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Abstract

We present KBLRN, a framework for end-to-
end learning of knowledge base representa-
tions from latent, relational, and numerical fea-
tures. KBLRN integrates feature types with
a novel combination of neural representation
learning and probabilistic product of experts
models. To the best of our knowledge, KBLRN
is the first approach that learns representa-
tions of knowledge bases by integrating la-
tent, relational, and numerical features. We
show that instances of KBLRN outperform ex-
isting methods on a range of knowledge base
completion tasks. We contribute a novel data
set enriching commonly used knowledge base
completion benchmarks with numerical fea-
tures. The data sets are available under a per-
missive BSD-3 license1. We also investigate
the impact numerical features have on the KB
completion performance of KBLRN.

1 INTRODUCTION

The importance of knowledge bases (KBs) for AI sys-
tems has been demonstrated in numerous application do-
mains. KBs provide ways to organize, manage, and re-
trieve structured data and allow AI system to perform
reasoning. In recent years, KBs have been playing an in-
creasingly crucial role in AI applications. Purely logical
representations of knowledge bases have a long history
in AI [27]. However, they suffer from being inefficient
and brittle. Inefficient because the computational com-
plexity of reasoning is exponential in the worst case and,
therefore, the time required by a reasoner highly unpre-
dictable. Brittle because a purely logical KB requires
a large set of logical rules that are handcrafted and/or

1https://github.com/nle-ml/mmkb
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Figure 1: A small part of a knowledge base.

mined. These problems are even more pressing in appli-
cations whose environments are changing over time.

Motivated by these shortcomings, there has been a flurry
of work on combining logical and statistical approaches
to build systems capable of reasoning over and learn-
ing from incomplete structured data. Most notably, the
statistical relational learning community has proposed
numerous formalisms that combine logic and probabil-
ity [24]. These formalisms are able to address the learn-
ing problem and make the resulting AI systems more ro-
bust to missing data and missing rules. Intuitively, logi-
cal formulas act as relational features and the probability
of a possible world is determined by a sufficient statis-
tic for the values of these features. These approaches,
however, are in in most cases even less efficient because
logical inference is substituted with probabilistic infer-
ence.

More recently, the research community has focused on
efficient machine learning models that perform well on
restricted tasks such as link prediction in KBs. Exam-
ples are knowledge base factorization and embedding
approaches [3, 21, 11, 20] and random-walk based ML
models [15, 7]. The former learn latent features for the
entities and relations in the knowledge base and use those
to perform link prediction. The latter explore specific re-



lational features such as path types between two entities
and train a machine learning model for link prediction.

With this work, we propose KBLRN, a novel approach to
combining relational, latent (learned), and numerical fea-
tures, that is, features that can take on a large or infinite
number of real values. The combination of various fea-
tures types is achieved by integrating embedding-based
learning with probabilistic models in two ways. First,
we show that modeling numerical features with radial
basis functions is beneficial and can be integrated in an
end-to-end differentiable learning system. Second, we
propose a probabilistic product of experts (PoE) [13] ap-
proach to combine the feature types. Instead of training
the PoE with contrastive divergence, we approximate the
partition function with a negative sampling strategy. The
PoE approach has the advantage of being able to train the
model jointly and end-to-end.

The paper is organized as follows. First, we discuss rela-
tional, latent, and numerical features. Second, we de-
scribe KBLRN. Third, we present empirical evidence
that instances of KBLRN outperform state of the art
methods for KB completion. We also investigate in detail
under what conditions numerical features are beneficial.

2 RELATIONAL, LATENT, AND
NUMERICAL FEATURES

We assume that the facts of a knowledge base (KB) are
given as a set of triples of the form (h, r, t) where h and
t are the head and tail entities and r is a relation type.
Figure 1 depicts a small fragment of a KB with relations
and numerical features. KB completion is the problem of
answering queries of the form (?, r, t) or (h, r, ?). While
the proposed approach can be generalized to more com-
plex queries, we focus on completion queries for the sake
of simplicity. We now discuss the three feature types
used in KBLRN and motivate their utility for knowledge
base completion. How exactly we extract features from
a given KB is described in the experimental section.

