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Abstract

Gaussian process survival analysis model (GP-
SAM) was recently proposed to address key
deficiencies of the Cox proportional hazard
model, namely the need to account for uncer-
tainty in the hazard function modeling while,
at the same time, relaxing the time-covariates
factorized assumption of the Cox model. How-
ever, the existing MCMC inference algorithms
for GPSAM have proven to be slow in prac-
tice. In this paper we propose novel and scal-
able variational inference algorithms for GP-
SAM that reduce the time complexity of the
sampling approaches and improve scalability
to large datasets. We accomplish this by em-
ploying two effective strategies in scalable GP:
i) using pseudo inputs and ii) approximation
via random feature expansions. In both setups,
we derive the full and partial likelihood formu-
lations, typically considered in survival analy-
sis settings. The proposed approaches are eval-
uated on two clinical and a divorce-marriage
benchmark datasets, where we demonstrate
improvements in prediction accuracy over the
existing survival analysis methods, while re-
ducing the complexity of inference compared
to the recent state-of-the-art MCMC-based al-
gorithms.

1 INTRODUCTION

Survival analysis studies statistical dependencies be-
tween the time to certain event and the covariates asso-
ciated with this event. This is an important problem in
statistics with applications ranging from medical progno-
sis in clinical studies (e.g., estimating the time of cancer
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recurrence or remission from leukemia based on demo-
graphic and individual medical record factors), to other
general areas where we seek to predict failure times of
a system (e.g., bankruptcy of a firm). The key task
in survival analysis is to estimate the conditional den-
sity function of the event time t given the covariates x,
from which one can immediately derive several impor-
tant prognostic measures. Two most common instances
of such measures are the survival function, defined as
P (T ≥ t|x), or the prognostic index u(x) that quantifies
the overall (anti) risk (i.e., higher index implies longer
survival, and vice versa) of a patient/system with covari-
ates x.

A typical data-driven setting for survival analysis as-
sumes availability of time-covariate pairs {(t,x)}, sug-
gesting standard regression problem framing. However,
a notable characteristic here is that some of the observed
times t are censored in the sense that we only know the
actual event time is no earlier than the observed t. In
clinical studies this typically happens when the patient
exits the study or the study terminates before the event
occurs1. Typically, the data provides the information as
to whether or not each instance is censored: the event
indicator variables δ = 1 for event, and 0 for censored
examples. Therefore, applying standard regression ap-
proaches by simply ignoring the censored samples can
result in suboptimal use of data.

Several approaches have been proposed to deal with the
censored instances. One way is to incorporate a cost-
sensitive loss within the regression or ranking framework
to learn the prognostic index function u(x) (Shivaswamy
et al., 2007; Khan & Zubek, 2008; Van Belle et al., 2009;
Van Belle et al., 2011). The main idea here is to impose

1This type of censoring is often referred to as the right-
censoring. Left-censoring applies to instances when the event
time is never greater than the observed time, while the interval-
censoring refers to the cases of observed events within an in-
terval. Most cases in practice deal with right-censoring, which
we restrict to in this paper.



an asymmetric loss on the incorrect prediction for cen-
sored examples. That is, we penalize the over-estimates
(i.e., u(x) > t) less than the under-estimates (u(x) < t).
However, these approaches focus on the prognostic index
function directly and are, therefore, inherently unable to
provide a measure of uncertainty, namely the distribution
of the survival time t for a given input x.

The conditional density P (t|x) is most commonly
modeled using the Cox Proportional Hazard (CoxPH)
model (Cox, 1972). The model represents the distribu-
tion of the survival time as a first event arrival time in
a heterogeneous Poisson process. Unlike the standard
Poisson process models, the intensity function (often re-
ferred to as the hazard function) has a dependency on the
input covariates, denoted as λ(t|x). The CoxPH model
further factorizes the hazard function over t and x (see
(2) in Sec. 2), allowing simplicity in hazard modeling
by separating the input-dependent risk factors from the
time-varying effects.

Recent efforts have focused on extending the CoxPH
model to address its two drawbacks: i) the proportional
and non-crossing hazard rates across instances originat-
ing from the factorized form of the hazard function can
be too restrictive and oftentimes unlikely, and ii) the lack
of proper treatment of uncertainty in the hazard function.
(Dempsey et al., 2017) extended the model by introduc-
ing latent, continuous-time Markov dynamics to address
the former limitation. The latter issue can be resolved
by imposing Bayesian priors on the hazard function. Al-
though few approaches along this direction showed ini-
tial success (Hjort et al., 2010; Iorio et al., 2009; Mar-
tino et al., 2011), they either have practical limitations
(e.g., how to incorporate expert knowledge) or fail to
overcome the former assumption of the proportional haz-
ard rates. Another related method is the Random Sur-
vival Forest (Ishwaran et al., 2008), which can be seen
as a generalization of the Kaplan Meier method, the tra-
ditional nonparametric hazard function estimator. Re-
cently the Deep Survival Analysis (DSA) method was
proposed (Ranganath et al., 2016), which utilizes a deep
hierarchical Bayesian model for survival analysis.

To address those limitations, Gaussian process survival
analysis model (GPSAM) was proposed in (Fernández
et al., 2016). A GP-priored latent function on the joint
input space (t,x), coupled with a non-negative link func-
tion, introduces stochasticity and removes the factoriza-
tion assumption of CoxPH. The key advantage is that the
Gaussian process circumvents the difficulty of model-
ing the hazard dependent jointly on (t,x) through the
use of the covariance (kernel) function (Rasmussen &
Williams, 2006). In essence, the GPSAM supplements
the proportional hazard models with additional flexibil-

ity, while being able to account for uncertainty in the haz-
ard function.

