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Abstract

Estimating the dynamic connectivity struc-
ture among a system of entities has gar-
nered much attention in recent years. While
usual methods are designed to take advantage
of temporal consistency to overcome noise,
they conflict with the detectability of anoma-
lies. We propose Clustered Fused Graphi-
cal Lasso (CFGL), a method using precom-
puted clustering information to improve the
signal detectability as compared to typical
Fused Graphical Lasso methods. We evaluate
our method in both simulated and real-world
datasets and conclude that, in many cases,
CFGL can significantly improve the sensitivity
to signals without a significant negative effect
on the temporal consistency.

1 INTRODUCTION

In recent years, undirected graph models have become
a popular topic in machine learning. In an undirected
graphical model, vertices represent entities in the sys-
tem, and edges represent bi-directional effects between
entities. The inverse covariance matrix is the preferred
estimator for such structures since it indicates partial cor-
relations, i.e., an off-diagonal entry is zero if and only if
the entities of the corresponding column and row are con-
ditionally independent given all the other entities. There-
fore, two adjacent vertices in an estimated network cor-
respond to a non-zero off-diagonal entry and a direct
dependency. One of the most popular methods for es-
timating the sparse precision matrix is Graphical Lasso
(Glasso) [Friedman et al., 2008], which assumes the con-
nectivity structure is static. However, this assumption is
not satisfied in many fields like functional MRI [Monti
et al., 2014], financial markets [Namaki et al., 2011], or

social network analysis [Ahmed and Xing, 2009]. In
such cases, data comes from a time series of collec-
tions, and the underlying structures are usually assumed
to be non-static across time. Consequently, estimating
dynamic networks at each time point becomes necessary
in order to better understand the complex systems.

Compared to the static case, fewer observations at each
time point are available in dynamic estimation. The lack
of samples leads to higher level of noise, and thus intro-
duces additional difficulty in estimation. Temporal con-
sistency is a natural assumption with time-varying net-
works, based on the idea that in most cases, only few
changes should occur between consecutive networks.
Given this assumption, one may like to place an addi-
tional penalty on the difference of neighboring networks.
Fused Graphical Lasso (Fused Glasso) achieves this us-
ing an element-wise l1 penalty, and it has become the
default choice for many studies in the structure estima-
tion field [Monti et al., 2014, Hallac et al., 2017, Danaher
et al., 2014, Ahmed and Xing, 2009].

Several Fused Glasso based algorithms have been pro-
posed in the literature on time varying network esti-
mation, and they all have some issues with change de-
tection. SINGLE [Monti et al., 2014] avoids accurate
change detection by assuming temporal homogeneity
(i.e., small and slow changes) on functional MRI data.
It uses Fused Glasso on sample covariance estimates,
which are smoothed using a Gaussian kernel, so that all
abrupt changes are transferred into trends. In another
study [Gibberd and Nelson, 2017], the ability to recover
change points is specifically targeted. Grouped Fused
Graphical Lasso (GFGL) uses a group l2,1 smoothing.
The drawback is that compared to Fused Glasso results,
GFGL has performance loss on static periods on a similar
scale as the performance gain at change points. Time-
Varying Graphical Lasso (TVGL) [Hallac et al., 2017]
proposes a general framework, allowing various penalty
functions to be applied to fit different situations. But
again, it is difficult for a single penalty function to satisfy



both temporal consistency and temporal diversity. More
importantly, estimating dynamic functional structures is
an unsupervised task. Thus, it is usually impossible to
know the correct situation beforehand or to objectively
compare methods with different penalties.

In this work, we propose the Clustered Fused Graphi-
cal Lasso (CFGL) method, obtaining good detectability
of changing events and taking care of temporal consis-
tency. Motivated by the property that the thresholded hi-
erarchical clustering is closely related to the connected
components of Glasso estimated graphs [Mazumder and
Hastie, 2012], we make the key observation that this
clustering information indicates evidence of structure-
change events and can be a reasonable heuristic. We pro-
pose a clustering framework to enhance the evidence of
changes. CFGL incorporates the precomputed informa-
tion into the smooth penalty so that local structures are
free to detect change points.

