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Abstract

The paper begins by introducing the definition
and construction of mutually unbiased bases,
which are a widely used concept in quantum
information processing but have received lit-
tle to no attention in the machine learning and
statistics literature. We demonstrate their use-
fulness by using them to create a new sampling
technique which offers an improvement on the
previously well established bounds of stochas-
tic trace estimation. This approach offers a
new state of the art single shot sampling vari-
ance while requiring O(log(n)) random bits
for x ∈ Rn which significantly improves on
traditional methods such as fixed basis meth-
ods, Hutchinson’s and Gaussian estimators in
terms of the number of random bits required
and worst case sample variance.

1 INTRODUCTION

Function space representations and transformations are
at the heart of many machine learning techniques. For
example, the relationship between computational space
and Fourier space arrises throughout machine learning
literature, from classic shift invariant filters studied in
image processing through to modern techniques for ker-
nel approximation such as random Fourier features [1].
The power of random Fourier features, for example, is
introduced by the unbiased relationship of the computa-
tional and Fourier bases, that is to say that a Dirac-delta
distribution in one basis is represented with uniformly
distributed mass in the other.

In this work we take advantage of not only pairs of
mutually unbiased bases, but entire sets of them. We
believe that the application of mutually unbiased bases
has potential to improve kernel matrix approximation

and feature learning. To exemplify their applicability,
we demonstrate their ability to create a novel sampling
method which improves upon the well established error
bounds of stochastic trace estimation.

The problem of stochastic trace estimation is relevant to
a range of problems from physics and applied mathemat-
ics such as electronic structure calculations [2], seismic
waveform inversion [3], discretized parameter estima-
tion problems with PDEs as constraints [4] and approx-
imating the log determinant of symmetric positive semi-
definite matrices [5]. Machine learning, in particular,
is a research domain which has many uses for stochas-
tic trace estimation. They have been used efficiently by
Generalised Cross Validation (GCV) in discretized iter-
ative methods for fitting Laplacian smoothing splines to
very large datasets [6], computing the number of trian-
gles in a graph [7, 8], string pattern matching [9, 10] and
training Gaussian Processes using score functions [11].
Motivated by accelerating Gaussian graphical models,
Markov random fields, variational methods and Bregman
divergences, work based on stochastic trace estimation
has also been developed to improve the computational
efficiency of log determinant calculations [12].

Stochastic trace estimation endeavours to choose n-
dimensional vectors x such that the expectation of xT Ax
is equal to the trace of the implicit symmetrical posi-
tive semi definite matrix A ∈ Rn×n. It can be seen that
many sampling policies satisfy this condition. Due to
this, several metrics are used in order to choose a sam-
pling policy such as the single shot sampling variance,
the number of samples to achieve a (ε,δ )-approximation
and the number of random bits required to create x [13].
This last metric is motivated in part by the relatively
long timescales for hardware random number generation,
and concerns about parallelising pseudo-random number
generators.

In this work we propose a new stochastic trace estima-
tor based on mutually unbiased bases (MUBs) [14], and



quantify the single shot sampling variance of the pro-
posed MUBs sampling method and its corresponding re-
quired number of random bits. We will refer to methods
which sample from a fixed set of basis functions as be-
ing fixed basis sampling methods. For example, we can
randomly sample the diagonal values of the matrix A by
sampling x from the set of columns which form the iden-
tity matrix. This is referred to as the unit vector estima-
tor in the literature [13]. Other similar methods sample
from the columns Discrete Fourier Transform (DFT), the
Discrete Hartley Transform (DHT), the Discrete Cosine
Transform (DCT) or a Hadamard matrix. We prove that
sampling from the set of mutually unbiased bases signif-
icantly reduces this single shot sample variance, in par-
ticular in the worst case bound.

The paper is laid out as follows: Section 2 gives a brief
introduction to mutually unbiased basis and their con-
struction, Section 3 describes our novel approach of us-
ing mutually unbiased bases for trace estimation and Sec-
tion 3.2 gives a rigorous analysis of of the new estimator.
Section 4 compares the proposed MUBs estimator to es-
tablished approaches both in terms of the analytic expec-
tation of sample variance and as applied to synthetic and
real data. The tasks of counting the number of triangles
in a graph and of estimating the log determinant of kernel
matrices are considered as an example application.