Nevertheless, the inference in the GPSAM model is chal-
lenging because the likelihood depends on the latent
function values for an uncountable range of time inputs
t ∈ R+ (Sec. 2.2 for details), and not limited to only
those induced by data in standard GP models. Motivated
by the sophisticated MCMC inference algorithm for GP-
priored Poisson event models (Adams et al., 2009), the
authors in (Fernández et al., 2016) proposed a tractable
MCMC dynamics for the GPSAM by exploiting the
idea of thinning-based sampling with auxiliary variables.
However, the MCMC inference algorithm often exhibits
slow convergence. Despite adopting the random feature
kernel approximation strategy (Rahimi & Recht, 2008)
to circumvent the computationally intensive matrix in-
versions, the MCMC inference for GPSAM proposed
in (Fernández et al., 2016) incurs considerable compu-
tational issues when applied to real applications.

In this paper, we propose two novel variational infer-
ence algorithms for GPSAM, which address the com-
putational deficiencies of the MCMC approach. To
tackle the scalability of the GP nonparametric inference,
we incorporate two approximations: the pseudo-input
treatment (Titsias, 2009) and the random feature expan-
sion (Rahimi & Recht, 2008). The former approach is
similar to (Lloyd et al., 2015) variational inference in the
GP modulated Poisson process. However, our approach
is different in that we consider the GP latent function in
the joint input space within the survival analysis setup.
Solutions to variational inference in both approaches ad-
mit analytic forms aside from the fast univariate Monte-
Carlo estimation of expected log-likelihood. We empiri-
cally demonstrate superior performance of our proposed
methods over existing survival analysis approaches on
several synthetic and real benchmark datasets.

2 BACKGROUND

In this section we briefly review the CoxPH model with
two popular parameter estimation methods. Then we dis-
cuss the recent Gaussian process survival analysis model
(GPSAM) (Fernández et al., 2016) that addresses the
known drawbacks of the CoxPH model.

2.1 COX PROPORTIONAL HAZARD MODEL

The CoxPH model (Cox, 1972; Kleinbaum & Klein,
2005) represents the conditional density

P (t|x) = λ(t|x) · exp

(
−
∫ t

0

λ(τ |x) dτ

)
, (1)



where t ∈ R+ is the time of the event (e.g., death or can-
cer recurrence), and x ∈ Rd is the d-dim covariates of the
subject (e.g, patient’s medical features). In (1), λ(t|x) is
referred to as the hazard function, and can be interpreted
as the probability of the immediate death at t given that
the survival time is at least t. The hazard function is the
intensity function of the (inhomogeneous) Poisson pro-
cess (Ross, 2006) with (1) being the first event time den-
sity, however, in survival analysis this intensity is dif-
ferent from subject to subject, determined by the input
covariates x.

In the CoxPH model, the hazard function is specifically
assumed to follow the factorized parametric form:

λ(t|x) = λ0(t) · exp
(
b>x

)
, (2)

where the model parameters are comprised of the weight
vector b ∈ Rd and the non-negative function λ0(·). The
latter is known as the base hazard function which is typ-
ically modeled by the Weibull or a piecewise constant
function. The consequence of the factorized form in (2)
is that the hazard ratio between two subjects (with x and
x′) is constant over time, solely dependent on the co-
variates (i.e., eb

>(x−x′)). Also, the hazard functions of
different subjects are non-crossing with each other.

Given the training data D = {(δn, tn,xn)}Nn=1 where
δn ∈ {0, 1} indicates whether the observation n is event
(δn = 1) or right-censored (δn = 0), the traditional max-
imum likelihood learning aims to maximize the data log-
likelihood

∑N
n=1 logFL(n) where

FL(n) = P (tn|xn)δn · P (T ≥ tn|xn)1−δn . (3)

Often we name it the full-likelihood to differentiate it
from the partial likelihood, discussed next.

Alternatively, also very popular in survival analysis, the
parameters can be learned by the partial likelihood max-
imization. The notion of the partial likelihood comes
from an alternative view of the data generation process.
Namely, at a given time t, we consider a random process
of selecting a subject x that will face an event at t, among
all survivors at that moment. The likelihood of this is
proportional to the hazard value λ(t|x). More specifi-
cally, for each event instance n (δn = 1), we can re-
gard (tn,xn) as the selected sample among the survivors
{(tj ,xj) : tj ≥ tn}, regardless of δj’s. The so-called
partial likelihood is then defined as:

PL(n) =
λ(tn|xn)∑

j:tj≥tn λ(tn|xj)
, (4)

and we maximize
∑N
n=1 δn logPL(n).

2.2 GAUSSIAN PROCESS SURVIVAL MODEL

Abbreviated as GPSAM, the model aims to address the
known drawbacks of the CoxPH model discussed in
Sec. 1 by endowing more flexibility and accounting for
uncertainty in the hazard function. This is done by im-
posing Gaussian process prior on the hazard function and
having the latent function dependent on both t and x.
More specifically,

λ(t|x) = λ0(t) · g(f(t,x)), f(·) ∼ GP(0, k(·, ·)). (5)

Here g(·) is a non-negative link function to prevent the
hazard from being negative. In (Fernández et al., 2016),
they used the sigmoid g(y) = 1/(1 + e−y), and the
Weibull for the base hazard, λ0(t) = c · tr−1 for c >
0, r ≥ 1, which subsumes the constant functions (r = 1).
Note that the kernel function operates on the joint input
space R+ × Rd. (Fernández et al., 2016) adopted the
composite kernel

k((t,x), (t′,x′)) =

d∑
j=1

x(j) x′(j) kj(t, t
′), (6)

where x(j) indicates the j-th element of x. The kernel
on time space, kj(t, t′) is typically chosen as the squared
exponential for j = 1, . . . , d,

kj(t, t
′) = s2j exp(−0.5(t− t′)2/l2j ), (7)

with the variance and length-scale parameters (s2j , l
2
j ).