Section 2 formulates the problem and briefly reviews
the related background on Graphical Lasso and Fused
Graphical Lasso estimation. Section 3 proposes the
CFGL method and clarifies the algorithm details. Section
4 compares CFGL to existing methods in three differ-
ent simulations. Section 5 evaluates CFGL in real cases.
Section 6 concludes the paper and talks about future ex-
tensions.

2 BACKGROUND

2.1 PROBLEM DEFINITION

Say there is a sequence of multivariate observations at
time points t1 ≤ · · · ≤ tT . At each time ti, ni ≥ 1
observation vectors form Xi = {x1

i , ..., x
ni
i } ∈ Rni×p

with xi ∼ N (0,Σi). We would like to infer the under-
lying connectivity structures across time. Based on the
aforementioned precision matrix properties, an equiva-
lent problem is to estimate the corresponding precision
matrices {Θi} = {Θ1, ...,ΘT }, one at each time point.

2.2 GRAPHICAL LASSO

We start from the static case, T = 1. An assumption
on the number of dependencies (i.e., sparsity) is usually
applied, so that only a subset with most dependencies is
chosen. This would require placing a prior on the pa-
rameters to induce additional zeros on the off-diagonal
entries of {Θi}.

arg min
Θ

−l(Θ) + λ1 ‖Θ‖1 (1)

The equation (1) is Graphical lasso [Friedman et al.,
2008], which is known to be one of the most effective

methods for this problem [Wang et al., 2012]. The em-
pirical covariance S is defined to be 1

n

∑n
i=1 xix

T
i , and

then the log likelihood l(Θ) is

l(Θi) = log det(Θi)− trace(SiΘi). (2)

Minimizing−l(Θ) would encourage Θ to be close to the
inverse covariance S−1 [Yuan and Lin, 2007]. The λ1 in
Equation (1) is a non-negative tuning parameter to trade
off the sparsity and likelihood. ‖Θ‖1 is defined to be the
element-wise l1 norm of Θ.

2.3 FUSED GRAPHICAL LASSO

In the case of T > 1, to estimate time series of graphs,
we seek to take advantage of neighborhood information
indicating temporal consistency, i.e., assume structures
are similar to their neighbors. Previous methods [Dana-
her et al., 2014, Monti et al., 2014, Yang et al., 2015,
Hallac et al., 2017] implement this assumption by adding
an additional penalty to encourage smoothness. In par-
ticular, SINGLE [Monti et al., 2014], and l1-penalized
TVGL [Hallac et al., 2017] define this penalty to be an
element-wise l1 norm of the difference between consec-
utive estimations:

arg min
{Θi}

T∑
i=1

−l(Θi)+λ1

T∑
i=1

||Θi||1+λ2

T∑
i=2

‖Θi−Θi−1‖1

(3)
Equation (3) is usually called Fused Graphical Lasso
(Fused Glasso), due to its relationship to its vector reg-
ularization analogue – Fused Lasso [Tibshirani et al.,
2005], for estimating a sparse time-varying vector.

The variational norm in Fused Lasso is effective for in-
troducing smoothness, but Qian and Jia [2012] prove
that Fused lasso can recover exact patterns only if there
are no consecutive change points on the timeline and all
changes keep switching directions. Many real-world sig-
nal patterns obviously do not satisfy these conditions. In
addition, even with the aforementioned conditions satis-
fied, simulated experiments on Fused Glasso show large
F1 score performance drop in the vicinity of the only
change point [Gibberd and Nelson, 2017]. In response,
we propose the CFGL to improve signal recovery.

3 CLUSTERED FUSED GRAPHICAL
LASSO

3.1 PROPOSED METHOD

Instead of assigning a uniform smoothing weight on all
the entries of all precision matrices, we explore methods
to distinguish between stable and non-stable connections



in the network and only apply smooth penalties on stable
connections.

Mazumder and Hastie [2012] proves the close relation
between connected components of the thresholded sam-
ple covariance graph and connected components of the
Glasso-estimated graph. Tan et al. [2015] extends the
conclusion and proves the following theorem, which
states the relation between Glasso and clustering results.

