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Abstract

We consider the classical stochastic multi-
armed bandit but where, from time to time and
roughly with frequency ε, an extra observation
is gathered by the agent for free. We prove that,
no matter how small ε is the agent can ensure
a regret uniformly bounded in time.

More precisely, we construct an algorithm with
a regret smaller than

∑
i

log(1/ε)
∆i

, up to multi-
plicative constant and log log terms. We also
prove a matching lower-bound, stating that
no reasonable algorithm can outperform this
quantity.

1 INTRODUCTION

We consider the celebrated multi-armed bandit frame-
work (sometimes also called online learning), a repeated
decision problem where an agent (or an algorithm, a ma-
chine, a player, etc.) takes sequentially decisions from
a finite set. Each decision gives a stochastic reward to
the agent of fixed expectation. The main objective is to
derive an algorithm maximizing the cumulative reward
or minimizing its normalized version, the so-called “re-
gret”. The latter is simply the difference between the cu-
mulative expected reward of an agent knowing in hind-
sight the optimal decision, and the cumulative reward of
the algorithm.

Online learning can be traced back to the 30’s, when
Thompson analysed random clinical trial using an anal-
ogy with finding the best slot-machine in a casino by
pulling sequentially their arms in order to minimize the
total loss. During the 20th century, many improvements
have been made, at least on the asymptotic version of the
problem. The quantity of theoretical studies and practi-
cal applications of bandits have exploded since the early

2000. There are several reasons for that. First of all,
a simple yet almost optimal algorithm called UCB has
been developed. Its simple structure allows to adapt it to
many different settings. As a consequence, many pos-
sible applications of online learning have been devel-
oped. Amongst them, we can mention the routing prob-
lem: given a network with congested edges, one must
find the quickest way from some origin to a destination
(this setting incorporates a combinatorial structure); this
can be used to send packets in a network, as well as find-
ing the quickest itinerary from a point A to a point B.
Online advertising is another application: given a pos-
sible set of ads, one must find the ad with the highest
probability of click. The last application we mention is
concerned with wireless network and/or cognitive radio,
where either a radio can change from an available chan-
nel to other channels to improve its reception or emission
quality, or alternatively a wireless source, in a relay se-
lection problem where multiple relays are available, can
explore those nodes to achieve better transmissions rates.
One of the typical and crucial assumption of all these
models is that the agent only observes the outcome of his
decisions, but not what the other decisions would have
given him. For instance, using a slot machine only gives
you a feedback on the performance of that very machine,
displaying an ad only gives information of the probabil-
ity of clicks on that specific ad, etc. This assumption is
actually called “bandit feedback”. At the other end of
the spectrum, the dual assumption (mostly used in non-
stationary environment that we are not concerned with in
that paper) is the “full information feedback”, where all
the outcomes of all decisions are observed at all stages.
However, none of our motivating examples satisfies this
strong assumption.

However, we argue that the bandit feedback is also too
strong and that in many cases more informations are
available to the agent. Typically, the agent will always
observe the outcome of his own decision, but with some
small probability he might also get one (or several, but



that is irrelevant to our setting) extra “free” information.
For instance, consider the original multi-armed bandit
problem. A gambler is in a casino and wants to find out
which slot machine is the best one. From time to time, he
might observe other gamblers playing nearby machines.
Even if this does not cost him anything, he gets feed-
back on the other machines. This effect also appears in
other settings. In wireless network, a source with an allo-
cated transmission capacity (because of a power-saving
allocation protocol for instance) sends data through a re-
lay and may have the opportunity to send another custom
packet (so that the energy needed to send this packet is
less than the available energy) through another relay in
order to estimate transmissions rates. In online advertise-
ment (and actually many other industrial markets), com-
panies are willing to spend a small fraction of their data,
say with probability ε as in the celebrated ε-greedy al-
gorithm, just to acquire new information. An algorithm
is only evaluated on the remaining (of proportion 1 − ε)
fraction of the data treated. In a multi-armed bandit set-
ting, this means that with probability ε, the next decision
is “free”. Finally, we can also think that in the congested
network problem, an algorithm can from time to time
send “fake”, but free, packets to test the congestion; con-
versely, an app trying to minimize the congestion time of
its users might be able to use free information if it no-
tices that a bucket of users (for instance, those that are
registered) might explore new road willingly, i.e., with-
out uninstalling the app.

