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Abstract

We propose scalable methods to execute count-
ing queries in machine learning applications.
To achieve memory and computational effi-
ciency, we abstract counting queries and their
context such that the counts can be aggregated
as a stream. We demonstrate performance and
scalability of the resulting approach on random
queries, and through extensive experimentation
using Bayesian networks learning and associ-
ation rule mining. Our methods significantly
outperform commonly used ADtrees and hash
tables, and are practical alternatives for process-
ing large-scale data.

1 INTRODUCTION

Counting data records with instances that support some
specific configuration of the selected variables is one of
the basic operations utilized by machine learning (ML) al-
gorithms. For example, when learning Bayesian network
structure from data counting is necessary to evaluate a
scoring function, or to assess constraints (e.g., via mutual
information) [1]. In association rule mining, counting
over binary data representing transactions is required to
assess support and confidence for a given association
rule [2]. Other examples include problems ranging from
classification [3, 4] through deep learning [5, 6] to infor-
mation retrieval [7].

While counting is typically viewed as a black-box proce-
dure, and implemented using simple and not necessarily
efficient strategies, e.g., contingency tables, in many prac-
tical applications it accounts for over 90% of the total
execution time (we show several practical cases in Sec. 4).
Consequently, improving performance of counting can
directly translate into better performance of these applica-
tions. At the same time, popular specialized approaches

based on data indexes, such as ADtrees [8], have lim-
ited applicability due to the significant preprocessing and
memory overheads, which easily exceed the capability of
current computational servers. This holds true for a broad
spectrum of problem sizes and applications, with cases in-
volving anywhere from tens to hundreds of variables, and
thousands to millions of instances. As the size of the data
analyzed by ML codes increases, there is a clear need for
easy-to-adopt, efficient and scalable counting strategies.

In this paper, we address the above challenge by designing
simple, yet fast and memory efficient counting strategies.
Our methods are derived from the standard techniques
like bitmap set representation and radix sorting, which
can be efficiently implemented in a software. We de-
scribe an intuitive and convenient programming interface
that leverages properties of the operators used in ML to
separate the counting process from how the counts are
utilized. This interface enables us to aggregate counts in
a stream-like fashion. We encapsulate our methods in an
open source software, and demonstrate its performance
on random queries, Bayesian networks learning and asso-
ciation rule mining. Through extensive experiments on
multiple popular benchmark data, we show that our strate-
gies are orders of magnitude faster than the commonly
used methods, such as ADtrees and hash tables.

2 PRELIMINARIES

Consider a set of n categorical random variables X =
{X1, X2, . . . , Xn}, where the domain of variable Xi is
represented by states [xi1, . . . , xiri ]. Alternatively, we
can think of Xi as a symbolic feature with arity ri,
and for convenience we can represent its states by in-
tegers [1, . . . , ri]. Let D = [D1, D2, . . . , Dn] be a com-
plete database of instances of X , where Di, |Di| = m,
records observed states of Xi. Given D, and a set of
input variables {Xi, Xj , . . .} ⊆ X , the counting query
Count((Xi = xi)∧ (Xj = xj)∧ . . .) returns the size of
the support in D for the specific assignment [xi, xj , . . .]



of variables [Xi, Xj , . . .]. For example, for the database
in Fig. 1, the query Count((X1 = 3)∧(X2 = 2)∧(X3 =
1)) would return 2, as there are 2 instances matching the
query condition. We note that the above formulation of
counting is a special and simple case of the general count-
ing problem in conjunctive queries, known from database
theory [9] (we provide more details in Section 5).

Counting queries are the basic operations performed when
learning statistical models from data. In some ML ap-
plications, such as association rule mining or learning
probabilistic graphical models, they may account for over
90% of the total execution time. In the most basic form,
the queries can be issued without shared context. For ex-
ample, to estimate joint probability p(Xi = xi, Xj = xj)
from D, we could use just one query: p̂(xi, xj |D) =
Count((Xi=xi)∧(Xj=xj))

m . However, in the most common
use scenarios, a group of consecutive queries is executed
over the same set of variables (i.e., the queries share
context). For instance, consider log-likelihood score fre-
quently used in Bayesian networks learning [10]:

L(Xi|Pa(Xi)) =

qi∑
j=1

ri∑
k=1

Nijk log

(
Nijk

Nij

)
, (1)

where Pa(Xi) ⊆ X −{Xi} is a set of predictor variables
for Xi, j enumerates all possible qi =