The inference in the GPSAM model is in general difficult
mainly due to the form of the likelihood (1), in which
the latent function f(·) is involved with all τ ∈ [0, t].
In other words, infinitely many Gaussian latent variables
need to be dealt with in principle. In (Fernández et al.,
2016) they adopted the thinning-based MCMC sampling
strategy motivated from (Adams et al., 2009), where the
key idea is to sample2 from the (inhomogeneous) Poisson
process with intensity λ0(t) while keeping all the thinned
samples as auxiliary state variables in the inference of the
latent variables3. For the censored examples n, we can
do the same thing as if tn’s were exact, but remove all
terms related to tn from the likelihood function.

However, the MCMC algorithm is generally slow to
converge. Furthermore, each MCMC step requires the
kernel matrix inversion to sample from the conditional
Gaussian given both the data and the thinned samples.
As the number of thinned samples can be orders of mag-
nitude larger than the data size, they also had to resort

2This sampling must be easy since λ0(t) = c · tt−1 admits
a closed-form inverse cumulative function.

3Note that this thinning-based sampling is valid since they
used the sigmoid link g(·), namely λ0(t) is always an upper
bound of λ(t|x) in (5).



to the random feature expansion trick (Rahimi & Recht,
2008) to circumvent the matrix inversion. Nevertheless,
the thinned samples can grow arbitrarily large, incurring
serious computational overhead. This motives our work
of variational inferences in the following section.

3 VARIATONAL INFERENCE

We begin with the full joint model of the GPSAM with
the observed data D = {(δn, tn,xn)}Nn=1:

Pθ(D, f) = Pθ0(D|f) · Pθk(f). (8)

Here θ = {θ0, θk} indicates the model parameters,
where θ0 = (c, r) is the parameters of the Weibull base
hazard λ0(t) = c · tr−1, and θk denotes all kernel param-
eters, specifically {(s2j , l2j )} in (7). The latter determines
the Gaussian process prior P (f).

The conditional data likelihood P (D|f) in (8) can have
either of two different forms. If we follow the full likeli-
hood (3), then the log-likelihood can be written as:

logP (D|f) =

N∑
n=1

[
δn·log λ(tn|xn)−

∫ tn

0

λ(τ |xn) dτ

]
,

(9)
with λ(t|x) from (5). See Appendix A in the supplemen-
tal material for the detailed derivations. If we adopt the
partial likelihood (4) instead, then logP (D|f) becomes:

N∑
n=1

δn ·

[
log λ(tn|xn)− log

∑
j:tj≥tn

λ(tn|xj)

]
. (10)

The posterior distribution of the latent function Pθ(f |D)
is analytically intractable, and we introduce a tractable
density family Qα(f) with the parameters α, and search
for α that makes Qα(f) as close as possible to the true
posterior. In defining the variational density family Q(·),
it should be noted that we have to deal with infinitely
many latent variables from f(·). To this end, we adopt
two recent scalable variational inference algorithms: the
pseudo-input approximation (Titsias, 2009) and the ran-
dom feature expansion (Rahimi & Recht, 2008). We
frame each of the approaches within GPSAM. They are
described in the following sections.

In addition, we use the square non-negative link function,
i.e., g(y) = y2 instead of the sigmoid, for its merit in an-
alytic derivation of the objective especially in Sec. 3.1,
similar in nature as (Lloyd et al., 2015). That is, the haz-
ard function given the latent function is determined as:

λ(t|x) = λ0(t) · f(t,x)2. (11)

3.1 APPROXIMATION WITH PSEUDO INPUTS

To address the intractability of dealing with f(·) at (τ,x)
for all time epochs τ in the domain, stemming from the
likelihood (1), we first adopt the scalable pseudo-input
approximation techniques recently introduced in (Titsias,
2009; Dezfouli & Bonilla, 2015; Lloyd et al., 2015). We
essentially assume that there are M pseudo inputs de-
noted by Z = {z1, . . . , zM} ⊂ R+ × Rd (denoting
zi = (ti,xi)), whereM is typically chosen to be small so
that the inversion of (M ×M) matrices can be done ef-
ficiently. The pseudo inputs can be thought of as the rep-
resentative points for the joint input space (Quiñonero-
Candela & Rasmussen, 2005). We choose the pseudo in-
puts by clustering the points in the pool that is formed by
Cartesian product of uniformly sampled times and ran-
domly sampled covariates from data, although they can
also be learned from the data itself.

We define the variational density for the posterior as:

Qα(f) =

∫
Qα(fZ)P (f |fZ) dfZ . (12)

Here we use the vector notation for the latent function:
for a set A = {(t̂i, x̂i)}pi=1 ⊂ R+ × R, we denote by
fA the p-dim vector of the function values on the inputs
(t̂i, x̂i) ∈ A. The central idea that enables scalability
and tractability in (12) is that we only model the low-
dimensional density Qα(fZ) while all the other function
values can be inferred using P (f |fZ), the conditional
density derived from the GP prior. We let Qα(fZ) be
a Gaussian with diagonal covariance, namely

Qα(fZ) = N (fZ ;µ,Σ), (13)

where α = {µ,Σ} with (M × 1) mean vector µ and the
(M ×M) diagonal covariance matrix Σ.