2.1 Relational Features

Each relational feature is given as a logical formula
which is evaluated in the KB to determine the feature’s
value. For instance, the formula ∃x (A, bornIn, x) ∧
(x, capitalOf, B) corresponds to a binary feature which
is 1 if there exists a path of that type from entity A to en-
tity B, and 0 otherwise. These features are often used in
relational models [30, 22] and random-walk based mod-
els such as PRA and SFE [15, 7]. In this work, we use
relational paths of length one and two and use the rule
mining approach AMIE+ [5]. We detail the generation of

the relational features in the experimental section. For a
pair of entities (h, t), we denote the feature vector com-
puted based on a set of relational features by r(h,t).

2.2 Latent Features

Numerous embedding methods for KBs have been pro-
posed in recent years [21, 3, 11, 20]. Embedding meth-
ods provide fixed-size vector representations (embed-
dings) for all entities in the KB. In the simplest of cases,
relations are modeled as translations in the entity embed-
ding space [3]. We incorporate typical embedding learn-
ing objectives into KBLRN and write eh and et to refer
to an embedding of a head entity and a tail entity, respec-
tively. The advantages of latent feature models are their
computational efficiency and their ability to learn latent
entity types suitable for downstream ML tasks without
hand-crafted or mined logical rules.

2.3 Numerical Features

Numerical features are entity features whose values can
take on a very large or infinite number of real values.
To the best of our knowledge, there does not exists a
principled approach that integrates numerical features
into a relational ML model for KB completion. This
is surprising, considering that numerical data is avail-
able in almost all existing large-scale KBs. The assump-
tion that numerical data is helpful for KB completion
tasks is reasonable. For several relations types the dif-
ferences between the head and tail are characteristic of
the relation itself. For example, while the mean dif-
ference of birth years is 0.4 for the Freebase relation
/people/marriage/spouse, it is 32.4 for the re-
lation /person/children. These observations mo-
tivate specifically the use of differences of numerical fea-
ture values. Taking the difference has the advantage that
even if a numerical feature is not distributed according
to a normal distribution (e.g., birth years in a KB), the
difference is often normally distributed. This is impor-
tant as we need to fit simple parametric distributions to
the sparse numerical data. We detail the fully automated
extraction and generation of the numerical features in the
experimental section.

3 KBLRN: LEARNING END-TO-END
JOINT REPRESENTATIONS FOR
KNOWLEDGE BASES

With KBLRN we aim to provide a framework for end-
to-end learning of KB representations. Since we want
to combine different feature types (relational, latent
or learned, and numerical) we need to find a suitable
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Figure 2: An illustration of an instance of KBLRN implemented with standard deep learning framework components.
For every relation type, there is a separate expert for each of the different feature types. The entities t′ and t′′ are
two of N randomly sampled entities. The scores of the various submodels are added and normalized with a softmax
function. A categorical cross-entropy loss is applied to the normalized scores.

method for integrating the respective submodels, one per
feature type. We propose a product of experts (PoE)
approach where one expert is trained for each (relation
type, feature type) pair. We extend the product of experts
approach in two novel ways. First, we create dependen-
cies between the experts by sharing the parameters of the
entity embedding model across relation types. By doing
this, we combine a probabilistic model with a model that
learns vector representations from discrete and numeri-
cal data. Second, while product of experts are commonly
trained with contrastive divergence [13], we train it with
negative sampling and a cross-entropy loss.

In general, a PoE’s probability distribution is

p(d | θ1, ..., θn) =
∏

m fm(d | θm)∑
c

∏
m fm(c | θm)

,

where d is a data vector in a discrete space, θm are the
parameters of individual model m, fm(d | φm) is the
value of d under model m, and the c’s index all possible
vectors in the data space. The PoE model is now trained
to assign high probability to observed data vectors.

