
A OPTIMIZING VOI VIA SUBMODULAR SURROGATES

We have discussed three orthogonal aspects for the optimal VoI problem, namely, (1) the sampling scheme for hypoth-
esis enumeration, (2) the online learning framework, and (3) the choice of algorithms for optimizing VoI. In this paper
we focus on the first two aspects, and propose a general framework integrating the three components. Inevitably, the
discussion of our algorithmic framework is grounded on existing submodular surrogate-based approaches for the VoI
problem. We give more details of this class of algorithms in this section.

A.1 SUBMODULARITY AND ITS IMPLICATIONS.

The EC2 objective function introduced in §2 is adaptive submodular, and strongly adaptive monotone. Formally, let
xA and xB be two observation vectors. We call xA a subrealization of xB, denoted as xA � xB, if the index set
A ⊆ B and P [xB | xA] > 0. A function f : 2T ×{0,1} → R is called adaptive submodular w.r.t. a distribution P, if for
any xA � xB and any test t it holds that ∆(t | xA) ≥ ∆(t | xB), where ∆(t | xA) := Ext

[
f(xA∪{t})− f(xA) | xA

]
(i.e., “adding information earlier helps more”). Further, function f is called strongly adaptively monotone w.r.t. P, if for
all A, t /∈ A, and xt ∈ {0, 1}, it holds that f(xA) ≤ f(xA∪{t}) (i.e., “adding information never hurts”). For adaptive
optimization problems satisfying adaptive submodularity and strongly adaptive monotonicity, the policy that greedily,
upon having observed xA, selects the test t∗ ∈ arg maxt ∆(t | xA)/c(t), is guaranteed to attain near-minimal cost
[13].

A.2 GENERAL APPROACHES BASED ON SUBMODULAR SURROGATES.

It is noteworthy to mention that our results are not restricted to EC2, and can be readily generalized to settings
where regions are overlapped. In such cases, we can use the DIRECT algorithm [8], and prove something sim-
ilar with Theorem 1: in the upperbound, we get (r · log(1/p̃min) + 1) costwc(OPT) (for the worst-case cost) and
(r · log(1/p̃min) + 1) costav(OPT) + ηc(T) (for the average-case / expected cost), where r measures the amount of
“overlap”. The analysis follows closely from the proof of Theorem 1 in §C. More generally, Theorem 1 (with modified
multiplicative constant) also applies to greedy algorithms whose objective function (1) is adaptive submodular, and (2)
rely on a finite set of hypotheses. Other examples satisfying these conditions include GBS [12] and HEC [16].

Furthermore, since our framework is orthogonal to the choice of the submodular surrogate-based algorithms, we can
also easily extend our analysis to handle the (more) practical setting where test outcomes are noisy. In such settings,
one can no longer “cut-away” edges as suggested by the EC2 algorithm, since with noisy observations one cannot
“eliminate” any of the hypotheses (i.e., setting their probability mass to 0). In practice, after observing the outcome
of a test, we can perform Bayesian updates on the posterior over H instead of eliminating those hypotheses that are
“inconsistent” with the observation. Analogous to the analysis of Theorem 1, we can establish a bound on the worst-
case cost of such greedy policy, based on the recent results of [9]. Since the theoretical question of handling noisy
tests is beyond the scope of this paper, we omit the proof details for this setting.

B IMPLEMENTATION DETAILS OF ALGORITHM 1

In the main paper, we have stated the pseudo code of our dynamic hypothesis enumeration algorithms. Due to space
limit we only provide a concise description of the main idea behind the framework. In this section, we elaborate
Algorithm 1 by providing more intuitions and implementation details, as well as additional clarifications for better
understanding of the algorithm.

The DAG. We use a DAG represents the hypotheses enumeration process, and is not a data structure which we
actually adopted in Algorithm 1. Rather, algorithmically we are maintaining a “candidate frontier” Fy for each hidden
state y, which corresponds to the set of “leaf” hypotheses (i.e., nodes of the DAG which have no outgoing edges),
as a seed set to generate more hypotheses. Algorithm 1 enumerates hypotheses in decreasing order of probabilities
P [h | y]. The directed edges in the DAG indicate the relations between the conditional probabilities: if there is a
directed edge from node h1 to h2 in the DAG, it indicates that P [h1 | y] ≥ P [h2 | y]. Other than this, we do not use
the edge for any other purposes.

