
A Row-rank properties of SA

To ensure the right pseudo-inverse is well-defined in Sec-
tion 5, we show that the projected matrix SA is full
row-rank with high probability, if A has sufficiently high
rank. We know that the probability measure of row-rank
deficient matrices for S has zero mass. However in the
following, we prove a stronger and practically more use-
ful claim that SA is far from being row-rank deficient.
Formally, we define a matrix to be δ-full row-rank if there
is no row that can be replaced by another row with dis-
tance at most δ to make that matrix row-rank deficient.

Proposition 2. Let S ∈ Rk×d be any Gaussian matrix
with 0 mean and unit variance. For rA = rank(A) and
for any δ > 0, SA is δ-full row-rank with probability at
least 1− exp(−2 (rA(1−0.8δ)−k)2

rA
).

Proof. Let A = UΣV> be the SVD for A. Since U
is an orthonormal matrix, S′ = SU has the same dis-
tribution as S and the rank of SA is the same as S′Σ.
Moreover notice that the last d − rA columns of S′ get
multiplied by all-zero rows of Σ. Therefore, in what
follows, we assume we draw a random matrix S′ ∈
Rk×rA (similar to how S is drawn), and that Σ ∈ RrA×rA
is a full rank diagonal matrix. We study the rank of S′Σ.

Consider iterating over the rows of S′, the probability
that any new row is δ-far from being a linear combination
of the previous ones is at least 1 − 0.8δ. To see why, as-
sume that you currently have i rows and sample another
vector v with entries sampled i.i.d. from a standard Gaus-
sian as the candidate for the next row in S′. The length
corresponding to the projection of any row S′j: onto v,
i.e., S′j:v ∈ R, is a Gaussian random variable. Thus, the
probability of the S′j:v being within δ is at most 0.8δ.
This follows from the fact that the area under probability
density function of a standard Gaussian random variable
over [0, x] is at most 0.4x, for any x > 0.

This stochastic process is a Bernoulli trial with success
probability of at least 1−0.8δ. The trial stops when there
are k successes or when the number of iterations reaches
rA. The Hoeffding inequality bounds the probability of
failure by exp(−2 (rA(1−0.8δ)−k)2

rA
).

B Alternative iterative updates

In addition to the proposed iterative algorithm using a
left-sided sketch of A, we experimented with a variety of
alternative updates that proved ineffective. We list them
here for completeness.

We experimented with a variety of iterative updates. For
a linear system, Aw = b, one can iteratively update us-

ing wt+1 = wt + α(b − Awt) and wt will converge
to a solution of the system (under some conditions). We
tested the following ways to use sketched linear systems.

First, for the two-sided sketched A, we want to solve for
SLAS>Rw = SLb. If Ãt = SLAtS

>
R is square, we can

use the iterative update

Ãt+1 = Ãt +
1

t+ 1

(
SLet(SRdt)

> − Ãt

)
b̃t+1 = b̃t +

1

t+ 1

(
rt+1SLet − b̃t

)
wt+1 = wt + αt(b̃t+1 − Ãt+1wt)

= wt + αt(SLbt+1 − SLAt+1S
>
Rwt)

and use w for prediction on the sketched features. An-
other option is to maintain the inverse incrementally, us-
ing Sherman-Morrison

ad = d>t S>RÃ
−1

t

au = Ã
−1

t SLet

Ã
−1

t = Ã
−1

t −
auad

1 + d>t au

b̃t = b̃t +
rt+1SLet − b̃t

t

w = Ã
−1

t b̃t

If SLAS>R is not square (e.g., SR = I), we instead
solve for S>LSLAS>RSRw = S>LSLb, where applying
S>L provides the recovery from the left and SR the re-
covery from the right.

Second, with the same sketching, we also experimented
with S†L, instead of S>L for the recovery, and similarly for
SR, but this provided no improvement.

For this square system, the iterative update is

wt+1 = wt + αtS
†
L(b̃t+1 − Ãt+1SRwt)

= wt+1 + αtS
†
L(SLbt+1 − SLAt+1S

>
RSRwt)

for the same b̃t and Ãt which can be efficiently kept
incrementally, while the pseudoinverse of SL only needs
to be computed once at the beginning.

Third, we tried to solve the system S>LSLAw = b,
using the updating rule wt+1 = wt + αt(bt+1 −
S>LSLAt+1wt), where the matrix SLAt+1 can be in-
crementally maintained at each step by using a simple
rank-one update.