We therefore focus on the classical multi-armed bandits
but where some extra and free information is available
from time to time. Clearly, if the probability ε that it
happens is arbitrarily close to 0, the improvement will be
negligible. But we aim at constructing “optimal” algo-
rithm, i.e., whose regret is small and in a multiplicative
constant of the best regret achievable regret by “mean-
ingful” algorithms. All these concepts are explained in
details in the remaining of the paper that is organized as
follows.

The model is introduced in Section 2, where we provide
a very naı̈ve algorithm achieving bounded regret (uni-
formly in time). We exhibit in Section 3 non-trivial lower
bounds (we emphasize here that traditional bandit lower
bounds are void in our setting). Algorithms are described
and analysed in Section 4. Finally, Section 5 is dedicated
to experiments illustrating the different guarantees and
dependencies in the parameters of the models.

1.1 RELATED WORKS

This paper is not the first one to consider additional, free
informations, available to the agents while optimizing.
There are many different ways of modelling this idea,

but our paper is the first one (to our knowledge) that also
focus on strategical aspects of obtaining these free in-
formations to reduce regret, especially in the stochastic
case.

There exists models where when a specific decision is
taken, automatically (resp. with some probability), the
performance of some other decision are observed [Alon
et al., 2015, Chen et al., 2016, Caron et al., 2012].
Those models assume that there exists a directed (resp.
weighted) graph whose set of nodes is the set of deci-
sions. When the agent takes a decision, he also observes
the outcome of any node linked (resp. with a probability
proportional to the weight of the edge) to the current de-
cision node. Our passive model could be recast as a spe-
cific case of that setting, but our results are much finer
than the ones available for the general case.

In [Yu and Mannor, 2009] the rewards are stochastic but
their means change at unknown time points. Free addi-
tional informations are queried by the algorithm in order
to detect these change points. They however are not used
to decrease the regret of the base bandit algorithm.

Another trend of literature of additional free informa-
tion in multi-armed bandit studies the “adversarial” case,
where no stationary assumption is made on the sequence
of rewards (namely, there are not i.i.d.)[Audibert and
Bubeck, 2010, Cesa-Bianchi et al., 2006, Mannor and
Shamir, 2011]. However the rate of convergence in the
two extreme cases (bandit and full information) have the
same dependency in T , the total number of stages. To
be precise, the regret is either of the order of

√
KT (in

the bandit case) or
√

log(K)T (in the full information
case), where K is the number of decisions. Intermediate
settings (where 1 +M observations are available at each
stage) interpolate between those two cases.

In the stochastic case though, regret is uniformly
bounded with full information and grows logarithmically
in the bandit case. As a consequence, even the rate of
convergence will depend on the size of free informations.

2 MULTI-ARMED BANDITS, REGRET
MINIMIZATION AND FEEDBACKS

In that section, we describe precisely the stochastic
multi-armed bandit problem and its objective, the min-
imization of regret.

2.1 STOCHASTIC MULTI-ARMED BANDITS

2.1.1 Bandit vs Full-Information

At each successive stage t ∈ N∗, an agent takes a deci-
sion (or pulls an arm using the multi-armed bandit lingo)



it in the finite set [K] := {1, . . . ,K}. After pulling this
arm, the agent receives the reward X

(it)
t ∈ R, which

is sampled from a real reward distribution ν(it) of ex-
pectation µ(it). As a consequence, the stochastic ban-
dit problem is parametrised by the vector of distribution,
(ν(1), . . . , ν(K)), or alternatively in the non-parametric
case, by the vector of expected rewards (µ(1), . . . , µ(K)).
Throughout the paper, the results are stated using the ar-
bitrary ordering µ(1) > µ(2) ≥ . . . ≥ µ(K). Obviously,
those vectors are unknown to the agent, who is aiming at
optimizing her cumulative expected reward

∑T
t=1 µ

(it).
Actually, instead of this cumulative reward, the objective
is normalized into cumulative regret minimization.

The cumulative regret (or simply regret) of an algorithm
at stage T is defined as

RT = T max
i∈[K]

µ(i) −
T∑
t=1

µ(it) ,

i.e., it is the difference between the maximal possible
cumulative reward up to stage T and the expectation
of the reward gained by the successive choices of arms
i1, . . . , iT . Following the classical notations, we define
µ? = maxi∈[K] µ

(i) and the gaps ∆i = µ?−µ(i). In the
non-parametric case, these gaps are the relevant quanti-
ties characterising the complexity of a bandit problem.