2 MUTUALLY UNBIASED BASES

Linear algebra has found application in a diverse range
of fields, with each field drawing from a common set of
tools. However, occasionally, techniques developed in
one field do not become well known outside of that com-
munity, despite the potential for wider use. In this work,
we will make extensive use of mutually unbiased bases,
sets of bases that arise from physical considerations in
the context of quantum mechanics [14] and which have
been extensively exploited within the quantum informa-
tion community [15]. In quantum mechanics, physical
states are represented as vectors in a complex vector
space, and the simplest form of measurement projects
the state onto one of the vectors from some fixed or-
thonormal basis for the space, with the probability for
a particular outcome given by the square of the length
of the projection onto the corresponding basis vector 1.
In such a setting, it is natural to ask about the existence
of pairs or sets of measurements where the outcome of
one measurement reveals nothing about the outcome of
another measurement, and effectively erases any infor-
mation about the outcome had the alternate measure-

1For a more comprehensive introduction to the mathematics
of quantum mechanics in finite-dimensional systems, we refer
the reader to [16]

ment instead been performed. As each measurement cor-
responds to a particular basis, such a requirement im-
plies that the absolute value of the overlap between pairs
of vectors drawn from bases corresponding to different
measurements be constant. This leads directly to the con-
cept of mutually unbiased bases (MUBs).

A set of orthonormal bases {B1, . . . ,Bn} are said to be
mutually unbiased if for all choices of i and j, such that
i 6= j, and for every u ∈ Bi and every v ∈ B j, |u†v|= 1√

n ,
where n is the dimension of the space. While for real
vector spaces the number of mutually unbiased bases has
a complicated relationship with the dimensionality [17],
for complex vector spaces the number of mutually unbi-
ased bases is known to be exactly n+1 when n is either
a prime or an integer power of a prime [18]. Further-
more, a number of constructions are known for finding
such bases [18]. When n is neither prime nor a power of
a prime, the number of mutually unbiased bases remains
open, even for the case of n = 6 [19], but is known to
be at least pd1

1 + 1, where n = ∏i pdi
i and pi are prime

numbers such that pi < pi+1 for all i.

One practical method for constructing MUBs is to use
the unitary operators method with finite fields [20],
which is effective when the dimensionality of the space
is either prime or a prime power. For conciseness, we
will outline the procedure for only the prime dimension-
ality case but note that any integer dimensional space is
at most bounded by two times its closest prime power di-
mension which adds a constant cost to the memory and
runtime performance. First, let us construct the matrix X
as the identity matrix with the columns shifted one to the
left creating the form,

X =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0


and letting Z be a diagonal matrix with elements set to
the roots of unity, Zk,k = exp

( 2kπi
n

)
. Given these two

matrices a set of mutually unbiased bases are found as
the eigenvectors of the matrices,

X ,Z,XZ,XZ2, . . . ,XZn−1.

At first glance it may appear that the computational cost
of constructing vectors from these bases is O(d3) due to
the cost decomposing these matrices in Cn×n, however,
under more scrutiny we can see that X is a circulant per-
mutation matrix and as such its eigenvectors are equal to
Uk, j =

1√
n exp

(
jk2πi

n

)
irrespective of the dimensionality,



where j indexes the elements of the eigenvector and v
indexes which eigenvector is under consideration.

As the elements the diagonal matrix Z are the roots
of unity in ascending order, it can be seen that
exp
( 2πi

n

)k
ZkX = QkX = XZk , where Q is some matrix

of the same form as Z but with a shift of phase of the
non-zero elements. As such, by writing the eigenbasis of
X =U−1ΣU we can derive the eigenbasis of XZk for ar-
bitrary value k with eigen decomposition XZk = Û−1Σ̂Û ,

XZk =U†
ΣUZk

= QkU−1
ΣU

Next, we pull Q
k
2 and Z

k
2 through the eigenvectors by

observing that we can transform the eigenvectors as Σ =

Z
1
2 Σ̂Q

k
2 ,

XZk = Q
k
2 U−1

ΣUZ
k
2

= Q
k
2 U−1Z

1
2 Σ̂Q

k
2 UZ

k
2

= Û−1
Σ̂Û

where Û = Q−
k
2 Z

k
2 U and hence the Ûi, j =

1√
n exp

(
2πi
n ( jv+ ( j+1)( j+2)

2 k)
)

using the same in-
dexing as before.

As a result, we can simply use the following procedure
to sample the vector x in linear computational time and
memory:

1 Choose k and v, representing the basis and the vec-
tor to select respectively, uniformly at random.

2 If k = 0, then we select the vector v from the com-
putational basis, that is to say the columns of the
identity matrix.