Fourth, we tried to explicitly regularize these iterative
updates by adding a small step in the direction of δtet.

In general, none of these iterative methods performed
well. We hypothesize this may be due to difficulties in

choosing stepsize parameters. Ultimately, we found the
sketched updated within ATD to be the most effective.

C Experimental details

Mountain Car is a classical episodic task with the goal
of driving the car to the top of mountain. The state is
2-dimensional, consisting of the (position, velocity) of
the car. We used the specification from (Sutton & Barto,
1998). We compute the true values of 2000 states, where
each testing state is sampled from a trajectory generated
by the given policy. From each test state, we estimate the
value—the expected return—by computing the average
over 1000 returns, generated by rollouts. The policy for
Mountain Car is the energy pumping policy with 20%
randomness starting from slightly random initial states.
The discount rate is 1.0, and is 0 at the end of the episode,
and the reward is always −1.

Puddle World Boyan & Moore (1995) is an episodic task,
where the goal is for a robot in a continuous gridworld
to reach a goal state within as fewest steps as possible.
The state is 2-dimensional, consisting of (x, y) positions.
We use the same setting as described in (Sutton & Barto,
1998), with a discount of 1.0 and -1 per step, except
when going through a puddle that gives higher magni-
tude negative reward. We compute the true values from
2000 states in the same way as Mountain Car. A simple
heuristic policy choosing the action leading to shortest
Euclidean distance with 10% randomness is used.

Acrobot is a four-dimensional episodic task, where the
goal is to raise an arm to certain level. The reward is −1
for non-terminal states and 0 for goal state, again with
discount set to 1.0. We use the same tile coding as de-
scribed in (Sutton & Barto, 1998), except that we use
memory size 215 = 32, 768. To get a reasonable pol-
icy, we used true-online Sarsa(λ) to go through 15000
episodes with stepsize α = 0.1/48 and bootstrap param-
eter λ = 0.9. Each episode starts with a slight random-
ness. The policy is ε−greedy with respect to state value
and ε = 0.05. The way we compute true values and gen-
erate training trajectories are the same as we described
for the above two domains.

Energy allocation (Salas & Powell, 2013) is a continuing
task with a five-dimensional state, where we use the same
settings as in Pan et al. (2017). The matrix A was shown
to have a low-rank structure (Pan et al., 2017) and hence
matrix approximation methods are expected to perform
well.

For radial basis functions, we used format k(x, c) =

exp(− ||x−c||
2
2

2σ2) where σ is called RBF width and c
is a feature. On Mountain Car, because the position

and velocity have different ranges, we set the band-
width separately for each feature using k(x, c) =
exp(−((x1−c1

0.12r1
)2 + (x2−c2

0.12r2
)2)), where r1 is the range of

the first state variable and r2 is the range of second state
variable.

In Figure 4, we used a relatively rarely used representa-
tion which we call spline feature. For sample x, the ith
spline feature is set to 1 if ||x − ci|| < δ and otherwise
set as 0. The centers are selected in exactly the same way
as for the RBFs.

Parameter optimization. We swept the following
ranges for stepsize (α), bootstrap parameter (λ), regular-
ization parameter (ηt), and initialization parameter ξ for
all domains:

1. α ∈ {0.1× 2.0j |j = −7,−6, ..., 4, 5} divided by l1
norm of feature representation, 13 values in total.

2. λ ∈ {0.0, 0.1, ..., 0.9, 0.93, 0.95, 0.97, 0.99, 1.0},
15 values in total.

3. η ∈ {0.01 × 2.0j |j = −7,−6, ..., 4, 5} divided by
l1 norm of feature representation, 13 values in total.

4. ξ ∈ {10j |j = −5,−4.25,−3.5, ..., 2.5, 3.25, 4.0},
13 values in total.

To choose the best parameter setting for each algorithm,
we used the sum of RMSE across all steps for all the
domains Energy allocation. For this domain, optimizing
based on the whole range causes TD to pick an aggres-
sive step-size to improve early learning at the expense of
later learning. Therefore, for Energy allocation, we in-
stead select the best parameters based on the sum of the
RMSE for the second half of the steps.