There are different standard assumption on the feedbacks
available to the agent before taking a new decision. In
the bandit setting, she observes only her reward X

(it)
t

(and, specifically, not the other X(k)
t ) at the end of stage

t ∈ N∗. In the full information setting, she observes the
full vector of rewards (X

(1)
t , . . . , X

(K)
t ) ∈ RK . With

full information, the Follow The Leader (FTL) algo-
rithm that selects the arg max of the empirical average
X

(i)

t := 1
t

∑t
s=1X

(i)
s attains a uniformly bounded re-

gret (with respect to T ). In the bandit setting, FTL gets a
linear regret, yet the logarithmic optimal dependency in
T is achieved by many algorithms. One of the most pop-
ular, called Upper Confidence Bound (UCB), selects the
argmax of the empirical average augmented of an error

term µ̂
(i)
t +

√
6 log(t)
Ni(t)

where Ni(t) is the number of pulls

of arm i up to stage t, while µ̂(i)
t := 1

Ni(t)

∑
s:is=i

X
(is)
s .

Many other algorithms are variants of UCB, by modify-
ing the error term, changing some parameters, specifying
it for a given class of parametric distributions, etc.

2.1.2 Additional Informations

As specified and motivated in the Introduction, we aim at
analysing intermediate settings between bandit and full
information, in which a subset of the reward vector might

be observed. More precisely, at some stages, the agent
not only observes an arm by pulling it but might also ob-
serve a second arm for free, i.e., without getting a reward
(and without incurring any regret). We consider several
ways in which these free observations can be obtained:
they can be deterministically available periodically (for
instance every 1/ε rounds) or arrive randomly (at each
stage with probability ε); the agent can also be a pas-
sive observer if she can not choose from which arm she
gets an extra information (the environment chooses it for
her, in a manner to be specified latter on), or she can be
an active observer if she can choose the arm to observe
freely.

We end this section with some notations. In the random
time arrival of free information, we assume that at each
stage t ∈ N∗ a Bernoulli random variable Zt with ex-
pectation εt (whose law is denoted by Ber(εt)) is sam-
pled and a free observation is available if Zt = 1. The
particular setting in which εt is constant will be called
static random. We will denote by it the arm pulled and
by ft the arm chosen to be observed using the free in-
formation (if available). The total number of pulls of
arm i up to stage t is Ni(t), the number of free observa-
tions Fi(t) and the total number of observation of arm i
is Oi(t) = Ni(t) + Fi(t).

2.2 A FINITE REGRET SETTING

It is not really difficult to devise a naı̈ve algorithm with
a (uniformly) bounded regret at least in the determinis-
tic case, when a free observation is obtained every 1/ε
round. We consider for simplicity the case of K = 2
arms in this section as it gives all the intuitions. Con-
sider the following (heavily sub-optimal) strategy, which
we denote by FTL-robin: pull the leading arm (the one
with the highest empirical average µ̂(i)

t ) and when a free
sample is available, observe arms in a round-robin fash-
ion.

After a period of 1/ε stages, both arms have their ob-
servation counters increased by at least one. As a conse-
quence, this simple algorithm FTL-robin can be seen as a
full-information algorithm which would take 1/ε stages
to get the observations. To simplify intuitions
Lemma 1. The regret of the FTL-robin algorithm on the
deterministic setting with K = 2 satisfies

ERT ≤
c

ε

1

∆
, where ∆ = |µ(1) − µ(2)|,

and there exist distributions (ν(1), ν(2)) such that

c

ε

1

∆
≤ ERT ,

where c, c > 0 are universal constants that do not involve
any parameter of the problem.



This lemma shows that even the simplest algorithm gets
a finite regret in this setting. The proof is almost trivial
and omitted. To provide some insights, just assume that
ν(1) = N (∆, 1) and ν(2) = δ0. Then the regret of FTL-
robin is equal to the ∆/ε times the number of times that

X
(1)

t is smaller than 0. Basic computations show that
this number is of order 1

∆2 .

The relevant question is then not the asymptotic regime,
but what is the precise optimal dependency on ε. Indeed,
when ε < 1

log T , this bound gets larger than the O(log T )
regret of another naive approach, which is to use an algo-
rithm for bandits and discard the additional information.

This free information problem is characterized by a tran-
sition from ”small” ε, where the amount of additional
information is not enough to improve the performance of
bandit algorithm, to ”big” ε, where the regret is finite and
the setting is closer to full-information.

We answer the question of what ”small” and ”big”
mean in this context and where the transition occurs and
we display algorithms enjoying both logarithmic regret
when ε is small and finite regret when it is big.

