Supplementary File:
Data-Dependent Sparsity for Subspace Clustering

Bo Xin
Microsoft Research, Beijing

Yizhou Wang
Peking University

1 INTRODUCTION

This document contains companion information regard-
ing our UAI 2017 submission, including supporting ex-
periments and technical proofs. Note that herein all
equation numbers referencing back to the main submis-
sion document will be be prefixed with an ‘M’ to avoid
confusion, i.e, (M.#) will refer to equation (#) from the
main text. Similar notation differentiates sections, tables,
and figures, e.g., Section M.#.

2 COMPARISONS WITH A/,-SSC
USING SYNTHETIC DATA

The A¢y-SSC algorithm (Yang et al., 2016) attempts to
approximately solve (M.3) by first computing an /1 norm
initialization and then later refining it via iterative hard
thresholding (IHT) iterations (Blumensath and Davies,
2008). However, as we have discussed in Section M.4
and elsewhere in our submission, both the ¢; norm and
IHT iterations are quite sensitive to data correlations, and
the latter may not be able to appreciable improve upon
the former in recovering maximally sparse, subspace-
aligned representations. To the extent that this claim is
true, we would then expect £1-SSC and A¢y-SSC to dis-
play similar performance in difficult practical situations
where such correlation structure is unavoidable.

Indeed an existing experimental paradigm originally
from (Soltanolkotabi and Candes, 2012), and investi-
gated in Section M.4, serves to illustrate this point. In
particular, Figure 1 represents a reproduction of Figure
M.1 under the ideal linear setting (meaning no affine
translations), but with the inclusion of results for A/g-
SSC. Note that the released code from (Yang et al., 2016)
does not directly address affine subspaces, and there is
no standard way of adapting IHT iterations to include
the required equality constraints used with existing meth-
ods (Elhamifar and Vidal, 2013) to handle the affine
model. Hence we restrict our comparisons with Afy-SSC

Wen Gao
Peking University

David Wipf
Microsoft Research, Beijing

to ideal, linear subspaces using released code.! Addition-
ally, we experiment with different threshold values for
the IHT step; however, if this value is set too low, there is
no improvement at all as IHT becomes provably stuck at
the /1-norm based initialization, and if it is set too high,
the performance can actually become worse than just ¢;-
SSC itself. In contrast, for DD-SSC we do not tune any
parameters, and just set « = 10719 to closely enforce
the constraint (see Section M.2), a rather arbitrary de-
fault setting near zero.?

From Figure 1 we observe that with A¢y-SSC, the results
are not much improved beyond that of ¢;-SSC, while
DD-SSC produces considerably lower errors than both
methods. For example, when the subspace intersection
dimension (a measure of problem difficulty as described
in Section M.4) is 8, the error rate of DD-SSC is less than
half that of both ¢/1-SSC and A{,-SSC. This reinforces
our original claim that Afy-SSC may provide negligible
gain over ¢1-SSC in challenging practical conditions, un-
like DD-SSC which consistently supplies an advantage.
And it should be emphasized that this experiment, which
originated from (Soltanolkotabi and Candes, 2012), in-
volves a somewhat ideal, uniform distribution of data
points within subspaces. If we were to introduce further
correlations within or between subspaces, both the /1 so-
lution and IHT iterations can become even less reliable.

3 ADDITIONAL MOTION DATA
EXPERIMENTS

Here we provide additional experiments that reflect real-
world situations involving corrupted and outlying motion
data.

"https://github.com/yingzhenyang/LO-SSC

In fact any small value for o produces the same results,
but av = 0 can lead to some numerical instability upon nearing
convergence because of a potentially ill-conditioned matrix in-
verse. With additional effort however, even this special case can
be technically handled using judicious use of pseudoinverses.

. 0.5 I
2 —=—(,-S5C

S04 |-eALSSC

c DD-SSC

0 L
4 6 8 10

dimension of subspace intersection

Figure 1: Feature detection error as a function of the subspace
intersection dimension ¢. Any possible algorithm cannot have
error below 0.5 on average once ¢t = 10, at which point the two
subspaces merge into one, the problem is no longer identifiable,
and random guessing will achieve a 50% error rate. This plot
corresponds to the ideal setting of Figure M.1 (the affine case is
omitted here because the released code for A¢y-SSC does not
presently handle the additional embedded equality constraint).