The variational parameters α can be found by minimiz-
ing the KL divergence between the true posterior and the
variational density (12):

KL
(
Qα(f)||Pθ(f |D)

)
= logPθ(D)−LPI(θ, α), (14)

where LPI(θ, α) is defined as:

LPI(θ, α) = EQ(f)

[
logP (D|f)

]
−KL

(
Q(fZ)||P (fZ)

)
.

(15)
Using the non-negativity of the KL divergence in (14),
the LPI becomes a lower bound of the log-evidence,

logPθ(D) ≥ LPI(θ, α). (16)

Increasing LPI(θ, α) wrt α renders the variational den-
sity closer to the true posterior, whereas improving it wrt
the model parameters θ can potentially4 improve the data

4Similarly as in other standard variational inferences, this
does not guarantee to improve the evidence logP (D) since the
inequality (16) is not tight.



likelihood of the model. Hence, we maximize LPI(θ, α)
wrt all parameters to achieve both variational inference
and model selection simultaneously.

Next, we provide detailed derivations necessary to evalu-
ate the objective LPI . Since the second term in the right
hand side of (15) is the straightforward KL divergence
between two Gaussians, we focus on the expected condi-
tional likelihood term.

For the two forms of the likelihood, full in (9) and partial
in (10), we write the expectation as:

EQ(f)

[
logP (D|f)

]
=

N∑
n=1

(
An −Bn

)
, (17)

where An is the expectation of the log-hazard at data
point n,

An = δn ·
(

log λ0(tn) + EQ(fn(tn))

[
log fn(tn)2

])
,

(18)
with the abbreviation fn(t) = f(t,xn). Whereas An is
shared by both likelihoods, Bn is defined differently.

Bfn =

∫ tn

0

λ0(τ) · EQ(fn(τ))

[
fn(τ)2

]
dτ, (19)

is for the full likelihood, while the following is for the
partial likelihood:

Bpn = δn · EQ(f)

[
log

∑
j:tj≥tn

λ0(tn) · fj(tn)2
]
. (20)

Full likelihood. Note that in (18) and (19) the distri-
butions over which the expectations are taken are uni-
variate Gaussians, specifically from (12), Q(fn(t)) =
N (µ̃n(t), σ̃2

n(t)) where

µ̃n(t) = k(t,xn),ZK−1µ, (21)

σ̃2
n(t) = k(t,xn),(t,xn) − k(t,xn),ZK−1kZ,(t,xn) +

k(t,xn),ZK−1ΣK−1 kZ,(t,xn). (22)

For two time-covariates input setsA1 andA2, we denote
by kA1,A2

the (|A1| × |A2|) kernel matrix obtained by
applying k(·, ·) on (A1 × A2). Also, K = kZ,Z indi-
cates the (M ×M) kernel matrix on the pseudo inputs
Z . The expectation of the squared-log term in (18) can
be done by the Monte-Carlo estimation. For it is univari-
ate sampling, this does not incur any significant compu-
tational overhead. As we also need to compute gradi-
ents of An wrt the parameters of the sampling distribu-
tion Q(fn(tn)), we adopt the re-parametrized Gaussian
sampling technique (Kingma & Welling, 2014) to reduce
the variance of the estimate. More specifically, we ex-
press the random samples from Q(fn(tn)), denoted by

f
(s)
n (tn) for s = 1, . . . , S, as:

f (s)n (tn) = µ̃n(tn) + (σ̃2
n(tn))1/2ε(s)n , (23)

where ε(s)n ∼ N (0, 1). The expectation in An is then
estimated as:

1

S

S∑
s=1

log
(
µ̃n(tn) + (σ̃2

n(tn))1/2ε(s)n

)2
. (24)

We sample {ε(s)n } once, and fix them throughout the op-
timization, which empirically performed better with a
lower variance than re-sampled at each iteration. As we
separate randomness (ε(s)n ) from the parameters to be op-
timized, the gradient of (24) can be computed straightfor-
wardly while yielding an unbiased estimate of the gra-
dient of the original (18). Optionally, we can further
reduce the variance of the estimate by using the Rao-
Blackwellization technique (Casella & Robert, 1996).

For Bfn in (19), due to the square link function, the in-
ner expectation equals µ̃n(τ)2 + σ̃2

n(τ), which allows
the integral to be derived analytically for the compos-
ite squared exponential kernel (6) and (7) (c.f. (Lloyd
et al., 2015)). However, the analytic derivation has to re-
sort to certain confluent hyper-geometric function which
can be numerically unstable. In the experiments, we
rather adopt the numerical integration by having uni-
formly sampled grid points over the time horizon.

Partial likelihood. Looking into Bpn in (20), the key dif-
ference from the above full likelihood derivation stems
from the multiple latent variables (i.e., {fj(tn)}j:tj≥tn )
that are dependent on one another, preventing us from
taking advantage of the univariate sampling. Since the
number of these variables (i.e., |{j : tj ≥ tn}|) can be as
large as the entire data set, naively sampling from Q(f)
jointly can yield an estimate with large variance. Instead,
we consider the upper bound of Bpn (leading to a lower
bound on LPI ) using the Jensen’s inequality. Specifi-
cally, from (20),

Bpn ≤ δn ·log
∑

j:tj≥tn

λ0(tn)·EQ(fj(tn))

[
fj(tn)2

]
. (25)

The square link allows an analytical expression of the
expectation in B̃pn, µ̃j(tn)2 + σ̃2

j (tn), which can be eval-
uated easily using (21) and (22), likewise its gradients.
Note that (regardless of whether we use the upper bound
or not) the base hazard term log λ0(tn) cancels out with
that in (18) in the final objective (17), preventing one
from learning λ0(t). This is an inherent problem orig-
inating in the hazard form (5), where λ0(t) is shared
across examples. To this end, we simply borrow the esti-
mate of λ0(t) from the full-likelihood learning.



