(X −Xgl , Yx∗ − Yx∗,gr ).
In words, the differences X −Xgl and Yx∗ − Yx∗,gr are
simply measuring the effects of the causal paths gl and
gr (Lem. 1), while the Cov(·) operator is in charge of
compounding them. (In the extreme case when gl or gr
are disconnected, the pure τ -specific spurious covariance
will equate to zero.) For example, the pure τ1-specific
spurious covariance Covtsτ1[x∗](X,Y ) in Fig. 4(a) is

Cov(X −Xgl1
, Yx∗ − Yx∗,gr1 ). (14)

Note that the counterfactualsXgl1
and Yx∗,gr1 assign the

randomized interventions do(U l1), do(Ur1 ) to the paths
gl1 , gr1 , respectively. By Def. 6, Eq. 14 is equal to:

Cov(X −XU l1
, Yx∗ − Yx∗,Ur1 ).

This quantity can be more easily seen through its graph-
ical representation, see Fig. 5 (top). The main idea is to
decompose U1 into two independent components U l1, U

r
1

(Fig. 5b), which is then contrasted with the world in
which U1 is kept intact (a).11 12 We note that by Def. 6,
X = X∅ and Yx∗ = Yx∗,∅. The pure τ1-specific spurious
covariance can be written as:

Covtsτ1[x∗](X,Y ) = Cov(X∅ −Xgl1
, Yx∗,∅ − Yx∗,gr1 ).

More generally, the pure trek-specific spurious covari-
ance for τ = (gl, gr) measures the covariance of vari-
ables Xπl − Xπl∪{gl} and Yx∗,πr − Yx∗,πr∪{gr}, where
πl (πr) is an arbitrary set of causal paths fromU that does
not contain gl (gr). This observational will be useful later
on, which leads to the trek-specific spurious covariance.

10Yx∗,gr [Uri ] is the gr-specific potential response of Y to
do(gr[U

r
i ]) in the submodel Mx∗ .

11This operation can be seen as the parallel to the pure path-
specific covariance (Def. 7), with the distinct requirement that
the replacement operator, used to generate the differences, is
not relative to the observed X , but the corresponding Ui.

12To avoid clutter, Fig. 5 is a projected version of the original
twin network focused on the relevant quantities (w.l.g.).
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Figure 5: The decomposition procedure of the spurious
covariance over the spurious treks τ1, τ2 (Thm. 3).

Definition 11 (Trek-Specific Spurious Covariance). For
a semi-Markovian model M , let τ be a spurious trek
(gl, gr) and π is a function mapping τ to a pair π(τ) =
(πl, πr) where πl and πr are sets of causal paths from U
such that gl 6∈ πl and gr 6∈ πr. The τ -specific spurious
covariance of the treatment X = x∗ on the outcome Y ,
denoted by Covtsτ [x∗](X,Y )π , is defined as

Cov(Xπl −Xπl∪{gl}, Yx∗,πr − Yx∗,πr∪{gr}).

The next proposition establishes the relationship between
Def. 11 and the corresponding spurious treks. This prop-
erty can be seen as a necessary condition for any measure
of strength for spurious relations.

Property 6. τ 6∈ T s(X,Y )⇒ Covtsτ [x∗](X,Y )π = 0.

As an example of Def. 11, the trek τ2 in Fig. 4(a) consists
of paths gl2 : U2 → Z2 → X and gr2 : U2 → Z2 → Y .
If we set π(τ2) = ({gl1}, {gr1}), the τ2-specific spurious
covariance can be measured by Covtsτ2[x∗](X,Y )π , i.e.,

Cov(Xgl1
−Xgl[1,2]

, Yx∗,gr1 − Yx∗,gr[1,2] ) (15)

= Cov(XU l1
−XU l

[1,2]
, Yx∗,Ur1 − Yx∗,Ur[1,2]). (16)

Eq. 16 is graphically represented in Fig. 5(c-d), where the
effect of the trek τ2 is measured. In words, the difference
between Fig. 5(c) and (d) is the effect of the causal paths
gl2 and gr2 when U2 is kept intact versus when divided
into two independent components (U l2, U

r
2 ).