In the KB context, the data vector d is always a triple
d = (h, r, t) and the objective is to learn a PoE that
assigns high probability to true triples and low probabili-
ties to triples assumed to be false. If (h, r, t) holds in the
KB, the pair’s vector representations are used as positive
training examples. Let d = (h, r, t). We can now define
one individual expert f(r,F)(d | φ(r,F)) for each (relation
type r, feature type F) pair.

The specific experts we utilize here are based on simple
linear models and the DistMult embedding method.

f(r,L)(d | θ(r,L)) = exp((eh ∗ et) ·wr)

f(r,R)(d | θ(r,R)) = exp
(
r(h,t) ·wr

rel

)
f(r,N)(d | θ(r,N)) = exp

(
φ
(
n(h,t)

)
·wr

num

)
and

f(r′,F)(d | θ(r′,F)) = 1 for all r′ 6= r and F ∈ {L, R, N},

where ∗ is the element-wise product, · is the dot product,
wr,wr

rel,w
r
num are the parameter vectors for the latent,

relational, and numerical features corresponding to the
relation r, and φ is the radial basis function (RBF) ap-
plied element-wise to n(h,t). f(r,L)(d | θ(r,L)) is equiv-
alent to the exponential of the DISTMULT [35] scoring
function but with KBLRN we can use any of the existing
KB embedding scoring functions.

The probability for triple d = (h, r, t) of the PoE model
is now

p(d | θ1, ..., θn) =
∏

F∈{R,L,N} f(r,F)(d | θ(r,F))∑
c

∏
F∈{R,L,N} f(r,F)(c | θ(r,F)))

,

where c indexes all possible triples.

For numerical features, an activation function should fire
when the difference of values is in a specific range. For
example, we want the activation to be high when the
difference of the birth years between a parent and its
child is close to 32.4 years. Commonly used activa-
tion functions such as sigmoid or tanh are not suitable
here, since they saturate whenever they exceed a cer-
tain threshold. For each relation r and the dn corre-
sponding relevant numerical features, therefore, we ap-
ply a radial basis function over the differences of values
φ(n(h,t)) = [φ(n

(1)
(h,t)), . . . , φ(n

(dn)
(h,t))], where

φ
(
n
(i)
(h,t)

)
= exp

−||n(i)
(h,t) − ci||22
σ2
i

 .

This results in the RBF kernel being activated whenever
the difference of values is close to the expected value
ci. We discuss and evaluate several alternative strategies
for incorporating numerical features in the experimental
section.



3.1 Learning

Product of experts are usually trained with contrastive di-
vergence (CD) [13] which relies on an approximation of
the gradient of the log-likelihood using a short Markov
chain started at the current seen example. The advantage
of CD is that the partition function, that is, the denomina-
tor of the probability p, which is intractable to compute,
does not need to be approximated. Due to the parame-
terization of the PoE we have defined here, however, it
is not possible to perform CD since there is no way to
sample a hidden state given a triple d. Hence, instead
of using CD, we approximate the partition function by
performing negative sampling.

The logarithmic loss for the given training triples T is
defined as

L = −
∑
t∈T

log p(t | θ1, ..., θn).

To fit the PoE to the training triples, we follow the deriva-
tive of the log likelihood of each observed triple d ∈ T
under the PoE

∂ log p(d | θ1, ..., θn)
∂θm

=
∂ log fm(d | θm)

∂θm

−∂ log
∑

c

∏
m fm(c | θm)

∂θm

Now, to approximate the intractable second term of the
right hand side of the above equation, we generate for
each triple d = (h, r, t) a set E consisting of N triples
(h, r, t′) by sampling exactly N entities t′ uniformly at
random from the set of all entities. The term

∂ log
∑

c

∏
m fm(c | θm)

∂θm

is then approximated by the term

∂ log
∑

c∈E

∏
m fm(c | θm)

∂θm
.

Analogously for the head of the triple. This is often re-
ferred to as negative sampling. Figure 2 illustrates the
KBLRN framework.