3 Else, let x j =
1√
n exp

(
2πi
n ( jv+ ( j+1)( j+2)

2 k
)

3 TRACE ESTIMATORS

In order to estimate the trace of a n× n positive semi-
definite matrix A from a single call to an oracle for x†Ax,
we consider four strategies:

• Fixed basis estimator: For a fixed orthonormal ba-
sis B, choose x uniformly at random from the ele-
ments of B. The trace is then estimated to be nx†Ax.

• Mutually unbiased bases (MUBs) estimator: For
a fixed choice of a set of b mutually unbiased bases
B = {B1, ...,Bb}, choose B uniformly at random
from B and then choose x uniformly at random from
the elements of B. Here b is taken to be the maxi-
mum number of mutually unbiased bases for a com-
plex vector space of dimension n. As in the fixed ba-
sis strategy, the trace is then estimated to be nx†Ax.

• Hutchinson’s estimator: Randomly choose
the elements of x independently and identi-
cally distributed from a Rademacher distribution(
Pr(xi =±1) = 1

2

)
. The trace is then estimated to

be x†Ax.

• Gaussian estimator: Randomly choose the ele-
ments of x independently and identically distributed
from a zero mean unit variance Gaussian distribu-
tion. The trace is then estimated to be x†Ax.

The first strategy is a generic formulation of approaches
which sample vectors from a fixed orthogonal basis, the
most efficient sampling method in terms of the number
of random bits required in the literature [13], while the
second strategy is novel and represents our main contri-
bution. Both strategies have similar randomness require-
ments: In the first strategy at least dlog2(n)e random bits
are necessary to ensure the possibility of choosing every
element of B. In the second strategy, an identical num-
ber of random bits is necessary to choose x for a fixed
B, and dlog2(b)e random bits are necessary to choose
B. Note that an upper bound on the number of mutually
unbiased bases is one greater than dimensionality of the
space, and this bound is saturated for spaces where the
dimensionality is prime or an integer power of a prime,
i.e. b ≤ n+ 1. Thus the number of random bits neces-
sary to implement these strategies differs by a factor of
approximately two. The third and forth strategies signif-
icantly outperform the fixed basis estimator in terms of
single-shot variance, at the cost of a dramatic increase in
the amount of randomness required, and have been ex-
tensively studied in the literature [13, 21, 22]. For con-
ciseness we will not repeat the analysis of these methods
in this paper but will compare the fixed basis estimator
and MUBs estimator to them in Table 4.1.

3.1 ANALYSIS OF FIXED BASIS ESTIMATOR

We first analyse the worst case variance of the fixed base
estimator. In this analysis and the analysis for the MUBs
estimator which follows, we make no assumption on A
and consider the worst case variance.

We begin from the definition of the variance of the es-
timator for a single query. Let X be a random variable



such that X = x†Ax, where x is chosen according to the
fixed basis strategy. Then

Var(X) = E(X2)−E(X)2, (1)

where E(·) denotes the expectation value of the argu-
ment. We compute this term by term. First

E(X) =
1
n ∑

x∈B
x†Ax =

Tr(A)
n

.

where n = dimA, and hence the second term in Eq. 1 is
equal to Tr(A)2

n2 . Turning to the first term,

E(X2) =
1
n ∑

x∈B

(
x†Ax

)2

=
1
n

n

∑
i=1

M2
ii,

where M = UAU† for some fixed unitary matrix U such
that U†x is a vector in the standard basis for all x ∈ B,
and Mii is the ith entry on the main diagonal of M. The
variance for the fixed basis estimator is then given by
Vfixed = n∑

n
i=1 M2

ii−Tr(A)2. The worst case occurs when
the value of ∑

n
i=1 M2

ii is maximized for fixed trace of A
(and hence M), and so the worst case single shot variance
for the fixed basis estimator is V worst

f ixed = (n−1)Tr(A)2.

3.2 ANALYSIS OF MUBS ESTIMATOR

We now turn to analysis of the MUBs estimator. We as-
sume that n is either prime or a prime raised to some
integer power. In this case, it has been established that
b= n+1 [18]. The variance is defined as in Eq. 1, except
that X is defined in terms of x chosen according to the
MUBs strategy. Again, we analyse the individual terms
making up the variance. We begin with

E(X) =
1

nb ∑
B∈B

∑
x∈B

x†Ax =
Tr(A)

n
.

and hence the second term in the variance is the same as
for the fixed basis estimator. Analysing the first term is,
however, more difficult. We begin with the observation
that E(X2) can be expressed in terms of the trace of the
Kronecker product of two matrices, as follows

E(X2) =
1
nb ∑

B∈B
∑
x∈B

(
x†Ax

)2

=
1
nb ∑

B∈B
∑
x∈B

Tr
(
(xx†A)⊗2) .