Denote |S| as the matrix of element-wise absolute values
of S, i.e., |S|k,l = |Sk,l|, where S is the normalized p×p
covariance matrix.
Theorem 3.1. Let C1, . . . , CK denote the clusters that
result from performing Single Linkage Hierarchical
Clustering (SLC) using similarity matrix |S| and cutting
the resulting dendrogram at a height of 0 ≤ λ1 ≤ 1.
Let D1, ..., DR denote the connected components of the
graphical lasso solution with tuning parameter λ1. Then,
K = R, and there exists a permutation π such that
Ck = Dπ(k) for k = 1, ...,K.

Following Theorem 3.1, it is clear that the regularization
parameter λ1 is the threshold to define connected com-
ponents in the Glasso solution. We note that other clus-
tering algorithms like average linkage clustering (ALC)
are also used as alternative methods in Tan et al. [2015].
In the following sections, we will use clusters and con-
nected components interchangeably. We also assume that
λ1 is a good threshold resulting in clustering with reason-
able accuracy.

Define V = {v1, ..., vp} as the vertex set representing
the entities, and Ci = {C1

i , ..., C
K
i } as the clustering

result on |Si| with parameter λ1, where Ci(vk) is the
cluster label of vk. We construct an undirected graph
Gi = (Vi, Ei), where Ei is represented in a similar form
to adjacency matrix. Ek,li = 1 if and only if there is a
path between vk and vl, i.e.,

Ek,li = 1{Ci(vk)=Ci(vl)}, (4)

where 1 is the indicator function.

If Ek,li = 0, vk and vl have zero partial correlation at
time ti and thus Θk,l

i = 0. If Ek,li 6= 0, vk and vl have
non-zero partial correlation on intuition and thus Θk,l

i 6=
0.

Given consecutive clustering results Ci−1 and Ci, we
want to use the evidence of partial correlation change
on between Θi−1 and Θi, and define the weight matrix
Wi ∈ {0, 1}p×p to help decide whether to apply the l1
smooth penalty on each entry.

• If Ek,li−1 = Ek,li , vk and vl both have either zero or
non-zero partial correlation in time ti−1 and ti, and
we set W k,l

i = 1.

Figure 1: Vertex 4 detaches from the green cluster and
merges to the red cluster.

• If Ek,li−1 6= Ek,li , we want the partial correlation be-
tween vk and vl to change freely. Thus W k,l

i = 0.

A simple example is illustrated in Figure 1. At time ti−1

(left), E4,l
i−1 = 1 for l ∈ {1, 2, 3} and E4,l

i−1 = 0 for
l ∈ {5, 6}. At time ti, E

4,l
i = 0 for l ∈ {1, 2, 3} and

E4,l
i = 1 for l ∈ {5, 6}. Thus we set W 4,l

i = 0 for l ∈
{1, 2, 3, 5, 6} to allow vertex 4 to freely change clusters.

Assuming the clustering threshold λ1 is known, we pro-
pose the following steps:

1. Perform the chosen clustering method on each em-
pirical covariance matrix Si to obtain a sequence of
cluster sets C1, C2, ..., CT .

2. Let ⊕ denote the XOR logical operations, and de-
fine the weight matrix set {Wi} as

W k,l
i = 1− 1{Ek,l

i−1⊕E
k,l
i }

. (5)

3. Apply these predefined weights and solve the fol-
lowing CFGL optimization problem:

arg min
{Θi}

T∑
i=1

−l(Θi) + λ1

T∑
i=1

||Θi||1

+ λ2

T∑
i=2

||(Θi −Θi−1) ◦Wi||1,

(6)

where the ◦ denotes the element-wise Hadamard
product.

3.2 MORE STABLE CLUSTER CHANGES
ACROSS TIME

The previously defined procedure in section 3.1 is some-
times sensitive to the choice of parameter λ1. If λ1 is
small, clustering is sensitive to noise and very large clus-
ters are always formed; if λ1 is large, sparse clustering is
achieved, but vertex pairs with true partial correlation are



likely to be overlooked. Even if λ1 is within an accept-
able range, the variations of values around the threshold
may lead to grouped and detached clusters, introducing
redundant switching. Therefore, no matter what value
λ1 is picked, the precomputed clustering change infor-
mation tends to be noisy.