∏
Xj∈Pa(Xi)

rj
states of variables in Pa(Xi), and Nij and Nijk are re-
spectively the counts of instances in D such that variables
in Pa(Xi) are in state j, and the counts of instances such
that variables in Pa(Xi) are in state j and Xi is in state k.
To compute L we require multiple counting queries over
the same group of variables Pa(Xi)∪{Xi}, testing differ-
ent configurations of their states. Moreover, we care only
about queries that return non-zero counts Nijk (note that
non-zero Nijk implies non-zero Nij), since only those
contribute to the final sum.

The standard approach to handle queries that share context
is to either directly scan the database D to construct ri×qi
contingency table of counts (or its high-dimensional vari-
ant such as data cube [11]), or to first create an ADtree
index to cache all sufficient statistics from D, and then
to materialize contingency table on demand. Here mate-
rialization is done by retrieving the required counts via
fast traversal over the index [8, 12]. However, both these
approaches have significant limitations.

To use a contingency table we have to either maintain a
lookup table with ri ·qi entries, or to use a dictionary (e.g.,
hash table) with keys over the states of Pa(Xi) and values
being vectors of counts for the corresponding states of Xi.
While lookup table may offer very fast memory accesses
during construction and querying phases, it becomes com-
putationally impractical, since usually it is very sparse.
This is because even for large m, most of the time D will

not contain all qi possible configurations for the majority
of sets Pa(Xi). Consequently, lookup tables become a
feasible choice only when we are dealing with a small
number of variables, each with very small arity. Dictio-
naries address the problem of sparsity, as they store only
configurations that are observed in D. However, they im-
pose non-trivial overheads owing to the cost of hashing in
a hash table dictionary or traversing scattered memory in
a search tree dictionary. Moreover, when large number of
high-arity variables are considered, a dictionary quickly
becomes memory intensive easily exceeding capacity of
a typical cache memory.

The alternative approach is to use one of many published
variants of the ADtree index, e.g., [8, 12, 13, 14]. Here
the idea is to first invest (significant) time and memory to
enumerate and cache counts of all configurations found
in D, and then reference those counts to answer subse-
quent queries. However, even with various optimizations,
the space complexity of ADtrees is exponential in the
number of variables, and even for modestly sized D it
may exceed the available main memory. Moreover, by
caching all counts indiscriminately, ADtrees often store
entries that are never referenced in a given application,
creating unnecessary memoization and searching over-
head. Finally, ADtrees still require that a contingency
table is materialized to deliver retrieved counts, and hence
they pose a significant challenge in balancing memory
and computations.

3 PROPOSED APPROACH

Given the database D, our goal is to provide memory and
computationally efficient mechanism to answer counting
queries with shared context. The memory efficiency is
critical, since many ML algorithms, especially in classifi-
cation and probabilistic graphical modeling, already have
significant memory constraints (see for example [15]). If
the memory has to be devoted to handling queries instead
of being used by the actual algorithm, it would clearly
constrain the applicability of the algorithm. At this point
it is worth noting that ML applications fall into a gray
zone in terms of the size of the input data on which they
typically operate. On the one hand, the size of the input
is too small to benefit from many excellent optimizations
known from database theory (some we review in Sec. 5),
as those are targeting cases in which volume of the data
necessitates concurrent use of both persistent and main
memory. On the other hand, the data is too large to war-
rant efficient execution using direct techniques like simple
contingency tables.

To address this situation, we first define an intuitive pro-
gramming interface to abstract the query context, includ-
ing how counts are utilized by the target application. Then,



we overlay the interface on top of two simple, yet very effi-
cient, query execution strategies, where instead of storing
counts we consume them in a stream-like fashion.

3.1 Programming Interface

In a typical application, counts provided by queries with
shared context are iteratively aggregated via some associa-
tive and commutative operator. One simple example with
the summation operator is given in Eq. (1). A more com-
plex example could be Dirichlet priors with the product of
gamma functions [16]. From the computational point of
view, this assumption is very helpful as it provides ample
opportunities for optimization. We note also that while it
may look very narrow, it actually accurately captures sur-
prisingly many ML applications, which primarily involve
estimating conditional probabilities. Examples include
classifiers and regression, feature extraction, different
variants of probabilistic graphical models, etc..