3.2 RANDOM FEATURES APPROXIMATION

To deal with uncountably many random variables and
their matrix inversions brought about from the nonpara-
metric Bayesian Poisson process GPSAM, we consider
the random features expansion as an alternative approx-
imation strategy. The central idea of the random fea-
tures (Rahimi & Recht, 2008; Cho & Saul, 2009) is to
seek a finite dimensional feature vector representation
for input such that the inner product on this feature space
equals (in expectation) the kernel value. For the com-
posite kernel function (6), its GP-priored latent function
f(t,x) can be approximated by:

f̂(t,x) =
1

m

d∑
j=1

x(j)
(
a>j cos(ωjt) + b>j sin(ωjt)

)
,

(26)
where aj , bj , and ωj are all m-dim iid random vari-
ables (samples) with aj ,bj ∼ N (0, s2jIm) and ωj ∼
N (0, 1

l2j
Im) for j = 1, . . . , d. Here Im denotes the (m×

m) identity matrix. We let a = {aj}dj=1 and the others
similarly. It can be shown that Cov(f̂(t,x), f̂(t′,x′)) =
k((t,x), (t′,x′)), which implies that the finite dimen-
sional random variables {a,b,ω} are sufficient to repre-
sent the latent function f ∼ GP(0, k(·, ·)). The param-
eter m is the number of random samples to approximate
the kernel, which trades off: large m reduces the approx-
imation error at the cost of computational overhead.

In this treatment, we aim to infer the posterior distribu-
tion P (a,b,ω|D), and the variational inference reduces
to maximizing:

LRF (θ, β) = EQ(a,b,ω)

[
logP (D|f̂)

]
− KL(θ, β),

(27)
where we use the fully factorized variational density,
Q(a,b,ω) = Q(a)Q(b)Q(ω), each modeled as a Gaus-
sian, Q(a) =

∏d
j=1N (aj ;µ

a
j ,Σ

a
j ) and similarly for

the others. Here µaj and Σa
j are (m × 1) mean vec-

tor and (m × m) diagonal covariance matrix, respec-
tively, and β includes all these variational parameters.
The term KL(θ, β) denotes the sum of individual KL
terms for a, b, and ω; for instance, for a, we have:
KL(Q(a)||N (a; 0, s2jIm)). As before, these KL terms
all involve Gaussians, having analytic forms, easy to
evaluate and take derivatives.

Similarly to Sec. 3.1, the expected log-likelihood term
in (27) has two variations, full or partial likelihood,
and we decompose it into two parts exactly the same
way as (17). For concreteness, with the abbreviation
f̂n(t) = f̂(t,xn), we approximate the expected log-
likelihood term in (27) using the re-parametrized Monte-
Carlo estimate. That is, after sampling εaj

(s), εbj
(s) and

εωj
(s) independently fromN (0, Im) for j = 1, . . . , d and

s = 1, . . . , S, the sampled version of the random weight
vector aj is formed as (b(s)

j and ω(s)
j similarly):

a
(s)
j = µaj + (Σa

j )1/2εaj
(s), (28)

Then the posterior samples f̂ (s)n (t) can be written as:

d∑
j=1

xn(j)

m

((
a
(s)
j

)>
cos(ω

(s)
j t) +

(
b
(s)
j

)>
sin(ω

(s)
j t)

)
,

(29)

With these sampled functions, one can basically obtain
the estimate of the objective (27) that can be decomposed
into forms similar to (18), (19), and (20), which we de-
note by Ân, B̂fn, and B̂pn, respectively. Although evalu-
ating Ân and B̂pn (and their gradients) can be done simi-
larly as in Sec. 3.1 with no additional difficulty, working
on B̂fn introduces a new computational challenge. Unlike
the pseudo-input approximation where we were able to
express EQ

[
fn(τ)2

]
as an analytic form µ̃n(τ)2+σ̃2

n(τ),
we can only estimate the expectation numerically us-
ing the samples (29) from Q(·). However, we have an
outer integration of this expectation over τ ∈ [0, tn],
and the (grid-based) numerical integration would incur
computational explosion as we need (d ·m · S ·G) sam-
ples/numbers involved in, where G is the number of grid
points over [0, tn] (typically, S and G are several thou-
sands, and d ≈ 10).

To address this difficulty, we propose an alternative esti-
mation strategy for B̂fn. We regard λ0(τ) = c · τ r−1 in
the integration as an unnormalized density, more specif-
ically, λ0(τ) = ρn · pn(τ) where pn(τ) is the density
having the support [0, tn] and ρn =

∫ tn
0
λ0(τ)dτ = c

r t
r
n

is the normalizer. Thus pn(τ) = r τ
r−1

trn
over [0, tn]. Then

B̂fn = ρn · Epn(τ)
[
EQ
[
fn(τ)2

]]
. (30)

This allows us to sample τ (s)n ∼ pn(τ) for s = 1, . . . , S
independently with the random features/weights in (28),
and estimate B̂fn as:

ρn ·
1

S

S∑
s=1

f̂ (s)n (τ (s))2. (31)

Note that sampling from pn(τ) can be done using the
inverse transform sampling: for its CDF is Fn(τ) =

(τ/tn)r, the samples τ (s)n can be expressed as:

τ (s)n = F−1n (u(s)) = tn · (u(s))1/r, (32)

where u(s) are uniform samples from [0, 1]. We further
reduce the variance of the estimate by using the same re-
parametrization trick, namely plugging (32) into (31) to
separate the randomness from the parameters.