Since SLC is more unstable with noise and usually has
undesirable chain structures [Hastie et al., 2009], Tan
et al. [2015] use ALC instead of SLC for clustering on
a single network. However, when merging individual
and small clusters, ALC is similar to SLC and still suf-
fers severely from noise. The frequent switching prob-
lem occurs on boundary values as well. We propose a
framework to increase the stability of clustering chang-
ing across time (Algorithm 1) and make it applicable to
most clustering algorithms.

The idea can be easily explained in the simplest case of
hierarchical clustering. Consider there are two vertices,
vk and vl, we propose to have two thresholds λ1 and λ∗1,
with λ∗1 smaller than λ1, i.e., λ1 = λ∗1 + γ and γ > 0.

• λ1 is used to judge whether vk and vl should be
grouped at time ti if not grouped at time ti−1.

• λ∗1 is used to judge whether they should be grouped
again if they are grouped at time ti−1.

In other words, we define the condition of vk and vl being
clustered together as

Cond
Ci(vk)=Ci(vl)

=

{
|S|k,li ≥ λ1, if i = 0 or Ek,li−1 = 0

|S|k,li ≥ λ∗1, if Ek,li−1 = 1

(7)

To generalize the idea to complex cases (e.g., merging
two clusters), Algorithm 1 is proposed. The input {Si}
is the sequence of similarity matrices (normalized em-
pirical covariance), γ can be understood as the gap or
stabilizing parameter, and f is the clustering algorithm
(i.e. represented as a function).

Algorithm 1 Stable Clustering Framework across Time

Input: {Si}, γ, f
Output: {Ci}, {Ei}

1: C1 = f(|S1|)
2: Construct E1 on C1 using Equation (4)
3: for i = 2 to T do
4: Ŝi = |Si−1|+ γEi−1

5: Ci = f(Ŝi)
6: Construct Ei on Ci using Equation (4)
7: end for

The choice of γ depends on the clustering algorithm f ,
and also on the level of noise e we define (to maintain

sparsity). Here we propose a heuristic choice for the hi-
erarchical clustering case. Under the assumption that the
previous clustering is accurate, there are two kinds of er-
rors related to γ:

1. |Si|k,l ≥ λ1 − γ with true Ek,li−1 = 1 ∧ Ek,li = 0.

2. |Si|k,l ≤ λ1 − γ with true Ek,li−1 = 1 ∧ Ek,li = 1.

Let n be the sample size of each estimated Si, the
standard error of correlation coefficient r = Sk,li is

se(r, n) =
√

1−r2
n−2 . If we assume normally distributed

error, the sampled correlation is r̄ ∼ N (r, se(r, n)2).

Let us assume the exact true correlation coefficient of all
the k, l pairs is λ1 if Ek,l = 1, and e if Ek,l = 0. Intu-
itively, we want λ1− γ to be as far as possible from both
λ1 and e on their standard error normalized distances.
Thus, we can heuristically estimate γ as:

γ =
se(λ1, n)(λ1 − e)
se(λ1, n) + se(e, n)

(8)

3.3 PARAMETER TUNING

All that remains is to tune the parameters λ1 and λ2. Fol-
lowing Hallac et al. [2017] and Monti et al. [2014], we
use Akaike Information Criteria (AIC) to tune these hy-
perparameters. For a given pair (λ1, λ2), we define the
AIC as:

AIC(λ1, λ2) = 2

T∑
i=1

−l(Θi) + 2K. (9)

where the estimated degree of freedom K is slightly dif-
ferent from the definition in Tibshirani et al. [2005], and
is given by:

K =
∑
k,l

T∑
i=2

1{(Θk,l
i 6=0 ⊕ Θk,l

i−1 6=0) ∧ (Θk,l
i 6=0 ∧ Wk,l

i 6=0)}

(10)

In equation (10), we do not penalize the changes unre-
lated to 0 since graphical lasso focuses more on the oc-
currence of edges. Term W k,l

i is added to avoid penaliz-
ing intentionally allowed changes.