Following notation in Sec. 2, let us consider a set of vari-
ables (Pa(Xi) ∪ {Xi}) ⊆ X and their corresponding
counts Nij and Nijk, for some specific configuration j of
Pa(Xi) and k of Xi. Here we are distinguishing between
counts for (Pa(Xi)∪{Xi}) and Pa(Xi) to simplify com-
puting conditional probabilities while maintaining gener-
ality – by passing Pa(Xi) = ∅ we can execute queries
over single variable Xi, and by considering only Nijk we
get joint queries Pa(Xi) ∪ {Xi}. The key observation is
that we can leverage associativity and commutativity, and
instead of first gathering all counts and then performing
aggregation, we can create a stream of counts correspond-
ing to all unique and relevant configurations found in D,
and perform the aggregation directly on the stream. This
enables us to push computations to data, mitigating mem-
ory overheads due to counts caching. To achieve this, we
abstract the computations via a function object (a con-
cept supported by all modern programming languages),
which is then repeatedly invoked over the stream. The
example function object corresponding to Eq. (1) is given
in Fig. 2. In the essence, the object receives Nijk and
Nij via the function call operator (line 3), performs the
required intermediate computations, and then aggregates
the result into internal state. This internal state can be
then inspected (line 7) to retrieve the final result of the
aggregation. From the user perspective, the function call
operator acts as an interface, and is directly invoked by
a routine responsible for enumerating, and emitting, all
unique configurations for the variables of interest (see
parameter F in Algs. 1 and 2 in the following sections).
Thus the interface provides a convenient encapsulation,
and the end-user who defines the function object (e.g.,
implementing a scoring function in BN learning) can fo-
cus solely on expressing computations (i.e., high-level

logic and correctness), and does not have to worry about
potentially complex logic of low-level details (e.g., how
counts are enumerated). Additionally, because function
object behaves like a function, but has the advantage of
possessing an internal state, it is a convenient mechanism
to express even the most demanding computations.

While the proposed interface stems from a relatively sim-
ple observation, it has several immediate advantages.
First, by separating functionality (i.e., data traversing
from computations) we gain flexibility to rapidly investi-
gate different data traversal schemes to extract counts, or
even alternate between different strategies depending on
the query context (e.g., how many variables are involved,
their domain, etc.). Second, since counts are aggregated
into an isolated state represented by a function object,
and multiple objects can coexist independently, multiple
groups of queries, each group with individual context,
can be executed concurrently and in parallel, e.g., by
different threads. Collectively, this makes the proposed
design extremely flexible, efficient and easy to use, as we
demonstrate in the experimental results section.

3.2 Bitmap Strategy

For the specific Xi and Pa(Xi) our task now is to enu-
merate counts Nij and Nijk for all configurations j and k
found in D, and then pass the counts to a function object
for aggregation. The idea behind the Bitmap strategy is
to represent each variable Xi via a set of ri bitmaps of
size m, where each bitmap indicates instances for which
Xi is in the corresponding state (see Fig. 1a). Then, the
entire process of enumerating counts can be reduced to
performing logical AND on bitmaps, equivalent of set in-
tersection, and to bit counting, equivalent of computing
set cardinality. This is summarized in Alg. 1, with exam-
ple in Fig. 1b (for convenience, in the algorithm we use
set notation instead of directly representing bitmaps).

Algorithm 1 QUERY(Xi, Pa, F, b)

1 if |Pa| = 0 then
2 Nij ← |b|
3 for v ∈ [1, . . . , ri] do
4 bv ← {p |Di[ p ] = v}
5 Nijk ← |b ∩ bv|
6 if Nijk > 0 then
7 F (Nijk, Nij) C emit new configuration
8 else
9 Xh ← HEAD(Pa)

10 for v ∈ [1, . . . , rh] do
11 bv ← {p |Dh[ p ] = v}
12 if |b ∩ bv| > 0 then
13 QUERY(Xi, TAIL(Pa), F, b ∩ bv)

To execute counting queries for Xi and Pa(Xi) (abbre-
viated to Pa), and function object F , we perform Depth



D1 D2 D3
1 3 2 1
2 3 1 1
3 2 2 1
4 1 1 2
5 1 1 1
6 1 2 1
7 2 1 1
8 3 2 1
9 1 1 2

10 1 1 1
11 1 2 1

X1 1 2 3
1 0 0 1
2 0 0 1
3 0 1 0
4 1 0 0
5 1 0 0
6 1 0 0
7 0 1 0
8 0 0 1
9 1 0 0

10 1 0 0
11 1 0 0
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Figure 1: (a) Database D with three variables, and the corresponding bitmap representation of X1. (b) Example of
executing Query(X2, {X1, X3}) over D using Bitmap strategy, and (c) Radix strategy.