3 LOWER BOUNDS

We first consider the definition of optimality of an al-
gorithm, that is, what is the minimal regret achievable
by any ”reasonable” algorithm, in a sense we will make
precise. Our lower bounds will highlight a transition
from logarithmic (with respect to the horizon T ) to finite
regimes when ε gets big enough.

There are now quite standard techniques to devise lower
bounds for stochastic bandits problems, but surprisingly
these techniques are inadequate in our case, due to the
finiteness of the optimal regret. As a finite regret is pos-
sible, a traditional, asymptotic lower bound for ERT

log T [Lai
and Robbins, 1985] could only be 0 and hence would not
be informative. We can obtain a finite time version of
this type of bound as in [Garivier et al., 2016] by im-
posing that our algorithm should perform better than a
reference algorithm.

Definition 1. An algorithm is said to be sub-logarithmic
with constants C, C0 if on all bandit problems it verifies
for all stages T ∈ N∗,

ERT ≤ C
K∑
i=1

log T

∆i
+ C0

K∑
i=2

∆i .

There exists sub-logarithmic algorithms (UCB for exam-
ple, with constants C = 8, C0 = (1 + π2/3) [Auer
et al., 2002]). A sub-logarithmic algorithm is perform-
ing at least as good as the UCB baseline. This finite time

constraint on the performance of the algorithm translates
into a lower bound: to perform relatively well on all ban-
dit problems, an algorithm cannot outperform the lower
bound guarantee on any of them.

3.1 PASSIVE OBSERVER

When the observer is passive (i.e., she does not choose
the arm ft to observe freely), we assume that ft is equal
to i ∈ [K] with probability p

(i)
t chosen by the envi-

ronment. Consider the static setting in which for all t,
Zt ∼ Ber(ε) and the probabilities p(i)

t do not depend on
the stage t (we will thereafter omit the subscript t).

Standard lower bound techniques proceed as follows: at
stage T , the expected number of pulls of an arm is linked
to the Kullback-Leibler divergence between the bandit
problem studied and a related alternative, in which this
arm would be the best one (roughly speaking, in order
to be able to “test” that the problem is not the alternative
one, a minimum number of samples of that arm must be
gathered in the original problem).

A bound on this divergence gives a constraint of the
form EOi(T ) ≥ hi(t)/∆

2
i for some function hi(T ) =

O(log T ). Then a lower bound for the regret is the min-
imal value of

∑K
i=2 ∆i ENi(t) respecting all these con-

straints, that can be computed through some linear pro-
gram. With this proof technique, we obtain lemma 2 .

Lemma 2. The regret of a sub-logarithmic algorithm
with constants C, C0 must verify

E1RT ≥
K∑
i=2

max

{
0,
hi(T )

2∆i
− εp(i)T∆i)

}
.

where hi(T ) = O(log T ) (see appendix for a detailed
definition).

As mentioned above, this lower bound is void as it
reaches 0 as soon as T is big enough, bigger than
1
ε maxj≥2

hj(T )

2p(j)∆2
j

.

We want to explain why this lower bound fails to provide
relevant informations as our algorithm (see Section 4) are
somehow inspired by this. Recall that the lower bound
only states that any reasonable algorithm must have gath-
ered, for each sub-optimal arm, a given number of ob-
servations, namely hi(T )

2∆2
i

. However, hi(T ) grows sub-
linearly, while the number of free observations grows
linearly. So if T is large enough, there will be in to-
tal enough free observations to allocate hi(T )

2∆2
i

of them to
arm i and an optimal algorithm should somehow have
used only free information to explore.

However, this is only possible if the εT free observa-



tions were gathered at the beginning of the problem and
not scarcely with time! Indeed, in the traditional lower
bounds techniques, the fact that arm i is observed at the
beginning or at the end of time is irrelevant (since the
cost of one pull is constant throughout time). They to-
tally discard the fact that the quantities ENi(t) and ERt
must be non-decreasing. Tighter, relevant lower bounds
can be recovered using this monotonicity.
Theorem 1. The regret of a sub-logarithmic algorithm
with constants C, C0 must verify

ERT ≥
K∑
i=2

1

2∆i
r

(i)
T

where

r
(i)
T = log(

T∆2
i

2C log T
∑
j 6=i

∆i

∆i+∆j

)+ηi(T )−2εp(i)∆2
iT

if T ≤ 1/(2εp(i)∆2
i ) and otherwise

r
(i)
T =

[
log

(
1

ε

1

4Cp(i)
∑
j 6=i

∆i

∆i+∆j

)

− log log(
1

2εp(i)∆2
i

) + ηi(
1

2εp(i)∆2
i

)− 1

]
.