4 RELATED WORK

A combination of latent and relational features has been
explored by Toutanova et al. [30, 31]. There, a weighted
combination of two independently learned models, a
latent feature model [35] and a model fed with a bi-
nary vector reflecting the presence of paths of length
one between the head and tail, is proposed. These
simple relational features aim at capturing association

strengths between pairs of relationships (e.g. contains
and contained by). Riedel et al. [25] proposed a method
that learns implicit associations between pairs of rela-
tions in addition to a latent feature model in the con-
text of relation extraction. Gardner et al. [8] modifies
the path ranking algorithm (PRA) [15] to incorporate la-
tent representations into models based on random walks
in KBs. Gardner et al. [7] extracted relational features
other than paths to better capture entity type informa-
tion. There are a number of recent approaches that com-
bine relational and latent representations by incorporat-
ing known logical rules into the embedding learning for-
mulation [26, 10, 18]. Despite its simplicity, KBLRN’s
combination of relational and latent representations sig-
nificantly outperforms all these approaches.

There exists additional work on combining various types
of KB features. Nickel et al. [19] proposed a modi-
fication of the well-known tensor factorization method
RESCAL [21], called ARE, which adds a learnable ma-
trix that weighs a set of metrics (e.g. Common Neigh-
bors) between pairs of entities; Garcia-Duran et al. [6]
proposed a combination of latent features, aiming to take
advantage of the different interaction patterns between
the elements of a triple. The integration of different fea-
ture types into relational machine learning models has
been previously addressed [1] [17], but not in the context
of link prediction in multi-relational graphs.

KBLRN is different to these approaches in that (i) we in-
corporate numerical features for KB completion, (ii) we
propose a unifying end-to-end learning framework that
integrates arbitrary relational, latent, and numerical fea-
tures.

More recent work [23] combines numerical, visual, and
textual features by learning feature type specific en-
coders and using the vector representations in an off-the-
shelf scoring function such as DISTMULT. In contrast to
this approach, KBLRN combines experts that are special-
ized to a specific feature type with a product of expert ap-
proach. Moreover, by taking the difference between nu-
merical features and explicitly modeling relational fea-
tures that hold between head and tail entities, KBLRN in-
corporates dependencies between modalities of the head
and tail entities. These dependencies cannot be captured
with a model that only includes modalities of either the
head or the tail entity but not both at the same time.

5 EXPERIMENTS

We conducted experiments on six different knowledge
base completion data sets. Primarily, we wanted to un-
derstand for what type of relations numerical features are
helpful and what input representation of numerical fea-



Data set FB15k FB15k-num FB15k-237 FB15k-237-num WN18 FB122
Entities 14,951 14,951 14,541 14,541 40,943 9,738
Relation types 1,345 1,345 237 237 18 122
Training triples 483,142 483,142 272,115 272,115 141,442 91,638
Validation triples 50,000 5,156 17,535 1,058 5,000 9,595
Test triples 59,071 6,012 20, 466 1,215 5,000 11,243
Relational features 90,318 90,318 7,834 7,834 14 47

Table 1: Statistics of the data sets.

tures achieves the best results. An additional objective
was the comparison to state of the art methods.

5.1 Datasets

We conducted experiments on six different data sets:
FB15k, FB15k-237, FB15k-num, FB15k-237-num,
WN18, and FB122. FB15k [3] and Wordnet (WN) [2]
are knowledge base completion data sets commonly used
in the literature. The FB15k data set is a representative
subset of the Freebase knowledge base. WN18 repre-
sents lexical relations between word senses. The two
data sets are being increasingly criticized for the frequent
occurrence of reverse relations causing simple relational
baselines to outperform most embedding-based meth-
ods [30]. For these reasons, we also conducted experi-
ments with FB15k-237 a variant of FB15k where reverse
relations have been removed [30]. FB122 is a subset of
FB15k focusing on relations pertaining to the topics of
“people”, “location”, and “sports.” In previous work, a
set of 47 logical rules was created for FB122 and subse-
quently used in experiments for methods that take logical
rules into account [10, 18].