1 class L {
2 public:
3 void operator()(int Nijk, int Nij) {
4 double p = 1.0 ∗ Nijk / Nij;
5 score_ += (Nijk ∗ log2(p));
6 }
7 double score() const { return score_; }
8 private:
9 double score_ = 0.0;

10 };

Figure 2: Example C++ code packaging Eq. (1) into our
programming interface.

First Traversal (DFS) over the tree whose leaves rep-
resent all possible ri · qi states of interest (recall that
qi =

∏
Xj∈Pa(Xi)

rj). The bottom layer of the tree is
induced by the states of Xi, and the top layers correspond
to variables in Pa. When moving down the tree (lines 9-
13), we compute intersection between the set of instances
supporting variables’ configurations seen thus far (in the
algorithm denoted by b, which initially consists of all
m instances), and the set of instances supporting current
configuration of the considered variable from Pa (in the
algorithm denoted by bv). We continue traversal only if
the size of the intersection is greater than zero, implying
non-zero count for given joint configuration of variables.
Once we reach a leaf of the tree (lines 1-7), we com-
pute the final counts Nijk and Nij for the corresponding
configurations j and k, and emit those via call to F .

The depth of the tree depends on the number of vari-
ables involved in the query, and the number of leaves is
bounded by O(min(qi,m)), with each step in the traver-
sal involving O(m) cost of computing intersection and
cardinality. While the tree could potentially involve ex-
ponential (in the number of query variables) number of

nodes, it is never explicitly stored in the memory, and
even for D with large number of instances many configu-
rations have zero count, allowing for their corresponding
sub-trees to be pruned. To further leverage this property,
we order Pa such that variables with lowest entropy esti-
mated from D are at the top of the tree. Since variables
with low entropy are likely to have configurations for
which there will be only few supporting instances, they
are more likely to trigger zero counts and hence lead to a
smaller tree to traverse. For example, consider executing
Query(X2, {X1, X3}) outlined in Fig. 1b. There are to-
tal of 7 configurations which we should enumerate, and if
we traverse the tree starting from variable X3, which has
lower entropy than X1, then we will have to consider 6
intermediate states. If we were to start with variable X1,
then this number would increase to 9. This optimization
performs extremely well in practice, and, as we show in
the experimental results section, for certain ranges of n
and m, Bitmap outperforms other strategies.

In the practical terms, the strategy can be efficiently im-
plemented using streaming extensions (SIMD) in current
processors. Bitmaps for individual variables can be pre-
computed and laid out in the memory instead of D, with
acceptable memory overhead (i.e., m · ri vs. m · log2(ri)
bits), and the relative ordering of variables in D, based on
their entropy, can be established beforehand as well.

3.3 Radix Strategy

While the Bitmap strategy is amenable to very efficient im-
plementation, its scalability may still suffer when datasets
with very large number of instances are exercised by
queries with many variables, or variables with high ar-
ity. This is because in such cases the DFS tree will have
fewer nodes to prune, and the advantage of fast bit-wise
operations will be offset by the poor asymptotic behav-
ior. To address these cases, we consider an alternative



approach, which we refer to as Radix strategy. The strat-
egy is derived from the classic radix sort algorithm, and
it involves recursively partitioning instances in D such
that single partition at given level captures all instances
corresponding to one specific configuration of the query
variables. This approach is summarized in Algs. 2 and 3,
with example in Fig. 1c.