The function ηi(T ) goes to zero in O(1/ log T ). See ap-
pendix for details.

Theorem 1 correctly reports a lower bound increasing
with the horizon. It shows a transition from a O(log T )
optimal regret for T � 1/(2εp(i)∆2

i ) to a finite regret
function of ε when T gets bigger. According to The-
orem 1, the correct dependency in ε in the regret should
be inO(log(1/ε)), notO(1/ε) as seen for the naive FTL-
robin algorithm.

We can also wonder what is the most favorable passive
setting. Simple computations show that free observa-
tions should be drawn according to the probability vector
(p

(1)
? , . . . , p

(K)
? ) where p(i)

? is proportional to 1
∆i

(here,
we actually ignore the log log and η terms of Theorem 1),
leading to a lowest lower bound

E1RT ≥
K∑
i=2

1

2∆i
log

(
1

ε

∑K
j=2

1
∆j

4C
∑
j 6=i

1
∆i+∆j

)
+ α

≥
K∑
i=2

1

2∆i
log

(
1

4Cε

)
+ α ,

where α regroups the log log and η terms in theorem 1.
This lower bound shows in particular that when all sub-
optimal arms have the same gap, the optimal sample
distribution is uniform and the lower bound is of order
K
∆ log( 1

ε ) .

3.2 ACTIVE OBSERVER

An active observer has the possibility to chose the
weights p(i)

t at each stage t ≤ T , potentially achieving
a much better distribution of the free observations up to
stage T than any static distribution. As before, standard
techniques give the following lower bound.

Lemma 3. The regret of a sub-logarithmic algorithm
with constants C, C0 verifies

ERT ≥
k∑
i=2

hi(T )

2∆i
−∆k(εT −

∑
j>k

hj(T )

2∆2
j

) ,

where k = min{i ∈ {2, . . . ,K} :
∑
j>i

hj(T )

2∆2
j
≤ εT}.

The structure of the solution to the optimization prob-
lem in this case is again educational: an optimal algo-
rithm presented with a given amount of free observations
would spend them at the beginning, before costly pulls,
and will spend them on the worst arms. This intuition
drove the construction of algorithms for active observer
in section 4:

First gather free observations, ideally accordingly to the
proportion (p

(1)
? , . . . , p

(K)
? ) then discards arms for which

enough information were gathered, and use a standard
optimal bandit algorithm on the remaining ones.

As in the passive observer case, although this lower
bound can be meaningful for small horizon T , it becomes
void for larger horizons. A better lower bound using the
monotony of the number of pulls and of the regret is pro-
vided in the next theorem.

Theorem 2. For k ∈ {2,K − 1} let tk = max{t ≥
1 :

∑K
j=k+1

hj(t)

2∆2
j
> εt}. The regret of any active sub-

logarithmic algorithm with constants C, C0 verifies

ERT ≥ max
k:tk≤T

k∑
i=2

1

∆i

[
log(

1

ε

∑K
j=k+1

∆2
i

∆2
j

4C
∑
j 6=i

∆i

∆i+∆j

)

− log log(
1

ε

K∑
j=k+1

1

2∆2
j

) + η(
1

ε

K∑
j=k+1

1

2∆2
j

)

]
.

When all gaps are equal to the same value ∆ > 0, the
leading term of this lower bound is of the form

max
k:tk≤T

k − 1

∆
log(

1

ε

K − k
K

) .

In particular, this result states that as T goes to in-
finity, the regret is asymptotically lower bounded by
K−1

∆

[
log( 1

ε )− log log( eε )
]
.



4 ALGORITHMS AND
UPPER-BOUNDS

In this section, we exhibit algorithms matching the lower
bounds derived in the previous section, up to log log(·)
terms, showing that they indeed represent accurately the
problem complexity.

4.1 PASSIVE OBSERVER

A passive observer does not get to choose the arms on
which free information is gained. As in the classical
stochastic multi-armed bandit, the only decision is there-
fore which arm to pull. It is then natural to extend known
algorithms by taking into account all observations from
both provenances.

As UCB pulls the arm with maximal index X
(i)

t +√
6 log t
Ni(t)

, we extend it by using all available observations
both in the empirical mean and exploration term. Algo-

rithm 1 pulls it = arg maxiX
(i)

t +
√

6 log t
Oi(t)

.