4 EMPIRICAL EVALUATIONS

The performance of the proposed variational inference
methods is demonstrated on both synthetic and real
datasets. Our approaches are denoted as follows: VIfPI
and VIpPI are the approximations based on pseudo inputs
in Sec. 3.1 with full and partial likelihood, respectively,
while VIfRF and VIpRF indicate the variational inference
with random feature expansions described in Sec. 3.2.
The competing approaches are summarized, with abbre-
viations, as:

• MCMC: The MCMC-based inference method for
GPSAM (Fernández et al., 2016), where we used
hyperparameters similar to theirs.

• CoxPHf and CoxPHp: The full and partial likeli-
hood maximization learning of the CoxPH model.

• SVCR: The support vector censored regression ap-
proach (Shivaswamy et al., 2007) with no cost im-
posed for the over-estimation of the censored sam-
ples.

• SVRC: Another regression-based approach (Khan
& Zubek, 2008) that adopts asymmetric costs for
over-estimation depending on the violation types.

• MINLIP: The ranking-based prognostic function
estimation method (Van Belle et al., 2009), which
enforces the correct ordering of the prognostic in-
dices for time-comparable pairs of samples. The
method further aims to preserve the relative time
differences in the prognostic indices.

• Model2: The hybrid approach that attempts to
combine the ranking constraints and the cost-
sensitive loss in estimating the prognostic func-
tion (Van Belle et al., 2011).

For the performance measures, we focus on the accu-
racy of the estimated prognostic index function u(x).
Whereas the approaches based on regression and/or
ranking directly estimate u(x), for the CoxPH-based
methods we derive it naturally by u(x) = −b>x from
the learned CoxPH models. For GPSAM, where the haz-
ard function is not factorized, we estimate the expected
event time E[t|x] as the survival index. Two performance
measures popular in survival analysis are considered: i)
Concordance index – the proportion of the pairs
of samples whose predicted survival times are correctly
ordered (i.e., (u(xi) − u(xj))(ti − tj) ≥ 0), and ii)
Log-rank-χ2 statistics – the statistical test score mea-
suring the difference between two risk groups formed by
thresholding the prognostic indices by their median. For
both measures, higher scores are better.

For our variational inference methods, we vary the fol-
lowing hyperparameters: the number of pseudo inputs
(M ) for the VIPI and the number of random features
(m) for the VIRF . We use the best set obtained by cross
validation on the held-out portion of the training data,
where the concordance index is used as the selection cri-
terion. The optimal parameters are, consistently across
all datasets, M = 20 for the VIPI and m = 50 for the
VIRF . In the latter part of the section and in the sup-
plemental material (Appendix B), we also compare the
performances and running times of the other parameter
settings. The number of samples for the Monte-Carlo es-
timation in our variational inference is fixed as 3000. The
MCMC approach for GPSAM model (Fernández et al.,
2016) used m = 50 random features, and the number of
MCMC iterations is chosen as 5000 with the first 1000
samples dropped out. The hyperparameters of the other
competing models (e.g., the regularization parameters in
the regressions) are also determined by cross validation.

4.1 SYNTHETIC DATASETS

To judge the effectiveness and flexibility of the proposed
variational inference methods for GPSAM, we consider a
synthetic scenario where the data samples are generated
from a non-proportional hazard model. In particular, we
consider a stratified CoxPH model, which can be seen as
a conditional mixture of several CoxPH models. More
specifically, the hazard function is defined as λ(t|x) =
λs(x)(t) · exp(b>s(x)x) where s(x) ∈ {1, . . . ,K} is
a gating function among K component CoxPH mod-
els. The base hazard function λs(t) for each compo-
nent model s = 1, . . . ,K, is defined to be the Weibull
function cs · trs−1 with different parameters (cs, rs) for
each s. The gating function follows a piecewise linear
form, s(x) = arg max1≤s≤K w>s x, where we choose
ws’s randomly. We set the number of base models as
K = 3. The input covariates x are sampled randomly
from N (0, I).

To mimic the censoring process, for each generated sam-
ple, we randomly turn it into a censored one with prob-
ability p. The observed time t for the censored sample
is then uniformly sampled from [0, t∗] where t∗ is the
original value before censoring. We choose p = 0.3.
After generating 100 samples, we perform 10-fold cross
validation where the averaged test scores with standard
deviations are depicted in Table 1. For each measure,
the best performing method in terms of the average value
is boldfaced. To measure the statistical significance,
we also conducted the Wilcoxon signed-rank tests, pair-
wisely against the (boldfaced) best performing method.
With the null hypothesis that two approaches result in
statistically indistinguishable performance, the p-values



Table 1: (Synthetic dataset) Average test prediction per-
formance. Our variational approximation approaches,
VIPI and VIRF , adopt M = 20 pseudo inputs and
m = 50 random features, respectively. Best average
score method is boldfaced. Parentheses indicate the p-
values from the Wilcoxon signed rank test against the
best (boldfaced) approaches.

