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1 ADMM-Based Algorithms

1.1 Detailed Derivation of Solving A

Given H ∈ RK×K where Hij = 〈fi, f̂j〉, the sub-problem defined over A is

minA λDφ(A, I)− 〈P,A〉 − 〈Q>,A〉+ ρ
2‖H−A‖2F + ρ

2‖H
> −A‖2F . (1)

Dφ(A, I) has three cases, which we discuss separately.
When Dφ(A, I) is the squared Frobenius norm, the problem becomes

minA λ‖A− I‖2F − 〈P,A〉 − 〈Q>,A〉+ ρ
2‖H−A‖2F + ρ

2‖H
> −A‖2F . (2)

Taking the derivative and setting it to zero, we get the optimal solution for A:

A = (2λI + P + Q> + ρ(H + H>))/(2λ+ 2ρ). (3)

When Dφ(A, I) is the log-determinant divergence, the problem is specialized to

minA λ(tr(A)− log det(A))− 〈P,A〉 − 〈Q>,A〉+ ρ
2‖H−A‖2F + ρ

2‖H
> −A‖2F

s.t. A � 0
(4)

Taking the derivative of the objective function w.r.t A and setting it to zero, we get

A2 + 1
ρ (λI−P−Q> − ρ(H + H>))A− λ

ρ I = 0. (5)

Let B = 1
ρ (λI−P−Q> − ρ(H + H>)), C = −λρ I, Eq.(5) can be written as

A2 + BA + C = 0. (6)

According to (Higham and Kim, 2001), since B and C commute, the solution of this equation is

A = − 1
2B + 1

2

√
B2 − 4C. (7)

Taking an eigendecomposition of B = ΦΣΦ−1, we can compute A as A = ΦΣ̂Φ−1, where Σ̂ is a diagonal matrix
with

Σ̂kk = −1

2
Σkk +

1

2

√
Σ2
kk +

4λ

ρ
.

Since
√

Σ2
kk + 4λ

ρ > Σkk, we know Σ̂kk > 0. Hence A is positive definite.
When Dφ(A, I) is the von Neumann divergence, the problem becomes

minA λtr(A log A−A)− 〈P,A〉 − 〈Q>,A〉+ ρ
2‖H−A‖2F + ρ

2‖H
> −A‖2F

s.t. A � 0
(8)
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Setting the gradient of the objective function w.r.t A to zero, we get

λ log A + 2ρA = P + Q> + ρ(H + H>). (9)

Let D = P + Q> + ρ(H + H>). We perform an eigendecomposition of D = ΦΣΦ−1 and parameterize A as
A = ΦΣ̂Φ−1, then we obtain

λ log A + 2ρA = Φ(λ log Σ̂ + 2ρΣ̂)Φ−1. (10)

Plugging this equation into Eq.(9), we get the following equation:

λ log Σ̂ + 2ρΣ̂ = Σ (11)

which amounts to solving K independent one-variable equations taking the form

λ log Σ̂ii + 2ρΣ̂ii = Σii (12)

where i = 1, · · · ,K. This equation has a closed-form solution:

Σ̂ii =
λω(Σii

λ − log( λ2ρ ))

2ρ
(13)

where ω(·) is the Wright omega function Gorenflo et al. (2007). Due to the presence of log, Σ̂ii is required to be
positive and the solution always exists since the range of λ log Σ̂ii + 2ρΣ̂ii and Σii are both (−∞,∞). Hence A is
guaranteed to be positive definite.

1.2 ADMM-Based Algorithm for BMD-KSC
BMD-KSC has two set of parameters: sparse codes {an}Nn=1 and a dictionary of RKHS functions {fi}Ki=1. We use a
coordinate descent algorithm to learn these two parameter sets, which iteratively performs the following two steps: (1)
fixing {fi}Ki=1, solving {an}Nn=1; (2) fixing {an}Nn=1, solving {fi}Ki=1, until convergence. We first discuss step (1).
The sub-problem defined over an is

minan
1
2‖k(xn, ·)−

∑K
i=1 anifi‖2H + λ1‖an‖1. (14)

‖k(xn, ·) −
∑K
i=1 anifi‖2H = k(xn,xn) − 2a>nh + a>nGan where h ∈ RK , hi = 〈fi, k(xn, ·)〉, G ∈ RK×K and