Algorithm 1 UCB with passive observations.
Pull each arm once.
loop: at stage t,

it = arg maxiX
(i)

t +
√

6 log t
Oi(t)

Pull arm it, observe X(i)
t .

If Zt = 1, sample ft and observe X(ft)
t .

UpdateXt, Ni(t), Fi(t), Oi(t) = Ni(t)+Fi(t).
end loop

Theorem 3. Consider the static passive observer case,
where ft follows the categorical distribution with pa-
rameters (p(1), . . . , p(K)) and the probability of getting
a free observation is ε ∈ (0, 1] for all stages t ≥ 1.

Then the regret of ucb verifies both

ERT ≤
K∑
i=2

24

∆i
log T ,

and

ERT ≤
K∑
i=2

24

∆i
log

50

εp(i)

+

K∑
i=2

24

∆i
max

{
log

1

e∆2
i

, log log
20

εp(i)

}
.

Hence UCB with passive observations recovers the
log( 1

ε ) dependency in ε, up to a doubly logarithmic term
when εp(i) is small compared to the squared gaps. When
the dominant term in this maximum is log 1

e∆2
i

, the regret

due to arm i has the form 1
∆i

log 1
εp(i)∆2

i
, which is sub-

optimal with respect to ∆i (see Theorem 1). This is due
to the sub-optimality of UCB itself: while the regret of
UCB on a bandit problem is O(

∑K
i=2

log T
∆i

), other algo-
rithms of the same family like UCB2 [Auer et al., 2002],
Improved-UCB, [Auer and Ortner, 2010] or MOSS [Au-
dibert and Bubeck, 2009, Degenne and Perchet, 2016]
get an improved regret of order O(

∑K
i=2

log(T∆2
i )

∆i
).

The dependency in log( 1
ε ) means that ε as small as 1

T
gives useful information to a learner. Obviously there is
no gain to be had if ε < 1

T , as there is in average less
than one additional observation before T , but few more
free observations are enough to improve the regret.

4.2 ACTIVE OBSERVER

While a uniform allocation of the free observations over
the arms gets the right log( 1

ε ) dependency in ε, having
the choice of the arm which will be observed allows an
algorithm to get the right dependency in the parameters
of the bandit problem. In the active setting, the algo-
rithm can choose freely which of the [K] arms will get
an additional observation, when such an observation is
available.

To devise an algorithm taking advantage of this possibil-
ity, we try to mimic the lower bound for fixed stage, as
in Lemma 3. A good algorithm should use the available
free observations first to discard the worse arms, before
using costly pulls only on the remaining arms.

We introduce an algorithm combining two subroutines:
an Explore-Then-Commit (ETC) [Even-Dar et al., 2006,
Perchet and Rigollet, 2013] algorithm on the free obser-
vations is used to narrow the set of arms which need to
be pulled and an algorithm of the UCB family is used
on this set. As we seek for optimality with respect to
the problem parameters we use OCUCB-n [Lattimore,
2016], which is the UCB-type algorithm closest to it.
ETC is described in Algorithm 3. OCUCB-n with pa-
rameters η > 1 and ρ ∈ [1/2, 1] pulls at stage t ∈ N∗ the
arm with maximal index

X
(i)

t +

√
2η logB

(i)
t−1

Ni(t)

where

B
(i)
t−1 = max

{
e, log(t),

t log t∑K
i=1 min{Ni, Nρ

j N
1−ρ
i }

}
where Ni is a shorthand notation for Ni(t).

The main algorithm use a succession of epochs. In epoch
number m ∈ N, the ETC subroutine collects (free) in-
formation on all the arms in [K], while OCUCB-n pulls



arms in an available subset of the arms Sm. At the end
of epoch m, the free observations gathered are used to
discard arms from [K] which are not optimal with high
enough confidence, forming Sm+1. There is a finite
mi ∈ N depending on ε and the gaps such that with high
probability, i /∈ Sm form > mi, hence arm i contributes
to the regret only up to epoch mi and the regret is finite.

Algorithm 2 Active Algorithm.
Require: parameters ρ ∈ [1/2, 1], α ≥ 1, η > 1.

Initialize S0 = [K].
loop: at epoch m, with duration dm = 22m ,

Pull arms according to OCUCB-n with parame-
ters η and ρ on Sm,

Use free observations according to ETC with pa-
rameter α and horizon T = d

3/2
m+1 log dm+1.

Set Sm+1 to the set returned by ETC.
end loop

Algorithm 3 Explore-Then-Commit
Require: parameter α ≥ 1, horizon T ∈ N∗.