Implementation details. In practice, the underlying distributions are often highly concentrated, such that a few
number of hypotheses cover a significant part of the total mass. On the other hand, there are many configurations with
very small (but non-null) probabilities. Algorithm 1 exploits such structural assumption, and generates the most likely
hypotheses in the following four steps:

• Step 1 (line 2):
Test definitions are possibly switched, in a way that P [Xi = 1 | y] ≥ 0.5 ∀i (i.e., when P [Xi = 1 | y] < 0.5,
we consider the complementary event X̄i as the new test outcome so that P

[
X̄i = 1 | y

]
= 1−P [Xi = 1 | y] ≥

0.5); test indices are re-ranked in decreasing order of P [Xi = 1 | y];

• Step 2 (line 3, 4):
For i = 1, . . . , n, compute pi , log(P [Xi = 1 | y]), and qi , log(P [Xi = 0 | y]);

• Step 3 (line 5, 6):
If Fy is empty, initialize Fy with the configuration h1 = [1 . . . 1] with log-weight λy(h1) =

∑
i pi ; set L∗y = ∅.

• Step 4 (line 7-10): while
∑
h∈L∗y exp(λy(h)) < (1− η)

– Step 4a: Choose the element h∗ from Fy such that λy(h∗) is maximum;
– Step 4b: Remove h∗ from Fy and push it into L∗y;
– Step 4c (line 9): Generate (at most) 2 children from h∗ and add them to Fy if they were not already present

in Fy .

In the main paper, we have given detailed description of how to generate the two children configurations (hc1 and hc2)
in Step 4c. We provide some additional insight to facilitate better understanding of the procedure:

• Child 1: Once we have re-ranked the tests in decreasing order of P [X = 1 | y] in Step 1, the last test in the ordered
list will have the smallest probability (conditioning on y) of being realized to its more likely outcome, and hence
is the most uncertain one. If follows that if we flip the outcome of such test, we will generate a new hypothesis
h with the highest P [h | y] among the unseen hypotheses. The first child is generated exactly in this way: if the
last (right-most) bit of h∗ is 1, we then create hc1 by switching the last bit to 0. For instance, the child hypothesis
hc1 of h∗ = [0, 1, 1, 0, 1] is [0, 1, 1, 0, 0]. Its log-probability is obtained by λy(hc1) = λy(h∗) + qn − pn.

• Child 2: Besides flipping the last bit, the next most-likely hypothesis can also be the one with two bit edits of
an existing hypothesis: Find the right-most “[1, 0]” pair in h∗ (if there exists any; otherwise we do nothing), and
the create hc2 by switching “[1, 0]” into “[0, 1]”. For instance, the child hypothesis hc2 of h∗ = [0, 1, 1, 0, 1] is
[0, 1, 0, 1, 1]. Its associated log-probability is computed by λy(hc2) = λy(h∗) + qi − pi + pi+1 − qi+1, where i
is the bit index of the “1” in the right-most “[1, 0]” pair.

C PROOFS OF THE MAIN THEOREMS

C.1 PROOF OF THEOREM 1

In this section, we provide proofs for the upper bounds on the cost of Algorithm 2. In the analysis, we assume that we
only sample the hypotheses once in the beginning of each experiment (i.e., we don’t resample after each iteration).

Proof. The main idea of the proof is illustrated in Fig. 6.

Bound on the expected cost We first prove the upper bound on the expected cost of the algorithm. We use p to
denote the true distribution over the hypotheses h ∈ H, and p̃ be the sampled distribution. That is, p(h) = P [h], and

p̃(h) =

{
P [h] /(1− η), for h ∈ H̃;

0, otherwise.
(2)

OPTp
g
H̃ p⇤H̃

H̃H

Figure 6: Depicting the main idea behind the proof. We introduce π∗H̃ (the optimal policy on the sampled distribution)
as an auxiliary policy to connect πgH̃ with OPT. If the realized hypothesis h∗ ∈ H̃, then πgH̃ efficiently identifies the
decision. Otherwise, (with probability at most η) πgH̃ randomly chooses tests, and the cost can be at most c(T).