Algorithm 2 QUERY(Xi, Pa, F )

1 B ← [[1, . . . ,m]]
2 if |Pa| 6= 0 then
3 B ← BUCKETS(HEAD(Pa), TAIL(Pa), HEAD(B))
4 for b ∈ B do
5 Nij ← |b|
6 if Nij > 0 then
7 B′ ← BUCKETS(Xi, [], b)
8 for b′ ∈ B′ do
9 Nijk ← |b′|

10 if Nijk > 0 then
11 F (Nijk, Nij) C emit new configuration

Algorithm 3 BUCKETS(Xp, Pa, b)

1 B′ ← []
2 for q ∈ [1, . . . , |b|] do
3 xp ← Dp[b[q]]
4 B′[xp].APPEND(b[q])
5 if TAIL(Pa) = [] then
6 return B′

7 B′′← []
8 for b′ ∈ B′ do
9 B′′.APPEND(BUCKETS(HEAD(Pa), TAIL(Pa), b′))

10 return B′′

The algorithm follows the Most Significant Digit (MSD)
radix, with the left most digits being states of individual
variables in Pa, and the least significant digit representing
states of Xi (Alg. 2, line 3). At each level, the number
of newly created partitions is proportional to the arity of
the considered variable, and the size of the partition is the
support in D for the particular configuration. The order in
which variables from Pa are processed is not significant,
since the cost of identifying empty partitions does not
induce overheads. Because the actual instances in D
are not to be sorted, but only partitioned, it is sufficient
that we maintain a list (in algorithms denoted by B) of
partition descriptors containing indexes of the constituent
instances and partition size (Alg. 3, lines 1-4). As soon
as all partitions prescribed by Pa are identified we can
proceed to emitting counts (Alg. 2, lines 4-11), which
must be preceded by the final round of partitioning with
respect to Xi (Alg. 2, line 7).

The algorithm requires that for each variable Xp ∈ Pa
its corresponding data vector Dp is completely scanned,
leading to the overall O(|Pa| ·m) complexity. In practice,
the entire method is efficiently implemented by first orga-

nizing the database D in the column-major format, and
then maintaining a FIFO queue of partition descriptors,
with O(m) auxiliary space to keep track of the assignment
of indexes to partitions. Moreover, partitioning for indi-
vidual variables can be precomputed in advance, further
bootstrapping the first step of the algorithm.

To conclude the presentation, we note that both Bitmap
and Radix strategies can be further augmented such that
instead of enumerating all counts (i.e., executing queries
with shared context) they deliver counts just for the spe-
cific assignment of the query variables. To achieve this, it
is sufficient to process only a single path from the root to
the leaf with the target assignment in the DFS tree of the
Bitmap strategy, and to find the partition corresponding
to the assignment, instead of all partitions, in Radix.

4 EXPERIMENTAL VALIDATION

We implemented both proposed strategies as a C++ soft-
ware library, which we complemented with Python bind-
ings for the ease of use. At its core, the library uses
standard SSE SIMD intrinsics to implement basic bitmap
operations (i.e., logical AND, and bit counting), and it
exposes all functionality via the interface described in
Sec. 3.1. The resulting open source package, which we
call SABNAtk, is available from: https://gitlab.
com/SCoRe-Group/SABNAtk.

We deployed SABNAtk on a server with two Intel Xeon
E5-2650 2.30 GHz 10-core CPUs, and 64 GB of RAM.
To test the performance, we ran a series of experiments
using popular ML benchmark datasets (see data summary
in Tab. 1). For reference, we used hash table from the C++
standard library, and the sparse ADtree data index [8].
The hash table represented contingency table created by
directly scanning the input database, with keys encoding
specific assignment of variables in Pa(Xi), and values
representing vectors of counts for specific assignment
of Xi. To maximize cache memory usage, the strategy
operated on the database stored in the row-major order.
Finally, to make the comparison fair and avoid biases due
to the differences in programming languages, we devel-
oped an efficient ADtree implementation in C++. We note
that other available implementations, for example [17],
turned out to be substantially slower than our version.

In the following, we discuss in detail several key re-
sults obtained using the above setup. More exten-
sive results (including additional test cases), together
with the data that can be used to reproduce our ex-
periments, are available from: https://gitlab.com/
SCoRe-Group/SABNAtk-Benchmarks.

Before we proceed with the results discussion, we note
that in order to use ADtree, the input database has to be



Table 1: Benchmark data used in experiments.