Gij = 〈fi, fj〉. This is a standard Lasso (Tibshirani, 1996) problem and can be solved using many algorithms.
Next we discuss step (2), which learns {fi}Ki=1 using the ADMM-based algorithm outlined in the main paper. The
updates of all variables are the same as those in BMD-KDML, except fi. Let bni = k(xn, ·) −

∑K
j 6=i anjfj , the

sub-problem defined over fi is:

minfi
1
2

∑N
n=1 ‖bni − anifi‖2H + λ2

2 ‖fi‖
2
H + 〈gi, fi〉+

∑K
j=1 Pij〈fi, f̂j〉+

∑K
j=1Qij〈fi, f̂j〉

+ρ
2

∑K
j=1(〈fi, f̂j〉 −Aij)2 + ρ

2

∑K
j=1(〈fi, f̂j〉 −Aji)2

(15)

This problem can be solved with functional gradient descent. The functional gradient of the objective function w.r.t fi
is

N∑
n=1

ani(anifi − bni) + λ2fi + gi +

K∑
j=1

(Pij +Qij + 2ρ〈fi, f̂j〉 − ρ(Aij +Aji))f̂j (16)

2 Proof of Lemma 1
For the ease of notation, we use 〈·, ·〉 to denote the inner product in the RKHS and ‖ · ‖ to denote the Hilbert norm. To
prove Lemma 1, we need the following Lemma, which is an extension of Lemma 4 in (Xie et al., 2015a) from vectors
to RKHS functions.

Lemma 2. Let F = {fi}Ki=1 and G be the Gram matrix defined on F . Let g′i be the functional gradient of det(G)
w.r.t fi, then 〈g′i, fj〉 = 0 for all j 6= i, and 〈g′i, fi〉 > 0.
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Proof. We decompose fi into fi = f
‖
i + f⊥i . f‖i is in the span of F/{fi}: f‖i =

∑K
j 6=i ajfj , where {aj}Kj 6=i are the

linear coefficients. f⊥i is orthogonal to F/{fi}: 〈f⊥i , fj〉 = 0 for all j 6= i.
Let cj denote the j-th column of G. Subtracting

∑K
j 6=i ajcj from the i-th column, we get

det(G) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈f1, f1〉 · · · 0 · · · 〈f1, fK〉
〈f2, f1〉 · · · 0 · · · 〈f2, fK〉

...
. . .

...
. . .

...
〈fi, f1〉 · · · 〈f⊥i , fi〉 · · · 〈fi, fK〉

...
. . .

...
. . .

...
〈fK , f1〉 · · · 0 · · · 〈fK , fK〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(17)

Expanding the determinant according to the i-th column, we get

det(G) = det(G−i)〈f⊥i , fi〉 (18)

where G−i is the Gram matrix defined on F/{fi}. Then the functional gradient g′i of det(G) w.r.t fi is det(G−i)f
⊥
i ,

which is orthogonal to fj for all j 6= i. Since G is full rank, we know det(G) > 0. From Eq.(18) we know 〈f⊥i , fi〉
is non-negative. Hence 〈g′i, fi〉 = det(G−i)〈f⊥i , fi〉 > 0.

Now we are ready to prove Lemma 1. Some of the proof techniques draw inspiration from (Xie et al., 2015a). We first
compute ŝij :

ŝij =
|〈f̂i,f̂j〉|
‖f̂i‖‖f̂j‖

=
|〈fi+ηgi,fj+ηgj〉|√
‖fi+ηgi‖2

√
‖fj+ηgj‖2

(19)

The functional gradient of log det(G) w.r.t fi is computed as g′′i = 1
det(G)g

′
i. According to Lemma 1 and the fact that

det(G) > 0, we know 〈g′′i , fj〉 = 0 for all j 6= i, and 〈g′′i , fi〉 > 0. Then we have

|〈fi + ηgi, fj + ηgj〉|
= |〈fi + η(2fi − 2g′′i ), fj + η(2fj − 2g′′j )〉|
= |〈(1 + 2η)fi − 2ηg′′i , (1 + 2η)fj − 2ηg′′j 〉|
= |(1 + 2η)2〈fi, fj〉+ 4η2〈g′′i , g′′j 〉|
= |〈fi, fj〉||(1 + 2η)2 +