For any policy π, let costp̃(π) , Eh∼p̃(h)[c(S(π, h))] denote the expected cost of π w.r.t. p̃. Then, the expected cost
of π w.r.t. the true distribution p satisfies

cost(π) =
∑
h∈H

p(h)c(S(π, h))

=
∑
h∈H̃

p(h)c(S(π, h)) +
∑

h∈H\H̃
p(h)c(S(π, h))

Eq. (2)
= (1− η)

∑
h∈H̃

p̃(h)c(S(π, h)) +
∑

h∈H\H̃
p(h)c(S(π, h))

= (1− η) costp̃(π) +
∑

h∈H\H̃
p(h) c(S(π, h))︸ ︷︷ ︸

≤c(T)

(3)

≤ (1− η) costp̃(π) + η · c(T). (4)

The second term on the RHS of Eq. (3) is non-negative, which gives

(1− η) costp̃(π) = cost(π)−
∑

h∈H\H̃
p(h)c(S(π, h))

≤ cost(π) (5)

Let π∗p̃ be the optimal policy w.r.t. the sampled distribution p̃. By Theorem 3 of [13] we get

costp̃

(
πgH̃

)
≤ (2 ln (1/p̃min) + 1) costp̃

(
π∗H̃
)
. (6)

Therefore,

cost(πgH̃)
Eq. (4)
≤ (1− η) costp̃(π

g

H̃) + η · c(T)

Eq. (6)
≤ (1− η) (2 ln (1/p̃min) + 1) costp̃

(
π∗H̃
)

+ η · c(T).

By definition we know costp̃

(
π∗H̃

)
≤ costp̃(OPT). Hence

cost(πgH̃) ≤ (1− η) (2 ln (1/p̃min) + 1) costp̃(OPT) + η · c(T)

Eq. (5)
≤ (2 ln (1/p̃min) + 1) cost(OPT) + η · c(T),

which completes the first part of the proof.

Bound on the worst-case cost. Next, we provide the proof for bound on the worst-case cost. Analogous to the
previous analysis, we consider two possible scenarios: (i) the realized hypotheses (i.e., the full realization vector)
h∗ ∈ H̃; and (ii) h∗ /∈ H̃.

For any policy π, the worst-case cost of π satisfies

costwc(π) = max
h∈H

c(S(π, h))

= max{max
h∈H̃

c(S(π, h)), max
h∈H\H̃

c(S(π, h))}.

Since policy πgH̃ terminates if there is no edge left on H̃, then maxh∈H\H̃ c(S(π, h)) ≤ maxh∈H̃ c(S(π, h). Therefore,

costwc(π
g

H̃) = max
h∈H̃

c
(
S
(
πgH̃, h

))
(a)
≤ (2 ln (1/p̃min) + 1) max

h∈H̃
c
(
S
(
π∗H̃, h

))
≤ (2 ln (1/p̃min) + 1) max

h∈H
c (S (OPT, h)) .

Step (a) in the above equation follows from Theorem A.12 of [12].

Therefore, when πgH̃ terminates, with probability at least 1 − η, it succeeds to output the correct decision with cost
(2 ln (1/p̃min) + 1) costwc(OPT).

C.2 PROOF OF THEOREM 2

In this section, we prove the bound on the expected regret of our online learning algorithm.

Proof of Theorem 2. One way to model the non-myopic value of information problem is to view it as a (finite horizon)
Partially Observable Markov Decision Process (POMDP), where each (belief-) state represents the selected tests and
observed outcome of each test. Formally, the POMDP can be written as

M ,
(
B, T , RM , PM , τ, ρ

)
. (7)

Here, B is the set of belief states, T is the set of actions (i.e., tests), RMt (b) is the (expected) reward associated with
action t while in belief state b, PMt (b′ | b) denotes the probabiliy of transitioning to state b′ if action t is selectedwhile
in state b, τ is the time horizon for each session, and ρ is the initial belief state distribution.