Initialize s = 0, S = [K].
loop

Observe all arms in S.
Discard from S any arm i such that

µ̂
(i)
s +

√
2α
s log(Ts ) < maxj∈S µ̂

(j)
s −

√
2α
s log(Ts ) .

s← s+ 1.
end loop
return S.

In order to write a regret upper bound for our active algo-
rithm, we introduce quantities Hi,ρ for i ∈ {2, . . . ,K}
and ρ ∈ [1/2, 1],

Hi,ρ =
i

∆2
i

+

K∑
j=i+1

1

∆
2(1−ρ)
i ∆2ρ

j

.

These constants transcribe the difficulty of the problem.
A number of observations of order 1

εHi,1 will be neces-
sary for ETC to eliminate arm i with high confidence.

Theorem 4. The regret of the active algorithm 2 with
parameters ρ ∈ [1/2, 1] and α = 1 on problems with
rewards in [0, 1] is

ERT ≤ Cη
K∑
i=2

4

∆i
max

{
log(

1

ε
), log

√
Hi,ρ

}

+ 51K +O

(
K∑
i=2

1

∆i
(log log

Hi,1

ε
)2

)

with Cη a constant that depends only on η (see [Latti-
more, 2016] for details on Cη).

Our analysis of Explore-Then-Commit relies on a new
maximal concentration inequality which can be of inde-
pendent interest.
Lemma 4. Let Zt be a σ2-sub-Gaussian martingale dif-
ference sequence then, for every δ ∈ (0, 0.2] and every
integers T ∈ N∗,

P

{
∃t ≤ T,Zt ≥

√
2σ2

t
log(

T

δt
)

}
≤ 6δ

√
log(

1

δ
) .

Asymptotically, we obtain

lim sup
δ→0

P
{
∃t ≤ T,Zt ≥

√
2σ2

t log( Tδt )

}
δ
√

log( 1
δ )

≤
√
e/8.

This value is
√
e/8 ≈ 0.6.

4.2.1 Heuristics and Influence of ε

Besides the algorithm already discussed, we also exper-
imented on the following heuristic: choose a bandit al-
gorithm of the UCB family, which pulls the arm with a
maximal index; use it to pull the arm with maximal in-
dex and if an observation is available, observe the sec-
ond maximal arm. We provide no regret analysis for this
heuristic but study its performance in the experimental
section.

Concerning the dependency in ε, we can make the fol-
lowing interesting remark. To simplify notations, we
will assume that all arms have the same gap ∆ and we
remove constants for this analysis. With these simplifi-
cations, we proved that regret at stage T is of the order
of RT ' K

∆ log( 1
ε ). Obviously, if ε is almost equal to

0, this upper-bound is void and the algorithm should not
depend on the free observations. One might ask what is
the threshold at which free informations become relevant
at stage T .

Notice that standard information theory arguments yield
that if εT ≤ K

2∆2 , and even if the free observations were
gathered at the begining of the problem, only K

2 arms
could be removed (with high probability) from the set of
possible optimal arms. Hence these free information are
not useful for at least K/2 arms and regret will have to
scale as K

2∆ log( 2T∆2

K ), the optimal rate for the bandit
problem with K/2 arms with equal gaps ∆.

On the other hand, if εT ≥ K
2∆2 , then (up to multiplica-

tive constant), K
∆ log( 1

ε ) dominates K
∆ log(T∆2

K ). As a
consequence, the relevant threshold for the probability
of free observations after T stages is

ε∗ =
1

T

K

∆2
.



5 EXPERIMENTS

All experiments are performed with Gaussian rewards
with unit variance.

Influence of ε. The goal of this first experiment is to
confirm the scaling of the regret with ε. That is to say,
the regret scales with

∑
i:∆i>0

1
∆i

log( 1
ε∆2

i
). The exper-

iment is performed with a passive observer with either
a uniform distribution or the optimal one, as defined in
Section 3.1. To do so, the experiment is performed in
the passive setting associated with a uniform distribution
and the optimal one, as defined in Section 4.1. Also,
when free observations are scarce, ε ∼ 1

T , the average
number of those is approximately 1 during the experi-
ence. Therefore, the regret is similar to the one suffered
by an UCB algorithm in a classic multi-armed bandit set-
ting, a behaviour captured by the function f . On Figure
1 and 2, experiments are run on four Gaussian arms with
expectations 2, 1.8, 0.5, 0.2, the error bars are quantile at
10% and 90%.
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Regret

Regret

Figure 1: Dependence on ε of the regret of UCB as pas-
sive observer, with a uniform distribution of the free ob-
servations, averaged over 300 runs.