3.1 Recovery of Partially Corrupted Trajectories

The Hopkins 155 motion data set contains 156 video se-
quences, each of which has 39-550 data points drawn
from two or three motions (a motion corresponds to a
subspace). Conventionally, subspace clustering works
were evaluated on this data and the performance of most
algorithms achieved nearly perfect segmentation accu-
racy (over 95%). Therefore using this dataset is diffi-
cult to differentiate the ability of different algorithms.
However, as shown in (Rao et al., 2010), many addi-
tional confounding factors can be introduced to this data
set to make it more challenging. These factors include
missing or corrupted trajectories and outlying trajecto-
ries. We have discussed outlier detection on this dataset
in the main text and will focus on dealing with corrupted
trajectories here.

Following the protocol from (Rao et al., 2010), we par-
tially corrupt 12 motion sequences from the Hopkins data
with missing entries, including 9 with 2 motions, and
3 with 3 motions. The corruption rate is between 4%
and 35% of the entries in the data matrix of trajectories.
These entries were manually located and labeled. In the
ground truth image of Figure 2, we illustrate the cor-
rupted positions in a representative data matrix derived
from this set.

For DD-SSC to incorporate such sparse element-wise
corruptions, we simply need to concatenate an identity
matrix of size d + 1 to the original dictionary form-
ing X & [XT,] (where X £ [X;1]] and

Itz [[I, 0(—1)); Oﬂ were introduced in Section M.2)
and update the dimensionality of the sparse prior (M.5)
and hyperparameters accordingly. Nonzero entries in the
expanded -y, vector that correspond with this extra I +
factor will then reflect corrupted entries.

We compared this corruption estimation strategy using
DD-SSC with a competing ¢;-SSC enhancement for
dealing with missing/corrupted entries (Elhamifar and
Vidal, 2013). On average, we achieve a feature detec-
tion error (defined in Section M.4) of 0.029 for DD-SSC
on all these corrupted sequences. As a comparison, the
average detection error of /1-SSC is 0.064. Moreover, in
order to check the estimated positions of the corrupted
entries with respect to the ground truth label, we define
the estimation error as % The average error
of DD-SSC is 11.4% whereas that of ¢1-SSC is 14.2%.
In Figure 2, we illustrate one representative estimation
example. We see that while DD-SSC can successfully
detect most of the corruptions without many false posi-
tive, £1-SSC exhibits many false positives even after we
truncate minor values (those less than 0.0001).

ground truth

estimation of DD-SSC

estimation of 1,-SSC

Figure 2: Estimates of the corrupted positions in a represen-
tative data matrix of Hopkins 155 data set. The data matrix X
is presented as a black rectangle with white pixels indicating
corrupted positions.

3.2 Outlier Detection ROC Curve

In Table M.2, we displayed the the performance of /;-

SSC and DD-SSC using an outlier detection accuracy

defined as % correctly found inliers
total inliers

ature, in Figure 3, we provide an additional, complemen-

tary ROC curve associated with the case where the num-
ber of inliers and outliers are equal (other ROC curves
show a similar pattern).

. Following the liter-

ROC Curves for Outlier Experiment

1
go038 -7
(0] . s ‘
206 -
n ” s
204 I
[0) . -,
=0.2 _-7 [—&SSC AUC=0.67]
ot < ——DD-SSC AUC=1.00
0 L L L L
0 0.2 0.4 0.6 0.8 1

False positive rate

Figure 3: ROC curves for outlier detection.

4 TECHNICAL DETAILS REGARDING
THEOREM 1

For the i-th data point, we begin from an initial weight
vector w(®) = 1 and then proceed to the (¢ + 1)-th itera-
tion by computing

zf-tﬂ) +— arg n%iinij(t”zm s.t.x; = X525
J
w2 Vsa,g), (1)
where the | - | operator is understood to apply element-
wise and

1 q
(2, q) 2 [mj (al + X312 X7) a:j]
(2)

These updates comprise the generalized iterative

reweighted ¢, variant of DD-SSC.

Theorem 1 The DD-SSC updates produced by (1) sat-
isfy the following:

1. If at any iteration we compute a subspace opti-
mal solution zgt) , then all subsequent iterations are
guaranteed to be subspace optimal for any o €

(0, &', provided o/ is sufficiently small.

2. For any identifiable configuration of subspaces,
some ¢ > 1/2, a € (0,d'], and o' sufficiently
small, there will always exist configurations of
points within each subspace such that the iterations
are guaranteed to produce a subspace optimal so-
lution for all 1.