For the ATD algorithms, as done in the original paper, we
set αt = 1

t and only swept the regularization parameter
η, which can also be thought of a (smaller) final step-
size. For this reason, the range of η is set to 0.1 times the
range of α, to adjust this final stepsize range to an order
of magnitude lower.

Additional experimental results. In the main paper,
we demonstrated a subset of the results to highlight con-
clusions. For example, we showed the learning curves
and parameter sensitivity in Mountain Car, for RBFs and
tile coding. Due to space, we did not show the corre-
sponding results for Puddle World in the main paper;
we include these experiments here. Similarly, we only
showed Acrobot with RBFs in the main text, and include
results with tile coding here.

0 2 4 6 8 10 12 14
Alpha/Eta

0

10

20

30

70

80

90

Root
 Mean
Square
Error

LSTD ATD-P
ATD-SVD

TD(0)

LSTD-P

LSTD-L

ATD-L

TD

(a) Puddle World, tile coding, k = 50

0 1000 2000 3000 4000 5000
Steps

0

10

20

50

60

Root
 Mean
Square
Error

LSTD

LSTD-L

ATD-SVD

ATD-P

TD

TD(0)

LSTD-P

ATD-L

(b) Puddle World, RBF, k = 50

0 2 4 6 8 10 12 14
Alpha/Eta

10

20

30

40

80

90

100

Root
 Mean
Square
Error

ATD-SVD

LSTD-L

ATD-P LSTD-P

TD
TD(0)

ATD-L

(c) Puddle World, tile coding, k = 50

0 2 4 6 8 10 12 14
Alpha/Eta

0

10

20

30

70

80

90

 Root
 Mean
Square
 Error

LSTD
LSTD-L

LSTD-P

TD(0)

ATD-SVD

ATD-L

ATD-P

TD

(d) Puddle World, RBF, k = 50

Figure 6: The two sensitivity figures
are corresponding to the above two
learning curves on Puddle World do-
main. Note that we sweep initial-
ization for LSTD-P, but keep ini-
tialization parameter fixed across all
other settings. The one-side projec-
tion is almost insensitive to initializa-
tion and the corresponding ATD ver-
sion is insensitive to regularization.
Though ATD-SVD also shows insen-
sitivity, performance of ATD-SVD is
much worse than sketching methods
for the RBF representation. And, one
should note that ATD-SVD is also
much slower as shown in the below
figures.

0 1000 2000 3000 4000 5000
Steps

0

10

20

30

70

80

90

Root
 Mean
Square
Error

ATD-L
ATD-SVD LSTD

TD

LSTD-L

ATD-P

LSTD-P
TD(0)

(a) Mountain Car, Tile coding, k = 25

0 1000 2000 3000 4000 5000
Steps

0

10

20

30

40

50

60

70

80

90

LSTDATD-SVD ATD-L

LSTD-P

TD(0)

ATD-P

TD

(b) Mountain Car, Tile coding, k = 50

0 1000 2000 3000 4000 5000
Steps

0

10

20

30

70

80

90

Root
 Mean
Square
Error

LSTD-P

TD
LSTD-L

ATD-L
ATD-SVD LSTD

TD(0)

ATD-P

(c) Mountain Car, Tile coding, k = 75

Figure 7: Change in performance when increasing k, from 25 to 75. We can draw similar conclusions to the same
experiments in Puddle World in the main text. Here, the unbiased of ATD-L is even more evident; even with as low a
dimension as 25, it performs similarly to LSTD.

0 1000 2000 3000 4000 5000
Steps

0

10

20

50

60

Root
 Mean
Square
Error

ATD-P

TD

TD(0)

LSTD-LATD-SVD

ATD-L

LSTD-P

(a) Acrobot, tile coding, k = 50

0 2 4 6 8 10 12 14
Alpha/Eta

0

10

20

60

70

80

Root
 Mean
Square
Error

LSTD-P

ATD-SVD
LSTD-L

ATD-P

TD

TD(0)

ATD-L

(b) Acrobot, tile coding, k = 50

0 2 4 6 8 10 12 14
Alpha/Eta

0

10

20

60

70

80

Root
 Mean
Square
Error

TD

ATD-P

ATD-L LSTD-L

ATD-SVD

LSTD-P

TD(0)

(c) Acrobot, RBF, k = 75

Figure 8: Additional experiments in Acrobot, for tile coding with k = 50 and for RBFs with k = 75.