Passive Observer: optimal sampling distribution.
This second experiment illustrates the induced regret in
the passive setting with a probability distribution p(i) =
1

∆i
. This distribution is considered to be optimal be-

cause, as mentioned in Section 3.1, it achieves the lowest
lower bound. It also suggests a paradigm for algorithms
in the active setting i.e sampling freely as much as pos-
sible the arm with the lowest ∆i. A way to do so is to
run an UCB type algorithm to choose which arm to pull,
and use another UCB type algorithm on other arms to
determine which will be observed if a free observation is
available. The results of this type of policy is presented
in the next paragraph.
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Figure 2: Dependence on ε of the regret of UCB as pas-
sive observer, with the optimal distribution of the free
observations, averaged over 300 runs.

The experiment is run on the same set of arms as previ-
ously with a uniform distribution, the optimal distribu-
tion and a suboptimal one such that p(i) = 1

∆2
i

, referred
as SubOptimal in Figure 3. Color filled regions are 25%
and 75% quantiles.
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Figure 3: Regret averaged over 300 runs

Active Observer: comparison of algorithms. This
subsection is dedicated to the comparaison of algorithms
introduced earlier : UCB1-Double, ETC-OCUCB and
ETC-OCUCB-2.
UCB1-Double uses a UCB algorithm and select the free
observation as the second index maximising arm. The
optimal allocation in the passive setting samples bet-
ter arms more often, therefore we use the free observa-
tion to sample the arm next to optimal (according to its
UCB index). The second algorithm, referred to as ETC-
OCUCB, is the algorithm studied in the above section.
In particular, its ETC subroutine checks for potentially



removable arms every C|S| pulls, with C a fixed pa-
rameter and S the set of currently active arm. Finally,
the algorithm referred to as ETC-OCUCB-2 is a variant
of ETC-OCUCB where elimination checks are made ev-
ery 2k stages, thus behaving less aggressively than ETC-
OCUCB. In addition, we introduced in this experiment
a parameter p so that the epoch length is dm = pp

m

in
ETC-OCUCB. This enables us to adapt the growth of
epochs to the horizon, here T = 104. Other parameters
are : α = 1, ρ = 1

2 , η = 2 and C = 10.
The experiments is run on five Gaussian arms with ex-
pectations 2, 1.8, 1.5, 1 and 0.5. Color filled regions are
25% and 75% quantiles.
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Figure 4: Regret for ε = 0.1 averaged over 100 runs

Figure 4 illustrates that:

• UCB1-Double reaches rapidly its final regret value
after a logarithmic exploration phase where infor-
mations are gathered so that the policy doesn’t pull
an other suboptimal arm after this phase.

• ETC-OCUCB and ETC-OCUCB-2 algorithms have
similar performances and the parameter p offers a
control how often the set of active arms is updated
which offers a slight performance increase for lower
p.

ETC-OCUCB and ETC-OCUCB-2 maintain two distinct
tracks of rewards, one for rewards obtained after pulling
an arm and the other for rewards after sampling freely an
arm. Therefore, it may be possible to increase their per-
formance by using both sources of information in both
subroutines. In the Figure below, these variants are re-
ferred as ETC-OCUCB-all-info and ETC-OCUCB-all-
info-2.

This simple modification provides a clear improvement
whether for the final regret or the speed at which this
value is reached.
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Figure 5: Regret for ε = 0.1 averaged over 300 runs for
p = 2

6 CONCLUSION

We analysed the multi-armed bandit problem with just
a few extra free information. Interestingly, as the re-
gret is uniformly bounded in time, standard lower bounds
are void. However, a careful analysis allowed us to ex-
hibit non-trivial guarantee that no reasonable algorithm
can out-perform and we finally provided an optimal al-
gorithm, whose regret matches the lower bound up to
doubly logarithmic terms.

We would like to finally emphasize that our algorithm
can be used even if the εT observations are not free.
Since we used ETC on these observations, we get that our
algorithm has a regret smaller (discarding multiplicative
constants and log log terms) than

K∑
i=2

log(εT∆2
i )

∆i
+

K∑
i=2

log(1/ε)

∆i

where the first term is the guarantee of ETC on εT sam-
ples, and the second one is the guarantee of our algorithm
with “free” observations. As a consequence, no matter
the value of ε (as long as the log log terms do not become
dominant), its dependency vanishes, and we recover the
expected performance of ETC.
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