Moving the summations inside the equation we obtain

E(X2) =
1

nb
Tr

(
∑

B∈B
∑
x∈B

(
xx†)⊗2

A⊗2

)

=
2

nb
Tr
(
PA⊗2) , (2)

where P = 1
2 ∑B∈B ∑x∈B

(
xx†
)⊗2.

While this form of P may appear intimidating, we now
prove that P is in fact a projector with each eigenvalue
being either 0 or 1. We prove this indirectly, first by
showing that P has rank at most n(n + 1)/2, and then
using the relationship between the traces of P and P2 to
conclude that the non-zero n(n + 1)/2 eigenvalues are
equal to unity. Any vector of the form w = u⊗v−u⊗v
for u,v∈B1 trivially satisfies Pw= 0. Since such vectors
form a basis for a subspace of dimension n(n−1)/2, we
conclude that rank(P) ≤ n2− n(n− 1)/2 = n(n+ 1)/2.
Turning now to the issue of trace, we have

Tr(P) = Tr

(
1
2 ∑

B∈B
∑
x∈B

(
xx†)⊗2

)

=
1
2 ∑

B∈B
∑
x∈B

(
x†x
)2

=
nb
2
.

We can similarly compute the trace of P2 to obtain

Tr(P2) = Tr

(
1
4 ∑

B,B′∈B
∑
x∈B

∑
y∈B′

(
xx†)⊗2 (yy†)⊗2

)

=
1
4 ∑

B,B′∈B
∑
x∈B

∑
y∈B′

∣∣x†y
∣∣4

=
nb
4

+
n2b(b−1)

4n2

=
b(n+b−1)

4
.

Notice that this implies that Tr(P) = Tr(P2) for dimen-
sions which are prime or integer powers of a prime, since
in such cases b = n+ 1. This implies that the eigenval-
ues on the non-zero subspace minimize the sum of their
squares for a fixed sum, and since P is positive semi-
definite, we can conclude that each non-zero eigenvalue
must be equal to unity.

Returning to the calculation of variance, we then have

E(X2) ≤ 2
nb

Tr
(
A⊗2)

=
2
nb

Tr(A)2 ,

and hence

Var(X)≤
(

2
nb
− 1

n2

)
Tr(M)2 ≤ Tr(A)2

n2 . (3)

This implies that the variance on the estimate of Tr(A)
is bounded from above by Tr(A)2. It is, in fact, possible
to compute the variance exactly from Eq. 2 by observing



that M is the projector onto the symmetric subspace when
n is an integer power of a prime. That is to say, for any
vector u and any vector v orthogonal to u, the vectors
u⊗v+v⊗u, u⊗u and v⊗v are in the +1 eigenspace of
M, whereas the vector u⊗ v− v⊗u is in the null space
of M. Thus we can compute the exact variance of the
MUBs estimator, using the spectral decomposition A =

∑i λiuiu†
i as

VMUBs =
2n

n+1
Tr
(
PA⊗2)−Tr(A)2

=
2n

n+1

n

∑
i=1

n

∑
j=1

λiλ j

Tr
(
P(ui⊗u j)(ui⊗u j)

†)−Tr(A)2

=
2n

n+1

n

∑
i=1

(
λ

2
i +

1
2 ∑

j 6=i
λiλ j

)
−Tr(A)2

=
n

n+1
Tr(A2)− 1

n+1
Tr(A)2.

Since for all positive semi-definite matrices A the value
of Tr(A)2 is bounded from below by Tr(A2), the sin-
gle shot variance on the MUBs estimator is bounded
by Vworst

MUBs =
n−1
n+1 Tr(A2) in the worst case, a significant

improvement on the bound stemming from Eq. 3. The
worst case single shot variance of the MUBs estimator
is then at least a factor of n+ 1 better than that of any
fixed basis estimator. Furthermore, the variance for the
widely used Hutchinson estimator [21, 13], is given by
VH = 2

(
Tr(A2)−∑

n
i=1 A2

ii
)
. In the worst case, ∑

n
i=1 A2

ii =
1
n Tr(A2), and hence the worst case single shot variance
for Hutchinson estimator is V worst

H = 2(n−1)
n Tr(A2). Thus,

the MUBs estimator has better worst case performance
than the Hutchinson estimator by a factor 2(n+1)

n which
approaches 2 from above for large n.