Proof: For convenience we will adopt the notation
f(z) = O(h(e)) to indicate that |f(z)| < C|h(e)| for
some constant C' independent of x or ¢, and f(z) =

Q(h(e)) to indicate that | f(z)| > C|h(e)| for some con-
stant C independent of x or e. Likewise, we say f(z) =
O(h(e)) iff f(x) = O(h(e)) and f(z) = Q(h(e))-

We begin with the first part of the theorem and the fol-

lowing qualification to ensure that n;(z;; o, ¢) is well-
defined even in the limit « — 0. Given that

lim U7 (eI + UUT)_l U=-UuU=U" (UUT)T U
3

for any matrix U, we have that

a—0

t q
i iy (zs00) =[] (X012 XT))|

if x; is in the span of the right singular vectors of
X51Z;|, and

lim 7;(2:; o, q) £ 5)
a—0
otherwise.

Now suppose that for some arbitrary point ; € S we
have computed a subspace optimal solution at any it-
eration ¢t with & € (0,a’]. Then based on the above,

the corresponding weight w](-t) =1 (zz(-t); a, q) will be

©(1) if j indexes a point in the correct subspace, while
w;t) = O(a %) if j is not in the correct subspace (i.e.,
j & Si), where lim, o w!”
iteration we must solve

(t+1)

i

= 0. Therefore at the next

. (t
z — argnélinzwj)|Zij| st.x; = X5z, (6)
J

Based on (Rao and Kreutz-Delgado, 1999), any mini-
mum of (6) can be achieved at a so-called basic feasible
solution satisfying || z;|lo < d (Luenberger and Ye, 1984)
(of which there exist a finite number with points in gen-
eral position, although this is not a strict requirement).
Let 7~ denote the smallest value of 3. |2;;| for any
non-subspace-optimal basic feasible solution, and define

nt = min Z |zij] s.t.ox; = X524, 255 =0, V) ¢ Cy.
" j¢Ck
@)

It then follows that any non-subspace optimal solution to

(6) will have
>owlal 2 37wzl
J J¢Ck

=0 > |zl > O n” = O(a).
JECh

®)

Furthermore, any subspace optimal solution will satisfy

S wlz; = 0t = ©(1) < B(a™))
J

if ' (and therefore any allowable «) are sufficiently
small. This implies that a subspace optimal solution,
with zl(-t-ﬂ) = 0 forall j ¢ Sy, is preserved if o/
(and therefore «) are sufficiently small, otherwise the
weighted /1 norm will be driven to an arbitrarily large
value, possibly infinity. Hence subsequent iterations can
only change the support set within the optimal subspace;
they cannot tarnish an existing subspace optimal solu-
tion.

We now turn to the second part of the theorem. Our
strategy will be to demonstrate that for certain selections
of a and ¢, we can guarantee that reweighted ¢; using
n;(2z:; v, q) is guaranteed to produce a subspace optimal
solution if the columns of X associated with each sub-
space Sy, are sufficiently close together. More precisely,
suppose every column of X originally drawn from Sy
can be expressed as

;= py, + 0 (9), (10)

where p; € Si. In other words, every column within the
k-th subspace can be expressed as a small offset O (4)
from some mean vector u,, that can be made arbitrarily
small as & — 0, which is similar in spirit to a corre-
lated dictionary model from (Wu and Wipf, 2012). We
also assume that ||x;||2 = 1 for all 4. This decision is
not limiting given that we are allowed to choose points
within each subspace per the theorem statement; how-
ever, it is nonetheless not a requirement. This selection
merely simplifies the exposition.

The subspace support ¥z, C {1,2,...,m} is defined
as the set of subspace indices whereby some arbitrary z;
has at least one associated nonzero element. We also let
Cr C {1,2,...,n} denote the set of dictionary column
indices associated with Sy,.

Now consider the ¢-th data point «; assumed to be drawn
from Sy, without loss of generality. If § is sufficiently
small, then after the first iteration (with unit weights) k €
U, o, i.e., the optimal subspace support will be a subset

of the current subspace support. Moreover, it will be the

case that W
>z =140(). (11)
J€Ck
These points are a consequence of the well-known stabil-
ity of the ¢; norm solution to small errors (Candes et al.,
2006) (we may consider the variability O(J) within sub-
spaces as a form of error) and the fact that ¥) = k

when hypothetically di = 1 (the k-th subspacel has di-
mension one) and the subspaces are unique/identifiable.
In other words, the ¢; norm will always locate the maxi-
mally sparse solution if the cardinality of such a solution
is one, and will accurately approximate such solutions
that are sufficiently close.