In our problem, the transition probabilities PM can be fully specified by the conditional probabilities of the test out-
comes given the hidden state P [xt | y]; the prior distribution ρ on belief states can be specified by the prior distribution
on the hypotheses P [y], and P [xt | y]. The reward RM for running a policy π on M is the utility achieved upon ter-
mination of the policy. More specifically, we can interpret the reward function RM as follows: we get reward 0 as
the policy keeps selecting new tests, but get (expected) reward VoI(S(π, h)) , maxd∈D Eh[u(h, d) | S(π, h)] if the
policy terminates upon observing S(π, h) and suggests a decision. The reward function measures the expected (total)
utility one can get by making a decision after running policy π.

We now consider running Algorithm 3 over k sessions of fixed duration τ . Following the previous discussion, the
problem is equivalent to learning to optimize a random finite horizon POMDP of length τ in k repeated episodes of
interaction. To establish the regret bound of Theorem 2, we need the following result:

Theorem 3 (Theorem 1 of [24]). Consider the problem of learning to optimize a random finite horizon (PO)MDP
M =

(
B, T , RM , PM , τ, ρ

)
in k repeated episodes, and consider running the following algorithm: at the start of

each episode it updates the prior distribution over the MDP and takes one sample from the posterior, and then follows
the policy that is optimal for this sampled MDP. For any prior distribution on the MDPs, it holds that

E[Regret(k, τ)] = O
(
τ |B|

√
kτ |T | log(kτ |B||T |)

)
.

Theorem 3 implies that the posterior sampling strategy as employed in Algorithm 3 allows efficient learning of the
MDP, given that one can find the optimal policy for the sampled MDP at each episode. However, since finding the
optimal policy is NP-hard, in practice we can only approximate the optimal policy. In Algorithm 3, we consider
running the greedy policy (i.e., Algorithm 2) in each episode to solve the sampled MDP:

Corollary 4. Let M be a sampled MDP, and cwcOPT be the worst-case cost of the optimal algorithm on M . Consider
running Algorithm 2 for τ = (2 ln(1/δ) + 1) cwcOPT steps. Then, with probability at least 1− η, it achieves the optimal
VoI on M .

Proof of Corollary 4. By Theorem 1, we know that the greedy policy finds the target decision region with probability
at least 1 − η. Furthermore, by definition we know that each decision region Rd = {h : U(d | h) = VoI(h)}
represents an optimal action for any of its enclosed hypotheses. In other words, a policy that successfully outputs a
decision region achieves the optimal VoI.

Denote the optimal policy on the sampled MDP in episode i as OPTi. From Corollary 4, we know that Algorithm 2
achieves optimal utility with probability at least 1− η . Hence, the expected “regret” of Algorithm 2 over OPTi is

Reg(Algorithm 2)
(a)
≤ (1− η) · 0 + η · 1 = η. (8)

Here, Step (a) is due to the fact that the utility is normalized so that U ∈ [0, 1]. Note that Reg(Algorithm 2) in Equation
(8) refers to the difference between the value of Algorithm 2 and the value of the optimal policy on the sampled MDP
(not the optimal policy for the true MDP). In other words, the price of not following the optimal policy is at most η.

By Theorem 3, we know that following OPTi for episode i achieves expected regretO
(
τ |B|

√
kτ |T | log(kτ |B||T |)

)
.

Further, we know that the price of approximating the optimal policy at episode i is at most η. Combining these two
results we get

E[Regret(k, τ)] = O
(
τ |B|

√
kτ |T | log(kτ |B||T |)

)
+

k∑
i=1

η

= O
(
τ |B|

√
kτ |T | log(kτ |B||T |) + ηk

)
,

where |B| = S represents the number of the belief states, |T | = n represents the number of tests. Hence it completes
the proof.

D ADDITIONAL RESULTS

In §3.3 of the main paper (i.e., Upper Bounds on the Cost), we have provided upper bounds on the expected/worst-case
cost of the greedy policy w.r.t. non-adaptively sampled prior. In this section, we provide preliminary results for the
case with adaptive re-sampling, where we constantly maintain a 1− η coverage on posterior distribution overH.