Observe that a small λ1 may result in huge clusters and
W k,l
i 6= 0 everywhere, which makes CFGL equivalent to

Fused Glasso. In addition to a typical grid search with
AIC score, CFGL requires λ1 to be in a smaller pre-
decided range. Therefore, we need to first tune a series of
static graphical lasso (Static Glasso) with AIC to achieve
an appropriate range of λ1. Other methods can be used



to predefine the range, as long as they distinguish CFGL
with typical Fused Glasso.

For a fixed sparse penalty λ1, the clustering threshold
can be either set to be λ1 or slightly higher in order to
compensate for the use of γ. The CFGL algorithm is
described in Algorithm 2.

Algorithm 2 CFGL and Parameter Tuning

Input: {Si}, f
Output: {Θi}

1: Tune λ∗1 on static graphical lasso using AIC score
2: Obtain a range of λ1 near the best λ∗1 from 1
3: for λ1 among choices do
4: for λ2 among choices do
5: Compute {Ei} using {Si}, f and λ1 via Algo-

rithm 1
6: Compute {Wi} using {Ei} and equation (5)
7: Obtain {Θi}λ1,λ2

that minimizes equation (6)
8: Compute AIC score of {Θi}
9: end for

10: end for
11: return {Θi}λ1,λ2

which minimizes the AIC score

3.4 OPTIMIZATION ALGORITHM

We use Alternating Directions Method of Multipliers
(ADMM) [Boyd et al., 2011] algorithm to solve the op-
timization problem. Firstly, define the problem as:

minimize
{Θi},{Zi}

T∑
i=1

−l(Θi) + λ1

T∑
i=1

‖Zi‖1

+ λ2

T∑
i=2

‖(Zi − Zi−1) ◦Wi‖1

subject to: Θi = Zi, for i = 1, 2, 3, . . . , T.

(11)

The augmented Lagrangian corresponding to equation
(11) is defined as:

Lρ({Θi}, {Zi}, {Ui}) =

T∑
i=1

−l(Θi)

+ λ1

T∑
i=1

‖Zi‖1 + λ2

T∑
i=2

‖(Zi − Zi−1) ◦Wi‖1

+
ρ

2

T∑
i=1

(
‖Θi − Zi + Ui‖22 − ‖Ui‖22

)
,

(12)

where {Ui} are scaled dual variables, and ρ is a constant
penalty parameter in ADMM which is usually set to one.
Consequently, we get the update rule for Ui, Θi for i =

1, . . . , T , and {Zi} in j + 1th iteration:

Θj+1
i = arg min

Θj+1
i

ρ

2
‖Θi − Zji + U ji ‖

2
2 − l(Θi) (13)

{Zj+1
i } = arg min

{Zj+1
i }

Lρ({Θj+1
i }, {Zi}, {U ji }) (14)

U j+1
i = U ji + Θj+1

i − Zj+1
i (15)

Thus, the update step (13) is same in a typical fused
graphical lasso, and the solution is discussed in detail
by Monti et al. [2014] and Danaher et al. [2014]. For the
Z update step (14), since all of these are element-wise
operations, we can solve each {Zj+1

i }k,l separately.

arg min
{Zj+1

i }k,l

ρ

2

T∑
i=1

‖{Θj+1
i − Zi + U ji }

k,l‖22

+λ1

T∑
i=1

‖Zk,li ‖1 + λ2

T∑
i=2

‖(Zk,li − Z
k,l
i−1) ◦W k,l

i ‖1

Set yi = (Θj+1
i + U ji )k,l and βi = (Zi)

k,l. We get the
following equation:

f∗1,T (β) =

T∑
i=1

ρ

2
‖y − βi‖22 + λ1

T∑
i=1

‖βi‖1

+

T∑
i=2

λi,i−1‖βi − βi−1‖1,

where the λi,i−1 is defined to be λ2W
k,l
i .