4η2〈g′′i ,g
′′
j 〉

〈fi,fj〉 |

(20)

and

1√
‖fi+ηgi‖2

= 1√
‖fi‖2+2η〈fi,gi〉+η2‖gi‖2

= 1√
‖fi‖2(1+

2η〈fi,gi〉
‖fi‖2

+
η2‖gi‖2

‖fi‖2
)

= 1

‖fi‖
√

1+
2η〈fi,gi〉

‖fi‖2
+
η2‖gi‖2

‖fi‖2

(21)

According to the Taylor expansion, we have

1√
1 + x

= 1− 1

2
x+ o(x) (22)

Then
1√

1+
2η〈fi,gi〉

‖fi‖2
+
η2‖gi‖2

‖fi‖2

= 1− 1
2 ( 2η〈fi,gi〉

‖fi‖2 + η2‖gi‖2
‖fi‖2 ) + o( 2η〈fi,gi〉

‖fi‖2 + η2‖gi‖2
‖fi‖2 ) (23)

where
2η〈fi,gi〉
‖fi‖2 =

2η〈fi,2fi−2g′′i 〉
‖fi‖2 = 4η − 4η

〈fi,g′′i 〉
‖fi‖2

(24)

Hence
1√

1+
2η〈fi,gi〉

‖fi‖2
+
η2‖gi‖2

‖fi‖2

= 1− 2η + 2η
〈fi,g′′i 〉
‖fi‖2 + o(η) (25)
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and
1√

1+
2η〈fi,gi〉

‖fi‖2
+
η2‖gi‖2

‖fi‖2

1√
1+

2η〈fj,gj〉
‖fj‖2

+
η2‖gj‖2

‖fj‖2

= (1− 2η)2 + 2η(
〈fi,g′′i 〉
‖fi‖2 +

〈fj ,g′′j 〉
‖fj‖2 ) + o(η) (26)

Then

ŝij =
|〈fi,fj〉|
‖fi‖‖fj‖ |(1 + 2η)2 +

4η2〈g′′i ,g
′′
j 〉

〈fi,fj〉 |((1− 2η)2 + 2η(
〈fi,g′′i 〉
‖fi‖2 +

〈fj ,g′′j 〉
‖fj‖2 ) + o(η))

≥ |〈fi,fj〉|
‖fi‖‖fj‖ ((1 + 2η)2 +

4η2〈g′′i ,g
′′
j 〉

〈fi,fj〉 )((1− 2η)2 + 2η(
〈fi,g′′i 〉
‖fi‖2 +

〈fj ,g′′j 〉
‖fj‖2 ) + o(η))

= sij(1 + 2η(
〈fi,g′′i 〉
‖fi‖2 +

〈fj ,g′′j 〉
‖fj‖2 ) + o(η))

> sij

(27)

This holds for all i, j, hence s(F̂) > s(F). The proof completes.

3 Proof of Theorem 1
For the ease of presentation, we use n to denote the number of data examples. Note that this number is denoted by
N in the main paper. Some of the proof techniques draw inspiration from (Xie et al., 2015b). A well established
result in learning theory is that the generalization error can be upper bounded by the Rademacher complexity. We start
from the Rademacher complexity, seek a further upper bound of it and show how s(F) affects this upper bound. The
Rademacher complexityRn(A) of the loss function set A is defined as

Rn(A) = E[sup`∈A
1
n

∑n
i=1 σi`(u(xi,yi), ti)] (28)

where σi is uniform over {−1, 1} and {(xi,yi, ti)}ni=1 are i.i.d samples drawn from p∗. Another form of Rademacher
complexity Bartlett and Mendelson (2003) can be written as R||(A) = E[sup`∈A | 2n

∑n
i=1 σi`(u(xi,yi), ti)|]. The

Rademacher complexity can be utilized to upper bound the estimation error, as shown in Lemma 3.

Lemma 3. (Anthony and Bartlett, 1999; Bartlett and Mendelson, 2003; Liang, 2015) With probability at least 1− δ

L(u)− L̂(u) ≤ 4Rn(A) + γ

√
2 log(2/δ)

n
(29)

for γ ≥ supx,y,t,u |`(u(x,y), t)|

Our analysis starts from this lemma and we seek further upper bound of Rn(A). The analysis needs an upper
bound of the Rademacher complexity of the hypothesis set F , which is given in Lemma 4.