D.1 LOWER BOUND ON THE EXPECTED EC2 UTILITY

Theorem 5. Let k, ` be positive integers8, f be the EC2 objective function, πgH̃,[`] be the greedy policy with budget `

on H̃, and π∗H,[k] be the optimal policy that achieves the maximal expected utility under budget k onH, Then,

favg

(
πgH̃,[`]

)
≥
(

1− e−`/k
)
favg

(
π∗H,[k]

)
− kε,

where ε = 2η
(

1−
(
1
k

)`)
, and favg(π) , Eh[f(S(π, h))] denotes the expected utility of running policy π w.r.t. the

original distribution.

8If we assume unit cost for all tests, then k, ` are the number of tests selected. Otherwise, with non-uniform test costs, k, ` are
the budget on the cost of selected items.

Note that the above result applies to the EC2 algorithm with adaptive-resampled posteriors at each iteration. The
additive term kε on the RHS is due to the incompleteness of the samples provided by the sampling algorithm. The
main intuition behind the proof is that, due to the effect of resampling, the expected one-step gain of the greedy policy
πgH̃,[`] on the sampled distribution suffers a small loss at each iteration, comparing to the greedy algorithm on the true
distribution. The loss will be accumulated after ` rounds, leading to a cumulative loss of up to kε in the lower bound.

We defer the proof of Theorem 5 to the next subsection (§D.2). In the following we show that an additive term is
necessary in the lower bound. That is, we cannot remove the additive term (for example, we cannot push it into the
multiplicative term involving 1− e−`/k).

Suppose the hidden state take two values y1, y2 and there are two test t1, t2. Let η = 0.1. The conditional probabilities
for the test outcomes are as follows: p(t1 = 1 | y1) = p(t1 = 1 | y2) = 1, p(t2 = 1 | y1) = 0.001, p(t2 = 1 | y2) = 0.
There are only two hypotheses with non-zero probability, i.e., h1 = (1, 0) and h2 = (1, 1). Further assume there are
two distinct decisions d1, d2 that are optimal for hypotheses h1 is h2 respectively.

However, the sampler will output only one hypothesis h1 = (1, 0), since p(h1 | y1) > 1− η and p(h2 | y2) > 1− η.
Assume that we further add infinitely many “dummy tests”, i.e., for all t in this set, p(t = 1 | y) = 0 for all y. Then
the greedy algorithm will choose those tests with high probability, since the gain for all tests over H̃ is 0; whereas a
smarter algorithm will pick test t2, because we can identify the target region (and hence obtain a positive gain) upon
observing its outcome.

D.2 PROOF OF THEOREM 5

Assume that the cumulative probability of the enumerate hypotheses is at least 1−η, i.e., using our sampling algorithm
we enumerate 1− η fraction of the total mass.

Denote the set of sampled hypotheses by H̃, and the expected gain of test t on H̃ by ∆H̃(t | ·). Suppose we run the
greedy algorithm based on H̃. We want to show that the following lemma holds:

Lemma 6. Suppose H̃ ⊆ H and p(H̃,xA) ≥ (1 − η)p(H,xA). Let t̃ , arg maxt ∆H̃(t | xA) be the test with the
maximal gain on H̃ in the EC2 objective function. Then for any test t, it holds that

∆H(t̃ | xA) ≥ ∆H(t | xA)− 2ηp(xA)2.

That is, the test t̃ which achieves the maximal gain on H̃ will achieve a gain onH which is no less than ε , 2ηp(xA)2

below the maximal gain of any test. In the following we provide the proof of Lemma 6.

Proof. Clearly, if we can show that for any test t, the gain of t over H̃ and the gain of t overH are at most ε apart, i.e.,

∆H(t | xA) ≤ ∆H̃(t | xA) + ε, (9)

then we know that ∆H(t∗ | xA) ≤ ∆H̃(t∗ | xA) + ε ≤ ∆H̃(t̃ | xA) + ε.

In the following, we show that inequality (9) holds.

The conditional expected gain of test t over observed tests xA is

∆H̃(t | xA) = E[δH̃(xt | xA)]

= p(xt = 1 | xA)δH̃(xt = 1 | xA) + p(xt = 0 | xA)δH̃(xt = 0 | xA).