The main objective of this paper is to investigate the im-
pact of incorporating numerical features. Hence, we cre-
ated two additional data set by removing those triples
from FB15k’s and FB15k-237’s validation and test sets
where numerical features are never used for the triples’
relation type. Hence, the remaining test and validation
triples lead to completion queries where the numerical
features under consideration are potentially used. We re-
fer to these new data sets as FB15k-num and FB15k-237-
num. A similar methodology can be followed to evaluate
the performance on a different set of numerical features.

We extracted numerical data from the 1.9 billion triple
Freebase RDF dump by mining triples that associate en-
tities to literals of some numerical type. For example,
the relation /location/geocode/latitudemaps
entities to their latitude. We performed these extractions
for all entities in FB15k but only kept a numerical fea-
ture if at least 5 entities had values for it. This resulted in
116 different numerical features and 12,826 entities for
which at least one of the numerical features had a value.
On average each entity had 2.3 numerical features with a

n(h,t) MR MRR Hits@1 Hits@10
sign 231 29.7 20.1 50.1
RBF 121 31.4 21.2 52.3

Table 2: KBLRN for two possible input representations
of numerical features for FB15k-237-num.

value. Since numerical data is not available for Wordnet,
we do not perform experiments with numerical features
for variants of this KB.

Each data set contains a set of triples that are known to
be true (usually referred to as positive triples). Statis-
tics of the data sets are provided in Table 1. Since the
identifiers for entities and relations have been changed in
FB13 [29], we could not extract numerical features for
the data set and excluded it from the experiments.

5.2 General Set-up

We evaluated the different methods by their ability to
answer completion queries of the form (h, r, ?) and
(?, r, t). For queries of the form (h, r, ?), we replaced
the tail by each of the KB’s entities in turn, sorted the
triples based on the scores or probabilities returned by
the different methods, and computed the rank of the cor-
rect entity. We repeated the same process for the queries
of type (?, r, t). We follow the filtered setting described
in [3] which removes correct triples that are different to
the target triple from the ranked list. The mean of all
computed ranks is the Mean Rank (lower is better) and
the fraction of correct entities ranked in the top n is called
hits@n (higher is better). We also computer the Mean
Reciprocal Rank (higher is better) which is an evaluation
measure for rankings that is less susceptible to outliers.

We conduct experiments with the scoring function of
DISTMULT [35] which is an application of parallel fac-
tor analysis to multi-relational graphs. For a review on
parallel factor analysis we refer the reader to [12]. We
validated the embedding size of KBLRN from the values
{100, 200} for all experiments. These values are used in
most of the literature on KB embedding methods. For all
other embedding methods, we report the original results
from the literature or run the authors’ original implemen-
tation. For FB15k and FB15k-237, the results for Dist-



FB15k FB15k-237
MR MRR Hits@1 Hits@10 MR MRR Hits@1 Hits@10

TRANSE 51 44.3 25.1 76.3 214 25.1 14.5 46.3
DISTMULT - 65.4 54.6 82.4 - 19.1 10.6 37.6
COMPLEX - 69.2 59.9 84.0 - 20.1 11.2 38.8
NODE+LINKFEAT - 82.2 - 87.0 - 23.7 - 36.0
R-GCN+ - 69.6 60.1 84.2 - 24.8 15.3 41.7
CONVE 64 74.5 67.0 87.3 330 30.1 22.0 45.8

without numerical features
KBL 69 77.4 71.2 87.6 231 30.1 21.4 47.5
KBR 628 78.7 75.6 84.3 2518 18.0 12.8 28.5
KBLR 45 79.0 74.2 87.3 231 30.6 22.0 48.2

with numerical features
KBLN 66 78.3 72.6 87.8 229 30.4 22.0 47.0
KBRN 598 78.7 75.6 84.2 3303 18.2 13.0 28.7
KBLRN 44 79.4 74.8 87.5 209 30.9 21.9 49.3

Table 3: Results (filtered setting) for KBLRN and state of the art approaches.