Methods C-Index (%) Log-Rank-χ2

VIfPI 83.04± 1.91 (−−) 13.88± 2.85 (−−)

VIpPI 79.68± 2.50 (0.002) 10.71± 4.73 (0.125)

VIfRF 81.55± 2.20 (0.049) 10.55± 5.66 (0.250)

VIpRF 81.28± 2.54 (0.049) 10.73± 5.38 (0.250)

MCMC 77.20± 3.66 (0.002) 10.81± 6.00 (0.193)

CoxPHf 73.43± 5.51 (0.002) 8.70± 2.88 (0.232)

CoxPHp 73.27± 4.99 (0.002) 9.14± 3.37 (0.160)

SVCR 68.32± 6.51 (0.002) 5.55± 3.48 (0.027)

SVRC 73.05± 4.37 (0.002) 7.81± 3.20 (0.084)

MINLIP 65.75± 4.34 (0.002) 3.40± 2.20 (0.004)

Model2 71.32± 3.04 (0.002) 5.63± 2.24 (0.027)

are shown in the tables.

The proposed variational inference approaches, both
VIPI and VIRF , exhibit superior generalization perfor-
mance compared to all contrasted methods. Specif-
ically, the pseudo-input approximation optimizing the
full-likelihood (VIfPI ) performs the best in both mea-
sures. With regard to the concordance index, it is sig-
nificantly better than all other models (p-values < 0.05),
but leads to marginal improvements in the log-rank-
χ2 measure. The CoxPH-based models (CoxPHf and
CoxPHp) are mostly outperformed by the GPSAM mod-
els due to the substantial mismatch with the true data pro-
cess (simplified modeling assumption of non-crossing
hazard functions across instances). Compared to the
MCMC approach (Fernández et al., 2016), our proposed
VI methods yield higher prediction accuracies, related
to improved hazard function estimation. In contrast,
the MCMC potentially suffers from computational over-
head, preventing convergence to the target distribution.

To investigate the computational benefits of the pro-
posed approaches over the MCMC algorithm, we mea-
sure the actual inference times (for our variational in-
ference, we record the entire running time until conver-
gence). Implemented in MATLAB and run on 2.4GHz
Intel Xeon CPU, the running times are: 571.7 seconds
for VIfPI , 1165.1 seconds for VIfRF , and 8121.2 seconds
for the MCMC, indicating significant computational ad-
vantage of our VI approaches. The log-likelihood scores
logP (D∗) of GPSAM evaluated on the test data D∗ are
also summarized in Table 3. Although the scores are
mostly comparable, the MCMC attains the highest likeli-
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Figure 1: The inference times of three methods: MCMC,
VIfPI , and VIfRF on the MLC dataset.

hood. However, it should be noted that we only compute
lower bounds of the log-likelihoods (i.e., LPI in (15) and
LRf in (27)) for our variational learning.

4.2 REAL DATASETS

Next we test the performance of the proposed methods on
two clinical and one non-clinical datasets: i) (VLC) Vet-
eran’s lung cancer dataset (Prentice, 1974; Kalbfleisch &
Prentice, 2002) contains records of 137 patients with 6
covariates such as age, weight, treatment, cell type, and
disease history, ii) (MLC) Mayo lung cancer dataset (Th-
erneau & Grambsch, 2000) having 167 patients with sim-
ilar 7 covariates, and iii) (Divorce) dataset (Lillard &
Panis, 2000) which records the divorce years since mar-
riage for 3771 couples, among which we use a fifth of
the samples randomly chosen. The proportions of the
censored samples are: 7% for VLC, 28% for MLC, and
70% for Divorce, where the study involved in the latter
dataset often fails to track the status of many of the cou-
ples, which leads to the large proportion of the censored
samples. The Divorce dataset originally provides three
categorical features for each sample: the husband educa-
tion years (categorized into three levels of less than 12
yrs, more than 15, and between two), whether the hus-
band is African American or not, and whether the eth-
nicity of the couple is different or not. We also intro-
duce additional nonlinear features of pairwise and triple
products, yielding 7-dim covariates. Other experimental
settings follow the synthetic experiment.

We performed 10-fold cross validation where the test re-
sults are shown in Table 2. The best methods, boldfaced
with p-values from the statistical test against other meth-
ods, are mostly our variational inference methods (four
out of six). Our approaches estimate the posterior of the
latent function more accurately than the MCMC while
enjoying the benefits of the GP to account for uncertainty
in the hazard modeling and relaxing the time-covariates
factorized assumption of the CoxPH model.



Table 2: (Real datasets) Average test prediction performance. Our variational approximation approaches, VIPI and
VIRF , adopt the number of pseudo inputs M = 20 and random features m = 50, respectively. Best method in terms
of the average value is boldfaced. Figures in parentheses indicate the p-values from the Wilcoxon signed rank test
against the best (boldfaced) approaches.