Here δH̃(xt | xA) denotes the conditional benefit of test t if its outcome is realized as xt. Note that we can compute
the probability terms p(xt = 1 | xA) and p(xt = 0 | xA) exactly from the CPT {θij}n×m via Bayesian update,

i.e., p(xt | xA) =
∑
y p(xt, y | xA) =

∑
y p(y)p(xA|y)p(xt|y)∑

y p(y)p(xA|y)
. What remains to be approximated is the gain for each

specific realization. For EC2 object function, the gain of observing xt over hypothesis setH after having observed xA
is

δH(xt | xA) =
∑
i>j

(p(Ri,xA)p(Rj ,xA)− p(Ri,xA, xt)p(Rj ,xA, xt)),

whereRi represent the set of hypotheses in region / equivalence class i.

We define short-hand notation γi := p(Ri \ R̃i,xA), where R̃i denotes the sampled hypotheses of the ith decision
region. The difference in the gain of t overH and H̃ can be expressed as

δH(xt | xA)− δH̃(xt | xA)

=
∑
i>j

(
p(Ri,xA)p(Rj ,xA)− p(R̃i,xA)p(R̃j ,xA)

)
−

∑
i>j

(p(Ri,xA, xt)p(Rj ,xA, xt)− p(R̃i,xA, xt)p(R̃j ,xA, xt)
)

≤
∑
i>j

(p(Ri,xA)p(Rj ,xA)− p(R̃i,xA)p(R̃j ,xA)
)

=
∑
i>j

((
p(R̃i,xA) + γi

)(
p(R̃j ,xA) + γj

)
− p(R̃i,xA)p(R̃j ,xA)

)
=
∑
i>j

(
γi

(
γj + p(R̃j ,xA)

)
+ γjp(R̃i,xA)

)
=
∑
i>j

(
γip(Rj ,xA) + γjp(R̃i,xA)

)
≤
∑
i

γi
∑
j

p(Rj ,xA) +
∑
j

γj
∑
i

p(R̃i,xA).

By the definition of γi we know that

∑
i

γi = p

(⋃
i

(
Ri \ R̃i

)
,xA

)
(a)
= p

((⋃
i

Ri \
⋃
i

R̃i
)
,xA

)
= p

(
H \ H̃,xA

)
≤ ηp(xA).

Step (a) is because of the assumption thatRi’s do not overlap. Hence,

∆H(t | xA)−∆H̃(t | xA) = E[δH̃(xt | xA)]

≤ ηp(xA)
∑
j

p(Rj ,xA) + ηp(xA)
∑
i

p(R̃i,xA)

≤ 2ηp(xA)2. (10)

Combining Equation (9) and (10) we finish the proof.

Next, we provide the proof of Theorem 5 using the Lemma 6.

Proof of Theorem 5. The key of the proof is to bound the one-step gain of the policy πgH̃,[`].

favg(π
g

H̃,[i+1]
)− favg(πgH̃,[i])

Lemma 6
≥ E

[
max
t

(∆(t | xA))− 2η
]

(a)
≥ E

[
∆(π∗H,[k] | xA)

k
− 2η

]

= E

[
favg(π

∗
H,[k]@π

g

H̃,[i])− favg(π
g

H̃,[i])

k
− 2η

]
(b)
≥ E

[
favg(π

∗
H,[k])− favg(π

g

H̃,[i])

k
− 2η

]
.

Here π∗H,[k]@π
g

H̃,[i] denotes the concatenated policy of π∗H,[k] and πgH̃,[i] (i.e., we first run πgH̃,[i], and then run π∗H,[k]
from scratch, ignoring the observations made by πgH̃,[i]).

The proof structure follows closely from the proof of Theorem A.10 in [12]: Step (a) follows from from the adaptive
submodularity of f , and step (b) is due to monotonicity of favg . Define ∆i := favg(π

∗
H,[k]) − favg(π

g

H̃,[i]), from the

above equation we get ∆` ≤
(
1− 1

k

)l
∆0 +

∑l
i=0

(
1− 1

k

)i
. Hence, favg

(
πgH̃,[`]

)
≥
(
1− e−`/k

)
favg

(
π∗H,[k]

)
−

2kη
(

1−
(
1
k

)`)
.