FB15k-num FB15k-237-num
MR MRR Hits@1 Hits@10 MR MRR Hits@1 Hits@10

TRANSE 25 34.7 5.5 79.9 158 21.8 10.41 45.6
DISTMULT 39 72.6 62.1 89.7 195 26.4 16.4 47.3

without numerical features
KBL 39 72.6 62.1 89.7 195 26.4 16.4 47.3
KBR 399 84.7 81.6 90.1 3595 23.6 17.8 36.1
KBLR 28 85.3 80.3 92.4 232 29.3 19.7 49.2

with numerical features
KBLN 32 73.6 63.0 90.7 122 28.6 17.9 51.6
KBRN 68 84.0 80.6 90.0 600 26.1 19.3 39.7
KBLRN 25 85.9 81.0 92.9 121 31.4 21.2 52.3

Table 4: Results (filtered) on the data sets where the test and validation sets are com-
prised of those triples whose type could potentially benefit from numerical features.

WN18+rules[10] FB122-all[10]
MR MRR Hits@3 Hits@5 Hits@10 MR MRR Hits@3 Hits@5 Hits@10

TRANSE - 45.3 79.1 89.1 93.6 - 48.0 58.9 64.2 70.2
TRANSH - 56.0 80.0 86.1 90.0 - 46.0 53.7 59.1 66.0
TRANSR - 51.4 69.7 77.5 84.3 - 40.1 46.4 52.4 59.3
KALE-PRE - 53.2 86.4 91.9 94.4 - 52.3 61.7 66.2 71.8
KALE-JOINT - 66.2 85.5 90.1 93.0 - 52.3 61.2 66.4 72.8
COMPLEX - 94.2 94.7 95.0 95.1 - 64.1 67.3 69.5 71.9
ASR-COMPLEX - 94.2 94.7 95.0 95.1 - 69.8 71.7 73.6 75.7
KBL 537 80.8 92.5 93.7 94.7 117 69.5 74.6 77.2 80.0
KBR 7113 72.0 72.1 72.1 72.1 2018 54.7 54.7 54.7 54.7
KBLR 588 93.6 94.5 94.8 95.1 113 70.2 74.0 77.0 79.7

Table 5: Results (filtered setting) for KB completion benchmarks where logical rules are provided.

Mult, Complex, and R-GCN+ are taken from [28]; re-
sults for the relational baseline Node+LinkFeat are taken
from [30]; results for ConvE are taken from [4] and re-
sults for TransE were obtained by running the authors’
implementation. For WN18-rules and FB122-all, the re-
sults for TransE, TransH, TransR, and KALE are taken
from [10], and results for ComplEx and ASR-ComplEx
are taken from [18]. All methods were tuned for each of
the respective data sets.

For KBLRN we used ADAM [14] for parameter learning
in a mini-batch setting with a learning rate of 0.001, the
categorical cross-entropy as loss function and the number
of epochs was set to 100. We validated every 5 epochs
and stopped learning whenever the MRR (Mean Recip-
rocal Rank) values on the validation set decreased. The
batch size was set to 512 and the number N of nega-
tive samples to 500 for all experiments. We use the ab-
breviations KBsuffix to refer to the different instances of



KBLRN. suffix is a combination of the letters L (Latent),
R (Relational) and N (Numerical) to indicate the inclusion
of each of the three feature types.

5.3 Automated Generation of Relational and
Numerical Features

For the data sets FB15k, FB15k-237, and their numeri-
cal versions, we used all relational paths of length one
and two found in the training data as relational features.
These correspond to the formula types (h, r, t) (1-hop)
and ∃x (h, r1, x) ∧ (x, r2, t) (2-hops). We computed
these relational paths with AMIE+ [5], a highly efficient
system for mining logical rules from knowledge bases.
We used the standard settings of AMIE+ with the excep-
tion that the minimal head support was set to 1. With
these settings, AMIE+ returns horn rules of the form
body ⇒ (x, r, y) that are present for at least 1% of the
triples of the form (x, r, y). For each relation r, we used
the body of those rules where r occurs in the head as r’s
relational path features. For instance, given a rule such
as (x, r1, z), (z, r2, y) ⇒ (x, r, y), we introduce the re-
lational feature ∃x (h, r1, x) ∧ (x, r2, t) for the relation
r. Table 7 lists a sample of relational features that con-
tributed positively to the performance of KBLRN for spe-
cific relation types. For the data sets WN18 and FB122,
we used the set of logical formulas previously used in the
literature [10]. Using the same set of relational features
allows us to compare KBLRN with existing approaches
that incorporate logical rules into the embedding learning
objective [10, 18].