Note that the nonzero value of λi,i−1 enforces βi and
βi−1 to be close, and a zero value in λi,i−1 splits the
above equation into several smaller pieces. If W k,l

i 6= 0
for all i, the equation is equivalent to a 1-dimensional
FLSA as shown below, whose solver has been well dis-
cussed by Friedman et al. [2007], Hoefling [2010]:

f1,T (β) =

T∑
i=1

ρ

2
‖y − β‖22 + λ1

T∑
i=1

‖βi‖1

+ λ2

T∑
i=2

‖βi − βi−1‖1.

If W k,l
i = 0 for i ∈ {m1, . . . ,mD}, m0 = 1,m1 ≥

2,mD ≤ T and mD+1 = T , solving the above problem
is equivalent to separately solving D + 1 independent 1-
dimensional FLSA. In other words, β becomes the con-
catenation of {β1, . . . , βD+1}, and

βd = arg min
β

fmd−1,md
(β).

It is shown in the supplement that {Wi} does not intro-
duce any additional complexity. Also, the update steps
(13) and (14) can be easily parallelized, making the opti-
mization algorithm very scalable.



4 SIMULATED EXPERIMENTS

To perform simulations, we first construct three groups
of signal patterns, outlined in Figure 2, ranging from
sudden stimuli to long-term switches. Group 1 has two
short-term changes lasting for three time points. Group 2
has three short stimuli happening in only one time point.
Signals in Group 3 have equal length and are sequentially
distributed across time.

4.1 EXPERIMENT SETUP

We generate the simulated data from an Erdős–Rényi
random graph G = {V,E} under the controlled spar-
sity |E| = 0.5 |V |. To form the precision matrix Θ̂i and
sampled observation data, we use the following method,
similar to Gibberd and Nelson [2017]

1. Set an empty |V | × |V | matrix and insert off-
diagonal terms based on edges inGwith values cho-
sen from Unif(0.6, 0.9).

2. Equally shift all the diagonal entries by a positive
value so that the smallest eigenvalue is 0.1 to ensure
positive semi-definiteness.

3. Normalize the matrix to have value 1 on diagonal.

4. Generate observation data Xi = {x1
1, . . . , x

ni
1 } and

xji ∼ N (0, Θ̂−1
i ).

For all the three simulations datasets, we set |V | = 25.
The generated precision matrices {Θ̂i} have off-diagonal
terms with values around 0.5. There are total 30 time
points, each with 25 observations, i.e., T = 30 and ni =
25 for all i.

We compare to four state-of-the-art baseline methods,
the static graphical lasso [Friedman et al., 2008], the
fused graphical lasso from SINGLE [Monti et al., 2014],
the l1 penalized TVGL [Hallac et al., 2017], and the
group fused graphical lasso (GFGL) [Gibberd and Nel-
son, 2017]. For Static Glasso, the graph at each time
ti is estimated independently. So we solve a total of T
Glasso (1) problems to get T separate graphs. The de-
gree of freedom K in Glasso is defined as the number
of none zero entries [Tibshirani et al., 2005]. Although
both SINGLE and l1-TVGL have exactly the same fused
graphical lasso objective in optimization, they use differ-
ent optimization solvers which often result in different
performance. We put both methods here as baselines and
denote them as FGL-SINGLE and FGL-TVGL accord-
ingly. Also, it is worth mentioning that CFGL shares a
similar optimization solver as FGL-SINGLE.

We use four different versions of CFGL to compare to
three baseline methods, listed in table 1. The Γ repre-

Table 1: Notation of CFGL Related Methods

Notation Clustering Method Threshold

CFGL-alc ALC λ1

CFGL-slc SLC λ1

CFGL-alc2 ALC λ1 + Γ/2
CFGL-slc2 SLC λ1 + Γ/2

sents a rough estimation by applying equation (8) on AIC
tuned Static Glasso λ1. CFGL related methods are tuned
using Algorithm 2. The four baseline methods are tuned
by a typical grid search to minimize their correspond-
ingly defined AIC score. Gibberd and Nelson [2017]
tentatively propose a BIC score to tune GFGL in unsu-
pervised tasks, but we find AIC generates slightly bet-
ter results in our simulations. To eliminate the potential
performance difference caused by tuning range, baseline
methods are also tuned by Algorithm 2, and the result
with better F1-score is chosen. We repeat the whole pro-
cess 10 times to reduce randomness, each time generat-
ing a new set of Erdős–Rényi graphs and observations.
The averaged performance results are shown in Table 2.