Dataset n Range of ri Average ri

Child 20 2-6 3
Insur(ance) 27 2-5 3.3
Mild(ew) 35 3-99 16.4
Alarm 37 2-4 2.83
Barley 46 3-67 9.02
Hail(finder) 56 2-11 3.98
Win95(pts) 74 2-2 2
Path(finder) 104 2-63 4.2

m Child n = 20 Alarm n = 37 Hail n = 56
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Figure 3: Comparison ADT, Hash, BMap and Rad strate-
gies on the stream of uniformly random queries. The plots
show the distribution of response time in microseconds,
computed from the same sample of 1,000 queries for
different number of instances m. Y-axis is in log10-scale.

first indexed. In all our experiments, we considered only
the query time with index already loaded into memory.
Moreover, ADtree provides a hyper-parameter ` to con-
figure the size of the leaf-lists [8]. We experimented with
several values of the parameter, to fine-tune the trade-off
between query performance and memory consumption,
and we settled with ` = 16, which we use throughout the
paper. The results obtained for other ADtree configura-
tions exhibited similar patterns to those reported in the
paper, and are available online.

4.1 Random Queries

In the first set of experiments we tested how ADtree
(ADT), HashTable (Hash), Bitmap (BMap), and Radix
(Rad) strategies respond to a stream of random queries.
The idea here is to understand average performance of
each strategy in case where we have no prior informa-
tion about specific query execution patterns. For each
benchmark database, we generated 100,000 queries of
the form Query(Xi, Pa(Xi)) as follows. First, the
size of Pa(Xi) was sampled uniformly from the range
[1, . . . , n − 1], and then variables were assigned to Xi

and Pa(Xi) by randomly sampling without replacement
from X . To measure time taken to execute the query, we
used a simple function object that consumes and imme-
diately discards the counts. In this way, the overhead of
performing computations on the counts was negligible,
and did not offset the actual time spent by each strategy
to enumerate the counts. Each query was executed five
times to obtain the average response time (with negligible
variance), and exactly the same stream of queries was
processed by each strategy. The results of this experiment
are summarized in Figs. 3 and 4. Here, we note that plots
are in log10 scale, and should be interpreted with care.

Figure 3 shows that depending on the number of input
variables n, and the number of instances m, different
strategies perform better in terms of the mean response
time. When the number of instances is relatively small,
Bitmap strategy significantly outperforms other methods.
This is explained by two factors: first, for small scale data,
Bitmap benefits from continuous memory accesses, and
acceleration via SIMD instructions, second, because in
small datasets many possible variable configurations are
unobserved, Bitmap is able to prune significant portions
of the DFS tree, taking advantage of the entropy-based
data reordering (see Sec. 3.2). However, as the number of
instances in the input database increases these advantages
diminish, to the extent where the average time taken by a
query becomes unacceptable (longer than several seconds,
a threshold we set to make experiments computationally
feasible). The Radix and HashTable strategies perform
steadily across all datasets, and are able to handle even the
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Figure 4: Comparison of ADT, Hash, BMap, and Rad for
different sizes of Pa (x-axis) in the sample of 1,000 uni-
formly random queries. The plot shows the average query
response time in microseconds. Y-axis is in log10-scale.

most demanding test cases. This is expected, since both
strategies involve similar data access pattern (i.e., scan-
ning selected columns of the input database). However,
Rad is on average 20 times faster than Hash (not captured
in the figure due to log-scale), as it does not require costly
hashing and scattered memory accesses.

The ADtree strategy exhibits the best mean response
for problems with few variables and large number of in-
stances, but it significantly underperforms in all remaining
test cases. In fact, as the number of variables increases,
ADtree fails to index the database and cannot be used
to answer the queries. This is because the exponential
growth of the number of configurations, which have to
be cached, leads to the exhaustion of the main memory.
Recall also that we do not include ADtree preprocessing
time, which for datasets with more than 100K instances
exceeds several hours, much longer than the time required
to answer all 100K queries.

To further dissect performance of random queries, in
Fig. 4 we show how the response time varies with the num-
ber of query variables, for an example database. When
processing small queries (|Pa| < 4), ADtree is generally
outperformed by BMap, and when handling large queries
(|Pa| > 10) it is slower than Rad. Moreover, the cost of
Radix strategy is linear with the query size, compared to
the exponential growth of ADtree.

Based on the tests with random queries, we conclude
that Bitmap and Radix strategies significantly outperform
ADtree and HashTable, except of a small set of scenarios
in which small queries are executed over databases with
few variables and millions of instances, if we exclude the
preprocessing time.