Armed with the definition of trek-specific spurious co-
variance, we can finally study the decomposability of
the spurious covariance Covsx∗(X,Y ) (Def. 2). First, let
Us ⊆ U denote the maximal set of exogenous variables
that simultaneously affect variables X and Yx∗ (com-
mon exogenous ancestors), and let an order over Us be
Lsu : U1 < · · · < Un. For each Ui ∈ Us, let Lsli
be an order gil1 < · · · < giln over the set Πc(Ui, X).
Similarly, we define Lsri for Πc(Ui, Y |X). The tuple
Ls = 〈Lsu, {(Lsli ,Lsri)}1≤i≤|Us|〉 thus defines an order



for the spurious treks T s(X,Y ). We denote Lsπ a func-
tion which maps from a trek τ to sets of pathsLsπ(τ) cov-
ered by the spurious treks preceding τ in Ls. Formally,
given a spurious trek τ = (gilj , g

i
rk

), Lsπ(τ) is equal to

(Πc(U[1,i−1], X) ∪ gil[1,j−1]
,Πc(U[1,i−1], Y |X) ∪ gir[1,k−1]

).

We are now ready to derive the decomposition formula
for the spurious covariance Covsx∗(X,Y ).
Theorem 3. For a semi-Markovian model M , let Ls =
〈Lsu, {(Lsli ,Lsri)}1≤i≤|Us|〉 be an order over spurious
treks T s(X,Y ). For any x∗, the following non-
parametric relationship hold:

Covsx∗(X,Y ) =
∑

τ∈T s(X,Y )

Covtsτ [x∗](X,Y )Lsπ

For example, in the model of Fig. 4(a), Us = {U1, U2}.
τ1 (τ2) is the only spurious trek associated with U1 (U2).
If we consider the order Ls such that Lsu : U1 < U2,
Thm. 3 dictates that Covsx∗(X,Y ) should be decom-
posed as the sum of Eqs. 14 and 15. Fig. 5 shows
the graphical representation of this decomposition proce-
dure: we measure the change of the covariance between
X and Yx∗ as we disconnect the relations going through
τ1 (assocaited with U1) and τ2 (U2), sequentially. The
sum of these changes thus equates to the correlations of
X and Y along the spurious pathways, i.e., the spuri-
ous covariance Covs[x∗](X,Y ). (See [Zhang and Barein-
boim, 2018b, Sec. 2] for more examples.)

6 NON-PARAMETRIC PATH
ANALYSIS

In this section, we put the results of the previous sections
together and derive a general path-specific decomposi-
tion for the covariance of the treatment X and the out-
come Y without assuming any specific parametric form.

We start by noting that each spurious path from X to Y
corresponds to a unique set of spurious treks that start
on X and end in Y . Recall that a spurious path l can
be seen as a pair of causal paths (gl, gr), where the only
node shared among gl and gr is the common source. For
example, the spurious path l : X ← Z2 → Y is a pair
(gl, gr) such that gl : Z2 → X and gr : Z2 → Y . We can
thus define a rule f which maps a trek τ ∈ T s(X,Y ) to
a spurious path l ∈ Πs(X,Y ). For τ = (gl, gr), let Vt be
the most distant recurring node from top(gl, gr) such that
Vt is the only node shared among subpaths gl(Vt, X) and
gr(Vt, Y ); the pair (gl(Vt, X), gr(Vt, Y )) corresponds to
a path l in Πs(X,Y ). As an example, the trek τ1 in
Fig. 4(a) has Vt = Z2, which corresponds to the spu-
rious path l : X ← Z2 → Y , and similarly, f(τ1) = l as
well as f(τ2) = l. Lem. 2 shows that the rule f forms a
valid surjective function.

Lemma 2. For a semi-Markovian model M , for each
spurious trek τ ∈ T s(X,Y ), there always exists a
unique most distant recurring node Vt.