4.2 PERFORMANCE METRICS

We measure the performance of each method using three
metrics: F1-score, F1-ratio, and edge deviation ratio.

4.2.1 F1 Score

This measures how close the captured structures are to
the true graphs. The F1 Score shown in Table 2 is the
averaged F1 score across all the time points. Thus it pro-
vides an overview of performance for both static points
and signals.

4.2.2 F1 Ratio

We define F1 ratio to be the average ratio between F1

scores at the starting points of changing signals and the
overall averaged F1 score. F1 ratio indicates the perfor-
mance of accurate edge detection at change points.

4.2.3 Edge Deviation (ED) Ratio

We define ED Ratio to be the average ratio between edge
deviations (number of changing edges) at starting points
of changing signals and the overall averaged edge devi-
ations. Unlike F1 ratio which pays more attention to the
correctness, ED ratio focuses more on changing detect-
ing and provides an unsupervised measure.



(a) Signal Group 1 (b) Signal Group 2 (c) Signal Group 3

Figure 2: Signal patterns with same numerical values have exactly same graph structure and ground truth precision
matrix. Signal patterns with same absolute values but opposite signs have the same graph structure but opposite signs
in the off diagonal values in precision matrix.

(a) F1 Score Group 1 (b) F1 Score Group 2 (c) F1 Score Group 3

Figure 3: Each point on the curve represents the averaged F1 score at that time point among 10 repetitions.

(a) Edge Changes Group 1 (b) Edge Changes Group 2 (c) Edge Changes Group 3

Figure 4: Each point on the curve represents the averaged number of changing edges between consecutive time points
among 10 repetitions.



Table 2: Performance Comparison

Dataset Signal Group1 Signal Group2 Signal Group3
Metrics F1 Score F1 Ratio ED Ratio F1 Score F1 Ratio ED Ratio F1 Score F1 Ratio ED Ratio

GFGL 0.580 0.143 2.6 0.662 0.081 0 0.129 0.147 3.6
FGL-SINGLE 0.570 0.110 9 0.687 0.076 5.45 0.400 0.112 9.6
FGL-TVGL 0.593 0.164 2.15 0.672 0.085 1.37 0.438 0.797 2.53

Static Glasso 0.526 1.01 2.04 0.545 1.00 2.02 0.523 1.02 1.93
CFGL-alc 0.631 0.848 3.43 0.630 0.800 2.81 0.618 0.934 3.40
CFGL-slc 0.555 0.115 2.14 0.687 0.078 2.8 0.626 0.932 5.18

CFGL-alc2 0.633 0.775 3.87 0.676 0.724 3.61 0.618 0.927 3.94
CFGL-slc2 0.653 0.768 4.55 0.670 0.392 3.35 0.668 0.882 4.90

4.3 SIMULATION RESULTS

CFGL-alc2 and CFGL-alc have stably good performance
in all three metrics. The comparison between CFGL-
slc2 and CFGL-slc indicates that SLC based clustering
is more sensitive to the choice of thresholds.

Although Static Glasso always achieves good values on
F1 ratio and ED ratio, its low F1 score implies not
using neighborhood information. The performance of
FGL-SINGLE shows that it tends to choose parameters
which strongly highlight temporal consistency, resulting
in overlooking signals. FGL-TVGL performs slightly
better on signal detection, but both the metrics in Table
2 and the curves in Figures 3 and 4 show that it fails
to take care of temporal consistency and diversity at the
same time. For GFGL, although our simulation perfectly
satisfies their assumption that change time points tend to
group together and the other time points remain static,
GFGL estimated structures do not reflect the changing
periods properly. The static periods are also highly dis-
turbed by long changing periods in signal group 3. This
may be due to the difficulty finding good parameters for
GFGL in unsupervised scenarios, which was mentioned
by Gibberd and Nelson [2017] as well.

5 CASE STUDIES

In this section, we apply CFGL to more complicated real-
world datasets to show how the CFGL method can be
used to provide insights into real-world multivariate time
series datasets.