However with multiple non-degenerate points per sub-
space, it remains likely that a few extraneous subspaces
are also selected with small compensatory coefficients.
These coefficients will be of order O(d). To see this
in the simplest terms, assume that we have adopted the
data corruption model from Section 3.1 such that an addi-
tional identity I has been appended to X, in which case
there will always exist such feasible solutions.> There-
fore any other feasible minimum ¢; norm solution cer-
tainly could not involve larger order coefficients.

For the second iteration we must solve

2 . 1
zl(.) argrré;irlz:wj(-)|Z7;j| st.x; = X522, (12)
J

where

w§1) L [w; (Oz[—‘rXi

2 -1 1
Zi(l)‘ Xj) mj] . (13)

When we choose o = O(9), then for all j within Cy, it
follows that
wi) = O(1). (14)
To see this, note that under the stated conditions
2
X; Zl.(l)’ X = pypl + O(5). In contrast, for all
j ¢ C, we have

wit = (579). (15)

This occurs since @; = pj; + O (§) with k # k for all
j ¢ Cy and

2 -1
Zi(l)‘ X?) B

1 _
= py, (ol + ey +0(0)) pgp =051,

/,Lg (a[—l— X;

(16)

noting that for the subspaces to be identifiable, there will
always be distinct selections such that g, # pz.

We will now compute the weighted ¢; norm of a sub-
space optimal solution and compare it to any other non-
subspace-optimal feasible solution, demonstrating that
it is necessarily smaller. We can always choose points
within S, consistent with the above stipulations and ar-
guments, such that a representation with |z;;| = O (671)
for all j exists and is computable using the appropriate
pseudo-inverse. Therefore a subspace optimal solution
will always exist such that

>owlzl = Y willzyl = 067, an
j

j€Ck
3This assumption can be relaxed, but we avoid additional
details here for the sake of simplicity.

Any other feasible solution, which again will be a basic
feasible solution, must necessarily have nonzero coeffi-
cients in subspaces outside of S. Let ™ () denote the
d-dependent smallest value of 3., |2i;| for any non-
subspace-optimal basic feasible solution. Similar to be-
fore, it follows that any such solution will satisfy

Sl > 3wl
J J¢Chk

=007 Y |zl > 00 I (9).
JECk

(18)

Because we may always pick some ¢ sufficiently large
such that the lower bound from (18) is larger than the
upper bound from (17), a subspace optimal solution will
be produced via (12). Similar analysis applies at subse-
quent updates to ensure that the solution will not change,
completing the proof.

To summarize, the intuition behind the proof is relatively
simple at a high level. If we assume that the data points
are sufficiently clustered within each subspace, then at
the first iteration the regular /; norm solution selects
the correct subspace support with its largest magnitude
coefficients, while the second, weighted iteration prunes
away small spurious coefficients associated with other
subspaces. Note that the proposed algorithm accom-
plishes this without any particular tuning to such a
clustered data model and thus similar results likely hold
in many other cases as well. |

References

T. Blumensath and M.E. Davies. Iterative thresholding for
sparse approximations. J. Fourier Analysis and Applica-
tions, 14(5), 2008.

Emmanuel J Candes, Justin K Romberg, and Terence Tao. Sta-
ble signal recovery from incomplete and inaccurate mea-
surements. Communications on pure and applied mathe-
matics, 59(8):1207-1223, 2006.

E. Elhamifar and R. Vidal. Sparse subspace clustering: Al-
gorithm, theory, and applications. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 35(11):2765—
2781, 2013.

David G Luenberger and Yinyu Ye. Linear and nonlinear pro-
gramming, volume 2. Springer, 1984.

Bhaskar D Rao and Kenneth Kreutz-Delgado. An affine scal-
ing methodology for best basis selection. Signal Processing,
IEEE Transactions on, 47(1):187-200, 1999.

S. Rao, R. Tron, R. Vidal, and Y. Ma. Motion segmentation
in the presence of outlying, incomplete, or corrupted tra-
jectories. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 32(10):1832-1845, 2010.

M. Soltanolkotabi and E. Candes. A geometric analysis of sub-
space clustering with outliers. The Annals of Statistics, 40
(4):2195-2238, 2012.

Yi Wu and David P Wipf. Dual-space analysis of the sparse
linear model. In Advances in Neural Information Processing
Systems, pages 1745-1753, 2012.

Y. Yang, J. Feng, N. Jojic, J. Yang, and T. Huang. ¢y-sparse sub-
space clustering. In Computer Vision—-ECCV 2016. Springer,
2016.