4.2 Queries in Bayesian Networks Learning

Counting queries with shared context are the key opera-
tions performed in score-based Bayesian networks struc-
ture learning and Markov blankets discovery [1]. Both
problems depend on the parent set assignment as a sub-
routine [18], and for given Xi can be solved exactly by
traversing a lattice with n levels formed by the partial
order set inclusion on the power set of X − {Xi}. For
given X and D, queries of the form Query(Xi, Pa, F )
are performed for each Xi, where Pa iterates over all
possible subsets of X − {Xi}, starting from empty set.
Hence, at level i = 0, . . . , n − 1 we have that |Pa| = i,
and there are total

(
n−1
i

)
queries to execute, creating inter-

esting pattern of queries that grow in size as computations
progress. The function object F implements decompos-
able scoring function, e.g., MDL [19], BDeu [16], etc.,
that evaluates the assignment of Pa as parents of Xi.

We used all tested strategies to implement count-
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Figure 5: The total execution time of the parent set assign-
ment solver with ADT, Hash, BMap and Rad strategies,
normalized with respect to the fastest method. The solver
was executed up to the level where |Pa| = 6.

ing queries in the open source parent set assignment
solver [20]. The solver uses MDL scoring function,
deploys several optimizations to eliminate some of the
queries based on the results seen thus far, and because it
effectively explores large combinatorial search space it
has significant memory requirements. It also leverages
OpenMP to execute multiple queries in parallel. As such,
it serves as a practical benchmark for the query strategies.
In our experiments, instead of considering all possible
parent set sizes, as required by the exact solver, we lim-
ited the solver to |Pa| ≤ 6, to make tests computationally
feasible. This corresponds to a heuristic in which we
make an assumption that no variable in the final Bayesian
network can have more than six parents.

Figure 5 shows the total execution time of the solver
for different input databases and query strategies. From
the plots, we can see that our proposed strategies sig-
nificantly outperform ADtree and HashTable, across all
benchmarks. In fact, for datasets with high-arity vari-
ables, i.e., Mildew and Barley, the Radix strategy is 100
times faster than ADtree. This is explained by very large
number of states that are to be expected in such datasets
(and are costly to manage by ADtree), and by the pat-
tern of how queries are generated by the solver. Because
the size of the queries and their number grow together,
there are only a few small queries that benefit ADtree,
and increasing number of queries that are easily handled
by the Radix strategy.

To illustrate how critical is the performance of counting
queries for parent sets assignment, in Tab. 2 we report
the total execution time of the solver, together with the
fraction of the time taken by the queries, when running
on databases with 100K instances. In all cases, the exe-
cution is dominated by database querying that accounts
for 90%-99% of the total time. Interestingly, this frac-
tion is smaller for ADtree than for other strategies, even
though ADtree is slower (we observed this pattern in all
test cases). We believe that this is because BMap and
Rad are memory friendly, and have minimal effect on

Table 2: Execution time of the parent set assignment.

Insur Mild Alarm Barley

ADT 35m20s – 119m –
90.2% 98.2%

Hash 26m26s 92m3s 190m47s 276m16s
98.2% 99.1% 99.4% 98.2%

BMap 17m28s 1107m57s 100m55s –
98.8% 99.8% 99.9%

Rad 4m41s 37m28s 43m4s 156m32s
99.9% 99.9% 99.9% 99.9%

memory utilization by the solver, thus minimizing cache
update overheads, which in turn could slow down the
solver. This is not the case for ADtree, which requires
gigabytes of memory to run, and hence influences perfor-
mance of the solver, affecting the ratio between the query
and the solver time.

4.3 Queries in Association Rule Mining

Association rule mining is the classic method for es-
tablishing implication rules between a set of items in
a database [2, 21]. Given a set of binary variables X ,
and a database of transactions D, where Di shows in
which transactions item represented by Xi was involved
(i.e., Xi is in state 1), we want to identify rules of the
form Pa(Xi) ⇒ Xi with support, i.e., how frequently
Pa(Xi) ∪ {Xi} are set together in D, and confidence,
i.e., how frequently the rule is true in D, above some pre-
defined thresholds. In the most direct form, the problem
can be solved by traversing the power set lattice over X ,
a query pattern similar to the one used by the parent set
assignment solver. However, compared to the parent set
assignment, the actual queries are simpler, since we only
require the counts of query variables being in state 1. For
example, to assess the rule {X1, X2} ⇒ X3 we would
perform queries Count(X1 = 1, X2 = 1, X3 = 1) and
Count(X1 = 1, X2 = 1). Consequently, instead of con-
sidering the query context, it is sufficient that our strate-
gies search for one specific configuration of the query
variables (as explained at the end of Sec. 3.3).