5.1 EEG EYE STATE

Electroencephalography (EEG) is a medical imaging
technique that reads scalp electrical activities generated
by brain structures, and EEG measurements are com-
monly used in medical and research areas to infer brain

activities [Teplan et al., 2002]. The dataset we use is
the EEG eye state dataset [Roesler, 2013] from the UC
Irvine repository. All data is from one continuous EEG
measurement with the Emotiv EEG Neuroheadset. The
eye state was detected via a camera during the measure-
ment and added later manually after analyzing the video
frames.

Table 3: Cross Validated Results on Estimated Structures

Notation Cross Validated Accuracy

Static Glasso 0.6625
FGL-TVGL 0.800
FGL-SINGLE 0.6875
CFGL-alc 0.8375
CFGL-alc2 0.8875

In this experiment, we pick the first 2000 observations,
and we group every 25 observations to form a time point,
which is roughly 0.2 seconds. All the methods use the
aforementioned tuning procedure. Considering there is
no ground truth graph structure in EEG data, we treat the
video captured eye state as a ground truth signal. We
use the estimated structures as transformed features (i.e.,
edges present or not) and train a linear SVM model to
predict the corresponding eye state. We observe that the
prediction performance is related to the feature sparsity,
and thus we tune the parameters so that all methods have
similar sparsity (about 25% edges present). The result of
10 fold cross-validation is shown in Table 3. In addition,
we provide an aligned comparison between the eye state
and edge changes. Considering the uncontrollable brain
activities and the latency between brains and eye states,
we smooth the edge-change signals by the Gaussian ker-
nel. As shown in Figure 5, CFGL performs very well for
capturing eye state switching events.



Figure 5: Edge changes are smoothed by Gaussian ker-
nel. The yellow regions represent the period when sub-
ject closed his/her eyes.

5.2 STOCK MARKET

In this experiment, we apply CFGL to the financial data
in the stock market to explore the economic structures of
stocks. These structures can be used to provide high-
level understanding of company relations. In particu-
lar, the stock prices are natural multivariate time-series
datasets, and they are also good indicators of company
conditions. We assume each company’s stock price is de-
pendent on companies in the same or related fields, and is
more likely to be independent to companies in unrelated
fields. We pick 20 big companies, roughly 2 from each
category of OS, Internet Service, PC, Auto, Restaurant,
Finance, Energy, and Sales. Then we infer their struc-
ture changes during the global financial crisis of 20081.
We pick the dates starting from June 1st 2006 to August
4th 2009, total 800 days in the stock market, and use 20
days to form a time point so that each roughly represents
a month.

TED spread is defined as the difference between the in-
terest rates on interbank loans and on short-term U.S.
government debt. It is usually treated as the indicator
of perceived credit risk in the general economy [Boudt
et al., 2017]. Thus we use the TED spread’s changes
as the reference of financial events. Figure 6 shows
the comparison between the structural changes in esti-
mated stock networks, and the TED spread changes be-
tween consecutive periods. It can be observed that the
two curves follow similar patterns. There is a shift be-
tween the largest change of TED spread and stock mar-
ket structure. We further investigated and found that the
stock market started to drop in early September (around

1Data freely available online from
https://quantquote.com/historical-stock-data.

Figure 6: Edge Changes and TED Spread Changes

September 8th), which is exactly at the time of the blue
peak but one time point earlier than the red peak. This re-
sult may indicate that TED spread has some latency for
detecting stock market changes.

6 CONCLUSIONS AND FUTURE
WORK

We propose Clustered Fused Graphical Lasso (CFGL) to
improve the signal sensitivity of Fused Graphical Lasso
(FGL). CFGL applies clustering based heuristic infor-
mation on the smooth penalty so that temporal consis-
tency and temporal diversity are simultaneously consid-
ered. Our experimental results show that the clustering
information often makes CFGL more sensible for captur-
ing signal changes, and CFGL outperforms FGL meth-
ods on datasets with time-varying underlying structures.
The incorporated clustering information is independent
of the smooth penalties. Therefore, there are many pos-
sible extensions either applying this information to other
penalties, or setting up better methods for clustering.
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