For each relation r we only included a numerical fea-
ture if, in at least τ = 90% of training triples, both the
head and the tail had a value for it. This increases the
likelihood that the feature is usable during test time. For
τ = 90% there were 105 relations in FB15k for which at
least one numerical feature was included during learning,
and 33 relations in FB15k-237. With the exception of the
RBF parameters, all network weights are initialized fol-
lowing [9]. The parameters of KBLRN’s RBF kernels
are initialized and fixed to ci = 1

|T|
∑

(h,r,t)∈T n
(i)
(h,t),

where T is the set of training triples (h, r, t) for the re-
lation r for which both n

(i)
h and n

(i)
t have a value; and

σi =
√

1
|T|
∑

(h,r,t)∈T(n
(i)
(h,t) − ci)2.

5.4 Representations of Numerical Features

We experimented with different strategies for incorpo-
rating raw numerical features. For the difference of fea-
ture values the simplest method is the application of the
sign function. For a numerical attribute i, the activa-
tion is either 1 or −1 depending on whether the differ-
ence n

(i)
h − n

(i)
t is positive or negative. For a more

KBLR KBLRN
Relation MRR H@10 MRR H@10
capital of 5.7 13.6 14.6 18.2
spouse of 4.4 0.0 7.9 0.0
influenced by 7.3 20.9 9.9 26.8

Table 6: MRR and hits@10 results (filtered) for KBLRN
with and without numerical features in FB15k-237. Re-
sults improve for relations where the difference of the
relevant features is approximately normal (see Figure 3).

−10 0 10
Diff. of latitude

capital of

−30 0 30
Diff. of birth year

spouse

−400 0 400
Diff. of birth year

influenced by

Figure 3: Histograms and fitted RBFs for three repre-
sentative relations and numerical features.

nuanced representation of differences of numerical fea-
tures, a layer of RBF kernels is a suitable choice since
the activation is here highest in a particular range of in-
put values. The RBF kernel might not be appropriate,
however, in cases where the underlying distribution is not
normal.

To evaluate different input representations, we conducted
experiments with KBLRN on the FB15k-237-num data
set. Table 2 depicts the KB completion performance of
two representation strategies for the difference of head
and tail values. Each row corresponds to one evaluated
strategy. “sign” stands for applying the sign function to
the difference of numerical feature values. RBF stands
for using an RBF kernel layer for the differences of nu-
merical feature values. All results are for the FB15k-
237-num test triples.

The RBF kernels outperform the sign functions signifi-
cantly. This indicates that the difference of feature val-
ues is often distributed normally and that having a region
of activation is beneficial. Given these results, we use
the RBF input layer for n(h,t) for the remainder of the
experiments.

5.5 Comparison to State of the Art

For the standard benchmark data sets FB15k and FB15k-
237, we compare KBLRN with TRANSE, DISTMULT,
COMPLEX [32], R-GCN+ [28], and ConvE [4].

Table 3 lists the KB completion results. KBLRN is com-
petitive with state of the art knowledge base comple-



Relational Feature Triple (h, r, t)
∃x (h, containedby, x) ∧ (t, locations in this time zone, x) (h,time zone,t)

∃x (t, prequel, x) ∧ (x, character, h) (h,character in film,t)
∃x (x, cause of death, h) ∧ (x, cause of death, t) (h,includes causes of death,t)

Table 7: Relational features found by AMIE+ that positively contributed to the performance of KBLRN for the
particular relation type holding between a head entity h and tail entity t.