4 RESULTS

4.1 THEORETICAL RESULTS

Table 1 compares the single shot variance, worst case
single shot variance and randomness requirements of the
trace estimators. As can be seen from the comparison
the MUBs estimator has strictly smaller variance than ei-
ther the Hutchinson or Gaussian methods, while requir-
ing significantly less randomness to implement. Given
the drastic reduction in randomness requirements, and
the improved worst case performance, the MUBs estima-
tor provides an attractive alternative to previous methods
for estimating the trace of implicit matrices.

4.2 NUMERICAL RESULTS

4.2.1 Example Matrices

Before we demonstrate the use of the MUBs estimator
on example applications we draw the readers attention to
a situation where the traditional methods perform poorly.
This occurs when the values of the matrix A are close to
the ones matrix with a small proportion of the diagonal
values much greater. The most extreme example being
when this small proportion is only one element of the
matrix. Due to the relationship between each of the un-
biased bases this ‘spikiness’ only appears in one of the
n+1 bases and hence the MUBs estimator appears very
robust to the condition.

It is worth noting the reason we observe an order of mag-
nitude improvement in this setting over the competing
methods. The spikes matrix described can be written as
the sum of two rank one matrices. Each of these matrices
will perform very poorly for the unitary estimator in that
basis but gets exactly the correct result in the n other mu-
tually unbiased bases. Naturally as n becomes large and
the number of samples utilised is relatively small, then
we sample the exact result with high probability.

5 10 15 20 25 30 35 40 45 50
Number of Samples

10 2

10 1

100

101

RM
SE

 E
rro

r

Ones matrix with Spikes
Gaussian
Hutchinson
Unit
MUBs

Figure 1: Convergence of the methods when estimating
the trace of a 1000× 1000 ones matrix with 1 diagonal
element replaced with 1001. This ‘spike’ has little effect
of the convergence of the MUBs estimator and hence the
method vastly out performs the others. The experiment
was run 500 times and the mean and standard deviation
have been plotted for each method.

We can generalise this result to low rank matrices more
broadly. Any given rank-m matrix can be written as the
sum of m rank-1 matrices. Figure 2, demonstrates the
convergence of of the stochastic trace estimators to rank-
10 1000× 1000 matrices. These were created by sam-



Estimator V V worst R

Fixed basis n∑
n
i=1 M2

ii−Tr(A)2 (n−1)Tr(A)2 log2(n)

MUBs n
n+1 Tr(A2)− 1

n+1 Tr(A)2 n−1
n+1 Tr(A2) log2(n)+ log2(n+1)

Hutchinson [21] 2
(
Tr(A2)−∑

n
i=1 A2

ii
) 2(n−1)

n Tr(A2) n

Gaussian [22] 2Tr(A2) 2Tr(A2) ∞ for exact; O(n) for fixed
precision

Table 1: Comparison of single shot variance V , worst case single shot variance V worst and number of random bits R
required for commonly used trace estimators and the MUBs estimator.

pling 10 eigenvalues from a standard χ2 distribution and
sampling the first 10 eigenvectors of a Gaussian random
matrix.

5 10 15 20 25 30 35 40 45 50
Number of Samples

10 1

100

RM
SE

 E
rro

r

Low Rank Matrix
Gaussian
Hutchinson
Unit
MUBs

Figure 2: Convergence of the methods when estimating
the trace of a 1000× 1000 rank-10 matrix. The eigen-
values were sampled from a standard χ2-distribution. As
the rank of the matrix is only 1% of the dimensionality of
the space we once again see substantially improved con-
vergence rates. The experiment was run 30 times and the
mean and standard deviation have been plotted for each
method.

4.2.2 Counting Triangles in Graphs

As an example application we will consider counting the
number of triangles in a graph. This is an important prob-
lem in a number of application domains such as identi-
fying the number of ‘friend of a friend’ connections in
a social network which is important for friendship sug-
gestions [23, 24], identifying spam like behaviour [25]
and even identifying thematic structures in the internet
[26]. An efficient method to do this is the Trace Triangle

algorithm [9]. The algorithm is based on a relationship
between the adjacency matrix, A, and the number of tri-
angles for an undirected graph, ∆g,

∆g =
Tr(A3)

6
.