For a spurious path l, let T s(l) = f−1(l) denote its cor-
responding treks. Specifically, if l 6∈ Πs(X,Y ), then
for each τ ∈ T s(l), we must have τ 6∈ T s(X,Y ). For
instance, if the spurious l in Fig. 4(a) is disconnected,
e.g., Z2 6→ X , treks τ1, τ2 are both disconnected as well.
From this observation, we could naturally define the spu-
rious covariance of a path l as a sum over treks in T s(l).

Definition 12 (Path-Specific Spurious Covariance). For
a semi-Markovian model M with an associated causal
diagram G, let l be an arbitrary spurious path in G. Let
π be a function that maps a trek τ = (gl, gr) ∈ T s(l) to
a pair π(τ) = (πl, πr), where πl and πr are arbitrary sets
of causal paths from U such that gl 6∈ πl and gr 6∈ πr.
The l-specific spurious covariance of the treatment X =
x∗ on the outcome Y is defined as

Covsl[x∗](X,Y )π =
∑

τ∈T s(l)
Covtsτ [x∗](X,Y )π

Property 7. l 6∈ Πs(X,Y )⇒ Covsl[x∗](X,Y )π = 0.

The surjectivity of the function f assures that the set
{T s(l)}l∈Πs(X,Y ) forms a partition over the spurious
treks T s(X,Y ). From Thm. 3, it follows immedi-
ately that the path-specific spurious covariance (Def. 12)
has the property that expresses the spurious covariance
Covsx∗(X,Y ) as a sum over Πs(X,Y ).

Theorem 4. For a semi-Markovian model M , let Ls =
〈Lsu, {(Lsli ,Lsri)}1≤i≤|Us|〉 be an order over spurious
treks T s(X,Y ). For any x∗, the following non-
parametric relationship hold:

Covsx∗(X,Y ) =
∑

l∈Πs(X,Y )

Covsl[x∗](X,Y )Lsπ

As an example, the path l : X ← Z2 → Y in Fig. 4(a)
corresponds to T s(l) = {τ1, τ2}. For an arbitrary or-
der Ls, Thm. 4 is applicable and immediately yields
Covsx∗(X,Y ) = Covsl[x∗](X,Y )Lsπ , which means that
the path l accounts for all the spurious relations between
X and Y . In other words, the spurious joint variability of
X and Y is fully explained by the variance of Z2, which
is a function of the exogenous variables U1 (through τ1)
and U2 (through τ2).

Thms. 1-2 and 4 together lead to a general path-specific
decomposition formula, which allows one to non-
parametrically decompose the covariance Cov(X,Y )
over all open paths fromX to Y in the underlying model.

Theorem 5 (Path-Specific Decomposition). For a semi-
Markovian model M , let Lc be an order over Πc(X,Y )



and Ls = 〈Lsu, {(Lsli ,Lsri)}1≤i≤|Us|〉 be an order over
T s(X,Y ). For any x∗, the following non-parametric re-
lationship hold:

Cov(X,Y ) =
∑

l∈Πc(X,Y )

Covcl[x∗](X,Y )Lcπ

+
∑

l∈Πs(X,Y )

Covsl[x∗](X,Y )Lsπ .
(17)

We illustrate the use of Thm. 5 using the model discussed
in Sec. 1 (Fig. 1(a)). Recall that X and Y are connected
through the causal paths l1, l2 and spurious paths l3, l4.
Note that Us = {UZ} spuriously affects the treatment X
through the path gl = UZ → Z → X , and the outcome Y
through the paths gr1 = UZ → Z → Y and gr2 = UZ →
Z → W → Y . Let order Lc be l1 < l2 and Lsr be gr1 <
gr2 . For any level x∗, Thm. 5 equates the covariance
Cov(X,Y ) to the sum of

{
Covcli[x∗](X,Y )Lcπ

}
i=1,2

and{
Covsli[x∗](X,Y )Lsπ

}
i=3,4

, which can be written as

Cov(X,Y − Yx∗,W )︸ ︷︷ ︸
l1:X→Y

+ Cov(X,Yx∗,W − Yx∗)︸ ︷︷ ︸
l2:X→W→Y

+ Cov(X −XU lZ
, Yx∗ − Yx∗,Wx∗ZUrZ

)︸ ︷︷ ︸
l3:X←Z→Y

+ Cov(X −XU lZ
, Yx∗,Wx∗ ,ZUrZ

− Yx∗,UrZ )︸ ︷︷ ︸
l4:X←Z→W→Y

,

(18)

which are all well-defined, computable from the struc-
tural causal model [Def. 1; Pearl, 2000, Sec. 7.1].