We used all four tested strategies to implement simple
association rule mining engine based on the bottom-up
search [21]. With the engine, we processed several large
databases to enumerate rules with the support above 0.2
and confidence above 0.3, but of size less than seven. We
selected these thresholds empirically to retrieve associa-
tion rules with more than four variables, which allowed us
to reliably measure the execution times (for smaller rules,
the solver ran extremely fast). Results of this experiment
are summarized in Fig. 6.

The figure shows that the Bitmap strategy significantly
outperforms other approaches across all tested databases.
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Figure 6: The total execution time of association rule
mining with ADT, Hash, BMap and Rad strategies, nor-
malized with respect to the fastest method. The solver
was executed up to the level where |Pa| = 6.

Since in the Bitmap, processing queries with specific
assignment amounts to a series of |Pa(Xi)|+ 1 bitmap
intersections, followed by bit counting, the cost of queries
becomes linear in the size of the query and the number
of instances in the database. Moreover, because all bit-
wise operations are implemented via SIMD extensions,
BMap becomes much faster than Rad, which has the
same asymptotic behavior but involves less cache friendly
operations. Finally, the overheads of traversing ADtree
and handling its MCV subtrees (see [12] for details) leads
to its poor overall performance. At this point we should
note that originally ADtree was designed for learning of
association rules, however the design did not account for
the memory and SIMD capabilities of modern processors.

5 RELATED WORK

As we mentioned through out the paper, counting queries
in machine learning applications are often handled via
some variant of the ADtree data index. The sparse
ADtree [8, 12], which we used in our experiments, pre-
computes and caches counts for all possible variable con-
figurations. The counts are organized into a tree of vary
nodes, encoding the choice of variables to facilitate fast
searching, and AD nodes that store the actual query counts.
To partially mitigate the excessive memory use, ADtrees
do not explicitly represent most commonly occurring
counts, and instead of creating AD nodes for counts lower
than certain threshold, they resort to on-demand counting
when such nodes are accessed. These base ideas have
been extended by multiple researchers to account for dy-
namic data (i.e., updates to the database) [22], and to
improve performance on high-arity data [13, 14]. How-
ever, as the core functionality in these data structures
remains exactly the same, they suffer from the same limi-
tations that we demonstrated in our experiments (expen-
sive preprocessing, large memory footprint, significant
traversing overheads).

Support for counting queries is a primary component in

any database management system. In such systems, the
query mechanism must support conjunctive queries over
multiple tables, and with a variety of possible query pred-
icates [9]. Moreover, the queries are typically executed
over tables that cannot be fully materialized in the main
memory. Our Bitmap strategy can be viewed as a prac-
tical realization of the Leapfrog Trie Join [23] with an
unary relation, under assumption that the entire database
resides in the main memory.

The idea of using bitmaps to represent sets and their op-
erations (e.g., intersection, cardinality, etc.) is frequent
in software and databases design. This is because it al-
lows to reduce memory, storage or network bandwidth,
while maintaining the basic sets functionality [24]. In
these applications, bitmaps are typically compressed fol-
lowing methods like for example RLE encoding or Roar-
ing [25, 26]. The compressed bitmaps are orthogonal to
our approach, and in fact we could use them to improve
memory profile of our Bitmap strategy. However, as the
compression induces computational overheads, and the
size of the databases we consider practical is relatively
small, currently we do not use compression.

6 CONCLUSIONS

In this paper, we describe efficient strategies for handling
counting queries in machine learning applications. By
combining convenient programming interface with mem-
ory efficient data traversing algorithms we are able to
scale to large data instances, which we confirm via ex-
tensive experiments. The proposed solutions outperform
and can substitute popular ADtree index. Moreover, to
maintain best possible performance across different data
instances, they can be selectively applied at the runtime
depending on the properties of the queries.

While our approach is presented as a method for static
databases, we note that it can be easily adopted to the
cases where the input database expands with new in-
stances during processing. This would amount to a simple
update to the bitmaps in the Bitmap strategy, and is auto-
matically handled in the Radix strategy.
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