Lemma 4. LetRn(F) denote the Rademacher complexity of the hypothesis set F , then

Rn(F) ≤ 8B(k)2B′(k,C)2K√
n

(30)

Proof. Let V = {v : (x,y) 7→ (f(x) − f(y))2, f ∈ H} denote the set of hypothesis v(x,y) = (f(x) − f(y))2, we
have

Rn(U) = E[supu∈U
1
n

n∑
i=1

σi
K∑
j=1

(fj(xi)− fj(yi))2]

= E[supu∈U
1
n

K∑
j=1

n∑
i=1

σi(fj(xi)− fj(yi))2]

≤ KE[supv∈V
1
nmaxj |

n∑
i=1

σi(fj(xi)− fj(yi))2|]

= KE[supv∈V
1
n |

n∑
i=1

σi(f(xi)− f(yi))
2|]

= K
2 R||(V)

(31)
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Let G = {g : (x,y) 7→ f(x) − f(y), f ∈ H} denote the set of hypothesis g(x,y) = f(x) − f(y) and h(x) = x2,
then R||(V) = R||(h ◦ g). h(0) = 0 and h is Lipschitz continuous with Lipschitz constant L, which can be bounded
as follows

L = supg∈G |h′(g)|
= supf,x,y 2|f(x)− f(y)|
≤ 4 supf,x |f(x)|
≤ 4 supf,x |〈f, k(x, ·)〉|
≤ 4 supf,x ‖f‖‖k(x, ·)‖
≤ 4B(k)B′(k,C)

(32)

According to the composition property of Rademacher complexity (Theorem 12 in Bartlett and Mendelson (2003)),
we have

R||(h ◦ g) ≤ 4B(k)B′(k,C)R||(g) (33)

Now we boundR||(g):

R||(g) = E[supg∈G | 2n
∑n
i=1 σi(f(xi)− f(yi))|]

= E[supg∈G | 2n
∑n
i=1 σi(〈f, k(xi, ·)〉 − 〈f, k(yi, ·)〉)|]

≤ 2
nE[supg∈G ‖f‖‖

∑n
i=1 σi(k(xi, ·)− k(yi, ·))‖]

≤ 2B(k)
n E[‖

∑n
i=1 σi(k(xi, ·)− k(yi, ·))‖]

= 2B(k)
n E(x,y)[Eσ[‖

∑n
i=1 σi(k(xi, ·)− k(yi, ·))‖]]

≤ 2B(k)
n E(x,y)[

√
Eσ[‖

∑n
i=1 σi(k(xi, ·)− k(yi, ·))‖2]] (concavity of

√
·)

= 2B(k)
n E(x,y)[

√
Eσ[
∑n
i=1 σ

2
i ‖k(xi, ·)− k(yi, ·)‖2]] (∀i 6= j σi ⊥⊥ σj)

= 2B(k)
n E(x,y)[

√∑n
i=1 ‖k(xi, ·)− k(yi, ·)‖2]

= 2B(k)
n E(x,y)[

√∑n
i=1(k(xi,xi) + k(yi,yi)− 2k(xi,yi))]

≤ 4B(k)B′(k,C)√
n

(34)

Putting Eq.(33) and Eq.(34) together, we have

R||(V) ≤ 16B(k)2B′(k,C)2

√
n

(35)

Plugging intoRn(U) ≤ K
2 R||(V) completes the proof.

In addition, we need the following bound of u(x,y).

Lemma 5.
sup
x,y,u

u(x,y) ≤ J (36)

where J = 4B(k)2B′(k,C)2((K − 1)s(F) + 1).

Proof. Let F = [fi, · · · , fK ]. We have

u(x,y) =
∑K
j=1(fj(x)− fj(y))2

=
∑K
j=1(〈fj , k(x, ·)〉 − 〈fj , k(y, ·)〉)2

= ‖F>(k(x, ·)− k(y, ·))‖2
≤ ‖F>‖2op‖k(x, ·)− k(y, ·)‖2
= ‖F‖2op‖k(x, ·)− k(y, ·)‖2
≤ (k(x,x) + k(y,y)− 2k(x,y))‖F‖2op
≤ 4B′(k,C)2‖F‖2op

(37)

where ‖ · ‖op denotes the operator norm.