Datasets VLC MLC Divorce

Methods C-Index (%) Log-Rank-χ2 C-Index (%) Log-Rank-χ2 C-Index (%) Log-Rank-χ2

VIfPI

71.99± 3.67 3.89± 2.74 72.68± 3.00 2.74± 2.07 63.60± 3.17 2.27± 1.70

(0.0020) (0.3750) (−−) (0.6250) (1.0000) (1.0000)

VIpPI

70.87± 4.75 3.61± 2.82 69.44± 6.48 2.35± 2.27 62.89± 3.92 2.25± 1.97

(0.0039) (0.2754) (0.0273) (0.4316) (0.1934) (0.7695)

VIfRF

76.79± 4.08 5.13± 4.17 68.08± 4.98 1.64± 1.94 63.73± 2.67 2.07± 1.50

(−−) (1.0000) (0.0098) (0.1934) (0.0703) (0.7695)

VIpRF

76.49± 4.51 5.81± 4.27 67.00± 5.35 1.32± 1.92 64.56± 3.47 2.24± 1.33

(0.6875) (−−) (0.0098) (0.1309) (−−) (1.0000)

MCMC
68.48± 2.57 2.34± 1.54 66.46± 6.38 2.15± 2.72 63.81± 3.15 2.35± 2.68

(0.0098) (0.0840) (0.0039) (0.4316) (1.0000) (−−)

CoxPHf
69.28± 6.05 3.12± 3.75 66.89± 11.05 3.25± 2.53 63.33± 2.71 1.67± 1.38

(0.0098) (0.0547) (0.3223) (1.0000) (0.4922) (0.5566)

CoxPHp
69.10± 5.88 2.64± 3.86 68.25± 11.14 3.65± 3.04 63.33± 2.71 1.67± 1.38

(0.0098) (0.0078) (0.1934) (−−) (0.4922) (0.5566)

SVCR
55.41± 9.31 1.10± 1.68 56.42± 17.89 2.52± 2.71 54.38± 11.21 0.87± 0.72

(0.0020) (0.0020) (0.0039) (0.1602) (0.0098) (0.3750)

SVRC
55.36± 9.66 1.10± 1.68 54.93± 17.65 2.61± 2.74 54.43± 10.88 1.14± 1.19

(0.0020) (0.0020) (0.0039) (0.2324) (0.0059) (0.3223)

MINLIP
65.64± 9.79 2.59± 3.23 68.60± 9.28 3.18± 3.03 51.75± 5.38 0.60± 0.96

(0.0098) (0.1309) (0.2754) (0.8457) (0.0039) (0.1602)

Model2
57.40± 10.82 1.59± 2.07 68.81± 8.06 3.19± 3.02 55.83± 10.45 0.69± 0.74

(0.0039) (0.0020) (0.1934) (0.6953) (0.0195) (0.2324)

Next we compare running times. To see the effect of the
approximation model complexity on the inference time,
we vary the parameters in model learning. Specifically,
M is chosen from {10, 20, 40, 60, 80} for VIPI and m
is from {5, 10, 20, 30, 50} for VIfRF and also the MCMC
method (Fernández et al., 2016) that employs the random
feature approximation. All methods are implemented in
MATLAB run on 2.4GHz Intel Xeon CPU. The results
on the MLC dataset are visualized in Fig. 1. Results
demonstrate that our variational methods are an order of
magnitude faster than the MCMC while achieving com-
parable or often superior prediction performance. For
other datasets, refer to Appendix B in the supplemental
material. Finally, the test log-likelihood scores of the at-
tained models are depicted in Table 3. Considering we
report lower VI bounds of the log-likelihoods, all pro-
posed methods exhibit comparable, or superior, general-
ization performance to that of the MCMC.

5 CONCLUSION

We have proposed a family of novel and highly scalable
variational inference methods for the Gaussian process

Table 3: Average test log-likelihood scores attained by
VIPI (M = 20), VIRF (m = 50), and the MCMC.

Datasets Synthetic VLC MLC Divorce

VIfPI −36.40 −31.50 −40.00 −80.31

VIpPI −41.13 −35.00 −41.78 −84.10

VIfRF −35.18 −25.87 −45.48 −86.75

VIpRF −36.33 −26.05 −45.47 −86.75

MCMC −34.01 −30.70 −38.61 −105.53

survival analysis model. Our approaches can estimate the
posterior of the GP latent function in this flexible non-
proportional hazard model more accurately, with running
times an order of magnitude faster than the state-of-the-
art MCMC algorithm.
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Quiñonero-Candela, J., & Rasmussen, C. E. (2005). A
unifying view of sparse approximate Gaussian process
regression. Journal of Machine Learning Research, 6,
1939–1959.

Rahimi, A., & Recht, B. (2008). Random features for
large-scale kernel machines. In Platt, J. C., Koller,
D., Singer, Y., and Roweis, S. T. (eds.), Advances in
Neural Information Processing Systems 20.

Ranganath, R., Perotte, A., Elhadad, N., & Blei, D.
(2016). Deep survival analysis. Machine Learning
for Health Care.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian
processes for machine learning. The MIT Press.

Ross, S. M. (2006). Simulation. Academic Press.

Shivaswamy, P., Chu, W., & Jansche, M. (2007). A sup-
port vector approach to censored targets. In Proceed-
ings of the Seventh IEEE International Conference on
Data Mining (ICDM).

Therneau, T. M., & Grambsch, P. M. (2000). Modeling
survival data: Extending the Cox model. Springer-
Verlag, New York.

Titsias, M. K. (2009). Variational learning of inducing
variables in sparse Gaussian processes. In Proceedings
of the Twelfth International Conference on Artificial
Intelligence and Statistics.

Van Belle, V., Pelckmans, K., Suykens, J., & Van Huffel,
S. (2009). Learning transformation models for rank-
ing and survival analysis. Tech. Rep., 09-45, ESAT-
SISTA, K.U.Leuven (Leuven, Belgium).



Van Belle, V., Pelckmans, K., Van Huffel, S., & Suykens,
J. (2011). Support vector methods for survival analy-
sis: A comparison between ranking and regression ap-
proaches. Artificial Intelligence in Medicine, 53, 107–
118.