The trace of the adjacency matrix cubed can be sampled
in O(n2) per sample as opposed to being explicitly com-
puted in O(n3). We compared Gaussian, Hutchinson’s,
Unit and MUBs estimators performance at predicting the
number of triangles for the graphs presented in Table 2
and the results of the experiment are presented in Fig-
ure 3. An efficient Python implementation for generat-
ing the MUBs sample vectors in O(n), is available at
www.github.com/OxfordMLRG/traceEst. The
MUBs estimator outperforms each of the classical meth-
ods in all of the experiments, as would be implied by the
theory.

Dataset Vertices Edges Triangles
Arxiv-HEP-th 27,240 341,923 1,478,735
CA-AstroPh 18,772 198,050 1,351,441
CA-GrQc 5,242 14,484 48,260
wiki-vote 7,115 100,689 608,389

Table 2: Datasets used for the comparison of stochastic
trace estimation methods in the counting of triangles in
graphs. All datasets can be found at snap.stanford.
edu/data

4.2.3 Log Determinant of Covariance Matrix

Next, let us consider a common linear algebraic calcula-
tion required in the training of Gaussian processes, de-
terminantal point processes and Gauss Markov random
field modelling to name just a few applications, namely
the log determinant of a kernel matrix.

www.github.com/OxfordMLRG/traceEst
snap.stanford.edu/data
snap.stanford.edu/data
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Figure 3: A comparison of the performance of the stochastic trace estimation methods on the four datasets. The
experiments were performed 500 times each. The solid line indicated the empirical mean absolute relative error and
the the surrounding transparent region indicates one empirical standard deviation of the 500 trials.

The use of stochastic trace estimation to approximate log
determinant calculations of kernel matrices has been well
studied [12, 27, 28] and a range of methods are feasi-
ble. Most notably, polynomial approaches such as trun-
cated Taylor approximations and Chebyshev approxima-
tions [12, 29] have been applied, with the latter achieving
consistently better results. The general concept relies on
the fact that the trace of a matrix is simply the sum of
its eigenvalues and the log determinant is the sum of the
log of its eigenvalues. Stochastic trace estimation aids
us in approximating the sum of the eigenvalues squared,
cubed and so on which we can use in a polynomial ap-
proximation of the log function,

log(x)≈
m

∑
j=0

c jx j → log(|K|)≈
m

∑
j=0

c jTr(K j)

where the constants c j refer to the coefficients of the
polynomial approximation. In practice, the trace of K0 is
simply the dimensionality of the matrix, K1 is the trace
of the explicit matrix and K2 can be found as ∑i, j Ki, j
due to the relationship between the matrix elements and
the Frobenius norm. As such, the approximation error
incurred is only due to the trace of the matrix raised to

three and above.

In order to demonstrate the effect of improved stochastic
trace estimation on log determinant estimations, we sam-
pled 1000 points from a 5-dimensional hypercube uni-
formly at random. These points in turn formed a covari-
ance matrix using an isotropic Gaussian kernel function.
This aimed to emulate a realistic dataset which may be
used by practitioners.

We used a order-6 Chebyshev polynomial approximation
and recorded estimation errors of the relative root mean
squared error (RMSE) for each power of the covariance
matrix. These can be seen in Figure 4. Also plotted is the
estimation error of the log determinant itself, as it com-
pounds both the polynomial approximation error and the
error due to the stochastic trace estimation. A fixed bud-
get of 25 probing vectors was allowed for each of the ap-
proaches. As can be seen in the figure, the error incurred
due to the stochastic trace estimation is non-negligible
and for the higher order estimates the MUBs approach
was achieving improved results in turns of both its ex-
pectation and standard error.
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Figure 4: The performance of estimating the trace of K3, K4, K5, K6 and their combined result in the Chebyshev
polynomial approximation of log(|K|). The experiment we ran 20 times and their expectation and standard error have
been shown above.

5 CONCLUSION

We have introduced a new MUBs sampler for stochastic
trace estimation which combines the efficiency of fixed
basis methods with performance which outperforms the
state of the art methods. We offer both empirical and the-
oretical comparisons to the previously established state
of the art techniques and clearly demonstrate the bene-
fit of using mutually unbiased bases for stochastic linear
algebraic procedures to accelerate machine learning al-
gorithms.
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