7 IDENTIFYING PATH-SPECIFIC
DECOMPOSITION

By and large, identifiability is one of the most studied
topics in causal inference. It is acknowledged in the lit-
erature that obtaining identifiability may be non-trivial
even in the context of less granular measures of causal
effects, including quantities without nested counterfac-
tual and following the analysis of Pearl’s do-calculus.

In this section, we start the study of identifiability condi-
tions for when the path-specific decomposition formula
(Thm. 5) can be estimated from data, when the SCM is
not fully known. We’ll analyze the causal model dis-
cussed in Fig. 1(a) given its generality and potential to
encode more complex models. The main assumption en-
coded in this model is Markovianity, i.e., that all exoge-
nous variables are independent. We show next that iden-
tifiability can be obtained under these assumptions.

Theorem 6. The path-specific decomposition of Eq. 18
is identifiable if the distributions P (x, yx∗), P (x, yx∗,W )
and P (x, yx∗,Wx∗ ,ZUrZ

) are identifiable. Specifically,
in the model of Fig. 1(a), P (x, yx∗), P (x, yx∗,W ), and

P (x, yx∗,Wx∗ ,ZUrZ
) can be estimated, respectively, from

the observational distribution P (x, y, z, w) as follows:
P (x, yx∗) =

∑
z,w

P (y|x∗, w, z)P (w|x∗, z)P (x, z)

P (x, yx∗,W ) =
∑
z,w

P (y|x∗, z, w)P (x, z, w)

P (x, yx∗,Wx∗ ,ZUrZ
) =

∑
z,z′,w

P (y|x∗, z, w)P (w|x∗, z′)P (x, z′)P (z)

Note that all the quantities listed in Thm. 6 are ex-
pressible in terms of conditional distributions and do not
involve any counterfactual (simple nor nested), which
are readily estimable from the observational distribu-
tion. As an example, the l2-specific causal covari-
ance Covcl2[x∗](X,Y )Lcπ in Eq. 18 can be written as
Cov(X,Yx∗,W ) − Cov(X,Yx∗), which are computed
from the counterfactual distributions P (x, yx∗) and
P (x, yx∗,W ), respectively. These distributions can be es-
timated from the observational distribution P (x, y, z, w)
following Thm. 6. Indeed, the path-specific decompo-
sition formula (Thm. 5) is identifiable in the model of
Fig. 1(a) regardless of the order Lc and Ls. (For other
decompositions, see [Zhang and Bareinboim, 2018b].)

We further considered the identifiability conditions for
the path-specific decomposition formula when the more
stringent assumption that the underlying structural func-
tions are linear is imposed.
Theorem 7. Under the assumption of linearity and the
assumption of Fig. 1(a), for any arbitrary orders Lc and
Ls, for any x, the path-specific covariance of l1, l2, l3
and l4 are equal to:
Covcl1[x∗](X,Y )Lcπ = αYX, Covcl2[x∗](X,Y )Lcπ = αWXαYW

Covsl3[x∗](X,Y )Lsπ = αXZαYZ,Covsl4[x∗](X,Y )Lsπ = αXZαWZαYW

The parameters α can be estimated from the correspond-
ing (partial) regression coefficients [Pearl, 2000, Ch. 5].

Clearly, after applying Thm. 7 to Eq. 18, the resulting
decomposition coincides with Wright’s method of path
coefficients in the linear-standard model (Eq. 1).

8 CONCLUSIONS
We introduced novel covariance-based counterfactual
measures to account for effects along with a specific path
from a treatment X to an outcome Y (Defs. 8, 11-12).
We developed machinery to allow, for the first time, the
non-parametric decomposition of the covariance of X
and Y as a summation over the different pathways in the
underlying causal model (Thm. 5). We further provided
identification conditions under which the decomposition
formula can be estimated from data (Thm. 6-7).
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