‖F‖2op = sup‖a‖2=1 ‖Fa‖22
= sup‖a‖2=1 a>F>Fa

= sup‖a‖2=1

∑K
i=1

∑K
j=1 aiaj〈fi, fj〉

≤ sup‖a‖2=1

∑K
i=1

∑K
j=1 |ai||aj |‖fi‖‖fj‖| cos θij |

≤ sup‖a‖2=1

∑K
i=1

∑K
j=1 |ai||aj |B(k)2| cos θij |

≤ B(k)2 sup‖a‖2=1(
∑K
i=1

∑K
j 6=i |ai||aj |s(F) +

∑K
i=1 a

2
i )

(38)
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where θij is the angle between fi and fj . Define a′ = [|a1|, · · · , |aK |]T , Q ∈ RK×K : Qij = s(F) for i 6= j and
Qii = 1, then ‖a′‖2 = ‖a‖ and

‖F‖2op ≤ B(k)2 sup‖a′‖2=1 a′>Qa′

≤ B(k)2 sup‖a′‖2=1 λ1(Q)‖a′‖22
≤ B(k)2λ1(Q)

(39)

where λ1(Q) is the largest eigenvalue of Q. By simple linear algebra we can get λ1(Q) = (K − 1)s(F) + 1, so

‖F‖2op ≤ B(k)2((K − 1)s(F) + 1) (40)

Substituting to Eq.(37), we have

u(x,y) ≤ 4B(k)2B′(k,C)2((K − 1)s(F) + 1) (41)

Then supx,y,u |u(x,y)| ≤ J with

J = 4B(k)2B′(k,C)2((K − 1)s(F) + 1) (42)

The proof completes.

Given these lemmas, we proceed to prove Theorem 1. Since |∂`(u(x,y),t)
∂u(x,y) | ≤

1
1+exp(−u(x,y)) ≤

1
1+exp(−J) , `(u(x,y), t)

is Lipschitz continuous with respect to the first argument, and the constant L is 1
1+exp(−J) . Applying the composition

property of Rademacher complexity, we have

Rn(A) ≤ 1

1 + exp(−J)
Rn(U) (43)

Using Lemma 4, we have
Rn(A) ≤ 8B(k)2B′(k,C)2K

(1+exp(−J))
√
n

(44)

In addition, supx,y,t,u |`(u(x,y), t)| ≤ log(1 + exp(J)) Substituting this inequality and Eq.(44) into Lemma 3 com-
pletes the proof.

4 Proof of Theorem 2
First, we derive an upper bound of the Babel function Tropp (2004):

µK({fi}Ki=1) = max
i∈{1,··· ,K}

max
Λ⊂{1,··· ,K}\{i};|Λ|=m

∑
j∈Λ |〈fj , fi〉|

≤ max
i∈{1,··· ,K}

max
Λ⊂{1,··· ,K}\{i};|Λ|=m

∑
j∈Λ ‖fi‖‖fj‖s(F)

≤ mB2(k)s(F)

(45)

In Theorem 14 of Vainsencher et al. (2011), we set the upper bound of µK−1({fi}Ki=1) to mB2(k)s(F), then get
Theorem 2.

5 Visualization
Given the learned RKHS functions {fi}Ki=1, we compute a K × K matrix S where Sij is the absolute value of the
cosine similarity between fi and fj . Then we visualize this matrix using a heatmap obtained by the imagesc function
in MATLAB. Figure 1 shows the heatmaps of the matrices learned by different methods on the MIMIC-III dataset. The
number of RKHS functions was fixed to 200. For all matrices, the diagonal entries equal to 1. From the visualization,
we observed the following. For BMD-KDML methods KDML-(SFN,VND,LDD)-(RTR,RFF), the heatmaps have low
energy on the off-diagonal entries, which indicates that these matrices are close to an identity matrix and hence the
learned RKHS functions are close to being orthogonal. For the unregularized KDML, the heatmap has high energy on
the off-diagonal entries. The matrices of KDML-(DPP,Angle) have lower energy compared with KDML and KDML-
SHN, but their energy is higher than BMD-KDML methods.
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KDML-AngleKDML-DPPKDML KDML-SHN

KDML-LDD-RTRKDML-VND-RTRKDML-SFN-RTR

KDML-LDD-RFFKDML-VND-RFFKDML-SFN-RFF

Figure 1: Heatmaps of the Pairwise Cosine Similarities
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