MR MRR
ONE MANY ONE MANY

KBLR 42 201 74.9 21.0
KBLRN 60 135 74.2 22.8

Table 8: MR and MRR results (filtered) on FB15k-237-
num based on the cardinality of the test queries.

tion methods on FB15k and significantly outperforms all
other methods on the more challenging FB15k-237 data
set. Since the fraction of triples that can potentially ben-
efit from numerical features is very small for FB15k, the
inclusion of numerical features is only slightly benefi-
cial. For FB15k-237, however, the numerical features
significantly improve the results.

For the numerical versions of FB15k and FB15k-237, we
compared KBLRN to TransE and DistMult. Table 4 lists
the results for the KB completion task on these data sets.
KBLRN significantly outperforms the KB embedding ap-
proaches. The positive impact of including the numerical
features is significant.

For the data sets WN18-rules and FB122-all we com-
pared KBLRN to KB embedding methods TransE,
TransR [16], TransH [34], and ComplEx [32] as well as
state of the are approaches for incorporating logical rules
into the learning process. The experimental set-up is con-
sistent with that of previous work. Table 5 lists the results
for the KB completion task on these data sets. KBLRN
combining relational and latent representations signifi-
cantly outperforms existing approaches on FB122 with
exactly the same set of rules. This provides evidence
that KBLRN’s strategy to combine latent and relational
features is effective despite its simplicity relative to ex-
isting approaches. For WN18+rules, KBLRN is compet-
itive with ComplEx, the best performing method on this
data set. In addition, KBLRN’s performance improves
significantly when relational and latent representations
are combined. In contrast, ASR-COMPLEX is not able
to improve the results of ComplEx, its underlying latent
representation.

5.6 The Impact of Numerical Features

The integration of numerical features improves
KBLRN’s performance significantly. We performed

AUC-PR MR MRR
TRANSE 0.837 231 26.5
KBLR 0.913 94 66.8
KBLRN 0.958 43 70.8

Table 9: AUC-PR, MR, and MRR results for the com-
pletion query (USA, /location/contains, ?).

several additional experiments so as to gain a deeper
understanding of the impact numerical features have.

Table 6 compares KBLRN’s performance with and
without integrating numerical features on three rela-
tions. The performance of the model with numerical
features is clearly superior for all three relationships
(capital of, spouse and influenced by). Fig-
ure 3 shows the normalized histograms for the values
n(h,t) for these relations. We observe the differences of
feature values are approximately normal.

Following previous work [3], we have classified each test
query of FB15k-237-num as either ONE or MANY, de-
pending on the whether one or many entities can com-
plete that query. For the queries labeled ONE the model
without numerical features shows a slightly worse per-
formance with respect to the model that makes use of
them, whereas for the queries labeled MANY, KBLRN
significantly outperforms KBLR in both MR and MRR.

A well-known finding is the lack of completeness of
FB15k and FB15k-237. This results in numerous cases
where the correct entity for a completion query is not
contained in the ground truth (neither in the training, nor
test, nor validation data set). This is especially problem-
atic for queries where a large number of entities are cor-
rect completions. To investigate the actual benefits of
the numerical features we carried out the following ex-
periment: We manually determined all correct comple-
tions for the query (USA, /location/contains, ?).
We ended up with 1619 entities that correctly complete
the query. FB15k-237 contains only 954 of these correct
completions. With a complete ground truth, we can now
use the precision-recall area under the curve (PR-AUC)
metric to evaluate KB completion methods [21, 19, 6]. A
high PR-AUC represents both high recall and high pre-
cision. Table 9 lists the results for the different methods.
KBLRN with numerical features consistently and signif-
icantly outperformed all other approaches.



6 CONCLUSIONS

We introduced KBLRN, a class of machine learning
models that, to the best of our knowledge, is the first pro-
posal aiming at integrating relational, latent, and contin-
uous features of head and tail entities in KBs into a sin-
gle end-to-end differentiable framework. KBLRN out-
performs state of the art KB completion methods on a
range of data sets. We show that the inclusion of numer-
ical features is beneficial for KB completion tasks.

Future work will primarily study instances of experts that
can combine different numerical features such as life
expectancy and latitude. Furthermore, combinations of
multiple different embedding methods, which was shown
to be beneficial in recent work [33], is also possible with
our PoE approach.
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